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Overview of Design Flows
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Introduction

o Quality of Designs
o Design flows play the main role
Trouble
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Introduction

o Challenges in new design styles

o e.g., Neuromorphic chip 2, Quantum chip s
. Limited knowledge compared to ICs

1 M Neurons
256 M Synapses

5.4 B Transistors
Realtime
73 mW

e —

TrueNorth

[2] IBM Research, TrueNorth: Design and Tool Flow of a 65 mW. 1 Million Neuron Programmable Neurosynaptic Chip, IEEE TCAD 2015.
[3] IBM 20-QBit



Example 1 - Permutation of Flows

o 128-bit AES

o Same transformations .

> 50,000 random flows &,
. Random permutation
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Example 1 - Permutation of Flows
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Delay (ps)

Example 2 - Design Specific

o 128-bit AES vs. 64-bit ALU
o Same 50,000 flows
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Objective

o Performance estimation

Flow, Perfect!
Flow, Very Good
Flow; Good
Flow, - Not Good.
Flow, oMG!!




Definition and Search Space

o Decision make in design flows

o Case 1: none-repetition flow

. Each transformation appears only once (+ map)
. Example: n=4,balance (b), rewrite (rw), refactor (rf), resub (rs)

rf QoR of Choice 1

rs QoR of Choice 2

rw QoR of Choice 3
Search space

S QoR of Choice 4
f(n)=n!
QoR of Choice 5
rw oR of Choice 41=24

rf QoR of Choice 6




Definition and Search Space

o Decision make in design flows

o Case 2: m-repetition flow

. Each transformation appears m times (+ map)
. Example: m=2, n=3, balance (b), rewrite (rw), refactor (rf)

rw rw rf rf

rf R Ly Ll
o - rf ™w Search space
O . (n*m)!
rw . f(n)=
b . (m!)

rf

(2*3)1/(21)73 = 90
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Definition and Search Space

o Decision making in design flows

o Different flow likely produces different QoR
. Find the Best (Angel) and Worst (Devil)
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Approach

o MultiClass Classification
o Modeling

. Features
. Ground truth
o CNNs-Classifier
. Why Deep Learning ? Why CNNs ?
. Architecture
. Training
. Inference: finding best/worst flows by



Features — Flow in One-hot Matrix

o Flow in One-hot Matrix

o Example: balance (b), rewrite (rw), rw -z (rwz)

. b =[100]
- rw=[010] resyn
. rwz=[00 1]

o Flow: rw ->b ->rwz = [rw;b;rwz]

0O 1 O
1 0 O
0 0 1
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Ground Truth — Performance Class of Flows

o Labels of flows
o Labeling rule 1: single metric (e.g. delay)
o Labeling rule 2: multi-metric (e.g. delay+area)

! <100 ps & <80 um”2
‘ class-0 | <120 ps & <75 um”2
class-1 ] | <140 ps & <70 um”2

FJ classzj |
N H else J

[‘ J class-(n- 1)J ﬂ class-n

J




15

Convolutional Neural Network

o Convolutional Neural Networks (CNNs)
o Deep, feed-forward artificial neural networks

o Multilayer perceptron
. Conv, Pool, Fully connected layers

o Why CNNs Classifier?

o “0” of hand writing
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Convolutional Neural Network

o Why CNNs—classifier?

o “0” of hand writing
o “0” of Logic Synthesis (ABC)
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Convolutional Neural Network

o Why CNNs—classifier?

o “digits” of flows

. shape of best flow — “0”
. Global or local shape

. shape of worst flow — “6”

o CNN classifier
o 2 Conv + 3 Dense
. Softmaxdim =6

o Training
- RSMProp + SELU

R
el

Code: https://github.com/ycunxi/FLowGen-CNNs-DAC18
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Datasets

o Training/testing inputs
o Three designs

o ABC “map” mapper + 14nm
o ~300,000 data points

. Failure cases eliminated
o 20% for training, 80% for testing

Design 64-bit Mont 64-bit ALU | 128-bit AES

Data points 99,997 100,000 99,737

Features Labels

Flow (1, 144) — (24,6) | Delay, Area (1,2)




Results — Prediction Accuracy

o Confusion matrix
o Design: 128-bit AES

Normalized confusion matrix
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Results — Generated Flows

O

o Inference on a large number of untested flows

HDL
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Delay (ps)
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Results — Generated Flows
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Conclusion

o Generic Flow Classification
o Deep Learning, CNNs

o Demonstration with Logic Synthesis Tool
. Design specific

. Overall >70%, best/worst class > 86%
. Three realistic designs

o Future Work
o Cross-layer design flows (end-to-end)
o Transfer-learning cross technology/designs
o Explainability
o Open database
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Open Source

o Code & Datasets

https://github.com/ycunxi/FLowGen-CNNs-DAC18

&

‘Q ycunxi Update README.md

| .ipynb_checkpoints

I datasets

[E) LICENSE.md

[E README.md

E) dac18_GF_delay_model_save_test.h5
[E) dac18_keras_inference_only.ipynb

[E) dac18_keras_train_n_inference.ipynb

README.md

adding pre-trained model; adding inference only demo
Update README.md

license

Update README.md

adding pre-trained model; adding inference only demo
adding pre-trained model; adding inference only demo

adding pre-trained model; adding inference only demo

FLowGen-CNNs-DAC18:

Demo datasets generated with open source Logic Synthesis framework ABC from UC Berkeley [see

https://github.com/berkeley-abc/abc]
Link to paper: https://ycunxi.github.io/cunxiyu/papers/dac18.pdf

license MIT | implementation [tensorflow § python 3.4

Latest commit f2d5602 on May 11

a month ago
a month ago
2 months ago
a month ago
a month ago
a month ago

a month ago
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