wolfTPM Documentation

¢

wolfsSst

2026-01-19

CONTENTS CONTENTS

Contents
1 Intro 4
1.1 Protocoloverview e e e e e e e e e e e 4
1.2 Hierarchies e e 4
1.3 Platform Configuration Registers (PCRs) 4
1.4 Terminology o e e e e e e e e e 5
1.5 Hardware o e 5
1.5.1 Device Identification L 5
2 Building wolfTPM 6
2.0.1 Build optionsanddefines L o 6
2.0.2 Building Infineon SLB9670 e e e e e 7
2.0.3 Building STST33TP* e 7
2.0.4 Building Microchip ATTPM20 o ot et e s 7
2.0.5 BuildingNuvoton e e 8
2.0.6 Building for “/dev/tpmX” L Lo e 8
2.0.7 Building for SWTPM e e e e e e e e 9
2.0.8 Building for Windows TBSAPI 11
3 Getting Started 13
3.1 Examples . . o e e e e e e e 13
3.1.1 Native APITest o o e e e e e e e e 13
3.1.2 Wrapper APITest e e e e e e e 15
3.1.3 AttestationUse Cases i e e e e e e e 15
3.1.4 Parameter Encryption L e 21
315 CSR . e 22
3.1.6 Certificate Signing L e e e e e e e e e 22
307 PKCSH#7 . o o e e e 22
3.1.8 TLSExamples L e 22
3.1.9 Clock . . o o o e e e e e 23
3.1.10 Key Generation o o L L e e e e e e e e e 24
3.1.11 Storing keys into the TPM's NVRAM 25
3.1.12 Seal/Unseal L Lo 27
3113 GPIO Control L e e e e e e 28
3.2 Benchmarks L e e e e e 29
4 wolfTPM Library Design 34
4.1 LibraryHeaders e e e 34
42 ExampleDesign e e e e e e e 34
5 API Reference 35
5.1 TPM2 Proprietary e e e e e e e e e e e e e e 35
51.1 FUNCLiONS o e e e e e e e e 35
5.1.2 Detailed Description L e e e e 36
5.1.3 Functions Documentation 0L 37
5.2 wolftpm/tpm2.h . . . L L e e e e e 55
521 Classes o e e e e 55
522 TYPES e e e e e e 61
523 FUNCLIONS o o e e e e e e e e 77
524 Attributes e 82
5.2.5 TypesDocumentation L e 83
5.2.6 Functions Documentationo e e e e e 113
5.2.7 Attributes Documentation Lo Lo e e 144

COPYRIGHT ©2024 wolfSSL Inc. 2

CONTENTS CONTENTS

5.2.8 Sourcecode i e e e e e e e e e 146

5.3 wolftpm/tpm2_wrap.h 206
5.3.T Classes v v v i e e e e e e e e e e 206
532 TYPES e e e e e e e e e 207
5.3.3 FUNCLiONS e e e e e e e e e e e 207
5.3.4 Attributes e e e e e 220
5.3.5 TypesDocumentation L e e e e 220
5.3.6 Functions Documentation e e e e e 222
5.3.7 Attributes Documentation e e e e e e 320
5.3.8 Sourcecode e e e e e 320

54 hal/tpm_io.h L e e e e 338
541 Functions. e e e e e e e e e e e e 338
5.4.2 Attributes e e e e e e 339
5.4.3 Functions Documentation e e e e e 339
5.4.4 Attributes Documentation e e e e e e 343
5.45 Sourcecode e e e e e e 343

5.5 WOIfTPM2Wrappers o e e e e e e e e e e e e e e 346
551 Functions e e e e e e e e e e 346
5.5.2 Detailed Description e e e e e e e 358
5.5.3 Functions Documentation e e e 358

6 Cited Sources 470

COPYRIGHT ©2024 wolfSSL Inc. 3

1 INTRO

1 Intro

wolfTPM is a portable, open-source TPM 2.0 stack with backward API compatibility designed for em-
bedded use. It is highly portable, due to having been written in native C, having a single IO callback
for SPI hardware interface, no external dependencies, and its compacted code with low resource us-
age. wolfTPM offers API wrappers to help with complex TPM operations like attestation and examples
to help with complex cryptographic processes like the generation of Certificate Signing Request (CSR)
using a TPM.

1.1 Protocol overview

Trusted Platform Module (TPM, also known as ISO/IEC 11889) is an international standard for a secure
crypto processor, a dedicated micro controller designed to secure hardware through integrated cryp-
tographic keys. Computer programs can use a TPM to authenticate hardware devices, since each TPM
chip has a unique and secret RSA key burned in as it is produced.

According to Wikipedia, a TPM provides the following[1] :
* Arandom number generator
* Facilities for the secure generation of cryptographic keys for limited uses.

* Remote attestation: Creates a nearly unforgeable hash key summary of the hardware and soft-
ware configuration. The software in charge of hashing the configuration data determines the
extent of the summary. This allows a third party to verify that the software has not been changed.

+ Binding: Encrypts data using the TPM bind key, a unique RSA key descended from a storage key.

+ Sealing: Similar to binding, but in addition, specifies the TPM state for the data to be decrypted
(unsealed).

In addition, TPM can also be used for various applications such as platform integrity, disk encryption,
password protection, and software license protection.

1.2 Hierarchies

Platform: TPM_RH_PLATFORM
Owner: PM_RH_OWNER
Endorsement: TPM_RH_ENDORSEMENT

Each hierarchy has their own manufacture generated seed. The arguments used on TPM2_Create
or TPM2_CreatePrimary create a template, which is fed into a KDF to produce the same key based
hierarchy used. The key generated is the same each time; even after reboot. The generation of a new
RSA 2048 bit key takes about 15 seconds.

Typically these are created and then stored in NV using TPM2_EvictControl. Each TPM generates their
own keys uniquely based on the seed. There is also an Ephemeral hierarchy (TPM_RH_NULL), which
can be used to create ephemeral keys.

1.3 Platform Configuration Registers (PCRs)

Platform Configuration Registers (PCRs) are one of the essential features of a TPM. Their prime use
case is to provide a method to cryptographically record (measure) software state: both the software
running on a platform and configuration data used by that software.[2]

wolfTPM contains hash digests for SHA-1 and SHA-256 with an index 0-23. These hash digests can be
extended to prove the integrity of a boot sequence (secure boot).

COPYRIGHT ©2024 wolfSSL Inc. 4

1.4 Terminology 17 INTRO

1.4 Terminology

This project uses the terms append vs. marshall and parse vs. unmarshall.

1.5 Hardware

Tested with:
 Infineon OPTIGA (TM) Trusted Platform Module 2.0 SLB 9670.

- LetsTrust: [http://letstrust.de] (https://buyzero.de/collections/andere-platinen/products/
letstrust-hardware-tpm-trusted-platform-module). Compact Raspberry Pi TPM 2.0 board
based on Infineon SLB 9670.

« STST33TP* TPM 2.0 module (SPI and 12C)
* Microchip ATTPM20 module
* Nuvoton NPCT65X or NPCT75x TPM2.0 module

1.5.1 Device Identification

Infineon SLB9670: TIS: TPM2: Caps 0x30000697, Did 0x001b, Vid 0x15d1, Rid 0x10 Mfg IFX (1), Vendor
SLB9670, Fw 7.85 (4555), FIPS 140-2 1, CC-EAL4 1

ST ST33TP SPI TPM2: Caps Ox1a7e2882, Did 0x0000, Vid 0x104a, Rid Ox4e Mfg STM (2), Vendor , Fw
74.8 (1151341959), FIPS 140-2 1, CC-EAL4 0

ST ST33TP I2C TPM2: Caps 0x1a7e2882, Did 0x0000, Vid 0x104a, Rid O0x4e Mfg STM (2), Vendor , Fw
74.9 (1151341959), FIPS 140-2 1, CC-EAL4 0

Microchip ATTPM20 TPM2: Caps 0x30000695, Did 0x3205, Vid 0x1114, Rid 0x 1 Mfg MCHP (3), Vendor
, Fw 512.20481 (0), FIPS 140-2 0, CC-EAL4 0

Nations Technologies Inc. TPM 2.0 module Mfg NTZ (0), Vendor Z32H330, Fw 7.51 (419631892), FIPS
140-2 0, CC-EAL4 0

Nuvoton NPCT650 TPM2.0 Mfg NTC (0), Vendor rIsNPCT , Fw 1.3 (65536), FIPS 140-2 0, CC-EAL4 0

Nuvoton NPCT750 TPM2.0 TPM2: Caps 0x30000697, Did 0x00fc, Vid 0x1050, Rid Ox 1 Mfg NTC (0),
Vendor NPCT75x")4rls, Fw 7.2 (131072), FIPS 140-2 1, CC-EAL4 0

COPYRIGHT ©2024 wolfSSL Inc. 5

https://buyzero.de/collections/andere-platinen/products/letstrust-hardware-tpm-trusted-platform-module).
https://buyzero.de/collections/andere-platinen/products/letstrust-hardware-tpm-trusted-platform-module).

2 BUILDING WOLFTPM

2 Building wolfTPM

To build the wolfTPM library, it's required to first build and install the wolfSSL library. This can be
downloaded from the downloads page, or through a “git clone” command, shown below:

$ git clone https://github.com/wolfssl/wolfssl

Once the wolfSSL library has been downloaded, it needs to be built with the following option being
passed to the configure script:

$./configure --enable-wolftpm

Or equivalently, with the following options:

$./configure --enable-certgen --enable-certreq --enable-certext
--enable-pkcs7 --enable-cryptocb --enable-aescfb

Then the wolfSSL library just needs to be built and installed however the user prefers.

The next step is to download and install the wolfTPM library. wolfTPM can similarly be downloaded
from the downloads page or be cloned from GitHub. The following commands show how to clone and
install wolfTPM:

$ git clone https://github.com/wolfssl/wolftpm
$ cd wolftpm

$./autogen.sh

$./configure

$ make

2.0.1 Build options and defines

--enable-debug Add debug code/turns off optimizations (yes|no|verbose
|io0)
- DEBUG_WOLFTPM, WOLFTPM_DEBUG_VERBOSE,
WOLFTPM_DEBUG_IO

--enable-examples Enable Examples (default: enabled)

--enable-wrapper Enable wrapper code (default: enabled) -
WOLFTPM2_NO_WRAPPER

--enable-wolfcrypt Enable wolfCrypt hooks for RNG, Auth Sessions and

Parameter encryption
(default: enabled) - WOLFTPM2_NO_WOLFCRYPT

--enable-advio Enable Advanced IO (default: disabled) -
WOLFTPM_ADV_IO
--enable-i2c Enable I2C TPM Support (default: disabled, requires

advio) - WOLFTPM_I2C
--enable-checkwaitstate Enable TIS / SPI Check Wait State support (default:
depends on chip)
- WOLFTPM_CHECK_WAIT_STATE
--enable-smallstack Enable options to reduce stack usage
--enable-tislock Enable Linux Named Semaphore for locking access to SPI
device for
concurrent access between processes - WOLFTPM_TIS_LOCK

--enable-autodetect Enable Runtime Module Detection (default: enable -

when no module
specified) - WOLFTPM_AUTODETECT

COPYRIGHT ©2024 wolfSSL Inc. 6

https://wolfssl.com/download/
https://wolfssl.com/download/

2 BUILDING WOLFTPM

--enable-infineon
)

--enable-st
WOLFTPM_ST33
--enable-microchip

WOLFTPM_MCHP
--enable-nuvoton
disabled)

--enable-devtpm
default: disabled)

--enable-swtpm
simulator.

--enable-winapi
WOLFTPM_WINAPI

WOLFTPM_USE_SYMMETRIC
examples.

WOLFTPM2_USE_SW_ECDHE
and shared secret

TLS_BENCH_MODE
NO_TPM_BENCH

Enable Infineon SLB967@ TPM Support (default: disabled
Enable ST ST33TPM Support (default: disabled) -

Enable Microchip ATTPM2@ Support (default: disabled) -
Enable Nuvoton NPCT65x/NPCT75x Support (default:

- WOLFTPM_NUVOTON

Enable using Linux kernel driver for /dev/tpmX (

- WOLFTPM_LINUX_DEV
Enable using SWTPM TCP protocol. For use with

(default: disabled) - WOLFTPM_SWTPM

Use Windows TBS API. (default: disabled) -

Enables symmetric AES/Hashing/HMAC support for TLS
Disables use of TPM for ECC ephemeral key generation
for TLS examples.

Enables TLS benchmarking mode.
Disables the TPM benchmarking example.

2.0.2 Building Infineon SLB9670

Build wolfTPM:

git clone https://github.com/wolfSSL/wolfTPM.git

cd wolfTPM
./autogen.sh
./configure
make

2.0.3 Building ST ST33TP*

Build wolfTPM:

./autogen.sh

./configure --enable-st33 [--enable-i2c]

make

For the I2C support on Raspberry Pi you may need to enable I2C. Here are the steps: 1. Edit sudo vim
/boot/config.txt 2. Uncomment dtparam=i2c_arm=on 3. Reboot sudo reboot

2.0.4 Building Microchip ATTPM20

Build wolfTPM:
./autogen.sh

./configure --enable-microchip

make

COPYRIGHT ©2024 wolfSSL Inc. 7

2 BUILDING WOLFTPM

2.0.5 Building Nuvoton
Build wolfTPM:

./autogen.sh
./configure --enable-nuvoton
make

2.0.6 Building for “/dev/tpmX”

This build option allows you to talk to any TPM vendor supported by the Linux TIS kernel driver
Build wolfTPM:

./autogen.sh
./configure --enable-devtpm
make

Note: When using a TPM device through the Linux kernel driver make sure sufficient permissions are
given to the application that uses wolfTPM, because the “/dev/tpmX” typically has read-write permis-
sions only for the “tss” user group. Either run wolfTPM examples and your application using sudo or
add your user to the “tss” group like this:

sudo adduser yourusername tss

2.0.6.1 With QEMU and swtpm This demonstrates using wolfTPM in QEMU to communicate using
the linux kernel device “/dev/tpmX". You will need to install or build swtpm. Below are a short method
to build. You may need to consult the instructions for libtpms and swtpm

PREFIX=$PWD/inst

git clone git@github.com:stefanberger/libtpms.git

cd libtpms/

./autogen.sh --with-openssl --with-tpm2 --prefix=$PREFIX && make install
cd ..

git clone git@github.com:stefanberger/swtpm.git

cd swtpm
PKG_CONFIG_PATH=$PREFIX/1ib/pkgconfig/ ./autogen.sh --with-openssl --with-tpm2
\

--prefix=$PREFIX && \
make install
cd ..

You can setup a basic linux installation. Other installation bases can be used. This step will take some
time to install the base linux system.

download mini install image

curl -0 http://archive.ubuntu.com/ubuntu/dists/bionic-updates/main/installer-
amd64/current/images/netboot/mini.iso

create gemu image file

gemu-img create -f gcow2 lubuntu.qcow2 5G

create directory for tpm state and socket

mkdir $PREFIX/mytpm

start swtpm

$PREFIX/bin/swtpm socket --tpm2 --tpmstate dir=$PREFIX/mytpm \

--ctrl type=unixio,path=$PREFIX/mytpm/swtpm-sock --log level=20 &
start gemu for installation

COPYRIGHT ©2024 wolfSSL Inc. 8

https://github.com/stefanberger/swtpm
https://github.com/stefanberger/libtpms/wiki#compile-and-install-on-linux
https://github.com/stefanberger/swtpm/wiki#compile-and-install-on-linux

2 BUILDING WOLFTPM

gemu-system-x86_64 -m 1024 -boot d -bios bios-256k.bin -boot menu=on \
-chardev socket,id=chrtpm, path=$PREFIX/mytpm/swtpm-sock \
-tpmdev emulator,id=tpm@,chardev=chrtpm \
-device tpm-tis,tpmdev=tpm@ -hda lubuntu.qcow2 -cdrom mini.iso

Once a base system is installed it's ready to start the gemu and build wolfSSL and wolfTPM in the gemu
instance.

start swtpm again
$PREFIX/bin/swtpm socket --tpm2 --tpmstate dir=$PREFIX/mytpm \
--ctrl type=unixio,path=$PREFIX/mytpm/swtpm-sock --log level=20 &
start gemu system to install and run wolfTPM
gemu-system-x86_64 -m 1024 -boot d -bios bios-256k.bin -boot menu=on \
-chardev socket,id=chrtpm,path=$PREFIX/mytpm/swtpm-sock \
-tpmdev emulator,id=tpm@,chardev=chrtpm \
-device tpm-tis,tpmdev=tpm@ -hda lubuntu.qcow2

To build checkout and build wolfTPM, in the QEMU terminal

sudo apt install automake libtool gcc git make

get and build wolfSSL

git clone https://github.com/wolfssl/wolfssl.git

pushd wolfssl

./autogen.sh && \
./configure --enable-wolftpm --disable-examples --prefix=$PWD/../inst && \
make install

popd

get and build wolfTPM

git clone https://github.com/wolfssl/wolftpm.git

pushd wolftpm

./autogen.sh && \
./configure --enable-devtpm --prefix=$PWD/../inst --enable-debug && \
make install

sudo make check

popd

You can now run the examples such as sudo ./examples/wrap/wrap within QEMU. Using sudo
maybe required for access to /dev/tpm@.

2.0.7 Building for SWTPM

wolfTPM is to be able to interface with SW TPM interfaces defined by section D.3 of TPM-Rev-2.0-Part-
4-Supporting-Routines-01.38-code

Using the socket connection for SWTPM is exclusive and not compatible with TIS or devtpm.

Only a subset of functionality is implemented to support testing of wolfTPM. The platform requests
are not used by wolfTPM.

Two implementations were used in testing:

* https://sourceforge.net/projects/ibmswtpm2/files/
+ https://github.com/stefanberger/swtpm

To enable this functionality, build wolfTPM as shown below:

COPYRIGHT ©2024 wolfSSL Inc. 9

https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-4-Supporting-Routines-01.38-code.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-4-Supporting-Routines-01.38-code.pdf

2 BUILDING WOLFTPM

./configure --enable-swtpm
make

2.0.7.1 SWTPM simulator setup

2.0.7.1.1 ibmswtpm2 Checkout and Build

git clone https://github.com/kgoldman/ibmswtpm2.git
cd ibmswtpm2/sxc/

make

Running:

./tpm_server --rm

The rm switch is optional and remove the cache file NVChip. Alternately you can rm NVChip

2.0.7.1.2 swtpm Build libtpms

git clone git@github.com:stefanberger/libtpms.git

(cd libtpms && ./autogen.sh --with-tpm2 --with-openssl --prefix=/usr && make
install)

Build swtpm

git clone git@github.com:stefanberger/swtpm.git

(cd swtpm && ./autogen.sh && make install)

Note: On Mac OS X had to do the following first:

brew install openssl socat

pip3 install cryptography

export LDFLAGS="-L/usxr/local/opt/openssl@l.1/1ib"
export CPPFLAGS="-I/usr/local/opt/openssl@l.1/include"

libtpms had to use --prefix=/usr/local

Running swtpm

mkdir -p /tmp/myvtpm
swtpm socket --tpmstate dir=/tmp/myvtpm --tpm2 --ctrl type=tcp,port=2322 --
server type=tcp,port=2321 --flags not-need-init

./examples/pcr/extend
./examples/wrap/wrap_test

COPYRIGHT ©2024 wolfSSL Inc. 10

2 BUILDING WOLFTPM

2.0.8 Building for Windows TBS API
2.0.7.2 Running examples wolfTPM can be built to use Windows native TBS (TPM Base Services)

When using the Windows TBS interface the NV access is blocked by default. TPM NV storage space
is very limited and when filled can cause undefined behaviors, such as failures loading key handles.
These are not managed by TBS.

The TPM is designed to return an encrypted private key blob on key creation using TPM2_Create,
which you can safely store on the disk and load when needed. The symmetric encryption key used to
protect the private key blob is only known by the TPM. When you load a key using TPM2_Load you get
a transient handle, which can be used for signing and even encryption/decryption.

For primary keys created with TPM2_CreatePrimary you get back a handle. There is no encrypted
private data returned. That handle will remain loaded until TPM2_FlushContext is called.

For normal key creation using TPM2_Create you get back a TPM2B_PRIVATE outPrivate, whichis
the encrypted blob that you can store and load anytime using TPM2_Load.

2.0.8.1 Limitations wolfTPM has been tested on Windows 10 with TPM 2.0 devices. While Windows
does support TPM 1.2, functionality is limited and not supported by wolfTPM.

Presence of TPM 2.0 can be checked by opening PowerShell and running Get-PnpDevice -Class
SecurityDevices

Status Class FriendlyName
0K SecurityDevices Trusted Platform Module 2.0
Unknown SecurityDevices Trusted Platform Module 2.0

2.0.8.2 Building in MSYS2 Tested using MSYS2
export PREFIX=$PWD/tmp_install

cd wolfssl

./autogen.sh

./configure --prefix="$PREFIX" --enable-wolftpm
make

make install

cd ../wolftpm/

./autogen.sh

./configure --prefix="$PREFIX" --enable-winapi
make

2.0.8.3 Building on linux Tested using mingw-w32-bin_x86_64-linux_20131221.tar.bz2 source
Extract the tools and add them to the PATH

mkdir mingw_tools

cd mingw_tools

tar xjvf ../mingw-w32-bin_x86_64-1inux_20131221.tar.bz2
export PATH=$PWD/bin/:$PWD/i1686-w64-mingw32/bin:$PATH
cd ..

Build

COPYRIGHT ©2024 wolfSSL Inc. 11

https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Automated%20Builds/

2 BUILDING WOLFTPM

export PREFIX=$PWD/tmp_install
export CFLAGS="-DWIN32 -DMINGW -D_WIN32_WINNT=0x0600 -DUSE_WOLF_STRTOK"
export LIBS="-lws2_32"

cd wolfssl

./autogen.sh

./configure --host=1686 CC=i686-w64-mingw32-gcc --prefix="$PREFIX" --enable-
wolftpm

make

make install

cd ../wolftpm/

./autogen.sh

./configure --host=1686 CC=i686-w64-mingw32-gcc --prefix="$PREFIX" --enable-
winapi

make

cd ..

2.0.8.4 RunningonWindows To confirm presence and status of TPM on the machine run tpm.msc

COPYRIGHT ©2024 wolfSSL Inc. 12

3 GETTING STARTED

3 Getting Started

The wolfTPM library has TPM 2.0 wrapper tests, native tests, and a sample benchmark application that
come ready-to-use after a successful installation of wolfTPM. Below are some instructions on how to
run the sample applications yourself.

To interface with the hardware platform that is running these applications, please see the function
TPM2_IoCb inside of tpm_io.c.

3.1 Examples

These examples demonstrate features of a TPM 2.0 module.

The examples create RSA and ECC keys in NV for testing using handles defined in ./exam-
ples/tpm_test.h.

The PKCS #7 and TLS examples require generating CSR’s and signing them using a test script. See CSR
and Certificate Signing below.

To enable parameter encryption use -aes for AES-CFB mode or -xor for XOR mode. Only some TPM
commands / responses support parameter encryption. If the TPM2_ API has .flags CMD_FLAG_ENC2
or CMD_FLAG_DEC2 set then the command will use parameter encryption / decryption.

There are some vendor specific examples, like the TPM 2.0 extra GPIO examples for ST33 and NPCT75x.

3.1.1 Native API Test

Demonstrates calling native TPM2_* APT's.

./examples/native/native_test

TPM2 Demo using Native API's

TPM2: Caps 0x30000495, Did 0x0000, Vid ©0x1@04a, Rid 0Ox4e
TPM2_Startup pass

TPM2_SelfTest pass

TPM2_GetTestResult: Size 12, Rc 0x0
TPM2_IncrementalSelfTest: Rc 0x@, Alg ©0x1 (Todo 0)
TPM2_GetCapability: Property FamilyIndicator ©x322e3000
TPM2_GetCapability: Property PCR Count 24
TPM2_GetCapability: Property FIRMWARE_VERSION_1 0x004a0008
TPM2_GetCapability: Property FIRMWARE_VERSION_2 0x44a@1587
TPM2_GetRandom: Got 32 bytes

TPM2_StirRandom: success

TPM2_PCR_Read: Index @, Count 1
TPM2_PCR_Read: Index @, Digest Sz 32, Update Counter 20
TPM2_PCR_Read: Index 1, Count 1
TPM2_PCR_Read: Index 1, Digest Sz 32, Update Counter 20
TPM2_PCR_Read: Index 2, Count 1
TPM2_PCR_Read: Index 2, Digest Sz 32, Update Counter 20
TPM2_PCR_Read: Index 3, Count 1
TPM2_PCR_Read: Index 3, Digest Sz 32, Update Counter 20
TPM2_PCR_Read: Index 4, Count 1
TPM2_PCR_Read: Index 4, Digest Sz 32, Update Counter 20
TPM2_PCR_Read: Index 5, Count 1
TPM2_PCR_Read: Index 5, Digest Sz 32, Update Counter 20
TPM2_PCR_Read: Index 6, Count 1
TPM2_PCR_Read: Index 6, Digest Sz 32, Update Counter 20

COPYRIGHT ©2024 wolfSSL Inc. 13

3.1 Examples

3 GETTING STARTED

TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:
TPM2_PCR_Read:

Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index
Index

, Count 1
, Count 1

, Count 1

O WO 0000

10, Count 1
10, Digest Sz
11, Count 1
11, Digest Sz
12, Count 1
12, Digest Sz
13, Count 1
13, Digest Sz
14, Count 1
14, Digest Sz
15, Count 1
15, Digest Sz
16, Count 1
16, Digest Sz
17, Count 1
17, Digest Sz
18, Count 1
18, Digest Sz
19, Count 1
19, Digest Sz
20, Count 1
20, Digest Sz
21, Count 1
21, Digest Sz
22, Count 1
22, Digest Sz
23, Count 1
23, Digest Sz

TPM2_PCR_Extend success

TPM2_PCR_Read:

Index

@, Count 1

32,
32,
32,
32,
32,
32,
32,
32,
32,
32,
32,
32,
32,

32,

Update
Update
Update
Update
Update
Update
Update
Update
Update
Update
Update
Update
Update

Update

Counter

Counter

Counter

Counter

Counter

Counter

Counter

Counter

Counter

Counter

Counter

Counter

Counter

Counter

Digest Sz 32, Update Counter 20
, Digest Sz 32, Update Counter 20

, Digest Sz 32, Update Counter 20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

TPM2_PCR_Read: Index @, Digest Sz 32, Update Counter 21

TPM2_StartAuthSession:

TPM2_PolicyGetDigest: size 32
TPM2_PCR_Read: Index @, Digest Sz 20, Update Counter 21

wc_Hash of PCR[Q]:

size 32

sessionHandle 0x3000000

TPM2_PolicyPCR failed @x1c4: TPM_RC_AUTHSIZE
TPM2_PolicyRestart: Done
TPM2_HashSequenceStart: sequenceHandle 0x80000000
Hash SHA256 test success

TPM2_CreatePrimary: Endorsement 0x80000000 (314 bytes)

TPM2_CreatePrimary: Storage 0x80000002 (282 bytes)
TPM2_LoadExternal: 0x80000004

TPM2_MakeCredential: credentialBlob 68,

Create HMAC-SHA256 Key success, public 48, Private 137

secret 256
TPM2_ReadPublic Handle ©x80000004: pub 314, name 34, qualifiedName 34

TPM2_Load New HMAC Key Handle 0x80000004
TPM2_PolicyCommandCode: success

TPM2_ObjectChangeAuth: private 137

COPYRIGHT ©2024 wolfSSL Inc.

14

3.1 Examples 3 GETTING STARTED

TPM2_ECC_Parameters: CurveID 3, sz 256, p 32, a 32, b 32, gX 32, gY 32, n 32,

h 1
TPM2_Create: New ECDSA Key: pub 88, priv 126
TPM2_Load ECDSA Key Handle 0x80000004
TPM2_Sign: ECC S 32, R 32
TPM2_VerifySignature: Tag 32802
TPM2_Create: New ECDH Key: pub 88, priv 126
TPM2_Load ECDH Key Handle 0x80000004
TPM2_ECDH_KeyGen: zPt 68, pubPt 68
TPM2_ECDH_ZGen: zPt 68
TPM2 ECC Shared Secret Pass
TPM2_Create: New RSA Key: pub 278, priv 222
TPM2_Load RSA Key Handle 0x80000004
TPM2_RSA_Encrypt: 256
TPM2_RSA_Decrypt: 68
RSA Encrypt/Decrypt test passed
TPM2_NV_DefineSpace: Ox1lbfffff

TPM2_NV_ReadPublic: Sz 14, Idx Ox1bfffff, nameAlg 11, Attr ©0x2020002, authPol

@, dataSz 32, name 34
Create AES128 CFB Key success, public 50, Private 142
TPM2_Load New AES Key Handle 0x80000004
Encrypt/Decrypt test success

3.1.2 Wrapper API Test

Demonstrates calling the wolfTPM2_* wrapper API's.

./examples/wrap/wrap_test

TPM2 Demo for Wrapper API's

Mfg STM (2), Vendor , Fw 74.8 (1151341959), FIPS 140-2 1, CC-EAL4 ©
RSA Encrypt/Decrypt Test Passed

RSA Encrypt/Decrypt OAEP Test Passed

RSA Key 0x80000000 Exported to wolf RsaKey

wolf RsaKey loaded into TPM: Handle 0x80000000

RSA Private Key Loaded into TPM: Handle 0x80000000
ECC Sign/Verify Passed

ECC DH Test Passed

ECC Verify Test Passed

ECC Key 0x80000000 Exported to wolf ecc_key

wolf ecc_key loaded into TPM: Handle 0x80000000
ECC Private Key Loaded into TPM: Handle 0x80000000
NV Test on index 0x1800200 with 1024 bytes passed
Hash SHA256 test success

HMAC SHA256 test success

Encrypt/Decrypt (known key) test success
Encrypt/Decrypt test success

3.1.3 Attestation Use Cases

3.1.3.1 TPM signed timestamp, TPM2.0 GetTime Demonstrates creation of Attestation Identity
Keys (AIK) and the generation of TPM signed timestamp that can be later used as protected report of

the current system uptime.

COPYRIGHT ©2024 wolfSSL Inc. 15

3.1 Examples 3 GETTING STARTED

This example demonstrates the use of authSession (authorization Session) and policySession (Pol-
icy authorization) to enable the Endorsement Hierarchy necessary for creating AIK. The AIK is used to
issue a TPM2_GetTime command using the TPM 2.0 native APL. This provides a TPM generated and
signed timestamp that can be used as a system report of its uptime.

./examples/timestamp/signed_timestamp

3.1.3.2 TPM signed PCR(system) measurement, TPM2.0 Quote Demonstrates the generation of
TPMZ2.0 Quote used for attestation of the system state by putting PCR value(s) in a TPM signed struc-
ture.

3.1.3.2.1 List of examples The ./examples/pczr/ folder contains tools for working with Platform
Configuration Registers (PCR). It is recommended to build wolfTPM with debug output enabled using
./configure --enable-debug before make to see more logging output. There are example scripts
to show using these PCR examples.

Examples:

+ ./examples/pcr/reset: Used to clear the content of a PCR (restrictions apply, see below)

+ . /examples/pcr/extend: Used to modify the content of a PCR (extend is a cryptographic op-
eration, see below)

+ . /examples/pcr/quote: Used to generate a TPM2.0 Quote structure containing the PCR digest
and TPM-generated signature

Scripts:

+ . /examples/pcr/demo. sh - script demonstrating the tools above
+ . /examples/pcr/demo-quote-zip.sh-script demonstrating how using the tools above a sys-
tem file can be measured and a TPM-signed proof with that measurement generated

3.1.3.2.2 Technology introduction Platform Configuration Registers (PCR)

PCRs in TPM2.0 are special registers that allow only one type of write operations to be performed on
them. A TPM 2.0 extend operation is the only way to update a PCR.

At power-up, the TPM resets all PCRs to their default state (all zeros or all ones, depending on the PCR).
From this state, the TPM can generate the same PCR value only if the PCR is extended with the same
hash digest. In case of multiple values(multiple extend operations), the values must be supplied in the
correct order, otherwise the final PCR value would differ.

For example, doing a measured boot under Linux would generate the same PCR digest, if the kernel is
the same at every boot. However, loading the same (A) Linux kernel, (B) initrd image and (C) configura-
tion file would generate the same PCR digest only when the order of extend operations is consistent
(for example, A-B-C). It does not matter which extend operation is first or last as long as the order is
kept the same. For example, C-B-A would result in a reproducible digest, but it would differ from the
A-B-C digest.

Reset

Not all PCRs are equal. The user can perform extend operation on all PCRs, but the user can reset
only on one of them during normal runtime. This is what makes PCRs so useful.

* PCRO-15 are reset at boot and can be cleared again(reset) only from reboot cycle.

* PCR16 is a PCR for debug purposes. This is the PCR used by all tools above by default. It is safe
to test and work with PCR16.

* PCR17-22 are reserved for Dynamic Root of Trust Measurement (DRTM), an advanced topic that
is to be covered separately.

COPYRIGHT ©2024 wolfSSL Inc. 16

3.1 Examples 3 GETTING STARTED

Extend

The TPM 2.0 TPM2_Extend API uses a SHA1 or SHA256 cryptographic operation to combine the current
value of the PCR and with newly provided hash digest.

Quote

The TPM 2.0 TPM2_Quote APl is a standard operation that encapsulates the PCR digest in a TCG defined
structure called TPMS_ATTEST together with TPM signature. The signature is produced from a TPM
generated key called Attestation Identity Key (AIK) that only the TPM can use. This provides guarantee
for the source of the Quote and PCR digest. Together, the Quote and PCR provide the means for system
measurement and integrity.

3.1.3.2.3 Example Usage Reset Example Usage

$./examples/pcr/reset -?

PCR index is out of range (0-23)

Expected usage:

./examples/pcr/reset [pcr]

* pcr is a PCR index between 0-23 (default 16)
Demo usage without parameters, resets PCR16.

Extend Example Usage

$./examples/pcr/extend -?
Incorrect arguments
Expected usage:
./examples/pcr/extend [pcxr] [filename]
* pcr is a PCR index between 0-23 (default 16)
* filename points to file(data) to measure
If wolfTPM is built with --disable-wolfcrypt the file
must contain SHA256 digest ready for extend operation.
Otherwise, the extend tool computes the hash using wolfcrypt.
Demo usage without parameters, extends PCR16 with known hash.

Quote Example Usage

$./examples/pcr/quote -?

Incorrect arguments

Expected usage:

./examples/pcr/quote [pcxr] [filename]

* pcr is a PCR index between ©0-23 (default 16)

* filename for saving the TPMS_ATTEST structure to a file
Demo usage without parameters, generates quote over PCR16 and
saves the output TPMS_ATTEST structure to "quote.blob" file.

3.1.3.2.4 Typicaldemooutput AllPCRexamplescan be used withoutarguments. Thisis the output
of the . /examples/pcxr/demo. sh script:

$./examples/pcr/reset

Demo how to reset a PCR (clear the PCR value)

wolfTPM2_Init: success

Trying to reset PCR16...

TPM2_PCR_Reset success

PCR16 digest:
00 00 00 00 00 00 00 00 00 00 00 00 00 @00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

COPYRIGHT ©2024 wolfSSL Inc. 17

3.1 Examples 3 GETTING STARTED

As expected, the PCR16 content is now set back to all zeroes. From this moment on we can generate
predictable PCR digests(values) for system measurement. Similar to using PCR7 after boot, because
PCR7 is reset at system boot. Using PCR16 allows us to skip system reboots and test safely.

$./examples/pcr/extend
Demo how to extend data into a PCR (TPM2.0 measurement)
wolfTPM2_Init: success
Hash to be used for measurement:
000102030405060708090A0BOCODOEAF101112131415161718191A1B1C1D1E1F
TPM2_PCR_Extend success
PCR16 digest:
bb 22 75 c4 9f 28 ad 52 ca e6 d5 5e 34 a9 74 a5 | ."u..(.R...M.t.
8c 7a 3b a2 6f 97 6e 8e cb be 7a 53 69 18 dc 73 | .z;.0.n...zSi..s

Based on the old content of the PCR (all zeros) and the provided hash (SHA256 32-byte digest), the PCR
gets its new value printed at the end of the extend example. This value will always be the same, if
reset is launched before extend. To pass custom hash digest, the extend tool accepts PCR index as
first argument(recommended to use 16 for PCR16) and user file as second argument.

$./examples/pcr/quote
Demo of generating signed PCR measurement (TPM2.@ Quote)
wolfTPM2_Init: success
TPM2_CreatePrimary: 0x80000000 (314 bytes)
wolfTPM2_CreateEK: Endorsement 0x80000000 (314 bytes)
TPM2_CreatePrimary: 0x80000001 (282 bytes)
wolfTPM2_CreateSRK: Storage 0x80000001 (282 bytes)
TPM2_StartAuthSession: sessionHandle 0x3000000
TPM2_Create key: pub 280, priv 212
TPM2_Load Key Handle 0x80000002
wolfTPM2_CreateAndLoadAIK: AIK 0x80000002 (280 bytes)
TPM2_Quote: success
TPM with signature attests (type 0x8018):
TPM signed 1 count of PCRs
PCR digest:
c7 d4 27 2a 57 97 7f 66 1f bd 79 30 0a 1b bf ff | ..'"*W..f..y0....
2e 43 57 cc 44 14 7a 82 11 aa 76 3f 9f 1b 3a 6¢c | .CW.D.z...v?..:1
TPM generated signature:
28 dc da 76 33 35 a5 85 2a Oc @b e8 25 do f8 8d |
1f ce c3 3b 71 64 ed 54 e6 4d 82 af f3 83 18 8e |
6e 2d 9f 9e 5a 86 4f 11 fe 13 84 94 cf 05 b9 d5 | n-..Z.0.........
eb 5a 34 39 b2 a5 7a 5f 52 c@ f4 e7 2b 70 b7 62 |
6a fe 79 4e 2e 46 2e 43 d7 1c ef 2c 14 21 11 14 |
95 @1 93 a9 85 @d 02 c7 b2 f8 75 1la bd 59 da 56 | u..Y.v
cc 43 e3 d2 aa 14 49 2a 59 26 09 9e c9 4b 1a 66 | .C....I*Y&...K.T
cb 77 65 95 79 69 89 bd 46 46 13 3d 2c a9 78 f8 | .we.yi..FF.=,.x.

2c ab 8a 4a 6b f2 97 67 86 37 f8 f6 9d 85 cd cf | ,..Jk..g.7......
a4 ae c6 d3 cf cl 63 92 8c 7b 88 79 9@ 54 @a ba | c..{.y.T..
8d c6 1lc 8f 6e 6d 61 bc a9 2f 35 b@ 1a 46 74 9a |nma../5..Ft.
e3 7d 39 33 52 1a f5 4b 07 8d 30 53 75 b5 68 40 | .}93R..K..0Su.h@
04 e7 al fc bl 93 5d 1le bc ca f4 a9 fa 75 d3 f6 | 1...... u..
3d 4a 5b 07 23 Qe f@ f4 1f 97 23 76 la ee 66 93 | =J[.#..... #v..f.
cd fd 9e 6f 2b d3 95 c5 51 cf f6 81 5b 97 al d2 | ...o+...Q...[...
|

06 45 c@ 30 70 ad bd 36 66 9f 95 af 60 7c d5 a2

Before producing a TPM-signed structure containing the PCR measurement, the quote example starts
by creating an Endorsement Key(EK) that is required for the TPM to operate. It serves essentially as

COPYRIGHT ©2024 wolfSSL Inc. 18

3.1 Examples 3 GETTING STARTED

the primary key for all other keys. Next, a Storage Key(SRK) is generated and under that SRK a special
Attestation Identity Key(AIK) is added. Using the AIK the TPM can sign the quote structure.

3.1.3.2.5 Steps for measuring a system file (performing local attestation) A system administra-
tor wants to make sure the zip tool of an user is genuine (legitimate software, correct version and has
not been tampered with). To do this, the SysAdmin resets PCR16 and can afterwards generate a PCR
digest based on the zip binary that can be used for future references if the file has been modified.

This is the output from . /examples/pcr/demo-quote-zip.sh script.

$./examples/pcr/reset 16

Trying to reset PCR16...
TPM2_PCR_Reset success

This is a good known initial state of the PCR. By using the extend tool the SysAdmin feeds the /us-
r/bin/zip binary to wolfCrypt for SHA256 hash computation, which then is used by wolfTPM to issue
a TPM2_Extend operation in PCR16.

$./examples/pcr/extend 16 /usx/bin/zip

TPM2_PCR_Extend success

PCR16 digest:
2b bd 54 ae 08 5b 59 ef 90 42 d5 ca 5d df b5 b5 | +.T..[Y..B..]...
74 3a 26 76 d4 39 37 eb b0 53 f5 82 67 6f b4 aa | t:&v.97..S..go..

Once the extend operation is finished, the SysAdmin wants to create a TPM2.0 Quote as proof of the
measurement in PCR16.

$./examples/pcr/quote 16 zip.quote

TPM2_Quote: success
TPM with signature attests (type 0x8018):
TPM signed 1 count of PCRs

The result of the TPM2.0 Quote operation is saved in the zip.quote binary file. The TPMS_ATTEST
structure of TPM 2.0 Quote contains also useful clock and time information. For more about the TPM
time attestation please check the . /examples/timestamp/signed_timestamp example.

3.1.3.3 Remote Attestation challenge Demonstrates how to create Remote Attestation challenge
using the TPM 2.0 and afterwards prepare a response.

3.1.3.3.1 List of examples The ./examples/attestation/ folder contains examples related
specifically to remote attestation. However, the demonstration requires the creation of TPM 2.0 keys
using the keygen example also included in wolfTPM’s source code.

Complete list of the required examples is shown below:

+ ./examples/attestation/make_credential: Used by a server to create a remote attesta-
tion challenge

+ ./examples/attestation/activate_credential: Used by a client to decrypt the challenge
and respond

+ ./examples/keygen/keygen: Used to create a primary key(PK) and attestation key(AK)

Note: All of these example allow the use of the Endorsement Key and Attestation Key under the En-
dorsement Hierarchy. This is done by adding the -eh option when executing any of the three examples

COPYRIGHT ©2024 wolfSSL Inc. 19

3.1 Examples 3 GETTING STARTED

above. The advantage of using EK/EH is that the private key material of the EK never leaves the TPM.
Anything encrypted using the public part of the EK can be encrypted only internally by the TPM owner
of the EK, and EK is unique for every TPM chip. Therefore, creating challenges for Remote Attestation
using the EK/EH has greater value in some scenarios. One drawback is that by using the EK the iden-
tity of the host under attestation is always known, because the EK private-public key pair identifies
the TPM and in some scenarios this might rise privacy concerns. Our remote attestation examples
support both AK under SRK and AK under EK. It is up to the developer to decide which one to use.

3.1.3.3.2 Technology introduction Remote Attestation is the process of a client providing an evi-
dence to an attestation server that verifies if the client is in a known state.

For this process to take place, the client and server must establish initial trust. This is achieved using
the standard TPM 2.0 commands MakeCredential and ActivateCredential.

1. The client transfers the public parts of a TPM 2.0 Primary Attestation Key(PAK) and quote signing
Attestation Key(AK).

2. MakeCredential uses the public part of the PAK to encrypt a challenge(secret). Typically, the
challenge is a digest of the public part of an Attestation Key(AK).

This way the challenge can only be decrypted by the TPM that can load the private part of the PAK and
AK. Because the PAK and AK are bound to the TPM using a fixedTPM key attribute, the only TPM that
can load these keys is the TPM where they were originally created.

3. After the challenge is created, it is transferred from the server to the client.

4. ActivateCredential uses the TPM 2.0 loaded PAK and AK to decrypt the challenge and retrieve the
secret. Once retrieved, the client can respond to the server challenge.

This way the client confirms to the server it possesses the expected TPM 2.0 System Identity and At-
testation Key.

Note:

* The transport protocol to exchange the challenge and response are up to the developer to choose,
because this is implementation specific. One approach could be the use of TLS1.3 client-server
connection using wolfSSL.

3.1.3.3.3 Example usage Creating TPM 2.0 keys for Remote Attestation

Using the keygen example we can create the necessary TPM 2.0 Attestation Key and TPM 2.0 Primary
Storage Key that will be used as a Primary Attestation Key(PAK).

$./examples/keygen/keygen -rsa
TPM2.0 Key generation example
Key Blob: keyblob.bin
Algorithm: RSA
Template: AIK
Use Parameter Encryption: NULL
Loading SRK: Storage 0x81000200 (282 bytes)
RSA AIK template
Creating new RSA key...
New key created and loaded (pub 28@, priv 222 bytes)
Wrote 508 bytes to keyblob.bin
Wrote 288 bytes to srk.pub
Wrote AK Name digest

Make Credential Example Usage

COPYRIGHT ©2024 wolfSSL Inc. 20

3.1 Examples 3 GETTING STARTED

Using the make_credential example an attestation server can generate remote attestation chal-
lenge. The secret is 32 bytes of randomly generated seed that could be used for a symmetric key in
some remote attestation schemes.

$./examples/attestation/make_credential

Using public key from SRK to create the challenge

Demo how to create a credential challenge for remote attestation
Credential will be stored in cred.blob

wolfTPM2_Init: success

Reading 288 bytes from srk.pub

Reading the private part of the key

Public key for encryption loaded

Read AK Name digest success

TPM2_MakeCredential success

Wrote credential blob and secret to cred.blob, 648 bytes

The transfer of the PAK and AK public parts between the client and attestation server is not part of the
make_credential example, because the exchange is implementation specific.

Activate Credential Example Usage

Using the activate_credential example a client can decrypt the remote attestation challenge. The
secret will be exposed in plain and can be exchanged with the attestation server.

$./examples/attestation/activate_credential

Using default values

Demo how to create a credential blob for remote attestation
wolfTPM2_Init: success

Credential will be read from cred.blob

Loading SRK: Storage 0x81000200 (282 bytes)

SRK loaded

Reading 508 bytes from keyblob.bin

Reading the private part of the key

AK loaded at 0x80000001

Read credential blob and secret from cred.blob, 648 bytes
TPM2_ActivateCredential success

The transfer of the challenge response containing the secret in plain (or used as a symmetric key seed)
is not part of the activate_credential example, because the exchange is also implementation
specific.

3.1.4 Parameter Encryption

3.1.4.1 Key generation with encrypted authorization Detailed information can be found under
the section “Key generation”

3.1.4.2 Secure vault for keys with encrypted NVRAM authorization Detailed information can be
found in this file under section “Storing keys into the TPM's NVRAM”

3.1.4.3 TPM2.0 Quote with encrypted user data Example for demonstrating how to use parame-
ter encryption to protect the user data between the Host and the TPM.

In this example the qualifying data that can be supplied by the user for a Quote operation is protected.
Qualifying data is arbitrary data incorporated into the signed Quote structure. Using parameter en-
cryption, wolfTPM enables the Host to transfer that user data in encrypted form to the TPM and vice
versa. Thus, protecting the data from man-in-the-middle attacks.

COPYRIGHT ©2024 wolfSSL Inc. 21

3.1 Examples 3 GETTING STARTED

Only the first parameter of a TPM command can be encrypted and the parameter must be of type
TPM2B_DATA. For example, the password auth of a TPM key or the qualifying data of a TPM2.0 Quote.

The encryption of command request and response can be performed together or separate. There can
be a communication exchange between the TPM and a client program where only the parameter in
the request command is encrypted.

This behavior depends on the sessionAttributes:

* TPMA_SESSION_encrypt for command request
* TPMA_SESSION_decrypt for command response

Either one can be set separately or both can be set in one authorization session. This is up to the user
(developer).

./examples/pcxr/quote_paramenc

3.1.5 CSR

Generates a Certificate Signing Request for building a certificate based on a TPM key pair.
./examples/csr/csx

It creates two files: . /certs/tpm-rsa-cert.csr ./certs/tpm-ecc-cert.csr

3.1.6 Certificate Signing

External script for generating test certificates based on TPM generated CSR's. Typically the CSR would
be provided to a trusted CA for signing.

./certs/certreq.sh

The script creates the following X.509 files (also in .pem format): ./certs/ca-ecc-cert.der
./certs/ca-rsa-cert.der ./certs/client-rsa-cert.der ./certs/client-ecc-cert.der
./certs/server-rsa-cert.der ./certs/server-ecc-cert.der

3.1.7 PKCS #7
Example signs and verifies data with PKCS #7 using a TPM based key.

¢ Must first run:

1. ./examples/csr/csr
2. ./certs/certreq.sh
3. ./examples/pkcs7/pkcs7

The result is displayed to stdout on the console.

3.1.8 TLS Examples

The TLS example uses TPM based ECDHE (ECC Ephemeral key) support. It can be disabled using
CFLAGS="-DWOLFTPM2_USE_SW_ECDHE" or #define WOLFTPM2_USE_SW_ECDHE. We are also look-
ing into using the 2-phase TPM2_EC_Ephemeral and TPM2_ZGen_2Phase methods for improved per-
formance and scalability.

To force ECC use with wolfSSL when RSA is enabled define TLS_USE_ECC.
To use symmetric AES/Hashing/HMAC with the TPM define WOLFTPM_USE_SYMMETRIC.
Generation of the Client and Server Certificates requires running:

1. ./examples/keygen/keygen rsa_test_blob.raw -rsa -t

COPYRIGHT ©2024 wolfSSL Inc. 22

3.1 Examples 3 GETTING STARTED

2. ./examples/keygen/keygen ecc_test_blob.raw -ecc -t

3. ./examples/csr/csr

4. ./certs/certreq.sh

5. Copy the CA files from wolfTPM to wolfSSL certs directory.
a. cp ./certs/ca-ecc-cert.pem ../wolfssl/certs/tpm-ca-ecc-cert.pem
b. cp ./certs/ca-rsa-cert.pem ../wolfssl/certs/tpm-ca-rsa-cert.pem

Note: Thewolf-ca-rsa-cert.pemandwolf-ca-ecc-cert.pemfiles come from the wolfSSL exam-
ple certificates here:

cp ../wolfssl/certs/ca-cert.pem ./certs/wolf-ca-rsa-cert.pem
cp ../wolfssl/certs/ca-ecc-cert.pem ./certs/wolf-ca-ecc-cert.pem

3.1.8.1 TLS Client Examples show using a TPM key and certificate for TLS mutual authentication
(client authentication).

This example client connects to localhost on on port 11111 by default. These can be overridden using
TLS_HOST and TLS_PORT.

You can validate using the wolfSSL example server this like: ./examples/server/server -b -p
11111 -g -d -i -V

To validate client certificate use the following wolfSSL example server command: ./exam-
ples/server/server -b -p 11111 -g -A ./certs/tpm-ca-rsa-cert.pem -i -V or
./examples/server/server -b -p 11111 -g -A ./certs/tpm-ca-ecc-cert.pem -i -V

Then run the wolfTPM TLS client example: . /examples/tls/tls_client -rsaor./examples/tl-
s/tls_client -ecc

3.1.8.2 TLS Server This example shows using a TPM key and certificate for a TLS server.
By default it listens on port 11111 and can be overridden at build-time using the TLS_PORT macro.

Run the wolfTPM TLS server example: ./examples/tls/tls_server -rsa or ./examples/tl-
s/tls_server -ecc

Then run the wolfSSL example client this like: ./examples/client/client -h localhost -p
11111 -g -d

To validate server certificate use the following wolfSSL example client comment: . /examples/clien-
t/client -h localhost -p 11111 -g -A ./certs/tpm-ca-rsa-cert.pemor ./examples/-
client/client -h localhost -p 11111 -g -A ./certs/tpm-ca-ecc-cert.pem

Or using your browser: https://localhost:11111

With browsers you will get certificate warnings until you load the test CAs ./certs/ca-rsa-
cert.pemand ./certs/ca-ecc-cert.peminto your OS key store. For testing most browsers have
a way to continue to the site anyways to bypass the warning.

3.1.9 Clock
Updating the TPM clock

The TPM has internal hardware clock that can be useful to the user. There are two values that the TPM
can provide in respect to time.

TPM time is the current uptime, since the last power on sequence. This value can not be changed or
modified. There is no mechanism for that. The value is reset at every power sequence.

COPYRIGHT ©2024 wolfSSL Inc. 23

3.1 Examples 3 GETTING STARTED

TPM clock is the total time the TPM has ever been powered. This value can be modified using the
TPM2_ClockSet command. The TPM clock can be set only forward.

This way the user can keep track of relative and current time using the TPM clock.

Note: If the new time value makes a change bigger than the TPM clock update interval, then the
TPM will first update its volatile register for time and then the non-volatile register for time. This may
cause a narrow delay before the commands returns execution to the user. Depending on the TPM
manufacturer, the delay can vary from us to few ms.

Note: This example can take an optional argument, the time value in milliseconds used for increment-
ing the TPM clock. Default value is 50000ms (50 seconds).

./examples/timestamp/clock_set

3.1.10 Key Generation

Examples for generating a TPM key blob and storing to disk, then loading from disk and loading into
temporary TPM handle.

$./examples/keygen/keygen keyblob.bin -rsa
TPM2.0 Key generation example

Loading SRK: Storage 0x81000200 (282 bytes)
Creating new RSA key...

Created new key (pub 280, priv 222 bytes)
Wrote 840 bytes to keyblob.bin

$./examples/keygen/keyload keyblob.bin
TPM2.0 Key load example

Loading SRK: Storage 0x81000200 (282 bytes)
Reading 840 bytes from keyblob.bin

Loaded key to 0x80000001

$./examples/keygen/keygen keyblob.bin -ecc
TPM2.0 Key generation example

Loading SRK: Storage 0x81000200 (282 bytes)
Creating new ECC key...

Created new key (pub 88, priv 126 bytes)
Wrote 744 bytes to keyblob.bin

$./examples/keygen/keyload keyblob.bin
TPM2.0 Key load example

Loading SRK: Storage 0x81000200 (282 bytes)
Reading 744 bytes from keyblob.bin

Loaded key to 0x80000001

./examples/keygen/keygen -sym=aescfb128
TPM2.0 Key generation example

Key Blob: keyblob.bin

Algorithm: SYMCIPHER

aescfb mode, 128 keybits

Template: Default

Use Parameter Encryption: NULL
Loading SRK: Storage 0x81000200 (282 bytes)
Symmetric template
Creating new SYMCIPHER key...

COPYRIGHT ©2024 wolfSSL Inc. 24

3.1 Examples 3 GETTING STARTED

Created new key (pub 50, priv 142 bytes)
Wrote 198 bytes to keyblob.bin

$./examples/keygen/keyload
TPM2.0 Key load example
Key Blob: keyblob.bin
Use Parameter Encryption: NULL
Loading SRK: Storage 0x81000200 (282 bytes)
Reading 198 bytes from keyblob.bin
Reading the private part of the key
Loaded key to 0x80000001

When filename is not supplied, a default filename “keyblob.bin" is used, therefore keyload and key-
gen can be used without additional parameters for quick TPM 2.0 key generation demonstration.

To see the complete list of supported cryptographic algorithms and options by the keygen example,
use one of the - -help switches.

Example for importing a private key as TPM key blob and storing to disk, then loading from disk and
loading into temporary TPM handle.

$./examples/keygen/keyimport keyblob.bin -rsa
TPM2.0 Key import example

Loading SRK: Storage 0x81000200 (282 bytes)
Imported key (pub 278, priv 222 bytes)

Wrote 840 bytes to keyblob.bin

$./examples/keygen/keyload keyblob.bin
TPM2.0 Key load example

Loading SRK: Storage 0x81000200 (282 bytes)
Reading 840 bytes from keyblob.bin

Loaded key to 0x80000001

$./examples/keygen/keyimport keyblob.bin -ecc
TPM2.0 Key Import example

Loading SRK: Storage 0x81000200 (282 bytes)
Imported key (pub 86, priv 126 bytes)

Wrote 744 bytes to keyblob.bin

$./examples/keygen/keyload keyblob.bin
TPM2.0 Key load example

Loading SRK: Storage 0x81000200 (282 bytes)
Reading 744 bytes from keyblob.bin

Loaded key to 0x80000001

The keyload tool takes only one argument, the filename of the stored key. Because the information
what is key scheme (RSA or ECC) is contained within the key blob.

3.1.11 Storing keys into the TPM’'s NVRAM

These examples demonstrates how to use the TPM as a secure vault for keys. There are two programs,
one to store a TPM key into the TPM's NVRAM and another to extract the key from the TPM's NVRAM.
Both examples can use parameter encryption to protect from MITM attacks. The Non-volatile memory
location is protected with a password authorization that is passed in encrypted form, when “-aes” is
given on the command line.

COPYRIGHT ©2024 wolfSSL Inc. 25

3.1 Examples 3 GETTING STARTED

Before running the examples, make sure there is a keyblob.bin generated using the keygen tool. The
key can be of any type, RSA, ECC or symmetric. The example will store the private and public part. In
case of a symmetric key the public part is meta data from the TPM. How to generate a key you can see
above, in the description of the keygen example.

Typical output for storing and then reading an RSA key with parameter encryption enabled:

$./examples/nvram/store -aes
Parameter Encryption: Enabled (AES CFB).

TPM2_StartAuthSession: sessionHandle 0x2000000
Reading 840 bytes from keyblob.bin
Storing key at TPM NV index 0x1800202 with password protection

Public part = 616 bytes
NV write of public part succeeded

Private part = 222 bytes
Stored 2-byte size marker before the private part
NV write of private part succeeded

$./examples/nvram/read -aes
Parameter Encryption: Enabled (AES CFB).

TPM2_StartAuthSession: sessionHandle 0x2000000
Trying to read 616 bytes of public key part from NV
Successfully read public key part from NV

Trying to read size marker of the private key part from NV
Successfully read size marker from NV

Trying to read 222 bytes of private key part from NV
Successfully read private key part from NV

Extraction of key from NVRAM at index ©x1800202 succeeded
Loading SRK: Storage 0x81000200 (282 bytes)

Trying to load the key extracted from NVRAM

Loaded key to 0x80000001

The “read” example will try to load the extracted key, if both the public and private part of the key were
stored in NVRAM. The “-aes” switches triggers the use of parameter encryption.

The examples can work with partial key material - private or public. This is achieved by using the “-priv"”
and “-pub” options.

Typical output of storing only the private key of RSA asymmetric key pair in NVRAM and without pa-
rameter encryption enabled.

$./examples/nvram/store -priv
Parameter Encryption: Not enabled (try -aes or -xor).

Reading 506 bytes from keyblob.bin
Reading the private part of the key
Storing key at TPM NV index 0x1800202 with password protection

Private part = 222 bytes

COPYRIGHT ©2024 wolfSSL Inc. 26

3.1 Examples 3 GETTING STARTED

Stored 2-byte size marker before the private part
NV write of private part succeeded

$./examples/nvram/read -priv
Parameter Encryption: Not enabled (try -aes or -xor).

Trying to read size marker of the private key part from NV
Successfully read size marker from NV

Trying to read 222 bytes of private key part from NV
Successfully read private key part from NV

Extraction of key from NVRAM at index ©x1800202 succeeded

After successful key extraction using “read”, the NV Index is destroyed. Therefore, to use “read” again,
the “store” example must be run again as well.

3.1.12 Seal / Unseal

TPM 2.0 can protect secrets using a standard Seal/Unseal procedure. Seal can be created using a TPM
2.0 key or against a set of PCR values. Note: Secret data sealed in a key is limited to a maximum size
of 128 bytes.

There are two examples available: seal/seal and seal/unseal.

Demo usage is available, without parameters.

3.1.12.1 Sealing data into a TPM 2.0 Key Using the seal example we store securely our data in
a newly generated TPM 2.0 key. Only when this key is loaded into the TPM, we could read back our
secret data.

Please find example output from sealing and unsealing a secret message:

$./examples/seal/seal keyblob.bin mySecretMessage
TPM2.0 Simple Seal example

Key Blob: keyblob.bin

Use Parameter Encryption: NULL
Loading SRK: Storage 0x81000200 (282 bytes)
Sealing the user secret into a new TPM key
Created new TPM seal key (pub 46, priv 141 bytes)
Wrote 193 bytes to keyblob.bin
Key Public Blob 46
Key Private Blob 141

$./examples/keygen/keyload -persistent
TPM2.0 Key load example
Key Blob: keyblob.bin
Use Parameter Encryption: NULL
Loading SRK: Storage 0x81000200 (282 bytes)
Reading 193 bytes from keyblob.bin
Reading the private part of the key
Loaded key to 0x80000001
Key was made persistent at 0x81000202

$./examples/seal/unseal message.raw
Example how to unseal data using TPM2.0

COPYRIGHT ©2024 wolfSSL Inc. 27

3.1 Examples 3 GETTING STARTED

wolfTPM2_Init: success
Unsealing succeeded
Stored unsealed data to file = message.raw

$ cat message.raw
mySecretMessage

After a successful unsealing, the data is stored into a new file. If no filename is provided, the unseal
tool stores the data in unseal.bin.

3.1.13 GPIO Control

Some TPM 2.0 modules have extra I/O functionalities and additional GPIO that the developer could
use. This extra GPIO could be used to signal other subsystems about security events or system states.

Currently, the GPIO control examples support ST33 and NPCT75x TPM 2.0 modules.
There are four examples available. Configuration using gpio/gpio_config

Every example has a help option -h. Please consult with gpio_config -h about the various GPIO
modes.

Once configured, a GPIO can be controlled using gpio/gpio_set and gpio/gpio_read.

Demo usage is available, when no parameters are supplied. Recommended is to use carefully selected
options, because GPIO interact with the physical world.

3.1.13.1 GPIO Config ST33 supports 6 modes, information from gpio/gpio_config below:

$./examples/gpio/gpio_config -h

Expected usage:

./examples/gpio/gpio_config [num] [mode]

* num is a GPIO number between 0-3 (default 0)

* mode is a number selecting the GPIO mode between 0-6 (default 3):
standard - reset to the GPIO's default mode

. floating - input in floating configuration.

. pullup - input with pull up enabled

. pulldown - input with pull down enabled

. opendrain - output in open drain configuration

. pushpull - output in push pull configuration

unconfigure - delete the NV index for the selected GPIO
Example usage, without parameters, configures GPIOQ@ as input with a pull down.

CT!U'I-PUUNI—‘S

Example usage for configuring a GPIO to output can be found below:

$./examples/gpio/gpio_config @ 5

GPIO num is: @

GPIO mode is: 5

Example how to use extra GPIO on a TPM 2.0 modules
Trying to configure GPIOQ...

TPM2_GPIO_Config success

NV Index for GPIO access created

Example usage for configuring a GPIO as input with a pull-up on ST33 can be found below:

$./examples/gpio/gpio_config @ 3
GPIO num is: @
GPIO mode is: 3

COPYRIGHT ©2024 wolfSSL Inc. 28

3.2 Benchmarks 3 GETTING STARTED

Demo how to use extra GPIO on a TPM 2.0 modules
Trying to configure GPIOO...

TPM2_GPIO_Config success

NV Index for GPIO access created

3.1.13.2 GPIO Config (NPCT75xx) NPCT75x supports 3 output modes (no input modes), informa-
tion from gpio/gpio_config below:

$./examples/gpio/gpio_config -h
Expected usage:
./examples/gpio/gpio_config [num] [mode]
* num is a GPIO number between 3 and 4 (default 3)
* mode is either push-pull, open-drain or open-drain with pull-up
1. pushpull - output in push pull configuration
2. opendrain - output in open drain configuration
3. pullup - output in open drain with pull-up enabled
4. unconfig - delete NV index for GPIO access
Example usage, without parameters, configures GPIO3 as push-pull output.

Please note that NPCT75x GPIO numbering starts from GPIO3, while ST33 starts from GPIOO.

$./examples/gpio/gpio_nuvoton 4 1

Example for GPIO configuration of a NPTC7xx TPM 2.0 module
GPIO number: 4

GPIO mode: 1

Successfully read the current configuration

Successfully wrote new configuration

NV Index for GPIO access created

3.1.13.3 GPIO Usage Switching a GPIO configuration is seamless. * For ST33 gpio/gpio_config
takes care of deleting existing NV Index, so a new GPIO configuration can be chosen. * For NPCT75xx
gpio/gpio_config can reconfigure any GPIO without deleting the created NV index.

$./examples/gpio/gpio_set @ -high
GPIO® set to high level

$./examples/gpio/gpio_set @ -low
GPIOQ set to low level

$./examples/gpio/gpio_read 0
GPIOQ is Low

3.2 Benchmarks

The wolfTPM benchmark application requires the same setup as the example applications.
Note: Key Generation is using existing template from hierarchy seed.
Run on Infineon OPTIGA SLB9670 at 43MHz:

./examples/bench/bench

TPM2 Benchmark using Wrapper API's

RNG 16 KB took 1.140 seconds, 14.033 KB/s
Benchmark symmetric AES-128-CBC-enc not supported!
Benchmark symmetric AES-128-CBC-dec not supported!

COPYRIGHT ©2024 wolfSSL Inc. 29

3.2 Benchmarks

3 GETTING STARTED

Benchmark
Benchmark
Benchmark
Benchmark
Benchmark
Benchmark
Benchmark
Benchmark

symmetric
symmetric
symmetric
symmetric
symmetric
symmetric
symmetric
symmetric

AES-256-CBC-enc
AES-256-CBC-dec
AES-128-CTR-enc
AES-128-CTR-dec
AES-256-CTR-enc
AES-256-CTR-dec
AES-256-CFB-enc
AES-256-CFB-dec

not
not
not
not
not
not
not
not

supported!
supported!
supported!
supported!
supported!
supported!
supported!
supported!

SHA1
SHA256
RSA

138 KB took 1.009 seconds, 136.783 KB/s
138 KB took 1.009 seconds, 136.763 KB/s

2048 key gen 5 ops took 10.981 sec, avg 2196.230 ms, 0.455 ops/

sec

RSA 2048 Public 113 ops took 1.005 sec, avg 8.893 ms, 112.449 ops/

sec

RSA 2048 Private 7 ops took 1.142 sec, avg 163.207 ms, 6.127 ops/

sec

RSA 2048 Pub OAEP 73 ops took 1.011 sec, avg 13.848 ms, 72.211 ops/

sec

RSA 2048 Priv OAEP 6 ops took 1.004 sec, avg 167.399 ms, .974 ops/

sec

ECC 256 key gen 5 ops took 1.157 sec, avg 231.350 ms, .322 ops/

sec
ECDSA
sec
ECDSA
sec
ECDHE
sec

256 sign 15 ops took 1.033 sec, avg 68.865 ms, .521 ops/

256 verify ops took 1.022 sec, avg 113.539 ms, .808 ops/

256 agree ops took 1.161 sec, avg 232.144 ms, .308 ops/

Run on ST ST33TP SPI at 33MHz:

./examples/bench/bench

TPM2 Benchmark using Wrapper API's
RNG 14 KB took 1.017
AES-128-CBC-enc 49 KB took 1.008
AES-128-CBC-dec 42 KB took 1.032
AES-256-CBC-enc 40 KB took 1.013
AES-256-CBC-dec 40 KB took 1.011
AES-128-CTR-enc 26 KB took 1.055
AES-128-CTR-dec 26 KB took 1.035
AES-256-CTR-enc 26 KB took 1.028
AES-256-CTR-dec 26 KB took 1.030
AES-128-CFB-enc 42 KB took 1.045
AES-128-CFB-dec 40 KB took 1.008
AES-256-CFB-enc 40 KB took 1.022
AES-256-CFB-dec 42 KB took 1.041
SHA1 86 KB took 1.005 seconds,
SHA256 84 KB took 1.019 seconds,
RSA 2048 key gen 1 ops took 7.455 sec,

13.
39.
40.
39.
39.
24.
25.
25.
25.
40.
39.
39.
40.

763
666
711
496
563
646
117
302
252
201
699
151
362

KB/s
KB/s
KB/s
KB/s
KB/s
KB/s
KB/s
KB/s
KB/s
KB/s
KB/s
KB/s
KB/s
85.559 KB/s
82.467 KB/s
avg 7455.036 ms, ©0.134

seconds,
seconds,
seconds,
seconds,
seconds,
seconds,
seconds,
seconds,
seconds,
seconds,
seconds,
seconds,
seconds,

PR R R R R RRER R R R

ops/
sec

RSA 2048 Public 110 ops took 1.003 sec, avg 9.122 ms, 109.624 ops/

sec

RSA 2048 Private 5 ops took 1.239 sec, avg 247.752 ms, 4.036 ops/

sec

RSA 2048 Pub OAEP 81 ops took 1.001 sec, avg 12.364 ms, 80.880 ops/

COPYRIGHT ©2024 wolfSSL Inc. 30

3.2 Benchmarks

3 GETTING STARTED

sec
RSA 2
sec
ECC

sec
ECDSA

sec
ECDSA

sec
ECDHE

sec

048
256
256 sign
256

256 agree

Priv OAEP

key gen

verify

ops to

ops to

24 ops to

14 ops to

ops to

Run on Microchip ATTPM20 at 33MHz

./examples/bench/bench
TPM2 Benchmark using Wrapper API's

RNG

Benchmark
Benchmark
Benchmark
Benchmark
Benchmark
Benchmark
Benchmark
Benchmark

symmetric
symmetric
symmetric
symmetric
symmetric
symmetric
symmetric
symmetric

2 KB took 1.867 seconds,

AES-128-CBC-enc
AES-128-CBC-dec
AES-256-CBC-enc
AES-256-CBC-dec
AES-128-CTR-enc
AES-128-CTR-dec
AES-256-CTR-enc
AES-256-CTR-dec

ok

ok

ok

ok

ok

not
not
not
not
not
not
not
not

.007 sec,

.099 sec,

.016 sec,

.036 sec,

.235 sec,

supported!
supported!
supported!
supported!
supported!
supported!
supported!
supported!

1.

AES-128-CFB-enc
AES-128-CFB-dec
AES-256-CFB-enc
AES-256-CFB-dec

16
16
12
12

SHA1
SHA256
RSA
sec
RSA
sec
RSA
sec
RSA
sec
RSA
sec
ECC
sec
ECDSA
sec
ECDSA
sec
ECDHE
sec

22
22
2048 key gen

2048 Public

2048 Private

2048 Pub OAEP

2048 Priv OAEP
256 key gen
256 sign
256 verify

256 agree

KB
KB
KB
KB
KB
KB

took

took

took

took

took

took
3
22
9

21

18

24

16

1.112
.129
.013
.008

seconds,
seconds,
seconds,
seconds,

R

.009 seconds,
1.034 seconds,
ops took 15.828

ops took 1.034

ops took 1.059

ops took 1.007

ops took 1.066

ops took 1.072

ops took 1.056

ops took 1.031

ops took 1.023

14

14.
11.
11.
21.

21
sec,

sec,

secC,

sec,

secC,

secC,

sec,

secC,

sec,

Run on Nations Technologies Inc. TPM 2.0 module at 33MHz:

./examples/bench/bench
TPM2 Benchmark using Wrapper API's
12 KB took 1.065 seconds,

RNG

COPYRIGHT ©2024 wolfSSL Inc.

31

11

avg 251.780 ms, 3.972 ops/
avg 219.770 ms, 4.550 ops/
avg 42.338 ms, 23.619 ops/
avg 74.026 ms, 13.509 ops/
avg 247.085 ms, 4.047 ops/
071 KB/s

.383 KB/s

166 KB/s

845 KB/s

909 KB/s

797 KB/s

.270 KB/s

avg 5275.861 ms, ©.190 ops/
avg 47.021 ms, 21.267 ops/
avg 117.677 ms, 8.498 ops/
avg 47.959 ms, 20.851 ops/
avg 118.423 ms, 8.444 ops/
avg 153.140 ms, 6.530 ops/
avg 58.674 ms, 17.043 ops/
avg 42.970 ms, 23.272 ops/
avg 63.934 ms, 15.641 ops/
.270 KB/s

3.2 Benchmarks 3 GETTING STARTED

AES-128-CBC-enc 48 KB took 1.026 seconds, 46.780 KB/s
AES-128-CBC-dec 48 KB took 1.039 seconds, 46.212 KB/s
AES-256-CBC-enc 48 KB took 1.035 seconds, 46.370 KB/s
AES-256-CBC-dec 48 KB took 1.025 seconds, 46.852 KB/s

Benchmark symmetric AES-128-CTR-enc not supported!
Benchmark symmetric AES-128-CTR-dec not supported!
Benchmark symmetric AES-256-CTR-enc not supported!
Benchmark symmetric AES-256-CTR-dec not supported!

AES-128-CFB-enc 50 KB took 1.029 seconds, 48.591 KB/s

AES-128-CFB-dec 50 KB took 1.035 seconds, 48.294 KB/s

AES-256-CFB-enc 48 KB took 1.000 seconds, 47.982 KB/s

AES-256-CFB-dec 48 KB took 1.003 seconds, 47 .855 KB/s

SHA1 80 KB took 1.009 seconds, 79.248 KB/s

SHA256 80 KB took 1.004 seconds, 79.702 KB/s

SHA384 78 KB took 1.018 seconds, 76.639 KB/s

RSA 2048 key gen 8 ops took 17.471 sec, avg 2183.823 ms, 0.458 ops/
sec

RSA 2048 Public 52 ops took 1.004 sec, avg 19.303 ms, 51.805 ops/
sec

RSA 2048 Private 8 ops took 1.066 sec, avg 133.243 ms, 7.505 ops/
sec

RSA 2048 Pub OAEP 51 ops took 1.001 sec, avg 19.621 ms, 50.966 ops/
sec

RSA 2048 Priv OAEP 8 ops took 1.073 sec, avg 134.182 ms, 7.453 ops/
sec

ECC 256 key gen 20 ops took 1.037 sec, avg 51.871 ms, 19.279 ops/
sec

ECDSA 256 sign 43 ops took 1.006 sec, avg 23.399 ms, 42.736 ops/
sec

ECDSA 256 verify 28 ops took 1.030 sec, avg 36.785 ms, 27.185 ops/
sec

ECDHE 256 agree 26 ops took 1.010 sec, avg 38.847 ms, 25.742 ops/
sec

Run on Nuvoton NPCT650:

./examples/bench/bench

TPM2 Benchmark using Wrapper API's

RNG 8 KB took 1.291 seconds, 6.197 KB/s

Benchmark symmetric AES-128-CBC-enc not supported!

Benchmark symmetric AES-128-CBC-dec not supported!

Benchmark symmetric AES-256-CBC-enc not supported!

Benchmark symmetric AES-256-CBC-dec not supported!

Benchmark symmetric AES-256-CTR-enc not supported!

Benchmark symmetric AES-256-CTR-dec not supported!

Benchmark symmetric AES-256-CFB-enc not supported!

Benchmark symmetric AES-256-CFB-dec not supported!

SHA1 90 KB took 1.005 seconds, 89.530 KB/s

SHA256 90 KB took 1.010 seconds, 89.139 KB/s

RSA 2048 key gen 8 ops took 35.833 sec, avg 4479.152 ms, ©.223 ops/
sec

RSA 2048 Public 77 ops took 1.007 sec, avg 13.078 ms, 76.463 ops/
sec

RSA 2048 Private 2 ops took 1.082 sec, avg 540.926 ms, 1.849 ops/
sec

COPYRIGHT ©2024 wolfSSL Inc. 32

3.2 Benchmarks 3 GETTING STARTED

RSA 2048 Pub OAEP 53 ops took 1.005 sec, avg 18.961 ms, 52.739 ops/

RSAsec 2048 Priv OAEP 2 ops took 1.088 sec, avg 544.075 ms, 1.838 ops/

ECCSec 256 key gen 7 ops took 1.033 sec, avg 147.608 ms, 6.775 ops/

ECD;:C 256 sign 6 ops took 1.141 sec, avg 190.149 ms, 5.259 ops/

ECDSS:c 256 verify 4 ops took 1.061 sec, avg 265.216 ms, 3.771 ops/

ECDJEC 256 agree 6 ops took 1.055 sec, avg 175.915 ms, 5.685 ops/
sec

Run on Nuvoton NPCT750 at 43MHz:

RNG 16 KB took 1.114 seconds, 14.368 KB/s
Benchmark symmetric AES-128-CBC-enc not supported!
Benchmark symmetric AES-128-CBC-dec not supported!
Benchmark symmetric AES-256-CBC-enc not supported!
Benchmark symmetric AES-256-CBC-dec not supported!

SHA1 120 KB took 1.012 seconds, 118.618 KB/s

SHA256 122 KB took 1.012 seconds, 12@.551 KB/s

SHA384 120 KB took 1.003 seconds, 119.608 KB/s

RSA 2048 key gen 5 ops took 17.043 sec, avg 3408.678 ms, ©.293 ops/
sec

RSA 2048 Public 134 ops took 1.004 sec, avg 7.490 ms, 133.517 ops/
sec

RSA 2048 Private 15 ops took 1.054 sec, avg 70.261 ms, 14.233 ops/
sec

RSA 2048 Pub OAEP 116 ops took 1.002 sec, avg 8.636 ms, 115.797 ops/
sec

RSA 2048 Priv OAEP 15 ops took 1.061 sec, avg 70.716 ms, 14.141 ops/
sec

ECC 256 key gen 12 ops took 1.008 sec, avg 84.020 ms, 11.902 ops/
sec

ECDSA 256 sign 18 ops took 1.015 sec, avg 56.399 ms, 17.731 ops/
sec

ECDSA 256 verify 26 ops took 1.018 sec, avg 39.164 ms, 25.533 ops/
sec

ECDHE 256 agree 35 ops took 1.029 sec, avg 29.402 ms, 34.011 ops/
sec

COPYRIGHT ©2024 wolfSSL Inc. 33

4 WOLFTPM LIBRARY DESIGN

4 wolfTPM Library Design

4.1 Library Headers

wolfTPM header files are located in the following locations:

wolfTPM : wolftpm/

wolfSSL : wolfssl/

wolfCrypt : wolfssl/wolfcrypt

The general header file that should be included from wolfTPM is shown below:
#include <wolftpm/tpm2.h>

4.2 Example Design

Every example application that is included with wolfTPM includes the tpm_io.h header file, located in
wolfTPM/examples. The tpm_io.c file sets up the example HAL IO callback necessary for testing and
running the example applications with a Linux Kernel, STM32 CubeMX HAL or Atmel/Microchip ASF.
The reference is easily modified, such that custom IO callbacks or different callbacks may be added or
removed as desired.

COPYRIGHT ©2024 wolfSSL Inc. 34

5 APIREFERENCE

5 API Reference

5.1 TPM2 Proprietary

More...

5.1.1 Functions

Name

WOLFTPM_API TPM_RC ioCb, void *

userCtx)Initializes a TPM with HAL IO callback

and user supplied context. When using
wolfTPM with -enable-devtpm or
-enable-swtpm configuration, the ioCb and
userCtx are not used.

WOLFTPM_API TPM_RC ioCb, void * userCtx, int

timeoutTries)Initializes a TPM with
timeoutTries, HAL IO callback and user
supplied context.

WOLFTPM_API TPM_RC

WOLFTPM_API TPM_RC

WOLFTPM_API TPM_RC

WOLFTPM_API TPM_RC ioCb, void *
userCtx)Sets the user’s context and IO
callbacks needed for TPM communication.
WOLFTPM_API TPM_RC

WOLFTPM_API int
WOLFTPM_API void
WOLFTPM_API TPM2_CTX**(void)Provides a

pointer to the TPM2 context in use.
WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API TPMI_ALG_HASH

COPYRIGHT ©2024 wolfSSL Inc.

35

**TPM2_Init_minimal * ctx)Initializes a TPM
and sets the wolfTPM2 context that will be
used. This function is typically used for rich
operating systems, like Windows.
**TPM2_Cleanup * ctx)Deinitializes a TPM and
wolfcrypt (if it was initialized)
**TPM2_ChipStartup * ctx, int
timeoutTries)Makes sure the TPM2 startup has
completed and extracts the TPM device
information.

**TPM2_SetSessionAuth * session)Sets the
structure holding the TPM Authorizations.
**TPM2_GetSessionAuthCount * ctx)Determine
the number of currently set TPM
Authorizations.

**TPM2_SetActiveCtx * ctx)Sets a new TPM2
context for use.

**TPM2_GetHashDigestSize
hashAlg)Determine the size in bytes of a TPM
2.0 hash digest.

**TPM2_GetHashType hashAlg)Translate a
TPM2 hash type to its corresponding wolfcrypt
hash type.

TPM2_GetTpmHashType(int
hashType)Translate a wolfCrypt hash type to
TPM2 hash type.

5.1 TPM2 Proprietary 5 API REFERENCE

Name

WOLFTPM_API int TPM2_GetNonce(byte * nonceBuf, int
nonceSz)Generate a fresh nonce of random
numbers.

WOLFTPM_API void **TPM2_SetupPCRSel alg, int pcrIndex)Helper

function to prepare a correct PCR selection For
example, when preparing to create a
TPM2_Quote.

WOLFTPM_API void **TPM2_SetupPCRSelArray alg, byte * pcrArray,
word32 pcrArraySz)Helper function to prepare
a correct PCR selection with multiple indices
For example, when preparing to create a

TPM2_Quote.

WOLFTPM_API const char * TPM2_GetRCString(int rc)Get a human
readable string for any TPM 2.0 return code.

WOLFTPM_API const char * **TPM2_GetAlgName alg)Get a human
readable string for any TPM 2.0 algorithm.

WOLFTPM_API TPM_ALG_ID TPM2_GetAlgId(const char * name)Translates
a TPM algorithm name to its TPM algorithm ID.

WOLFTPM_API const char * **TPM2_GetHierarchyDesc authHandle)Get
readable string for TPM 2.0 hierarchy.

WOLFTPM_API int **TPM2_GetCurveSize curvelD)Determine the
size in bytes of any TPM ECC Curve.

WOLFTPM_API int TPM2_GetTpmCurve(int curvelD)Translate a
wolfcrypt curve type to its corresponding TPM
curve type.

WOLFTPM_API int TPM2_GetWolfCurve(int curve_id)Translate a
TPM curve type to its corresponding wolfcrypt
curve type.

WOLFTPM_API int **TPM2_ParseAttest structure.

WOLFTPM_API int **TPM2_HashNvPublic * nvPublic, byte * buffer,

UINT16 * size)Computes fresh NV Index name
based on a nvPublic structure.

WOLFTPM_APT int **TPM2_AppendPublic structure based on a
user provided buffer.

WOLFTPM_APT int **TPM2_ParsePublic structure and stores in a
user provided buffer.

WOLFTPM_LOCAL int **TPM2_GetName * name)Provides the Name
of a TPM object.

WOLFTPM_API UINT16 TPM2_GetVendorID(void)Provides the
vendorID of the active TPM2 context.

WOLFTPM_API void TPM2_PrintBin(const byte * buffer, word32

length)Helper function to print a binary buffer
in a formatted way.

WOLFTPM_API void **TPM2_PrintAuth type in a human readable
way.
WOLFTPM_API void **TPM2_PrintPublicArea type in a human

readable way.

5.1.2 Detailed Description

This module describes TPM2 commands specific only to wolfTPM.

COPYRIGHT ©2024 wolfSSL Inc. 36

5.1 TPM2 Proprietary 5 API REFERENCE

Typically, these commands include helpers for handling TPM 2.0 data structures.

There are also functions to help debugging and testing during development.

5.1.3 Functions Documentation

WOLFTPM_API TPM_RC TPM2_Init(
TPM2_CTX * ctx,
TPM2HalIoCb ioCb,
void * userCtx

)
Initializes a TPM with HAL IO callback and user supplied context. When using wolfTPM with -enable-
devtpm or -enable-swtpm configuration, the ioCb and userCtx are not used.

Parameters:

+ ctx pointer to a TPM2_CTX struct
+ ioCb pointer to TPM2HalloCb (HAL IO) callback function
+ userCtx pointer to the user’s context that will be stored as a member of the ctx struct

See:

* TPM2_Startup

* TPM2_GetRCString
* TPM2_Init_minimal
* TPM2_Init_ex

* wolfTPM2_Init

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: general error (possibly IO)
* BAD_FUNC_ARG check arguments provided

Note: TPM2_Init_minimal() with both ioCb and userCtx set to NULL. In other modes, the ioCb shall be
setin order to use TIS. Example ioCB for baremetal and RTOS applications are provided in hal/tpm_io.c

Example
int rc;
TPM2_CTX tpm2Ctx;

rc = TPM2_Init(&tpm2Ctx, TPM2_IoCb, userCtx);
if (xrc !'= TPM_RC_SUCCESS) {

}

WOLFTPM_API TPM_RC TPM2_Init_ex(
TPM2_CTX * ctx,
TPM2HalIoCb ioCb,

COPYRIGHT ©2024 wolfSSL Inc. 37

5.1 TPM2 Proprietary 5 API REFERENCE

void * userCtx,
int timeoutTries

)
Initializes a TPM with timeoutTries, HAL IO callback and user supplied context.

Parameters:

* ctx pointer to a TPM2_CTX struct

+ ioCb pointer to TPM2HalloCb (HAL IO) callback function

+ userCtx pointer to the user’s context that will be stored as a member of the ctx struct

+ timeoutTries specifies the number of attempts to confirm that TPM2 startup has completed

See:

* TPM2_GetRCString
* TPM2_Init_minimal
« TPM2_Init

* WolfTPM2_Init_ex

Return:

* TPM_RC_SUCCESS: successful
» TPM_RC_FAILURE: general error (possibly 10)
* BAD_FUNC_ARG check arguments provided

Note: It is recommended to use TPM2_Init instead of using TPM2_Init_ex directly.

WOLFTPM_API TPM_RC TPM2_Init_minimal(
TPM2_CTX * ctx

)

Initializes a TPM and sets the wolfTPM2 context that will be used. This function is typically used for
rich operating systems, like Windows.

Parameters:

+ ctx pointer to a TPM2_CTX struct
See:

* TPM2_GetRCString
* TPM2_Init

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: general error (possibly IO)
* BAD_FUNC_ARG check arguments provided

COPYRIGHT ©2024 wolfSSL Inc. 38

5.1 TPM2 Proprietary 5 API REFERENCE

Note: It is recommended to use TPM2_Init instead of using TPM2_Init_minimal directly.

WOLFTPM_API TPM_RC TPM2_Cleanup(
TPM2_CTX * ctx

)
Deinitializes a TPM and wolfcrypt (if it was initialized)

Parameters:

+ ctx pointer to a TPM2_CTX struct

See:

* TPM2_GetRCString
« TPM2_Init
* wolfTPM2_Cleanup

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: could not acquire the lock on the wolfTPM2 context
* BAD_FUNC_ARG: the TPM2 device structure is a NULL pointer

Example

int rc;
TPM2_CTX tpm2Ctx;

rc = TPM2_Cleanup (&tpm2Ctx->dev);
if (xc != TPM_RC_SUCCESS) {

}

WOLFTPM_API TPM_RC TPM2_ChipStartup(
TPM2_CTX * ctx,
int timeoutTries

)

Makes sure the TPM2 startup has completed and extracts the TPM device information.

Parameters:

+ ctx pointer to a TPM2_CTX struct
+ timeoutTries specifies the number of attempts to check if TPM2 startup has completed

See:

COPYRIGHT ©2024 wolfSSL Inc. 39

5.1 TPM2 Proprietary 5 API REFERENCE

TPM2_GetRCString
TPM2_TIS_StartupWait

* TPM2_TIS_RequestLocality
TPM2_TIS_GetInfo
TPM2_Init_ex

Return:

« TPM_RC_SUCCESS: successful

* TPM_RC_FAILURE: general error (possibly IO)

* BAD_FUNC_ARG: check the provided arguments
TPM_RC_TIMEOUT: timeout occurred

Note: This function is used in TPM2_Init_ex

WOLFTPM_API TPM_RC TPM2_SetHalIoCb(
TPM2_CTX * ctx,
TPM2HalIoCb ioCb,
void * userCtx

)

Sets the user’s context and IO callbacks needed for TPM communication.

Parameters:

+ ctx pointer to a TPM2_CTX struct
+ ioCb pointer to TPM2HalloCb (HAL IO) callback function
+ userCtx pointer to the user’s context that will be stored as a member of the ctx struct

* TPM2_GetRCString
*« TPM2_Init
* WolfTPM2_Init

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: could not acquire the lock on the wolfTPM2 context
* BAD_FUNC_ARG: the TPM2 device structure is a NULL pointer

Note: SetHalloCb will fail if built with devtpm or swtpm as the callback is not used for TPM. For other
configuration builds, ioCb must be set to a non-NULL function pointer and userCtx is optional.

Typically, TPM2_Init or wolfTPM2_Init are used to set the HAL IO.

WOLFTPM_API TPM_RC TPM2_SetSessionAuth(
TPM2_AUTH_SESSION * session

)

COPYRIGHT ©2024 wolfSSL Inc. 40

5.1 TPM2 Proprietary

5 APIREFERENCE

Sets the structure holding the TPM Authorizations.
Parameters:

* session pointer to an array of type TPM2_AUTH_SESSION

See:

* TPM2_GetRCString
* TPM2_Init
* wolfTPM2_Init

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: could not acquire the lock on the wolfTPM2 context
* BAD_FUNC_ARG: the TPM2 context structure is a NULL pointer

Rarely used, because TPM2_Init functions and wolfTPM2_Init perform this initialization as well TPM 2.0
Commands can have up to three authorization slots, therefore it is recommended to supply an array

of size MAX_SESSION_NUM to TPM2_SetSessionAuth(see example below).

Example
int rc;
TPM2_AUTH_SESSION session[MAX_SESSION_NUM];

XMEMSET (session, 0, sizeof(session));
session[0] .sessionHandle = TPM_RS_PW;

rc = TPM2_SetSessionAuth(session);
if (xc != TPM_RC_SUCCESS) {

}

WOLFTPM_API int TPM2_GetSessionAuthCount (
TPM2_CTX * ctx

)

Determine the number of currently set TPM Authorizations.

Parameters:

+ ctx pointer to a TPM2_CTX struct
See:

* TPM2_CTX
+ TPM2_AUTH_SESSION

COPYRIGHT ©2024 wolfSSL Inc. 41

5.1 TPM2 Proprietary 5 API REFERENCE

Return:

« the number of active TPM Authorizations (between one and three)
+ BAD_FUNC_ARG: check the arguments provided for a NULL pointer

Example

int authCount;
TPM2_CTX tpm2Ctx;

authCount = TPM2_GetSessionAuthCount(tpm2ctx);
if (authCount == BAD_FUNC_ARG) {

}

WOLFTPM_API void TPM2_SetActiveCtx(
TPM2_CTX * ctx

)

Sets a new TPM2 context for use.

Parameters:

+ ctx pointer to a TPM2_CTX struct

See:

+ TPM2_CTX
* TPM2_AUTH_SESSION

Example

TPM2_CTX tpm2Ctx;

TPM2_SetActiveCtx(tpm2ctx);

WOLFTPM_API TPM2_CTX * TPM2_GetActiveCtx(
void

)

Provides a pointer to the TPM2 context in use.

See:

« TPM2_CTX
« TPM2_AUTH_SESSION

COPYRIGHT ©2024 wolfSSL Inc. 42

5.1 TPM2 Proprietary

5 APIREFERENCE

Return: ctx pointer to a TPM2_CTX struct

Example

TPM2_CTX *tpm2Ctx;

tpm2Ctx = TPM2_GetActiveCtx(),;

WOLFTPM_API int TPM2_GetHashDigestSize(
TPMI_ALG_HASH hashAlg

)

Determine the size in bytes of a TPM 2.0 hash digest.

Parameters:

* hashAlg a valid TPM 2.0 hash type
Return:

+ the size of a TPM 2.0 hash digest as number of bytes
* 0if hash type is invalid

Example
int digestSize = 0;
TPMI_ALG_HASH hashAlg = TPM_ALG_SHA256;

digestSize = TPM2_GetHashDigestSize(hashAlg);
if (digestSize > 0) {

}

WOLFTPM_API int TPM2_GetHashType(
TPMI_ALG_HASH hashAlg
)

Translate a TPM2 hash type to its corresponding wolfcrypt hash type.

Parameters:

* hashAlg a valid TPM 2.0 hash type

Return:

+ avalue specifying a hash type to use with wolfcrypt
+ 0if hash type is invalid

COPYRIGHT ©2024 wolfSSL Inc. 43

5.1 TPM2 Proprietary

5 APIREFERENCE

Example

int wc_hashType;
TPMI_ALG_HASH hashAlg = TPM_ALG_SHA256;

wc_hashType = TPM2_GetHashDigestSize(hashAlg);
if (wc_hashType > 0) {

}

WOLFTPM_API TPMI_ALG_HASH TPM2_GetTpmHashType(
int hashType

)

Translate a wolfCrypt hash type to TPM2 hash type.

Parameters:

* hashType a wolfCrypt hash type

Return:

* a TPM2 hash type (TPM_ALG_%*)
* TPM_ALG_ERROR when wolfCrypt hash type is invalid or not found

Example
int wc_hashType = WC_HASH_TYPE_SHA256;
TPMI_ALG_HASH hashAlg;

hashAlg = TPM2_GetHashDigestSize(wc_hashType);
if (hashAlg !'= TPM_ALG_ERROR) {

}

WOLFTPM_API int TPM2_GetNonce(
byte * nonceBuf,
int nonceSz

)

Generate a fresh nonce of random numbers.

Parameters:

* nonceBuf pointer to a BYTE buffer
* nonceSz size of the nonce in bytes

COPYRIGHT ©2024 wolfSSL Inc. 44

5.1 TPM2 Proprietary 5 API REFERENCE

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (TPM IO issue or wolfcrypt configuration)
* BAD_FUNC_ARG: check the provided arguments

Note: Can use the TPM random number generator if WOLFTPM2_USE_HW_RNG is defined. To force
use of the TPM's RNG use WOLFTPM2_USE_HW_RNG. Please make sure you have parameter encryption
enabled to protect the RNG data over the bus.

Example

int rc, nonceSize = 32;
BYTE freshNonce[32];

rc = TPM2_GetNonce(&freshNonce, nonceSize);
if (xc !'= TPM_RC_SUCCESS) {

}

WOLFTPM_API void TPM2_SetupPCRSel(
TPML_PCR_SELECTION * pcr,
TPM_ALG_ID alg,
int pcrIndex

)

Helper function to prepare a correct PCR selection For example, when preparing to create a
TPM2_Quote.

Parameters:

* pcr pointer to a structure of type TPML_PCR_SELECTION. Note: Caller must zeroize/memset(0)
+ alg value of type TPM_ALG_ID specifying the type of hash algorithm used
+ pcrIndex value between 0 and 23 specifying the PCR register for use

See:

* TPM2_PCR_Read

« TPM2_PCR_Extend
* TPM2_PCR_Reset
* TPM2_Quote

Example

int pcrIndex = 16;

PCR_Read_In pcrRead;

XMEMSET (&pcrRead, 0, sizeof(pcrRead));

TPM2_SetupPCRSel (&pcrRead.pcrSelectionIn, TPM_ALG_SHA256, pcrIndex);

COPYRIGHT ©2024 wolfSSL Inc. 45

5.1 TPM2 Proprietary 5 API REFERENCE

WOLFTPM_API void TPM2_SetupPCRSelArray(
TPML_PCR_SELECTION * pcr,
TPM_ALG_ID alg,
byte * pcrArray,
word32 pcrArraySz

)

Helper function to prepare a correct PCR selection with multiple indices For example, when preparing
to create a TPM2_Quote.

Parameters:

* pcr pointer to a structure of type TPML_PCR_SELECTION. Note: Caller must zeroize/memset(0)
+ alg value of type TPM_ALG_ID specifying the type of hash algorithm used

* pcrArray array of values between 0 and 23 specifying the PCR register for use

* pcrArraySz length of the pcrArray

« TPM2_PCR_Read

« TPM2_PCR_Extend
* TPM2_PCR_Reset
* TPM2_Quote

Example

PCR_Read_In pcrRead;
byte pcrArray [PCR_SELECT_MAX];
word32 pcrArraySz = 0;

XMEMSET (&pcrRead, 0, sizeof(pcrRead));
XMEMSET (pcrArray, 0, sizeof(pcrArray));
pcrArray[pcrArraySz++] = 16;

<y

TPM2_SetupPCRSelArray (&pcrRead.pcrSelectionIn, TPM_ALG_SHA256, pcrArray,
~ pcrArraySz);

WOLFTPM_API const char * TPM2_GetRCString(
int rc

)

Get a human readable string for any TPM 2.0 return code.

Parameters:
* rcinteger value representing a TPM return code

Return: pointer to a string constant

Example

COPYRIGHT ©2024 wolfSSL Inc. 46

5.1 TPM2 Proprietary 5 API REFERENCE

int rc;

rc = wolfTPM2_Init(&dev, TPM2_IoCb, userCtx);

if (xrc !'= TPM_RC_SUCCESS) {
printf("wolfTPM2_Init failed @x%x: %s\n", rc, TPM2_GetRCString(zc));
return rc;

WOLFTPM_API const char * TPM2_GetAlgName(
TPM_ALG_ID alg

)

Get a human readable string for any TPM 2.0 algorithm.
Parameters:

+ alg value of type TPM_ALG_ID specifying a valid TPM 2.0 algorithm
Return: pointer to a string constant

Example

int paramEncAlg = TPM_ALG_CFB;

printf("\tUse Parameter Encryption: %s\n", TPM2_GetAlgName(paramEncAlg));

WOLFTPM_API TPM_ALG_ID TPM2_GetAlgId(
const char * name

)

Translates a TPM algorithm name to its TPM algorithm ID.

Parameters:

* name a pointer to a string constant specifying a valid TPM algorithm name

Return:

+ a TPM algorithm ID
* TPM_ALG_ERROR if invalid algorithm name

Example
TPM_ALG_ID alg = TPM2_GetAlgId("SHA256");
if (alg == TPM_ALG_ERROR) {

}

COPYRIGHT ©2024 wolfSSL Inc. 47

5.1 TPM2 Proprietary 5 API REFERENCE

WOLFTPM_API const char * TPM2_GetHierarchyDesc(
TPMI_RH_HIERARCHY_AUTH authHandle
)

Get readable string for TPM 2.0 hierarchy.

Parameters:

+ authHandle value of type TPMI_RH_HIERARCHY_AUTH specifying a valid TPM 2.0 hierarchy
Return: pointer to a string constant

Example

TPMI_RH_HIERARCHY_AUTH authHandle = TPM_RH_OWNER;

printf("\tHierarchy: %s\n", TPM2_GetHierarchyDesc(authHandle));

WOLFTPM_API int TPM2_GetCurveSize(
TPM_ECC_CURVE curvelD

)

Determine the size in bytes of any TPM ECC Curve.
Parameters:

+ curvelD value of type TPM_ECC_CURVE

Return:

* 0in case of invalid curve type
* integer value representing the number of bytes

Example
int bytes;
TPM_ECC_CURVE curve = TPM_ECC_NIST_P256;

bytes = TPM2_GetCurveSize(curve);
if (bytes == 0) {

}

WOLFTPM_API int TPM2_GetTpmCurve (
int curvelD

)

COPYRIGHT ©2024 wolfSSL Inc. 48

5.1 TPM2 Proprietary

5 APIREFERENCE

Translate a wolfcrypt curve type to its corresponding TPM curve type.

Parameters:

+ curvelD pointer to a BYTE buffer
See: TPM2_GetWolfCurve

Return:

* integer value representing a wolfcrypt curve type
+ ECC_CURVE_OID_E in case of invalid curve type

Example

int tpmCurve;
int wc_curve = ECC_SECP256R1;

tpmCurve = TPM2_GetTpmCurve(curve);
\in this case tpmCurve will be TPM_ECC_NIST_P256
if (tpmCurve = ECC_CURVE_OID_E) {

}

WOLFTPM_API int TPM2_GetWolfCuxrve(
int curve_id

)

Translate a TPM curve type to its corresponding wolfcrypt curve type.

Parameters:

* curve_id pointer to a BYTE buffer
See: TPM2_GetTpmCurve

Return:

* integer value representing a TPM curve type
-1 or ECC_CURVE_OID_E in case of invalid curve type

Example

int tpmCurve = TPM_ECC_NIST_P256;

int wc_curve;

wc_curve = TPM2_GetWolfCurve(tpmCurve);

\in this case tpmCurve will be ECC_SECP256R1
if (wc_curve = ECC_CURVE_OID_E || wc_curve == -1) {

COPYRIGHT ©2024 wolfSSL Inc. 49

5.1 TPM2 Proprietary 5 API REFERENCE

WOLFTPM_API int TPM2_ParseAttest(
const TPM2B_ATTEST * in,
TPMS_ATTEST * out

)
Parses TPM2B_ATTEST structure.

Parameters:

* in pointer to a structure of a TPM2B_ATTEST type
+ out pointer to a structure of a TPMS_ATTEST type

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: This is public API of the helper function TPM2_Packet_ParseAttest

Example

TPM2B_ATTEST 1in;
TPMS_ATTEST out

rc = TPM2_GetNonce(&in, &out);
if (xrc !'= TPM_RC_SUCCESS) {

}

WOLFTPM_API int TPM2_HashNvPublic(
TPMS_NV_PUBLIC * nvPublic,
byte * buffer,

UINT16 * size

)

Computes fresh NV Index name based on a nvPublic structure.

Parameters:

* nvPublic
+ buffer pointer to a structure of a TPMS_ATTEST type
* size pointer to a variable of UINT16 type to store the size of the nvIndex

Return:

COPYRIGHT ©2024 wolfSSL Inc. 50

5.1 TPM2 Proprietary

5 APIREFERENCE

¢ TPM_RC_SUCCESS: successful

* negative integer value in case of an error

* BAD_FUNC_ARG: check the provided arguments
* NOT_COMPILED_IN: check if wolfcrypt is enabled

Example

TPMS_NV_PUBLIC nvPublic;
BYTE buffer[TPM_MAX_DIGEST_SIZE];
UINT16 size;

rc = TPM2_HashNvPublic (&nvPublic, &buffer, &size);
if (rc !'= TPM_RC_SUCCESS) {

}

WOLFTPM_API int TPM2_AppendPublic(
byte * buf,
word32 size,
int * sizeUsed,
TPM2B_PUBLIC * pub
)

Populates TPM2B_PUBLIC structure based on a user provided buffer.

Parameters:

* buf pointer to a user buffer

* size integer value of word32 type, specifying the size of the user buffer

* sizeUsed pointer to an integer variable, stores the used size of pub->buffer
+ pub pointer to an empty structure of TPM2B_PUBLIC type

See: TPM2_ParsePublic

Return:

» TPM_RC_SUCCESS: successful
¢ TPM_RC_FAILURE: insufficient buffer size
* BAD_FUNC_ARG: check the provided arguments

Note: Public API of the helper function TPM2_Packet_AppendPublic
Example

TPM2B_PUBLIC pub;

int sizeUsed, rc;

BYTE buffer[sizeof (TPM2B_PUBLIC)];
word32 size = sizeof(buffer);

rc = TPM2_AppendPublic(&buffer, size, &sizeUsed, &pub);
if (xrc !'= TPM_RC_SUCCESS) {

COPYRIGHT ©2024 wolfSSL Inc. 51

5.1 TPM2 Proprietary 5 API REFERENCE

WOLFTPM_API int TPM2_ParsePublic(
TPM2B_PUBLIC * pub,
byte * buf,
word32 size,
int * sizeUsed

)

Parses TPM2B_PUBLIC structure and stores in a user provided buffer.

Parameters:

* pub pointer to a populated structure of TPM2B_PUBLIC type

* buf pointer to an empty user buffer

* size integer value of word32 type, specifying the available size of the user buffer
+ sizeUsed pointer to an integer variable, stores the used size of the user buffer

See: TPM2_AppendPublic

Return:

¢ TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: insufficient buffer size
* BAD_FUNC_ARG: check the provided arguments

Note: Public API of the helper function TPM2_Packet_ParsePublic

Example

TPM2B_PUBLIC pub;

int sizeUsed, rc;

BYTE buffer[sizeof (TPM2B_PUBLIC)];
woxrd32 size = sizeof(buffer);

rc = TPM2_ParsePublic(&pub, buffer, size, &sizeUsed);
if (rc != TPM_RC_SUCCESS) {

}

WOLFTPM_LOCAL int TPM2_GetName(
TPM2_CTX * ctx,
UINT32 handleValue,
int handleCnt,
int idx,
TPM2B_NAME * name

COPYRIGHT ©2024 wolfSSL Inc. 52

5.1 TPM2 Proprietary

5 APIREFERENCE

Provides the Name of a TPM object.
Parameters:

+ ctx pointer to a TPM2 context
* handleValue value of UINT32 type, specifying a valid TPM handle

* handleCnt total number of handles used in the current TPM command/session
+ idx index value, between one and three, specifying a valid TPM Authorization session

* name pointer to an empty structure of TPM2B_NAME type

Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: The object is reference by its TPM handle and session index

Example

int rc;

UINT32 handleValue = TRANSIENT_FIRST;
handleCount = 1;

sessionldx = 0;

TPM2B_NAME name;

rc = TPM2_GetName(ctx, handleValue, handleCount, sessionIdx, &name);

if (rc != TPM_RC_SUCCESS) {

}

WOLFTPM_API UINT16 TPM2_GetVendoxrID(
void
)

Provides the vendorID of the active TPM2 context.

See:

* TPM2_GetCapabilities
« TPM2_Init

Return:

* integer value of UINT16 type, specifying the vendor ID
+ 0if TPM2 context is invalid or NULL

Note: Depends on correctly read TPM device info during TPM Init

Example

COPYRIGHT ©2024 wolfSSL Inc. 53

5.1 TPM2 Proprietary

5 APIREFERENCE

TPM2_CTX *tpm2Ctx;

tpm2Ctx = TPM2_GetActiveCtx();

WOLFTPM_API void TPM2_PrintBin(
const byte * buffer,
word32 length

)
Helper function to print a binary buffer in a formatted way.

Parameters:

+ buffer pointer to a buffer of BYTE type
+ length integer value of word32 type, containing the size of the buffer

See:

* TPM2_PrintAuth
* TPM2_PrintPublicArea

Note: Requires DEBUG_WOLFTPM to be defined

Example
BYTE buffer[] = {0x01,0x02,0x03,0x04};
length = sizeof(buffer);

TPM2_PrintBin(&buffer, length);

WOLFTPM_API void TPM2_PrintAuth(
const TPMS_AUTH_COMMAND * authCmd
)

Helper function to print a structure of TPMS_AUTH_COMMAND type in a human readable way.

Parameters:

+ authCmd pointer to a populated structure of TPMS_AUTH_COMMAND type

See:

* TPM2_PrintBin
¢ TPM2_PrintPublicArea

Note: Requires DEBUG_WOLFTPM to be defined

Example

COPYRIGHT ©2024 wolfSSL Inc. 54

5.2 wolftom/tpm2.h 5 API REFERENCE

TPMS_AUTH_COMMAND authCmd;

TPM2_PrintAuthCmd(&authCmd) ;

WOLFTPM_API void TPM2_PrintPublicArea(
const TPM2B_PUBLIC * pub

)

Helper function to print a structure of TPM2B_PUBLIC type in a human readable way.

Parameters:

* pub pointer to a populated structure of TPM2B_PUBLIC type
See:

* TPM2_PrintBin

¢ TPM2_PrintAuth
* TPM2_Create

* TPM2_ReadPublic

Note: Requires DEBUG_WOLFTPM to be defined

Example

TPM2B_PUBLIC pub;

TPM2_PrintPublicArea(&pub);

5.2 wolftpm/tpm2.h
5.1.3.32 function TPM2_PrintPublicArea

5.2.1 Classes

Name

struct TPMS_ALGORITHM_DESCRIPTION
union TPMU_HA

struct TPMT_HA

struct TPM2B_DIGEST

struct TPM2B_DATA

struct TPM2B_EVENT

struct TPM2B_MAX_BUFFER
struct TPM2B_MAX_NV_BUFFER
struct TPM2B_1V

union TPMU_NAME

struct TPM2B_NAME

struct TPMS_PCR_SELECT

COPYRIGHT ©2024 wolfSSL Inc. 55

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
union
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
union
struct
struct
union
union
struct
struct
struct
struct
struct
struct
union
struct
struct
struct
struct
struct
union

COPYRIGHT ©2024 wolfSSL Inc.

TPMS_PCR_SELECTION
TPMT_TK_CREATION
TPMT_TK_VERIFIED
TPMT_TK_AUTH
TPMT_TK_HASHCHECK
TPMS_ALG_PROPERTY
TPMS_TAGGED_PROPERTY
TPMS_TAGGED_PCR_SELECT
TPMS_TAGGED_POLICY
TPML_CC

TPML_CCA

TPML_ALG

TPML_HANDLE
TPML_DIGEST
TPML_DIGEST VALUES
TPML_PCR_SELECTION
TPML_ALG_PROPERTY
TPML_TAGGED_TPM_PROPERTY
TPML_TAGGED_PCR_PROPERTY
TPML_ECC_CURVE
TPML_TAGGED_POLICY
TPMS_ACT _DATA

TPML_ACT DATA
TPMU_CAPABILITIES
TPMS_CAPABILITY_DATA
TPMS_CLOCK_INFO
TPMS_TIME_INFO
TPMS_TIME_ATTEST INFO
TPMS_CERTIFY_INFO
TPMS_QUOTE_INFO
TPMS_COMMAND_AUDIT INFO
TPMS_SESSION_AUDIT INFO
TPMS_CREATION INFO
TPMS_NV_CERTIFY INFO
TPMU_ATTEST
TPMS_ATTEST
TPM2B_ATTEST
TPMU_SYM_KEY_BITS
TPMU_SYM_MODE
TPMT_SYM _DEF
TPM2B_SYM_KEY
TPMS_SYMCIPHER_PARMS
TPM2B_LABEL
TPMS_DERIVE
TPM2B_DERIVE
TPMU_SENSITIVE_CREATE
TPM2B_SENSITIVE_DATA
TPMS_SENSITIVE_CREATE
TPM2B_SENSITIVE_CREATE
TPMS_SCHEME_HASH
TPMS_SCHEME_ECDAA
TPMU_SCHEME_KEYEDHASH

56

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

struct
union
struct
union
struct
union
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
union
struct
union
struct
union
struct
struct
struct
struct
union
struct
struct
struct
struct
struct
union
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

COPYRIGHT ©2024 wolfSSL Inc.

TPMT_KEYEDHASH_SCHEME
TPMU_SIG SCHEME
TPMT_SIG_SCHEME
TPMU_KDF_SCHEME
TPMT_KDF_SCHEME
TPMU_ASYM_SCHEME
TPMT_ASYM_SCHEME
TPMT_RSA_SCHEME
TPMT_RSA_DECRYPT
TPM2B_PUBLIC_KEY_RSA
TPM2B_PRIVATE_KEY RSA
TPM2B_ECC PARAMETER
TPMS_ECC_POINT
TPM2B_ECC_POINT
TPMS_ALGORITHM_DETAIL_ECC
TPMS_SIGNATURE_RSA
TPMS_SIGNATURE_ECC
TPMU_SIGNATURE
TPMT_SIGNATURE
TPMU_ENCRYPTED_SECRET
TPM2B_ENCRYPTED_SECRET
TPMU_PUBLIC_ID
TPMS_KEYEDHASH_PARMS
TPMS_ASYM_PARMS
TPMS_RSA_PARMS
TPMS_ECC_PARMS
TPMU_PUBLIC_PARMS
TPMT_PUBLIC_PARMS
TPMT_PUBLIC
TPM2B_PUBLIC
TPM2B_TEMPLATE
TPM2B_PRIVATE_VENDOR_SPECIFIC
TPMU_SENSITIVE_COMPOSITE
TPMT_SENSITIVE
TPM2B_SENSITIVE
TPMT_PRIVATE
TPM2B_PRIVATE
TPMS_ID_OBJECT
TPM2B_ID_OBJECT
TPMS_NV_PIN_COUNTER_PARAMETERS
TPMS_NV_PUBLIC
TPM2B_NV_PUBLIC
TPM2B_CONTEXT_SENSITIVE
TPMS_CONTEXT_DATA
TPM2B_CONTEXT_DATA
TPMS_CONTEXT
TPMS_CREATION_DATA
TPM2B_CREATION_DATA
TPMS_AUTH_COMMAND
TPMS_AUTH_RESPONSE
TPM2_AUTH_SESSION
wolfTPM_tcpContext

57

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

COPYRIGHT ©2024 wolfSSL Inc.

wolfTPM_winContext
TPM2_CTX

Startup_In
Shutdown _In
GetCapability_In
GetCapability_Out
SelfTest_In
IncrementalSelfTest_In
IncrementalSelfTest_Out
GetTestResult_Out
GetRandom_In
GetRandom_Out
StirRandom_In
PCR_Read In
PCR_Read Out
PCR_Extend_In
Create_In

Create_Out
CreateLoaded In
CreateLoaded Out
CreatePrimary_In
CreatePrimary_Out
Load_In

Load_Out
FlushContext_In
Unseal_In

Unseal _Out
StartAuthSession_In
StartAuthSession_Out
PolicyRestart_In
LoadExternal_In
LoadExternal_Out
ReadPublic_In
ReadPublic_Out
ActivateCredential In
ActivateCredential_Out
MakeCredential_In
MakeCredential_Out
ObjectChangeAuth_In
ObjectChangeAuth_Out
Duplicate_In
Duplicate_Out
Rewrap_In
Rewrap_Out
Import_In
Import_Out
RSA_Encrypt_In
RSA_Encrypt_Out
RSA_Decrypt_In
RSA_Decrypt_Out
ECDH_KeyGen_In
ECDH_KeyGen_Out

58

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

COPYRIGHT ©2024 wolfSSL Inc.

ECDH_ZGen_In
ECDH_ZGen_Out
ECC_Parameters_In
ECC_Parameters_Out
ZGen_2Phase_In
ZGen_2Phase_Out
EncryptDecrypt_In
EncryptDecrypt_Out
EncryptDecrypt2_In
EncryptDecrypt2 Out
Hash_In

Hash_Out

HMAC_In

HMAC_Out

HMAC Start_In

HMAC _Start_Out
HashSequenceStart_In
HashSequenceStart_Out
SequenceUpdate_In
SequenceComplete_In
SequenceComplete_Out
EventSequenceComplete_In
EventSequenceComplete_Out
Certify_In

Certify_Out
CertifyCreation_In
CertifyCreation_Out
Quote_In

Quote_Out
GetSessionAuditDigest_In
GetSessionAuditDigest_Out
GetCommandAuditDigest_In
GetCommandAuditDigest_Out
GetTime_In

GetTime _Out

Commit_In

Commit_Out
EC_Ephemeral_In
EC_Ephemeral_Out
VerifySignature_In
VerifySignature_Out
Sign_In

Sign_Out
SetCommandCodeAuditStatus_In
PCR_Event_In
PCR_Event_Out
PCR_Allocate In
PCR_Allocate Out
PCR_SetAuthPolicy In
PCR_SetAuthValue_In
PCR_Reset In
PolicySigned_In

59

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

COPYRIGHT ©2024 wolfSSL Inc.

PolicySigned_Out
PolicySecret_In
PolicySecret_Out
PolicyTicket_In
PolicyOR_In

PolicyPCR_In
PolicyLocality_In
PolicyNV_In
PolicyCounterTimer_In
PolicyCommandCode_In
PolicyPhysicalPresence_In
PolicyCpHash_In
PolicyNameHash_In
PolicyDuplicationSelect_In
PolicyAuthorize_In
PolicyAuthValue_In
PolicyPassword_In
PolicyGetDigest_In
PolicyGetDigest_Out
PolicyNvWritten_In
PolicyTemplate_In
PolicyAuthorizeNV_In
HierarchyControl_In
SetPrimaryPolicy_In
ChangeSeed_In

Clear_In

ClearControl_In
HierarchyChangeAuth_In
DictionaryAttackLockReset_In
DictionaryAttackParameters_In
PP_Commands_In
SetAlgorithmSet_In
FieldUpgradeStart_In
FieldUpgradeData_In
FieldUpgradeData_Out
FirmwareRead_In
FirmwareRead_Out
ContextSave_In
ContextSave Out
ContextLoad_In
ContextLoad Out
EvictControl_In
ReadClock _Out
ClockSet_In
ClockRateAdjust_In
TestParms_In
NV_DefineSpace_In
NV_UndefineSpace_In
NV_UndefineSpaceSpecial_In
NV_ReadPublic_In
NV_ReadPublic_Out
NV_Write_In

60

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

NV_Increment_In
NV_Extend_In

NV _SetBits _In
NV_WriteLock _In
NV_GlobalWriteLock_In
NV_Read_In
NV_Read Out
NV_ReadLock In
NV_ChangeAuth_In
NV_Certify_In
NV_Certify_Out
SetCommandSet_In
TPM_MODE_SET
SetMode_In
GetRandom2_Out
TPMS_GPIO_CONFIG
TPML_GPIO_CONFIG
GpioConfig_In
CFG_STRUCT
NTC2_PreConfig_In
NTC2_GetConfig_Out

5.2.2 Types

COPYRIGHT ©2024 wolfSSL Inc.

61

5.2 wolftom/tpm2.h 5 API REFERENCE

Name

enum TPM_ALG_ID T { TPM_ALG_ERROR = 0x0000,
TPM_ALG_RSA = 0x0001, TPM_ALG_SHA =
0x0004, TPM_ALG_SHA1 = TPM_ALG_SHA,
TPM_ALG_HMAC = 0x0005, TPM_ALG_AES =
0x0006, TPM_ALG_MGF1 = 0x0007,
TPM_ALG_KEYEDHASH = 0x0008,
TPM_ALG_XOR = 0x000A, TPM_ALG_SHA256 =
0x000B, TPM_ALG_SHA384 = 0x000C,
TPM_ALG_SHA512 = 0x000D, TPM_ALG_NULL =
0x0010, TPM_ALG_SM3_256 = 0x0012,
TPM_ALG_SM4 = 0x0013, TPM_ALG_RSASSA =
0x0014, TPM_ALG_RSAES = 0x0015,
TPM_ALG_RSAPSS = 0x0016, TPM_ALG_OAEP =
0x0017, TPM_ALG_ECDSA = 0x0018,
TPM_ALG_ECDH = 0x0019, TPM_ALG_ECDAA =
0x001A, TPM_ALG_SM2 = 0x001B,
TPM_ALG_ECSCHNORR = 0x001C,
TPM_ALG_ECMQV = 0x001D,
TPM_ALG_KDF1_SP800_56A = 0x0020,
TPM_ALG_KDF2 = 0x0021,
TPM_ALG_KDF1_SP800_108 = 0x0022,
TPM_ALG_ECC = 0x0023, TPM_ALG_SYMCIPHER
= 0x0025, TPM_ALG_CAMELLIA = 0x0026,
TPM_ALG_SHA3_256 = 0x0027,
TPM_ALG_SHA3_384 = 0x0028,
TPM_ALG_SHA3_512 = 0x0029,
TPM_ALG_SHAKE128 = 0x002A,
TPM_ALG_SHAKE256 = 0x002B, TPM_ALG_CTR =
0x0040, TPM_ALG_OFB = 0x0041,
TPM_ALG_CBC = 0x0042, TPM_ALG_CFB =
0x0043, TPM_ALG_ECB = 0x0044}

enum TPM_ECC_CURVE_T { TPM_ECC_NONE = 0x0000,
TPM_ECC_NIST_P192 = 0x0001,
TPM_ECC_NIST_P224 = 0x0002,
TPM_ECC_NIST_P256 = 0x0003,
TPM_ECC_NIST_P384 = 0x0004,
TPM_ECC_NIST _P521 = 0x0005,
TPM_ECC_BN_P256 = 0x0010,
TPM_ECC_BN_P638 = 0x0011,
TPM_ECC_SM2_P256 = 0x0020}

COPYRIGHT ©2024 wolfSSL Inc. 62

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

enum

COPYRIGHT ©2024 wolfSSL Inc.

63

TPM_CC_T { TPM_CC_FIRST = 0x0000011F,
TPM_CC_NV_UndefineSpaceSpecial =
TPM_CC_FIRST, TPM_CC_EvictControl =
0x00000120, TPM_CC_HierarchyControl =
0x00000121, TPM_CC_NV_UndefineSpace =
0x00000122, TPM_CC_ChangeEPS =
0x00000124, TPM_CC_ChangePPS =
0x00000125, TPM_CC_Clear = 0x00000126,
TPM_CC_ClearControl = 0x00000127,
TPM_CC_ClockSet = 0x00000128,
TPM_CC_HierarchyChangeAuth = 0x00000129,
TPM_CC_NV_DefineSpace = 0x0000012A,
TPM_CC_PCR_Allocate = 0x0000012B,
TPM_CC_PCR_SetAuthPolicy = 0x0000012C,
TPM_CC_PP_Commands = 0x0000012D,
TPM_CC_SetPrimaryPolicy = 0x0000012E,
TPM_CC_FieldUpgradeStart = 0x0000012F,
TPM_CC_ClockRateAdjust = 0x00000130,
TPM_CC_CreatePrimary = 0x00000131,
TPM_CC_NV_GlobalWriteLock = 0x00000132,
TPM_CC_GetCommandAuditDigest =
0x00000133, TPM_CC_NV_Increment =
0x00000134, TPM_CC_NV_SetBits =
0x00000135, TPM_CC_NV_Extend =
0x00000136, TPM_CC_NV_Write = 0x00000137,
TPM_CC_NV_WriteLock = 0x00000138,
TPM_CC_DictionaryAttackLockReset =
0x00000139,
TPM_CC_DictionaryAttackParameters =
0x0000013A, TPM_CC_NV_ChangeAuth =
0x0000013B, TPM_CC_PCR_Event =
0x0000013C, TPM_CC_PCR_Reset =
0x0000013D, TPM_CC_SequenceComplete =
0x0000013E, TPM_CC_SetAlgorithmSet =
0x0000013F,
TPM_CC_SetCommandCodeAuditStatus =
0x00000140, TPM_CC_FieldUpgradeData =
0x00000141, TPM_CC_IncrementalSelfTest =
0x00000142, TPM_CC_SelfTest = 0x00000143,
TPM_CC_Startup = 0x00000144,
TPM_CC_Shutdown = 0x00000145,
TPM_CC_StirRandom = 0x00000146,
TPM_CC_ActivateCredential = 0x00000147,
TPM_CC_Certify = 0x00000148,
TPM_CC_PolicyNV = 0x00000149,
TPM_CC_CertifyCreation = 0x0000014A,
TPM_CC_Duplicate = 0x0000014B,
TPM_CC_GetTime = 0x0000014C,
TPM_CC_GetSessionAuditDigest = 0x0000014D,
TPM_CC_NV_Read = 0x0000014E,
TPM_CC_NV_ReadLock = 0x0000014F,
TPM_CC_ObjectChangeAuth = 0x00000150,
TPM_CC_PolicySecret = 0x00000151,
TPM_CC_Rewrap = 0x00000152, TPM_CC_Create
= 0x00000153, TPM_CC_ECDH_ZGen =
0x00000154, TPM_CC_HMAC = 0x00000155,
TPM_CC_Import = 0x00000156, TPM_CC_Load =
0x00000157, TPM_CC_Quote = 0x00000158,

TDMNA ~ DCA NDNAarqrvarmd — NyNNDONNDNT1C0O

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

enum

COPYRIGHT ©2024 wolfSSL Inc.

TPM_RC_T { TPM_RC_SUCCESS = 0x000,
TPM_RC_BAD_TAG = 0x01E, RC_VER1 = 0x100,
TPM_RC_INITIALIZE = RC_VERT + 0x000,
TPM_RC_FAILURE = RC_VER1 + 0x001,
TPM_RC_SEQUENCE = RC_VER1 + 0x003,
TPM_RC_PRIVATE = RC_VER1 + 0x00B,
TPM_RC_HMAC = RC_VER1 + 0x019,
TPM_RC_DISABLED = RC_VER1 + 0x020,
TPM_RC_EXCLUSIVE = RC_VER1 + 0x021,
TPM_RC_AUTH_TYPE = RC_VER1 + 0x024,
TPM_RC_AUTH_MISSING = RC_VER1 + 0x025,
TPM_RC_POLICY = RC_VER1 + 0x026,
TPM_RC_PCR = RC_VER1 + 0x027,
TPM_RC_PCR_CHANGED = RC_VER1 + 0x028,
TPM_RC_UPGRADE = RC_VERT + 0x02D,
TPM_RC_TOO_MANY_CONTEXTS = RC_VER1 +
0x02E, TPM_RC_AUTH_UNAVAILABLE =
RC_VER1 + 0x02F, TPM_RC_REBOOT = RC_VER1
+ 0x030, TPM_RC_UNBALANCED = RC_VERT +
0x031, TPM_RC_COMMAND _SIZE = RC_VER1 +
0x042, TPM_RC_COMMAND_CODE = RC_VER1 +
0x043, TPM_RC_AUTHSIZE = RC_VER1 + 0x044,
TPM_RC_AUTH_CONTEXT = RC_VER1 + 0x045,
TPM_RC_NV_RANGE = RC_VER1 + 0x046,
TPM_RC_NV_SIZE = RC_VER1 + 0x047,
TPM_RC_NV_LOCKED = RC_VER1 + 0x048,
TPM_RC_NV_AUTHORIZATION = RC_VERT +
0x049, TPM_RC_NV_UNINITIALIZED = RC_VER1
+ 0x04A, TPM_RC_NV_SPACE = RC_VER1 +
0x04B, TPM_RC_NV_DEFINED = RC_VER1 +
0x04C, TPM_RC_BAD_CONTEXT = RC_VER1 +
0x050, TPM_RC_CPHASH = RC_VER1 + 0x051,
TPM_RC_PARENT = RC_VER1 + 0x052,
TPM_RC_NEEDS_TEST = RC_VER1 + 0x053,
TPM_RC_NO_RESULT = RC_VER1 + 0x054,
TPM_RC_SENSITIVE = RC_VER1 + 0x055,
RC_MAX_FMO = RC_VER1 + 0x07F, RC_FMT1 =
0x080, TPM_RC_ASYMMETRIC = RC_FMT1 +
0x001, TPM_RC_ATTRIBUTES = RC_FMT1 +
0x002, TPM_RC_HASH = RC_FMT1 + 0x003,
TPM_RC_VALUE = RC_FMT1 + 0x004,
TPM_RC_HIERARCHY = RC_FMT1 + 0x005,
TPM_RC_KEY_SIZE = RC_FMT1 + 0x007,
TPM_RC_MGF = RC_FMT1 + 0x008,
TPM_RC_MODE = RC_FMT1 + 0x009,
TPM_RC_TYPE = RC_FMT1 + Ox00A,
TPM_RC_HANDLE = RC_FMT1 + 0x00B,
TPM_RC_KDF = RC_FMT1 + 0x00C,
TPM_RC_RANGE = RC_FMT1 + 0x00D,
TPM_RC_AUTH_FAIL = RC_FMT1 + 0x0OE,
TPM_RC_NONCE = RC_FMT1 + Ox00F,
TPM_RC_PP = RC_FMT1 + 0x010,
TPM_RC_SCHEME = RC_FMT1 + 0x012,
TPM_RC_SIZE = RC_FMT1 + 0x015,

64TPM_RC_SYMMETRIC = RC_FMT1 + 0x016,

TPM_RC_TAG = RC_FMT1 + 0x017,
TPM_RC_SELECTOR = RC_FMT1 + 0x018,
TPM_RC_INSUFFICIENT = RC_FMT1 + 0x01A,

TDMAN D CTIANIATIIDE — D CANNT1 L NvN1D

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

enum

enum

enum

enum

enum

COPYRIGHT ©2024 wolfSSL Inc.

TPM_CLOCK_ADJUST T {
TPM_CLOCK_COARSE_SLOWER = -3,
TPM_CLOCK_MEDIUM_SLOWER = -2,
TPM_CLOCK_FINE_SLOWER = -1,
TPM_CLOCK_NO_CHANGE =0,
TPM_CLOCK_FINE_FASTER =1,
TPM_CLOCK_MEDIUM_FASTER = 2,
TPM_CLOCK_COARSE_FASTER = 3}

TPM _EO_T { TPM_EO_EQ = 0x0000,
TPM_EO_NEQ = 0x0001, TPM_EO_SIGNED_GT =
0x0002, TPM_EO_UNSIGNED_GT = 0x0003,
TPM_EO_SIGNED_LT = 0x0004,
TPM_EO_UNSIGNED_LT = 0x0005,
TPM_EO_SIGNED_GE = 0x0006,
TPM_EO_UNSIGNED_GE = 0x0007,
TPM_EO_SIGNED_LE = 0x0008,
TPM_EO_UNSIGNED_LE = 0x0009,
TPM_EO_BITSET = 0x000A, TPM_EO_BITCLEAR =
0x000B}

TPM ST T { TPM_ST_RSP_COMMAND = 0x00C4,
TPM_ST_NULL = 0X8000,
TPM_ST_NO_SESSIONS = 0x8001,
TPM_ST_SESSIONS = 0x8002,
TPM_ST_ATTEST NV = 0x8014,
TPM_ST_ATTEST COMMAND_AUDIT = 0x8015,
TPM_ST_ATTEST SESSION_AUDIT = 0x8016,
TPM_ST_ATTEST_CERTIFY = 0x8017,
TPM_ST_ATTEST QUOTE = 0x8018,
TPM_ST_ATTEST _TIME = 0x8019,
TPM_ST_ATTEST CREATION = 0x801A,
TPM_ST_CREATION = 0x8021, TPM_ST_VERIFIED
= 0x8022, TPM_ST_AUTH_SECRET = 0x8023,
TPM_ST_HASHCHECK = 0x8024,
TPM_ST_AUTH_SIGNED = 0x8025,
TPM_ST_FU_MANIFEST = 0x8029}

TPM _SE_T { TPM_SE_HMAC = 0x00,
TPM_SE_POLICY = 0x01, TPM_SE_TRIAL = 0x03}
TPM_SU_T { TPM_SU_CLEAR = 0x0000,
TPM_SU_STATE = 0x0001}

65

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

enum

COPYRIGHT ©2024 wolfSSL Inc.

TPM_CAP_T { TPM_CAP_FIRST = 0x00000000,
TPM_CAP_ALGS = TPM_CAP_FIRST,
TPM_CAP_HANDLES = 0x00000001,
TPM_CAP_COMMANDS = 0x00000002,
TPM_CAP_PP_COMMANDS = 0x00000003,
TPM_CAP_AUDIT_COMMANDS = 0x00000004,
TPM_CAP_PCRS = 0x00000005,
TPM_CAP_TPM_PROPERTIES = 0x00000006,
TPM_CAP_PCR_PROPERTIES = 0x00000007,
TPM_CAP_ECC_CURVES = 0x00000008,
TPM_CAP_AUTH_POLICIES = 0x00000009,
TPM_CAP_ACT = 0x0000000A, TPM_CAP_LAST =
TPM_CAP_ACT, TPM_CAP_VENDOR_PROPERTY =
0x00000100}

66

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

enum

COPYRIGHT ©2024 wolfSSL Inc.

TPM_PT T { TPM_PT_NONE = 0x00000000,
PT_GROUP = 0x00000100, PT_FIXED =
PT_GROUP * 1, TPM_PT_FAMILY_INDICATOR =
PT_FIXED + 0, TPM_PT_LEVEL = PT_FIXED + 1,
TPM_PT_REVISION = PT_FIXED + 2,
TPM_PT_DAY_OF_YEAR = PT_FIXED + 3,
TPM_PT_YEAR = PT_FIXED + 4,
TPM_PT_MANUFACTURER = PT_FIXED + 5,
TPM_PT_VENDOR_STRING_1 = PT_FIXED + 6,
TPM_PT_VENDOR_STRING_2 = PT_FIXED + 7,
TPM_PT_VENDOR_STRING_3 = PT_FIXED + 8,
TPM_PT_VENDOR_STRING_4 = PT_FIXED + 9,
TPM_PT_VENDOR_TPM_TYPE = PT_FIXED + 10,
TPM_PT_FIRMWARE_VERSION_1 = PT_FIXED +
11, TPM_PT_FIRMWARE_VERSION_2 = PT_FIXED
+12, TPM_PT_INPUT_BUFFER = PT_FIXED + 13,
TPM_PT_HR_TRANSIENT_MIN = PT_FIXED + 14,
TPM_PT_HR_PERSISTENT_MIN = PT_FIXED + 15,
TPM_PT_HR_LOADED_MIN = PT_FIXED + 16,
TPM_PT_ACTIVE_SESSIONS_MAX = PT_FIXED +
17, TPM_PT_PCR_COUNT = PT_FIXED + 18,
TPM_PT_PCR_SELECT_MIN = PT_FIXED + 19,
TPM_PT_CONTEXT_GAP_MAX = PT_FIXED + 20,
TPM_PT_NV_COUNTERS_MAX = PT_FIXED + 22,
TPM_PT_NV_INDEX_MAX = PT_FIXED + 23,
TPM_PT_MEMORY = PT_FIXED + 24,
TPM_PT_CLOCK_UPDATE = PT_FIXED + 25,
TPM_PT_CONTEXT_HASH = PT_FIXED + 26,
TPM_PT_CONTEXT_SYM = PT_FIXED + 27,
TPM_PT_CONTEXT_SYM_SIZE = PT_FIXED + 28,
TPM_PT_ORDERLY_COUNT = PT_FIXED + 29,
TPM_PT_MAX_COMMAND_SIZE = PT_FIXED +
30, TPM_PT_MAX_RESPONSE_SIZE = PT_FIXED +
31, TPM_PT_MAX_DIGEST = PT_FIXED + 32,
TPM_PT_MAX_OBJECT_CONTEXT = PT_FIXED +
33, TPM_PT_MAX_SESSION_CONTEXT =
PT_FIXED + 34, TPM_PT_PS_FAMILY_INDICATOR
= PT_FIXED + 35, TPM_PT_PS_LEVEL = PT_FIXED
+36, TPM_PT_PS_REVISION = PT_FIXED + 37,
TPM_PT_PS_DAY_OF YEAR = PT_FIXED + 38,
TPM_PT_PS_YEAR = PT_FIXED + 39,
TPM_PT_SPLIT_MAX = PT_FIXED + 40,
TPM_PT_TOTAL_COMMANDS = PT_FIXED + 41,
TPM_PT_LIBRARY_COMMANDS = PT_FIXED + 42,
TPM_PT_VENDOR_COMMANDS = PT_FIXED +
43, TPM_PT_NV_BUFFER_MAX = PT_FIXED + 44,
TPM_PT_MODES = PT_FIXED + 45,
TPM_PT_MAX_CAP_BUFFER = PT_FIXED + 46,

PT VAR = PT_GROUP * 2, TPM_PT_PERMANENT
= PT_VAR + 0, TPM_PT_STARTUP_CLEAR =

PT_ VAR + 1, TPM_PT_HR_NV_INDEX = PT_VAR +
2, TPM_PT_HR_LOADED = PT_VAR + 3,
TPM_PT_HR_LOADED_AVAIL = PT_VAR + 4,
TPM_PT_HR_ACTIVE = PT_VAR + 5,

67TPM_PT_HR_ACTIVE_AVAIL = PT_VAR + 6,

TPM_PT_HR_TRANSIENT_AVAIL = PT_VAR + 7,
TPM_PT_HR_PERSISTENT = PT_VAR + 8,
TPM_PT_HR_PERSISTENT_AVAIL = PT_VAR + 9,

TDMAA DT NN/ NOILINITEDC — DT \/AD 1 1N

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

enum

enum

enum

COPYRIGHT ©2024 wolfSSL Inc.

68

TPM_PT PCR_T { TPM_PT_PCR_FIRST =
0x00000000, TPM_PT_PCR_SAVE =
TPM_PT_PCR_FIRST, TPM_PT_PCR_EXTEND_LO =
0x00000001, TPM_PT_PCR_RESET_LO =
0x00000002, TPM_PT_PCR_EXTEND_L1
0x00000003, TPM_PT_PCR_RESET L1 =
0x00000004, TPM_PT_PCR_EXTEND_L2
0x00000005, TPM_PT_PCR_RESET L2 =
0x00000006, TPM_PT_PCR_EXTEND_L3 =
0x00000007, TPM_PT_PCR_RESET L3 =
0x00000008, TPM_PT_PCR_EXTEND_L4 =
0x00000009, TPM_PT_PCR_RESET L4 =
0x0000000A, TPM_PT_PCR_NO_INCREMENT =
0x00000011, TPM_PT_PCR_DRTM_RESET =
0x00000012, TPM_PT_PCR_POLICY =
0x00000013, TPM_PT_PCR_AUTH = 0x00000014,
TPM_PT_PCR_LAST = TPM_PT_PCR_AUTH}
TPM_PS_T { TPM_PS_MAIN = 0x00000000,
TPM_PS_PC = 000000001, TPM_PS_PDA =
0x00000002, TPM_PS_CELL_PHONE =
0x00000003, TPM_PS_SERVER = 0x00000004,
TPM_PS_PERIPHERAL = 0x00000005,
TPM_PS_TSS = 0x00000006, TPM_PS_STORAGE
= 0x00000007, TPM_PS_AUTHENTICATION =
0x00000008, TPM_PS_EMBEDDED =
0x00000009, TPM_PS_HARDCOPY =
0x0000000A, TPM_PS_INFRASTRUCTURE =
0x0000000B, TPM_PS_VIRTUALIZATION =
0x0000000C, TPM_PS_TNC = 0x0000000D,
TPM_PS_MULTL_TENANT = 0x0000000E,
TPM_PS_TC = 0x0000000F}

TPM_HT_T { TPM_HT_PCR = 0x00,
TPM_HT_NV_INDEX = 0x01,
TPM_HT_HMAC_SESSION = 0x02,
TPM_HT_LOADED_SESSION = 0x02,
TPM_HT_POLICY_SESSION = 0x03,
TPM_HT_ACTIVE_SESSION = 0x03,
TPM_HT_PERMANENT = 0x40,
TPM_HT_TRANSIENT = 0x80,
TPM_HT_PERSISTENT = 0x81}

5.2 wolftom/tpm2.h 5 API REFERENCE

Name

enum TPM_RH_T { TPM_RH_FIRST = 0x40000000,
TPM_RH_SRK = TPM_RH_FIRST,
TPM_RH_OWNER = 0x40000001,
TPM_RH_REVOKE = 0x40000002,
TPM_RH_TRANSPORT = 0x40000003,
TPM_RH_OPERATOR = 0x40000004,
TPM_RH_ADMIN = 0x40000005, TPM_RH_EK =
0x40000006, TPM_RH_NULL = 0x40000007,
TPM_RH_UNASSIGNED = 0x40000008,
TPM_RS_PW = 0x40000009, TPM_RH_LOCKOUT
= 0x4000000A, TPM_RH_ENDORSEMENT =
0x4000000B, TPM_RH_PLATFORM =
0x4000000C, TPM_RH_PLATFORM_NV =
0x4000000D, TPM_RH_AUTH_00 = 0x40000010,
TPM_RH_AUTH_FF = 0x4000010F, TPM_RH_LAST
=TPM_RH_AUTH_FF}

enum TPMA_ALGORITHM_mask {
TPMA_ALGORITHM_asymmetric = 0x00000001,
TPMA_ALGORITHM_symmetric = 0x00000002,
TPMA_ALGORITHM_hash = 0x00000004,
TPMA_ALGORITHM_object = 0x00000008,
TPMA_ALGORITHM_signing = 0x00000010,
TPMA_ALGORITHM_encrypting = 0x00000020,
TPMA_ALGORITHM_method = 0x00000040}

enum TPMA_OBJECT_mask {
TPMA_OBJECT_fixedTPM = 0x00000002,
TPMA_OBJECT_stClear = 0x00000004,
TPMA_OBJECT _fixedParent = 0x00000010,
TPMA_OBJECT _sensitiveDataOrigin =
0x00000020, TPMA_OBJECT_userWithAuth =
0x00000040, TPMA_OBJECT_adminWithPolicy =
0x00000080, TPMA_OBJECT_derivedDataOrigin
= 0x00000200, TPMA_OBJECT_noDA =
0x00000400,
TPMA_OBJECT_encryptedDuplication =
0x00000800, TPMA_OBJECT _restricted =
0x00010000, TPMA_OBJECT_decrypt =
0x00020000, TPMA_OBJECT _sign =
0x00040000}

enum TPMA_SESSION _mask {
TPMA_SESSION_continueSession = 0x01,
TPMA_SESSION_auditExclusive = 0x02,
TPMA_SESSION_auditReset = 0x04,
TPMA_SESSION_decrypt = 0x20,
TPMA_SESSION_encrypt = 0x40,
TPMA_SESSION_audit = 0x80}

enum TPMA_LOCALITY mask { TPM_LOC_ZERO =
0x01, TPM_LOC_ONE = 0x02, TPM_LOC_TWO =
0x04, TPM_LOC_THREE = 0x08, TPM_LOC_FOUR
= 0x10}

COPYRIGHT ©2024 wolfSSL Inc. 69

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

enum

enum

enum

enum

enum

enum

enum

COPYRIGHT ©2024 wolfSSL Inc.

TPMA_PERMANENT mask {

TPMA_PERMANENT ownerAuthSet =
0x00000001,

TPMA_PERMANENT endorsementAuthSet =
0x00000002,

TPMA_PERMANENT _lockoutAuthSet =
0x00000004, TPMA_PERMANENT _disableClear
= 0x00000100, TPMA_PERMANENT _inLockout =
0x00000200,
TPMA_PERMANENT_tpmGeneratedEPS =
0x00000400}

TPMA_MEMORY_mask {
TPMA_MEMORY_sharedRAM = 0x00000001,
TPMA_MEMORY_sharedNV = 0x00000002,
TPMA_MEMORY_objectCopiedToRam =
0x00000004}

TPMA_CC_mask { TPMA_CC_commandIndex =
0x0000FFFF, TPMA_CC_nv = 0x00400000,
TPMA_CC_extensive = 0x00800000,
TPMA_CC_flushed = 0x01000000,
TPMA_CC_cHandles = 0xOE000000,
TPMA_CC_rHandle = 0x10000000, TPMA_CC_V =
0x20000000}

TPMA_ACT_T { TPMA_ACT_signaled =
0x00000001, TPMA_ACT_preserveSignaled =
0x00000002}

TPM_NT { TPM_NT_ORDINARY = 0x0,
TPM_NT_COUNTER = 0x1, TPM_NT_BITS = 0x2,
TPM_NT_EXTEND = 0x4, TPM_NT_PIN_FAIL =
0x8, TPM_NT_PIN_PASS = 0x9}
TPM_MODE_Vendor_Mask { TPMLib_2 = 0x01,
TPMFips = 0x02, TPMLowPowerOff = 0x00,
TPMLowPowerByRegister = 0x04,
TPMLowPowerByGpio = 0x08,
TPMLowPowerAuto = 0x0C}
TPMI_GPIO_NAME_T { TPM_GPIO_PP =
0x00000000, TPM_GPIO_LP = 0x00000001,
TPM_GPIO_C = 0x00000002, TPM_GPIO_D =
0x00000003}

70

5.2 wolftom/tpm2.h 5 API REFERENCE

Name

enum TPMI_GPIO_MODE T {
TPM_GPIO_MODE_STANDARD = 0x00000000,
TPM_GPIO_MODE_FLOATING = 0x00000001,
TPM_GPIO_MODE_PULLUP = 0x00000002,
TPM_GPIO_MODE_PULLDOWN = 0x00000003,
TPM_GPIO_MODE_OPENDRAIN = 0x00000004,
TPM_GPIO_MODE_PUSHPULL = 0x00000005,
TPM_GPIO_MODE_UNCONFIG = 0x00000006,
TPM_GPIO_MODE_DEFAULT =
TPM_GPIO_MODE_PULLDOWN,
TPM_GPIO_MODE_MAX =
TPM_GPIO_MODE_UNCONFIG,
TPM_GPIO_MODE_INPUT_MIN =
TPM_GPIO_MODE_FLOATING,
TPM_GPIO_MODE_INPUT_MAX =
TPM_GPIO_MODE_PULLDOWN,
TPM_GPIO_MODE_PUSHPULL = 0x00000005,
TPM_GPIO_MODE_OPENDRAIN = 0x00000004,
TPM_GPIO_MODE_PULLUP = 0x00000002,
TPM_GPIO_MODE_UNCONFIG = 0x00000006,
TPM_GPIO_MODE_DEFAULT =
TPM_GPIO_MODE_PULLDOWN,
TPM_GPIO_MODE_MAX =
TPM_GPIO_MODE_UNCONFIG,
TPM_GPIO_MODE_INPUT_MIN =
TPM_GPIO_MODE_FLOATING,
TPM_GPIO_MODE_INPUT_MAX =
TPM_GPIO_MODE_PULLDOWN}

COPYRIGHT ©2024 wolfSSL Inc. 71

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

enum

enum

typedef UINT32
typedef UINT32
typedef UINT32
typedef UINT16
typedef UINT16
typedef UINT32
typedef UINT16
typedef UINT16
typedef UINT32
typedef INT32

typedef UINT8

typedef UINT16
typedef UINT16
typedef UINT8

typedef UINT16
typedef UINT32
typedef UINT32
typedef UINT32

COPYRIGHT ©2024 wolfSSL Inc.

72

TPMI_GPIO_MODE T {
TPM_GPIO_MODE_STANDARD = 0x00000000,
TPM_GPIO_MODE_FLOATING = 0x00000001,
TPM_GPIO_MODE_PULLUP = 0x00000002,
TPM_GPIO_MODE_PULLDOWN = 0x00000003,
TPM_GPIO_MODE_OPENDRAIN = 0x00000004,
TPM_GPIO_MODE_PUSHPULL = 0x00000005,
TPM_GPIO_MODE_UNCONFIG = 0x00000006,
TPM_GPIO_MODE_DEFAULT =
TPM_GPIO_MODE_PULLDOWN,
TPM_GPIO_MODE_MAX =
TPM_GPIO_MODE_UNCONFIG,
TPM_GPIO_MODE_INPUT_MIN =
TPM_GPIO_MODE_FLOATING,
TPM_GPIO_MODE_INPUT_MAX =
TPM_GPIO_MODE_PULLDOWN,
TPM_GPIO_MODE_PUSHPULL = 0x00000005,
TPM_GPIO_MODE_OPENDRAIN = 0x00000004,
TPM_GPIO_MODE_PULLUP = 0x00000002,
TPM_GPIO_MODE_UNCONFIG = 0x00000006,
TPM_GPIO_MODE_DEFAULT =
TPM_GPIO_MODE_PULLDOWN,
TPM_GPIO_MODE_MAX =
TPM_GPIO_MODE_UNCONFIG,
TPM_GPIO_MODE_INPUT_MIN =
TPM_GPIO_MODE_FLOATING,
TPM_GPIO_MODE_INPUT_MAX =
TPM_GPIO_MODE_PULLDOWN}

TPM Vendor t { TPM_VENDOR_UNKNOWN = 0,
TPM_VENDOR_INFINEON = 0x15d1,
TPM_VENDOR_STM = 0x104a,
TPM_VENDOR_MCHP = 0x1114,
TPM_VENDOR_NUVOTON = 0x1050,
TPM_VENDOR_NATIONTECH = Ox1B4E}
TPM_MODIFIER_INDICATOR
TPM_AUTHORIZATION_SIZE
TPM_PARAMETER_SIZE

TPM_KEY _SIZE

TPM_KEY BITS

TPM_GENERATED

TPM_ALG_ID

TPM_ECC_CURVE

TPM_CC

TPM_RC

TPM_CLOCK_ADJUST

TPM_EO

TPM ST

TPM SE

TPM SU

TPM_CAP

TPM _PT

TPM_PT_PCR

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name
typedef UINT32 TPM_PS
typedef UINT32 TPM_HANDLE
typedef UINT8 TPM_HT
typedef UINT32 TPM_RH
typedef UINT32 TPM_HC
typedef UINT32 TPMA_ALGORITHM
typedef UINT32 TPMA_OBJECT
typedef BYTE TPMA_SESSION
typedef BYTE TPMA_LOCALITY
typedef UINT32 TPMA_PERMANENT
typedef UINT32 TPMA_STARTUP_CLEAR
typedef UINT32 TPMA_MEMORY
typedef UINT32 TPMA_CC
typedef BYTE TPMI_YES_NO

typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_HANDLE**
typedef TPM_ALG_ID**
typedef TPM_ALG_ID**
typedef TPM_ALG_ID**
typedef TPM_ALG_ID**
typedef TPM_ALG_ID**
typedef TPM_ALG_ID**
typedef TPM_ALG_ID**
typedef TPM_ALG_ID**
typedef TPM_ST**
typedef struct

TPMS_ALGORITHM_DESCRIPTION**
typedef union TPMU_HA**

typedef struct TPMT_HA**

typedef struct TPM2B_DIGEST**
typedef struct TPM2B_DATA**
typedef TPM2B_DIGEST**

typedef TPM2B_DIGEST**

typedef TPM2B_DIGEST**

COPYRIGHT ©2024 wolfSSL Inc. 73

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

typedef struct TPM2B_EVENT**

typedef struct TPM2B_MAX_BUFFER**
typedef struct TPM2B_MAX_NV_BUFFER**
typedef TPM2B_DIGEST**

typedef struct TPM2B_IV**

typedef union TPMU_NAME**

typedef struct TPM2B_NAME**

typedef struct TPMS_PCR_SELECT**
typedef struct TPMS_PCR_SELECTION**
typedef struct TPMT_TK_CREATION**
typedef struct TPMT_TK_VERIFIED**
typedef struct TPMT_TK_AUTH**

typedef struct TPMT_TK_HASHCHECK**
typedef struct TPMS_ALG_PROPERTY**
typedef struct TPMS_TAGGED_PROPERTY**
typedef struct TPMS_TAGGED_PCR_SELECT**
typedef struct TPMS_TAGGED_POLICY**
typedef struct TPML_CC**

typedef struct TPML_CCA**

typedef struct TPML_ALG**

typedef struct TPML_HANDLE**

typedef struct TPML_DIGEST**

typedef struct TPML_DIGEST_VALUES**
typedef struct TPML_PCR_SELECTION**
typedef struct TPML_ALG_PROPERTY**
typedef struct
TPML_TAGGED_TPM_PROPERTY**
typedef struct
TPML_TAGGED_PCR_PROPERTY**

typedef struct TPML_ECC_CURVE**
typedef struct TPML_TAGGED_POLICY**
typedef UINT32 TPMA_ACT
typedef struct TPMS_ACT_DATA**

typedef struct TPML_ACT_DATA**

typedef union TPMU_CAPABILITIES**
typedef struct TPMS_CAPABILITY_DATA**
typedef struct TPMS_CLOCK_INFO**
typedef struct TPMS_TIME_INFO**
typedef struct TPMS_TIME_ATTEST_INFO**
typedef struct TPMS_CERTIFY_INFO**
typedef struct TPMS_QUOTE_INFO**
typedef struct
TPMS_COMMAND_AUDIT_INFO**

typedef struct TPMS_SESSION_AUDIT_INFO**
typedef struct TPMS_CREATION_INFO**
typedef struct TPMS_NV_CERTIFY_INFO**
typedef TPM_ST**

typedef union TPMU_ATTEST**

typedef struct TPMS_ATTEST**

typedef struct TPM2B_ATTEST**

typedef TPM_KEY_BITS**

typedef union TPMU_SYM_KEY_BITS**

COPYRIGHT ©2024 wolfSSL Inc. 74

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

typedef union TPMU_SYM_MODE**
typedef struct TPMT_SYM_DEF**

typedef TPMT_SYM_DEF**

typedef struct TPM2B_SYM_KEY**

typedef struct TPMS_SYMCIPHER_PARMS**
typedef struct TPM2B_LABEL**

typedef struct TPMS_DERIVE**

typedef struct TPM2B_DERIVE**

typedef union TPMU_SENSITIVE_CREATE**
typedef struct TPM2B_SENSITIVE_DATA**
typedef struct TPMS_SENSITIVE_CREATE**
typedef struct TPM2B_SENSITIVE_CREATE**
typedef struct TPMS_SCHEME_HASH**
typedef struct TPMS_SCHEME_ECDAA**
typedef TPM_ALG_ID**

typedef TPMS_SCHEME_HASH**

typedef union TPMU_SCHEME_KEYEDHASH**
typedef struct TPMT_KEYEDHASH_SCHEME**
typedef TPMS_SCHEME_HASH**

typedef TPMS_SCHEME_HASH**

typedef TPMS_SCHEME_HASH**

typedef TPMS_SCHEME_ECDAA**

typedef union TPMU_SIG_SCHEME**
typedef struct TPMT_SIG_SCHEME**
typedef TPMS_SCHEME_HASH**

typedef TPMS_SCHEME_HASH**

typedef TPMS_SCHEME_HASH**

typedef TPMS_SCHEME_HASH**

typedef TPMS_SCHEME_HASH**

typedef TPMS_SCHEME_HASH**

typedef TPMS_SCHEME_HASH**

typedef union TPMU_KDF_SCHEME**
typedef struct TPMT_KDF_SCHEME**
typedef TPM_ALG_ID**

typedef union TPMU_ASYM_SCHEME**
typedef struct TPMT_ASYM_SCHEME**
typedef TPM_ALG_ID**

typedef struct TPMT_RSA_SCHEME**
typedef TPM_ALG_ID**

typedef struct TPMT_RSA_DECRYPT**
typedef struct TPM2B_PUBLIC_KEY_RSA**
typedef TPM_KEY_BITS**

typedef struct TPM2B_PRIVATE_KEY_RSA**
typedef struct TPM2B_ECC_PARAMETER**
typedef struct TPMS_ECC_POINT**
typedef struct TPM2B_ECC_POINT**
typedef TPM_ALG_ID**

typedef TPM_ECC_CURVE**

typedef TPMT_SIG_SCHEME**

typedef struct
TPMS_ALGORITHM_DETAIL_ECC**

typedef struct TPMS_SIGNATURE_RSA**

COPYRIGHT ©2024 wolfSSL Inc. 75

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

typedef TPMS_SIGNATURE_RSA**

typedef TPMS_SIGNATURE_RSA**

typedef struct TPMS_SIGNATURE_ECC**
typedef TPMS_SIGNATURE_ECC**

typedef TPMS_SIGNATURE_ECC**

typedef union TPMU_SIGNATURE**

typedef struct TPMT_SIGNATURE**

typedef union TPMU_ENCRYPTED_SECRET**
typedef struct TPM2B_ENCRYPTED_SECRET**
typedef TPM_ALG_ID**

typedef union TPMU_PUBLIC_ID**

typedef struct TPMS_KEYEDHASH_PARMS**
typedef struct TPMS_ASYM_PARMS**

typedef struct TPMS_RSA_PARMS**

typedef struct TPMS_ECC_PARMS**

typedef union TPMU_PUBLIC_PARMS**
typedef struct TPMT_PUBLIC_PARMS**
typedef struct TPMT_PUBLIC**

typedef struct TPM2B_PUBLIC**

typedef struct TPM2B_TEMPLATE**

typedef struct
TPM2B_PRIVATE_VENDOR_SPECIFIC**
typedef union TPMU_SENSITIVE_COMPOSITE**
typedef struct TPMT_SENSITIVE**

typedef struct TPM2B_SENSITIVE**

typedef struct TPMT_PRIVATE**

typedef struct TPM2B_PRIVATE**

typedef struct TPMS_ID_OBJECT**

typedef struct TPM2B_ID_OBJECT**

typedef UINT32 TPM_NV_INDEX
typedef enum TPM_NT**

typedef struct
TPMS_NV_PIN_COUNTER_PARAMETERS**
typedef UINT32 TPMA_NV
typedef struct TPMS_NV_PUBLIC**

typedef struct TPM2B_NV_PUBLIC**

typedef struct TPM2B_CONTEXT_SENSITIVE**
typedef struct TPMS_CONTEXT_DATA**
typedef struct TPM2B_CONTEXT_DATA**
typedef struct TPMS_CONTEXT**

typedef struct TPMS_CREATION_DATA**
typedef struct TPM2B_CREATION_DATA**
typedef struct TPMS_AUTH_COMMAND**
typedef struct TPMS_AUTH_RESPONSE**
typedef struct TPM2_AUTH_SESSION**
typedef int()(struct TPM2_CTX , INT32 isRead, TPM2HalIoCb
UINT32 addr, BYTE xferBuf, UINT16 xferSz, void
userCtx)

typedef struct TPM2_CTX**

typedef ChangeSeed_In**

typedef ChangeSeed_In**

typedef struct TPM_MODE_SET**

COPYRIGHT ©2024 wolfSSL Inc. 76

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name
typedef GetRandom_In**
typedef UINT32 TPMI_GPIO_NAME
typedef UINT32 TPMI_GPIO_MODE
typedef struct TPMS_GPIO_CONFIG**
typedef struct TPML_GPIO_CONFIG**
5.2.3 Functions
Name

WOLFTPM_API TPM_RC**(Startup_In * in)
WOLFTPM_API TPM_RC**(Shutdown_In * in)
WOLFTPM_API TPM_RC**(GetCapability_In *
out)

WOLFTPM_API TPM_RC**(SelfTest_In * in)
WOLFTPM_API
TPM_RC**(IncrementalSelfTest_In * out)
WOLFTPM_API TPM_RC**(GetTestResult_Out *
out)

WOLFTPM_API TPM_RC**(GetRandom_In * out)
WOLFTPM_API TPM_RC**(StirRandom_In * in)
WOLFTPM_API TPM_RC**(PCR_Read_In * out)
WOLFTPM_API TPM_RC**(PCR_Extend_In * in)
WOLFTPM_API TPM_RC**(Create_In * out)
WOLFTPM_API TPM_RC**(CreateLoaded_In *
out)

WOLFTPM_API TPM_RC**(CreatePrimary_In *
out)

WOLFTPM_API TPM_RC**(Load_In * out)
WOLFTPM_API TPM_RC**(FlushContext_In * in)
WOLFTPM_API TPM_RC**(Unseal_In * out)
WOLFTPM_API TPM_RC**(StartAuthSession_In
* out)

WOLFTPM_API TPM_RC**(PolicyRestart_In * in)
WOLFTPM_API TPM_RC**(LoadExternal_In *
out)

WOLFTPM_API TPM_RC**(ReadPublic_In * out)
WOLFTPM_API TPM_RC**(ActivateCredential_In
* out)

WOLFTPM_API TPM_RC**(MakeCredential_In *
out)

WOLFTPM_API
TPM_RC**(ObjectChangeAuth_In * out)
WOLFTPM_API TPM_RC**(Duplicate_In * out)
WOLFTPM_API TPM_RC**(Rewrap_In * out)
WOLFTPM_API TPM_RC**(Import_In * out)
WOLFTPM_API TPM_RC**(RSA_Encrypt_In *
out)

WOLFTPM_API TPM_RC**(RSA_Decrypt_In *
out)

COPYRIGHT ©2024 wolfSSL Inc. 77

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

WOLFTPM_API TPM_RC**(ECDH_KeyGen_In *
out)

WOLFTPM_API TPM_RC**(ECDH_ZGen_In * out)
WOLFTPM_API TPM_RC**(ECC_Parameters_In *
out)

WOLFTPM_API TPM_RC**(ZGen_2Phase_In *
out)

WOLFTPM_API TPM_RC**(EncryptDecrypt_In *
out)

WOLFTPM_API TPM_RC**(EncryptDecrypt2_In *
out)

WOLFTPM_API TPM_RC**(Hash_In * out)
WOLFTPM_API TPM_RC**(HMAC_In * out)
WOLFTPM_API TPM_RC**(HMAC_Start_In * out)
WOLFTPM_API
TPM_RC**(HashSequenceStart_In * out)
WOLFTPM_API TPM_RC**(SequenceUpdate_In
*in)

WOLFTPM_API
TPM_RC**(SequenceComplete_In * out)
WOLFTPM_API
TPM_RC**(EventSequenceComplete_In * out)
WOLFTPM_API TPM_RC**(Certify_In * out)
WOLFTPM_API TPM_RC**(CertifyCreation_In *
out)

WOLFTPM_API TPM_RC**(Quote_In * out)
WOLFTPM_API
TPM_RC**(GetSessionAuditDigest_In * out)
WOLFTPM_API
TPM_RC**(GetCommandAuditDigest_In * out)
WOLFTPM_API TPM_RC**(GetTime_In * out)
WOLFTPM_API TPM_RC**(Commit_In * out)
WOLFTPM_API TPM_RC**(EC_Ephemeral_In *
out)

WOLFTPM_API TPM_RC**(VerifySignature_In *
out)

WOLFTPM_API TPM_RC**(Sign_In * out)
WOLFTPM_API
TPM_RC**(SetCommandCodeAuditStatus_In *
in)

WOLFTPM_API TPM_RC**(PCR_Event_In * out)
WOLFTPM_API TPM_RC**(PCR_Allocate_In *
out)

WOLFTPM_API
TPM_RC**(PCR_SetAuthPolicy_In * in)
WOLFTPM_API
TPM_RC**(PCR_SetAuthValue_In * in)
WOLFTPM_API TPM_RC**(PCR_Reset_In * in)
WOLFTPM_API TPM_RC**(PolicySigned_In *
out)

WOLFTPM_API TPM_RC**(PolicySecret_In * out)
WOLFTPM_API TPM_RC**(PolicyTicket_In * in)

COPYRIGHT ©2024 wolfSSL Inc. 78

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

WOLFTPM_API TPM_RC**(PolicyOR_In * in)
WOLFTPM_API TPM_RC**(PolicyPCR_In * in)
WOLFTPM_API TPM_RC**(PolicyLocality_In * in)
WOLFTPM_API TPM_RC**(PolicyNV_In * in)
WOLFTPM_API
TPM_RC**(PolicyCounterTimer_In * in)
WOLFTPM_API
TPM_RC**(PolicyCommandCode_In * in)
WOLFTPM_API
TPM_RC**(PolicyPhysicalPresence_In * in)
WOLFTPM_API TPM_RC**(PolicyCpHash_In * in)
WOLFTPM_API TPM_RC**(PolicyNameHash_In
*in)

WOLFTPM_API
TPM_RC**(PolicyDuplicationSelect_In * in)
WOLFTPM_API TPM_RC**(PolicyAuthorize_In *
in)

WOLFTPM_API TPM_RC**(PolicyAuthValue_In *
in)

WOLFTPM_API TPM_RC**(PolicyPassword_In *
in)

WOLFTPM_API TPM_RC**(PolicyGetDigest_In *
out)

WOLFTPM_API TPM_RC**(PolicyNvWritten_In *
in)

WOLFTPM_API TPM_RC**(PolicyTemplate_In *
in)

WOLFTPM_API
TPM_RC**(PolicyAuthorizeNV_In * in)
WOLFTPM_API void

WOLFTPM_API void

WOLFTPM_API void

WOLFTPM_API TPM_RC**(HierarchyControl_In
*in)

WOLFTPM_API TPM_RC**(SetPrimaryPolicy_In *
in)

WOLFTPM_API TPM_RC *in)

WOLFTPM_API TPM_RC *in)

WOLFTPM_API TPM_RC**(Clear_In * in)
WOLFTPM_API TPM_RC**(ClearControl_In * in)
WOLFTPM_API
TPM_RC**(HierarchyChangeAuth_In * in)
WOLFTPM_API
TPM_RC**(DictionaryAttackLockReset_In * in)
WOLFTPM_API
TPM_RC**(DictionaryAttackParameters_In * in)
WOLFTPM_API TPM_RC**(PP_Commands_In *
in)

WOLFTPM_API TPM_RC**(SetAlgorithmSet_In *
in)

COPYRIGHT ©2024 wolfSSL Inc. 79

_TPM_Hash_Start(void)
_TPM_Hash_Data(UINT32 dataSize, BYTE *
data)

_TPM_Hash_End(void)

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

WOLFTPM_API TPM_RC**(FieldUpgradeStart_In
*in)

WOLFTPM_API TPM_RC**(FieldUpgradeData_In
* out)

WOLFTPM_API TPM_RC**(FirmwareRead_In *
out)

WOLFTPM_API TPM_RC**(ContextSave_In *
out)

WOLFTPM_API TPM_RC**(ContextLoad_In *
out)

WOLFTPM_API TPM_RC**(EvictControl_In * in)
WOLFTPM_API TPM_RC**(ReadClock_Out * out)
WOLFTPM_API TPM_RC**(ClockSet_In * in)
WOLFTPM_API TPM_RC**(ClockRateAdjust_In *
in)

WOLFTPM_API TPM_RC**(TestParms_In * in)
WOLFTPM_API TPM_RC**(NV_DefineSpace_In *
in)

WOLFTPM_API
TPM_RC**(NV_UndefineSpace_In * in)
WOLFTPM_API
TPM_RC**(NV_UndefineSpaceSpecial_In * in)
WOLFTPM_API TPM_RC**(NV_ReadPublic_In *
out)

WOLFTPM_API TPM_RC**(NV_Write_In * in)
WOLFTPM_API TPM_RC**(NV_Increment_In *
in)

WOLFTPM_API TPM_RC**(NV_Extend_In * in)
WOLFTPM_API TPM_RC**(NV_SetBits_In * in)
WOLFTPM_API TPM_RC**(NV_WriteLock_In *
in)

WOLFTPM_API
TPM_RC**(NV_GlobalWriteLock_In * in)
WOLFTPM_API TPM_RC**(NV_Read_In * out)
WOLFTPM_API TPM_RC**(NV_ReadLock_In * in)
WOLFTPM_API TPM_RC**(NV_ChangeAuth_In *
in)

WOLFTPM_API TPM_RC**(NV_Certify_In * out)
WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API TPM_RC * in, GetRandom2_Out
* out)

WOLFTPM_API TPM_RC**(uint8_t * info,
uint16_t size)

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int
WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

TPM2_SetCommandSet(SetCommandSet_In *
in)
TPM2_SetMode(SetMode_In *in)

**TPM2_IFX_FieldUpgradeStart sessionHandle,
uint8_t * data, uint32_t size)
**TPM2_IFX_FieldUpgradeCommand cc, uint8_t
* data, uint32_t size)
TPM2_GPIO_Config(GpioConfig_In * in)
TPM2_NTC2_PreConfig(NTC2_PreConfig_In *
in)

80

5.2 wolftom/tpm2.h 5 API REFERENCE

Name

WOLFTPM_API int TPM2_NTC2_GetConfig(NTC2_GetConfig_Out *
out)

WOLFTPM_API TPM_RC ioCb, void *

userCtx)Initializes a TPM with HAL IO callback

and user supplied context. When using

wolfTPM with -enable-devtpm or

-enable-swtpm configuration, the ioCb and

userCtx are not used.

WOLFTPM_API TPM_RC ioCb, void * userCtx, int

timeoutTries)Initializes a TPM with

timeoutTries, HAL IO callback and user

supplied context.

WOLFTPM_API TPM_RC **TPM2_Init_minimal * ctx)Initializes a TPM
and sets the wolfTPM2 context that will be
used. This function is typically used for rich
operating systems, like Windows.

WOLFTPM_API TPM_RC **TPM2_Cleanup * ctx)Deinitializes a TPM and
wolfcrypt (if it was initialized)
WOLFTPM_API TPM_RC **TPM2_ChipStartup * ctx, int

timeoutTries)Makes sure the TPM2 startup has
completed and extracts the TPM device

information.
WOLFTPM_API TPM_RC ioCb, void *
userCtx)Sets the user’s context and IO
callbacks needed for TPM communication.
WOLFTPM_API TPM_RC **TPM2_SetSessionAuth * session)Sets the
structure holding the TPM Authorizations.
WOLFTPM_API int **TPM2_GetSessionAuthCount * ctx)Determine

the number of currently set TPM
Authorizations.

WOLFTPM_API void **TPM2_SetActiveCtx * ctx)Sets a new TPM2
context for use.

WOLFTPM_API TPM2_CTX**(void)Provides a

pointer to the TPM2 context in use.

WOLFTPM_API int **TPM2_GetHashDigestSize
hashAlg)Determine the size in bytes of a TPM
2.0 hash digest.

WOLFTPM_APT int **TPM2_GetHashType hashAlg)Translate a
TPM2 hash type to its corresponding wolfcrypt
hash type.

WOLFTPM_API TPMI_ALG_HASH TPM2_GetTpmHashType(int

hashType)Translate a wolfCrypt hash type to
TPM2 hash type.

WOLFTPM_API int TPM2_GetNonce(byte * nonceBuf, int
nonceSz)Generate a fresh nonce of random
numbers.

WOLFTPM_LOCAL int TPM2_GetNonceNoLock(byte * nonceBuf, int
nonceSz)

WOLFTPM_API void **TPM2_SetupPCRSel alg, int pcrIndex)Helper

function to prepare a correct PCR selection For
example, when preparing to create a
TPM2_Quote.

COPYRIGHT ©2024 wolfSSL Inc. 81

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

WOLFTPM_API void

WOLFTPM_API const char *
WOLFTPM_API const char *
WOLFTPM_API TPM_ALG_ID
WOLFTPM_API const char *
WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int
WOLFTPM_API int
WOLFTPM_API int
WOLFTPM_APT int
WOLFTPM_LOCAL int

WOLFTPM_APT int
WOLFTPM_APT UINT16

WOLFTPM_LOCAL void
WOLFTPM_API void
WOLFTPM_API void

WOLFTPM_API void

**TPM2_SetupPCRSelArray alg, byte * pcrArray,
word32 pcrArraySz)Helper function to prepare
a correct PCR selection with multiple indices
For example, when preparing to create a
TPM2_Quote.

TPM2_GetRCString(int rc)Get a human
readable string for any TPM 2.0 return code.
**TPM2_GetAlgName alg)Get a human
readable string for any TPM 2.0 algorithm.
TPM2_GetAlgId(const char * name)Translates
a TPM algorithm name to its TPM algorithm ID.
**TPM2_GetHierarchyDesc authHandle)Get
readable string for TPM 2.0 hierarchy.
**TPM2_GetCurveSize curvelD)Determine the
size in bytes of any TPM ECC Curve.
TPM2_GetTpmCurve(int curvelD)Translate a
wolfcrypt curve type to its corresponding TPM
curve type.

TPM2_GetWolfCurve(int curve_id)Translate a
TPM curve type to its corresponding wolfcrypt
curve type.

**TPM2_ParseAttest structure.
**TPM2_HashNvPublic * nvPublic, byte * buffer,
UINT16 * size)Computes fresh NV Index name
based on a nvPublic structure.
**TPM2_AppendPublic structure based on a
user provided buffer.

**TPM2_ParsePublic structure and stores in a
user provided buffer.

**TPM2_GetName * name)Provides the Name
of a TPM object.

TPM2_GetWolfRng(WC_RNG ** rng)
TPM2_GetVendorID(void)Provides the
vendorID of the active TPM2 context.
TPM2_ForceZero(void * mem, word32 len)
TPM2_PrintBin(const byte * buffer, word32
length)Helper function to print a binary buffer
in a formatted way.

**TPM2_PrintAuth type in a human readable
way.

**TPM2_PrintPublicArea type in a human
readable way.

5.2.4 Attributes

Name

const BYTE[]
const BYTE[]
const BYTE[]

COPYRIGHT ©2024 wolfSSL Inc.

C

TPM_20_EK_AUTH_POLICY

TPM 20 EK AUTH_POLICY SHA256
TPM_20_ EK_ AUTH_POLICY SHA384

82

5.2 wolftom/tpm2.h

5 APIREFERENCE

Name

const BYTE[] TPM_20_EK_AUTH_POLICY_SHA512
const BYTE[] TPM_20_IDEVID_POLICY

const BYTE[] TPM_20 IAK POLICY

const BYTE[] TPM_20_IDEVID_POLICY_SHA384
const BYTE[] TPM_20_IAK_POLICY_SHA384
const BYTE[] TPM_20_IDEVID_POLICY_SHA512
const BYTE[] TPM_20_IAK_POLICY_SHA512

5.2.5 Types Documentation

5.2.5.1 enum TPM_ALG_ID_T

Enumerator Value Description
TPM_ALG_ERROR 0x0000
TPM_ALG_RSA 0x0001
TPM_ALG_SHA 0x0004
TPM_ALG_SHA1 TPM_ALG_SHA
TPM_ALG_HMAC 0x0005
TPM_ALG_AES 0x0006
TPM_ALG_MGF1 0x0007
TPM_ALG_KEYEDHASH 0x0008
TPM_ALG_XOR 0x000A
TPM_ALG_SHA256 0x000B
TPM_ALG_SHA384 0x000C
TPM_ALG_SHA512 0x000D
TPM_ALG_NULL 0x0010
TPM_ALG_SM3_256 0x0012
TPM_ALG_SM4 0x0013
TPM_ALG_RSASSA 0x0014
TPM_ALG_RSAES 0x0015
TPM_ALG_RSAPSS 0x0016
TPM_ALG_OAEP 0x0017
TPM_ALG_ECDSA 0x0018
TPM_ALG_ECDH 0x0019
TPM_ALG_ECDAA 0x001A
TPM_ALG_SM2 0x001B
TPM_ALG_ECSCHNORR 0x001C
TPM_ALG_ECMQV 0x001D
TPM_ALG_KDF1_SP800_56A 0x0020
TPM_ALG_KDF2 0x0021
TPM_ALG_KDF1_SP800_108 0x0022
TPM_ALG_ECC 0x0023
TPM_ALG_SYMCIPHER 0x0025
TPM_ALG_CAMELLIA 0x0026
TPM_ALG_SHA3_256 0x0027
TPM_ALG_SHA3_384 0x0028
TPM_ALG_SHA3 512 0x0029
TPM_ALG_SHAKE128 0x002A
TPM_ALG_SHAKE256 0x002B
TPM_ALG_CTR 0x0040
TPM_ALG_OFB 0x0041
83

COPYRIGHT ©2024 wolfSSL Inc.

5.2 wolftom/tpm2.h

5 APIREFERENCE

COPYRIGHT ©2024 wolfSSL Inc.

84

Enumerator Value Description
TPM_ALG_CBC 0x0042
TPM_ALG_CFB 0x0043
TPM_ALG_ECB 0x0044
5.2.5.2 enum TPM_ECC_CURVE_T
Enumerator Value Description
TPM_ECC_NONE 0x0000
TPM_ECC_NIST_P192 0x0001
TPM_ECC_NIST_P224 0x0002
TPM_ECC_NIST_P256 0x0003
TPM_ECC_NIST_P384 0x0004
TPM_ECC_NIST_P521 0x0005
TPM_ECC_BN_P256 0x0010
TPM_ECC_BN_P638 0x0011
TPM_ECC_SM2_P256 0x0020
5.25.3 enum TPM_CCT
Enumerator Value Description
TPM_CC_FIRST 0x0000011F
TPM_CC_NV_UndefineSpaceSpecial TPM_CC_FIRST
TPM_CC_EvictControl 0x00000120
TPM_CC_HierarchyControl 0x00000121
TPM_CC_NV_UndefineSpace 0x00000122
TPM_CC_ChangeEPS 0x00000124
TPM_CC_ChangePPS 0x00000125
TPM_CC_Clear 0x00000126
TPM_CC_ClearControl 0x00000127
TPM_CC_ClockSet 0x00000128
TPM_CC_HierarchyChangeAuth 0x00000129
TPM_CC_NV_DefineSpace 0x0000012A
TPM_CC_PCR_Allocate 0x0000012B
TPM_CC_PCR_SetAuthPolicy 0x0000012C
TPM_CC_PP_Commands 0x0000012D
TPM_CC_SetPrimaryPolicy 0x0000012E
TPM_CC_FieldUpgradeStart 0x0000012F
TPM_CC_ClockRateAdjust 0x00000130
TPM_CC_CreatePrimary 0x00000131
TPM_CC_NV_GlobalWriteLock 0x00000132
TPM_CC_GetCommandAuditDigest 0x00000133
TPM_CC_NV_Increment 0x00000134
TPM_CC_NV_SetBits 0x00000135
TPM_CC_NV_Extend 0x00000136
TPM_CC_NV_Write 0x00000137
TPM_CC_NV_WritelLock 0x00000138
TPM_CC_DictionaryAttackLockReset 0x00000139
TPM_CC_DictionaryAttackParameters 0x0000013A

5.2 wolftom/tpm2.h

5 APIREFERENCE

Enumerator Value Description
TPM_CC_NV_ChangeAuth 0x0000013B
TPM_CC_PCR_Event 0x0000013C
TPM_CC_PCR_Reset 0x0000013D
TPM_CC_SequenceComplete 0x0000013E
TPM_CC_SetAlgorithmSet 0x0000013F
TPM_CC_SetCommandCodeAuditStatus 0x00000140
TPM_CC_FieldUpgradeData 0x00000141
TPM_CC_IncrementalSelfTest 0x00000142
TPM_CC_SelfTest 0x00000143
TPM_CC_Startup 0x00000144
TPM_CC_Shutdown 0x00000145
TPM_CC_StirRandom 0x00000146
TPM_CC_ActivateCredential 0x00000147
TPM_CC_Certify 0x00000148
TPM_CC_PolicyNV 0x00000149
TPM_CC_CertifyCreation 0x0000014A
TPM_CC_Duplicate 0x0000014B
TPM_CC_GetTime 0x0000014C
TPM_CC_GetSessionAuditDigest 0x0000014D
TPM_CC_NV_Read 0x0000014E
TPM_CC_NV_ReadLock 0x0000014F
TPM_CC_ObjectChangeAuth 0x00000150
TPM_CC_PolicySecret 0x00000151
TPM_CC_Rewrap 0x00000152
TPM_CC_Create 0x00000153
TPM_CC_ECDH_ZGen 0x00000154
TPM_CC_HMAC 0x00000155
TPM_CC_Import 0x00000156
TPM_CC_Load 0x00000157
TPM_CC_Quote 0x00000158
TPM_CC_RSA_Decrypt 0x00000159
TPM_CC_HMAC _Start 0x0000015B
TPM_CC_SequenceUpdate 0x0000015C
TPM_CC_Sign 0x0000015D
TPM_CC_Unseal 0x0000015E
TPM_CC_PolicySigned 0x00000160
TPM_CC_ContextLoad 0x00000161
TPM_CC_ContextSave 0x00000162
TPM_CC_ECDH_KeyGen 0x00000163
TPM_CC_EncryptDecrypt 0x00000164
TPM_CC_FlushContext 0x00000165
TPM_CC_LoadExternal 0x00000167
TPM_CC_MakeCredential 0x00000168
TPM_CC_NV_ReadPublic 0x00000169
TPM_CC_PolicyAuthorize 0x0000016A
TPM_CC_PolicyAuthValue 0x0000016B
TPM_CC_PolicyCommandCode 0x0000016C
TPM_CC_PolicyCounterTimer 0x0000016D
TPM_CC_PolicyCpHash 0x0000016E
TPM_CC_PolicyLocality 0x0000016F
TPM_CC_PolicyNameHash 0x00000170
TPM_CC_PolicyOR 0x00000171
COPYRIGHT ©2024 wolfSSL Inc. 85

5.2 wolftom/tpm2.h

5 APIREFERENCE

Enumerator Value Description
TPM_CC_PolicyTicket 0x00000172
TPM_CC_ReadPublic 0x00000173
TPM_CC_RSA_Encrypt 0x00000174
TPM_CC_StartAuthSession 0x00000176
TPM_CC_VerifySignature 0x00000177
TPM_CC_ECC_Parameters 0x00000178
TPM_CC_FirmwareRead 0x00000179
TPM_CC_GetCapability 0x0000017A
TPM_CC_GetRandom 0x0000017B
TPM_CC_GetTestResult 0x0000017C
TPM_CC_Hash 0x0000017D
TPM_CC_PCR_Read 0x0000017E
TPM_CC_PolicyPCR 0x0000017F
TPM_CC_PolicyRestart 0x00000180
TPM_CC_ReadClock 0x00000181
TPM_CC_PCR_Extend 0x00000182
TPM_CC_PCR_SetAuthValue 0x00000183
TPM_CC_NV_Certify 0x00000184
TPM_CC_EventSequenceComplete 0x00000185
TPM_CC_HashSequenceStart 0x00000186
TPM_CC_PolicyPhysicalPresence 0x00000187
TPM_CC_PolicyDuplicationSelect 0x00000188
TPM_CC_PolicyGetDigest 0x00000189
TPM_CC_TestParms 0x0000018A
TPM_CC_Commit 0x0000018B
TPM_CC_PolicyPassword 0x0000018C
TPM_CC_ZGen_2Phase 0x0000018D
TPM_CC_EC_Ephemeral 0x0000018E
TPM_CC_PolicyNvWritten 0x0000018F
TPM_CC_PolicyTemplate 0x00000190
TPM_CC_CreateLoaded 0x00000191
TPM_CC_PolicyAuthorizeNV 0x00000192
TPM_CC_EncryptDecrypt2 0x00000193

TPM_CC_LAST

CC_VEND
TPM_CC_Vendor_TCG_Test
TPM_CC_SetMode
TPM_CC_SetCommandSet
TPM_CC_GetRandom?2
TPM_CC_RestoreEK
TPM_CC_SetCommandSetLock
TPM_CC_GPIO_Config
TPM_CC_NTC2_PreConfig
TPM_CC_NTC2_GetConfig
TPM_CC_FieldUpgradeStartVendor

TPM_CC_EncryptDecrypt2

0x20000000
CC_VEND + 0x0000
CC_VEND + 0x0307
CC_VEND + 0x0309
CC_VEND + 0x030E
CC_VEND + 0x030A
CC_VEND + 0x030B
CC_VEND + 0x030F
CC_VEND + 0x0211
CC_VEND + 0x0213
CC_VEND + Ox12F

TPM_CC_FieldUpgradeAbandonVendor CC_VEND + 0x130
TPM_CC_FieldUpgradeManifestVendor =~ CC_VEND + 0x131
TPM_CC_FieldUpgradeDataVendor CC_VEND + 0x132
TPM_CC_FieldUpgradeFinalizeVendor CC_VEND + 0x133

5.25.4 enum T TPM_RCT

COPYRIGHT ©2024 wolfSSL Inc. 86

5.2 wolftom/tpm2.h

5 APIREFERENCE

Enumerator Value Description
TPM_RC_SUCCESS 0x000
TPM_RC_BAD_TAG 0x01E
RC_VER1 0x100

TPM_RC_INITIALIZE
TPM_RC_FAILURE
TPM_RC_SEQUENCE
TPM_RC_PRIVATE
TPM_RC_HMAC
TPM_RC_DISABLED
TPM_RC_EXCLUSIVE
TPM_RC_AUTH_TYPE
TPM_RC_AUTH_MISSING
TPM_RC_POLICY
TPM_RC_PCR
TPM_RC_PCR_CHANGED
TPM_RC_UPGRADE

TPM_RC_TOO_MANY_CONTEXTS

TPM_RC_AUTH_UNAVAILABLE
TPM_RC_REBOOT
TPM_RC_UNBALANCED
TPM_RC_COMMAND_SIZE
TPM_RC_COMMAND_CODE
TPM_RC_AUTHSIZE
TPM_RC_AUTH_CONTEXT
TPM_RC_NV_RANGE
TPM_RC_NV_SIZE
TPM_RC_NV_LOCKED
TPM_RC_NV_AUTHORIZATION
TPM_RC_NV_UNINITIALIZED
TPM_RC_NV_SPACE
TPM_RC_NV_DEFINED
TPM_RC_BAD_CONTEXT
TPM_RC_CPHASH
TPM_RC_PARENT
TPM_RC_NEEDS_TEST
TPM_RC_NO_RESULT
TPM_RC_SENSITIVE
RC_MAX_FMO

RC_FMT1
TPM_RC_ASYMMETRIC
TPM_RC_ATTRIBUTES
TPM_RC_HASH
TPM_RC_VALUE
TPM_RC_HIERARCHY
TPM_RC_KEY_SIZE
TPM_RC_MGF
TPM_RC_MODE
TPM_RC_TYPE
TPM_RC_HANDLE
TPM_RC_KDF
TPM_RC_RANGE
TPM_RC_AUTH_FAIL

COPYRIGHT ©2024 wolfSSL Inc.

87

RC_VERT + 0x000
RC_VER1 + 0x001

RC_VER1 + 0x003
RC_VER1 + 0x00B
RC_VERT + 0x019
RC_VERT + 0x020
RC_VERT + 0x021

RC_VERT + 0x024
RC_VERT + 0x025
RC_VERT + 0x026
RC_VERT + 0x027
RC_VERT + 0x028
RC_VERT + 0x02D
RC_VER1 + Ox02E

RC_VER1 + OX02F

RC_VERT + 0x030
RC_VERT + 0x031

RC_VERT + 0x042
RC_VERT + 0x043
RC_VERT + 0x044
RC_VERT + 0x045
RC_VERT + 0x046
RC_VERT + 0x047
RC_VERT + 0x048
RC_VERT + 0x049
RC_VERT + 0x04A
RC_VERT + 0x04B
RC_VERT + 0x04C
RC_VER1 + 0x050

RC_VER1 + 0x051

RC_VERT + 0x052

RC_VERT + 0x053

RC_VERT + 0x054
RC_VERT + 0x055

RC_VER1 + OX07F

0x080

RC_FMT1 + 0x001
RC_FMT1 + 0x002
RC_FMT1 + 0x003
RC_FMT1 + 0x004
RC_FMT1 + 0x005
RC_FMT1 + 0x007
RC_FMT1 + 0x008
RC_FMT1 + 0x009
RC_FMT1 + Ox00A
RC_FMT1 + 0x00B
RC_FMT1 + 0x00C
RC_FMT1 + 0x00D
RC_FMT1 + Ox00E

5.2 wolftom/tpm2.h

5 APIREFERENCE

Enumerator

Value

Description

TPM_RC_NONCE
TPM_RC_PP
TPM_RC_SCHEME
TPM_RC_SIZE
TPM_RC_SYMMETRIC
TPM_RC_TAG
TPM_RC_SELECTOR
TPM_RC_INSUFFICIENT
TPM_RC_SIGNATURE
TPM_RC_KEY
TPM_RC_POLICY_FAIL
TPM_RC_INTEGRITY
TPM_RC_TICKET
TPM_RC_RESERVED_BITS
TPM_RC_BAD_AUTH
TPM_RC_EXPIRED
TPM_RC_POLICY_CC
TPM_RC_BINDING
TPM_RC_CURVE
TPM_RC_ECC_POINT
RC_MAX_FMT1

RC_WARN
TPM_RC_CONTEXT_GAP
TPM_RC_OBJECT_MEMORY
TPM_RC_SESSION_MEMORY
TPM_RC_MEMORY
TPM_RC_SESSION_HANDLES
TPM_RC_OBJECT_HANDLES
TPM_RC_LOCALITY
TPM_RC_YIELDED
TPM_RC_CANCELED
TPM_RC_TESTING
TPM_RC_REFERENCE_HO
TPM_RC_REFERENCE_H1
TPM_RC_REFERENCE_H2
TPM_RC_REFERENCE_H3
TPM_RC_REFERENCE_H4
TPM_RC_REFERENCE_H5
TPM_RC_REFERENCE_H6
TPM_RC_REFERENCE_SO
TPM_RC_REFERENCE_S1
TPM_RC_REFERENCE_S2
TPM_RC_REFERENCE_S3
TPM_RC_REFERENCE_S4
TPM_RC_REFERENCE_S5
TPM_RC_REFERENCE_S6
TPM_RC_NV_RATE
TPM_RC_LOCKOUT
TPM_RC_RETRY
TPM_RC_NV_UNAVAILABLE
RC_MAX_WARN
TPM_RC_NOT_USED

COPYRIGHT ©2024 wolfSSL Inc.

88

RC_FMT1 + Ox00F
RC_FMT1 + 0x010
RC_FMT1 + 0x012
RC_FMT1 + 0x015
RC_FMT1 + 0x016
RC_FMT1 + 0x017
RC_FMT1 + 0x018
RC_FMT1 + Ox01A
RC_FMT1 + 0x01B
RC_FMT1 + 0x01C
RC_FMT1 + 0x01D
RC_FMT1 + Ox01F
RC_FMT1 + 0x020
RC_FMT1 + 0x021
RC_FMT1 + 0x022
RC_FMT1 + 0x023
RC_FMT1 + 0x024
RC_FMT1 + 0x025
RC_FMT1 + 0x026
RC_FMT1 + 0x027
RC_FMT1 + Ox03F
0x900

RC_WARN + 0x001
RC_WARN + 0x002
RC_WARN + 0x003
RC_WARN + 0x004
RC_WARN + 0x005
RC_WARN + 0x006
RC_WARN + 0x007
RC_WARN + 0x008
RC_WARN + 0x009
RC_WARN + 0x00A
RC_WARN + 0x010
RC_WARN + 0x011
RC_WARN + 0x012
RC_WARN + 0x013
RC_WARN + 0x014
RC_WARN + 0x015
RC_WARN + 0x016
RC_WARN + 0x018
RC_WARN + 0x019
RC_WARN + 0x01A
RC_WARN + 0x01B
RC_WARN + 0x01C
RC_WARN + 0x01D
RC_WARN + 0x01E
RC_WARN + 0x020
RC_WARN + 0x021
RC_WARN + 0x022
RC_WARN + 0x023
RC_WARN + Ox03F
RC_WARN + Ox07F

5.2 wolftom/tpm2.h

5 APIREFERENCE

Enumerator Value Description
TPM_RC_H 0x000
TPM_RC_P 0x040
TPM_RC_S 0x800
TPM_RC_1 0x100
TPM_RC_2 0x200
TPM_RC_3 0x300
TPM_RC 4 0x400
TPM_RC_5 0x500
TPM_RC_6 0x600
TPM_RC_7 0x700
TPM_RC_8 0x800
TPM_RC_9 0x900
TPM_RC_A 0xAOQ0
TPM_RC_B 0xB00
TPM_RC_C 0xCO00
TPM_RC_D 0xD00
TPM_RC_E 0xEQO0
TPM_RC_F 0xFO0
TPM_RC_N_MASK 0xF00
TPM_RC_TIMEOUT -100
5.2.5.5 enum TPM_CLOCK_ADJUST_T
Enumerator Value Description
TPM_CLOCK_COARSE_SLOWER -3
TPM_CLOCK_MEDIUM_SLOWER -2
TPM_CLOCK_FINE_SLOWER -1
TPM_CLOCK_NO_CHANGE 0
TPM_CLOCK_FINE_FASTER 1
TPM_CLOCK_MEDIUM_FASTER 2
TPM_CLOCK_COARSE_FASTER 3
5.25.6 enum TPM_EO_T
Enumerator Value Description
TPM_EO_EQ 0x0000
TPM_EO_NEQ 0x0001
TPM_EO_SIGNED_GT 0x0002
TPM_EO_UNSIGNED_GT 0x0003
TPM_EO_SIGNED_LT 0x0004
TPM_EO_UNSIGNED_LT 0x0005
TPM_EO_SIGNED_GE 0x0006
TPM_EO_UNSIGNED_GE 0x0007
TPM_EO_SIGNED_LE 0x0008
TPM_EO_UNSIGNED_LE 0x0009
TPM_EO_BITSET 0x000A
TPM_EO_BITCLEAR 0x000B

COPYRIGHT ©2024 wolfSSL Inc. 89

5.2 wolftom/tpm2.h 5 API REFERENCE

5.2.5.7 enum TPM ST.T

Enumerator Value Description
TPM_ST_RSP_COMMAND 0x00C4
TPM_ST_NULL 0X8000
TPM_ST_NO_SESSIONS 0x8001
TPM_ST_SESSIONS 0x8002
TPM_ST_ATTEST_NV 0x8014

TPM_ST_ATTEST_COMMAND_AUDIT 0x8015
TPM_ST_ATTEST_SESSION_AUDIT 0x8016

TPM_ST_ATTEST CERTIFY 0x8017
TPM_ST_ATTEST _QUOTE 0x8018
TPM_ST_ATTEST _TIME 0x8019
TPM_ST_ATTEST_CREATION 0x801A
TPM_ST_CREATION 0x8021
TPM_ST_VERIFIED 0x8022
TPM_ST_AUTH_SECRET 0x8023
TPM_ST_HASHCHECK 0x8024
TPM_ST_AUTH_SIGNED 0x8025
TPM_ST_FU_MANIFEST 0x8029

5.2.5.8 enum TPM_SE_T

Enumerator Value Description

TPM_SE_HMAC 0x00
TPM_SE_POLICY 0x01
TPM_SE_TRIAL 0x03

5.259 enumTPM SU T

Enumerator Value Description

TPM_SU_CLEAR 0x0000
TPM_SU_STATE 0x0001

5.25.10 enum TPM_CAP_T

Enumerator Value Description
TPM_CAP_FIRST 0x00000000

TPM_CAP_ALGS TPM_CAP_FIRST
TPM_CAP_HANDLES 0x00000001
TPM_CAP_COMMANDS 0x00000002
TPM_CAP_PP_COMMANDS 0x00000003
TPM_CAP_AUDIT_COMMANDS 0x00000004

TPM_CAP_PCRS 0x00000005

TPM_CAP_TPM_PROPERTIES 0x00000006
TPM_CAP_PCR_PROPERTIES 0x00000007
TPM_CAP_ECC_CURVES 0x00000008

COPYRIGHT ©2024 wolfSSL Inc. 90

5.2 wolftom/tpm2.h

5 APIREFERENCE

COPYRIGHT ©2024 wolfSSL Inc.

TPM_PT_VENDOR_TPM_TYPE
TPM_PT_FIRMWARE_VERSION_1
TPM_PT_FIRMWARE_VERSION_2
TPM_PT_INPUT_BUFFER
TPM_PT_HR_TRANSIENT_MIN
TPM_PT_HR_PERSISTENT_MIN
TPM_PT_HR_LOADED_MIN
TPM_PT_ACTIVE_SESSIONS_MAX
TPM_PT_PCR_COUNT
TPM_PT_PCR_SELECT_MIN
TPM_PT_CONTEXT_GAP_MAX
TPM_PT_NV_COUNTERS_MAX
TPM_PT_NV_INDEX_MAX
TPM_PT_MEMORY
TPM_PT_CLOCK_UPDATE
TPM_PT_CONTEXT_HASH
TPM_PT_CONTEXT_SYM
TPM_PT_CONTEXT_SYM_SIZE
TPM_PT_ORDERLY_COUNT
TPM_PT_MAX_COMMAND_SIZE
TPM_PT_MAX_RESPONSE_SIZE
TPM_PT_MAX_DIGEST
TPM_PT_MAX_OBJECT_CONTEXT
TPM_PT_MAX_SESSION_CONTEXT
TPM_PT_PS_FAMILY_INDICATOR
TPM_PT_PS_LEVEL
TPM_PT_PS_REVISION
TPM_PT_PS_DAY_OF_YEAR
TPM_PT_PS_YEAR

91

PT_FIXED + 10
PT_FIXED + 11
PT_FIXED + 12
PT_FIXED + 13
PT_FIXED + 14
PT_FIXED + 15
PT_FIXED + 16
PT_FIXED + 17
PT_FIXED + 18
PT_FIXED + 19
PT_FIXED + 20
PT_FIXED + 22
PT_FIXED + 23
PT_FIXED + 24
PT_FIXED + 25
PT_FIXED + 26
PT_FIXED + 27
PT_FIXED + 28
PT_FIXED + 29
PT_FIXED + 30
PT_FIXED + 31
PT_FIXED + 32
PT_FIXED + 33
PT_FIXED + 34
PT_FIXED + 35
PT_FIXED + 36
PT_FIXED + 37
PT_FIXED + 38
PT_FIXED + 39

Enumerator Value Description
TPM_CAP_AUTH_POLICIES 0x00000009
TPM_CAP_ACT 0x0000000A
TPM_CAP_LAST TPM_CAP_ACT
TPM_CAP_VENDOR_PROPERTY 0x00000100

5.2.5.11 enum TPM_PT_T
Enumerator Value Description
TPM_PT_NONE 0x00000000
PT_GROUP 0x00000100
PT_FIXED PT_GROUP * 1
TPM_PT_FAMILY_INDICATOR PT_FIXED + 0
TPM_PT_LEVEL PT_FIXED + 1
TPM_PT_REVISION PT_FIXED + 2
TPM_PT_DAY_OF_YEAR PT_FIXED + 3
TPM_PT_YEAR PT_FIXED + 4
TPM_PT_MANUFACTURER PT_FIXED + 5
TPM_PT_VENDOR_STRING_1 PT _FIXED + 6
TPM_PT_VENDOR_STRING_2 PT_FIXED + 7
TPM_PT_VENDOR_STRING_3 PT_FIXED + 8
TPM_PT_VENDOR_STRING_4 PT_FIXED + 9

5.2 wolftom/tpm2.h

5 APIREFERENCE

COPYRIGHT ©2024 wolfSSL Inc.

5.2.5.12 enum TPM_PT_PCR_T

Enumerator Value Description
TPM_PT_SPLIT_MAX PT_FIXED + 40
TPM_PT_TOTAL_COMMANDS PT_FIXED + 41
TPM_PT_LIBRARY_COMMANDS PT_FIXED + 42
TPM_PT_VENDOR_COMMANDS PT_FIXED + 43
TPM_PT_NV_BUFFER_MAX PT_FIXED + 44
TPM_PT_MODES PT_FIXED + 45
TPM_PT_MAX_CAP_BUFFER PT_FIXED + 46
PT_VAR PT_GROUP * 2
TPM_PT_PERMANENT PT_VAR+0
TPM_PT_STARTUP_CLEAR PT_VAR + 1
TPM_PT_HR_NV_INDEX PT_VAR + 2
TPM_PT_HR_LOADED PT_VAR +3
TPM_PT_HR_LOADED_AVAIL PT_VAR +4
TPM_PT_HR_ACTIVE PT_VAR +5
TPM_PT_HR_ACTIVE_AVAIL PT_VAR +6
TPM_PT_HR_TRANSIENT_AVAIL PT_VAR +7
TPM_PT_HR_PERSISTENT PT_VAR +8
TPM_PT_HR_PERSISTENT_AVAIL PT_VAR+9
TPM_PT_NV_COUNTERS PT_VAR + 10
TPM_PT_NV_COUNTERS_AVAIL PT_VAR + 11
TPM_PT_ALGORITHM_SET PT_VAR + 12
TPM_PT_LOADED_CURVES PT_VAR + 13
TPM_PT_LOCKOUT_COUNTER PT_VAR + 14
TPM_PT_MAX_AUTH_FAIL PT_VAR + 15
TPM_PT_LOCKOUT_INTERVAL PT_VAR + 16
TPM_PT_LOCKOUT_RECOVERY PT_VAR + 17
TPM_PT_NV_WRITE_RECOVERY PT_VAR + 18
TPM_PT_AUDIT_COUNTER_O PT_VAR +19
TPM_PT_AUDIT_COUNTER_1 PT_VAR + 20
Enumerator Value Description
TPM_PT_PCR_FIRST 0x00000000
TPM_PT_PCR_SAVE TPM_PT_PCR_FIRST
TPM_PT_PCR_EXTEND_LO 0x00000001
TPM_PT_PCR_RESET_LO 0x00000002
TPM_PT_PCR_EXTEND_L1 0x00000003
TPM_PT_PCR_RESET_L1 0x00000004
TPM_PT_PCR_EXTEND_L2 0x00000005
TPM_PT_PCR_RESET_L2 0x00000006
TPM_PT_PCR_EXTEND_L3 0x00000007
TPM_PT_PCR_RESET_L3 0x00000008
TPM_PT_PCR_EXTEND_L4 0x00000009
TPM_PT_PCR_RESET_L4 0x0000000A
TPM_PT_PCR_NO_INCREMENT 0x00000011
TPM_PT_PCR_DRTM_RESET 0x00000012
TPM_PT_PCR_POLICY 0x00000013
TPM_PT_PCR_AUTH 0x00000014

TPM_PT_PCR_LAST

TPM_PT_PCR_AUTH

92

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.5.13 enum TPM_PS_T

5.25.14 enum TPM_HT.T

5.2.5.15 enum TPM_RH_T

Enumerator Value Description
TPM_PS_MAIN 0x00000000
TPM_PS_PC 0x00000001
TPM_PS_PDA 0x00000002
TPM_PS_CELL_PHONE 0x00000003
TPM_PS_SERVER 0x00000004
TPM_PS_PERIPHERAL 0x00000005
TPM_PS_TSS 0x00000006
TPM_PS_STORAGE 0x00000007
TPM_PS_AUTHENTICATION 0x00000008
TPM_PS_EMBEDDED 0x00000009
TPM_PS_HARDCOPY 0x0000000A
TPM_PS_INFRASTRUCTURE 0x0000000B
TPM_PS_VIRTUALIZATION 0x0000000C
TPM_PS_TNC 0x0000000D
TPM_PS_MULTI_TENANT 0x0000000E
TPM_PS_TC 0x0000000F
Enumerator Value Description
TPM_HT_PCR 0x00
TPM_HT_NV_INDEX 0x01
TPM_HT_HMAC_SESSION 0x02
TPM_HT_LOADED_SESSION 0x02
TPM_HT_POLICY_SESSION 0x03
TPM_HT_ACTIVE_SESSION 0x03
TPM_HT_PERMANENT 0x40
TPM_HT_TRANSIENT 0x80
TPM_HT_PERSISTENT 0x81
Enumerator Value Description
TPM_RH_FIRST 0x40000000
TPM_RH_SRK TPM_RH_FIRST
TPM_RH_OWNER 0x40000001
TPM_RH_REVOKE 0x40000002
TPM_RH_TRANSPORT 0x40000003
TPM_RH_OPERATOR 0x40000004
TPM_RH_ADMIN 0x40000005
TPM_RH_EK 0x40000006
TPM_RH_NULL 0x40000007
TPM_RH_UNASSIGNED 0x40000008
TPM_RS_PW 0x40000009
TPM_RH_LOCKOUT 0x4000000A
TPM_RH_ENDORSEMENT 0x4000000B
93

COPYRIGHT ©2024 wolfSSL Inc.

5.2 wolftom/tpm2.h

5 APIREFERENCE

Enumerator Value Description
TPM_RH_PLATFORM 0x4000000C
TPM_RH_PLATFORM_NV 0x4000000D
TPM_RH_AUTH_00 0x40000010
TPM_RH_AUTH_FF 0x4000010F
TPM_RH_LAST TPM_RH_AUTH_FF
5.2.5.16 enum TPMA_ALGORITHM_mask
Enumerator Value Description
TPMA_ALGORITHM_asymmetric 0x00000001
TPMA_ALGORITHM_symmetric 0x00000002
TPMA_ALGORITHM_hash 0x00000004
TPMA_ALGORITHM_object 0x00000008
TPMA_ALGORITHM_signing 0x00000010
TPMA_ALGORITHM_encrypting 0x00000020
TPMA_ALGORITHM_method 0x00000040
5.2.5.17 enum TPMA_OBJECT_mask
Enumerator Value Description
TPMA_OBJECT_fixedTPM 0x00000002
TPMA_OBJECT _stClear 0x00000004
TPMA_OBJECT_fixedParent 0x00000010
TPMA_OBJECT_sensitiveDataOrigin 0x00000020
TPMA_OBJECT_userWithAuth 0x00000040
TPMA_OBJECT_adminWithPolicy 0x00000080
TPMA_OBJECT_derivedDataOrigin 0x00000200
TPMA_OBJECT_noDA 0x00000400
TPMA_OBJECT_encryptedDuplication 0x00000800
TPMA_OBJECT _restricted 0x00010000
TPMA_OBJECT _decrypt 0x00020000
TPMA_OBJECT _sign 0x00040000

5.2.5.18 enum TPMA _SESSION_mask

Enumerator

Value Description

TPMA_SESSION_continue

Session 0x01

TPMA_SESSION_auditExclusive 0x02
TPMA_SESSION_auditReset 0x04

TPMA_SESSION_decrypt
TPMA_SESSION_encrypt
TPMA_SESSION_audit

0x20
0x40
0x80

5.2.5.19 enum TPMA_LOCALITY_mask

COPYRIGHT ©2024 wolfSSL Inc.

94

5.2 wolftom/tpm2.h 5 API REFERENCE

Enumerator Value Description

TPM_LOC_ZERO 0x01
TPM_LOC_ONE 0x02
TPM_LOC_TWO 0x04
TPM_LOC_THREE 0x08
TPM_LOC_FOUR 0x10

5.2.5.20 enum TPMA_PERMANENT mask

Enumerator Value Description
TPMA_PERMANENT_ownerAuthSet 0x00000001
TPMA_PERMANENT endorsementAuthSet 0x00000002
TPMA_PERMANENT_lockoutAuthSet 0x00000004
TPMA_PERMANENT _disableClear 0x00000100
TPMA_PERMANENT _inLockout 0x00000200

TPMA_PERMANENT_tpmGeneratedEPS 0x00000400

5.2.5.21 enum TPMA_MEMORY_mask

Enumerator Value Description
TPMA_MEMORY_sharedRAM 0x00000001
TPMA_MEMORY_sharedNV 0x00000002

TPMA_MEMORY_objectCopiedToRam 0x00000004

5.2.5.22 enum TPMA_CC_mask

Enumerator Value Description
TPMA_CC_commandIndex 0x0000FFFF
TPMA_CC_nv 0x00400000
TPMA_CC_extensive 0x00800000
TPMA_CC_flushed 0x01000000
TPMA_CC_cHandles Ox0EO000000
TPMA_CC_rHandle 0x10000000
TPMA_CCV 0x20000000

5.2.5.23 enum TPMA_ACT_T

Enumerator Value Description

TPMA_ACT _signaled 0x00000001
TPMA_ACT_preserveSignaled 0x00000002

5.2.5.24 enum TPM_NT

COPYRIGHT ©2024 wolfSSL Inc. 95

5.2 wolftom/tpm2.h

5 APIREFERENCE

Enumerator Value Description
TPM_NT_ORDINARY 0x0
TPM_NT_COUNTER 0x1
TPM_NT_BITS 0x2
TPM_NT_EXTEND 0x4
TPM_NT_PIN_FAIL 0x8
TPM_NT_PIN_PASS 0x9
5.2.5.25 enum TPM_MODE_Vendor_Mask
Enumerator Value Description
TPMLib_2 0x01
TPMFips 0x02
TPMLowPowerOff 0x00
TPMLowPowerByRegister 0x04
TPMLowPowerByGpio 0x08
TPMLowPowerAuto 0x0C
5.2.5.26 enum TPMI_GPIO_NAME_T
Enumerator Value Description
TPM_GPIO_PP 0x00000000
TPM_GPIO_LP 0x00000001
TPM_GPIO_C 0x00000002
TPM_GPIO_D 0x00000003
5.2.5.27 enum TPMI_GPIO_MODE_T
Enumerator Value Description
TPM_GPIO_MODE_STANDARD 0x00000000
TPM_GPIO_MODE_FLOATING 0x00000001
TPM_GPIO_MODE_PULLUP 0x00000002
TPM_GPIO_MODE_PULLDOWN 0x00000003
TPM_GPIO_MODE_OPENDRAIN 0x00000004
TPM_GPIO_MODE_PUSHPULL 0x00000005
TPM_GPIO_MODE_UNCONFIG 0x00000006

TPM_GPIO_MODE_DEFAULT
TPM_GPIO_MODE_MAX
TPM_GPIO_MODE_INPUT_MIN
TPM_GPIO_MODE_INPUT_MAX
TPM_GPIO_MODE_PUSHPULL
TPM_GPIO_MODE_OPENDRAIN
TPM_GPIO_MODE_PULLUP
TPM_GPIO_MODE_UNCONFIG
TPM_GPIO_MODE_DEFAULT
TPM_GPIO_MODE_MAX
TPM_GPIO_MODE_INPUT_MIN

COPYRIGHT ©2024 wolfSSL Inc.

TPM_GPIO_MODE_PULLDOWN
TPM_GPIO_MODE_UNCONFIG
TPM_GPIO_MODE_FLOATING
TPM_GPIO_MODE_PULLDOWN
0x00000005

0x00000004

0x00000002

0x00000006
TPM_GPIO_MODE_PULLDOWN
TPM_GPIO_MODE_UNCONFIG
TPM_GPIO_MODE_FLOATING

96

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.5.28

5.2.5.29

5.2.5.30
typedef

5.2.5.31
typedef

5.2.5.32
typedef

Enumerator Value Description
TPM_GPIO_MODE_INPUT_MAX TPM_GPIO_MODE_PULLDOWN
enum TPMI_GPIO MODE_ T

Enumerator Value Description
TPM_GPIO_MODE_STANDARD 0x00000000

TPM_GPIO_MODE_FLOATING 0x00000001

TPM_GPIO_MODE_PULLUP 0x00000002

TPM_GPIO_MODE_PULLDOWN 0x00000003

TPM_GPIO_MODE_OPENDRAIN 0x00000004

TPM_GPIO_MODE_PUSHPULL 0x00000005

TPM_GPIO_MODE_UNCONFIG 0x00000006

TPM_GPIO_MODE_DEFAULT
TPM_GPIO_MODE_MAX
TPM_GPIO_MODE_INPUT_MIN
TPM_GPIO_MODE_INPUT_MAX
TPM_GPIO_MODE_PUSHPULL
TPM_GPIO_MODE_OPENDRAIN
TPM_GPIO_MODE_PULLUP
TPM_GPIO_MODE_UNCONFIG
TPM_GPIO_MODE_DEFAULT
TPM_GPIO_MODE_MAX
TPM_GPIO_MODE_INPUT_MIN
TPM_GPIO_MODE_INPUT_MAX

TPM_GPIO_MODE_PULLDOWN
TPM_GPIO_MODE_UNCONFIG
TPM_GPIO_MODE_FLOATING
TPM_GPIO_MODE_PULLDOWN
0x00000005

0x00000004

0x00000002

0x00000006
TPM_GPIO_MODE_PULLDOWN
TPM_GPIO_MODE_UNCONFIG
TPM_GPIO_MODE_FLOATING
TPM_GPIO_MODE_PULLDOWN

enum TPM_Vendor_t

Enumerator

Value Description

TPM_VENDOR_UNKNOWN 0

TPM_VENDOR_INFINEON
TPM_VENDOR_STM
TPM_VENDOR_MCHP
TPM_VENDOR_NUVOTON
TPM_VENDOR_NATIONTECH

0x15d1
0x104a
0x1114
0x1050
0x1B4E

typedef TPM_MODIFIER_INDICATOR
UINT32 TPM_MODIFIER_INDICATOR;

typedef TPM_AUTHORIZATION_SIZE
UINT32 TPM_AUTHORIZATION_SIZE;

typedef TPM_PARAMETER_SIZE

UINT32 TPM_PARAMETER_SIZE;

COPYRIGHT ©2024 wolfSSL Inc.

97

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.5.33
typedef

5.2.5.34
typedef

5.2.5.35
typedef

5.2.5.36
typedef

5.2.5.37
typedef

5.2.5.38
typedef

5.2.5.39
typedef

5.2.5.40
typedef

5.2.5.41
typedef

5.2.5.42
typedef

5.2.5.43
typedef

5.2.5.44
typedef

5.2.5.45
typedef

5.2.5.46
typedef

typedef TPM_KEY_SIZE
UINT16 TPM_KEY_SIZE;

typedef TPM_KEY_BITS
UINT16 TPM_KEY_BITS;

typedef TPM_GENERATED
UINT32 TPM_GENERATED;

typedef TPM_ALG_ID
UINT16 TPM_ALG_ID;

typedef TPM_ECC_CURVE
UINT16 TPM_ECC_CURVE;

typedef TPM_CC
UINT32 TPM_CC;

typedef TPM_RC
INT32 TPM_RC;

typedef TPM_CLOCK_ADJUST
UINT8 TPM_CLOCK_ADJUST;

typedef TPM_EO
UINT16 TPM_EO;

typedef TPM_ST
UINT16 TPM_ST;

typedef TPM_SE
UINT8 TPM_SE;

typedef TPM_SU
UINT16 TPM_SU;

typedef TPM_CAP
UINT32 TPM_CAP;

typedef TPM_PT
UINT32 TPM_PT;

COPYRIGHT ©2024 wolfSSL Inc. 98

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.5.47 typedef TPM_PT_PCR
typedef UINT32 TPM_PT_PCR;

5.2.5.48 typedef TPM_PS
typedef UINT32 TPM_PS;

5.2.5.49 typedef TPM_HANDLE
typedef UINT32 TPM_HANDLE;

5.2.5.50 typedef TPM_HT
typedef UINT8 TPM_HT;

5.2.5.51 typedef TPM_RH
typedef UINT32 TPM_RH;

5.2.5.52 typedef TPM_HC
typedef UINT32 TPM_HC;

5.2.5.53 typedef TPMA_ALGORITHM
typedef UINT32 TPMA_ALGORITHM;

5.2.5.54 typedef TPMA_OBJECT
typedef UINT32 TPMA_OBJECT;

5.2.5.55 typedef TPMA_SESSION
typedef BYTE TPMA_SESSION;

5.2.5.56 typedef TPMA_LOCALITY
typedef BYTE TPMA_LOCALITY;

5.2.5.57 typedef TPMA_PERMANENT
typedef UINT32 TPMA_PERMANENT;

5.2.5.58 typedef TPMA_STARTUP_CLEAR
typedef UINT32 TPMA_STARTUP_CLEAR;

5.2.5.59 typedef TPMA_MEMORY
typedef UINT32 TPMA_MEMORY;

5.2.5.60 typedef TPMA_CC
typedef UINT32 TPMA_CC;

COPYRIGHT ©2024 wolfSSL Inc.

99

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.5.61
typedef

5.2.5.62
typedef

5.2.5.63
typedef

5.2.5.64
typedef

5.2.5.65
typedef

5.2.5.66
typedef

5.2.5.67
typedef

5.2.5.68
typedef

5.2.5.69
typedef

5.2.5.70
typedef

5.2.5.71
typedef

5.2.5.72
typedef

5.2.5.73
typedef

5.2.5.74
typedef

typedef TPMI_YES_NO
BYTE TPMI_YES_NO;

typedef TPMI_DH_OBJECT
TPM_HANDLE TPMI_DH_OBJECT;

typedef TPMI_DH_PARENT
TPM_HANDLE TPMI_DH_PARENT;

typedef TPMI_DH_PERSISTENT
TPM_HANDLE TPMI_DH_PERSISTENT,;

typedef TPMI_DH_ENTITY
TPM_HANDLE TPMI_DH_ENTITY;

typedef TPMI_DH_PCR
TPM_HANDLE TPMI_DH_PCR;

typedef TPMI_SH_AUTH_SESSION
TPM_HANDLE TPMI_SH_AUTH_SESSION;

typedef TPMI_SH_HMAC
TPM_HANDLE TPMI_SH_HMAC;

typedef TPMI_SH_POLICY
TPM_HANDLE TPMI_SH_POLICY;

typedef TPMI_DH_CONTEXT
TPM_HANDLE TPMI_DH_CONTEXT;

typedef TPMI_RH_HIERARCHY
TPM_HANDLE TPMI_RH_HIERARCHY;

typedef TPMI_RH_ENABLES
TPM_HANDLE TPMI_RH_ENABLES;

typedef TPMI_RH_HIERARCHY_AUTH
TPM_HANDLE TPMI_RH_HIERARCHY_AUTH;

typedef TPMI_RH_PLATFORM
TPM_HANDLE TPMI_RH_PLATFORM;

COPYRIGHT ©2024 wolfSSL Inc. 100

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.5.75
typedef

5.2.5.76
typedef

5.2.5.77
typedef

5.2.5.78
typedef

5.2.5.79
typedef

5.2.5.80
typedef

5.2.5.81
typedef

5.2.5.82
typedef

5.2.5.83
typedef

5.2.5.84
typedef

5.2.5.85
typedef

5.2.5.86
typedef

5.2.5.87
typedef

5.2.5.88
typedef

COPYRIGHT ©2024 wolfSSL Inc.

typedef TPMI_RH_OWNER
TPM_HANDLE TPMI_RH_OWNER;

typedef TPMI_RH_ENDORSEMENT
TPM_HANDLE TPMI_RH_ENDORSEMENT,

typedef TPMI_RH_PROVISION
TPM_HANDLE TPMI_RH_PROVISION;

typedef TPMI_RH_CLEAR
TPM_HANDLE TPMI_RH_CLEAR;

typedef TPMI_RH_NV_AUTH
TPM_HANDLE TPMI_RH_NV_AUTH;

typedef TPMI_RH_LOCKOUT
TPM_HANDLE TPMI_RH_LOCKOUT;

typedef TPMI_RH_NV_INDEX
TPM_HANDLE TPMI_RH_NV_INDEX;

typedef TPMI_ALG_HASH
TPM_ALG_ID TPMI_ALG_HASH;

typedef TPMI_ALG_ASYM
TPM_ALG_ID TPMI_ALG_ASYM;

typedef TPMI_ALG_SYM
TPM_ALG_ID TPMI_ALG_SYM;

typedef TPMI_ALG_SYM_OBJECT
TPM_ALG_ID TPMI_ALG_SYM_OBJECT;

typedef TPMI_ALG_SYM_MODE
TPM_ALG_ID TPMI_ALG_SYM_MODE;

typedef TPMI_ALG_KDF
TPM_ALG_ID TPMI_ALG_KDF;

typedef TPMI_ALG_SIG_SCHEME
TPM_ALG_ID TPMI_ALG_SIG_SCHEME;

101

5.2 wolftom/tpm2.h 5 API REFERENCE

5.2.5.89 typedef TPMI_ECC_KEY_EXCHANGE
typedef TPM_ALG_ID TPMI_ECC_KEY_EXCHANGE;

5.2.5.90 typedef TPMI_ST_COMMAND_TAG
typedef TPM_ST TPMI_ST_COMMAND_TAG;

5.2.5.91 typedef TPMS_ALGORITHM_DESCRIPTION
typedef struct TPMS_ALGORITHM_DESCRIPTION TPMS_ALGORITHM_DESCRIPTION;

5.2.5.92 typedef TPMU_HA
typedef union TPMU_HA TPMU_HA;

5.2.5.93 typedef TPMT_HA
typedef struct TPMT_HA TPMT_HA;

5.2.5.94 typedef TPM2B_DIGEST
typedef struct TPM2B_DIGEST TPM2B_DIGEST;

5.2.5.95 typedef TPM2B_DATA
typedef struct TPM2B_DATA TPM2B_DATA;

5.2.5.96 typedef TPM2B_NONCE
typedef TPM2B_DIGEST TPM2B_NONCE;

5.2.5.97 typedef TPM2B_AUTH
typedef TPM2B_DIGEST TPM2B_AUTH;

5.2.5.98 typedef TPM2B_OPERAND
typedef TPM2B_DIGEST TPM2B_OPERAND;

5.2.5.99 typedef TPM2B_EVENT
typedef struct TPM2B_EVENT TPM2B_EVENT;

5.2.5.100 typedef TPM2B_MAX_BUFFER
typedef struct TPM2B_MAX_BUFFER TPM2B_MAX_BUFFER;

5.2.5.101 typedef TPM2B_MAX_NV_BUFFER
typedef struct TPM2B_MAX_NV_BUFFER TPM2B_MAX_NV_BUFFER;

5.2.5.102 typedef TPM2B_TIMEOUT
typedef TPM2B_DIGEST TPM2B_TIMEOUT;

COPYRIGHT ©2024 wolfSSL Inc. 102

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.5.103
typedef

5.2.5.104
typedef

5.2.5.105
typedef

5.2.5.106
typedef

5.2.5.107
typedef

5.2.5.108
typedef

5.2.5.109
typedef

5.2.5.110
typedef

5.2.5.111
typedef

5.2.5.112
typedef

5.2.5.113
typedef

5.2.5.114
typedef

5.2.5.115
typedef

5.2.5.116
typedef

typedef TPM2B_IV
struct TPM2B_IV TPM2B_1IV;

typedef TPMU_NAME
union TPMU_NAME TPMU_NAME;

typedef TPM2B_NAME
struct TPM2B_NAME TPM2B_NAME;

typedef TPMS_PCR_SELECT
struct TPMS_PCR_SELECT TPMS_PCR_SELECT;

typedef TPMS_PCR_SELECTION
struct TPMS_PCR_SELECTION TPMS_PCR_SELECTION;,

typedef TPMT_TK_CREATION
struct TPMT_TK_CREATION TPMT_TK_CREATION;

typedef TPMT_TK_VERIFIED
struct TPMT_TK_VERIFIED TPMT_TK_VERIFIED;

typedef TPMT_TK_AUTH
struct TPMT_TK_AUTH TPMT_TK_AUTH;

typedef TPMT_TK_HASHCHECK
struct TPMT_TK_HASHCHECK TPMT_TK_HASHCHECK;

typedef TPMS_ALG_PROPERTY
struct TPMS_ALG_PROPERTY TPMS_ALG_PROPERTY;

typedef TPMS_TAGGED_PROPERTY
struct TPMS_TAGGED_PROPERTY TPMS_TAGGED_PROPERTY;

typedef TPMS_TAGGED_PCR_SELECT
struct TPMS_TAGGED_PCR_SELECT TPMS_TAGGED_PCR_SELECT,;

typedef TPMS_TAGGED_POLICY
struct TPMS_TAGGED_POLICY TPMS_TAGGED_POLICY;

typedef TPML_CC
struct TPML_CC TPML_CC;

COPYRIGHT ©2024 wolfSSL Inc. 103

5.2 wolftom/tpm2.h 5 API REFERENCE

5.2.5.117 typedef TPML_CCA
typedef struct TPML_CCA TPML_CCA;

5.2.5.118 typedef TPML_ALG
typedef struct TPML_ALG TPML_ALG;

5.2.5.119 typedef TPML_HANDLE
typedef struct TPML_HANDLE TPML_HANDLE;

5.2.5.120 typedef TPML_DIGEST
typedef struct TPML_DIGEST TPML_DIGEST;

5.2.5.121 typedef TPML_DIGEST_VALUES
typedef struct TPML_DIGEST_VALUES TPML_DIGEST_VALUES;

5.2.5.122 typedef TPML_PCR_SELECTION
typedef struct TPML_PCR_SELECTION TPML_PCR_SELECTION,;

5.2.5.123 typedef TPML_ALG_PROPERTY
typedef struct TPML_ALG_PROPERTY TPML_ALG_PROPERTY;

5.2.5.124 typedef TPML_TAGGED_TPM_PROPERTY
typedef struct TPML_TAGGED_TPM_PROPERTY TPML_TAGGED_TPM_PROPERTY;

5.2.5.125 typedef TPML_TAGGED_PCR_PROPERTY
typedef struct TPML_TAGGED_PCR_PROPERTY TPML_TAGGED_PCR_PROPERTY;

5.2.5.126 typedef TPML_ECC_CURVE
typedef struct TPML_ECC_CURVE TPML_ECC_CURVE;

5.2.5.127 typedef TPML_TAGGED_POLICY
typedef struct TPML_TAGGED_POLICY TPML_TAGGED_POLICY;

5.2.5.128 typedef TPMA_ACT
typedef UINT32 TPMA_ACT;

5.2.5.129 typedef TPMS_ACT_DATA
typedef struct TPMS_ACT_DATA TPMS_ACT_DATA;

5.2.5.130 typedef TPML_ACT_DATA
typedef struct TPML_ACT_DATA TPML_ACT_DATA;

COPYRIGHT ©2024 wolfSSL Inc. 104

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.5.131
typedef

5.2.5.132
typedef

5.2.5.133
typedef

5.2.5.134
typedef

5.2.5.135
typedef

5.2.5.136
typedef

5.2.5.137
typedef

5.2.5.138
typedef

5.2.5.139
typedef

5.2.5.140
typedef

5.2.5.141
typedef

5.2.5.142
typedef

5.2.5.143
typedef

5.2.5.144
typedef

typedef TPMU_CAPABILITIES
union TPMU_CAPABILITIES TPMU_CAPABILITIES;

typedef TPMS_CAPABILITY_DATA
struct TPMS_CAPABILITY_DATA TPMS_CAPABILITY_DATA;

typedef TPMS_CLOCK_INFO
struct TPMS_CLOCK_INFO TPMS_CLOCK_INFO;

typedef TPMS_TIME_INFO
struct TPMS_TIME_INFO TPMS_TIME_INFO;

typedef TPMS_TIME_ATTEST_INFO
struct TPMS_TIME_ATTEST_INFO TPMS_TIME_ATTEST_INFO;

typedef TPMS_CERTIFY_INFO
struct TPMS_CERTIFY_INFO TPMS_CERTIFY_INFO;

typedef TPMS_QUOTE_INFO
struct TPMS_QUOTE_INFO TPMS_QUOTE_INFO;

typedef TPMS_COMMAND_AUDIT_INFO
struct TPMS_COMMAND_AUDIT_INFO TPMS_COMMAND_AUDIT_INFO,

typedef TPMS_SESSION_AUDIT_INFO
struct TPMS_SESSION_AUDIT_INFO TPMS_SESSION_AUDIT_INFO,

typedef TPMS_CREATION_INFO
struct TPMS_CREATION_INFO TPMS_CREATION_INFO;

typedef TPMS_NV_CERTIFY_INFO
struct TPMS_NV_CERTIFY_INFO TPMS_NV_CERTIFY_INFO;

typedef TPMI_ST_ATTEST
TPM_ST TPMI_ST_ATTEST;

typedef TPMU_ATTEST
union TPMU_ATTEST TPMU_ATTEST;

typedef TPMS_ATTEST
struct TPMS_ATTEST TPMS_ATTEST;

COPYRIGHT ©2024 wolfSSL Inc. 105

5.2 wolftom/tpm2.h 5 API REFERENCE

5.2.5.145 typedef TPM2B_ATTEST
typedef struct TPM2B_ATTEST TPM2B_ATTEST;

5.2.5.146 typedef TPMI_AES_KEY_BITS
typedef TPM_KEY_BITS TPMI_AES_KEY_BITS;

5.2.5.147 typedef TPMU_SYM_KEY_BITS
typedef union TPMU_SYM_KEY_BITS TPMU_SYM_KEY_BITS;

5.2.5.148 typedef TPMU_SYM_MODE
typedef union TPMU_SYM_MODE TPMU_SYM_MODE;

5.2.5.149 typedef TPMT_SYM_DEF
typedef struct TPMT_SYM_DEF TPMT_SYM_DEF;

5.2.5.150 typedef TPMT_SYM_DEF_OBJECT
typedef TPMT_SYM_DEF TPMT_SYM_DEF_OBJECT;

5.2.5.151 typedef TPM2B_SYM_KEY
typedef struct TPM2B_SYM_KEY TPM2B_SYM_KEY;

5.2.5.152 typedef TPMS_SYMCIPHER_PARMS
typedef struct TPMS_SYMCIPHER_PARMS TPMS_SYMCIPHER_PARMS;

5.2.5.153 typedef TPM2B_LABEL
typedef struct TPM2B_LABEL TPM2B_LABEL;

5.2.5.154 typedef TPMS_DERIVE
typedef struct TPMS_DERIVE TPMS_DERIVE;

5.2.5.155 typedef TPM2B_DERIVE
typedef struct TPM2B_DERIVE TPM2B_DERIVE;

5.2.5.156 typedef TPMU_SENSITIVE_CREATE
typedef union TPMU_SENSITIVE_CREATE TPMU_SENSITIVE_CREATE;

5.2.5.157 typedef TPM2B_SENSITIVE_DATA
typedef struct TPM2B_SENSITIVE_DATA TPM2B_SENSITIVE_DATA;

5.2.5.158 typedef TPMS_SENSITIVE_CREATE
typedef struct TPMS_SENSITIVE_CREATE TPMS_SENSITIVE_CREATE;

COPYRIGHT ©2024 wolfSSL Inc. 106

5.2 wolftom/tpm2.h 5 API REFERENCE

5.2.5.159 typedef TPM2B_SENSITIVE_CREATE
typedef struct TPM2B_SENSITIVE_CREATE TPM2B_SENSITIVE_CREATE;

5.2.5.160 typedef TPMS_SCHEME_HASH
typedef struct TPMS_SCHEME_HASH TPMS_SCHEME_HASH;

5.2.5.161 typedef TPMS_SCHEME_ECDAA
typedef struct TPMS_SCHEME_ECDAA TPMS_SCHEME_ECDAA;

5.2.5.162 typedef TPMI_ALG_KEYEDHASH_SCHEME
typedef TPM_ALG_ID TPMI_ALG_KEYEDHASH_SCHEME;

5.2.5.163 typedef TPMS_SCHEME_HMAC
typedef TPMS_SCHEME_HASH TPMS_SCHEME_HMAC;

5.2.5.164 typedef TPMU_SCHEME_KEYEDHASH
typedef union TPMU_SCHEME_KEYEDHASH TPMU_SCHEME_KEYEDHASH;

5.2.5.165 typedef TPMT_KEYEDHASH_SCHEME
typedef struct TPMT_KEYEDHASH_SCHEME TPMT_KEYEDHASH_SCHEME;

5.2.5.166 typedef TPMS_SIG_SCHEME_RSASSA
typedef TPMS_SCHEME_HASH TPMS_SIG_SCHEME_RSASSA;

5.2.5.167 typedef TPMS_SIG_SCHEME_RSAPSS
typedef TPMS_SCHEME_HASH TPMS_SIG_SCHEME_RSAPSS;

5.2.5.168 typedef TPMS_SIG_SCHEME_ECDSA
typedef TPMS_SCHEME_HASH TPMS_SIG_SCHEME_ECDSA;

5.2.5.169 typedef TPMS_SIG_SCHEME_ECDAA
typedef TPMS_SCHEME_ECDAA TPMS_SIG_SCHEME_ECDAA;

5.2.5.170 typedef TPMU_SIG_SCHEME
typedef union TPMU_SIG_SCHEME TPMU_SIG_SCHEME;

5.2.5.171 typedef TPMT_SIG_SCHEME
typedef struct TPMT_SIG_SCHEME TPMT_SIG_SCHEME;

5.2.5.172 typedef TPMS_ENC_SCHEME_OAEP
typedef TPMS_SCHEME_HASH TPMS_ENC_SCHEME_OAEP;

COPYRIGHT ©2024 wolfSSL Inc. 107

5.2 wolftom/tpm2.h 5 API REFERENCE

5.2.5.173 typedef TPMS_KEY_SCHEME_ECDH
typedef TPMS_SCHEME_HASH TPMS_KEY_SCHEME_ECDH;

5.2.5.174 typedef TPMS_KEY_SCHEME_ECMQV
typedef TPMS_SCHEME_HASH TPMS_KEY_SCHEME_ECMQV;

5.2.5.175 typedef TPMS_SCHEME_MGF1
typedef TPMS_SCHEME_HASH TPMS_SCHEME_MGF1;

5.2.5.176 typedef TPMS_SCHEME_KDF1_SP800_56A
typedef TPMS_SCHEME_HASH TPMS_SCHEME_KDF1_SP8@®@_56A;

5.2.5.177 typedef TPMS_SCHEME_KDF2
typedef TPMS_SCHEME_HASH TPMS_SCHEME_KDF2;

5.2.5.178 typedef TPMS_SCHEME_KDF1_SP800_108
typedef TPMS_SCHEME_HASH TPMS_SCHEME_KDF1_SP800_108;

5.2.5.179 typedef TPMU_KDF_SCHEME
typedef union TPMU_KDF_SCHEME TPMU_KDF_SCHEME;

5.2.5.180 typedef TPMT_KDF_SCHEME
typedef struct TPMT_KDF_SCHEME TPMT_KDF_SCHEME;

5.2.5.181 typedef TPMI_ALG_ASYM_SCHEME
typedef TPM_ALG_ID TPMI_ALG_ASYM_SCHEME;

5.2.5.182 typedef TPMU_ASYM_SCHEME
typedef union TPMU_ASYM_SCHEME TPMU_ASYM_SCHEME;

5.2.5.183 typedef TPMT_ASYM_SCHEME
typedef struct TPMT_ASYM_SCHEME TPMT_ASYM_SCHEME;

5.2.5.184 typedef TPMI_ALG_RSA_SCHEME
typedef TPM_ALG_ID TPMI_ALG_RSA_SCHEME;

5.2.5.185 typedef TPMT_RSA_SCHEME
typedef struct TPMT_RSA_SCHEME TPMT_RSA_SCHEME;

5.2.5.186 typedef TPMI_ALG_RSA_DECRYPT
typedef TPM_ALG_ID TPMI_ALG_RSA_DECRYPT,;

COPYRIGHT ©2024 wolfSSL Inc. 108

5.2 wolftom/tpm2.h 5 API REFERENCE

5.2.5.187 typedef TPMT_RSA_DECRYPT
typedef struct TPMT_RSA_DECRYPT TPMT_RSA_DECRYPT;

5.2.5.188 typedef TPM2B_PUBLIC_KEY_RSA
typedef struct TPM2B_PUBLIC_KEY_RSA TPM2B_PUBLIC_KEY_RSA;

5.2.5.189 typedef TPMI_RSA_KEY_BITS
typedef TPM_KEY_BITS TPMI_RSA_KEY_BITS;

5.2.5.190 typedef TPM2B_PRIVATE_KEY_RSA
typedef struct TPM2B_PRIVATE_KEY_RSA TPM2B_PRIVATE_KEY_RSA;

5.2.5.191 typedef TPM2B_ECC_PARAMETER
typedef struct TPM2B_ECC_PARAMETER TPM2B_ECC_PARAMETER;

5.2.5.192 typedef TPMS_ECC_POINT
typedef struct TPMS_ECC_POINT TPMS_ECC_POINT;

5.2.5.193 typedef TPM2B_ECC_POINT
typedef struct TPM2B_ECC_POINT TPM2B_ECC_POINT;

5.2.5.194 typedef TPMI_ALG_ECC_SCHEME
typedef TPM_ALG_ID TPMI_ALG_ECC_SCHEME;

5.2.5.195 typedef TPMI_ECC_CURVE
typedef TPM_ECC_CURVE TPMI_ECC_CURVE;

5.2.5.196 typedef TPMT_ECC_SCHEME
typedef TPMT_SIG_SCHEME TPMT_ECC_SCHEME;

5.2.5.197 typedef TPMS_ALGORITHM_DETAIL_ECC
typedef struct TPMS_ALGORITHM_DETAIL_ECC TPMS_ALGORITHM_DETAIL_ECC;

5.2.5.198 typedef TPMS_SIGNATURE_RSA
typedef struct TPMS_SIGNATURE_RSA TPMS_SIGNATURE_RSA;

5.2.5.199 typedef TPMS_SIGNATURE_RSASSA
typedef TPMS_SIGNATURE_RSA TPMS_SIGNATURE_RSASSA;

5.2.5.200 typedef TPMS_SIGNATURE_RSAPSS
typedef TPMS_SIGNATURE_RSA TPMS_SIGNATURE_RSAPSS;

COPYRIGHT ©2024 wolfSSL Inc. 109

5.2 wolftom/tpm2.h 5 API REFERENCE

5.2.5.201 typedef TPMS_SIGNATURE_ECC
typedef struct TPMS_SIGNATURE_ECC TPMS_SIGNATURE_ECC;

5.2.5.202 typedef TPMS_SIGNATURE_ECDSA
typedef TPMS_SIGNATURE_ECC TPMS_SIGNATURE_ECDSA;

5.2.5.203 typedef TPMS_SIGNATURE_ECDAA
typedef TPMS_SIGNATURE_ECC TPMS_SIGNATURE_ECDAA;

5.2.5.204 typedef TPMU_SIGNATURE
typedef union TPMU_SIGNATURE TPMU_SIGNATURE;

5.2.5.205 typedef TPMT_SIGNATURE
typedef struct TPMT_SIGNATURE TPMT_SIGNATURE;

5.2.5.206 typedef TPMU_ENCRYPTED_SECRET
typedef union TPMU_ENCRYPTED_SECRET TPMU_ENCRYPTED_SECRET;

5.2.5.207 typedef TPM2B_ENCRYPTED_SECRET
typedef struct TPM2B_ENCRYPTED_SECRET TPM2B_ENCRYPTED_SECRET;

5.2.5.208 typedef TPMI_ALG_PUBLIC
typedef TPM_ALG_ID TPMI_ALG_PUBLIC;

5.2.5.209 typedef TPMU_PUBLIC_ID
typedef union TPMU_PUBLIC_ID TPMU_PUBLIC_ID;

5.2.5.210 typedef TPMS_KEYEDHASH_PARMS
typedef struct TPMS_KEYEDHASH_PARMS TPMS_KEYEDHASH_PARMS;

5.2.5.211 typedef TPMS_ASYM_PARMS
typedef struct TPMS_ASYM_PARMS TPMS_ASYM_PARMS ;

5.2.5.212 typedef TPMS_RSA_PARMS
typedef struct TPMS_RSA_PARMS TPMS_RSA_PARMS;

5.2.5.213 typedef TPMS_ECC_PARMS
typedef struct TPMS_ECC_PARMS TPMS_ECC_PARMS;

5.2.5.214 typedef TPMU_PUBLIC_PARMS
typedef union TPMU_PUBLIC_PARMS TPMU_PUBLIC_PARMS;

COPYRIGHT ©2024 wolfSSL Inc. 110

5.2 wolftom/tpm2.h 5 API REFERENCE

5.2.5.215 typedef TPMT_PUBLIC_PARMS
typedef struct TPMT_PUBLIC_PARMS TPMT_PUBLIC_PARMS;

5.2.5.216 typedef TPMT_PUBLIC
typedef struct TPMT_PUBLIC TPMT_PUBLIC;

5.2.5.217 typedef TPM2B_PUBLIC
typedef struct TPM2B_PUBLIC TPM2B_PUBLIC;

5.2.5.218 typedef TPM2B_TEMPLATE
typedef struct TPM2B_TEMPLATE TPM2B_TEMPLATE;

5.2.5.219 typedef TPM2B_PRIVATE_VENDOR_SPECIFIC
typedef struct TPM2B_PRIVATE_VENDOR_SPECIFIC TPM2B_PRIVATE_VENDOR_SPECIFIC;

5.2.5.220 typedef TPMU_SENSITIVE_COMPOSITE
typedef union TPMU_SENSITIVE_COMPOSITE TPMU_SENSITIVE_COMPOSITE;

5.2.5.221 typedef TPMT_SENSITIVE
typedef struct TPMT_SENSITIVE TPMT_SENSITIVE;

5.2.5.222 typedef TPM2B_SENSITIVE
typedef struct TPM2B_SENSITIVE TPM2B_SENSITIVE;

5.2.5.223 typedef TPMT_PRIVATE
typedef struct TPMT_PRIVATE TPMT_PRIVATE;

5.2.5.224 typedef TPM2B_PRIVATE
typedef struct TPM2B_PRIVATE TPM2B_PRIVATE;

5.2.5.225 typedef TPMS_ID_OBJECT
typedef struct TPMS_ID_OBJECT TPMS_ID_OBJECT;

5.2.5.226 typedef TPM2B_ID_OBJECT
typedef struct TPM2B_ID_OBJECT TPM2B_ID_OBJECT;

5.2.5.227 typedef TPM_NV_INDEX
typedef UINT32 TPM_NV_INDEX;

5.2.5.228 typedef TPM_NT
typedef enum TPM_NT TPM_NT;

COPYRIGHT ©2024 wolfSSL Inc. 111

5.2 wolftom/tpm2.h 5 API REFERENCE

5.2.5.229 typedef TPMS_NV_PIN_COUNTER_PARAMETERS
typedef struct TPMS_NV_PIN_COUNTER_PARAMETERS TPMS_NV_PIN_COUNTER_PARAMETERS;

5.2.5.230 typedef TPMA_NV
typedef UINT32 TPMA_NV;

5.2.5.231 typedef TPMS_NV_PUBLIC
typedef struct TPMS_NV_PUBLIC TPMS_NV_PUBLIC;

5.2.5.232 typedef TPM2B_NV_PUBLIC
typedef struct TPM2B_NV_PUBLIC TPM2B_NV_PUBLIC;

5.2.5.233 typedef TPM2B_CONTEXT_SENSITIVE
typedef struct TPM2B_CONTEXT_SENSITIVE TPM2B_CONTEXT_SENSITIVE;

5.2.5.234 typedef TPMS_CONTEXT_DATA
typedef struct TPMS_CONTEXT_DATA TPMS_CONTEXT_DATA;

5.2.5.235 typedef TPM2B_CONTEXT_DATA
typedef struct TPM2B_CONTEXT_DATA TPM2B_CONTEXT_DATA;

5.2.5.236 typedef TPMS_CONTEXT
typedef struct TPMS_CONTEXT TPMS_CONTEXT;

5.2.5.237 typedef TPMS_CREATION_DATA
typedef struct TPMS_CREATION_DATA TPMS_CREATION_DATA;

5.2.5.238 typedef TPM2B_CREATION_DATA
typedef struct TPM2B_CREATION_DATA TPM2B_CREATION_DATA;

5.2.5.239 typedef TPMS_AUTH_COMMAND
typedef struct TPMS_AUTH_COMMAND TPMS_AUTH_COMMAND;

5.2.5.240 typedef TPMS_AUTH_RESPONSE
typedef struct TPMS_AUTH_RESPONSE TPMS_AUTH_RESPONSE;

5.2.5.241 typedef TPM2_AUTH_SESSION
typedef struct TPM2_AUTH_SESSION TPM2_AUTH_SESSION;

5.2.5.242 typedef TPM2HalloCb

typedef int(* TPM2HalIoCb) (struct TPM2_CTX *, const BYTE *txBuf, BYTE *rxBuf,
< UINT16 xferSz, void *userCtx);

COPYRIGHT ©2024 wolfSSL Inc. 112

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.5.243 typedef TPM2_CTX
typedef struct TPM2_CTX TPM2_CTX;

5.2.5.244 typedef ChangePPS_In
typedef ChangeSeed_In ChangePPS_In;

5.2.5.245 typedef ChangeEPS_In
typedef ChangeSeed_In ChangeEPS_In;

5.2.5.246 typedef TPM_MODE_SET
typedef struct TPM_MODE_SET TPM_MODE_SET;

5.2.5.247 typedef GetRandom2_In
typedef GetRandom_In GetRandom2_In;

5.2.5.248 typedef TPMI_GPIO_NAME
typedef UINT32 TPMI_GPIO_NAME;

5.2.5.249 typedef TPMI_GPIO_MODE
typedef UINT32 TPMI_GPIO_MODE;

5.2.5.250 typedef TPMS_GPIO_CONFIG
typedef struct TPMS_GPIO_CONFIG TPMS_GPIO_CONFIG;

5.2.5.251 typedef TPML_GPIO_CONFIG
typedef struct TPML_GPIO_CONFIG TPML_GPIO_CONFIG;

5.2.6 Functions Documentation

5.2.6.1 function TPM2_Startup

WOLFTPM_API TPM_RC TPM2_Startup(
Startup_In * in

)

5.2.6.2 function TPM2_Shutdown

WOLFTPM_API TPM_RC TPM2_Shutdown (
Shutdown_In * in

)

5.2.6.3 function TPM2_GetCapability

WOLFTPM_API TPM_RC TPM2_GetCapability(
GetCapability_In * in,
GetCapability_Out * out

COPYRIGHT ©2024 wolfSSL Inc. 113

5.2 wolftom/tpm2.h 5 API REFERENCE

5.2.6.4 function TPM2_SelfTest

WOLFTPM_API TPM_RC TPM2_SelfTest(
SelfTest_In * in

)

5.2.6.5 function TPM2_IncrementalSelfTest

WOLFTPM_API TPM_RC TPM2_IncrementalSelfTest(
IncrementalSelfTest_In * in,
IncrementalSelfTest_Out * out

5.2.6.6 function TPM2_GetTestResult

WOLFTPM_API TPM_RC TPM2_GetTestResult(
GetTestResult_Out * out

)

5.2.6.7 function TPM2_GetRandom

WOLFTPM_API TPM_RC TPM2_GetRandom(
GetRandom_In * in,
GetRandom_Out * out

5.2.6.8 function TPM2_StirRandom

WOLFTPM_API TPM_RC TPM2_StirRandom(
StirRandom_In * in

)

5.2.6.9 function TPM2_PCR_Read

WOLFTPM_API TPM_RC TPM2_PCR_Read(
PCR_Read_In * in,
PCR_Read_Out * out

5.2.6.10 function TPM2_PCR_Extend

WOLFTPM_API TPM_RC TPM2_PCR_Extend(
PCR_Extend_In * in
)

5.2.6.11 function TPM2_Create

WOLFTPM_API TPM_RC TPM2_Create(
Create_In * in,
Create_Out * out

COPYRIGHT ©2024 wolfSSL Inc. 114

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.12 function TPM2_CreateLoaded

WOLFTPM_API TPM_RC TPM2_Createloaded(
CreatelLoaded_In * in,
CreatelLoaded_Out * out

5.2.6.13 function TPM2_CreatePrimary

WOLFTPM_API TPM_RC TPM2_CreatePrimary(
CreatePrimary_In * in,
CreatePrimary_Out * out

5.2.6.14 function TPM2_Load

WOLFTPM_API TPM_RC TPM2_Load(
Load_In * in,
Load_Out * out

5.2.6.15 function TPM2_FlushContext

WOLFTPM_API TPM_RC TPM2_FlushContext(
FlushContext_In * in

)

5.2.6.16 function TPM2_Unseal

WOLFTPM_API TPM_RC TPM2_Unseal(
Unseal_In * in,
Unseal_Out * out

5.2.6.17 function TPM2_StartAuthSession

WOLFTPM_API TPM_RC TPM2_StartAuthSession(
StartAuthSession_In * in,
StartAuthSession_Out * out

5.2.6.18 function TPM2_PolicyRestart

WOLFTPM_API TPM_RC TPM2_PolicyRestart(
PolicyRestart_In * in

)

5.2.6.19 function TPM2_LoadExternal

WOLFTPM_API TPM_RC TPM2_LoadExternal(
LoadExternal_In * in,
LoadExternal_Out * out

COPYRIGHT ©2024 wolfSSL Inc. 115

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.20 function TPM2_ReadPublic

WOLFTPM_API TPM_RC TPM2_ReadPublic(
ReadPublic_In * in,
ReadPublic_Out * out

5.2.6.21 function TPM2_ActivateCredential

WOLFTPM_API TPM_RC TPM2_ActivateCredential(
ActivateCredential_In * in,
ActivateCredential_Out * out

5.2.6.22 function TPM2_MakeCredential

WOLFTPM_API TPM_RC TPM2_MakeCredential(
MakeCredential_In * in,
MakeCredential_Out * out

5.2.6.23 function TPM2_ObjectChangeAuth

WOLFTPM_API TPM_RC TPM2_ObjectChangeAuth(
ObjectChangeAuth_In * in,
ObjectChangeAuth_Out * out

5.2.6.24 function TPM2_Duplicate

WOLFTPM_API TPM_RC TPM2_Duplicate(
Duplicate_In * in,
Duplicate_Out * out

5.2.6.25 function TPM2_Rewrap

WOLFTPM_API TPM_RC TPM2_Rewrap (
Rewrap_In * in,
Rewrap_Out * out

5.2.6.26 function TPM2_Import

WOLFTPM_API TPM_RC TPM2_Import (
Import_In * in,
Import_Out * out

5.2.6.27 function TPM2_RSA_Encrypt

WOLFTPM_API TPM_RC TPM2_RSA_Encrypt(
RSA_Encrypt_In * in,
RSA_Encrypt_Out * out

COPYRIGHT ©2024 wolfSSL Inc. 116

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.28 function TPM2_RSA_Decrypt

WOLFTPM_API TPM_RC TPM2_RSA_Decrypt(
RSA_Decrypt_In * in,
RSA_Decrypt_Out * out

5.2.6.29 function TPM2_ECDH_KeyGen

WOLFTPM_API TPM_RC TPM2_ECDH_KeyGen(
ECDH_KeyGen_In * in,
ECDH_KeyGen_Out * out

5.2.6.30 function TPM2_ECDH_ZGen

WOLFTPM_API TPM_RC TPM2_ECDH_ZGen(
ECDH_ZGen_In * in,
ECDH_ZGen_Out * out

5.2.6.31 function TPM2_ECC_Parameters

WOLFTPM_API TPM_RC TPM2_ECC_Parameters(
ECC_Parameters_In * in,
ECC_Parameters_Out * out

5.2.6.32 function TPM2_ZGen_2Phase

WOLFTPM_API TPM_RC TPM2_ZGen_2Phase(
ZGen_2Phase_In * in,
ZGen_2Phase_Out * out

5.2.6.33 function TPM2_EncryptDecrypt

WOLFTPM_API TPM_RC TPM2_EncryptDecrypt(
EncryptDecrypt_In * in,
EncryptDecrypt_Out * out

5.2.6.34 function TPM2_EncryptDecrypt2

WOLFTPM_API TPM_RC TPM2_EncryptDecrypt2(
EncryptDecrypt2_In * in,
EncryptDecrypt2_Out * out

5.2.6.35 function TPM2_Hash

WOLFTPM_API TPM_RC TPM2_Hash(
Hash_In * in,
Hash_Out * out

COPYRIGHT ©2024 wolfSSL Inc. 117

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.36 function TPM2_HMAC

WOLFTPM_API TPM_RC TPM2_HMAC(
HMAC_In * in,
HMAC_Out * out

5.2.6.37 function TPM2_HMAC_Start

WOLFTPM_API TPM_RC TPM2_HMAC_Start(
HMAC_Start_In * in,
HMAC_Start_Out * out

5.2.6.38 function TPM2_HashSequenceStart

WOLFTPM_API TPM_RC TPM2_HashSequenceStart(
HashSequenceStart_In * in,
HashSequenceStart_Out * out

5.2.6.39 function TPM2_SequenceUpdate

WOLFTPM_API TPM_RC TPM2_SequenceUpdate(
SequenceUpdate_In * in

)

5.2.6.40 function TPM2_SequenceComplete

WOLFTPM_API TPM_RC TPM2_SequenceComplete(
SequenceComplete_In * in,
SequenceComplete_Out * out

5.2.6.41 function TPM2_EventSequenceComplete

WOLFTPM_API TPM_RC TPM2_EventSequenceComplete(
EventSequenceComplete_In * in,
EventSequenceComplete_Out * out

5.2.6.42 function TPM2_Certify

WOLFTPM_API TPM_RC TPM2_Certify(
Certify_In * in,
Certify_Out * out

5.2.6.43 function TPM2_CertifyCreation

WOLFTPM_API TPM_RC TPM2_CertifyCreation(
CertifyCreation_In * in,
CertifyCreation_Out * out

COPYRIGHT ©2024 wolfSSL Inc. 118

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.44 function TPM2_Quote

WOLFTPM_API TPM_RC TPM2_Quote(
Quote_In * in,
Quote_Out * out

5.2.6.45 function TPM2_GetSessionAuditDigest

WOLFTPM_API TPM_RC TPM2_GetSessionAuditDigest(
GetSessionAuditDigest_In * in,
GetSessionAuditDigest_Out * out

5.2.6.46 function TPM2_GetCommandAuditDigest

WOLFTPM_API TPM_RC TPM2_GetCommandAuditDigest(
GetCommandAuditDigest_In * in,
GetCommandAuditDigest_Out * out

5.2.6.47 function TPM2_GetTime

WOLFTPM_API TPM_RC TPM2_GetTime(
GetTime_In * in,
GetTime_Out * out

5.2.6.48 function TPM2_Commit

WOLFTPM_API TPM_RC TPM2_Commit (
Commit_In * in,
Commit_Out * out

5.2.6.49 function TPM2_EC_Ephemeral

WOLFTPM_API TPM_RC TPM2_EC_Ephemeral(
EC_Ephemeral_In * in,
EC_Ephemeral_Out * out

5.2.6.50 function TPM2_VerifySignature

WOLFTPM_API TPM_RC TPM2_VerifySignature(
VerifySignature_In * in,
VerifySignature_Out * out

5.2.6.51 function TPM2_Sign

WOLFTPM_API TPM_RC TPM2_Sign(
Sign_In * in,
Sign_Out * out

COPYRIGHT ©2024 wolfSSL Inc. 119

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.52 function TPM2_SetCommandCodeAuditStatus

WOLFTPM_API TPM_RC TPM2_SetCommandCodeAuditStatus(
SetCommandCodeAuditStatus_In * in

)

5.2.6.53 function TPM2_PCR_Event

WOLFTPM_API TPM_RC TPM2_PCR_Event(
PCR_Event_In * 1in,
PCR_Event_Out * out

5.2.6.54 function TPM2_PCR_Allocate

WOLFTPM_API TPM_RC TPM2_PCR_Allocate(
PCR_Allocate_In * in,
PCR_Allocate_Out * out

5.2.6.55 function TPM2_PCR_SetAuthPolicy

WOLFTPM_API TPM_RC TPM2_PCR_SetAuthPolicy(
PCR_SetAuthPolicy_In * in
)

5.2.6.56 function TPM2_PCR_SetAuthValue

WOLFTPM_API TPM_RC TPM2_PCR_SetAuthValue(
PCR_SetAuthValue_In * in

)

5.2.6.57 function TPM2_PCR_Reset

WOLFTPM_API TPM_RC TPM2_PCR_Reset(
PCR_Reset_In * in
)

5.2.6.58 function TPM2_PolicySigned

WOLFTPM_API TPM_RC TPM2_PolicySigned(
PolicySigned_In * in,
PolicySigned_Out * out

5.2.6.59 function TPM2_PolicySecret

WOLFTPM_API TPM_RC TPM2_PolicySecret(
PolicySecret_In * in,
PolicySecret_Out * out

COPYRIGHT ©2024 wolfSSL Inc. 120

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.60 function TPM2_PolicyTicket

WOLFTPM_API TPM_RC TPM2_PolicyTicket(
PolicyTicket_In * in

)

5.2.6.61 function TPM2_PolicyOR

WOLFTPM_API TPM_RC TPM2_PolicyOR(
PolicyOR_In * in
)

5.2.6.62 function TPM2_PolicyPCR

WOLFTPM_API TPM_RC TPM2_PolicyPCR(
PolicyPCR_In * in
)

5.2.6.63 function TPM2_PolicyLocality

WOLFTPM_API TPM_RC TPM2_PolicylLocality(
PolicyLocality_In * in

)

5.2.6.64 function TPM2_PolicyNV

WOLFTPM_API TPM_RC TPM2_PolicyNV(
PolicyNV_In * in
)

5.2.6.65 function TPM2_PolicyCounterTimer

WOLFTPM_API TPM_RC TPM2_PolicyCounterTimex (
PolicyCounterTimer_In * in

)

5.2.6.66 function TPM2_PolicyCommandCode

WOLFTPM_API TPM_RC TPM2_PolicyCommandCode (
PolicyCommandCode_In * in

)

5.2.6.67 function TPM2_PolicyPhysicalPresence

WOLFTPM_API TPM_RC TPM2_PolicyPhysicalPresence(
PolicyPhysicalPresence_In * in

)

5.2.6.68 function TPM2_PolicyCpHash

WOLFTPM_API TPM_RC TPM2_PolicyCpHash(
PolicyCpHash_In * in
)

COPYRIGHT ©2024 wolfSSL Inc. 121

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.69 function TPM2_PolicyNameHash

WOLFTPM_API TPM_RC TPM2_PolicyNameHash (
PolicyNameHash_In * in

)

5.2.6.70 function TPM2_PolicyDuplicationSelect

WOLFTPM_API TPM_RC TPM2_PolicyDuplicationSelect(
PolicyDuplicationSelect_In * in

)

5.2.6.71 function TPM2_PolicyAuthorize

WOLFTPM_API TPM_RC TPM2_PolicyAuthorize(
PolicyAuthorize_In * in

)

5.2.6.72 function TPM2_PolicyAuthValue

WOLFTPM_API TPM_RC TPM2_PolicyAuthValue(
PolicyAuthValue_In * in

)

5.2.6.73 function TPM2_PolicyPassword

WOLFTPM_API TPM_RC TPM2_PolicyPasswoxd (
PolicyPassword_In * in

)

5.2.6.74 function TPM2_PolicyGetDigest

WOLFTPM_API TPM_RC TPM2_PolicyGetDigest(
PolicyGetDigest_In * in,
PolicyGetDigest_Out * out

5.2.6.75 function TPM2_PolicyNvWritten

WOLFTPM_API TPM_RC TPM2_PolicyNvWritten(
PolicyNvWritten_In * in

)

5.2.6.76 function TPM2_PolicyTemplate

WOLFTPM_API TPM_RC TPM2_PolicyTemplate(
PolicyTemplate_In * in

)

5.2.6.77 function TPM2_PolicyAuthorizeNV

WOLFTPM_API TPM_RC TPM2_PolicyAuthorizeNV(
PolicyAuthorizeNV_In * in

)

COPYRIGHT ©2024 wolfSSL Inc. 122

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.78 function TPM_Hash_Start

WOLFTPM_API void _TPM_Hash_Start(
void

)

5.2.6.79 function TPM Hash Data

WOLFTPM_API void _TPM_Hash_Data(
UINT32 dataSize,
BYTE * data

5.2.6.80 function TPM_Hash_End

WOLFTPM_API void _TPM_Hash_End(
void

)

5.2.6.81 function TPM2_HierarchyControl

WOLFTPM_API TPM_RC TPM2_HierarchyControl(
HierarchyControl_In * in

)

5.2.6.82 function TPM2_SetPrimaryPolicy

WOLFTPM_API TPM_RC TPM2_SetPrimaryPolicy(
SetPrimaryPolicy_In * in

)

5.2.6.83 function TPM2_ChangePPS

WOLFTPM_API TPM_RC TPM2_ChangePPS(
ChangePPS_In * in
)

5.2.6.84 function TPM2_ChangeEPS

WOLFTPM_API TPM_RC TPM2_ChangeEPS(
ChangeEPS_In * in
)

5.2.6.85 function TPM2_Clear

WOLFTPM_API TPM_RC TPM2_Clear(
Clear_In * in

)

5.2.6.86 function TPM2_ClearControl

WOLFTPM_API TPM_RC TPM2_ClearControl(
ClearControl_In * in

)

COPYRIGHT ©2024 wolfSSL Inc. 123

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.87 function TPM2_HierarchyChangeAuth

WOLFTPM_API TPM_RC TPM2_HierarchyChangeAuth(
HierarchyChangeAuth_In * in

)

5.2.6.88 function TPM2_DictionaryAttackLockReset

WOLFTPM_API TPM_RC TPM2_DictionaryAttackLockReset (
DictionaryAttackLockReset_In * in

)

5.2.6.89 function TPM2_DictionaryAttackParameters

WOLFTPM_API TPM_RC TPM2_DictionaryAttackParameters(
DictionaryAttackParameters_In * in

)

5.2.6.90 function TPM2_PP_Commands

WOLFTPM_API TPM_RC TPM2_PP_Commands (
PP_Commands_In * in

)

5.2.6.91 function TPM2_SetAlgorithmSet

WOLFTPM_API TPM_RC TPM2_SetAlgorithmSet(
SetAlgorithmSet_In * in
)

5.2.6.92 function TPM2_FieldUpgradeStart

WOLFTPM_API TPM_RC TPM2_FieldUpgradeStart(
FieldUpgradeStart_In * in
)

5.2.6.93 function TPM2_FieldUpgradeData

WOLFTPM_API TPM_RC TPM2_FieldUpgradeData(
FieldUpgradeData_In * in,
FieldUpgradeData_Out * out

5.2.6.94 function TPM2_FirmwareRead

WOLFTPM_API TPM_RC TPM2_FirmwareRead(
FirmwareRead_In * in,
FirmwareRead_Out * out

COPYRIGHT ©2024 wolfSSL Inc. 124

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.95 function TPM2_ContextSave

WOLFTPM_API TPM_RC TPM2_ContextSave(
ContextSave_In * in,
ContextSave_Out * out

5.2.6.96 function TPM2_ContextLoad

WOLFTPM_API TPM_RC TPM2_ContextLoad(
ContextLoad_In * in,
ContextLoad_Out * out

5.2.6.97 function TPM2_EvictControl

WOLFTPM_API TPM_RC TPM2_EvictControl(
EvictControl_In * in

)

5.2.6.98 function TPM2_ReadClock

WOLFTPM_API TPM_RC TPM2_ReadClock(
ReadClock_Out * out

)

5.2.6.99 function TPM2_ClockSet

WOLFTPM_API TPM_RC TPM2_ClockSet(
ClockSet_In * in

)

5.2.6.100 function TPM2_ClockRateAdjust

WOLFTPM_API TPM_RC TPM2_ClockRateAdjust(
ClockRateAdjust_In * in

)

5.2.6.101 function TPM2_TestParms

WOLFTPM_API TPM_RC TPM2_TestParms(
TestParms_In * in

)

5.2.6.102 function TPM2_NV_DefineSpace

WOLFTPM_API TPM_RC TPM2_NV_DefineSpace(
NV_DefineSpace_In * in

)

5.2.6.103 function TPM2_NV_UndefineSpace

WOLFTPM_API TPM_RC TPM2_NV_UndefineSpace(
NV_UndefineSpace_In * in

)

COPYRIGHT ©2024 wolfSSL Inc. 125

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.104 function TPM2_NV_UndefineSpaceSpecial

WOLFTPM_API TPM_RC TPM2_NV_UndefineSpaceSpecial(
NV_UndefineSpaceSpecial_In * in

)

5.2.6.105 function TPM2_NV_ReadPublic

WOLFTPM_API TPM_RC TPM2_NV_ReadPublic(
NV_ReadPublic_In * in,
NV_ReadPublic_Out * out

5.2.6.106 function TPM2_NV_Write

WOLFTPM_API TPM_RC TPM2_NV_Write(
NV_Write_In * in

)

5.2.6.107 function TPM2_NV_Increment

WOLFTPM_API TPM_RC TPM2_NV_Increment (
NV_Increment_In * in

)

5.2.6.108 function TPM2_NV_Extend

WOLFTPM_API TPM_RC TPM2_NV_Extend(
NV_Extend_In * in
)

5.2.6.109 function TPM2_NV_SetBits

WOLFTPM_API TPM_RC TPM2_NV_SetBits(
NV_SetBits_In * in
)

5.2.6.110 function TPM2_NV_WriteLock

WOLFTPM_API TPM_RC TPM2_NV_WritelLock(
NV_WriteLock_In * in

)

5.2.6.111 function TPM2_NV_GlobalWriteLock

WOLFTPM_API TPM_RC TPM2_NV_GlobalWritelLock(
NV_GlobalWriteLock_In * in

)

5.2.6.112 function TPM2_NV_Read

WOLFTPM_API TPM_RC TPM2_NV_Read(
NV_Read_In * in,
NV_Read_Out * out

COPYRIGHT ©2024 wolfSSL Inc. 126

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.113 function TPM2_NV_ReadLock

WOLFTPM_API TPM_RC TPM2_NV_ReadLock(
NV_ReadLock_In * in
)

5.2.6.114 function TPM2_NV_ChangeAuth

WOLFTPM_API TPM_RC TPM2_NV_ChangeAuth(
NV_ChangeAuth_In * in

)

5.2.6.115 function TPM2_NV_Certify

WOLFTPM_API TPM_RC TPM2_NV_Certify(
NV_Certify_In * in,
NV_Certify_Out * out

5.2.6.116 function TPM2_SetCommandSet

WOLFTPM_API int TPM2_SetCommandSet(
SetCommandSet_In * in

)

5.2.6.117 function TPM2_SetMode

WOLFTPM_API int TPM2_SetMode(
SetMode_In * in

)

5.2.6.118 function TPM2_GetRandom2

WOLFTPM_API TPM_RC TPM2_GetRandom2(
GetRandom2_In * in,
GetRandom2_Out * out

5.2.6.119 function TPM2_GetProductInfo

WOLFTPM_API TPM_RC TPM2_GetProductInfo(
uint8_t * info,
uintl6_t size

5.2.6.120 function TPM2_IFX_FieldUpgradeStart

WOLFTPM_API int TPM2_IFX_FieldUpgradeStart(
TPM_HANDLE sessionHandle,
uint8_t * data,
uint32_t size

COPYRIGHT ©2024 wolfSSL Inc. 127

5.2 wolftom/tpm2.h 5 API REFERENCE

5.2.6.121 function TPM2_IFX_FieldUpgradeCommand

WOLFTPM_API int TPM2_IFX_FieldUpgradeCommand(
TPM_CC cc,
uint8_t * data,
uint32_t size

5.2.6.122 function TPM2_GPIO_Config

WOLFTPM_API int TPM2_GPIO_Config(
GpioConfig_In * in

)

5.2.6.123 function TPM2_NTC2_PreConfig

WOLFTPM_API int TPM2_NTC2_PreConfig(
NTC2_PreConfig_In * in
)

5.2.6.124 function TPM2_NTC2_GetConfig

WOLFTPM_API int TPM2_NTC2_GetConfig(
NTC2_GetConfig_Out * out

)

5.2.6.125 function TPM2_Init

WOLFTPM_API TPM_RC TPM2_Init(
TPM2_CTX * ctx,
TPM2HalIoCb ioCb,
void * userCtx

)

Initializes a TPM with HAL IO callback and user supplied context. When using wolfTPM with -enable-
devtpm or —-enable-swtpm configuration, the ioCb and userCtx are not used.

Parameters:

+ ctx pointer to a TPM2_CTX struct
+ ioCb pointer to TPM2HalloCb (HAL IO) callback function
+ userCtx pointer to the user’s context that will be stored as a member of the ctx struct

+ TPM2_Startup

* TPM2_GetRCString
* TPM2_Init_minimal
* TPM2_Init_ex

* WolfTPM2_Init

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: general error (possibly IO)
* BAD_FUNC_ARG check arguments provided

COPYRIGHT ©2024 wolfSSL Inc. 128

5.2 wolftom/tpm2.h 5 API REFERENCE

Note: TPM2_Init_minimal() with both ioCb and userCtx set to NULL. In other modes, the ioCb shall be
setin order to use TIS. Example ioCB for baremetal and RTOS applications are provided in hal/tpm_io.c

Example
int rc;
TPM2_CTX tpm2Ctx;

rc = TPM2_Init(&tpm2Ctx, TPM2_IoCb, userCtx);
if (xrc !'= TPM_RC_SUCCESS) {

}

5.2.6.126 function TPM2_Init_ex

WOLFTPM_API TPM_RC TPM2_Init_ex(
TPM2_CTX * ctx,
TPM2HalIoCb ioCb,
void * user(Ctx,
int timeoutTries

)
Initializes a TPM with timeoutTries, HAL IO callback and user supplied context.
Parameters:

+ ctx pointer to a TPM2_CTX struct

+ ioCb pointer to TPM2HalloCb (HAL IO) callback function

+ userCtx pointer to the user’s context that will be stored as a member of the ctx struct

+ timeoutTries specifies the number of attempts to confirm that TPM2 startup has completed

See:

* TPM2_GetRCString
* TPM2_Init_minimal
« TPM2_Init

* wolfTPM2_Init_ex

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: general error (possibly IO)
* BAD_FUNC_ARG check arguments provided

Note: It is recommended to use TPM2_Init instead of using TPM2_Init_ex directly.

5.2.6.127 function TPM2_Init_minimal

WOLFTPM_API TPM_RC TPM2_Init_minimal(
TPM2_CTX * ctx

)

Initializes a TPM and sets the wolfTPM2 context that will be used. This function is typically used for
rich operating systems, like Windows.

Parameters:

+ ctx pointer to a TPM2_CTX struct
See:

* TPM2_GetRCString

COPYRIGHT ©2024 wolfSSL Inc. 129

5.2 wolftom/tpm2.h 5 API REFERENCE

* TPM2_Init
Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: general error (possibly IO)
* BAD_FUNC_ARG check arguments provided

Note: It is recommended to use TPM2_Init instead of using TPM2_Init_minimal directly.

5.2.6.128 function TPM2_Cleanup

WOLFTPM_API TPM_RC TPM2_Cleanup(
TPM2_CTX * ctx

)
Deinitializes a TPM and wolfcrypt (if it was initialized)
Parameters:
+ ctx pointer to a TPM2_CTX struct
See:

* TPM2_GetRCString
* TPM2_Init
* wolfTPM2_Cleanup

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: could not acquire the lock on the wolfTPM2 context
* BAD_FUNC_ARG: the TPM2 device structure is a NULL pointer

Example
int rc;
TPM2_CTX tpm2Ctx;

rc = TPM2_Cleanup (&tpm2Ctx->dev);
if (xc != TPM_RC_SUCCESS) {

}

5.2.6.129 function TPM2_ChipStartup

WOLFTPM_API TPM_RC TPM2_ChipStartup(
TPM2_CTX * ctx,
int timeoutTries

)
Makes sure the TPM2 startup has completed and extracts the TPM device information.
Parameters:

* ctx pointer to a TPM2_CTX struct
+ timeoutTries specifies the number of attempts to check if TPM2 startup has completed

See:

* TPM2_GetRCString
« TPM2_TIS_StartupWait
« TPM2_TIS_RequestLocality

COPYRIGHT ©2024 wolfSSL Inc. 130

5.2 wolftom/tpm2.h 5 API REFERENCE

* TPM2_TIS_GetInfo
*« TPM2_Init_ex

Return:

« TPM_RC_SUCCESS: successful

« TPM_RC_FAILURE: general error (possibly IO)

* BAD_FUNC_ARG: check the provided arguments
« TPM_RC_TIMEOUT: timeout occurred

Note: This function is used in TPM2_Init_ex

5.2.6.130 function TPM2_SetHalloCb

WOLFTPM_API TPM_RC TPM2_SetHalIoCb(
TPM2_CTX * ctx,
TPM2HalIoCb ioCb,
void * userCtx

)
Sets the user's context and IO callbacks needed for TPM communication.
Parameters:

+ ctx pointer to a TPM2_CTX struct
+ ioCb pointer to TPM2HalloCb (HAL IO) callback function
+ userCtx pointer to the user’s context that will be stored as a member of the ctx struct

See:

* TPM2_GetRCString
* TPM2_Init
* wolfTPM2_Init

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: could not acquire the lock on the wolfTPM2 context
* BAD_FUNC_ARG: the TPM2 device structure is a NULL pointer

Note: SetHalloCb will fail if built with devtpm or swtpm as the callback is not used for TPM. For other
configuration builds, ioCb must be set to a non-NULL function pointer and userCtx is optional.

Typically, TPM2_Init or wolfTPM2_Init are used to set the HAL IO.

5.2.6.131 function TPM2_SetSessionAuth

WOLFTPM_API TPM_RC TPM2_SetSessionAuth(
TPM2_AUTH_SESSION * session
)

Sets the structure holding the TPM Authorizations.
Parameters:

* session pointer to an array of type TPM2_AUTH_SESSION
See:

* TPM2_GetRCString
* TPM2_Init
* wolfTPM2_Init

COPYRIGHT ©2024 wolfSSL Inc. 131

5.2 wolftom/tpm2.h 5 API REFERENCE

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: could not acquire the lock on the wolfTPM2 context
* BAD_FUNC_ARG: the TPM2 context structure is a NULL pointer

Rarely used, because TPM2_Init functions and wolfTPM2_Init perform this initialization as well TPM 2.0
Commands can have up to three authorization slots, therefore it is recommended to supply an array
of size MAX_SESSION_NUM to TPM2_SetSessionAuth(see example below).

Example
int rc;
TPM2_AUTH_SESSION session[MAX_SESSION_NUM];

XMEMSET (session, @, sizeof(session));
session[0] .sessionHandle = TPM_RS_PW;

rc = TPM2_SetSessionAuth(session);
if (xc !'= TPM_RC_SUCCESS) {

}

5.2.6.132 function TPM2_GetSessionAuthCount

WOLFTPM_API int TPM2_GetSessionAuthCount(
TPM2_CTX * ctx

)
Determine the number of currently set TPM Authorizations.
Parameters:
+ ctx pointer to a TPM2_CTX struct
See:

« TPM2_CTX
« TPM2_AUTH_SESSION

Return:

* the number of active TPM Authorizations (between one and three)
* BAD_FUNC_ARG: check the arguments provided for a NULL pointer

Example
int authCount;
TPM2_CTX tpm2Ctx;

authCount = TPM2_GetSessionAuthCount (tpm2ctx);
if (authCount == BAD_FUNC_ARG) {

}

5.2.6.133 function TPM2_SetActiveCtx

WOLFTPM_API void TPM2_SetActiveCtx(
TPM2_CTX * ctx

)

COPYRIGHT ©2024 wolfSSL Inc. 132

5.2 wolftom/tpm2.h

5 APIREFERENCE

Sets a new TPM2 context for use.
Parameters:

+ ctx pointer to a TPM2_CTX struct
See:

¢ TPM2_CTX
+ TPM2_AUTH_SESSION

Example
TPM2_CTX tpm2Ctx;

TPM2_SetActiveCtx(tpm2ctx);

5.2.6.134 function TPM2_GetActiveCtx

WOLFTPM_API TPM2_CTX * TPM2_GetActiveCtx(
void

)

Provides a pointer to the TPM2 context in use.

See:

+ TPM2_CTX
* TPM2_AUTH_SESSION

Return: ctx pointer to a TPM2_CTX struct
Example
TPM2_CTX *tpm2Ctx;

tpm2Ctx = TPM2_GetActiveCtx();

5.2.6.135 function TPM2_GetHashDigestSize

WOLFTPM_API int TPM2_GetHashDigestSize(
TPMI_ALG_HASH hashAlg

)
Determine the size in bytes of a TPM 2.0 hash digest.
Parameters:
* hashAlg a valid TPM 2.0 hash type
Return:

* the size of a TPM 2.0 hash digest as number of bytes
* 0if hash type is invalid

Example

int digestSize = 0;
TPMI_ALG_HASH hashAlg = TPM_ALG_SHA256;

digestSize = TPM2_GetHashDigestSize(hashAlg);
if (digestSize > 0) {

}

COPYRIGHT ©2024 wolfSSL Inc. 133

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.136 function TPM2_GetHashType

WOLFTPM_API int TPM2_GetHashType(
TPMI_ALG_HASH hashAlg
)

Translate a TPM2 hash type to its corresponding wolfcrypt hash type.
Parameters:

* hashAlg a valid TPM 2.0 hash type
Return:

+ avalue specifying a hash type to use with wolfcrypt
* 0if hash type is invalid

Example
int wc_hashType;
TPMI_ALG_HASH hashAlg = TPM_ALG_SHA256;

wc_hashType = TPM2_GetHashDigestSize(hashAlg);
if (wc_hashType > 0) {

}

5.2.6.137 function TPM2_GetTpmHashType

WOLFTPM_API TPMI_ALG_HASH TPM2_GetTpmHashType(
int hashType
)

Translate a wolfCrypt hash type to TPM2 hash type.
Parameters:

* hashType a wolfCrypt hash type
Return:

* a TPM2 hash type (TPM_ALG_¥*)
* TPM_ALG_ERROR when wolfCrypt hash type is invalid or not found

Example
int wc_hashType = WC_HASH_TYPE_SHA256;
TPMI_ALG_HASH hashAlg;

hashAlg = TPM2_GetHashDigestSize(wc_hashType);
if (hashAlg != TPM_ALG_ERROR) {

}

5.2.6.138 function TPM2_GetNonce

WOLFTPM_API int TPM2_GetNonce(
byte * nonceBuf,
int nonceSz

COPYRIGHT ©2024 wolfSSL Inc. 134

5.2 wolftom/tpm2.h 5 API REFERENCE

Generate a fresh nonce of random numbers.
Parameters:

* nonceBuf pointer to a BYTE buffer
* nonceSz size of the nonce in bytes

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (TPM IO issue or wolfcrypt configuration)
* BAD_FUNC_ARG: check the provided arguments

Note: Can use the TPM random number generator if WOLFTPM2_USE_HW_RNG is defined. To force
use of the TPM’'s RNG use WOLFTPM2_USE_HW_RNG. Please make sure you have parameter encryption
enabled to protect the RNG data over the bus.

Example
int rc, nonceSize = 32;
BYTE freshNonce[32];

rc = TPM2_GetNonce(&freshNonce, nonceSize);
if (xrc !'= TPM_RC_SUCCESS) {

}

5.2.6.139 function TPM2_GetNonceNoLock

WOLFTPM_LOCAL int TPM2_GetNonceNoLock (
byte * nonceBuf,
int nonceSz

5.2.6.140 function TPM2_SetupPCRSel

WOLFTPM_API void TPM2_SetupPCRSel(
TPML_PCR_SELECTION * pcr,
TPM_ALG_ID alg,
int pcrIndex

)

Helper function to prepare a correct PCR selection For example, when preparing to create a
TPM2_Quote.

Parameters:

* pcr pointer to a structure of type TPML_PCR_SELECTION. Note: Caller must zeroize/memset(0)
+ alg value of type TPM_ALG_ID specifying the type of hash algorithm used
+ pcrIndex value between 0 and 23 specifying the PCR register for use

See:

« TPM2_PCR_Read

« TPM2_PCR_Extend
* TPM2_PCR_Reset
* TPM2_Quote

Example

COPYRIGHT ©2024 wolfSSL Inc. 135

5.2 wolftom/tpm2.h 5 API REFERENCE

int pcrIndex = 16;

PCR_Read_In pcrRead;

XMEMSET (&pcrRead, 0, sizeof(pcrRead));

TPM2_SetupPCRSel (&pcrRead.pcrSelectionIn, TPM_ALG_SHA256, pcrIndex);

5.2.6.141 function TPM2_SetupPCRSelArray

WOLFTPM_API void TPM2_SetupPCRSelArray (
TPML_PCR_SELECTION * pcr,
TPM_ALG_ID alg,
byte * pcrArray,
word32 pcrArraySz

)

Helper function to prepare a correct PCR selection with multiple indices For example, when preparing
to create a TPM2_Quote.

Parameters:

* pcr pointer to a structure of type TPML_PCR_SELECTION. Note: Caller must zeroize/memset(0)
+ alg value of type TPM_ALG_ID specifying the type of hash algorithm used

* pcrArray array of values between 0 and 23 specifying the PCR register for use

* pcrArraySz length of the pcrArray

See:

* TPM2_PCR_Read

* TPM2_PCR_Extend
* TPM2_PCR_Reset
* TPM2_Quote

Example

PCR_Read_In pcrRead;
byte pcrArray[PCR_SELECT_MAX],;
word32 pcrArraySz = 0;

XMEMSET (&pcrRead, 0, sizeof(pcrRead));
XMEMSET (pcrArray, 0, sizeof(pcrArray));
pcrArray[pcrArraySz++] = 16;

Y

TPM2_SetupPCRSelArray(&pcrRead.pcrSelectionIn, TPM_ALG_SHA256, pcrArray,
—~ pcrArraySz);

5.2.6.142 function TPM2_GetRCString

WOLFTPM_API const char * TPM2_GetRCString(
int rc

)

Get a human readable string for any TPM 2.0 return code.
Parameters:

* rcinteger value representing a TPM return code
Return: pointer to a string constant

Example

COPYRIGHT ©2024 wolfSSL Inc. 136

5.2 wolftom/tpm2.h 5 API REFERENCE

int rc;

rc = wolfTPM2_Init(&dev, TPM2_IoCb, userCtx);

if (xrc !'= TPM_RC_SUCCESS) {
printf("wolfTPM2_Init failed @x%x: %s\n", rc, TPM2_GetRCString(zc));
return rc;

5.2.6.143 function TPM2_GetAlgName

WOLFTPM_API const char * TPM2_GetAlgName(
TPM_ALG_ID alg
)

Get a human readable string for any TPM 2.0 algorithm.
Parameters:
+ alg value of type TPM_ALG_ID specifying a valid TPM 2.0 algorithm
Return: pointer to a string constant
Example
int paramEncAlg = TPM_ALG_CFB;

printf("\tUse Parameter Encryption: %s\n", TPM2_GetAlgName(paramEncAlg));

5.2.6.144 function TPM2_GetAlgId

WOLFTPM_API TPM_ALG_ID TPM2_GetAlgId(
const char * name

)
Translates a TPM algorithm name to its TPM algorithm ID.
Parameters:
* name a pointer to a string constant specifying a valid TPM algorithm name
Return:

+ a TPM algorithm ID
* TPM_ALG_ERROR if invalid algorithm name

Example
TPM_ALG_ID alg = TPM2_GetAlgId("SHA256"),;
if (alg == TPM_ALG_ERROR) {

}

5.2.6.145 function TPM2_GetHierarchyDesc

WOLFTPM_API const char * TPM2_GetHierarchyDesc(
TPMI_RH_HIERARCHY_AUTH authHandle
)

Get readable string for TPM 2.0 hierarchy.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 137

5.2 wolftom/tpm2.h 5 API REFERENCE

+ authHandle value of type TPMI_RH_HIERARCHY_AUTH specifying a valid TPM 2.0 hierarchy
Return: pointer to a string constant
Example
TPMI_RH_HIERARCHY_AUTH authHandle = TPM_RH_OWNER;

printf("\tHierarchy: %s\n", TPM2_GetHierarchyDesc(authHandle));

5.2.6.146 function TPM2_GetCurveSize

WOLFTPM_API int TPM2_GetCurveSize(
TPM_ECC_CURVE curvelD

)
Determine the size in bytes of any TPM ECC Curve.
Parameters:

+ curvelD value of type TPM_ECC_CURVE
Return:

* 0in case of invalid curve type
* integer value representing the number of bytes

Example
int bytes;
TPM_ECC_CURVE curve = TPM_ECC_NIST_P256;

bytes = TPM2_GetCurveSize(curve);
if (bytes == 0) {

}

5.2.6.147 function TPM2_GetTpmCurve

WOLFTPM_API int TPM2_GetTpmCuzrve (
int curvelD

)
Translate a wolfcrypt curve type to its corresponding TPM curve type.
Parameters:
+ curvelD pointer to a BYTE buffer
See: TPM2_GetWolfCurve
Return:

* integer value representing a wolfcrypt curve type
* ECC_CURVE_OID_E in case of invalid curve type

Example

int tpmCurve;
int wc_curve = ECC_SECP256R1;

tpmCurve = TPM2_GetTpmCurve(curve);
\in this case tpmCurve will be TPM_ECC_NIST_P256

COPYRIGHT ©2024 wolfSSL Inc. 138

5.2 wolftom/tpm2.h

5 APIREFERENCE

if (tpmCurve = ECC_CURVE_OID_E) {

}

5.2.6.148 function TPM2_GetWolfCurve

WOLFTPM_API int TPM2_GetWolfCurve(
int curve_id

)
Translate a TPM curve type to its corresponding wolfcrypt curve type.
Parameters:
+ curve_id pointer to a BYTE buffer
See: TPM2_GetTpmCurve
Return:

* integer value representing a TPM curve type
* -1 or ECC_CURVE_OID_E in case of invalid curve type

Example
int tpmCurve = TPM_ECC_NIST_P256;
int wc_curve;

wc_curve = TPM2_GetWolfCurve(tpmCurve);
\in this case tpmCurve will be ECC_SECP256R1
if (wc_curve = ECC_CURVE_OID_E || wc_curve == -1) {

}

5.2.6.149 function TPM2_ParseAttest

WOLFTPM_API int TPM2_ParseAttest(
const TPM2B_ATTEST * in,
TPMS_ATTEST * out

)
Parses TPM2B_ATTEST structure.
Parameters:

* in pointer to a structure of a TPM2B_ATTEST type
+ out pointer to a structure of a TPMS_ATTEST type

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: This is public API of the helper function TPM2_Packet_ParseAttest
Example

TPM2B_ATTEST in;

TPMS_ATTEST out

rc = TPM2_GetNonce(&in, &out);
if (rc !'= TPM_RC_SUCCESS) {

COPYRIGHT ©2024 wolfSSL Inc. 139

5.2 wolftom/tpm2.h

5 APIREFERENCE

5.2.6.150 function TPM2_HashNvPublic

WOLFTPM_API int TPM2_HashNvPublic(
TPMS_NV_PUBLIC * nvPublic,
byte * buffer,

UINT16 * size

)

Computes fresh NV Index name based on a nvPublic structure.
Parameters:

* nvPublic
+ buffer pointer to a structure of a TPMS_ATTEST type
* size pointer to a variable of UINT16 type to store the size of the nvIndex

Return:

« TPM_RC_SUCCESS: successful

* negative integer value in case of an error

* BAD_FUNC_ARG: check the provided arguments
* NOT_COMPILED_IN: check if wolfcrypt is enabled

Example

TPMS_NV_PUBLIC nvPublic;
BYTE buffer[TPM_MAX_DIGEST_SIZE];
UINT16 size;

rc = TPM2_HashNvPublic (&nvPublic, &buffer, &size);
if (rc != TPM_RC_SUCCESS) {

}

5.2.6.151 function TPM2_AppendPublic

WOLFTPM_API int TPM2_AppendPublic (
byte * buf,
word32 size,
int * sizeUsed,
TPM2B_PUBLIC * pub
)

Populates TPM2B_PUBLIC structure based on a user provided buffer.
Parameters:

* buf pointer to a user buffer

* size integer value of word32 type, specifying the size of the user buffer

+ sizeUsed pointer to an integer variable, stores the used size of pub->buffer
* pub pointer to an empty structure of TPM2B_PUBLIC type

See: TPM2_ParsePublic
Return:

« TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: insufficient buffer size

COPYRIGHT ©2024 wolfSSL Inc. 140

5.2 wolftom/tpm2.h

5 APIREFERENCE

* BAD_FUNC_ARG: check the provided arguments
Note: Public API of the helper function TPM2_Packet_AppendPublic
Example

TPM2B_PUBLIC pub;

int sizeUsed, rc;

BYTE buffer[sizeof (TPM2B_PUBLIC)];
word32 size = sizeof(buffer);

rc = TPM2_AppendPublic(&buffer, size, &sizeUsed, &pub);
if (xc != TPM_RC_SUCCESS) {

}

5.2.6.152 function TPM2_ParsePublic

WOLFTPM_API int TPM2_ParsePublic(
TPM2B_PUBLIC * pub,
byte * buf,
word32 size,
int * sizeUsed

)
Parses TPM2B_PUBLIC structure and stores in a user provided buffer.
Parameters:

* pub pointer to a populated structure of TPM2B_PUBLIC type
* buf pointer to an empty user buffer

+ size integer value of word32 type, specifying the available size of the user buffer
+ sizeUsed pointer to an integer variable, stores the used size of the user buffer

See: TPM2_AppendPublic
Return:

» TPM_RC_SUCCESS: successful
¢ TPM_RC_FAILURE: insufficient buffer size
* BAD_FUNC_ARG: check the provided arguments

Note: Public API of the helper function TPM2_Packet_ParsePublic
Example

TPM2B_PUBLIC pub;

int sizeUsed, rc;

BYTE buffer[sizeof (TPM2B_PUBLIC)];
word32 size = sizeof(buffer);

rc = TPM2_ParsePublic(&pub, buffer, size, &sizeUsed);
if (xc != TPM_RC_SUCCESS) {

}
5.2.6.153 function TPM2_GetName

WOLFTPM_LOCAL int TPM2_GetName (
TPM2_CTX * ctx,

COPYRIGHT ©2024 wolfSSL Inc. 141

5.2 wolftom/tpm2.h 5 API REFERENCE

UINT32 handleValue,
int handleCnt,
int idx,
TPM2B_NAME * name
)

Provides the Name of a TPM object.
Parameters:

+ ctx pointer to a TPM2 context

* handleValue value of UINT32 type, specifying a valid TPM handle

* handleCnt total number of handles used in the current TPM command/session

+ idx index value, between one and three, specifying a valid TPM Authorization session
* name pointer to an empty structure of TPM2B_NAME type

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: The object is reference by its TPM handle and session index
Example

int rc;

UINT32 handleValue = TRANSIENT_FIRST;
handleCount = 1;

sessionldx = 0;

TPM2B_NAME name;

rc = TPM2_GetName(ctx, handleValue, handleCount, sessionIdx, &name);
if (rc !'= TPM_RC_SUCCESS) {

}

5.2.6.154 function TPM2_GetWolfRng

WOLFTPM_API int TPM2_GetWolfRng(
WC_RNG ** rng
)

5.2.6.155 function TPM2_GetVendorID

WOLFTPM_API UINT16 TPM2_GetVendorID(
void

)

Provides the vendorID of the active TPM2 context.
See:

* TPM2_GetCapabilities
* TPM2_Init

Return:

* integer value of UINT16 type, specifying the vendor ID
+ 0if TPM2 context is invalid or NULL

COPYRIGHT ©2024 wolfSSL Inc. 142

5.2 wolftom/tpm2.h

5 APIREFERENCE

Note: Depends on correctly read TPM device info during TPM Init
Example
TPM2_CTX *tpm2Ctx;

tpm2Ctx = TPM2_GetActiveCtx();

5.2.6.156 function TPM2_ForceZero

WOLFTPM_LOCAL void TPM2_FoxrceZero(
void * mem,
woxrd32 len

5.2.6.157 function TPM2_PrintBin

WOLFTPM_API void TPM2_PrintBin(
const byte * buffer,
word32 length

)

Helper function to print a binary buffer in a formatted way.
Parameters:

+ buffer pointer to a buffer of BYTE type
+ length integer value of word32 type, containing the size of the buffer

See:

* TPM2_PrintAuth
* TPM2_PrintPublicArea

Note: Requires DEBUG_WOLFTPM to be defined
Example

BYTE buffer[] = {0x01,0x02,0x03,0x04};
length = sizeof(buffer);

TPM2_PrintBin(&buffer, length);

5.2.6.158 function TPM2_PrintAuth

WOLFTPM_API void TPM2_PrintAuth(
const TPMS_AUTH_COMMAND * authCmd

)

Helper function to print a structure of TPMS_AUTH_COMMAND type in a human readable way.

Parameters:

+ authCmd pointer to a populated structure of TPMS_AUTH_COMMAND type

See:

* TPM2_PrintBin
* TPM2_PrintPublicArea

Note: Requires DEBUG_WOLFTPM to be defined

Example

COPYRIGHT ©2024 wolfSSL Inc. 143

5.2 wolftom/tpm2.h 5 API REFERENCE

TPMS_AUTH_COMMAND authCmd; //for example, part of a TPM Authorization session

TPM2_PrintAuthCmd(&authCmd) ;

5.2.6.159 function TPM2_PrintPublicArea

WOLFTPM_API void TPM2_PrintPublicArea(
const TPM2B_PUBLIC * pub
)

Helper function to print a structure of TPM2B_PUBLIC type in a human readable way.
Parameters:

*+ pub pointer to a populated structure of TPM2B_PUBLIC type
See:

¢ TPM2_PrintBin

* TPM2_PrintAuth
* TPM2_Create

¢« TPM2_ReadPublic

Note: Requires DEBUG_WOLFTPM to be defined
Example
TPM2B_PUBLIC pub; //for example, part of the output of a successful TPM2_Create

TPM2_PrintPublicArea(&pub);

5.2.7 Attributes Documentation

5.2.7.1 variable C

C {
#endif

typedef UINT32 TPM_ALGORITHM_ID;

5.2.7.2 variable TPM_20_EK_ AUTH_POLICY

static const BYTE[] TPM_20_EK_AUTH_POLICY = {
0x83, Ox71, 0x97, 0Ox67, 0x44, ©0x84, OxB3, OxF8,
Ox1A, ©0x90, OxCC, 0x8D, 0x46, OxA5, 0xD7, 0x24,
OxFD, ©x52, @oxD7, Ox6E, 0x06, ©0x52, 0x0B, 0x64,
OxF2, OxAl, OxDA, 0x1B, ©0x33, 0x14, ©0x69, OxAA
b

COPYRIGHT ©2024 wolfSSL Inc. 144

5.2 wolftom/tpm2.h 5 API REFERENCE

5.2.7.3 variable TPM_20_EK AUTH_POLICY_SHA256

static const BYTE[] TPM_20_EK_AUTH_POLICY_SHA256 = {
OxCA, ©0x3D, Ox0A, ©x99, OxA2, ©xB9, 0x39, 0x06,
OxF7, OxA3, ©0x34, 0x24, 0x14, OxEF, 0OxCF, 0xB3,
OxA3, 0x85, ©0xD4, ©0x4C, ©0xD1l, @OxFD, ©0x45, ©0x90,
0x89, OxD1, Ox9B, 0x50, 0x71, ©OxCd, OxB7, 0OxAQ
b

5.2.7.4 variable TPM_20_EK AUTH_POLICY_SHA384

static const BYTE[] TPM_20_EK_AUTH_POLICY_SHA384 = {
0xB2, Ox6E, 0x7D, 0x28, ©0xD1l, ©0x1A, 0x50, 0OxBC,
0x53, ©0xD8, 0x82, 0xBC, 0OxF5, @OxFD, @x3A, 0Ox1A,
0x07, ©0x41, ©0x48, 0xBB, ©0x35, ©0xD3, 0xB4, OxE4,
0xCB, ©0x1C, @Ox0A, @xD9, 0xBD, OxE4, ©0x19, 0xCA,
OxCB, ©0x47, ©OxBA, ©0x09, ©0x69, 0x96, 0x46, 0x15,
OXOF, Ox9F, 0OxCoO, 0x00, OxF3, OxF8, @OxQE, ©x12

I

5.2.7.5 variable TPM_20_EK_ AUTH_POLICY_SHA512

static const BYTE[] TPM_20_EK_AUTH_POLICY_SHA512 = {
OxB8, ©0x22, ©0x1C, OxA6, Ox9E, ©0x85, 0x50, 0OxA4,
0x91, ©0x4D, OxE3, OxFA, 0OxA6, OxAl, ©0x8C, 0x07,
0x2C, 0xCO, ©0x12, 0x08, ©0x07, ©Ox3A, ©0x92, ©x8D,
Ox5D, @0x66, OxD5, Ox9E, 0OxF7, ©Ox9E, 0x49, 0xA4,
0x29, ©OxC4, Ox1A, 0x6B, 0x26, ©0x95, 0x71, 0OxD5,
Ox7E, ©OxDB, ©x25, OxFB, ©0xDB, ©0x18, ©0x38, 0x42,
0x56, 0x08, ©0xB4, ©x13, OxCD, ©0x61, Ox6A, OX5F,
0x6D, OxB5, @OxB6, 0x07, 0Ox1A, OxF9, ©0x9B, OxEA

b

5.2.7.6 variable TPM_20_IDEVID_POLICY

static const BYTE[] TPM_20_IDEVID_POLICY = {
OxAD, Ox6B, Ox3A, 0x22, 0x84, OxFD, 0x69, Ox8A,
@x07, 0x10, OxBF, @x5C, @xCl, OxB9, 0xBD, OxF1,
Ox5E, 0x25, @x32, OxE3, OxF6, 0x01, OxFA, 0x4B,
@x93, OxA6, @xA8, @OxFA, Ox8D, OxE5, 0x79, OxEA
b

5.2.7.7 variable TPM_20_IAK _POLICY

static const BYTE[] TPM_20_IAK_POLICY = {
Ox54, ©0x37, ©0x18, ©0x23, 0x26, OxE4, 0x14, OxFC,
0xA7, ©x97, @OxD5, OxF1l, 0x74, ©0x61, Ox5A, 0x16,
0x41, OxF6, @x12, @x55, 0x79, ©0x7C, ©Ox3A, 0x2B,
0x22, ©0xC2, 0x1D, 0x12, 0x0B, ©0x2D, Ox1E, 0x07
I

5.2.7.8 variable TPM_20_IDEVID_POLICY_SHA384

static const BYTE[] TPM_2@_IDEVID_POLICY_SHA384 = {
0x4D, 0xB1l, @OxAA, 0x83, 0x6D, 0x@0B, 0x56, 0x15,

COPYRIGHT ©2024 wolfSSL Inc. 145

5.2 wolftom/tpm2.h

5 APIREFERENCE

Y

OxDF, Ox6E, OXE5, Ox3A, 0x40, OxEF
0x1C, ©0x21, Ox7F, 0x43, ©0x03, 0OxD4
@x92, ©x59, ©0x72, @OxBC, ©0x92, 0x70
@xA5, ©0xCB, OxDF, @x6D, @xCl, @x8C
@x32, 0x9B, Ox2F, 0x15, @Ox42, ©OxC3

5.2.7.9 variable TPM_20_IAK POLICY_SHA384
static const BYTE[] TPM_20_IAK_POLICY_SHA384

},

@x12, ©x9D, ©0x94, OXEB, OxF8, ©x45
0x2C, Ox6E, OxXEF, ©0x43, @xBB, 0xB7
Ox2A, 0xC8, Ox7E, @x52, OxBE, 0x7B
OxA6, OxCE, ©x4D, ©0x82, @0x6F, 0x74
0x67, Ox2F, ©x51, ©0x71, @x6C, ©x5C
Ox5F, ©x31, ©0x3B, 0xF3, ©0x45, ©OxAA

, 0x70,
, 0x46,
, 0x06,
, 0x4D,
, @xDD,

, 0x56,
, 0x57,
, 0x34,
, Ox9F,
, OxBB,
, OxB3,

5.2.7.10 variable TPM_20_IDEVID_POLICY_SHA512

static const BYTE[] TPM_2@_IDEVID_POLICY_SHA512 = {

b

@x7D, @xD7, ©@x50, ©0x0F, ©0xD6, @xC1l
0x97, OxA6, OxAF, ©x91, ©0x@D, ©xAl
Ox1E, OxF2, 0x8F, ©0x66, 0x2F, OXEE
@x25, ©0xA4, ©0xCC, OxAD, OxDA, 0x3B
0x38, OxE6, 0x6B, 0x2F, ©x3A, ©xD5
OxA@, 0x50, ©x3C, 0xD2, 0OxDA, OxED
0x8C, OXFE, Ox4F, ©0x84, ©0xB@, 0x3A
0x2B, ©0xB6, ©@xA9, ©0x76, OxF0, 0x71

, 0xB9,
, 0x47,
, 0x06,
, Ox4E,
, OxDE,
, OxB1,
, Ox8C,
, OxA7,

5.2.7.11 variable TPM_20_IAK POLICY SHA512
static const BYTE[] TPM_20_IAK_POLICY_SHA512

b

0x80, ©0x60, 0xD1l, ©OxFB, ©0x31, 0x71
OxE4, @x8A, Ox6E, Ox5F, @OxEC, OxEOQ
OxFC, ©0x1B, ©0x27, ©0x8F, ©0xCl, ©x62
0x81, ©@xC3, OxEC, ©0xA3, ©0x54, ©x4C
OxF9, 0x44, 0x10, ©0xC3, Ox71, @x5D
0xCC, ©0xD9, OxE3, ©Ox9A, 0x6C, ©0xB2
Ox43, 0x53, Ox5B, OxB5, Ox4E, 0xAS8
OxDE, @xB5, @OxF7, ©x83, ©@x6B, ©xD9

5.2.8 Source code

/

* ok ok o o+ ok * ¥

tpm2.h
Copyright (C) 2006-2025 wolfSSL Inc

This file is part of wolfTPM.

, Ox6A,
, 0x88,
, 0x25,
, 0xD4,
, 0x56,
, 0x64,
, 0x87,
, 0xB5,

oxC6,
0x95,
OxCF,
OxBE,
0x33

1}
~

0x65,
0x51,
@x9C,
OxCF,
0x60,
0x12

Ox4F,
0x30,
OxF2,
0x6B,
OxE1,
OXxE®6,
oxD2,
Ox2F

1}
-~

0x29,
OxBC,
Ox5E,
Ox4A,
0x1C,
0x6D,
0x10,
0x86

wolfTPM is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

COPYRIGHT ©2024 wolfSSL Inc.

146

5.2 wolftom/tpm2.h

5 APIREFERENCE

(at your option) any later version.

* ok ok ok % ok ok F o+ ok *

/

#ifndef __TPM2_H__
#define __TPM2_H__

#include <wolftpm/tpm2_types.h>
#ifdef __cplusplus

extern "C" {
#endif

o/

/* TYPES */

J® o e

typedef UINT32 TPM_ALGORITHM_ID;
typedef UINT32 TPM_MODIFIER_INDICATOR;
typedef UINT32 TPM_AUTHORIZATION_SIZE;
typedef UINT32 TPM_PARAMETER_SIZE;
typedef UINT16 TPM_KEY_SIZE;

typedef UINT16 TPM_KEY_BITS;

typedef UINT32 TPM_GENERATED;

o */

/* ENUMERATIONS */

/54
Y

#define TPM_SPEC_FAMILY 0x322E3000

#define TPM_SPEC_LEVEL 0

#define TPM_SPEC_VERSION 138

#define TPM_SPEC_YEAR 2016

#define TPM_SPEC_DAY_OF_YEAR 273

#define TPM_GENERATED_VALUE Oxff544347U
#define TPM_MAX_DERIVATION_BITS 8192U

typedef enum {
TPM_ALG_ERROR = 0x0000,

COPYRIGHT ©2024 wolfSSL Inc. 147

wolfTPM is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
GNU General Public License for more details.

the Free Software Foundation; either version 3 of the License, or

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ©2110-1335, USA

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPM_ALG_RSA
TPM_ALG_SHA
TPM_ALG_SHA1
TPM_ALG_HMAC
TPM_ALG_AES
TPM_ALG_MGF1
TPM_ALG_KEYEDHASH
TPM_ALG_XOR
TPM_ALG_SHA256
TPM_ALG_SHA384
TPM_ALG_SHA512
TPM_ALG_NULL
TPM_ALG_SM3_256
TPM_ALG_SM4
TPM_ALG_RSASSA
TPM_ALG_RSAES
TPM_ALG_RSAPSS
TPM_ALG_OAEP
TPM_ALG_ECDSA
TPM_ALG_ECDH
TPM_ALG_ECDAA
TPM_ALG_SM2
TPM_ALG_ECSCHNORR
TPM_ALG_ECMQV

TPM_ALG_KDF1_SP800@_56A

TPM_ALG_KDF2

TPM_ALG_KDF1_SP800_108

TPM_ALG_ECC
TPM_ALG_SYMCIPHER
TPM_ALG_CAMELLIA
TPM_ALG_SHA3_256
TPM_ALG_SHA3_384
TPM_ALG_SHA3_512
TPM_ALG_SHAKE128
TPM_ALG_SHAKE256
TPM_ALG_CTR
TPM_ALG_OFB
TPM_ALG_CBC
TPM_ALG_CFB
TPM_ALG_ECB

} TPM_ALG_ID_T;
typedef UINT16 TPM_ALG_ID;

typedef enum {

TPM_ECC_NONE
TPM_ECC_NIST_P192
TPM_ECC_NIST_P224
TPM_ECC_NIST_P256
TPM_ECC_NIST_P384
TPM_ECC_NIST_P521
TPM_ECC_BN_P256
TPM_ECC_BN_P638
TPM_ECC_SM2_P256

} TPM_ECC_CURVE_T,;

0x0001,
0x0004,
TPM_ALG_SHA,
0x0005,
0x0006,
0x0007,
0x0008,
OX000A,
0x0008,
0x000C,
0x000D,
0x0010,
0x0012,
0x0013,
0x0014,
0x0015,
0x0016,
0x0017,
0x0018,
0x0019,
0x001A,
0x0018,
0x001C,
0x001D,
0x0020,
0x0021,
0x0022,
0x0023,
0x0025,
0x0026,
0x0027,
0x0028,
0x0029,
0Xx002A,
0x002B,
0x0040,
0x0041,
0x0042,
0x0043,
0x0044,

0x0000,
0x0001,

= 0x0002,

COPYRIGHT ©2024 wolfSSL Inc.

0x0003,
0x0004,
0x0005,
0x0010,
0x0011,
0x0020,

148

5.2 wolftom/tpm2.h

5 APIREFERENCE

typedef UINT16 TPM_ECC_CURVE;

/* Command Codes */

typedef enum {
TPM_CC_FIRST
TPM_CC_NV_UndefineSpaceSpecial
TPM_CC_EvictControl
TPM_CC_HierarchyControl
TPM_CC_NV_UndefineSpace
TPM_CC_ChangeEPS
TPM_CC_ChangePPS
TPM_CC_Clear
TPM_CC_ClearControl
TPM_CC_ClockSet
TPM_CC_HierarchyChangeAuth
TPM_CC_NV_DefineSpace
TPM_CC_PCR_Allocate
TPM_CC_PCR_SetAuthPolicy
TPM_CC_PP_Commands
TPM_CC_SetPrimaryPolicy
TPM_CC_FieldUpgradeStart
TPM_CC_ClockRateAdjust
TPM_CC_CreatePrimary
TPM_CC_NV_GlobalWritelLock
TPM_CC_GetCommandAuditDigest
TPM_CC_NV_Increment
TPM_CC_NV_SetBits
TPM_CC_NV_Extend
TPM_CC_NV_Write
TPM_CC_NV_WritelLock
TPM_CC_DictionaryAttackLockReset
TPM_CC_DictionaryAttackParameters
TPM_CC_NV_ChangeAuth
TPM_CC_PCR_Event
TPM_CC_PCR_Reset
TPM_CC_SequenceComplete
TPM_CC_SetAlgorithmSet
TPM_CC_SetCommandCodeAuditStatus
TPM_CC_FieldUpgradeData
TPM_CC_IncrementalSelfTest
TPM_CC_SelfTest
TPM_CC_Startup
TPM_CC_Shutdown
TPM_CC_StirRandom
TPM_CC_ActivateCredential
TPM_CC_Certify
TPM_CC_PolicyNV
TPM_CC_CertifyCreation
TPM_CC_Duplicate
TPM_CC_GetTime
TPM_CC_GetSessionAuditDigest
TPM_CC_NV_Read
TPM_CC_NV_ReadLock
TPM_CC_ObjectChangeAuth

COPYRIGHT ©2024 wolfSSL Inc.

0x0000011F,
TPM_CC_FIRST,
0x00000120,
0x00000121,
0x00000122,
0x00000124,
0x00000125,
0x00000126,
0x00000127,
0x00000128,
0x00000129,
0x0000012A,
0x00000128B,
0x0000012C,
0x0000012D,
0x0000012E,
0x0000012F,
0x00000130,
0x00000131,
0x00000132,
0x00000133,
0x00000134,
0x00000135,
0x00000136,
0x00000137,
0x00000138,
= Qx00000139,
= Qx0000013A,
0x00000138B,
0x0000013C,
0x0000013D,

= Qx0000013E,

0x0000013F,
= Qx00000140,
0x00000141,
0x00000142,
0x00000143,
0x00000144,
0x00000145,
0x00000146,
0x00000147,
0x00000148,
0x00000149,
0x0000014A,
0x00000148B,
0x0000014C,
0x0000014D,
0x0000014E,
0x0000014F,
0x00000150,

149

5.2 wolftom/tpm2.h 5 API REFERENCE

TPM_CC_PolicySecret = 0x00000151,
TPM_CC_Rewrap = Qx00000152,
TPM_CC_Create = @Qx00000153,
TPM_CC_ECDH_ZGen = @Px00000154,
TPM_CC_HMAC = @Px00000155,
TPM_CC_Import = Qx00000156,
TPM_CC_Load = Qx00000157,
TPM_CC_Quote = Qx00000158,
TPM_CC_RSA_Decrypt = @x00000159,
TPM_CC_HMAC_Start = @Px00000158B,
TPM_CC_SequenceUpdate = @x0000015C,
TPM_CC_Sign = @x0000015D,
TPM_CC_Unseal = Qx0000015E,
TPM_CC_PolicySigned = Qx00000160,
TPM_CC_ContextLoad = Qx00000161,
TPM_CC_ContextSave = Qx00000162,
TPM_CC_ECDH_KeyGen = Qx00000163,
TPM_CC_EncryptDecrypt = Qx00000164,
TPM_CC_FlushContext = Qx00000165,
TPM_CC_LoadExternal = Qx00000167,
TPM_CC_MakeCredential = Qx00000168,
TPM_CC_NV_ReadPublic = Qx00000169,
TPM_CC_PolicyAuthorize = Qx0000016A,
TPM_CC_PolicyAuthValue = 0x00000168B,
TPM_CC_PolicyCommandCode = @x0000016C,
TPM_CC_PolicyCounterTimex = Qx0000016D,
TPM_CC_PolicyCpHash = Qx0000016E,
TPM_CC_Policylocality = 0x0000016F,
TPM_CC_PolicyNameHash = @Qx00000170,
TPM_CC_PolicyOR = Qx00000171,
TPM_CC_PolicyTicket = Qx00000172,
TPM_CC_ReadPublic = Qx00000173,
TPM_CC_RSA_Encrypt = Qx00000174,
TPM_CC_StartAuthSession = Qx00000176,
TPM_CC_VerifySignature = Qx00000177,
TPM_CC_ECC_Parameters = Qx00000178,
TPM_CC_FirmwareRead = @x00000179,
TPM_CC_GetCapability = Qx0000017A,
TPM_CC_GetRandom = Qx0000017B,
TPM_CC_GetTestResult = Qx0000017C,
TPM_CC_Hash = @x0000017D,
TPM_CC_PCR_Read = Qx0000017E,
TPM_CC_PolicyPCR = Qx0000017F,
TPM_CC_PolicyRestart = 0x00000180,
TPM_CC_ReadClock = Qx00000181,
TPM_CC_PCR_Extend = Qx00000182,
TPM_CC_PCR_SetAuthValue = @Px00000183,
TPM_CC_NV_Certify = Qx00000184,
TPM_CC_EventSequenceComplete = @Qx00000185,
TPM_CC_HashSequenceStart = Qx00000186,
TPM_CC_PolicyPhysicalPresence = 0x00000187,
TPM_CC_PolicyDuplicationSelect = 0x00000188,
TPM_CC_PolicyGetDigest = @Px00000189,
TPM_CC_TestParms = Qx0000018A,

COPYRIGHT ©2024 wolfSSL Inc. 150

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPM_CC_Commit = Qx0000018B,
TPM_CC_PolicyPassword = 0x0000018C,
TPM_CC_ZGen_2Phase = Qx0000018D,
TPM_CC_EC_Ephemeral = Qx0000018E,
TPM_CC_PolicyNvWritten = Qx0000018F,
TPM_CC_PolicyTemplate = @x00000190,
TPM_CC_CreatelLoaded = Qx00000191,
TPM_CC_PolicyAuthorizeNV = 0x00000192,
TPM_CC_EncryptDecrypt2 = @x00000193,

TPM_CC_LAST

CC_VEND
TPM_CC_Vendor_TCG_Test

#if defined(WOLFTPM_ST33) || defined
TPM_CC_SetMode
TPM_CC_SetCommandSet
TPM_CC_GetRandom2

#endif

#ifdef WOLFTPM_ST33

nmmn— un1nu

0x20000000,
CC_VEND + 0x0000,
WOLFTPM_AUTODETECT)
CC_VEND + 0x0307,

CC_VEND + 0x0309,

CC_VEND + 0x030E,

TPM_CC_EncryptDecrypt2,

TPM_CC_RestoreEK = CC_VEND + 0Ox030A,
TPM_CC_SetCommandSetLock = CC_VEND + 0x030B,
TPM_CC_GPIO_Config = CC_VEND + 0x030F,
#endif
#ifdef WOLFTPM_NUVOTON
TPM_CC_NTC2_PreConfig = CC_VEND + 0x0211,
TPM_CC_NTC2_GetConfig = CC_VEND + 0x0213,
#endif
#if defined (WOLFTPM_SLB9672) || defined(WOLFTPM_SLB9673)
TPM_CC_FieldUpgradeStartVendor = CC_VEND + 0x12F,
TPM_CC_FieldUpgradeAbandonVendor = CC_VEND + 0x130,
TPM_CC_FieldUpgradeManifestVendor = CC_VEND + 0x131,
TPM_CC_FieldUpgradeDataVendor = CC_VEND + 0x132,

TPM_CC_FieldUpgradeFinalizeVendor = CC_VEND +

#endif
} TPM_CC_T;
typedef UINT32 TPM_CC;

/* Response Codes */

typedef enum {
TPM_RC_SUCCESS
TPM_RC_BAD_TAG

0x000,
Ox01E,

RC_VER1 = 0x100,

TPM_RC_INITIALIZE = RC_VER1
TPM_RC_FAILURE = RC_VER1
TPM_RC_SEQUENCE = RC_VER1
TPM_RC_PRIVATE = RC_VER1
TPM_RC_HMAC = RC_VER1
TPM_RC_DISABLED = RC_VER1
TPM_RC_EXCLUSIVE = RC_VER1
TPM_RC_AUTH_TYPE = RC_VER1
TPM_RC_AUTH_MISSING = RC_VER1
TPM_RC_POLICY = RC_VER1
TPM_RC_PCR = RC_VER1

COPYRIGHT ©2024 wolfSSL Inc. 151

+ + + + + + + + + + 4+

0x000,
0x001,
0x003,
0x008B,
0x019,
0x020,
0x021,
0x024,
0x025,
0x026,
0x027,

0x133,

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPM_RC_PCR_CHANGED
TPM_RC_UPGRADE
TPM_RC_TOO_MANY_CONTEXTS
TPM_RC_AUTH_UNAVAILABLE
TPM_RC_REBOOT
TPM_RC_UNBALANCED
TPM_RC_COMMAND_SIZE
TPM_RC_COMMAND_CODE
TPM_RC_AUTHSIZE
TPM_RC_AUTH_CONTEXT
TPM_RC_NV_RANGE
TPM_RC_NV_SIZE
TPM_RC_NV_LOCKED
TPM_RC_NV_AUTHORIZATION
TPM_RC_NV_UNINITIALIZED
TPM_RC_NV_SPACE
TPM_RC_NV_DEFINED
TPM_RC_BAD_CONTEXT
TPM_RC_CPHASH
TPM_RC_PARENT
TPM_RC_NEEDS_TEST
TPM_RC_NO_RESULT
TPM_RC_SENSITIVE
RC_MAX_FM@

RC_FMT1 = 0x080,
TPM_RC_ASYMMETRIC
TPM_RC_ATTRIBUTES
TPM_RC_HASH
TPM_RC_VALUE
TPM_RC_HIERARCHY
TPM_RC_KEY_SIZE
TPM_RC_MGF
TPM_RC_MODE
TPM_RC_TYPE
TPM_RC_HANDLE
TPM_RC_KDF
TPM_RC_RANGE
TPM_RC_AUTH_FAIL
TPM_RC_NONCE
TPM_RC_PP
TPM_RC_SCHEME
TPM_RC_SIZE
TPM_RC_SYMMETRIC
TPM_RC_TAG
TPM_RC_SELECTOR
TPM_RC_INSUFFICIENT
TPM_RC_SIGNATURE
TPM_RC_KEY
TPM_RC_POLICY_FAIL
TPM_RC_INTEGRITY
TPM_RC_TICKET
TPM_RC_RESERVED_BITS
TPM_RC_BAD_AUTH

COPYRIGHT ©2024 wolfSSL Inc.

= RC_FMT1

RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1
RC_VER1

0x028,
0x02D,
0x02E,
Ox02F,
0x030,
0x031,
0x042,
0x043,
0x044,
0x045,
0x046,
0x047,
0x048,
0x049,
Ox04A,
0x048B,
0x04C,
0x050,
0x051,
0x052,
0x053,
0x054,
0x0@55,
0x07F,

+ 4+ + 4+ + + + + 4+ +++ A+ +++

RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1

0x001,
0x002,
0x003,
0x004,
0x005,
0x007,
0x008,
0x009,
Ox00A,
0x00B,
0x00cC,
0x0oD,
0x00E,
0Ox00F,
0x010,
0x012,
0x015,
0x01e6,
0x017,
0x018,
Ox01A,
0x01B,
0x01C,
0x01D,
0x01F,
0x020,
0x021,
0x022,

B I T T T S e e e S S k. i ST T T S S S S SR S S S

152

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPM_RC_EXPIRED
TPM_RC_POLICY_CC
TPM_RC_BINDING
TPM_RC_CURVE
TPM_RC_ECC_POINT
RC_MAX_FMT1

RC_WARN = 0x900,
TPM_RC_CONTEXT_GAP
TPM_RC_OBJECT_MEMORY

TPM_RC_SESSION_MEMORY

TPM_RC_MEMORY

TPM_RC_SESSION_HANDLES
TPM_RC_OBJECT_HANDLES

TPM_RC_LOCALITY
TPM_RC_YIELDED
TPM_RC_CANCELED
TPM_RC_TESTING
TPM_RC_REFERENCE_H@
TPM_RC_REFERENCE_H1
TPM_RC_REFERENCE_H2
TPM_RC_REFERENCE_H3
TPM_RC_REFERENCE_H4
TPM_RC_REFERENCE_H5
TPM_RC_REFERENCE_H6
TPM_RC_REFERENCE_S@
TPM_RC_REFERENCE_S1
TPM_RC_REFERENCE_S2
TPM_RC_REFERENCE_S3
TPM_RC_REFERENCE_S4
TPM_RC_REFERENCE_S5
TPM_RC_REFERENCE_S6

TPM_RC_NV_RATE
TPM_RC_LOCKOUT
TPM_RC_RETRY

TPM_RC_NV_UNAVAILABLE

RC_MAX_WARN

TPM_RC_NOT_USED

TPM_RC_H = 0x000,
TPM_RC_P = 0x040,
TPM_RC_S = 0x800,
TPM_RC_1 = 0x100,
TPM_RC_2 = 0x200,
TPM_RC_3 = 0x300,
TPM_RC_4 = 0x400,
TPM_RC_5 = 0x500,
TPM_RC_6 = 0x600,
TPM_RC_7 = 0x700,
TPM_RC_8 = 0x800,
TPM_RC_9 = 0x900,
TPM_RC_A = 0xAQ0,
TPM_RC_B = 0xB0O,

COPYRIGHT ©2024 wolfSSL Inc.

RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1
RC_FMT1

= RC_FMT1

= RC_WARN

RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN
RC_WARN

RC_WARN

0x023,
0x024,
0x025,
0x026,
0x027,
0x03F,

+ + 4+ 4+ + +

0x001,
0x002,
0x003,
0x004,
0x005,
0x006,
0x007,
0x008,
0x009,
OX00A,
0x010,
0x011,
0x012,
0x013,
0x014,
0x015,
0x016,
0x018,
0x019,
0x01A,
0x01B,
0x01C,
0x01D,
Ox0Q1E,
0x020,
0x021,
0x022,
0x023,
0x03F,

e T T T T S ST S e e e S e I S ST S S S S ST SR S S S

+ OX07F,

153

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPM_RC_C = 0xC00,
TPM_RC_D = 0xD0O,
TPM_RC_E = OxE0Q0,
TPM_RC_F = OxF0O,
TPM_RC_N_MASK = 0xF00,

/* use negative codes fox

TPM_RC_TIMEOUT = -100,
} TPM_RC_T,;

typedef INT32 TPM_RC; /* type

o 32-bit */

typedef enum {

internal errors */

is unsigned 16-bits, but internally use signed

TPM_CLOCK_COARSE_SLOWER = -3,
TPM_CLOCK_MEDIUM_SLOWER = -2,
TPM_CLOCK_FINE_SLOWER = -1,
TPM_CLOCK_NO_CHANGE =0,
TPM_CLOCK_FINE_FASTER =1,
TPM_CLOCK_MEDIUM_FASTER = 2,
TPM_CLOCK_COARSE_FASTER = 3,
} TPM_CLOCK_ADJUST_T;
typedef UINT8 TPM_CLOCK_ADJUST;
/* EA Arithmetic Operands */
typedef enum {
TPM_EO_EQ = 0x0000,
TPM_EO_NEQ = 0x0001,
TPM_EO_SIGNED_GT = 0x0002,
TPM_EO_UNSIGNED_GT = 0x0003,
TPM_EO_SIGNED_LT = 0x0004,
TPM_EO_UNSIGNED_LT = 0x0005,
TPM_EO_SIGNED_GE = Qx0006,
TPM_EO_UNSIGNED_GE = 0x0007,
TPM_EO_SIGNED_LE = 0x0008,
TPM_EO_UNSIGNED_LE = 0x0009,
TPM_EO_BITSET = Ox000A,
TPM_EO_BITCLEAR = Qx0008B,

} TPM_EO_T;
typedef UINT16 TPM_EO;

/* Structure Tags */

typedef enum {
TPM_ST_RSP_COMMAND
TPM_ST_NULL
TPM_ST_NO_SESSIONS
TPM_ST_SESSIONS
TPM_ST_ATTEST_NV

TPM_ST_ATTEST_COMMAND_AUDIT
TPM_ST_ATTEST_SESSION_AUDIT

TPM_ST_ATTEST_CERTIFY
TPM_ST_ATTEST_QUOTE
TPM_ST_ATTEST_TIME
TPM_ST_ATTEST_CREATION
TPM_ST_CREATION

COPYRIGHT ©2024 wolfSSL Inc.

0x00C4,
0X8000,
0x8001,
0x8002,
0x8014,
0x8015,
0x8016,
0x8017,
0x8018,
0x8019,
0x801A,
= 0x8021,

154

5.2 wolftom/tpm2.h

5 APIREFERENCE

+ + + +
WN RO

~ =~

TPM_ST_VERIFIED = 0x8022,
TPM_ST_AUTH_SECRET = 0x8023,
TPM_ST_HASHCHECK = 0x8024,
TPM_ST_AUTH_SIGNED = 0x8025,
TPM_ST_FU_MANIFEST = 0x8029,

} TPM_ST_T;

typedef UINT16 TPM_ST;

/* Session Type */

typedef enum {
TPM_SE_HMAC = 0x00,
TPM_SE_POLICY = 0x01,
TPM_SE_TRIAL = 0x03,

} TPM_SE_T;

typedef UINT8 TPM_SE;

/* Startup Type */

typedef enum {
TPM_SU_CLEAR = 0x0000,
TPM_SU_STATE = 0x0001,

} TPM_SU_T;

typedef UINT16 TPM_SU;

/* Capabilities */

typedef enum {
TPM_CAP_FIRST = 0x00000000,
TPM_CAP_ALGS = TPM_CAP_FIRST,
TPM_CAP_HANDLES = 0x00000001,
TPM_CAP_COMMANDS = 0x00000002,
TPM_CAP_PP_COMMANDS = 0x00000003,
TPM_CAP_AUDIT_COMMANDS = 0x00000004,
TPM_CAP_PCRS = 0x00000005,
TPM_CAP_TPM_PROPERTIES = 0x00000006,
TPM_CAP_PCR_PROPERTIES = 0x00000007,
TPM_CAP_ECC_CURVES = 0x00000008,
TPM_CAP_AUTH_POLICIES = 0x00000009,
TPM_CAP_ACT = QOx0000000A,
TPM_CAP_LAST = TPM_CAP_ACT,
TPM_CAP_VENDOR_PROPERTY = 0x00000100,

} TPM_CAP_T;

typedef UINT32 TPM_CAP;

/* Property Tag */

typedef enum {
TPM_PT_NONE = 0x00000000,
PT_GROUP = 0x00000100,
PT_FIXED = PT_GROUP * 1,
TPM_PT_FAMILY_INDICATOR = PT_FIXED
TPM_PT_LEVEL = PT_FIXED
TPM_PT_REVISION = PT_FIXED
TPM_PT_DAY_OF_YEAR = PT_FIXED

COPYRIGHT ©2024 wolfSSL Inc. 155

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPM_PT_VYEAR
TPM_PT_MANUFACTURER
TPM_PT_VENDOR_STRING_1
TPM_PT_VENDOR_STRING_2
TPM_PT_VENDOR_STRING_3
TPM_PT_VENDOR_STRING_4
TPM_PT_VENDOR_TPM_TYPE
TPM_PT_FIRMWARE_VERSION_1
TPM_PT_FIRMWARE_VERSION_2
TPM_PT_INPUT_BUFFER
TPM_PT_HR_TRANSIENT_MIN
TPM_PT_HR_PERSISTENT_MIN
TPM_PT_HR_LOADED_MIN
TPM_PT_ACTIVE_SESSIONS_MAX
TPM_PT_PCR_COUNT
TPM_PT_PCR_SELECT_MIN
TPM_PT_CONTEXT_GAP_MAX
TPM_PT_NV_COUNTERS_MAX
TPM_PT_NV_INDEX_MAX
TPM_PT_MEMORY
TPM_PT_CLOCK_UPDATE
TPM_PT_CONTEXT_HASH
TPM_PT_CONTEXT_SYM
TPM_PT_CONTEXT_SYM_SIZE
TPM_PT_ORDERLY_COUNT
TPM_PT_MAX_COMMAND_SIZE
TPM_PT_MAX_RESPONSE_SIZE
TPM_PT_MAX_DIGEST
TPM_PT_MAX_OBJECT_CONTEXT
TPM_PT_MAX_SESSION_CONTEXT
TPM_PT_PS_FAMILY_INDICATOR
TPM_PT_PS_LEVEL
TPM_PT_PS_REVISION
TPM_PT_PS_DAY_OF_YEAR
TPM_PT_PS_VYEAR
TPM_PT_SPLIT_MAX
TPM_PT_TOTAL_COMMANDS
TPM_PT_LIBRARY_COMMANDS
TPM_PT_VENDOR_COMMANDS
TPM_PT_NV_BUFFER_MAX
TPM_PT_MODES
TPM_PT_MAX_CAP_BUFFER

PT_VAR = PT_GROUP * 2,
TPM_PT_PERMANENT
TPM_PT_STARTUP_CLEAR
TPM_PT_HR_NV_INDEX
TPM_PT_HR_LOADED
TPM_PT_HR_LOADED_AVAIL
TPM_PT_HR_ACTIVE
TPM_PT_HR_ACTIVE_AVAIL
TPM_PT_HR_TRANSIENT_AVAIL
TPM_PT_HR_PERSISTENT
TPM_PT_HR_PERSISTENT_AVAIL

COPYRIGHT ©2024 wolfSSL Inc.

= PT_VAR

= PT_VAR

PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED
PT_FIXED

PT_VAR
PT_VAR

PT_VAR
PT_VAR
PT_VAR
PT_VAR
PT_VAR
PT_VAR

+ 4+ + + + + + + + +
VONOURWNRL O

156

SRR S S S T T N S S . T Tk i T T T s o w S S S S S S S S

~ =~

~ N~ 0~ S~~~

~ =~

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPM_PT_NV_COUNTERS
TPM_PT_NV_COUNTERS_AVAIL
TPM_PT_ALGORITHM_SET
TPM_PT_LOADED_CURVES
TPM_PT_LOCKOUT_COUNTER
TPM_PT_MAX_AUTH_FAIL
TPM_PT_LOCKOUT_INTERVAL
TPM_PT_LOCKOUT_RECOVERY
TPM_PT_NV_WRITE_RECOVERY
TPM_PT_AUDIT_COUNTER_O
TPM_PT_AUDIT_COUNTER_1

} TPM_PT_T;
typedef UINT32 TPM_PT;

/* PCR Property Tag */

typedef enum {
TPM_PT_PCR_FIRST
TPM_PT_PCR_SAVE
TPM_PT_PCR_EXTEND_L®
TPM_PT_PCR_RESET_L®
TPM_PT_PCR_EXTEND_L1
TPM_PT_PCR_RESET_L1
TPM_PT_PCR_EXTEND_L2
TPM_PT_PCR_RESET_L2
TPM_PT_PCR_EXTEND_L3
TPM_PT_PCR_RESET_L3
TPM_PT_PCR_EXTEND_L4
TPM_PT_PCR_RESET_L4

TPM_PT_PCR_NO_INCREMENT

TPM_PT_PCR_DRTM_RESET
TPM_PT_PCR_POLICY
TPM_PT_PCR_AUTH
TPM_PT_PCR_LAST

} TPM_PT_PCR_T;

typedef UINT32 TPM_PT_PCR;

/* Platform Specific */

typedef enum {
TPM_PS_MAIN
TPM_PS_PC
TPM_PS_PDA
TPM_PS_CELL_PHONE
TPM_PS_SERVER
TPM_PS_PERIPHERAL
TPM_PS_TSS
TPM_PS_STORAGE
TPM_PS_AUTHENTICATION
TPM_PS_EMBEDDED
TPM_PS_HARDCOPY
TPM_PS_INFRASTRUCTURE
TPM_PS_VIRTUALIZATION
TPM_PS_TNC
TPM_PS_MULTI_TENANT
TPM_PS_TC

COPYRIGHT ©2024 wolfSSL Inc.

PT_VAR
PT_VAR
PT_VAR
PT_VAR
PT_VAR
PT_VAR
PT_VAR
PT_VAR
PT_VAR
PT_VAR
= PT_VAR

0x00000000,

TPM_PT_PCR_FIRST,

0x00000001 ,
0x00000002,
0x00000003,
0x00000004,
0x00000005,
0x00000006,
0x00000007,
0x00000008,
0x00000009,
0x0000000A,
0x00000011,
0x00000012,
0x00000013,
0x00000014,

+ + + + + + + + + + +

10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,

= TPM_PT_PCR_AUTH,

0x00000000,
0x00000001 ,
0x00000002,
0x00000003,
0x00000004,
0x00000005,
0x00000006,
0x00000007,
0x00000008,
0x00000009,
0x0000000A,
0x00000008B,
0x0000000C,
0x0000000D,
0x0000000E,

= 0x0000000F,

157

5.2 wolftom/tpm2.h 5 API REFERENCE

} TPM_PS_T;
typedef UINT32 TPM_PS;

/* HANDLES */
typedef UINT32 TPM_HANDLE;

/* Handle Types */
typedef enum {

TPM_HT_PCR = 0x00,
TPM_HT_NV_INDEX = 0x01,
TPM_HT_HMAC_SESSION = 0x02,
TPM_HT_LOADED_SESSION = 0x02,
TPM_HT_POLICY_SESSION = 0x03,
TPM_HT_ACTIVE_SESSION = 0x03,
TPM_HT_PERMANENT = 0x40,
TPM_HT_TRANSIENT = 0x80,
TPM_HT_PERSISTENT = 0x81,

} TPM_HT_T;

typedef UINT8 TPM_HT;

/* Permanent Handles */

typedef enum {
TPM_RH_FIRST = 0x40000000),
TPM_RH_SRK = TPM_RH_FIRST,
TPM_RH_OWNER = 0x40000001,
TPM_RH_REVOKE = 0x40000002,
TPM_RH_TRANSPORT = 0x40000003,
TPM_RH_OPERATOR = Qx40000004,
TPM_RH_ADMIN = 0x40000005,
TPM_RH_EK = 0x40000006,
TPM_RH_NULL = 0x40000007,
TPM_RH_UNASSIGNED = 0x40000008,
TPM_RS_PW = 0x40000009,
TPM_RH_LOCKOUT = Qx4000000A,
TPM_RH_ENDORSEMENT = 0x40000008B,
TPM_RH_PLATFORM = 0x4000000C,
TPM_RH_PLATFORM_NV = 0x4000000D,
TPM_RH_AUTH_00 = Qx40000010,
TPM_RH_AUTH_FF = Qx4000010F,

TPM_RH_LAST
} TPM_RH_T;
typedef UINT32 TPM_RH;

TPM_RH_AUTH_FF,

/* Handle Value Constants */
/* Using defines, not "enum TPM_HC_T" to avoid pedantic error:
* "ISO C restricts enumerator values to range of 'int'"

*/
#define HR_HANDLE_MASK Ox0OFFFFFFUL
#define HR_RANGE_MASK OxFF000000UL
#define HR_SHIFT 24
#define HR_PCR ((UINT32)TPM_HT_PCR << HR_SHIFT)
#define HR_HMAC_SESSION ((UINT32)TPM_HT_HMAC_SESSION << HR_SHIFT)

#define HR_POLICY_SESSION ((UINT32)TPM_HT_POLICY_SESSION << HR_SHIFT)

COPYRIGHT ©2024 wolfSSL Inc. 158

5.2 wolftom/tpm2.h 5 API REFERENCE

#define HR_TRANSIENT ((UINT32)TPM_HT_TRANSIENT << HR_SHIFT)
#define HR_PERSISTENT ((UINT32)TPM_HT_PERSISTENT << HR_SHIFT)
#define HR_NV_INDEX ((UINT32)TPM_HT_NV_INDEX << HR_SHIFT)
#define HR_PERMANENT ((UINT32)TPM_HT_PERMANENT << HR_SHIFT)
#define PCR_FIRST (HR_PCR + 0)

#define PCR_LAST (PCR_FIRST + IMPLEMENTATION_PCR-1)

#define HMAC_SESSION_FIRST (HR_HMAC_SESSION + 0)

#define HMAC_SESSION_LAST (HMAC_SESSION_FIRST+MAX_ACTIVE_SESSIONS-1)
#define LOADED_SESSION_FIRST HMAC_SESSION_FIRST

#define LOADED_SESSION_LAST HMAC_SESSION_LAST

#define POLICY_SESSION_FIRST (HR_POLICY_SESSION + 0)

#define POLICY_SESSION_LAST (POLICY_SESSION_FIRST+MAX_ACTIVE_SESSIONS-1)
#define TRANSIENT_FIRST (HR_TRANSIENT + 0)

#define ACTIVE_SESSION_FIRST POLICY_SESSION_FIRST

#define ACTIVE_SESSION_LAST POLICY_SESSION_LAST

#define TRANSIENT_LAST (TRANSIENT_FIRST+MAX_LOADED_OBJECTS-1)
#define PERSISTENT_FIRST (HR_PERSISTENT + 0)

#define PERSISTENT_LAST (PERSISTENT_FIRST + 0x@0FFFFFFUL)
#define PLATFORM_PERSISTENT (PERSISTENT_FIRST + 0x00800000UL)
#define NV_INDEX_FIRST (HR_NV_INDEX + 0)

#define NV_INDEX_LAST (NV_INDEX_FIRST + 0Ox00FFFFFFUL)
#define PERMANENT_FIRST TPM_RH_FIRST

#define PERMANENT_LAST TPM_RH_LAST

typedef UINT32 TPM_HC;

/* Attributes */
typedef UINT32 TPMA_ALGORITHM;
enum TPMA_ALGORITHM_mask {

TPMA_ALGORITHM_asymmetric = 0x00000001,
TPMA_ALGORITHM_symmetric = 0x00000002,
TPMA_ALGORITHM_hash = Qx00000004,
TPMA_ALGORITHM_object = Qx00000008,
TPMA_ALGORITHM_signing = 0x00000010,
TPMA_ALGORITHM_encrypting = 0x00000020,
TPMA_ALGORITHM_method = 0x00000040,

Y

typedef UINT32 TPMA_OBJECT;
enum TPMA_OBJECT_mask {
TPMA_OBJECT_fixedTPM = Qx00000002,

TPMA_OBJECT_stClear = Qx00000004,
TPMA_OBJECT_fixedParent = Qx00000010,
TPMA_OBJECT_sensitiveDataOrigin = 0x00000020,
TPMA_OBJECT_usexrWithAuth = Qx00000040),
TPMA_OBJECT_adminWithPolicy = Qx00000080,
TPMA_OBJECT_derivedDataOrigin = Qx00000200,
TPMA_OBJECT_noDA = Qx00000400,
TPMA_OBJECT_encryptedDuplication= 0x00000800,
TPMA_OBJECT_restricted = Qx00010000,
TPMA_OBJECT_decrypt = Qx00020000,
TPMA_OBJECT_sign = Qx00040000,

COPYRIGHT ©2024 wolfSSL Inc. 159

5.2 wolftom/tpm2.h

5 APIREFERENCE

typedef BYTE TPMA_SESSION;

enum TPMA_SESSION_mask {
TPMA_SESSION_continueSession
TPMA_SESSION_auditExclusive
TPMA_SESSION_auditReset
TPMA_SESSION_decrypt
TPMA_SESSION_encrypt
TPMA_SESSION_audit

},

typedef BYTE TPMA_LOCALITY;
enum TPMA_LOCALITY_mask {
TPM_LOC_ZERO = 0x01,

TPM_LOC_ONE = 0x02,
TPM_LOC_TWO = 0x04,
TPM_LOC_THREE = 0x08,

TPM_LOC_FOUR = 0x10,
b

typedef UINT32 TPMA_PERMANENT;

enum TPMA_PERMANENT_mask {
TPMA_PERMANENT_ownerAuthSet
TPMA_PERMANENT_endorsementAuthSet
TPMA_PERMANENT_lockoutAuthSet
TPMA_PERMANENT_disableClear
TPMA_PERMANENT_inLockout
TPMA_PERMANENT_tpmGeneratedEPS

b

typedef UINT32 TPMA_STARTUP_CLEAR;

ox01,
0x02,
0x04,
0x20,
0x40,
0x80,

0x00000001,
0x00000002,
0x00000004 ,
0x00000100,
0x00000200,
0x00000400,

/* Using defines, not "enum TPMA_STARTUP_CLEAR_mask" to avoid pedantic error:

* "ISO C restricts enumerator values
*/
#define TPMA_STARTUP_CLEAR_phEnable
#define TPMA_STARTUP_CLEAR_shEnable
#define TPMA_STARTUP_CLEAR_ehEnable
#define TPMA_STARTUP_CLEAR_phEnableNV
#define TPMA_STARTUP_CLEAR_orderly

typedef UINT32 TPMA_MEMORY;

enum TPMA_MEMORY_mask {
TPMA_MEMORY_sharedRAM
TPMA_MEMORY_sharedNV
TPMA_MEMORY_objectCopiedToRam

b

typedef UINT32 TPMA_CC;
enum TPMA_CC_mask {

TPMA_CC_commandIndex = 0Ox0000FFFF,
TPMA_CC_nv = Qx00400000,
TPMA_CC_extensive = @x00800000,
TPMA_CC_flushed = 0x01000000,
TPMA_CC_cHandles = Qx0E000000,
TPMA_CC_rHandle = Qx10000000,

COPYRIGHT ©2024 wolfSSL Inc.

to range of 'int'"

0x00000001UL
0x00000002UL
0x00000004UL
0x00000008UL
0x80000000UL

0x00000001,
0x00000002,
0x00000004,

160

5.2 wolftom/tpm2.h 5 API REFERENCE

TPMA_CC_V = Qx20000000),
},

/* Interface Types */

typedef BYTE TPMI_YES_NO;

typedef TPM_HANDLE TPMI_DH_OBJECT;
typedef TPM_HANDLE TPMI_DH_PARENT;
typedef TPM_HANDLE TPMI_DH_PERSISTENT;
typedef TPM_HANDLE TPMI_DH_ENTITY;
typedef TPM_HANDLE TPMI_DH_PCR;

typedef TPM_HANDLE TPMI_SH_AUTH_SESSION;
typedef TPM_HANDLE TPMI_SH_HMAC;
typedef TPM_HANDLE TPMI_SH_POLICY;
typedef TPM_HANDLE TPMI_DH_CONTEXT;
typedef TPM_HANDLE TPMI_RH_HIERARCHY;
typedef TPM_HANDLE TPMI_RH_ENABLES;
typedef TPM_HANDLE TPMI_RH_HIERARCHY_AUTH;
typedef TPM_HANDLE TPMI_RH_PLATFORM;
typedef TPM_HANDLE TPMI_RH_OWNER;
typedef TPM_HANDLE TPMI_RH_ENDORSEMENT;
typedef TPM_HANDLE TPMI_RH_PROVISION;
typedef TPM_HANDLE TPMI_RH_CLEAR;
typedef TPM_HANDLE TPMI_RH_NV_AUTH;
typedef TPM_HANDLE TPMI_RH_LOCKOUT;
typedef TPM_HANDLE TPMI_RH_NV_INDEX;

typedef TPM_ALG_ID TPMI_ALG_HASH;

typedef TPM_ALG_ID TPMI_ALG_ASYM;

typedef TPM_ALG_ID TPMI_ALG_SYM;

typedef TPM_ALG_ID TPMI_ALG_SYM_OBJECT;
typedef TPM_ALG_ID TPMI_ALG_SYM_MODE;
typedef TPM_ALG_ID TPMI_ALG_KDF;

typedef TPM_ALG_ID TPMI_ALG_SIG_SCHEME;
typedef TPM_ALG_ID TPMI_ECC_KEY_EXCHANGE;

typedef TPM_ST TPMI_ST_COMMAND_TAG;

/* Structures */

typedef struct TPMS_ALGORITHM_DESCRIPTION {
TPM_ALG_ID alg;
TPMA_ALGORITHM attributes;

} TPMS_ALGORITHM_DESCRIPTION;

typedef union TPMU_HA {
BYTE sha512[TPM_SHA512_DIGEST_SIZE];
BYTE sha384[TPM_SHA384_DIGEST_SIZE];
BYTE sha256[TPM_SHA256_DIGEST_SIZE];
BYTE sha224[TPM_SHA224_DIGEST_SIZE];

COPYRIGHT ©2024 wolfSSL Inc. 161

5.2 wolftom/tpm2.h

5 APIREFERENCE

BYTE sha[TPM_SHA_DIGEST_SIZE];
BYTE md5[TPM_MD5_DIGEST_SIZE];
BYTE H[TPM_MAX_DIGEST_SIZE];

} TPMU_HA;

typedef struct TPMT_HA {
TPMI_ALG_HASH hashAlg;
TPMU_HA digest;

} TPMT_HA;

typedef struct TPM2B_DIGEST {
UINT16 size;
BYTE buffer[sizeof(TPMU_HA)];
} TPM2B_DIGEST;

typedef struct TPM2B_DATA {
UINT16 size;
BYTE buffer[sizeof (TPMT_HA)];
} TPM2B_DATA;

typedef TPM2B_DIGEST TPM2B_NONCE;
typedef TPM2B_DIGEST TPM2B_AUTH;
typedef TPM2B_DIGEST TPM2B_OPERAND;

typedef struct TPM2B_EVENT {
UINT16 size;
BYTE buffer[1024];

} TPM2B_EVENT;

typedef struct TPM2B_MAX_BUFFER {
UINT16 size;
BYTE buffer [MAX_DIGEST_BUFFER];
} TPM2B_MAX_BUFFER;

typedef struct TPM2B_MAX_NV_BUFFER {

UINT16 size;

BYTE buffer [MAX_NV_BUFFER_SIZE];

} TPM2B_MAX_NV_BUFFER;

typedef TPM2B_DIGEST TPM2B_TIMEOUT;

typedef struct TPM2B_IV {
UINT16 size;

BYTE buffer [MAX_SYM_BLOCK_SIZE];

} TPM2B_IV;

/* Names */

typedef union TPMU_NAME {
TPMT_HA digest;
TPM_HANDLE handle;

} TPMU_NAME;

COPYRIGHT ©2024 wolfSSL Inc.

162

5.2 wolftom/tpm2.h

5 APIREFERENCE

typedef struct TPM2B_NAME {
UINT16 size;
BYTE name[sizeof (TPMU_NAME)];
} TPM2B_NAME;

/* PCR */

typedef struct TPMS_PCR_SELECT {
BYTE sizeofSelect;
BYTE pcrSelect[PCR_SELECT_MIN];
} TPMS_PCR_SELECT;

typedef struct TPMS_PCR_SELECTION {
TPMI_ALG_HASH hash;
BYTE sizeofSelect;
BYTE pcrSelect[PCR_SELECT_MIN];
} TPMS_PCR_SELECTION;

/* Tickets */

typedef struct TPMT_TK_CREATION {
TPM_ST tag;
TPMI_RH_HIERARCHY hierarchy;
TPM2B_DIGEST digest;

} TPMT_TK_CREATION;

typedef struct TPMT_TK_VERIFIED {
TPM_ST tag;
TPMI_RH_HIERARCHY hierarchy;
TPM2B_DIGEST digest;

} TPMT_TK_VERIFIED;

typedef struct TPMT_TK_AUTH {
TPM_ST tag;
TPMI_RH_HIERARCHY hierarchy;
TPM2B_DIGEST digest;

} TPMT_TK_AUTH;

typedef struct TPMT_TK_HASHCHECK {
TPM_ST tag;
TPMI_RH_HIERARCHY hierarchy;
TPM2B_DIGEST digest;

} TPMT_TK_HASHCHECK;

typedef struct TPMS_ALG_PROPERTY {
TPM_ALG_ID alg;
TPMA_ALGORITHM algProperties;
} TPMS_ALG_PROPERTY;

typedef struct TPMS_TAGGED_PROPERTY {

TPM_PT property;

COPYRIGHT ©2024 wolfSSL Inc.

5.2 wolftom/tpm2.h 5 API REFERENCE

UINT32 value;
} TPMS_TAGGED_PROPERTY;

typedef struct TPMS_TAGGED_PCR_SELECT {
TPM_PT_PCR tag;
BYTE sizeofSelect;
BYTE pcrSelect[PCR_SELECT_MAX];

} TPMS_TAGGED_PCR_SELECT;

typedef struct TPMS_TAGGED_POLICY {
TPM_HANDLE handle;
TPMT_HA policyHash;

} TPMS_TAGGED_POLICY;

/* Lists */

typedef struct TPML_CC {

UINT32 count;

TPM_CC commandCodes [MAX_CAP_CC];
} TPML_CC;

typedef struct TPML_CCA {

UINT32 count;

TPMA_CC commandAttributes[MAX_CAP_CC];
} TPML_CCA;

typedef struct TPML_ALG {

UINT32 count;

TPM_ALG_ID algorithms[MAX_ALG_LIST_SIZE];
} TPML_ALG;

typedef struct TPML_HANDLE {

UINT32 count;

TPM_HANDLE handle[MAX_CAP_HANDLES];
} TPML_HANDLE;

typedef struct TPML_DIGEST {
UINT32 count;
TPM2B_DIGEST digests[8];
} TPML_DIGEST;

typedef struct TPML_DIGEST_VALUES {
UINT32 count;
TPMT_HA digests[HASH_COUNT];

} TPML_DIGEST_VALUES;

typedef struct TPML_PCR_SELECTION {

UINT32 count;

TPMS_PCR_SELECTION pcrSelections[HASH_COUNT];
} TPML_PCR_SELECTION;

typedef struct TPML_ALG_PROPERTY {
UINT32 count;

COPYRIGHT ©2024 wolfSSL Inc. 164

5.2 wolftom/tpm2.h 5 API REFERENCE

TPMS_ALG_PROPERTY algProperties[MAX_CAP_ALGS];
} TPML_ALG_PROPERTY;

typedef struct TPML_TAGGED_TPM_PROPERTY {

UINT32 count;

TPMS_TAGGED_PROPERTY tpmProperty[MAX_TPM_PROPERTIES];
} TPML_TAGGED_TPM_PROPERTY;

typedef struct TPML_TAGGED_PCR_PROPERTY {

UINT32 count;

TPMS_TAGGED_PCR_SELECT pcrProperty[MAX_PCR_PROPERTIES];
} TPML_TAGGED_PCR_PROPERTY;

typedef struct TPML_ECC_CURVE {

UINT32 count;

TPM_ECC_CURVE eccCurves [MAX_ECC_CURVES];
} TPML_ECC_CURVE;

typedef struct TPML_TAGGED_POLICY {

UINT32 count;

TPMS_TAGGED_POLICY policies[MAX_TAGGED_POLICIES];
} TPML_TAGGED_POLICY;

/* Authenticated Countdown Timers (ACT): Added v1.59 */

typedef enum {
TPMA_ACT_signaled
TPMA_ACT_preserveSignaled

} TPMA_ACT_T;

typedef UINT32 TPMA_ACT;

0x00000001,
0x00000002,

typedef struct TPMS_ACT_DATA {
TPM_HANDLE handle;
UINT32 timeout;
TPMA_ACT attributes;

} TPMS_ACT_DATA;

typedef struct TPML_ACT_DATA {

UINT32 count;

TPMS_ACT_DATA actData[MAX_ACT_DATA];
} TPML_ACT_DATA;

/* Capabilities Structures */

typedef union TPMU_CAPABILITIES {
TPML_ALG_PROPERTY algorithms; /* TPM_CAP_ALGS */
TPML_HANDLE handles; /* TPM_CAP_HANDLES */
TPML_CCA command; /* TPM_CAP_COMMANDS */
TPML_CC ppCommands; /* TPM_CAP_PP_COMMANDS */
TPML_CC auditCommands; /* TPM_CAP_AUDIT_COMMANDS */
TPML_PCR_SELECTION assignedPCR; /* TPM_CAP_PCRS */
TPML_TAGGED_TPM_PROPERTY tpmProperties; /* TPM_CAP_TPM_PROPERTIES */
TPML_TAGGED_PCR_PROPERTY pcrProperties; /* TPM_CAP_PCR_PROPERTIES */
TPML_ECC_CURVE eccCurves; /* TPM_CAP_ECC_CURVES */

COPYRIGHT ©2024 wolfSSL Inc. 165

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPML_TAGGED_POLICY authPolicies;
TPML_ACT_DATA actData;
TPM2B_MAX_BUFFER vendor;

} TPMU_CAPABILITIES;

typedef struct TPMS_CAPABILITY_DATA {
TPM_CAP capability;
TPMU_CAPABILITIES data;

} TPMS_CAPABILITY_DATA;

typedef struct TPMS_CLOCK_INFO {
UINT64 clock;
UINT32 resetCount;
UINT32 restartCount;
TPMI_YES_NO safe;

} TPMS_CLOCK_INFO;

typedef struct TPMS_TIME_INFO {
UINT64 time;
TPMS_CLOCK_INFO clockInfo;
} TPMS_TIME_INFO;

typedef struct TPMS_TIME_ATTEST_INFO {
TPMS_TIME_INFO time;
UINT64 firmwareVersion;

} TPMS_TIME_ATTEST_INFO;

typedef struct TPMS_CERTIFY_INFO {
TPM2B_NAME name;
TPM2B_NAME qualifiedName;

} TPMS_CERTIFY_INFO;

typedef struct TPMS_QUOTE_INFO {
TPML_PCR_SELECTION pcxrSelect;
TPM2B_DIGEST pcrDigest;

} TPMS_QUOTE_INFO;

typedef struct TPMS_COMMAND_AUDIT_INFO {
UINT64 auditCounter;
TPM_ALG_ID digestAlg;
TPM2B_DIGEST auditbigest;
TPM2B_DIGEST commandDigest;

} TPMS_COMMAND_AUDIT_INFO;

typedef struct TPMS_SESSION_AUDIT_INFO {
TPMI_YES_NO exclusiveSession;
TPM2B_DIGEST sessionDigest;

} TPMS_SESSION_AUDIT_INFO;

typedef struct TPMS_CREATION_INFO {
TPM2B_NAME objectName;
TPM2B_DIGEST creationHash;

} TPMS_CREATION_INFO;

COPYRIGHT ©2024 wolfSSL Inc. 166

5.2 wolftom/tpm2.h 5 API REFERENCE

typedef struct TPMS_NV_CERTIFY_INFO {
TPM2B_NAME indexName;
UINT16 offset;
TPM2B_MAX_NV_BUFFER nvContents;

} TPMS_NV_CERTIFY_INFO;

typedef TPM_ST TPMI_ST_ATTEST;
typedef union TPMU_ATTEST {

TPMS_CERTIFY_INFO certify; /* TPM_ST_ATTEST_CERTIFY */
TPMS_CREATION_INFO Ccreation; /* TPM_ST_ATTEST_CREATION */
TPMS_QUOTE_INFO quote; /* TPM_ST_ATTEST_QUOTE */

TPMS_COMMAND_AUDIT_INFO commandAudit; /* TPM_ST_ATTEST_COMMAND_AUDIT */
TPMS_SESSION_AUDIT_INFO sessionAudit; /* TPM_ST_ATTEST_SESSION_AUDIT */
TPMS_TIME_ATTEST_INFO time; /* TPM_ST_ATTEST_TIME */
TPMS_NV_CERTIFY_INFO nv, /* TPM_ST_ATTEST_NV */

} TPMU_ATTEST,

typedef struct TPMS_ATTEST {
TPM_GENERATED magic;
TPMI_ST_ATTEST type;
TPM2B_NAME qualifiedSigner;
TPM2B_DATA extraData;
TPMS_CLOCK_INFO clockInfo;
UINT64 firmwareVersion;
TPMU_ATTEST attested;

} TPMS_ATTEST;

typedef struct TPM2B_ATTEST {

UINT16 size;

BYTE attestationData[sizeof (TPMS_ATTEST)];
} TPM2B_ATTEST;

/* Algorithm Parameters and Structures */

/* Symmetric */
typedef TPM_KEY_BITS TPMI_AES_KEY_BITS;

typedef union TPMU_SYM_KEY_BITS {
TPMI_AES_KEY_BITS aes;
TPM_KEY_BITS sym;
TPMI_ALG_HASH xorr;

} TPMU_SYM_KEY_BITS;

typedef union TPMU_SYM_MODE {
TPMI_ALG_SYM_MODE aes;
TPMI_ALG_SYM_MODE sym;

} TPMU_SYM_MODE;

typedef struct TPMT_SYM_DEF {
TPMI_ALG_SYM algorithm;
TPMU_SYM_KEY_BITS keyBits;
TPMU_SYM_MODE mode;

COPYRIGHT ©2024 wolfSSL Inc. 167

5.2 wolftom/tpm2.h

5 APIREFERENCE

/*TPMU_SYM_DETAILS details;*/ /* not used */
} TPMT_SYM_DEF;

typedef TPMT_SYM_DEF TPMT_SYM_DEF_OBJECT;

typedef struct TPM2B_SYM_KEY {
UINT16 size;
BYTE buffer[MAX_SYM_KEY_BYTES];
} TPM2B_SYM_KEY;

typedef struct TPMS_SYMCIPHER_PARMS {
TPMT_SYM_DEF_OBJECT sym;
} TPMS_SYMCIPHER_PARMS;

typedef struct TPM2B_LABEL {
UINT16 size;
BYTE buffer[LABEL_MAX_BUFFER];
} TPM2B_LABEL;

typedef struct TPMS_DERIVE {
TPM2B_LABEL label;
TPM2B_LABEL context;

} TPMS_DERIVE;

typedef struct TPM2B_DERIVE {

UINT16 size;

BYTE buffer[sizeof(TPMS_DERIVE)];
} TPM2B_DERIVE;

typedef union TPMU_SENSITIVE_CREATE {
BYTE create[MAX_SYM_DATA];
TPMS_DERIVE derive;

} TPMU_SENSITIVE_CREATE;

typedef struct TPM2B_SENSITIVE_DATA {

UINT16 size;

BYTE buffer[sizeof (TPMU_SENSITIVE_CREATE)];
} TPM2B_SENSITIVE_DATA;

typedef struct TPMS_SENSITIVE_CREATE {
TPM2B_AUTH userAuth;
TPM2B_SENSITIVE_DATA data;

} TPMS_SENSITIVE_CREATE;

typedef struct TPM2B_SENSITIVE_CREATE {
UINT16 size;
TPMS_SENSITIVE_CREATE sensitive;

} TPM2B_SENSITIVE_CREATE;

typedef struct TPMS_SCHEME_HASH {
TPMI_ALG_HASH hashAlg;
} TPMS_SCHEME_HASH;

typedef struct TPMS_SCHEME_ECDAA {

COPYRIGHT ©2024 wolfSSL Inc. 168

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPMI_ALG_HASH hashAlg;
UINT16 count;
} TPMS_SCHEME_ECDAA;

typedef TPM_ALG_ID TPMI_ALG_KEYEDHASH_SCHEME;
typedef TPMS_SCHEME_HASH TPMS_SCHEME_HMAC;

typedef union TPMU_SCHEME_KEYEDHASH {
TPMS_SCHEME_HMAC hmac;
} TPMU_SCHEME_KEYEDHASH;

typedef struct TPMT_KEYEDHASH_SCHEME {
TPMI_ALG_KEYEDHASH_SCHEME scheme;
TPMU_SCHEME_KEYEDHASH details;

} TPMT_KEYEDHASH_SCHEME;

/* Asymmetric */

typedef TPMS_SCHEME_HASH TPMS_SIG_SCHEME_RSASSA;
typedef TPMS_SCHEME_HASH TPMS_SIG_SCHEME_RSAPSS;
typedef TPMS_SCHEME_HASH TPMS_SIG_SCHEME_ECDSA;

typedef TPMS_SCHEME_ECDAA TPMS_SIG_SCHEME_ECDAA;

typedef union TPMU_SIG_SCHEME {
TPMS_SIG_SCHEME_RSASSA rsassa;
TPMS_SIG_SCHEME_RSAPSS rsapss;
TPMS_SIG_SCHEME_ECDSA ecdsa;
TPMS_SIG_SCHEME_ECDAA ecdaa;
TPMS_SCHEME_HMAC hmac;
TPMS_SCHEME_HASH any;

} TPMU_SIG_SCHEME;

typedef struct TPMT_SIG_SCHEME {
TPMI_ALG_SIG_SCHEME scheme;
TPMU_SIG_SCHEME details;

} TPMT_SIG_SCHEME;

/* Encryption / Key Exchange Schemes */

typedef TPMS_SCHEME_HASH TPMS_ENC_SCHEME_OAEP;
typedef TPMS_SCHEME_HASH TPMS_KEY_SCHEME_ECDH;
typedef TPMS_SCHEME_HASH TPMS_KEY_SCHEME_ECMQV;

/* Key Derivation Schemes */

typedef TPMS_SCHEME_HASH TPMS_SCHEME_MGF1;

typedef TPMS_SCHEME_HASH TPMS_SCHEME_KDF1_SP800_56A;
typedef TPMS_SCHEME_HASH TPMS_SCHEME_KDF2;

typedef TPMS_SCHEME_HASH TPMS_SCHEME_KDF1_SP800_108;

typedef union TPMU_KDF_SCHEME {
TPMS_SCHEME_MGF1 mgfl;

COPYRIGHT ©2024 wolfSSL Inc. 169

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPMS_SCHEME_KDF1_SP80@_56A kdfl_sp800_56a;

TPMS_SCHEME_KDF2 kdf2;

TPMS_SCHEME_KDF1_SP800_108 kdfl_sp800_108;

TPMS_SCHEME_HASH any;
} TPMU_KDF_SCHEME;

typedef struct TPMT_KDF_SCHEME {
TPMI_ALG_KDF scheme;
TPMU_KDF_SCHEME details;

} TPMT_KDF_SCHEME;

typedef TPM_ALG_ID TPMI_ALG_ASYM_SCHEME;

typedef union TPMU_ASYM_SCHEME {
TPMS_KEY_SCHEME_ECDH ecdh;
TPMS_SIG_SCHEME_RSASSA rsassa;
TPMS_SIG_SCHEME_RSAPSS 1xrsapss;
TPMS_SIG_SCHEME_ECDSA ecdsa;
TPMS_ENC_SCHEME_OAEP oaep;
TPMS_SCHEME_HASH anySig;

} TPMU_ASYM_SCHEME ;

typedef struct TPMT_ASYM_SCHEME {
TPMI_ALG_ASYM_SCHEME scheme;
TPMU_ASYM_SCHEME details;

} TPMT_ASYM_SCHEME;

typedef TPM_ALG_ID TPMI_ALG_RSA_SCHEME;

typedef struct TPMT_RSA_SCHEME {
TPMI_ALG_RSA_SCHEME scheme;
TPMU_ASYM_SCHEME details;

} TPMT_RSA_SCHEME;

typedef TPM_ALG_ID TPMI_ALG_RSA_DECRYPT;

typedef struct TPMT_RSA_DECRYPT ¢
TPMI_ALG_RSA_DECRYPT scheme;
TPMU_ASYM_SCHEME details;

} TPMT_RSA_DECRYPT;

typedef struct TPM2B_PUBLIC_KEY_RSA {
UINT16 size;
BYTE buffer[MAX_RSA_KEY_BYTES];

} TPM2B_PUBLIC_KEY_RSA;

typedef TPM_KEY_BITS TPMI_RSA_KEY_BITS;
typedef struct TPM2B_PRIVATE_KEY_RSA {
UINT16 size;
BYTE buffer[MAX_RSA_KEY_BYTES/2];
} TPM2B_PRIVATE_KEY_RSA;

typedef struct TPM2B_ECC_PARAMETER {
UINT16 size;

COPYRIGHT ©2024 wolfSSL Inc. 170

5.2 wolftom/tpm2.h

5 APIREFERENCE

BYTE buffer[MAX_ECC_KEY_BYTES];
} TPM2B_ECC_PARAMETER;

typedef struct TPMS_ECC_POINT {
TPM2B_ECC_PARAMETER x;
TPM2B_ECC_PARAMETER vy;

} TPMS_ECC_POINT;

typedef struct TPM2B_ECC_POINT {
UINT16 size;
TPMS_ECC_POINT point;

} TPM2B_ECC_POINT;

typedef TPM_ALG_ID TPMI_ALG_ECC_SCHEME;
typedef TPM_ECC_CURVE TPMI_ECC_CURVE;
typedef TPMT_SIG_SCHEME TPMT_ECC_SCHEME;

typedef struct TPMS_ALGORITHM_DETAIL_ECC {
TPM_ECC_CURVE curvelD;
UINT16 keySize;
TPMT_KDF_SCHEME kdf;
TPMT_ECC_SCHEME sign;
TPM2B_ECC_PARAMETER p;
TPM2B_ECC_PARAMETER a;
TPM2B_ECC_PARAMETER b;
TPM2B_ECC_PARAMETER gX;
TPM2B_ECC_PARAMETER gVY;
TPM2B_ECC_PARAMETER n;
TPM2B_ECC_PARAMETER h;

} TPMS_ALGORITHM_DETAIL_ECC;

typedef struct TPMS_SIGNATURE_RSA {
TPMI_ALG_HASH hash;
TPM2B_PUBLIC_KEY_RSA sig;

} TPMS_SIGNATURE_RSA;

typedef TPMS_SIGNATURE_RSA TPMS_SIGNATURE_RSASSA;
typedef TPMS_SIGNATURE_RSA TPMS_SIGNATURE_RSAPSS;

typedef struct TPMS_SIGNATURE_ECC {
TPMI_ALG_HASH hash;
TPM2B_ECC_PARAMETER signatureR;
TPM2B_ECC_PARAMETER signatureS;
} TPMS_SIGNATURE_ECC;

typedef TPMS_SIGNATURE_ECC TPMS_SIGNATURE_ECDSA;
typedef TPMS_SIGNATURE_ECC TPMS_SIGNATURE_ECDAA;

typedef union TPMU_SIGNATURE {
TPMS_SIGNATURE_ECDSA ecdsa;

COPYRIGHT ©2024 wolfSSL Inc. 171

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPMS_SIGNATURE_ECDAA ecdaa;
TPMS_SIGNATURE_RSASSA rsassa;
TPMS_SIGNATURE_RSAPSS rsapss;
TPMT_HA hmac;
TPMS_SCHEME_HASH any;

} TPMU_SIGNATURE;

typedef struct TPMT_SIGNATURE {
TPMI_ALG_SIG_SCHEME sigAlg;
TPMU_SIGNATURE signature;

} TPMT_SIGNATURE;

/* Key/Secret Exchange */

typedef union TPMU_ENCRYPTED_SECRET {
BYTE ecc[sizeof(TPMS_ECC_POINT)]; /* TPM_ALG_ECC */
BYTE rsa[MAX_RSA_KEY_BYTES]; /* TPM_ALG_RSA */
BYTE symmetric[sizeof(TPM2B_DIGEST)]; /* TPM_ALG_SYMCIPHER */
BYTE keyedHash[sizeof(TPM2B_DIGEST)]; /* TPM_ALG_KEYEDHASH */
} TPMU_ENCRYPTED_SECRET,;

typedef struct TPM2B_ENCRYPTED_SECRET {
UINT16 size;
BYTE secret[sizeof (TPMU_ENCRYPTED_SECRET)];
} TPM2B_ENCRYPTED_SECRET;
/* Key/Object Complex */
typedef TPM_ALG_ID TPMI_ALG_PUBLIC;

typedef union TPMU_PUBLIC_ID {
TPM2B_DIGEST keyedHash; /* TPM_ALG_KEYEDHASH */

TPM2B_DIGEST sym; /* TPM_ALG_SYMCIPHER */
TPM2B_PUBLIC_KEY_RSA rsa; /* TPM_ALG_RSA */
TPMS_ECC_POINT ecc; /* TPM_ALG_ECC */

TPMS_DERIVE derive;
} TPMU_PUBLIC_ID;

typedef struct TPMS_KEYEDHASH_PARMS {
TPMT_KEYEDHASH_SCHEME scheme;
} TPMS_KEYEDHASH_PARMS;

typedef struct TPMS_ASYM_PARMS {
TPMT_SYM_DEF_OBJECT symmetric;
TPMT_ASYM_SCHEME scheme;

} TPMS_ASYM_PARMS;

typedef struct TPMS_RSA_PARMS {
TPMT_SYM_DEF_OBJECT symmetric;
TPMT_RSA_SCHEME scheme;
TPMI_RSA_KEY_BITS keyBits;

COPYRIGHT ©2024 wolfSSL Inc. 172

5.2 wolftom/tpm2.h

5 APIREFERENCE

UINT32 exponent,;
} TPMS_RSA_PARMS;

typedef struct TPMS_ECC_PARMS {
TPMT_SYM_DEF_OBJECT symmetric;
TPMT_ECC_SCHEME scheme;
TPMI_ECC_CURVE curvelD;
TPMT_KDF_SCHEME kdf;

} TPMS_ECC_PARMS;

typedef union TPMU_PUBLIC_PARMS {
TPMS_KEYEDHASH_PARMS keyedHashDetail;
TPMS_SYMCIPHER_PARMS symDetail;
TPMS_RSA_PARMS rsaDetail;
TPMS_ECC_PARMS eccDetail;
TPMS_ASYM_PARMS asymDetail;

} TPMU_PUBLIC_PARMS;

typedef struct TPMT_PUBLIC_PARMS {
TPMI_ALG_PUBLIC type;
TPMU_PUBLIC_PARMS parameters;
} TPMT_PUBLIC_PARMS;

typedef struct TPMT_PUBLIC {
TPMI_ALG_PUBLIC type;
TPMI_ALG_HASH nameAlg;
TPMA_OBJECT objectAttributes;
TPM2B_DIGEST authPolicy;
TPMU_PUBLIC_PARMS parameters;
TPMU_PUBLIC_ID unique;

} TPMT_PUBLIC;

typedef struct TPM2B_PUBLIC {
UINT16 size;
TPMT_PUBLIC publicArea;

} TPM2B_PUBLIC;

typedef struct TPM2B_TEMPLATE {
UINT16 size;
BYTE buffer[sizeof (TPMT_PUBLIC)];
} TPM2B_TEMPLATE;

typedef struct TPM2B_PRIVATE_VENDOR_SPECIFIC {
UINT16 size;
BYTE buffer [PRIVATE_VENDOR_SPECIFIC_BYTES];
} TPM2B_PRIVATE_VENDOR_SPECIFIC;

typedef union TPMU_SENSITIVE_COMPOSITE {

TPM2B_PRIVATE_KEY_RSA rsa;
TPM2B_ECC_PARAMETER ecc;

COPYRIGHT ©2024 wolfSSL Inc. 173

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPM2B_SENSITIVE_DATA bits; /* TPM_ALG_KEYEDHASH */
TPM2B_SYM_KEY sym; /* TPM_ALG_SYMCIPHER */

TPM2B_PRIVATE_VENDOR_SPECIFIC any;
} TPMU_SENSITIVE_COMPOSITE;

typedef struct TPMT_SENSITIVE {
TPMI_ALG_PUBLIC sensitiveType;
TPM2B_AUTH authValue;
TPM2B_DIGEST seedValue;
TPMU_SENSITIVE_COMPOSITE sensitive;
} TPMT_SENSITIVE;

typedef struct TPM2B_SENSITIVE {
UINT16 size;
TPMT_SENSITIVE sensitiveArea;
} TPM2B_SENSITIVE;

typedef struct TPMT_PRIVATE {
TPM2B_DIGEST integrityOuter;
TPM2B_DIGEST integrityInner;
TPM2B_SENSITIVE sensitive;

} TPMT_PRIVATE;

typedef struct TPM2B_PRIVATE {

UINT16 size;

BYTE buffer[sizeof(TPMT_PRIVATE)];
} TPM2B_PRIVATE;

/* Identity Object */

typedef struct TPMS_ID_OBJECT {
TPM2B_DIGEST integrityHMAC;
TPM2B_DIGEST encldentity;

} TPMS_ID_OBJECT;

typedef struct TPM2B_ID_OBJECT {
UINT16 size;

BYTE buffer[sizeof (TPMS_ID_OBJECT)];

} TPM2B_ID_OBJECT,;

/* NV Storage Structures */

typedef UINT32 TPM_NV_INDEX;

/* Using defines, not "enum TPM_NV_INDEX_mask" to avoid pedantic error:

* "ISO C restricts enumerator values to range of 'int'"

*/
#define TPM_NV_INDEX_index @x@@FFFFFFUL
#define TPM_NV_INDEX_RH_NV @xFF000000UL

COPYRIGHT ©2024 wolfSSL Inc. 174

5.2 wolftom/tpm2.h

5 APIREFERENCE

typedef

enum TPM_NT {
TPM_NT_ORDINARY = 0x0,
TPM_NT_COUNTER = 0x1,
TPM_NT_BITS = 0x2,
TPM_NT_EXTEND = 0x4,
TPM_NT_PIN_FAIL = 0x8,
TPM_NT_PIN_PASS = 0x9,

} TPM_NT;

typedef struct TPMS_NV_PIN_COUNTER_PARAMETERS {
UINT32 pinCount;
UINT32 pinLimit;
} TPMS_NV_PIN_COUNTER_PARAMETERS;

typedef

UINT32 TPMA_NV;

/* Using defines, not "enum TPMA_NV_mask" to avoid pedantic error:

* "ISO

*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

typedef

C restricts enumerator values to range of 'int

TPMA_NV_PPWRITE
TPMA_NV_OWNERWRITE
TPMA_NV_AUTHWRITE
TPMA_NV_POLICYWRITE
TPMA_NV_TPM_NT
TPMA_NV_POLICY_DELETE
TPMA_NV_WRITELOCKED
TPMA_NV_WRITEALL
TPMA_NV_WRITEDEFINE
TPMA_NV_WRITE_STCLEAR
TPMA_NV_GLOBALLOCK
TPMA_NV_PPREAD
TPMA_NV_OWNERREAD
TPMA_NV_AUTHREAD
TPMA_NV_POLICYREAD
TPMA_NV_NO_DA
TPMA_NV_ORDERLY
TPMA_NV_CLEAR_STCLEAR
TPMA_NV_READLOCKED
TPMA_NV_WRITTEN
TPMA_NV_PLATFORMCREATE
TPMA_NV_READ_STCLEAR

struct TPMS_NV_PUBLIC {

TPMI_RH_NV_INDEX nvIndex;
TPMI_ALG_HASH nameAlg;
TPMA_NV attributes;
TPM2B_DIGEST authPolicy;
UINT16 dataSize;

} TPMS_NV_PUBLIC;

0x00000001UL
0x00000002UL
0x00000004UL
0x00000008UL
0x000000FOUL
0x00000400UL
0x00000800UL
0x00001000UL
0x00002000UL
0x00004000UL
0x00008000UL
0x00010000UL
0x00020000UL
0x00040000UL
0x00080000UL
0x02000000UL
0x04000000UL
0x08000000UL
0x10000000UL
0x20000000UL
0x40000000UL
0x80000000UL

typedef struct TPM2B_NV_PUBLIC {
UINT16 size;
TPMS_NV_PUBLIC nvPublic;

} TPM2B_

NV_PUBLIC,;

COPYRIGHT ©2024 wolfSSL Inc.

175

/* index type see TPM_NT_ */

5.2 wolftom/tpm2.h

5 APIREFERENCE

typedef struct TPM2B_CONTEXT_SENSITIVE {
UINT16 size;
BYTE buffer [MAX_CONTEXT_SIZE];

} TPM2B_CONTEXT_SENSITIVE;

typedef struct TPMS_CONTEXT_DATA {
TPM2B_DIGEST integrity;
TPM2B_CONTEXT_SENSITIVE encrypted;
} TPMS_CONTEXT_DATA;

typedef struct TPM2B_CONTEXT_DATA {

UINT16 size;

BYTE buffer[sizeof (TPMS_CONTEXT_DATA)];
} TPM2B_CONTEXT_DATA;

typedef struct TPMS_CONTEXT {
UINT64 sequence;
TPMI_DH_CONTEXT savedHandle;
TPMI_RH_HIERARCHY hierarchy;
TPM2B_CONTEXT_DATA contextBlob;
} TPMS_CONTEXT;

typedef struct TPMS_CREATION_DATA {
TPML_PCR_SELECTION pcrSelect;
TPM2B_DIGEST pcrDigest;
TPMA_LOCALITY locality;
TPM_ALG_ID parentNameAlg;
TPM2B_NAME parentName;
TPM2B_NAME parentQualifiedName;
TPM2B_DATA outsideInfo;

} TPMS_CREATION_DATA;

typedef struct TPM2B_CREATION_DATA {
UINT16 size;
TPMS_CREATION_DATA creationData;
} TPM2B_CREATION_DATA;

typedef struct TPMS_AUTH_COMMAND {
TPMI_SH_AUTH_SESSION sessionHandle;
TPM2B_NONCE nonce;
TPMA_SESSION sessionAttributes;
TPM2B_AUTH hmac;

} TPMS_AUTH_COMMAND;

typedef struct TPMS_AUTH_RESPONSE {

TPM2B_NONCE nonce;
TPMA_SESSION sessionAttributes;

COPYRIGHT ©2024 wolfSSL Inc. 176

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPM2B_AUTH hmac;
} TPMS_AUTH_RESPONSE;

/* Implementation specific authorization session information

typedef struct TPM2_AUTH_SESSION {

/* this section is used for TPMS_AUTH_COMMAND */
TPMI_SH_AUTH_SESSION sessionHandle;

TPM2B_NONCE nonceCaller;

TPMA_SESSION sessionAttributes;

TPM2B_AUTH hmac;

/* additional auth data required for implementation */

TPM2B_NONCE nonceTPM;
TPMT_SYM_DEF symmetric;
TPMI_ALG_HASH authHash;
TPM2B_NAME name;
TPM2B_AUTH auth;
TPM2B_AUTH* bind;

unsigned int policyAuth :

} TPM2_AUTH_SESSION;

/* Macros to determine TPM 2.0 Session type */

#define TPM2_IS_PWD_SESSION(sessionHandle)
#define TPM2_IS_HMAC_SESSION(sessionHandle)

- HMAC_SESSION_FIRST)

#define TPM2_IS POLICY_SESSION(sessionHandle) ((sessionHandle & 0xFF000000

< POLICY_SESSION_FIRST)

/* Predetermined TPM 2.0 Indexes */

#define TPM_20_TPM_MFG_NV_SPACE

#define TPM_20_PLATFORM_MFG_NV_SPACE

#define TPM_20_OWNER_NV_SPACE
#define TPM_20_TCG_NV_SPACE

/* EK (Low Range): RSA 2048 */
#define TPM2_NV_RSA_EK_CERT
#define TPM2_NV_RSA_EK_NONCE
#define TPM2_NV_RSA_EK_TEMPLATE

/* EK (Low Range): ECC P256 */
#define TPM2_NV_ECC_EK_CERT
#define TPM2_NV_ECC_EK_NONCE
#define TPM2_NV_ECC_EK_TEMPLATE

/* EK (High Range) */

#define TPM2_NV_EK_RSA2048
#define TPM2_NV_EK_ECC_P256
#define TPM2_NV_EK_ECC_P384
#define TPM2_NV_EK_ECC_P521
#define TPM2_NV_EK_ECC_SM2
#define TPM2_NV_EK_RSA3072
#define TPM2_NV_EK_RSA4096

COPYRIGHT ©2024 wolfSSL Inc.

((TPM_HT_NV_INDEX <<
((TPM_HT_NV_INDEX <<
((TPM_HT_NV_INDEX <<
((TPM_HT_NV_INDEX <<

(TPM_20_TCG_NV_SPACE
(TPM_20_TCG_NV_SPACE
(TPM_20_TCG_NV_SPACE

(TPM_20_TCG_NV_SPACE
(TPM_20_TCG_NV_SPACE
(TPM_20_TCG_NV_SPACE

(TPM_20_TCG_NV_SPACE
(TPM_20_TCG_NV_SPACE
(TPM_20_TCG_NV_SPACE
(TPM_20_TCG_NV_SPACE
(TPM_20_TCG_NV_SPACE
(TPM_20_TCG_NV_SPACE
(TPM_20_TCG_NV_SPACE

177

+

+ +

+ 4+ 4+ + + + +

24
24
24
24

*/

1; /* if policy auth should be used */
unsigned int policyPass : 1;

) | (0x00
) | (0x01
) | (0x02
) | (0x03
0x2)

0x3)
0x4)

OxA)
0xB)
0xC)

0x12)
0x14)
0x16)
0x18)
0x1A)
0x1C)
Ox1E)

((sessionHandle) == TPM_RS_PW)
((sessionHandle & OxFFO0O0000) ==

22))
22))
22))
22))

5.2 wolftom/tpm2.h 5 API REFERENCE

/* EK Certificate Chains (©0x100 - ©x1FF) - Not common */
#define TPM2_NV_EK_CHAIN (TPM_20_TCG_NV_SPACE + 0x100)

/* Predetermined TPM 2.0 Endorsement policy auth templates */

/* SHA256 (Low Range) */

static const BYTE TPM_2@0_EK_AUTH_POLICY[] = {
@x83, ©0x71, ©0x97, 0x67, 0x44, 0x84, 0xB3, OxFS8,
Ox1A, 0x90, OxCC, ©Ox8D, 0x46, OxA5, 0xD7, 0x24,
OxFD, ©0x52, ©xD7, Ox6E, 0x06, ©0x52, 0x0B, 0x64,
OxF2, ©xAl, ©OxDA, ©0x1B, ©0x33, 0x14, ©0x69, OxAA

b

/* SHA256 (PolicyB - High Range) */

static const BYTE TPM_20@_EK_AUTH_POLICY_SHA256[] = {
OxCA, 0x3D, Ox0A, 0x99, @OxA2, ©0xB9, ©0x39, 0x06,
OxF7, ©@xA3, ©0x34, ©0x24, ©0x14, OxXEF, @OxCF, ©xB3,
OxA3, ©0x85, ©0xD4, ©0x4C, ©0xD1l, ©OxFD, ©0x45, ©x90,
0x89, ©0xD1, ©0x9B, ©0x50, 0x71, ©xCoO, ©0xB7, ©OxA0

}

#ifdef WOLFSSL_SHA384

/* SHA384 (PolicyB - High Range) */

static const BYTE TPM_2@0_EK_AUTH_POLICY_SHA384[] = {
0xB2, @Ox6E, ©0x7D, ©0x28, ©0xD1l, ©x1A, ©0x50, ©xBC,
@x53, 0xD8, ©0x82, OxBC, @OxF5, OxFD, ©Ox3A, 0Ox1A,
0x07, 0x41, 0x48, OxBB, @0x35, @0xD3, 0xB4, OxE4,
OxCB, 0x1C, ©Ox0@A, ©0xD9, 0xBD, 0OxE4, ©0x19, 0OxCA,
OxCB, ©@x47, @xBA, ©0x09, ©0x69, 0x96, 0x46, 0x15,
Ox0QF, ©Ox9F, 0xCO, 0x00, 0xF3, OxF8, Ox0QE, ©0x12

b

#endif

#ifdef WOLFSSL_SHA512

/* SHA512 (PolicyB - High Range) */

static const BYTE TPM_2@_EK_AUTH_POLICY_SHA512[] = {
0xB8, ©0x22, ©0x1C, ©OxA6, Ox9E, ©x85, 0x50, 0OxA4,
0x91, ©0x4D, OxE3, OxFA, OxA6, OxAl, 0x8C, 0x07,
0x2C, 0xCO, 0x12, 0x08, @0x07, ©Ox3A, ©0x92, 0x8D,
@x5D, @x66, @xD5, @Ox9E, OxF7, @Ox9E, 0x49, 0xA4,
0x29, 0xC4, Ox1A, 0x6B, 0x26, ©0x95, 0x71, @xD5,
Ox7E, ©xDB, ©x25, ©OxFB, ©0xDB, ©x18, ©0x38, 0x42,
0x56, 0x08, ©0xB4, 0x13, @OxCD, 0Ox61, Ox6A, OX5F,
0x6D, ©0xB5, ©0xB6, ©0x07, ©0x1A, ©0xF9, ©0x9B, OxEA

}

#endif

#ifdef WOLFTPM_PROVISIONING
/* Precalcualted IDevID/IAK Policies */
/* PolicyOR:
* 1: PolicyUser (section 7.3.6.1)
* 2: PolicyCertify (section 7.3.6.2)
* 3: PolicyActivateCredential (section 7.3.6.3)
* 4: PolicyDelegationNV (section 7.3.6.4)*/
static const BYTE TPM_2@_IDEVID_POLICY[] = {
OxAD, 0Ox6B, Ox3A, 0x22, ©0x84, OxFD, ©x69, 0x8A,
0x07, 0x10, OxBF, @x5C, @©xCl, ©xB9, @©xBD, OxF1,

COPYRIGHT ©2024 wolfSSL Inc. 178

5.2 wolftom/tpm2.h

5 APIREFERENCE

Ox5E, @x25, ©x32, OxE3, 0OxF6,
0x93, OxA6, OxA8, OxFA, 0x8D,
},

0x01, OxFA,
@xE5, 0x79,

static const BYTE TPM_20@_IAK_POLICY[] = {

0x54, ©0x37, ©0x18, ©0x23, 0x26,
OxA7, ©x97, @xD5, OxF1, 0x74,
0x41, OxF6, ©0x12, ©0x55, 0x79,
0x22, ©0xC2, 0x1D, ©x12, 0x0B,
H
#ifdef WOLFSSL_SHA384

OxE4, 0x14,
0x61, Ox5A,
Ox7C, Ox3A,
0x2D, Ox1E,

0x4B,
OxEA

OxFC,
0x16,
0x2B,
0x07

static const BYTE TPM_2@_IDEVID_POLICY_SHA384[] = {

@x4D, ©0xB1l, OxAA, 0x83, @x6D,

OxDF, Ox6E, OXxE5, 0x3A, 0x40,

0x1C, ©0x21, Ox7F, ©0x43, 0x03,

0x92, ©0x59, 0x72, ©OxBC, 0x92,

@xA5, ©OxCB, OxDF, @x6D, @xC1,

@x32, 0x9B, Ox2F, 0x15, 0x42,
b

0x0B, 0x56,
OXEF, 0x70,
0xD4, 0x46,
0x70, 0x06,
0x8C, @x4D,
@xC3, oxDD,

static const BYTE TPM_20_TIAK_POLICY_SHA384[]

0x12, ©0x9D, 0x94, OxEB, OxF8,
0x2C, Ox6E, OXEF, ©0x43, ©0xBB,
Ox2A, ©0xC8, Ox7E, ©0x52, OxBE,
OxA6, OxCE, ©0x4D, ©0x82, Ox6F,
0x67, Ox2F, ©0x51, 0x71, 0x6C,
@x5F, ©0x31, 0x3B, OxF3, 0x45,

}

#endif

#ifdef WOLFSSL_SHA512

0x45, 0x56,
@xB7, ©x57,
0x7B, 0x34,
0x74, Ox9F,
0x5C, 0xBB,
0OxAA, 0xB3,

0x15,
oxC6,
©0x95,
OxCF,
OxBE,
0x33

= {

0x65,
0x51,
0x9C,
OxCF,
0x60,
0x12

static const BYTE TPM_2@_IDEVID_POLICY_SHA512[] = {

@x7D, ©xD7, ©0x50, @Ox0F, @xD6,
0x97, 0xA6, OxAF, ©0x91, 0x0D,
Ox1E, OxF2, Ox8F, 0x66, 0Ox2F,
0x25, ©0xA4, @xCC, OxAD, OxDA,
0x38, OXE6, 0x6B, 0Ox2F, 0x3A,
OxAQ, ©0x50, ©0x3C, @OxD2, OxDA,
Ox8C, OxFE, 0Ox4F, ©0x84, 0xBO,
0x2B, ©0xB6, ©@xA9, 0x76, OxFO,
I

0xC1, ©xB9,
0xAl, 0x47,
OXEE, 0x06,
0x3B, Ox4E,
OxD5, OxDE,
OxED, ©xB1,
Ox3A, 0x8C,
0x71, OxA7,

static const BYTE TPM_2@0_IAK_POLICY_SHA512[]

0x80, 0x60, ©0xD1, OxFB, 0x31,
OxE4, Ox8A, Ox6E, Ox5F, OxEC,
OxFC, 0x1B, ©x27, Ox8F, 0xC1,
0x81, @xC3, OxXEC, ©0xA3, 0x54,
0xF9, 0x44, 0x1@, 0xC3, 0x71,
0xCC, ©0xD9, OxE3, ©Ox9A, 0xeC,
@x43, ©0x53, 0x5B, OxB5, Ox4E,
OxDE, ©xB5, OxF7, ©x83, 0x6B,

}

#endif

#endif /* WOLFTPM_PROVISIONING */

/* HAL IO Callbacks */
struct TPM2_CTX;

COPYRIGHT ©2024 wolfSSL Inc.

0x71, Ox6A,
OxEQ, ©0x88,
0x62, 0x25,
0x4C, oxD4,
@x5D, 0x56,
0xB2, 0x64,
0xA8, 0x87,
0xD9, 0xB5,

179

Ox4F,
0x30,
OxF2,
Ox6B,
OxE1,
OxEG6,
0xD2,
Ox2F

={

0x29,
0xBC,
Ox5E,
Ox4A,
0x1C,
0x6D,
0x10,
0x86

5.2 wolftom/tpm2.h 5 API REFERENCE

#ifdef WOLFTPM_SWTPM

struct wolfTPM_tcpContext {
int fd;

}

#endif /* WOLFTPM_SWTPM */

#ifdef WOLFTPM_WINAPI
#include <tbs.h>
#include <winerror.h>

struct wolfTPM_winContext {
TBS_HCONTEXT tbs_context;
b
/* may be needed with msys */
#ifndef TPM_E_COMMAND_BLOCKED
#define TPM_E_COMMAND_BLOCKED (0x80280400)
#endif

#define WOLFTPM_IS_COMMAND_UNAVAILABLE(code) ((code) ==

o (int)TPM_RC_COMMAND_CODE || (code) == (int)TPM_E_COMMAND_BLOCKED)

#else

#define WOLFTPM_IS_COMMAND_UNAVAILABLE(code) (code == (int)TPM_RC_COMMAND_CODE)
#endif /* WOLFTPM_WINAPI */

/* make sure advanced I0 is enabled for I2C */
#ifdef WOLFTPM_I2C

#undef WOLFTPM_ADV_IO

#define WOLFTPM_ADV_IO
#endif

#ifdef WOLFTPM_ADV_IO

typedef int (*TPM2HalIoCb) (struct TPM2_CTX*, INT32 isRead, UINT32 addr,
BYTE* xferBuf, UINT16 xferSz, void* userCtx);

#else

typedef int (*TPM2HalIoCb) (struct TPM2_CTX*, const BYTE* txBuf, BYTE* rxBuf,
UINT16 xferSz, void* usexCtx);

#endif

#if !'defined (WOLFTPM2_NO_WOLFCRYPT) && !defined(WC_NO_RNG) && \
ldefined (WOLFTPM2_USE_HW_RNG)
#define WOLFTPM2_USE_WOLF_RNG

#endif

#if MAX_RESPONSE_SIZE > MAX_COMMAND_SIZE
#define XFER_MAX_SIZE MAX_RESPONSE_SIZE
#else

#define XFER_MAX_SIZE MAX_COMMAND_SIZE
#endif

typedef struct TPM2_CTX {
TPM2HalIoCb ioCb;
void* userCtx;
#ifdef WOLFTPM_SWTPM
struct wolfTPM_tcpContext tcpCtx;

COPYRIGHT ©2024 wolfSSL Inc. 180

5.2 wolftom/tpm2.h 5 API REFERENCE

#endif
#ifdef WOLFTPM_WINAPI
struct wolfTPM_winContext winCtx;
#endif
#ifndef WOLFTPM2_NO_WOLFCRYPT
#ifdef WOLFTPM2_USE_WOLF_RNG
WC_RNG rng;
#endif
#endif /* IWOLFTPM2_NO_WOLFCRYPT */

/* TPM TIS Info */
int locality;
word32 caps;
word32 did_vid;

/* Pointer to current TPM auth sessions */
TPM2_AUTH_SESSION* session;

/* Command / Response Buffer */
byte cmdBuf[XFER_MAX_SIZE];

byte rid;
/* Informational Bits - use unsigned int for best compiler compatibility */
#ifndef WOLFTPM2_NO_WOLFCRYPT
#ifndef WC_NO_RNG
unsigned int rngInit:1;
#endif
#endif
#ifdef WOLFTPM_LINUX_DEV
int fd;
#endif
} TPM2_CTX;

/* TPM Specification Functions */
typedef struct {
TPM_SU startupType;
} Startup_In;
WOLFTPM_API TPM_RC TPM2_Startup(Startup_In* in);

typedef struct {
TPM_SU shutdownType;
} Shutdown_In;
WOLFTPM_API TPM_RC TPM2_Shutdown(Shutdown_In* in);

typedef struct {
TPM_CAP capability;
UINT32 property,;
UINT32 propertyCount;
} GetCapability_In;
typedef struct {
TPMI_YES_NO moreData;
TPMS_CAPABILITY_DATA capabilityData;

COPYRIGHT ©2024 wolfSSL Inc. 181

5.2 wolftom/tpm2.h 5 API REFERENCE

} GetCapability_Out;
WOLFTPM_API TPM_RC TPM2_GetCapability(GetCapability_In* in,
GetCapability_Out* out);

typedef struct {
TPMI_YES_NO fullTest;
} SelfTest_In;
WOLFTPM_API TPM_RC TPM2_SelfTest(SelfTest_In* in);

typedef struct {
TPML_ALG toTest;

} IncrementalSelfTest_In;

typedef struct {
TPML_ALG toDolist;

} IncrementalSelfTest_Out;

WOLFTPM_API TPM_RC TPM2_IncrementalSelfTest(IncrementalSelfTest_In* in,
IncrementalSelfTest_Out* out);

typedef struct {
TPM2B_MAX_BUFFER outData;
UINT16 testResult;
} GetTestResult_Out;
WOLFTPM_API TPM_RC TPM2_GetTestResult(GetTestResult_Out* out);

typedef struct {
UINT16 bytesRequested;
} GetRandom_In;
typedef struct {
TPM2B_DIGEST randomBytes;
} GetRandom_Out;
WOLFTPM_API TPM_RC TPM2_GetRandom(GetRandom_In* in, GetRandom_Out* out);

typedef struct {
TPM2B_SENSITIVE_DATA inData;
} StirRandom_In;
WOLFTPM_API TPM_RC TPM2_StirRandom(StirRandom_In* in);

typedef struct {
TPML_PCR_SELECTION pcrSelectionln;
} PCR_Read_In;
typedef struct {
UINT32 pcrUpdateCounter;
TPML_PCR_SELECTION pcrSelectionOut;
TPML_DIGEST pcrValues;
} PCR_Read_Out;
WOLFTPM_API TPM_RC TPM2_PCR_Read(PCR_Read_In* in, PCR_Read_Out* out);

typedef struct {
TPMI_DH_PCR pcrHandle;
TPML_DIGEST_VALUES digests;
} PCR_Extend_In;

COPYRIGHT ©2024 wolfSSL Inc. 182

5.2 wolftom/tpm2.h

5 APIREFERENCE

WOLFTPM_API TPM_RC TPM2_PCR_Extend(PCR_Extend_In* in);

typedef struct {
TPMI_DH_OBJECT parentHandle;
TPM2B_SENSITIVE_CREATE inSensitive;
TPM2B_PUBLIC inPublic;
TPM2B_DATA outsideInfo;
TPML_PCR_SELECTION creationPCR;

} Create_In;

typedef struct {
TPM2B_PRIVATE outPrivate;
TPM2B_PUBLIC outPublic;
TPM2B_CREATION_DATA creationData;
TPM2B_DIGEST creationHash;
TPMT_TK_CREATION creationTicket;

} Create_Out;

WOLFTPM_API TPM_RC TPM2_Create(Create_In* in, Create_Out* out);

typedef struct {
TPMI_DH_OBJECT parentHandle;
TPM2B_SENSITIVE_CREATE inSensitive;
TPM2B_PUBLIC inPublic;

} CreatelLoaded_In;

typedef struct {
TPM_HANDLE objectHandle;
TPM2B_PRIVATE outPrivate;
TPM2B_PUBLIC outPublic;
TPM2B_NAME name;

} CreatelLoaded_Out;

WOLFTPM_API TPM_RC TPM2_Createloaded(CreatelLoaded_In* in,
CreatelLoaded_Out* out);

typedef struct {
TPMI_RH_HIERARCHY primaryHandle;
TPM2B_SENSITIVE_CREATE inSensitive;
TPM2B_PUBLIC inPublic;
TPM2B_DATA outsideInfo;
TPML_PCR_SELECTION creationPCR;

} CreatePrimary_In;

typedef struct {
TPM_HANDLE objectHandle;
TPM2B_PUBLIC outPublic;
TPM2B_CREATION_DATA creationData;
TPM2B_DIGEST creationHash;
TPMT_TK_CREATION creationTicket;
TPM2B_NAME name;

} CreatePrimary_Out;

WOLFTPM_API TPM_RC TPM2_CreatePrimary(CreatePrimary_In* in,
CreatePrimary_Out* out);

typedef struct {
TPMI_DH_OBJECT parentHandle;

COPYRIGHT ©2024 wolfSSL Inc. 183

5.2 wolftom/tpm2.h

5 APIREFERENCE

TPM2B_PRIVATE inPrivate;
TPM2B_PUBLIC inPublic;
} Load_In;
typedef struct {
TPM_HANDLE objectHandle;
TPM2B_NAME name;
} Load_Out;
WOLFTPM_API TPM_RC TPM2_Load(Load_In* in, Load_Out* out);

typedef struct {
TPMI_DH_CONTEXT flushHandle;
} FlushContext_In;
WOLFTPM_API TPM_RC TPM2_FlushContext(FlushContext_In* in);

typedef struct {
TPMI_DH_OBJECT itemHandle;
} Unseal_In;
typedef struct {
TPM2B_SENSITIVE_DATA outData;
} Unseal_Out;
WOLFTPM_API TPM_RC TPM2_Unseal(Unseal_In* in, Unseal_Out* out);

typedef struct {
TPMI_DH_OBJECT tpmKey;
TPMI_DH_ENTITY bind;
TPM2B_NONCE nonceCaller;
TPM2B_ENCRYPTED_SECRET encryptedSalt;
TPM_SE sessionType;
TPMT_SYM_DEF symmetric;
TPMI_ALG_HASH authHash;

} StartAuthSession_In;

typedef struct {
TPMI_SH_AUTH_SESSION sessionHandle;
TPM2B_NONCE nonceTPM;

} StartAuthSession_Out;

WOLFTPM_API TPM_RC TPM2_StartAuthSession(StartAuthSession_In* in,
StartAuthSession_Out* out);

typedef struct {
TPMI_SH_POLICY sessionHandle;
} PolicyRestart_In;
WOLFTPM_API TPM_RC TPM2_PolicyRestart(PolicyRestart_In* in);

typedef struct {
TPM2B_SENSITIVE inPrivate;
TPM2B_PUBLIC inPublic;
TPMI_RH_HIERARCHY hierarchy;
} LoadExternal_In;
typedef struct {
TPM_HANDLE objectHandle;

COPYRIGHT ©2024 wolfSSL Inc. 184

5.2 wolftom/tpm2.h 5 API REFERENCE

TPM2B_NAME name;

} LoadExternal_Out;

WOLFTPM_API TPM_RC TPM2_lLoadExternal(LoadExternal_In* in,
LoadExternal_Out* out);

typedef struct {
TPMI_DH_OBJECT objectHandle;
} ReadPublic_In;
typedef struct {
TPM2B_PUBLIC outPublic;
TPM2B_NAME name;
TPM2B_NAME qualifiedName;
} ReadPublic_Out;
WOLFTPM_API TPM_RC TPM2_ReadPublic(ReadPublic_In* in, ReadPublic_Out* out);

typedef struct {
TPMI_DH_OBJECT activateHandle;
TPMI_DH_OBJECT keyHandle;
TPM2B_ID_OBJECT credentialBlob;
TPM2B_ENCRYPTED_SECRET secret;
} ActivateCredential_In;
typedef struct {
TPM2B_DIGEST certInfo;
} ActivateCredential_Out;
WOLFTPM_API TPM_RC TPM2_ActivateCredential(ActivateCredential_In* in,
ActivateCredential_Out* out);

typedef struct {
TPMI_DH_OBJECT handle;
TPM2B_DIGEST credential;
TPM2B_NAME objectName;

} MakeCredential_In;

typedef struct {
TPM2B_ID_OBJECT credentialBlob;
TPM2B_ENCRYPTED_SECRET secret;

} MakeCredential_Out;

WOLFTPM_API TPM_RC TPM2_MakeCredential (MakeCredential_In* in,
MakeCredential Out* out);

typedef struct {
TPMI_DH_OBJECT objectHandle;
TPMI_DH_OBJECT parentHandle;
TPM2B_AUTH newAuth;
} ObjectChangeAuth_In;
typedef struct {
TPM2B_PRIVATE outPrivate;
} ObjectChangeAuth_Out;
WOLFTPM_API TPM_RC TPM2_ObjectChangeAuth(ObjectChangeAuth_In* in,
ObjectChangeAuth_Out* out);

typedef struct {
TPMI_DH_OBJECT objectHandle;
TPMI_DH_OBJECT newParentHandle;

COPYRIGHT ©2024 wolfSSL Inc. 185

5.2 wolftom/tpm2.h 5 API REFERENCE

TPM2B_DATA encryptionKeyIn;
TPMT_SYM_DEF_OBJECT symmetricAlg;
} Duplicate_In;
typedef struct {
TPM2B_DATA encryptionKeyOut;
TPM2B_PRIVATE duplicate;
TPM2B_ENCRYPTED_SECRET outSymSeed;
} Duplicate_Out;
WOLFTPM_API TPM_RC TPM2_Duplicate(Duplicate_In* in, Duplicate_Out* out);

typedef struct {
TPMI_DH_OBJECT oldParent;
TPMI_DH_OBJECT newParent;
TPM2B_PRIVATE inDuplicate;
TPM2B_NAME name;
TPM2B_ENCRYPTED_SECRET inSymSeed;

} Rewrap_In;

typedef struct {
TPM2B_PRIVATE outDuplicate;
TPM2B_ENCRYPTED_SECRET outSymSeed;

} Rewrap_Out;

WOLFTPM_API TPM_RC TPM2_Rewrap(Rewrap_In* in, Rewrap_Out* out);

typedef struct {
TPMI_DH_OBJECT parentHandle;
TPM2B_DATA encryptionKey;
TPM2B_PUBLIC objectPublic;
TPM2B_PRIVATE duplicate;
TPM2B_ENCRYPTED_SECRET inSymSeed;
TPMT_SYM_DEF_OBJECT symmetricAlg;

} Import_In;

typedef struct {
TPM2B_PRIVATE outPrivate;

} Import_Out;

WOLFTPM_API TPM_RC TPM2_Import(Import_In* in, Import_Out* out);

typedef struct {
TPMI_DH_OBJECT keyHandle;
TPM2B_PUBLIC_KEY_RSA message;
TPMT_RSA_DECRYPT inScheme;
TPM2B_DATA 1label;
} RSA_Encrypt_In;
typedef struct {
TPM2B_PUBLIC_KEY_RSA outData;
} RSA_Encrypt_Out;
WOLFTPM_API TPM_RC TPM2_RSA_Encrypt(RSA_Encrypt_In* in, RSA_Encrypt_Out* out);

typedef struct {
TPMI_DH_OBJECT keyHandle;
TPM2B_PUBLIC_KEY_RSA ciphexText;
TPMT_RSA_DECRYPT inScheme;
TPM2B_DATA 1label;

} RSA_Decrypt_In;

COPYRIGHT ©2024 wolfSSL Inc. 186

5.2 wolftom/tpm2.h

5 APIREFERENCE

typedef struct {
TPM2B_PUBLIC_KEY_RSA message;
} RSA_Decrypt_Out;

WOLFTPM_API TPM_RC TPM2_RSA_Decrypt(RSA_Decrypt_In* in, RSA_Decrypt_Out* out);

typedef struct {
TPMI_DH_OBJECT keyHandle;

} ECDH_KeyGen_In;

typedef struct {
TPM2B_ECC_POINT zPoint;
TPM2B_ECC_POINT pubPoint;

} ECDH_KeyGen_Out;

WOLFTPM_API TPM_RC TPM2_ECDH_KeyGen(ECDH_KeyGen_In* in, ECDH_KeyGen_Out* out);

typedef struct {
TPMI_DH_OBJECT keyHandle;
TPM2B_ECC_POINT inPoint;

} ECDH_ZGen_In;

typedef struct {
TPM2B_ECC_POINT outPoint;

} ECDH_ZGen_Out;

WOLFTPM_API TPM_RC TPM2_ECDH_ZGen(ECDH_ZGen_In* in, ECDH_ZGen_Out* out);

typedef struct {
TPMI_ECC_CURVE curvelD;
} ECC_Parameters_In;
typedef struct {
TPMS_ALGORITHM_DETAIL_ECC parameters;
} ECC_Parameters_Out;

WOLFTPM_API TPM_RC TPM2_ECC_Parameters(ECC_Parameters_In* in,

ECC_Parameters_Out* out);

typedef struct {
TPMI_DH_OBJECT keyA;
TPM2B_ECC_POINT inQsB;
TPM2B_ECC_POINT inQeB;
TPMI_ECC_KEY_EXCHANGE inScheme;
UINT16 counter;

} ZGen_2Phase_In;

typedef struct {
TPM2B_ECC_POINT outZ1;
TPM2B_ECC_POINT outZ2;

} ZGen_2Phase_Out;

WOLFTPM_API TPM_RC TPM2_ZGen_2Phase(ZGen_2Phase_In* in, ZGen_2Phase_Out* out);

typedef struct {
TPMI_DH_OBJECT keyHandle;
TPMI_YES_NO decrypt;
TPMI_ALG_SYM_MODE mode;
TPM2B_1IV ivIn;
TPM2B_MAX_BUFFER inData;

COPYRIGHT ©2024 wolfSSL Inc. 187

5.2 wolftom/tpm2.h

5 APIREFERENCE

} EncryptDecrypt_In;

typedef struct {
TPM2B_MAX_BUFFER outData;
TPM2B_IV ivOut;

} EncryptDecrypt_Out;

WOLFTPM_API TPM_RC TPM2_EncryptDecrypt(EncryptDecrypt_In* in,
EncryptDecrypt_Out* out);

typedef struct {
TPMI_DH_OBJECT keyHandle;
TPM2B_MAX_BUFFER inData;
TPMI_YES_NO decrypt;
TPMI_ALG_SYM_MODE mode;
TPM2B_1IV ivIn;

} EncryptDecrypt2_In;

typedef struct {
TPM2B_MAX_BUFFER outData;
TPM2B_IV ivOut;

} EncryptDecrypt2_Out;

WOLFTPM_API TPM_RC TPM2_EncryptDecrypt2(EncryptDecrypt2_In* in,
EncryptDecrypt2_Out* out);

typedef struct {
TPM2B_MAX_BUFFER data;
TPMI_ALG_HASH hashAlg;
TPMI_RH_HIERARCHY hierarchy;
} Hash_In;
typedef struct {
TPM2B_DIGEST outHash;
TPMT_TK_HASHCHECK validation;
} Hash_Out;
WOLFTPM_API TPM_RC TPM2_Hash(Hash_In* in, Hash_Out* out);

typedef struct {
TPMI_DH_OBJECT handle;
TPM2B_MAX_BUFFER buffer;
TPMI_ALG_HASH hashAlg;
} HMAC_In;
typedef struct {
TPM2B_DIGEST outHMAC;
} HMAC_Out;
WOLFTPM_API TPM_RC TPM2_HMAC(HMAC_In* in, HMAC_Out* out);

typedef struct {
TPMI_DH_OBJECT handle;
TPM2B_AUTH auth;
TPMI_ALG_HASH hashAlg;
} HMAC_Start_1In;
typedef struct {
TPMI_DH_OBJECT sequenceHandle;
} HMAC_Start_Out;

WOLFTPM_API TPM_RC TPM2_HMAC_Start(HMAC_Start_In* in, HMAC_Start_Out* out);

COPYRIGHT ©2024 wolfSSL Inc. 188

5.2 wolftom/tpm2.h 5 API REFERENCE

typedef struct {
TPM2B_AUTH auth;
TPMI_ALG_HASH hashAlg;
} HashSequenceStart_In;
typedef struct {
TPMI_DH_OBJECT sequenceHandle;
} HashSequenceStart_Out;
WOLFTPM_API TPM_RC TPM2_HashSequenceStart(HashSequenceStart_In* in,
HashSequenceStart_Out* out);

typedef struct {
TPMI_DH_OBJECT sequenceHandle;
TPM2B_MAX_BUFFER buffer;
} SequenceUpdate_In;
WOLFTPM_API TPM_RC TPM2_SequenceUpdate(SequenceUpdate_In* in);

typedef struct {
TPMI_DH_OBJECT sequenceHandle;
TPM2B_MAX_BUFFER buffer;
TPMI_RH_HIERARCHY hierarchy;
} SequenceComplete_In;
typedef struct {
TPM2B_DIGEST result;
TPMT_TK_HASHCHECK validation;
} SequenceComplete_Out;
WOLFTPM_API TPM_RC TPM2_SequenceComplete(SequenceComplete_In* in,
SequenceComplete_Out* out);

typedef struct {
TPMI_DH_PCR pcrHandle;
TPMI_DH_OBJECT sequenceHandle;
TPM2B_MAX_BUFFER buffer;
} EventSequenceComplete_In;
typedef struct {
TPML_DIGEST_VALUES results;
} EventSequenceComplete_Out;
WOLFTPM_API TPM_RC TPM2_EventSequenceComplete(EventSequenceComplete_In* in,
EventSequenceComplete_Out* out);

typedef struct {
TPMI_DH_OBJECT objectHandle;
TPMI_DH_OBJECT signHandle;
TPM2B_DATA qualifyingData;
TPMT_SIG_SCHEME inScheme;

} Certify_In;

typedef struct {
TPM2B_ATTEST certifyInfo;
TPMT_SIGNATURE signature;

} Certify_Out;

WOLFTPM_API TPM_RC TPM2_Certify(Certify_In* in, Certify_Out* out);

COPYRIGHT ©2024 wolfSSL Inc. 189

5.2 wolftom/tpm2.h 5 API REFERENCE

typedef struct {
TPMI_DH_OBJECT signHandle;
TPMI_DH_OBJECT objectHandle;
TPM2B_DATA qualifyingData;
TPM2B_DIGEST creationHash;
TPMT_SIG_SCHEME inScheme;
TPMT_TK_CREATION creationTicket;

} CertifyCreation_In;

typedef struct {
TPM2B_ATTEST certifyInfo;
TPMT_SIGNATURE signature;

} CertifyCreation_Out;

WOLFTPM_API TPM_RC TPM2_CertifyCreation(CertifyCreation_In* in,

< CertifyCreation_Out* out);

typedef struct {
TPMI_DH_OBJECT signHandle;
TPM2B_DATA qualifyingData;
TPMT_SIG_SCHEME inScheme;
TPML_PCR_SELECTION PCRselect;

} Quote_In;

typedef struct {
TPM2B_ATTEST quoted;
TPMT_SIGNATURE signature;

} Quote_Out;

WOLFTPM_API TPM_RC TPM2_Quote(Quote_In* in, Quote_Out* out);

typedef struct {
TPMI_RH_ENDORSEMENT privacyAdminHandle;
TPMI_DH_OBJECT signHandle;
TPMI_SH_HMAC sessionHandle;
TPM2B_DATA qualifyingData;
TPMT_SIG_SCHEME inScheme;

} GetSessionAuditDigest_In;

typedef struct {
TPM2B_ATTEST auditInfo;
TPMT_SIGNATURE signature;

} GetSessionAuditDigest_Out;

WOLFTPM_API TPM_RC TPM2_GetSessionAuditDigest(GetSessionAuditDigest_In* in,
GetSessionAuditDigest_Out* out);

typedef struct {
TPMI_RH_ENDORSEMENT privacyHandle;
TPMI_DH_OBJECT signHandle;
TPM2B_DATA qualifyingData;
TPMT_SIG_SCHEME inScheme;

} GetCommandAuditDigest_In;

typedef struct {
TPM2B_ATTEST auditInfo;
TPMT_SIGNATURE signature;

} GetCommandAuditDigest_Out;

COPYRIGHT ©2024 wolfSSL Inc. 190

5.2 wolftom/tpm2.h 5 API REFERENCE

WOLFTPM_API TPM_RC TPM2_GetCommandAuditDigest(GetCommandAuditDigest_In* in,
GetCommandAuditDigest_Out* out);

typedef struct {
TPMI_RH_ENDORSEMENT privacyAdminHandle;
TPMI_DH_OBJECT signHandle;
TPM2B_DATA qualifyingData;
TPMT_SIG_SCHEME inScheme;

} GetTime_In;

typedef struct {
TPM2B_ATTEST timelInfo;
TPMT_SIGNATURE signature;

} GetTime_Out;

WOLFTPM_API TPM_RC TPM2_GetTime(GetTime_In* in, GetTime_Out* out);

typedef struct {
TPMI_DH_OBJECT signHandle;
TPM2B_ECC_POINT P1;
TPM2B_SENSITIVE_DATA s2;
TPM2B_ECC_PARAMETER y2;

} Commit_In;

typedef struct {
TPM2B_ECC_POINT K;
TPM2B_ECC_POINT L;
TPM2B_ECC_POINT E;
UINT16 counter;

} Commit_Out;

WOLFTPM_API TPM_RC TPM2_Commit(Commit_In* in, Commit_Out* out);

typedef struct {
TPMI_ECC_CURVE curvelD;
} EC_Ephemeral_In;
typedef struct {
TPM2B_ECC_POINT Q;
UINT16 counter;
} EC_Ephemeral_Out;
WOLFTPM_API TPM_RC TPM2_EC_Ephemeral (EC_Ephemeral_In* in,
EC_Ephemeral_Out* out);

typedef struct {
TPMI_DH_OBJECT keyHandle;
TPM2B_DIGEST digest;
TPMT_SIGNATURE signature;
} VerifySignature_In;
typedef struct {
TPMT_TK_VERIFIED validation;
} VerifySignature_Out;
WOLFTPM_API TPM_RC TPM2_VerifySignature(VerifySignature_In* in,
VerifySignature_Out* out);

typedef struct {
TPMI_DH_OBJECT keyHandle;

COPYRIGHT ©2024 wolfSSL Inc. 191

5.2 wolftom/tpm2.h 5 API REFERENCE

TPM2B_DIGEST digest;
TPMT_SIG_SCHEME inScheme;
TPMT_TK_HASHCHECK validation;
} Sign_In;
typedef struct {
TPMT_SIGNATURE signature;
} Sign_Out;
WOLFTPM_API TPM_RC TPM2_Sign(Sign_In* in, Sign_Out* out);

typedef struct {
TPMI_RH_PROVISION auth;
TPMI_ALG_HASH auditAlg;
TPML_CC setlist;
TPML_CC clearlist;
} SetCommandCodeAuditStatus_In;
WOLFTPM_API TPM_RC TPM2_SetCommandCodeAuditStatus(
SetCommandCodeAuditStatus_In* in);

typedef struct {
TPMI_DH_PCR pcrHandle;
TPM2B_EVENT eventData;
} PCR_Event_In;
typedef struct {
TPML_DIGEST_VALUES digests;
} PCR_Event_Out;
WOLFTPM_API TPM_RC TPM2_PCR_Event (PCR_Event_In* in, PCR_Event_Out* out);

typedef struct {
TPMI_RH_PLATFORM authHandle;
TPML_PCR_SELECTION pcrAllocation;
} PCR_Allocate_In;
typedef struct {
TPMI_YES_NO allocationSuccess;
UINT32 maxPCR;
UINT32 sizeNeeded;
UINT32 sizeAvailable;
} PCR_Allocate_Out;
WOLFTPM_API TPM_RC TPM2_PCR_Allocate(PCR_Allocate_In* in,
PCR_Allocate_Out* out);

typedef struct {
TPMI_RH_PLATFORM authHandle;
TPM2B_DIGEST authPolicy;
TPMI_ALG_HASH hashAlg;
TPMI_DH_PCR pcxNum;
} PCR_SetAuthPolicy_In;
WOLFTPM_API TPM_RC TPM2_PCR_SetAuthPolicy(PCR_SetAuthPolicy_In* in);

typedef struct {

TPMI_DH_PCR pcrHandle;
TPM2B_DIGEST auth;

COPYRIGHT ©2024 wolfSSL Inc. 192

5.2 wolftom/tpm2.h 5 API REFERENCE

} PCR_SetAuthValue_In;
WOLFTPM_API TPM_RC TPM2_PCR_SetAuthValue(PCR_SetAuthValue_In* in);

typedef struct {
TPMI_DH_PCR pcrHandle;
} PCR_Reset_In;
WOLFTPM_API TPM_RC TPM2_PCR_Reset(PCR_Reset_In* in);

typedef struct {
TPMI_DH_OBJECT authObject;
TPMI_SH_POLICY policySession;
TPM2B_NONCE nonceTPM;
TPM2B_DIGEST cpHashA;
TPM2B_NONCE policyRef;
INT32 expiration;
TPMT_SIGNATURE auth;

} PolicySigned_In;

typedef struct {
TPM2B_TIMEOUT timeout;
TPMT_TK_AUTH policyTicket;

} PolicySigned_Out;

WOLFTPM_API TPM_RC TPM2_PolicySigned(PolicySigned_In* in,
PolicySigned_Out* out);

typedef struct {
TPMI_DH_ENTITY authHandle;
TPMI_SH_POLICY policySession;
TPM2B_NONCE nonceTPM;
TPM2B_DIGEST cpHashA;
TPM2B_NONCE policyRef;
INT32 expiration;

} PolicySecret_In;

typedef struct {
TPM2B_TIMEOUT timeout;
TPMT_TK_AUTH policyTicket;

} PolicySecret_Out;

WOLFTPM_API TPM_RC TPM2_PolicySecret(PolicySecret_In* in,
PolicySecret_Out* out);

typedef struct {
TPMI_SH_POLICY policySession;
TPM2B_TIMEOUT timeout;
TPM2B_DIGEST cpHashA;
TPM2B_NONCE policyRef;
TPM2B_NAME authName;
TPMT_TK_AUTH ticket;
} PolicyTicket_In;
WOLFTPM_API TPM_RC TPM2_PolicyTicket(PolicyTicket_In* in);

typedef struct {
TPMI_SH_POLICY policySession;
TPML_DIGEST pHashList;

} PolicyOR_In;

COPYRIGHT ©2024 wolfSSL Inc. 193

5.2 wolftom/tpm2.h 5 API REFERENCE

WOLFTPM_API TPM_RC TPM2_PolicyOR(PolicyOR_In* in);

typedef struct {
TPMI_SH_POLICY policySession;
TPM2B_DIGEST pcrDigest;
TPML_PCR_SELECTION pcrs;
} PolicyPCR_In;
WOLFTPM_API TPM_RC TPM2_PolicyPCR(PolicyPCR_In* in);

typedef struct {
TPMI_SH_POLICY policySession;
TPMA_LOCALITY locality;
} PolicylLocality_In;
WOLFTPM_API TPM_RC TPM2_Policylocality(PolicyLocality_In* in);

typedef struct {
TPMI_RH_NV_AUTH authHandle;
TPMI_RH_NV_INDEX nvIndex;
TPMI_SH_POLICY policySession;
TPM2B_OPERAND operandB;
UINT16 offset;
TPM_EO operation;
} PolicyNV_In;
WOLFTPM_API TPM_RC TPM2_PolicyNV(PolicyNV_In* in);

typedef struct {
TPMI_SH_POLICY policySession;
TPM2B_OPERAND operandB;
UINT16 offset;
TPM_EO operation;
} PolicyCounterTimer_In;
WOLFTPM_API TPM_RC TPM2_PolicyCounterTimer(PolicyCounterTimer_In* in);

typedef struct {
TPMI_SH_POLICY policySession;
TPM_CC code;
} PolicyCommandCode_In;
WOLFTPM_API TPM_RC TPM2_PolicyCommandCode(PolicyCommandCode_In* in);

typedef struct {
TPMI_SH_POLICY policySession;
} PolicyPhysicalPresence_In;
WOLFTPM_API TPM_RC TPM2_PolicyPhysicalPresence(PolicyPhysicalPresence_In* in);

typedef struct {
TPMI_SH_POLICY policySession;
TPM2B_DIGEST cpHashA;
} PolicyCpHash_In;
WOLFTPM_API TPM_RC TPM2_PolicyCpHash(PolicyCpHash_In* in);

typedef struct {
TPMI_SH_POLICY policySession;
TPM2B_DIGEST nameHash;

} PolicyNameHash_In;

COPYRIGHT ©2024 wolfSSL Inc. 194

5.2 wolftom/tpm2.h 5 API REFERENCE

WOLFTPM_API TPM_RC TPM2_PolicyNameHash(PolicyNameHash_In* in);

typedef struct {
TPMI_SH_POLICY policySession;
TPM2B_NAME objectName;
TPM2B_NAME newParentName;
TPMI_YES_NO includeObject;
} PolicyDuplicationSelect_In;
WOLFTPM_API TPM_RC TPM2_PolicyDuplicationSelect(PolicyDuplicationSelect_In*
< in);

typedef struct {
TPMI_SH_POLICY policySession;
TPM2B_DIGEST approvedPolicy;
TPM2B_NONCE policyRef;
TPM2B_NAME keySign;
TPMT_TK_VERIFIED checkTicket;
} PolicyAuthorize_In;
WOLFTPM_API TPM_RC TPM2_PolicyAuthorize(PolicyAuthorize_In* in);

typedef struct {
TPMI_SH_POLICY policySession;
} PolicyAuthValue_In;
WOLFTPM_API TPM_RC TPM2_PolicyAuthValue(PolicyAuthValue_In* in);

typedef struct {
TPMI_SH_POLICY policySession;
} PolicyPassword_In;
WOLFTPM_API TPM_RC TPM2_PolicyPassword(PolicyPassword_In* in);

typedef struct {
TPMI_SH_POLICY policySession;
} PolicyGetDigest_In;
typedef struct {
TPM2B_DIGEST policyDigest;
} PolicyGetDigest_Out;
WOLFTPM_API TPM_RC TPM2_PolicyGetDigest(PolicyGetDigest_In* in,
< PolicyGetDigest_Out* out);

typedef struct {
TPMI_SH_POLICY policySession;
TPMI_YES_NO writtenSet;
} PolicyNvWritten_In;
WOLFTPM_API TPM_RC TPM2_PolicyNvWritten(PolicyNvWritten_In* in);

typedef struct {
TPMI_SH_POLICY policySession;
TPM2B_DIGEST templateHash;
} PolicyTemplate_In;
WOLFTPM_API TPM_RC TPM2_PolicyTemplate(PolicyTemplate_In* in);

typedef struct {

TPMI_RH_NV_AUTH authHandle;
TPMI_RH_NV_INDEX nvIndex;

COPYRIGHT ©2024 wolfSSL Inc. 195

5.2 wolftom/tpm2.h 5 API REFERENCE

TPMI_SH_POLICY policySession;
} PolicyAuthorizeNV_In;
WOLFTPM_API TPM_RC TPM2_PolicyAuthorizeNV(PolicyAuthorizeNV_In* in);

WOLFTPM_API void _TPM_Hash_Start(void);
WOLFTPM_API void _TPM_Hash_Data(UINT32 dataSize, BYTE *data);
WOLFTPM_API void _TPM_Hash_End(void);

typedef struct {
TPMI_RH_HIERARCHY authHandle;
TPMI_RH_ENABLES enable;
TPMI_YES_NO state;
} HierarchyControl_In;
WOLFTPM_API TPM_RC TPM2_HierarchyControl(HierarchyControl_In* in);

typedef struct {
TPMI_RH_HIERARCHY_AUTH authHandle;
TPM2B_DIGEST authPolicy;
TPMI_ALG_HASH hashAlg;
} SetPrimaryPolicy_In;
WOLFTPM_API TPM_RC TPM2_SetPrimaryPolicy(SetPrimaryPolicy_In* in);

typedef struct {
TPMI_RH_PLATFORM authHandle;
} ChangeSeed_In;

typedef ChangeSeed_In ChangePPS_In;
WOLFTPM_API TPM_RC TPM2_ChangePPS(ChangePPS_In* in);

typedef ChangeSeed_In ChangeEPS_In;
WOLFTPM_API TPM_RC TPM2_ChangeEPS(ChangeEPS_In* in);

typedef struct {
TPMI_RH_CLEAR authHandle;
} Clear_In;
WOLFTPM_API TPM_RC TPM2_Clear(Clear_In* in);

typedef struct {
TPMI_RH_CLEAR auth;
TPMI_YES_NO disable;
} ClearControl_In;
WOLFTPM_API TPM_RC TPM2_ClearControl(ClearControl_In* in);

typedef struct {
TPMI_RH_HIERARCHY_AUTH authHandle;
TPM2B_AUTH newAuth;
} HierarchyChangeAuth_In;
WOLFTPM_API TPM_RC TPM2_HierarchyChangeAuth(HierarchyChangeAuth_In* in);

typedef struct {

COPYRIGHT ©2024 wolfSSL Inc. 196

5.2 wolftom/tpm2.h 5 API REFERENCE

TPMI_RH_LOCKOUT lockHandle;
} DictionaryAttackLockReset_In;
WOLFTPM_API TPM_RC
< TPM2_DictionaryAttackLockReset(DictionaryAttackLockReset_In* in);

typedef struct {
TPMI_RH_LOCKOUT lockHandle;
UINT32 newMaxTries;
UINT32 newRecoveryTime;
UINT32 lockoutRecovery;
} DictionaryAttackParameters_In;
WOLFTPM_API TPM_RC
< TPM2_DictionaryAttackParameters(DictionaryAttackParameters_In* in);

typedef struct {
TPMI_RH_PLATFORM auth;
TPML_CC setlList;
TPML_CC clearlList;
} PP_Commands_In;
WOLFTPM_API TPM_RC TPM2_PP_Commands (PP_Commands_In* in);

typedef struct {
TPMI_RH_PLATFORM authHandle;
UINT32 algorithmSet;
} SetAlgorithmSet_In;
WOLFTPM_API TPM_RC TPM2_SetAlgorithmSet(SetAlgorithmSet_In* in);

typedef struct {
TPMI_RH_PLATFORM authorization;
TPMI_DH_OBJECT keyHandle;
TPM2B_DIGEST fuDigest;
TPMT_SIGNATURE manifestSignature;
} FieldUpgradeStart_In;
WOLFTPM_API TPM_RC TPM2_FieldUpgradeStart(FieldUpgradeStart_In* in);

typedef struct {
TPM2B_MAX_BUFFER fuData;
} FieldUpgradeData_In;
typedef struct {
TPMT_HA nextDigest;
TPMT_HA firstDigest;
} FieldUpgradeData_Out;
WOLFTPM_API TPM_RC TPM2_FieldUpgradeData(FieldUpgradeData_In* in,
FieldUpgradeData_Out* out);

typedef struct {
UINT32 sequenceNumber;
} FirmwareRead_In;
typedef struct {
TPM2B_MAX_BUFFER fuData;
} FirmwareRead_Out;
WOLFTPM_API TPM_RC TPM2_FirmwareRead(FirmwareRead_In* in, FirmwareRead_Out*
< out);

COPYRIGHT ©2024 wolfSSL Inc. 197

5.2 wolftom/tpm2.h 5 API REFERENCE

typedef struct {
TPMI_DH_CONTEXT saveHandle;
} ContextSave_In;
typedef struct {
TPMS_CONTEXT context;
} ContextSave_Out;
WOLFTPM_API TPM_RC TPM2_ContextSave(ContextSave_In* in, ContextSave_Out* out);

typedef struct {
TPMS_CONTEXT context;
} ContextlLoad_In;
typedef struct {
TPMI_DH_CONTEXT loadedHandle;
} ContextLoad_Out;
WOLFTPM_API TPM_RC TPM2_ContextLoad(ContextLoad_In* in, ContextlLoad_Out* out);

typedef struct {
TPMI_RH_PROVISION auth;
TPMI_DH_OBJECT objectHandle;
TPMI_DH_PERSISTENT persistentHandle;
} EvictControl_In;
WOLFTPM_API TPM_RC TPM2_EvictControl(EvictControl_In* in);

typedef struct {
TPMS_TIME_INFO currentTime;
} ReadClock_Out;
WOLFTPM_API TPM_RC TPM2_ReadClock(ReadClock_Out* out);

typedef struct {
TPMI_RH_PROVISION auth;
UINT64 newTime;
} ClockSet_In;
WOLFTPM_API TPM_RC TPM2_ClockSet(ClockSet_In* in);

typedef struct {
TPMI_RH_PROVISION auth;
TPM_CLOCK_ADJUST rateAdjust;
} ClockRateAdjust_In;
WOLFTPM_API TPM_RC TPM2_ClockRateAdjust(ClockRateAdjust_In* in);

typedef struct {
TPMT_PUBLIC_PARMS parameters;
} TestParms_In;
WOLFTPM_API TPM_RC TPM2_TestParms(TestParms_In* in);

typedef struct {
TPMI_RH_PROVISION authHandle;
TPM2B_AUTH auth;

COPYRIGHT ©2024 wolfSSL Inc. 198

5.2 wolftom/tpm2.h 5 API REFERENCE

TPM2B_NV_PUBLIC publicInfo;
} NV_DefineSpace_In;
WOLFTPM_API TPM_RC TPM2_NV_DefineSpace(NV_DefineSpace_In* in);

typedef struct {
TPMI_RH_PROVISION authHandle;
TPMI_RH_NV_INDEX nvIndex;
} NV_UndefineSpace_In;
WOLFTPM_API TPM_RC TPM2_NV_UndefineSpace(NV_UndefineSpace_In* in);

typedef struct {
TPMI_RH_NV_INDEX nvIndex;
TPMI_RH_PLATFORM platform;
} NV_UndefineSpaceSpecial_In;
WOLFTPM_API TPM_RC TPM2_NV_UndefineSpaceSpecial (NV_UndefineSpaceSpecial_In*
< in);

typedef struct {
TPMI_RH_NV_INDEX nvIndex;
} NV_ReadPublic_In;
typedef struct {
TPM2B_NV_PUBLIC nvPublic;
TPM2B_NAME nvName;
} NV_ReadPublic_Out;
WOLFTPM_API TPM_RC TPM2_NV_ReadPublic(NV_ReadPublic_In* in, NV_ReadPublic_Out*
< out);

typedef struct {
TPMI_RH_NV_AUTH authHandle;
TPMI_RH_NV_INDEX nvIndex;
TPM2B_MAX_NV_BUFFER data;
UINT16 offset;
} NV_Write_In;
WOLFTPM_API TPM_RC TPM2_NV_Write(NV_Write_In* in);

typedef struct {
TPMI_RH_NV_AUTH authHandle;
TPMI_RH_NV_INDEX nvIndex;
} NV_Increment_In;
WOLFTPM_API TPM_RC TPM2_NV_Increment(NV_Increment_In* in);

typedef struct {
TPMI_RH_NV_AUTH authHandle;
TPMI_RH_NV_INDEX nvIndex;
TPM2B_MAX_NV_BUFFER data;
} NV_Extend_In;
WOLFTPM_API TPM_RC TPM2_NV_Extend(NV_Extend_In* in);

typedef struct {
TPMI_RH_NV_AUTH authHandle;
TPMI_RH_NV_INDEX nvIndex;
UINT64 bits;
} NV_SetBits_In;
WOLFTPM_API TPM_RC TPM2_NV_SetBits(NV_SetBits_In* in);

COPYRIGHT ©2024 wolfSSL Inc. 199

5.2 wolftom/tpm2.h 5 API REFERENCE

typedef struct {
TPMI_RH_NV_AUTH authHandle;
TPMI_RH_NV_INDEX nvIndex;
} NV_WritelLock_In;
WOLFTPM_API TPM_RC TPM2_NV_WritelLock(NV_WriteLock_In* in);

typedef struct {
TPMI_RH_PROVISION authHandle;
} NV_GlobalWritelLock_In;
WOLFTPM_API TPM_RC TPM2_NV_GlobalWriteLock(NV_GlobalWriteLock_In* in);

typedef struct {
TPMI_RH_NV_AUTH authHandle;
TPMI_RH_NV_INDEX nvIndex;
UINT16 size;
UINT16 offset;
} NV_Read_In;
typedef struct {
TPM2B_MAX_NV_BUFFER data;
} NV_Read_Out;
WOLFTPM_API TPM_RC TPM2_NV_Read(NV_Read_In* in, NV_Read_Out* out);

typedef struct {
TPMI_RH_NV_AUTH authHandle;
TPMI_RH_NV_INDEX nvIndex;
} NV_ReadLock_In;
WOLFTPM_API TPM_RC TPM2_NV_ReadLock(NV_ReadLock_In* in);

typedef struct {
TPMI_RH_NV_INDEX nvIndex;
TPM2B_AUTH newAuth;
} NV_ChangeAuth_In;
WOLFTPM_API TPM_RC TPM2_NV_ChangeAuth(NV_ChangeAuth_In* in);

typedef struct {
TPMI_DH_OBJECT signHandle;
TPMI_RH_NV_AUTH authHandle;
TPMI_RH_NV_INDEX nvIndex;
TPM2B_DATA qualifyingData;
TPMT_SIG_SCHEME inScheme;
UINT16 size;
UINT16 offset;

} NV_Certify_In;

typedef struct {
TPM2B_ATTEST certifyInfo;
TPMT_SIGNATURE signature;

} NV_Certify_Out;

WOLFTPM_API TPM_RC TPM2_NV_Certify(NV_Certify_In* in, NV_Certify_Out* out);

/* Vendor Specific API's */
#if defined (WOLFTPM_ST33) || defined(WOLFTPM_AUTODETECT)
/* Enable command code vendor API */

COPYRIGHT ©2024 wolfSSL Inc. 200

5.2 wolftom/tpm2.h 5 API REFERENCE

typedef struct {
TPMI_RH_HIERARCHY authHandle;
TPM_CC commandCode;
UINT32 enableFlag;
UINT32 lockFlag;
} SetCommandSet_1In;
WOLFTPM_API int TPM2_SetCommandSet (SetCommandSet_In* in);

/* Mode bit-masks for STMicro ST33 */
enum TPM_MODE_Vendor_Mask{
TPMLib_2 = 0x01,
TPMFips = 0x02,
TPMLowPowerOff = 0x00,
TPMLowPowerByRegister = 0x04,
TPMLowPowerByGpio = 0x08,
TPMLowPowerAuto = 0x0C,
b
typedef struct TPM_MODE_SET ({
BYTE CmdTolLowPower;
BYTE BootTolLowPower;
BYTE modelLock;
BYTE mode;
} TPM_MODE_SET;
typedef struct {
TPMI_RH_HIERARCHY authHandle;
TPM_MODE_SET modeSet;
} SetMode_In;
WOLFTPM_API int TPM2_SetMode(SetMode_In* in);

/* The TPM2_GetRandom2 command does not require any authorization */
typedef GetRandom_In GetRandom2_In; /* same input */
typedef struct {

TPM2B_MAX_BUFFER randomBytes;

} GetRandom2_Out;

/* If bytesRequested is longer than TPM2B_MAX_BUFFER can accommodate, no

* error is returned, but the TPM returns as much data as a TPM2B_DATA

* puffer can contain. */
WOLFTPM_API TPM_RC TPM2_GetRandom2(GetRandom2_In* in, GetRandom2_Out* out);

WOLFTPM_API TPM_RC TPM2_GetProductInfo(uint8_t* info, uintl6_t size);
#endif /* ST33 Vendor Specific */

#if defined (WOLFTPM_SLB9672) || defined(WOLFTPM_SLB9673) || \
defined (WOLFTPM_AUTODETECT)

#ifdef WOLFTPM_FIRMWARE_UPGRADE
WOLFTPM_API int TPM2_IFX_FieldUpgradeStart(TPM_HANDLE sessionHandle,
uint8_t* data, uint32_t size);
WOLFTPM_API int TPM2_IFX_FieldUpgradeCommand(TPM_CC cc, uint8_t* data, uint32_t
< size);
#endif /* WOLFTPM_FIRMWARE_UPGRADE */

#endif /* Infineon SLB Vendor Specific */

COPYRIGHT ©2024 wolfSSL Inc. 201

5.2 wolftom/tpm2.h 5 API REFERENCE

/* Vendor Specific GPIO */
#ifdef WOLFTPM_ST33

#ifdef WOLFTPM_I2C
#define MAX_GPIO_COUNT 4
#else /* SPI variant */
#define MAX_GPIO_COUNT 2
#endif

/* ST33 variants can have different count of GPIO available:
* - SPI variant - @, 1 or 2
* - I2C variant - 0, 1, 2, 3 or 4
* The user can configure this option at build or use default value. */
#ifndef TPM_GPIO_COUNT
#define TPM_GPIO_COUNT MAX_GPIO_COUNT
#endif

#define TPM_GPIO_NUM_MIN (TPM_GPIO_A)
#define TPM_GPIO_NUM_MAX (TPM_GPIO_A + TPM_GPIO_COUNT - 1)

/* GPIO configuration uses specific range of NV space */
#define TPM_NV_GPIO_SPACE 0x01C40000

typedef enum {

TPM_GPIO_PP = 0x00000000, /* GPIO A by default is a Physical Presence
o pin */
TPM_GPIO_LP = 0x00000001, /* GPIO B can only be used as an input */

#ifdef WOLFTPM_I2C
/* Only the I2C variant of ST33 has GPIO C and D */

TPM_GPIO_C = 0x00000002,
TPM_GPIO D = 0x00000003,
#endif

} TPMI_GPIO_NAME_T;
typedef UINT32 TPMI_GPIO_NAME;

/* For portability and readability in code */
#define TPM_GPIO_A TPM_GPIO_PP
#define TPM_GPIO_B TPM_GPIO_LP

typedef enum {

TPM_GPIO_MODE_STANDARD = 0x00000000,
TPM_GPIO_MODE_FLOATING = 0x00000001,
TPM_GPIO_MODE_PULLUP = Qx00000002,
TPM_GPIO_MODE_PULLDOWN = 0x00000003,
TPM_GPIO_MODE_OPENDRAIN = 0x00000004,
TPM_GPIO_MODE_PUSHPULL 0x00000005,
TPM_GPIO_MODE_UNCONFIG 0x00000006,

TPM_GPIO_MODE_DEFAULT

TPM_GPIO_MODE_MAX

TPM_GPIO_MODE_INPUT_MIN

TPM_GPIO_MODE_INPUT_MAX
} TPMI_GPIO_MODE_T,;

TPM_GPIO_MODE_PULLDOWN,
TPM_GPIO_MODE_UNCONFIG,
TPM_GPIO_MODE_FLOATING,
TPM_GPIO_MODE_PULLDOWN

COPYRIGHT ©2024 wolfSSL Inc. 202

5.2 wolftom/tpm2.h 5 API REFERENCE

typedef UINT32 TPMI_GPIO_MODE;

typedef struct TPMS_GPIO_CONFIG {
TPMI_GPIO_NAME name;
TPMI_RH_NV_INDEX index;
TPMI_GPIO_MODE mode;

} TPMS_GPIO_CONFIG;

typedef struct TPML_GPIO_CONFIG {

UINT32 count;

TPMS_GPIO_CONFIG gpio[MAX_GPIO_COUNT];
} TPML_GPIO_CONFIG;

typedef struct {
TPMI_RH_PLATFORM authHandle;
TPML_GPIO_CONFIG config;
} GpioConfig_In;
WOLFTPM_API int TPM2_GPIO_Config(GpioConfig_In* in);

#elif defined (WOLFTPM_NUVOTON)
#define MAX_GPIO_COUNT 2

/* NPCT7XX supports a maximum of 2 GPIO for user control */
/* Added in FW-US version 7.2.3.0 or later */

#ifndef TPM_GPIO_COUNT

#define TPM_GPIO_COUNT MAX_GPIO_COUNT

#endif

/* For portability */
#undef TPM_GPIO_A
#define TPM_GPIO_A 3 /* NPCT75xx GPIO start at number 3 */

#define TPM_GPIO_NUM_MIN (TPM_GPIO_A)
#define TPM_GPIO_NUM_MAX (TPM_GPIO_A + TPM_GPIO_COUNT - 1)

/* GPIO configuration uses specific range of NV space */
#define TPM_NV_GPIO_SPACE 0x01C40003

/* Nuvoton GPIO Modes */

typedef enum {
TPM_GPIO_MODE_PUSHPULL
TPM_GPIO_MODE_OPENDRAIN
TPM_GPIO_MODE_PULLUP
TPM_GPIO_MODE_UNCONFIG
TPM_GPIO_MODE_DEFAULT

I

’
I

AWNBR

I

TPM_GPIO_MODE_PUSHPULL,
TPM_GPIO_MODE_MAX TPM_GPIO_MODE_UNCONFIG,
TPM_GPIO_MODE_INPUT_MIN TPM_GPIO_MODE_PULLUP,
TPM_GPIO_MODE_INPUT_MAX = TPM_GPIO_MODE_PULLUP

} TPMI_GPIO_MODE_T;

typedef UINT32 TPMI_GPIO_MODE;

typedef struct {
BYTE Base0®;

COPYRIGHT ©2024 wolfSSL Inc. 203

5.2 wolftom/tpm2.h 5 API REFERENCE

BYTE Basel;
BYTE GpioAltCfg;
BYTE GpioInitValue;
BYTE GpioPullUp;
BYTE GpioPushPull;
BYTE Cfg_A;
BYTE Cfg_B;
BYTE Cfg_C;
BYTE Cfg_D;
BYTE Cfg_E;
BYTE Cfg_F;
BYTE Cfg_G;
BYTE Cfg_H;
BYTE Cfg_I;
BYTE Cfg_J;
BYTE isValid;
BYTE islLocked;
} CFG_STRUCT;

typedef struct {
TPMI_RH_PLATFORM authHandle;
CFG_STRUCT preConfig;
} NTC2_PreConfig_In;
WOLFTPM_API int TPM2_NTC2_PreConfig(NTC2_PreConfig_In* in);

typedef struct {
CFG_STRUCT preConfig;
} NTC2_GetConfig_Out;

WOLFTPM_API int TPM2_NTC2_GetConfig(NTC2_GetConfig_Out* out);
#endif

#define _TPM_Init TPM2_Init
WOLFTPM_API TPM_RC TPM2_Init(TPM2_CTX* ctx, TPM2HalIoCb ioCb, void* userCtx);

WOLFTPM_API TPM_RC TPM2_Init_ex(TPM2_CTX* ctx, TPM2HalIoCb ioCb, void* userCtx,
int timeoutTries);

WOLFTPM_API TPM_RC TPM2_Init_minimal(TPM2_CTX* ctx);

WOLFTPM_API TPM_RC TPM2_Cleanup(TPM2_CTX* ctx);

WOLFTPM_API TPM_RC TPM2_ChipStartup(TPM2_CTX* ctx, int timeoutTries);

WOLFTPM_API TPM_RC TPM2_SetHalIoCb(TPM2_CTX* ctx, TPM2HalIoCb ioCb, void*
< userCtx);

WOLFTPM_API TPM_RC TPM2_SetSessionAuth(TPM2_AUTH_SESSION *session);

WOLFTPM_API int TPM2_GetSessionAuthCount (TPM2_CTX* ctx);

COPYRIGHT ©2024 wolfSSL Inc. 204

5.2 wolftom/tpm2.h 5 API REFERENCE

WOLFTPM_API void TPM2_SetActiveCtx(TPM2_CTX* ctx);
WOLFTPM_API TPM2_CTX* TPM2_GetActiveCtx(void);

WOLFTPM_API int TPM2_GetHashDigestSize(TPMI_ALG_HASH hashAlg);
WOLFTPM_API int TPM2_GetHashType(TPMI_ALG_HASH hashAlg);
WOLFTPM_API TPMI_ALG_HASH TPM2_GetTpmHashType(int hashType);

WOLFTPM_API int TPM2_GetNonce(byte* nonceBuf, int nonceSz);

WOLFTPM_LOCAL int TPM2_GetNonceNolLock(byte* nonceBuf, int nonceSz);

WOLFTPM_API void TPM2_SetupPCRSel(TPML_PCR_SELECTION* pcr, TPM_ALG_ID alg,
int pcrIndex);

WOLFTPM_API void TPM2_SetupPCRSelArray(TPML_PCR_SELECTION* pcr, TPM_ALG_ID alg,
byte* pcrArray, word32 pcrArraySz);

WOLFTPM_API const char* TPM2_GetRCString(int xc);

WOLFTPM_API const char* TPM2_GetAlgName(TPM_ALG_ID alg);

WOLFTPM_API TPM_ALG_ID TPM2_GetAlgId(const char* name);

#ifdef DEBUG_WOLFTPM

WOLFTPM_API const char* TPM2_GetHierarchyDesc(TPMI_RH_HIERARCHY_AUTH
< authHandle) ;

#endif

WOLFTPM_API int TPM2_GetCurveSize(TPM_ECC_CURVE cuzrvelD);
WOLFTPM_API int TPM2_GetTpmCurve(int curvelD);

WOLFTPM_API int TPM2_GetWolfCurve(int curve_id);

WOLFTPM_API int TPM2_ParseAttest(const TPM2B_ATTEST* in, TPMS_ATTEST* out);

WOLFTPM_API int TPM2_HashNvPublic (TPMS_NV_PUBLIC* nvPublic, byte* buffer,
< UINT16* size);

WOLFTPM_API int TPM2_AppendPublic(byte* buf, word32 size, int* sizeUsed,
< TPM2B_PUBLIC* pub);

WOLFTPM_API int TPM2_ParsePublic(TPM2B_PUBLIC* pub, byte* buf, word32 size,
< 1int* sizeUsed);

WOLFTPM_LOCAL int TPM2_GetName(TPM2_CTX* ctx, UINT32 handleValue, int
< handleCnt, int idx, TPM2B_NAME* name) ;

#ifdef WOLFTPM2_USE_WOLF_RNG

COPYRIGHT ©2024 wolfSSL Inc. 205

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM_API int TPM2_GetWolfRng(WC_RNG** rng);
#endif

typedef enum {
TPM_VENDOR_UNKNOWN = 0,
TPM_VENDOR_INFINEON = 0x15d1,
TPM_VENDOR_STM = 0x104a,
TPM_VENDOR_MCHP = 0x1114,
TPM_VENDOR_NUVOTON = 0x1050,
TPM_VENDOR_NATIONTECH = 0x1B4E,

} TPM_Vendor_t;

WOLFTPM_API UINT16 TPM2_GetVendorID(void);

/* Internal helper API for ensuring memory is forcefully zero'd */
WOLFTPM_LOCAL void TPM2_ForceZero(void* mem, word32 len);

#ifdef DEBUG_WOLFTPM
WOLFTPM_API void TPM2_PrintBin(const byte* buffer, word32 length);

WOLFTPM_API void TPM2_PrintAuth(const TPMS_AUTH_COMMAND* authCmd);

WOLFTPM_API void TPM2_PrintPublicArea(const TPM2B_PUBLIC* pub);
#else

#define TPM2_PrintBin(b, 1)

#define TPM2_PrintAuth(b)

#define TPM2_PrintPublicArea(b)

#endif

#ifdef _ cplusplus
} /* extern "C" */
#endif

#endif /* __TPM2_H__ */

5.3 wolftpm/tpm2_wrap.h

5.3.1 Classes

Name

struct WOLFTPM2_SESSION
struct WOLFTPM2_DEV
struct WOLFTPM2_KEY
struct WOLFTPM2_PKEY
struct WOLFTPM2_KEYBLOB
struct WOLFTPM2_HASH
struct WOLFTPM2_NV

struct WOLFTPM2_HMAC
struct WOLFTPM2_CSR
struct WOLFTPM2_BUFFER

COPYRIGHT ©2024 wolfSSL Inc. 206

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Name

struct WOLFTPM2_CAPS
struct TpmCryptoDevCtx

5.3.2 Types

Name

enum WOLFTPM2_MFG { TPM_MFG_UNKNOWN = 0,
TPM_MFG_INFINEON, TPM_MFG_STM,
TPM_MFG_MCHP, TPM_MFG_NUVOTON,
TPM_MFG_NATIONTECH}

typedef struct WOLFTPM2_SESSION**
typedef struct WOLFTPM2_DEV**
typedef struct WOLFTPM2_KEY**
typedef struct WOLFTPM2_PKEY**
typedef struct WOLFTPM2_KEYBLOB**
typedef struct WOLFTPM2_HASH**
typedef struct WOLFTPM2_NV**
typedef struct WOLFTPM2_HMAC**
typedef struct WOLFTPM2_CSR**
typedef struct WOLFTPM2_BUFFER**
typedef enum WOLFTPM2_MFG**
typedef struct WOLFTPM2_CAPS**
typedef struct TpmCryptoDevCix**
typedef int((uint8_t data, uint32_t data_req_sz, wolfTPM2FwDataCh
uint32_t offset, void *cb_ctx)

5.3.3 Functions

Name

WOLFTPM_API int **wolfTPM2_Test * caps)Test initialization of a
TPM and optionally the TPM capabilities can be
received.

WOLFTPM_API int **wolfTPM2_Init ioCb, void * userCtx)Complete
initialization of a TPM.

WOLFTPM_APT int **wolfTPM2_OpenExisting ioCb, void *
userCtx)Use an already initialized TPM, in its
current TPM locality.

WOLFTPM_APT int **wolfTPM2_Cleanup * dev)Easy to use TPM
and wolfcrypt deinitialization.
WOLFTPM_APT int **wolfTPM2_Cleanup_ex * dev, int

doShutdown)Deinitialization of a TPM (and
wolfcrypt if it was used)

WOLFTPM_API int **wolfTPM2_GetTpmDevld * dev)Provides the
device ID of a TPM.

WOLFTPM_API int **wolfTPM2_SelfTest * dev)Asks the TPM to
perform its self test.

WOLFTPM_API int **wolfTPM2_GetCapabilities * caps)Reports the

available TPM capabilities.

COPYRIGHT ©2024 wolfSSL Inc. 207

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APIT int

WOLFTPM_APT int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_GetHandles * handles)Gets a list
of handles.

**wolfTPM2_UnsetAuth * dev, int index)Clears
one of the TPM Authorization slots, pointed by
its index number.
**wolfTPM2_UnsetAuthSession *
session)Clears one of the TPM Authorization
session slots, pointed by its index number and
saves the nonce from the TPM so the session
can continue to be used again with
wolfTPM2_SetAuthSession.
**wolfTPM2_SetAuth * name)Sets a TPM
Authorization slot using the provided index,
session handle, attributes and auth.
**wolfTPM2_SetAuthPassword * auth)Sets a
TPM Authorization slot using the provided user
auth, typically a password.
**wolfTPM2_SetAuthHandle * dev, int index,
const WOLFTPM2_HANDLE * handle)Sets a
TPM Authorization slot using the user auth
associated with a wolfTPM2 Handle.
**wolfTPM2_SetAuthSession
sessionAttributes)Sets a TPM Authorization slot
using the provided TPM session handle, index
and session attributes.
**wolfTPM2_SetSessionHandle *
tpmSession)Sets a TPM Authorization slot
using the provided wolfTPM2 session object.
**wolfTPM2_SetAuthHandleName * dev, int
index, const WOLFTPM2_HANDLE *
handle)Updates the Name used in a TPM
Session with the Name associated with
wolfTPM2 Handle.

**wolfTPM2_StartSession sesType, int
encDecAlg)Create a TPM session, Policy, HMAC
or Trial.
**wolfTPM2_CreateAuthSession_EkPolicy *
tpmSession)Creates a TPM session with Policy
Secret to satisfy the default EK policy.
**wolfTPM2_CreatePrimaryKey *
publicTemplate, const byte * auth, int
authSz)Single function to prepare and create a
TPM 2.0 Primary Key.
**wolfTPM2_CreatePrimaryKey_ex *
publicTemplate, const byte * auth, int
authSz)Single function to prepare and create a
TPM 2.0 Primary Key.
**wolfTPM2_ChangeAuthKey * key,
WOLFTPM2_HANDLE * parent, const byte *
auth, int authSz)Change the authorization
secret of a TPM 2.0 key.

208

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_APT int
WOLFTPM_APIT int
WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_CreateKey * publicTemplate, const
byte * auth, int authSz)Single function to
prepare and create a TPM 2.0 Key.
**wolfTPM2_LoadKey * keyBlob,
WOLFTPM2_HANDLE * parent)Single function
to load a TPM 2.0 key.
**wolfTPM2_CreateAndLoadKey *
publicTemplate, const byte * auth, int
authSz)Single function to create and load a
TPM 2.0 Key in one step.
**wolfTPM2_CreateLoadedKey *
publicTemplate, const byte * auth, int
authSz)Creates and loads a key using single
TPM 2.0 operation, and stores encrypted
private key material.
**wolfTPM2_LoadPublicKey * pub)Wrapper to
load the public part of an external key.
**wolfTPM2_LoadPublicKey_ex hierarchy)
**wolfTPM2_LoadPrivateKey * sens)Single
function to import an external private key and
load it into the TPM in one step.
**wolfTPM2_ImportPrivateKey * sens)Single
function to import an external private key and
load it into the TPM in one step.
**wolfTPM2_LoadRsaPublicKey * key, const
byte * rsaPub, word32 rsaPubSz, word32
exponent)Helper function to import the public
part of an external RSA key.
**wolfTPM2_LoadRsaPublicKey_ex
hashAlg)Advanced helper function to import
the public part of an external RSA key.
**wolfTPM2_ImportRsaPrivateKey
hashAlg)Import an external RSA private key.
**wolfTPM2_ImportRsaPrivateKeySeed
attributes, byte * seed, word32 seedSz)Import
an external RSA private key with custom seed.
**wolfTPM2_LoadRsaPrivateKey * key, const
byte * rsaPub, word32 rsaPubSz, word32
exponent, const byte * rsaPriv, word32
rsaPrivSz)Helper function to import and load
an external RSA private key in one step.
**wolfTPM2_LoadRsaPrivateKey_ex
hashAlg)Advanced helper function to import
and load an external RSA private key in one
step.

**wolfTPM2_LoadEccPublicKey * key, int
curveld, const byte * eccPubX, word32
eccPubXSz, const byte * eccPubY, word32
eccPubYSz)Helper function to import the public
part of an external ECC key.

209

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int
WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_ImportEccPrivateKey * keyBlob,
int curveld, const byte * eccPubX, word32
eccPubXSz, const byte * eccPubY, word32
eccPubYSz, const byte * eccPriv, word32
eccPrivSz)Helper function to import the private
material of an external ECC key.
**wolfTPM2_ImportEccPrivateKeySeed
attributes, byte * seed, word32 seedSz)Helper
function to import the private material of an
external ECC key.
**wolfTPM2_LoadEccPrivateKey * key, int
curveld, const byte * eccPubX, word32
eccPubXSz, const byte * eccPubY, word32
eccPubYSz, const byte * eccPriv, word32
eccPrivSz)Helper function to import and load
an external ECC private key in one step.
**wolfTPM2_ReadPublicKey handle)Helper
function to receive the public part of a loaded
TPM object using its handle.
**wolfTPM2_CreateKeySeal * publicTemplate,
const byte * auth, int authSz, const byte *
sealData, int sealSize)Using this wrapper a
secret can be sealed inside a TPM 2.0 Key.
**wolfTPM2_CreateKeySeal_ex pcrAlg, byte *
pcrArray, word32 pcrArraySz, const byte *
sealData, int sealSize)Using this wrapper a
secret can be sealed inside a TPM 2.0 Key with
pcr selection.

**wolfTPM2_ComputeName * out)Helper
function to generate a hash of the public area
of an object in the format expected by the TPM.
**wolfTPM2_SensitiveToPrivate.
**wolfTPM2_ImportPrivateKeyBuffer
objectAttributes, byte * seed, word32
seedSz)Helper function to import PEM/DER or
RSA/ECC private key.
**wolfTPM2_ImportPublicKeyBuffer
objectAttributes)Helper function to import
PEM/DER formatted RSA/ECC public key.
**wolfTPM2_ExportPublicKeyBuffer * tpmKey,
int encodingType, byte * out, word32 *
outSz)Helper function to export a TPM RSA/ECC
public key with PEM/DER formatting.
**wolfTPM2_RsaPrivateKeyImportDer
hashAlg)Helper function to import Der rsa key
directly.
**wolfTPM2_RsaPrivateKeyImportPem
hashAlg)Helper function to import Pem rsa key
directly.

**wolfTPM2_RsaKey_TpmToWolf * tpmKey,
RsaKey * wolfKey)Extract a RSA TPM key and
convert it to a wolfcrypt key.

210

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_RsaKey_TpmToPemPub * keyBlob,
byte * pem, word32 * pemSz)Convert a public
RSA TPM key to PEM format public key. Note:
This APl is a wrapper around
wolfTPM2_ExportPublicKeyBuffer.
**wolfTPM2_RsaKey_WolfToTpm *
tpmKey)Import a RSA wolfcrypt key into the
TPM.

**wolfTPM2_RsaKey_WolfToTpm_ex *
tpmKey)Import a RSA wolfcrypt key into the
TPM under a specific Primary Key or Hierarchy.
**wolfTPM2_CreateRsaKeyBlob *
tpmKey)Create an encrypted RSA key blob from
a wolfCrypt key under a specific parent key.
**wolfTPM2_RsaKey_PubPemToTpm * tpmKey,
const byte * pem, word32 pemSz)Import a PEM
format public key from a file into the TPM.
**wolfTPM2_DecodeRsaDer attributes)Import
DER RSA private or public key into TPM public
and sensitive structures. This does not make
any calls to TPM hardware.
**wolfTPM2_EccKey_TpmToWolf * tpmKey,
ecc_key * wolfKey)Extract a ECC TPM key and
convert to to a wolfcrypt key.
**wolfTPM2_EccKey_WolfToTpm *
tpmKey)Import a ECC wolfcrypt key into the
TPM.

**wolfTPM2_EccKey_WolfToTpm_ex *
tpmKey)Import ECC wolfcrypt key into the TPM
under a specific Primary Key or Hierarchy.
**wolfTPM2_CreateEccKeyBlob *
tpmKey)Create an encrypted ECC key blob from
a wolfCrypt key under a specific parent key.
**wolfTPM2_EccKey_WolfToPubPoint *
pubPoint)Import a ECC public key generated
from wolfcrypt key into the TPM.
**wolfTPM2_DecodeEccDer attributes)import
DER ECC private or public key into TPM public
and sensitive structures. This does not make
any calls to TPM hardware.
**wolfTPM2_SignHash * key, const byte *
digest, int digestSz, byte * sig, int *
sigSz)Helper function to sign arbitrary data
using a TPM key.
**wolfTPM2_SignHashScheme
hashAlg)Advanced helper function to sign
arbitrary data using a TPM key, and specify the
signature scheme and hashing algorithm.
**wolfTPM2_VerifyHash * key, const byte * sig,
int sigSz, const byte * digest, int
digestSz)Helper function to verify a TPM
generated signature.

21

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_VerifyHash_ex * key, const byte *
sig, int sigSz, const byte * digest, int digestSz,
int hashAlg)Helper function to verify a TPM
generated signature.
**wolfTPM2_VerifyHashScheme
hashAlg)Advanced helper function to verify a
TPM generated signature.
**wolfTPM2_VerifyHashTicket *
checkTicket)Advanced helper function to verify
a TPM generated signature and return ticket.
**wolfTPM2_ECDHGenKey * ecdhKey, int
curve_id, const byte * auth, int
authSz)Generates and then loads a ECC
key-pair with NULL hierarchy for Diffie-Hellman
exchange.

**wolfTPM2_ECDHGen * pubPoint, byte * out,
int * outSz)Generates ephemeral key and
computes Z (shared secret)
**wolfTPM2_ECDHGenZ * pubPoint, byte * out,
int * outSz)Computes Z (shared secret) using
pubPoint and loaded private ECC key.
**wolfTPM2_ECDHEGenKey * ecdhKey, int
curve_id)Generates ephemeral ECC key and
returns array index (2 phase method)
**wolfTPM2_ECDHEGenZ * pubPoint, byte *
out, int * outSz)Computes Z (shared secret)
using pubPoint and counter (2 phase method)
**wolfTPM2_RsaEncrypt padScheme, const
byte * msg, int msgSz, byte * out, int *
outSz)Perform RSA encryption using a TPM 2.0
key.

**wolfTPM2_RsaDecrypt padScheme, const
byte * in, int inSz, byte * msg, int *
msgSz)Perform RSA decryption using a TPM 2.0
key.

**wolfTPM2_ReadPCR * dev, int pcrIndex, int
hashAlg, byte * digest, int * pDigestLen)Read
the values of a specified TPM 2.0 Platform
Configuration Registers(PCR)
**wolfTPM2_ResetPCR * dey, int pcrIndex)Reset
a PCRregister to its default value.
**wolfTPM2_ExtendPCR * dey, int pcrindex, int
hashAlg, const byte * digest, int
digestLen)Extend a PCR register with a user
provided digest.

**wolfTPM2_NVCreateAuth * nv, word32
nvindex, word32 nvAttributes, word32 maxSize,
const byte * auth, int authSz)Creates a new NV
Index to be later used for storing data into the
TPM’'s NVRAM.

212

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_APIT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_NVCreateAuthPolicy * nv, word32
nvindex, word32 nvAttributes, word32 maxSize,
const byte * auth, int authSz, const byte *
authPolicy, int authPolicySz)Creates a new NV
Index to be later used for storing data into the
TPM's NVRAM.

**wolfTPM2_NVWriteAuth * nv, word32
nvIindex, byte * dataBuf, word32 dataSz,
word32 offset)Stores user data to a NV Index,
at a given offset.
**wolfTPM2_NVWriteAuthPolicy * nv, word32
nvindex, byte * dataBuf, word32 dataSz,
word32 offset)Stores user data to a NV Index,
at a given offset. Allows using a policy session
and PCR’s for authentication.
**wolfTPM2_NVExtend * nv, word32 nvindex,
byte * dataBuf, word32 dataSz)Extend data to
an NV index.

**wolfTPM2_NVReadAuth * nv, word32
nvIindex, byte * dataBuf, word32 * pDataSz,
word32 offset)Reads user data from a NV
Index, starting at the given offset.
**wolfTPM2_NVReadAuthPolicy * nv, word32
nvIindex, byte * dataBuf, word32 * pDataSz,
word32 offset)Reads user data from a NV
Index, starting at the given offset. Allows using
a policy session and PCR's for authentication.
**wolfTPM2_NVReadCert handle, uint8_t *
buffer, uint32_t * len)Helper to get size of NV
and read buffer without authentication.
Typically used for reading a certificate from an
NV.

**wolfTPM2_NVIncrement * nv)Increments an
NV one-way counter.

**wolfTPM2_NVOpen * nv, word32 nvindex,
const byte * auth, word32 authSz)Open an NV
and populate the required authentication and
name hash.

**wolfTPM2_NVWriteLock * nv)Lock writes on
the specified NV Index.
**wolfTPM2_NVDeleteAuth * dev,
WOLFTPM2_HANDLE * parent, word32
nvindex)Destroys an existing NV Index.
**wolfTPM2_NVCreate authHandle, word32
nvindex, word32 nvAttributes, word32 maxSize,
const byte * auth, int authSz)Deprecated, use
newer API.

**wolfTPM2_NVWrite authHandle, word32
nvindex, byte * dataBuf, word32 dataSz,
word32 offset)Deprecated, use newer APL.

213

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API struct WC_RNG *

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APIT int

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APIT int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_NVRead authHandle, word32
nvIindex, byte * dataBuf, word32 * dataSz,
word32 offset)Deprecated, use newer APL
**wolfTPM2_NVDelete authHandle, word32
nvindex)Deprecated, use newer APL.
**wolfTPM2_NVReadPublic * nvPublic)Extracts
the public information about an nvIindex, such
as maximum size.

**wolfTPM2_NVStoreKey
persistentHandle)Helper function to store a
TPM 2.0 Key into the TPM’s NVRAM.
**wolfTPM2_NVDeleteKey * key)Helper
function to delete a TPM 2.0 Key from the
TPM’s NVRAM.

**wolfTPM2_GetRng * dev)Get the wolfcrypt
RNG instance used for wolfTPM.
**wolfTPM2_GetRandom * dev, byte * buf,
word32 len)Get a set of random number,
generated with the TPM RNG or wolfcrypt RNG.
**wolfTPM2_UnloadHandle * dev,
WOLFTPM2_HANDLE * handle)Use to discard
any TPM loaded object.

**wolfTPM2_Clear * dev)Deinitializes wolfTPM
and wolfcrypt(if enabled)
**wolfTPM2_HashStart hashAlg, const byte *
usageAuth, word32 usageAuthSz)Helper
function to start a TPM generated hash.
**wolfTPM2_HashUpdate * hash, const byte *
data, word32 dataSz)Update a TPM generated
hash with new user data.
**wolfTPM2_HashFinish * hash, byte * digest,
word32 * digestSz)Finalize a TPM generated
hash and get the digest output in a user buffer.
**wolfTPM2_LoadKeyedHashKey * key,
WOLFTPM2_HANDLE * parent, int hashAlg,
const byte * keyBuf, word32 keySz, const byte *
usageAuth, word32 usageAuthSz)Creates and
loads a new TPM key of KeyedHash type,
typically used for HMAC operations.
**wolfTPM2_HmacStart hashAlg, const byte *
keyBuf, word32 keySz, const byte * usageAuth,
word32 usageAuthSz)Helper function to start a
TPM generated hmac.
**wolfTPM2_HmacUpdate * hmac, const byte *
data, word32 dataSz)Update a TPM generated
hmac with new user data.
**wolfTPM2_HmacFinish * hmac, byte * digest,
word32 * digestSz)Finalize a TPM generated
hmac and get the digest output in a user buffer.
**wolfTPM2_LoadSymmetricKey * key, int alg,
const byte * keyBuf, word32 keySz)Loads an
external symmetric key into the TPM.

214

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APIT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

wolfTPM2_EncryptDecryptBlock(WOLFTPM2_DEV

* key, const byte * in, byte * out, word32
inOutSz, byte * iv, word32 ivSz, int isDecrypt)
wolfTPM2_EncryptDecrypt(WOLFTPM2_DEV *
key, const byte * in, byte * out, word32 inOutSz,
byte * iv, word32 ivSz, int isDecrypt)
**wolfTPM2_SetCommand commandCode, int
enableFlag)Vendor specific TPM command,
used to enable other restricted TPM
commands.

**wolfTPM2_Reset * dev, int doShutdown, int
doStartup)Helper function to shutdown,
startup or reset the TPM.
**wolfTPM2_Shutdown * dev, int
doStartup)Helper function to shutdown or
reset the TPM.

**wolfTPM2_UnloadHandles * dev, word32
handleStart, word32 handleCount)One-shot
API to unload subsequent TPM handles.
**wolfTPM2_UnloadHandles_AllTransient *
dev)One-shot API to unload all transient TPM
handles.

**wolfTPM2_GetKeyTemplate_RSA
objectAttributes)Prepares a TPM public
template for new RSA key based on user
selected object attributes.
**wolfTPM2_GetKeyTemplate_RSA_ex
sigHash)Prepares a TPM public template for
new RSA key based on user selected object
attributes.

**wolfTPM2_GetKeyTemplate_ECC
sigScheme)Prepares a TPM public template for
new ECC key based on user selected object
attributes.
**wolfTPM2_GetKeyTemplate_ECC_ex
sigHash)Prepares a TPM public template for
new ECC key based on user selected object
attributes.
**wolfTPM2_GetKeyTemplate_Symmetric
algMode, int isSign, int isDecrypt)Prepares a
TPM public template for new Symmetric key.
**wolfTPM2_GetKeyTemplate_KeyedHash
hashAlg, int isSign, int isDecrypt)Prepares a
TPM public template for new KeyedHash key.
**wolfTPM2_GetKeyTemplate_KeySeal
nameAlg)Prepares a TPM public template for
new key for sealing secrets.
**wolfTPM2_GetKeyTemplate_EK nameAlg, int
highRange)Prepares a TPM public template for
generating the TPM Endorsement Key.

215

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APIT int

WOLFTPM_API int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_GetKeyTemplate_EKIndex *
publicTemplate)Helper to get the Endorsement
public key template by NV index.
**wolfTPM2_GetKeyTemplate_RSA_EK *
publicTemplate)Prepares a TPM public
template for generating the TPM Endorsement
Key of RSA type.
**wolfTPM2_GetKeyTemplate_ECC_EK *
publicTemplate)Prepares a TPM public
template for generating the TPM Endorsement
Key of ECC type.
**wolfTPM2_GetKeyTemplate_RSA_SRK *
publicTemplate)Prepares a TPM public
template for generating a new TPM Storage
Key of RSA type.
**wolfTPM2_GetKeyTemplate_ECC_SRK *
publicTemplate)Prepares a TPM public
template for generating a new TPM Storage
Key of ECC type.
**wolfTPM2_GetKeyTemplate_RSA_AIK *
publicTemplate)Prepares a TPM public
template for generating a new TPM Attestation
Key of RSA type.
**wolfTPM2_GetKeyTemplate_ECC_AIK *
publicTemplate)Prepares a TPM public
template for generating a new TPM Attestation
Key of ECC type.
**wolfTPM2_GetKeyTemplate_RSA_IAK
hashAlg)
**wolfTPM2_GetKeyTemplate_ECC_IAK
hashAlg)
**wolfTPM2_GetKeyTemplate_ECC_IDevID
hashAlg)
**wolfTPM2_GetKeyTemplate_RSA_IDevID
hashAlg)

**wolfTPM2_SetKeyTemplate_Unique *
publicTemplate, const byte * unique, int
uniqueSz)Sets the unique area of a public
template used by Create or CreatePrimary.
**wolfTPM2_GetNvAttributesTemplate auth,
word32 * nvAttributes)Prepares a TPM NV
Index template.

**wolfTPM2_CreateEK alg)Generates a new
TPM Endorsement key, based on the user
selected algorithm, RSA or ECC.
**wolfTPM2_CreateSRK alg, const byte * auth,
int authSz)Generates a new TPM Primary Key
that will be used as a Storage Key for other
TPM keys.

216

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int
WOLFTPM_API int

WOLFTPM_API int
WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_LOCAL int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_CreateAndLoadAIK * srkKey, const
byte * auth, int authSz)Generates a new TPM
Attestation Key under the provided Storage
Key.

**wolfTPM2_GetTime * getTimeOut)One-shot
API to generate a TPM signed timestamp.
**wolfTPM2_CSR_SetCustomExt structure.
**wolfTPM2_CSR_SetKeyUsage structure. Pass
either extended key usage or key usage values.
Mixed string types are not supported, however
you can call wolfTPM2_CSR_SetKeyUsage
twice (once for extended key usage strings and
once for standard key usage strings).
**wolfTPM2_CSR_SetSubject structure.
**wolfTPM2_CSR_MakeAndSign_ex structure
with subject and key usage already set.
**wolfTPM2_CSR_MakeAndSign structure with
subject and key usage already set.
**wolfTPM2_CSR_Generate_ex). Single shot API
for outputting a CSR or self-signed cert based
on TPM key.

**wolfTPM2_CSR_Generate). Single shot API for
outputting a CSR or self-signed cert based on
TPM key.

**wolfTPM2_ChangePlatformAuth *
session)Helper to set the platform hierarchy
authentication value to random. Setting the
platform auth to random value is used to
prevent application from being able to use
platform hierarchy. This is defined in section 10
of the TCG PC Client Platform specification.
**wolfTPM2_ChangeHierarchyAuth
authHandle)Helper to set the hierarchy
authentication value to random. Setting the
platform auth to random value is used to
prevent application from being able to use
platform hierarchy. This is defined in section 10
of the TCG PC Client Platform specification.
wolfTPM2_EncryptSecret(WOLFTPM2_DEV *
encSecret, const char * label)
wolfTPM2_CryptoDevCh(int devld,
wc_Cryptolnfo * info, void * ctx)A reference
crypto callback API for using the TPM for crypto
offload. This callback function is registered
using wolfTPM2_SetCryptoDevCb or
wc_CryptoDev_RegisterDevice.
**wolfTPM2_SetCryptoDevCb * tpmCtx, int *
pDevId)Register a crypto callback function and
return assigned devId.
**wolfTPM2_ClearCryptoDevCb * deyv, int
devld)Clears the registered crypto callback.

217

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int
WOLFTPM_API int

WOLFTPM_API WOLFTPM2_DEV.
WOLFTPM_APT int

WOLFTPM_API WOLFTPM2_KEYBLOB.
WOLFTPM_API int

WOLFTPM_API TPMT_PUBLIC.
WOLFTPM_APT int

WOLFTPM_API WOLFTPM2_KEY.
WOLFTPM_API int

WOLFTPM_API WOLFTPM2_SESSION.
WOLFTPM_API int

WOLFTPM_API WOLFTPM2_CSR.
WOLFTPM_API int

WOLFTPM_API WOLFTPM2_HANDLE *
WOLFTPM_API WOLFTPM2_HANDLE *

WOLFTPM_API WOLFTPM2_HANDLE *
WOLFTPM_API TPM_HANDLE

WOLFTPM_APT int

COPYRIGHT ©2024 wolfSSL Inc.

wolfTPM2_PK_RsaSign(WOLFSSL * ssl, const
unsigned char * in, unsigned int inSz, unsigned
char * out, word32 * outSz, const unsigned
char * keyDer, unsigned int keySz, void * ctx)
wolfTPM2_PK_RsaSignCheck(WOLFSSL * ssl,
unsigned char * sig, unsigned int sigSz,
unsigned char ** out, const unsigned char *
keyDer, unsigned int keySz, void * ctx)
wolfTPM2_PK_RsaPssSign(WOLFSSL * ssl,
const unsigned char * in, unsigned int inSz,
unsigned char * out, unsigned int * outSz, int
hash, int mgf, const unsigned char * keyDer,
unsigned int keySz, void * ctx)
wolfTPM2_PK_RsaPssSignCheck(WOLFSSL *
ssl, unsigned char * sig, unsigned int sigSz,
unsigned char ** out, int hash, int mgf, const
unsigned char * keyDer, unsigned int keySz,
void * ctx)

wolfTPM2_PK_EccSign(WOLFSSL * ssl, const
unsigned char * in, unsigned int inSz, unsigned
char * out, word32 * outSz, const unsigned
char * keyDer, unsigned int keySz, void * ctx)
wolfTPM_PK_SetCh(WOLFSSL_CTX * ctx)
wolfTPM_PK_SetChCtx(WOLFSSL * ssl, void *
userCtx)

**wolfTPM2_Free that was allocated by
wolfTPM2_New.

**wolfTPM2_FreeKeyBlob that was allocated
with wolfTPM2_NewKeyBlob.

**wolfTPM2_FreePublicTemplate that was
allocated with wolfTPM2_NewPublicTemplate.

**wolfTPM2_FreeKey that was allocated with
wolfTPM2_NewKey.

**wolfTPM2_FreeSession that was allocated
with wolfTPM2_NewSession.

**wolfTPM2_FreeCSR that was allocated with
wolfTPM2_NewCSR.
**wolfTPM2_GetHandleRefFromKey.
**wolfTPM2_GetHandleRefFromKeyBlob.
**wWolfTPM2_GetHandleRefFromSession.

wolfTPM2_GetHandleValue(WOLFTPM2_HANDLE

* handle)Get the 32-bit handle value from the
WOLFTPM2_HANDLE.
**wolfTPM2_SetKeyAuthPassword * key, const
byte * auth, int authSz)Set the authentication
data for a key.

218

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_GetKeyBlobAsBuffer *
key)Marshal data from a keyblob to a binary
buffer. This can be stored to disk for loading in
a separate process or after power cycling. If
buffer is not provided then size only will be
returned.
**wolfTPM2_GetKeyBlobAsSeparateBuffers *
key)Marshal data from a keyblob to a binary
buffer. This can be stored to disk for loading in
a separate process or after power cycling. If
either buffer is NULL then the size will be
returned for each part.
**wolfTPM2_SetKeyBlobFromBuffer struct.
This can be used to load a keyblob that was
previously marshaled by
wolfTPM2_GetKeyBlobAsBuffer.
**wolfTPM2_PolicyRestart
sessionHandle)Restart the policy digest for a
policy session.

**wolfTPM2_GetPolicyDigest sessionHandle,
byte * policyDigest, word32 *
policyDigestSz)Get the policy digest of the
session that was passed in
wolfTPM2_GetPolicyDigest.
**wolfTPM2_PolicyPCR pcrAlg, byte * pcrArray,
word32 pcrArraySz)Apply the PCR's to the
policy digest for the policy session.
**wolfTPM2_PolicyAuthorize * checkTicket,
const byte * pcrDigest, word32 pcrDigestSz,
const byte * policyRef, word32
policyRefSz)Apply the PCR's to the policy digest
for the policy session.
**wolfTPM2_PCRGetDigest pcrAlg, byte *
pcrArray, word32 pcrArraySz, byte * pcrDigest,
word32 * pcrDigestSz)Get a cumulative digest
of the PCR's specified.
**wolfTPM2_PolicyRefMake pcrAlg, byte *
digest, word32 * digestSz, const byte *
policyRef, word32 policyRefSz)Utility for
generating a policy ref digest. If no policy
reference (nonce) used then just rehash the
provided digest again (update -> final)
**wolfTPM2_PolicyPCRMake pcrAlg, byte *
pcrArray, word32 pcrArraySz, const byte *
pcrDigest, word32 pcrDigestSz, byte * digest,
word32 * digestSz)Utility for generating a
policy PCR digest.

**wolfTPM2_PolicyHash cc, const byte * input,
word32 inputSz)Utility for creating a policy
hash. Generic helper that takes command code
and input array. policyDigestnew =
hash(policyDigestOld

219

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_LOCAL int
WOLFTPM_LOCAL int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APIT int

**wolfTPM2_PolicyAuthorizeMake * pub, byte *
digest, word32 * digestSz, const byte *
policyRef, word32 policyRefSz)Utility for
generating a policy authorization digest based
on a public key.

**wolfTPM2_PolicyPassword * tpmSession,
const byte * auth, int authSz)Wrapper for
setting a policy password and calling
TPM2_PolicyPassword. This will set a password
(in clear) for the policy session instead of
HMAC.

**wolfTPM2_PolicyAuthValue * tpmSession,
const byte * auth, int authSz)Wrapper for
setting a policy auth value that is added to the
HMAC key for a policy session.
**wolfTPM2_PolicyCommandCode cc)Wrapper
for setting a policy command code.
**wolfTPM2_SetldentityAuth * dev,
WOLFTPM2_HANDLE * handle, uint8_t *
masterPassword, uint16_t
masterPasswordSz)Set authentication for
pre-provisioned identity keys.
**GetKeyTemplateRSA sigHash)Internal helper
to create RSA key template.
**GetKeyTemplateECC sigHash)Internal helper
to create ECC key template.
**wolfTPM2_FirmwareUpgradeHash cb, void *
cb_ctx)Calculate hash of firmware manifest for
upgrade.

**wolfTPM2_FirmwareUpgrade cb, void *
cb_ctx)Perform TPM firmware upgrade.
**wolfTPM2_FirmwareUpgradeRecover cb, void
* cb_ctx)Recover from failed TPM firmware
upgrade.
**wolfTPM2_FirmwareUpgradeCancel *
dev)Cancel ongoing TPM firmware upgrade.

5.3.4 Attributes

5.3.5 Types Documentation

5.3.5.1 enum WOLFTPM2_MFG

COPYRIGHT ©2024 wolfSSL Inc.

Name

Enumerator

Value Description

TPM_MFG_UNKNOWN
TPM_MFG_INFINEON

0

220

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Enumerator Value Description

TPM_MFG_STM
TPM_MFG_MCHP
TPM_MFG_NUVOTON
TPM_MFG_NATIONTECH

5.3.5.2 typedef WOLFTPM2_SESSION
typedef struct WOLFTPM2_SESSION WOLFTPM2_SESSION;

5.3.5.3 typedef WOLFTPM2_DEV
typedef struct WOLFTPM2_DEV WOLFTPM2_DEV;

5.3.5.4 typedef WOLFTPM2_KEY
typedef struct WOLFTPM2_KEY WOLFTPM2_KEY;

5.3.5.5 typedef WOLFTPM2_PKEY
typedef struct WOLFTPM2_PKEY WOLFTPM2_PKEY;

5.3.5.6 typedef WOLFTPM2_KEYBLOB
typedef struct WOLFTPM2_KEYBLOB WOLFTPM2_KEYBLOB;

5.3.5.7 typedef WOLFTPM2_HASH
typedef struct WOLFTPM2_HASH WOLFTPM2_HASH;

5.3.5.8 typedef WOLFTPM2_NV
typedef struct WOLFTPM2_NV WOLFTPM2_NV;

5.3.5.9 typedef WOLFTPM2_HMAC
typedef struct WOLFTPM2_HMAC WOLFTPM2_HMAC;

5.3.5.10 typedef WOLFTPM2_CSR
typedef struct WOLFTPM2_CSR WOLFTPM2_CSR;

5.3.5.11 typedef WOLFTPM2_BUFFER
typedef struct WOLFTPM2_BUFFER WOLFTPM2_BUFFER;

5.3.5.12 typedef WOLFTPM2_MFG
typedef enum WOLFTPM2_MFG WOLFTPM2_MFG;

5.3.5.13 typedef WOLFTPM2_CAPS
typedef struct WOLFTPM2_CAPS WOLFTPM2_CAPS;

COPYRIGHT ©2024 wolfSSL Inc. 221

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.5.14 typedef TpmCryptoDevCtx
typedef struct TpmCryptoDevCtx TpmCryptoDevCtx;

5.3.5.15 typedef wolfTPM2FwDataCh

typedef int(* wolfTPM2FwDataCb) (uint8_t *data, uint32_t data_req_sz, uint32_t
<~ offset, void *cb_ctx);

5.3.6 Functions Documentation

5.3.6.1 function wolfTPM2_Test

WOLFTPM_API int wolfTPM2_Test(
TPM2HalIoCb ioCb,
void * userCtx,
WOLFTPM2_CAPS * caps

)

Test initialization of a TPM and optionally the TPM capabilities can be received.
Parameters:

+ ioCb function pointer to a IO callback (see [hal#file-tpm-io.h))
+ userCtx pointer to a user context (can be NULL)
+ caps to a structure of WOLFTPM2_CAPS type for returning the TPM capabilities (can be NULL)

See:

« wolfTPM2_Init
« TPM2_Init

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.2 function wolfTPM2_Init

WOLFTPM_API int wolfTPM2_Init(
WOLFTPM2_DEV * dev,
TPM2HalIoCb ioCb,
void * userCtx

)
Complete initialization of a TPM.
Parameters:

+ dev pointer to an empty structure of WOLFTPM2_DEV type
+ ioCb function pointer to a IO callback (see [hal#file-tpm-io.h))
+ userCtx pointer to a user context (can be NULL)

See:

* wolfTPM2_OpenExisting
¢ WolfTPM2_Test
« TPM2_Init

Return:

COPYRIGHT ©2024 wolfSSL Inc. 222

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO communication)
* BAD_FUNC_ARG: check the provided arguments

Example
int rc;
WOLFTPM2_DEV dev;

rc = wolfTPM2_Init(&dev, TPM2_IoCb, userCtx);
if (xrc !'= TPM_RC_SUCCESS) {

goto exit;

5.3.6.3 function wolfTPM2_OpenExisting

WOLFTPM_API int wolfTPM2_OpenExisting(
WOLFTPM2_DEV * dev,
TPM2HalIoCb ioCb,
void * userCtx

)
Use an already initialized TPM, in its current TPM locality.
Parameters:

+ dev pointer to an empty structure of WOLFTPM2_DEV type
+ ioCb function pointer to a IO callback (see [hal#file-tpm-io.h))
+ userCtx pointer to a user context (can be NULL)

See:

« wolfTPM2_Init
* wolfTPM2_Cleanup
« TPM2_Init

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO communication)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.4 function wolfTPM2_Cleanup

WOLFTPM_API int wolfTPM2_Cleanup(
WOLFTPM2_DEV * dev

)
Easy to use TPM and wolfcrypt deinitialization.
Parameters:
+ dev pointer to a populated structure of WOLFTPM2_DEV type
See:

* wolfTPM2_OpenExisting
* WolfTPM2_Test
« TPM2_Init

Return:

COPYRIGHT ©2024 wolfSSL Inc. 223

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO communication)
* BAD_FUNC_ARG: check the provided arguments

Note: Calls wolfTPM2_Cleanup_ex with appropriate doShutdown parameter
Example
int rc;

rc = wolfTPM2_Cleanup(&dev);
if (xc != TPM_RC_SUCCESS) {

goto exit;

5.3.6.5 function wolfTPM2_Cleanup_ex

WOLFTPM_API int wolfTPM2_Cleanup_ex(
WOLFTPM2_DEV * dev,
int doShutdown

)
Deinitialization of a TPM (and wolfcrypt if it was used)
Parameters:

+ dev pointer to a populated structure of WOLFTPM2_DEV type
+ doShutdown flag value, if true a TPM2_Shutdown command will be executed

See:

* wolfTPM2_OpenExisting
« WolfTPM2_Test
+ TPM2_Init

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO communication)
* BAD_FUNC_ARG: check the provided arguments

Example

int rc;

rc = wolfTPM2_Cleanup_ex(&dev, 1);
if (xc !'= TPM_RC_SUCCESS) {

goto exit;

5.3.6.6 function wolfTPM2_GetTpmDevid

WOLFTPM_API int wolfTPM2_GetTpmDevId(
WOLFTPM2_DEV * dev

)
Provides the device ID of a TPM.

COPYRIGHT ©2024 wolfSSL Inc. 224

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Parameters:
+ dev pointer to an populated structure of WOLFTPM2_DEV type
See:

* wolfTPM2_GetCapabilities
« wolfTPM2_Init

Return:

+ an integer value of a valid TPM device ID
¢ or INVALID _DEVID if the TPM initialization could not extract DevID

Example

int tpmDevId;

tpmDevId = wolfTPM2_GetTpmDevId(&dev);
if (tpmDevId != INVALID_DEVID) {

/ /wolfTPM2_Cleanup_ex failed
goto exit;

5.3.6.7 function wolfTPM2_SelfTest

WOLFTPM_API int wolfTPM2_SelfTest(
WOLFTPM2_DEV * dev

)
Asks the TPM to perform its self test.
Parameters:
+ dev pointer to a populated structure of WOLFTPM2_DEV type
See:

* wolfTPM2_OpenExisting
* wolfTPM2_Test
* TPM2_Init

Return:
« TPM_RC_SUCCESS: successful

« TPM_RC_FAILURE: generic failure (check TPM IO communication and TPM return code)

* BAD_FUNC_ARG: check the provided arguments
Example
int rc;
//pexrform TPM2_Shutdown after deinitialization
rc = wolfTPM2_SelfTest(&dev);
if (rc !'= TPM_RC_SUCCESS) {

/ /wolfTPM2_SelfTest failed
goto exit;

COPYRIGHT ©2024 wolfSSL Inc. 225

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.8 function wolfTPM2_GetCapabilities

WOLFTPM_API int wolfTPM2_GetCapabilities(
WOLFTPM2_DEV * dev,
WOLFTPM2_CAPS * caps

)
Reports the available TPM capabilities.
Parameters:

+ dev pointer to a populated structure of WOLFTPM2_DEV type
* caps pointer to an empty structure of WOLFTPM2_CAPS type to store the capabilities

See:

* wolfTPM2_GetTpmDevId
* wolfTPM2_SelfTest
« wolfTPM2_Init

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO communication and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Example

int rc;
WOLFTPM2_CAPS caps;

rc = wolfTPM2_GetCapabilities(&dev, &caps);
if (xc !'= TPM_RC_SUCCESS) {

goto exit;

5.3.6.9 function wolfTPM2_GetHandles

WOLFTPM_API int wolfTPM2_GetHandles(
TPM_HANDLE handle,
TPML_HANDLE * handles

)
Gets a list of handles.
Parameters:

+ handle handle to start from (example: PCR_FIRST, NV_INDEX_FIRST, HMAC_SESSION_FIRST, POL-
ICY_SESSION_FIRST, PERMANENT_FIRST, TRANSIENT_FIRST or PERSISTENT_FIRST)
* handles pointer to TPML_HANDLE to return handle results (optional)

See: wolfTPM2_GetCapabilities
Return:

+ 0 or greater: successful, count of handles
* TPM_RC_FAILURE: generic failure (check TPM IO communication and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Example

COPYRIGHT ©2024 wolfSSL Inc. 226

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

int persistent_handle_count;

persistent_handle_count = wolfTPM2_GetHandles (PERSISTENT_FIRST, NULL);

5.3.6.10 function wolfTPM2_UnsetAuth

WOLFTPM_API int wolfTPM2_UnsetAuth(
WOLFTPM2_DEV * dev,
int index

)
Clears one of the TPM Authorization slots, pointed by its index number.
Parameters:

+ dev pointer to a TPM2_DEV struct
+ index integer value, specifying the TPM Authorization slot, between zero and three

See:

« wolfTPM2_SetAuth

« wolfTPM2_SetAuthPassword
* wolfTPM2_SetAuthHandle

* wolfTPM2_SetAuthSession

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: unable to get lock on the TPM2 Context
* BAD_FUNC_ARG: check the provided arguments

5.3.6.11 function wolfTPM2_UnsetAuthSession

WOLFTPM_API int wolfTPM2_UnsetAuthSession(
WOLFTPM2_DEV * dev,
int index,
WOLFTPM2_SESSION * session

)

Clears one of the TPM Authorization session slots, pointed by its index number and saves the nonce
from the TPM so the session can continue to be used again with wolfTPM2_SetAuthSession.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ index integer value, specifying the TPM Authorization slot, between zero and three

» session pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

See:

* wolfTPM2_StartSession
» wolfTPM2_SetAuthSession

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: unable to get lock on the TPM2 Context
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 227

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.12 function wolfTPM2_SetAuth

WOLFTPM_API int wolfTPM2_SetAuth(
WOLFTPM2_DEV * dev,
int index,
TPM_HANDLE sessionHandle,
const TPM2B_AUTH * auth,
TPMA_SESSION sessionAttributes,
const TPM2B_NAME * name

)
Sets a TPM Authorization slot using the provided index, session handle, attributes and auth.
Parameters:

* dev pointer to a TPM2_DEV struct

* index integer value, specifying the TPM Authorization slot, between zero and three

+ sessionHandle integer value of TPM_HANDLE type

+ auth pointer to a structure of type TPM2B_AUTH containing one TPM Authorization

+ sessionAttributes integer value of type TPMA_SESSION, selecting one or more attributes for the
Session

* name pointer to a TPM2B_NAME structure

See:

* wolfTPM2_SetAuthPassword
* wolfTPM2_SetAuthHandle
* wolfTPM2_SetAuthSession

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: Itis recommended to use one of the other wolfTPM2 wrappers, like wolfTPM2_SetAuthPassword.
Because the wolfTPM2_SetAuth wrapper provides complete control over the TPM Authorization slot
for advanced use cases. In most scenarios, wolfTPM2_SetAuthHandle and SetAuthPassword are used.

5.3.6.13 function wolfTPM2_SetAuthPassword

WOLFTPM_API int wolfTPM2_SetAuthPasswoxrd(
WOLFTPM2_DEV * dev,
int index,
const TPM2B_AUTH * auth

)

Sets a TPM Authorization slot using the provided user auth, typically a password.
Parameters:

+ dev pointer to a TPM2_DEV struct
+ index integer value, specifying the TPM Authorization slot, between zero and three
+ auth pointer to a structure of type TPM2B_AUTH, typically containing a TPM Key Auth

See:

* wolfTPM2_SetAuthHandle
« wolfTPM2_SetAuthSession
« wolfTPM2_SetAuth

Return:

COPYRIGHT ©2024 wolfSSL Inc. 228

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: Often used for authorizing the loading and use of TPM keys, including Primary Keys

5.3.6.14 function wolfTPM2_SetAuthHandle

WOLFTPM_API int wolfTPM2_SetAuthHandle(
WOLFTPM2_DEV * dev,
int index,
const WOLFTPM2_HANDLE * handle

)

Sets a TPM Authorization slot using the user auth associated with a wolfTPM2 Handle.
Parameters:

+ dev pointer to a TPM2_DEV struct
+ index integer value, specifying the TPM Authorization slot, between zero and three
* handle pointer to a populated structure of WOLFTPM2_HANDLE type

See:

« wolfTPM2_SetAuth

* wolfTPM2_SetAuthPassword
* wolfTPM2_SetAuthHandle

» wolfTPM2_SetAuthSession

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: This wrapper is especially useful when using a TPM key for multiple operations and TPM Autho-
rization is required again.

5.3.6.15 function wolfTPM2_SetAuthSession

WOLFTPM_API int wolfTPM2_SetAuthSession(
WOLFTPM2_DEV * dev,
int index,
WOLFTPM2_SESSION * tpmSession,
TPMA_SESSION sessionAttributes

)

Sets a TPM Authorization slot using the provided TPM session handle, index and session attributes.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ index integer value, specifying the TPM Authorization slot, between zero and three

* tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

sessionAttributes integer value of type TPMA_SESSION, selecting one or more attributes for the
Session

See:

« wolfTPM2_SetAuth
* wolfTPM2_SetAuthPassword
* wolfTPM2_SetAuthHandle

COPYRIGHT ©2024 wolfSSL Inc. 229

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

* wolfTPM2_SetSessionHandle
Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: This wrapper is useful for configuring TPM sessions, e.g. session for parameter encryption

5.3.6.16 function wolfTPM2_SetSessionHandle

WOLFTPM_API int wolfTPM2_SetSessionHandle(
WOLFTPM2_DEV * dev,
int index,
WOLFTPM2_SESSION * tpmSession

)

Sets a TPM Authorization slot using the provided wolfTPM2 session object.
Parameters:

+ dev pointer to a TPM2_DEV struct

index integer value, specifying the TPM Authorization slot, between zero and three

* tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

« wolfTPM2_SetAuth

* wolfTPM2_SetAuthPassword
* wolfTPM2_SetAuthHandle

* WolfTPM2_SetAuthSession

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: This wrapper is useful for configuring TPM sessions, e.g. session for parameter encryption

5.3.6.17 function wolfTPM2_SetAuthHandleName

WOLFTPM_API int wolfTPM2_SetAuthHandleName (
WOLFTPM2_DEV * dev,
int index,
const WOLFTPM2_HANDLE * handle

)

Updates the Name used in a TPM Session with the Name associated with wolfTPM2 Handle.
Parameters:

+ dev pointer to a TPM2_DEV struct
+ index integer value, specifying the TPM Authorization slot, between zero and three
* handle pointer to a populated structure of WOLFTPM2_HANDLE type

« wolfTPM2_SetAuth

« wolfTPM2_SetAuthPassword
* wolfTPM2_SetAuthHandle

» wolfTPM2_SetAuthSession

COPYRIGHT ©2024 wolfSSL Inc. 230

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: Typically, this wrapper is used from another wrappers and in very specific use cases. For exam-
ple, wolfTPM2_NVWriteAuth

5.3.6.18 function wolfTPM2_StartSession

WOLFTPM_API int wolfTPM2_StartSession(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * session,
WOLFTPM2_KEY * tpmKey,
WOLFTPM2_HANDLE * bind,

TPM_SE sesType,
int encDecAlg

)

Create a TPM session, Policy, HMAC or Trial.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ session pointer to an empty WOLFTPM2_SESSION struct

« tpmKey pointer to a WOLFTPM2_KEY that will be used as a salt for the session

* bind pointer to a WOLFTPM2_HANDLE that will be used to make the session bounded

+ sesType byte value, the session type (HMAC, Policy or Trial)

+ encDecAlgintegervalue, specifying the algorithm in case of parameter encryption (TPM_ALG_CFB
or TPM_ALG_XOR). Any value not CFB or XOR is considered NULL and parameter encryption is
disabled.

See: wolfTPM2_SetAuthSession
Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: This wrapper can also be used to start TPM session for parameter encryption, see wolfTPM
nvram or keygen example

5.3.6.19 function wolfTPM2_CreateAuthSession_EkPolicy

WOLFTPM_API int wolfTPM2_CreateAuthSession_EkPolicy(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * tpmSession

)

Creates a TPM session with Policy Secret to satisfy the default EK policy.
Parameters:

*+ dev pointer to a TPM2_DEV struct
* tpmSession pointer to an empty WOLFTPM2_SESSION struct

See:

* wolfTPM2_SetAuthSession
+ wolfTPM2_StartSession

Return:

COPYRIGHT ©2024 wolfSSL Inc. 231

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments
« TPM_RC_FAILURE: check TPM return code, check available handles, check TPM IO

Note: This wrapper can be used only if the EK authorization is not changed from default

5.3.6.20 function wolfTPM2_CreatePrimaryKey

WOLFTPM_API int wolfTPM2_CreatePrimaryKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
TPM_HANDLE primaryHandle,
TPMT_PUBLIC * publicTemplate,
const byte * auth,
int authSz
)

Single function to prepare and create a TPM 2.0 Primary Key.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to an empty struct of WOLFTPM2_KEY type

+ primaryHandle integer value, specifying one of four TPM 2.0 Primary Seeds: TPM_RH_OWNER,
TPM_RH_ENDORSEMENT, TPM_RH_PLATFORM or TPM_RH_NULL

publicTemplate pointer to a TPMT_PUBLIC structure populated manually or using one of the
wolfTPM2_GetKeyTemplate_... wrappers

+ auth pointer to a string constant, specifying the password authorization for the Primary Key
authSz integer value, specifying the size of the password authorization, in bytes

* wolfTPM2_CreateKey

* wolfTPM2_CreatePrimaryKey_ex
* wolfTPM2_GetKeyTemplate_RSA
* wolfTPM2_GetKeyTemplate_ECC

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: TPM 2.0 allows only asymmetric RSA or ECC primary keys. Afterwards, both symmetric and
asymmetric keys can be created under a TPM 2.0 Primary Key Typically, Primary Keys are used to
create Hierarchies of TPM 2.0 Keys. The TPM uses a Primary Key to wrap the other keys, signing or
decrypting.

5.3.6.21 function wolfTPM2_CreatePrimaryKey_ex

WOLFTPM_API int wolfTPM2_CreatePrimaryKey_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_PKEY * pkey,
TPM_HANDLE primaryHandle,
TPMT_PUBLIC * publicTemplate,
const byte * auth,
int authSz

COPYRIGHT ©2024 wolfSSL Inc. 232

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Single function to prepare and create a TPM 2.0 Primary Key.
Parameters:

* dev pointer to a TPM2_DEV struct

+ pkey pointer to an empty struct of WOLFTPM2_PKEY type including the creation hash and ticket.
« primaryHandle integer value, specifying one of four TPM 2.0 Primary Seeds: TPM_RH_OWNER,
TPM_RH_ENDORSEMENT, TPM_RH_PLATFORM or TPM_RH_NULL

publicTemplate pointer to a TPMT_PUBLIC structure populated manually or using one of the
wolfTPM2_GetKeyTemplate_... wrappers

+ auth pointer to a string constant, specifying the password authorization for the Primary Key
authSz integer value, specifying the size of the password authorization, in bytes

* wolfTPM2_CreateKey

* wolfTPM2_CreatePrimaryKey

* wolfTPM2_GetKeyTemplate_RSA
* wolfTPM2_GetKeyTemplate_ECC

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: TPM 2.0 allows only asymmetric RSA or ECC primary keys. Afterwards, both symmetric and
asymmetric keys can be created under a TPM 2.0 Primary Key Typically, Primary Keys are used to
create Hierarchies of TPM 2.0 Keys. The TPM uses a Primary Key to wrap the other keys, signing or
decrypting.

5.3.6.22 function wolfTPM2_ChangeAuthKey

WOLFTPM_API int wolfTPM2_ChangeAuthKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
WOLFTPM2_HANDLE * parent,
const byte * auth,
int authSz

)
Change the authorization secret of a TPM 2.0 key.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to an empty struct of WOLFTPM2_KEY type

* parent pointer to a struct of WOLFTPM2_HANDLE type, specifying a TPM 2.0 Primary Key to be
used as the parent(Storage Key)

+ auth pointer to a string constant, specifying the password authorization of the TPM 2.0 key

+ authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_CreatePrimaryKey
* wolfTPM2_SetAuthHandle
* wolfTPM2_UnloadHandle

Return:
¢ TPM_RC_SUCCESS: successful

COPYRIGHT ©2024 wolfSSL Inc. 233

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: TPM does not allow the authorization secret of a Primary Key to be changed. Instead, use
wolfTPM2_CreatePrimary to create the same PrimaryKey with a new auth.

5.3.6.23 function wolfTPM2_CreateKey

WOLFTPM_API int wolfTPM2_CreateKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEYBLOB * keyBlob,
WOLFTPM2_HANDLE * parent,
TPMT_PUBLIC * publicTemplate,
const byte * auth,
int authSz

)
Single function to prepare and create a TPM 2.0 Key.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

* parent pointer to a struct of WOLFTPM2_HANDLE type, specifying the a 2.0 Primary Key to be
used as the parent(Storage Key)

publicTemplate pointer to a TPMT_PUBLIC structure populated manually or using one of the
wolfTPM2_GetKeyTemplate_... wrappers

+ auth pointer to a string constant, specifying the password authorization for the TPM 2.0 Key
authSz integer value, specifying the size of the password authorization, in bytes

* wolfTPM2_LoadKey

* wolfTPM2_GetKeyTemplate_RSA
* wolfTPM2_GetKeyTemplate_ECC
* wolfTPM2_CreatePrimaryKey

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: This function only creates the key material and stores it into the keyblob argument. To load the
key use wolfTPM2_LoadKey

5.3.6.24 function wolfTPM2_LoadKey

WOLFTPM_API int wolfTPM2_LoadKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEYBLOB * keyBlob,
WOLFTPM2_HANDLE * parent

)
Single function to load a TPM 2.0 key.
Parameters:

* dev pointer to a TPM2_DEV struct
+ keyBlob pointer to a struct of WOLFTPM2_KEYBLOB type

COPYRIGHT ©2024 wolfSSL Inc. 234

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

* parent pointer to a struct of WOLFTPM2_HANDLE type, specifying a TPM 2.0 Primary Key to be
used as the parent(Storage Key)

See:

* wolfTPM2_CreateKey

* wolfTPM2_CreatePrimaryKey

* wolfTPM2_GetKeyTemplate_RSA
* wolfTPM2_GetKeyTemplate_ECC

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: To load a TPM 2.0 key its parent(Primary Key) should also be loaded prior to this operation.
Primary Keys are loaded when they are created.

5.3.6.25 function wolfTPM2_CreateAndLoadKey

WOLFTPM_API int wolfTPM2_CreateAndLoadKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
WOLFTPM2_HANDLE * parent,
TPMT_PUBLIC * publicTemplate,
const byte * auth,
int authSz
)

Single function to create and load a TPM 2.0 Key in one step.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to an empty struct of WOLFTPM2_KEY type

* parent pointer to a struct of WOLFTPM2_HANDLE type, specifying a TPM 2.0 Primary Key to be
used as the parent(Storage Key)

publicTemplate pointer to a TPMT_PUBLIC structure populated manually or using one of the
wolfTPM2_GetKeyTemplate_... wrappers

+ auth pointer to a string constant, specifying the password authorization of the TPM 2.0 key
authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_CreateKey
* wolfTPM2_GetKeyTemplate_RSA
* wolfTPM2_GetKeyTemplate_ECC

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.26 function wolfTPM2_CreateLoadedKey

WOLFTPM_API int wolfTPM2_CreatelLoadedKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEYBLOB * keyBlob,

COPYRIGHT ©2024 wolfSSL Inc. 235

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM2_HANDLE * parent,
TPMT_PUBLIC * publicTemplate,
const byte * auth,

int authSz

)
Creates and loads a key using single TPM 2.0 operation, and stores encrypted private key material.
Parameters:

* dev pointer to a TPM2_DEV struct

+ keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type, contains private key material
as encrypted data

* parent pointer to a struct of WOLFTPM2_HANDLE type, specifying a TPM 2.0 Primary Key to be

used as the parent(Storage Key)

publicTemplate pointer to a TPMT_PUBLIC structure populated manually or using one of the

wolfTPM2_GetKeyTemplate_... wrappers

+ auth pointer to a string constant, specifying the password authorization of the TPM 2.0 key

authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_CreateAndLoadKey
» wolfTPM2_CreateKey
* wolfTPM2_LoadKey

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.27 function wolfTPM2_LoadPublicKey

WOLFTPM_API int wolfTPM2_LoadPublicKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const TPM2B_PUBLIC * pub

)
Wrapper to load the public part of an external key.
Parameters:

+ dev pointer to a TPM2_DEV struct
+ key pointer to an empty struct of WOLFTPM2_KEY type
* pub pointer to a populated structure of TPM2B_PUBLIC type

See:

* wolfTPM2_LoadRsaPublicKey
* wolfTPM2_LoadEccPublicKey
* wolfTPM2_wolfTPM2_LoadPrivateKey

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: The key must be formatted to the format expected by the TPM, see the ‘pub’ argument and the
alternative wrappers.

COPYRIGHT ©2024 wolfSSL Inc. 236

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.28 function wolfTPM2_LoadPublicKey_ex

WOLFTPM_API int wolfTPM2_LoadPublicKey_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const TPM2B_PUBLIC * pub,
TPM_HANDLE hierarchy

5.3.6.29 function wolfTPM2_LoadPrivateKey

WOLFTPM_API int wolfTPM2_LoadPrivateKey (
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEY * key,
const TPM2B_PUBLIC * pub,
TPM2B_SENSITIVE * sens

)

Single function to import an external private key and load it into the TPM in one step.
Parameters:

* dev pointer to a TPM2_DEV struct

+ parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys)
+ key pointer to an empty struct of WOLFTPM2_KEY type

+ pub pointer to a populated structure of TPM2B_PUBLIC type

* sens pointer to a populated structure of TPM2B_SENSITIVE type

* wolfTPM2_CreateKey
* wolfTPM2_GetKeyTemplate_RSA
* wolfTPM2_GetKeyTemplate_ECC

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: The private key material needs to be prepared in a format that the TPM expects, see the ‘sens’
argument

5.3.6.30 function wolfTPM2_ImportPrivateKey

WOLFTPM_API int wolfTPM2_ImportPrivateKey(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,
const TPM2B_PUBLIC * pub,
TPM2B_SENSITIVE * sens

)
Single function to import an external private key and load it into the TPM in one step.
Parameters:

* dev pointer to a TPM2_DEV struct
+ parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys)

COPYRIGHT ©2024 wolfSSL Inc. 237

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

+ keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type
* pub pointer to a populated structure of TPM2B_PUBLIC type
* sens pointer to a populated structure of TPM2B_SENSITIVE type

See:

* wolfTPM2_ImportRsaPrivateKey
* wolfTPM2_ImportEccPrivateKey

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: The primary key material needs to be prepared in a format that the TPM expects, see the ‘sens’
argument

5.3.6.31 function wolfTPM2_LoadRsaPublicKey

WOLFTPM_API int wolfTPM2_LoadRsaPublicKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * rsaPub,
word32 rsaPubSz,
word32 exponent

)
Helper function to import the public part of an external RSA key.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to an empty struct of WOLFTPM2_KEY type

* rsaPub pointer to a byte buffer containing the public key material

* rsaPubSz integer value of word32 type, specifying the buffer size

+ exponent integer value of word32 type, specifying the RSA exponent

* wolfTPM2_LoadRsaPublicKey_ex
* wolfTPM2_LoadPublicKey

* wolfTPM2_LoadEccPublicKey

* wolfTPM2_ReadPublicKey

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Recommended for use, because it does not require TPM format of the public part

5.3.6.32 function wolfTPM2_LoadRsaPublicKey_ex

WOLFTPM_API int wolfTPM2_LoadRsaPublicKey_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * rsaPub,
word32 rsaPubSz,
word32 exponent,

COPYRIGHT ©2024 wolfSSL Inc. 238

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

TPMI_ALG_RSA_SCHEME scheme,
TPMI_ALG_HASH hashAlg
)

Advanced helper function to import the public part of an external RSA key.
Parameters:

+ dev pointer to a TPM2_DEV struct

* key pointer to an empty struct of WOLFTPM2_KEY type

* rsaPub pointer to a byte buffer containing the public key material

* rsaPubSz integer value of word32 type, specifying the buffer size

+ exponent integer value of word32 type, specifying the RSA exponent

+ scheme value of TPMI_ALG_RSA_SCHEME type, specifying the RSA scheme

* hashAlg value of TPMI_ALG_HASH type, specifying the TPM hashing algorithm

* wolfTPM2_LoadRsaPublicKey
* wolfTPM2_LoadPublicKey
* wolfTPM2_LoadEccPublicKey
* wolfTPM2_ReadPublicKey

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Allows the developer to specify TPM hashing algorithm and RSA scheme

5.3.6.33 function wolfTPM2_ImportRsaPrivateKey

WOLFTPM_API int wolfTPM2_ImportRsaPrivateKey(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,
const byte * rsaPub,
woxrd32 rsaPubSz,
word32 exponent,
const byte * rsaPriv,
word32 rsaPrivSz,
TPMI_ALG_RSA_SCHEME scheme,
TPMI_ALG_HASH hashAlg

)
Import an external RSA private key.
Parameters:

+ dev pointer to a TPM2_DEV struct

* parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and
the key will be imported under the OWNER hierarchy)

+ keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

* rsaPub pointer to a byte buffer, containing the public part of the RSA key

* rsaPubSz integer value of word32 type, specifying the public part buffer size

+ exponent integer value of word32 type, specifying the RSA exponent

* rsaPriv pointer to a byte buffer, containing the private material of the RSA key

* rsaPrivSz integer value of word32 type, specifying the private material buffer size

+ scheme value of TPMI_ALG_RSA_SCHEME type, specifying the RSA scheme

COPYRIGHT ©2024 wolfSSL Inc. 239

53

wolftom/tpm2_wrap.h 5 API REFERENCE

See:

hashAlg integer value of TPMI_ALG_HASH type, specifying a supported TPM 2.0 hash algorithm

wolfTPM2_ImportRsaPrivateKeySeed
wolfTPM2_LoadRsaPrivateKey
wolfTPM2_LoadRsaPrivateKey_ex
wolfTPM2_LoadPrivateKey

Return:

TPM_RC_SUCCESS: successful

TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

BUFFER_E: arguments size is larger than what the TPM buffers allow

5.3.6.34 function wolfTPM2_ImportRsaPrivateKeySeed
WOLFTPM_API int wolfTPM2_ImportRsaPrivateKeySeed(

)

WOLFTPM2_DEV * dev,

const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,
const byte * rsaPub,

word32 rsaPubSz,

word32 exponent,

const byte * rsaPriv,
word32 rsaPrivSz,
TPMI_ALG_RSA_SCHEME scheme,
TPMI_ALG_HASH hashAlg,
TPMA_OBJECT attributes,
byte * seed,

word32 seedSz

Import an external RSA private key with custom seed.

Parameters:

dev pointer to a TPM2_DEV struct

parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and
the key will be imported under the OWNER hierarchy)

keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

rsaPub pointer to a byte buffer, containing the public part of the RSA key

rsaPubSz integer value of word32 type, specifying the public part buffer size

exponent integer value of word32 type, specifying the RSA exponent

rsaPriv pointer to a byte buffer, containing the private material of the RSA key

rsaPrivSz integer value of word32 type, specifying the private material buffer size

scheme value of TPMI_ALG_RSA_SCHEME type, specifying the RSA scheme

hashAlg integer value of TPMI_ALG_HASH type, specifying a supported TPM 2.0 hash algorithm
attributes integer value of TPMA_OBJECT type, can contain one or more attributes, e.g. TPMA_OBJECT_fixedTPM
(or 0 to automatically populate)

seedSz Optional (use NULL) or supply a custom seed for KDF

seed Size of the seed (use 32 bytes for SHA2-256)

wolfTPM2_ImportRsaPrivateKey
wolfTPM2_LoadRsaPrivateKey
wolfTPM2_LoadRsaPrivateKey_ex

COPYRIGHT ©2024 wolfSSL Inc. 240

53

wolftom/tpm2_wrap.h 5 API REFERENCE

wolfTPM2_LoadPrivateKey

Return:

TPM_RC_SUCCESS: successful

TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

BUFFER_E: arguments size is larger than what the TPM buffers allow

5.3.6.35 function wolfTPM2_LoadRsaPrivateKey
WOLFTPM_API int wolfTPM2_LoadRsaPrivateKey(

)

WOLFTPM2_DEV * dev,

const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEY * key,

const byte * rsaPub,

word32 rsaPubSz,

word32 exponent,

const byte * rsaPriv,

word32 rsaPrivSz

Helper function to import and load an external RSA private key in one step.

Parameters:

See:

dev pointer to a TPM2_DEV struct

parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and
the key will be imported under the OWNER hierarchy)

key pointer to an empty struct of WOLFTPM2_KEY type

rsaPub pointer to a byte buffer, containing the public part of the RSA key

rsaPubSz integer value of word32 type, specifying the public part buffer size

exponent integer value of word32 type, specifying the RSA exponent

rsaPriv pointer to a byte buffer, containing the private material of the RSA key

rsaPrivSz integer value of word32 type, specifying the private material buffer size

wolfTPM2_ImportRsaPrivateKey
wolfTPM2_LoadRsaPrivateKey_ex
wolfTPM2_LoadPrivateKey

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

5.3.6.36 function wolfTPM2_LoadRsaPrivateKey_ex
WOLFTPM_API int wolfTPM2_LoadRsaPrivateKey_ex(

WOLFTPM2_DEV * dev,

const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEY * key,

const byte * rsaPub,

word32 rsaPubSz,

word32 exponent,

const byte * rsaPriv,

word32 rsaPrivSz,

COPYRIGHT ©2024 wolfSSL Inc. 241

53

wolftom/tpm2_wrap.h 5 API REFERENCE

)

TPMI_ALG_RSA_SCHEME scheme,
TPMI_ALG_HASH hashAlg

Advanced helper function to import and load an external RSA private key in one step.

Parameters:

See:

dev pointer to a TPM2_DEV struct

parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and
the key will be imported under the OWNER hierarchy)

key pointer to an empty struct of WOLFTPM2_KEY type

rsaPub pointer to a byte buffer, containing the public part of the RSA key
rsaPubSz integer value of word32 type, specifying the public part buffer size
exponent integer value of word32 type, specifying the RSA exponent

rsaPriv pointer to a byte buffer, containing the private material of the RSA key
rsaPrivSz integer value of word32 type, specifying the private material buffer size
scheme value of TPMI_ALG_RSA_SCHEME type, specifying the RSA scheme
hashAlg value of TPMI_ALG_HASH type, specifying the TPM hashing algorithm

wolfTPM2_LoadRsaPrivateKey
wolfTPM2_LoadPrivateKey
wolfTPM2_ImportRsaPrivateKey
wolfTPM2_LoadEccPrivateKey

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

5.3.6.37 function wolfTPM2_LoadEccPublicKey
WOLFTPM_API int wolfTPM2_LoadEccPublicKey (

)

WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
int curveld,

const byte * eccPubX,
word32 eccPubXSz,
const byte * eccPuby,
word32 eccPubYSz

Helper function to import the public part of an external ECC key.

Parameters:

See:

dev pointer to a TPM2_DEV struct

key pointer to an empty struct of WOLFTPM2_KEY type

curveld integer value, one of the accepted TPM_ECC_CURVE values
eccPubX pointer to a byte buffer containing the public material of point X
eccPubXSz integer value of word32 type, specifying the point X buffer size
eccPubY pointer to a byte buffer containing the public material of pointY
eccPubYSz integer value of word32 type, specifying the point Y buffer size

wolfTPM2_LoadPublicKey

COPYRIGHT ©2024 wolfSSL Inc. 242

53

wolftom/tpm2_wrap.h 5 API REFERENCE

wolfTPM2_LoadRsaPublicKey
wolfTPM2_ReadPublicKey
wolfTPM2_LoadEccPrivateKey

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

Note: Recommended for use, because it does not require TPM format of the public part

5.3.6.38 function wolfTPM2_ImportEccPrivateKey
WOLFTPM_API int wolfTPM2_ImportEccPrivateKey(

)

WOLFTPM2_DEV * dev,

const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,

int curveld,

const byte * eccPubX,

woxrd32 eccPubXSz,

const byte * eccPuby,

word32 eccPubYSz,

const byte * eccPriv,

word32 eccPrivSz

Helper function to import the private material of an external ECC key.

Parameters:

dev pointer to a TPM2_DEV struct

parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and
the key will be imported under the OWNER hierarchy)

keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

curveld integer value, one of the accepted TPM_ECC_CURVE values
eccPubX pointer to a byte buffer containing the public material of point X
eccPubXSz integer value of word32 type, specifying the point X buffer size
eccPubY pointer to a byte buffer containing the public material of pointY
eccPubYSz integer value of word32 type, specifying the point Y buffer size
eccPriv pointer to a byte buffer containing the private material

eccPrivSz integer value of word32 type, specifying the private material size

wolfTPM2_ImportEccPrivateKeySeed
wolfTPM2_LoadEccPrivateKey
wolfTPM2_LoadEccPrivateKey_ex
wolfTPM2_LoadPrivateKey

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

5.3.6.39 function wolfTPM2_ImportEccPrivateKeySeed

COPYRIGHT ©2024 wolfSSL Inc. 243

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM_API int wolfTPM2_ImportEccPrivateKeySeed(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,
int curveld,
const byte * eccPubX,
woxrd32 eccPubXSz,
const byte * eccPuby,
word32 eccPubYSz,
const byte * eccPriv,
word32 eccPrivSz,
TPMA_OBJECT attributes,
byte * seed,
word32 seedSz

)
Helper function to import the private material of an external ECC key.
Parameters:

* dev pointer to a TPM2_DEV struct

+ parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and
the key will be imported under the OWNER hierarchy)

+ keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

+ curveld integer value, one of the accepted TPM_ECC_CURVE values

+ eccPubX pointer to a byte buffer containing the public material of point X

+ eccPubXSz integer value of word32 type, specifying the point X buffer size

+ eccPubY pointer to a byte buffer containing the public material of point Y

+ eccPubYSz integer value of word32 type, specifying the point Y buffer size

+ eccPriv pointer to a byte buffer containing the private material

+ eccPrivSz integer value of word32 type, specifying the private material size

« attributesintegervalue of TPMA_OBJECT type, can contain one or more attributes, e.g. TPMA_OBJECT_fixedTPM
(or 0 to automatically populate)

+ seedSz Optional (use NULL) or supply a custom seed for KDF

+ seed Size of the seed (use 32 bytes for SHA2-256)

* wolfTPM2_ImportEccPrivateKey
» wolfTPM2_LoadEccPrivateKey

* wolfTPM2_LoadEccPrivateKey_ex
* wolfTPM2_LoadPrivateKey

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.40 function wolfTPM2_LoadEccPrivateKey

WOLFTPM_API int wolfTPM2_LoadEccPrivateKey(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEY * key,
int curveld,
const byte * eccPubX,
word32 eccPubXSz,

COPYRIGHT ©2024 wolfSSL Inc. 244

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

const byte * eccPuby,
word32 eccPubYSz,
const byte * eccPriv,
word32 eccPrivSz

)
Helper function to import and load an external ECC private key in one step.
Parameters:

* dev pointer to a TPM2_DEV struct

* parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and
the key will be imported under the OWNER hierarchy)

+ key pointer to an empty struct of WOLFTPM2_KEY type

+ curveld integer value, one of the accepted TPM_ECC_CURVE values

+ eccPubX pointer to a byte buffer containing the public material of point X

+ eccPubXSz integer value of word32 type, specifying the point X buffer size

+ eccPubY pointer to a byte buffer containing the public material of point Y

+ eccPubYSz integer value of word32 type, specifying the point Y buffer size

+ eccPriv pointer to a byte buffer containing the private material

+ eccPrivSz integer value of word32 type, specifying the private material size

* wolfTPM2_ImportEccPrivateKey
* wolfTPM2_LoadEccPublicKey
* wolfTPM2_LoadPrivateKey

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.41 function wolfTPM2_ReadPublicKey

WOLFTPM_API int wolfTPM2_ReadPublicKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const TPM_HANDLE handle

)
Helper function to receive the public part of a loaded TPM object using its handle.
Parameters:

+ dev pointer to a TPM2_DEV struct
+ key pointer to an empty struct of WOLFTPM2_KEY type
* handle integer value of TPM_HANDLE type, specifying handle of a loaded TPM object

See:

* wolfTPM2_LoadRsaPublicKey
* wolfTPM2_LoadEccPublicKey
* wolfTPM2_LoadPublicKey

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 245

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Note: The public part of a TPM symmetric keys contains just TPM meta data

5.3.6.42 function wolfTPM2_CreateKeySeal

WOLFTPM_API int wolfTPM2_CreateKeySeal(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEYBLOB * keyBlob,
WOLFTPM2_HANDLE * parent,
TPMT_PUBLIC * publicTemplate,
const byte * auth,
int authSz,
const byte * sealData,
int sealSize

)
Using this wrapper a secret can be sealed inside a TPM 2.0 Key.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

* parent pointer to a struct of WOLFTPM2_HANDLE type, specifying the a 2.0 Primary Key to be

used as the parent(Storage Key)

publicTemplate pointer to a TPMT_PUBLIC structure populated using one of the wolfTPM2_GetKeyTemplate_Key
+ auth pointer to a string constant, specifying the password authorization for the TPM 2.0 Key

authSz integer value, specifying the size of the password authorization, in bytes

sealData pointer to a byte buffer, containing the secret(user data) to be sealed

+ sealSize integer value, specifying the size of the seal buffer, in bytes

* wolfTPM2_GetKeyTemplate_KeySeal
* TPM2_Unseal
* wolfTPM2_CreatePrimary

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: The secret size can not be larger than 128 bytes

5.3.6.43 function wolfTPM2_CreateKeySeal_ex

WOLFTPM_API int wolfTPM2_CreateKeySeal_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEYBLOB * keyBlob,
WOLFTPM2_HANDLE * parent,
TPMT_PUBLIC * publicTemplate,
const byte * auth,
int authSz,

TPM_ALG_ID pcrAlg,
byte * pcrArray,
word32 pcrArraySz,
const byte * sealData,
int sealSize

COPYRIGHT ©2024 wolfSSL Inc. 246

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Using this wrapper a secret can be sealed inside a TPM 2.0 Key with pcr selection.
Parameters:

+ dev pointer to a WOLFTPM2_DEV struct

+ keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

* parent pointer to a struct of WOLFTPM2_HANDLE type, specifying the a 2.0 Primary Key to be
used as the parent(Storage Key)

publicTemplate pointerto a TPMT_PUBLIC structure populated using one of the wolfTPM2_GetKeyTemplate_Key
+ auth pointer to a string constant, specifying the password authorization for the TPM 2.0 Key
authSz integer value, specifying the size of the password authorization, in bytes

* pcrAlg hash algorithm to use when calculating pcr digest

pcrArray optional array of pcrs to be used when creating the tpm object

pcrArraySz length of the pcrArray

sealData pointer to a byte buffer, containing the secret(user data) to be sealed

+ sealSize integer value, specifying the size of the seal buffer, in bytes

See:

* wolfTPM2_GetKeyTemplate_KeySeal
* TPM2_Unseal
* wolfTPM2_CreatePrimary

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: The secret size can not be larger than 128 bytes

5.3.6.44 function wolfTPM2_ComputeName

WOLFTPM_API int wolfTPM2_ComputeName (
const TPM2B_PUBLIC * pub,
TPM2B_NAME * out

)
Helper function to generate a hash of the public area of an object in the format expected by the TPM.
Parameters:

* pub pointer to a populated structure of TPM2B_PUBLIC type, containing the public area of a TPM
object
+ out pointer to an empty struct of TPM2B_NAME type, to store the computed name

See: wolfTPM2_ImportPrivateKey
Return:

« TPM_RC_SUCCESS: successful
» TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Computed TPM name includes hash of the TPM_ALG_ID and the public are of the object

5.3.6.45 function wolfTPM2_SensitiveToPrivate

WOLFTPM_API int wolfTPM2_SensitiveToPrivate(
TPM2B_SENSITIVE * sens,
TPM2B_PRIVATE * priv,

COPYRIGHT ©2024 wolfSSL Inc. 247

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

TPMI_ALG_HASH nameAlg,
TPM2B_NAME * name,
const WOLFTPM2_KEY * parentKey,
TPMT_SYM_DEF_OBJECT * sym,
TPM2B_DATA * symSeed

)

Helper function to convert TPM2B_SENSITIVE.
Parameters:

* sens pointer to a correctly populated structure of TPM2B_SENSITIVE type

* priv pointer to an empty struct of TPM2B_PRIVATE type

* nameAlg integer value of TPMI_ALG_HASH type, specifying a valid TPM2 hashing algorithm
* name pointer to a TPM2B_NAME structure

+ parentKey pointer to a WOLFTPM2_KEY structure, specifying a parentKey, if it exists

* sym pointer to a structure of TPMT_SYM_DEF_OBJECT type

+ symSeed pointer to a structure of derived secret (RSA=random, ECC=ECDHE)

See: wolfTPM2_ImportPrivateKey
Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.46 function wolfTPM2_ImportPrivateKeyBuffer

WOLFTPM_API int wolfTPM2_ImportPrivateKeyBuffer(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
int keyType,
WOLFTPM2_KEYBLOB * keyBlob,
int encodingType,
const char * input,
word32 inSz,
const char * pass,
TPMA_OBJECT objectAttributes,
byte * seed,
word32 seedSz

)
Helper function to import PEM/DER or RSA/ECC private key.
Parameters:

* dev pointer to a TPM2_DEV struct

+ keyType The type of key (TPM_ALG_RSA or TPM_ALG_ECC)

* parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy

+ keyBlob pointer to a struct of WOLFTPM2_KEYBLOB type, to import the private key to

+ encodingType ENCODING_TYPE_PEM or ENCODING_TYPE_ASN1 (DER)

* input buffer holding the rsa pem

* inSz length of the input pem buffer

* pass optional password of the key

+ objectAttributes integer value of TPMA_OBJECT type, can contain one or more attributes,
e.g. TPMA_OBJECT _fixedTPM

+ seedSz Optional (use NULL) or supply a custom seed for KDF

+ seed Size of the seed (use 32 bytes for SHA2-256)

COPYRIGHT ©2024 wolfSSL Inc. 248

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.47 function wolfTPM2_ImportPublicKeyBuffer

WOLFTPM_API int wolfTPM2_ImportPublicKeyBuffer(
WOLFTPM2_DEV * dev,
int keyType,
WOLFTPM2_KEY * key,
int encodingType,
const char * input,
word32 inSz,
TPMA_OBJECT objectAttributes
)

Helper function to import PEM/DER formatted RSA/ECC public key.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ keyType The type of key (TPM_ALG_RSA or TPM_ALG_ECC)

+ key pointer to a struct of WOLFTPM2_KEY type, to import the public key to
+ encodingType ENCODING_TYPE_PEM or ENCODING_TYPE_ASN1 (DER)

+ input buffer holding the rsa pem

* inSz length of the input pem buffer

+ objectAttributes integer value of OR'd TPMA_OBJECT_* types

Return:

* TPM_RC_SUCCESS: successful - populates key->pub
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.48 function wolfTPM2_ExportPublicKeyBuffer

WOLFTPM_API int wolfTPM2_ExportPublicKeyBuffer(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * tpmKey,
int encodingType,
byte * out,
word32 * outSz

)
Helper function to export a TPM RSA/ECC public key with PEM/DER formatting.
Parameters:

* dev pointer to a TPM2_DEV struct

+ tpmKey pointer to a WOLFTPM2_KEY with populated key

+ encodingType ENCODING_TYPE_PEM or ENCODING_TYPE_ASN1 (DER)
+ out buffer to export public key

+ outSz pointer to length of the out buffer

Return:

* TPM_RC_SUCCESS: successful - populates key->pub
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)

COPYRIGHT ©2024 wolfSSL Inc. 249

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

* BUFFER_E: insufficient space in provided buffer
* BAD_FUNC_ARG: check the provided arguments

5.3.6.49 function wolfTPM2_RsaPrivateKeyImportDer

WOLFTPM_API int wolfTPM2_RsaPrivateKeyImportDer(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,
const byte * input,
word32 inSz,
TPMI_ALG_RSA_SCHEME scheme,
TPMI_ALG_HASH hashAlg

)
Helper function to import Der rsa key directly.
Parameters:

+ dev pointer to a TPM2_DEV struct

* parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy
+ keyBlob pointer to a struct of WOLFTPM2_KEYBLOB type, to import the rsa key to

* input buffer holding the rsa der

* inSz length of the input der buffer

+ scheme value of TPMI_ALG_RSA_SCHEME type, specifying the RSA scheme

* hashAlg value of TPMI_ALG_HASH type, specifying the TPM hashing algorithm

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.50 function wolfTPM2_RsaPrivateKeyImportPem

WOLFTPM_API int wolfTPM2_RsaPrivateKeyImportPem(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,
const char * input,
word32 inSz,
char * pass,
TPMI_ALG_RSA_SCHEME scheme,
TPMI_ALG_HASH hashAlg

)
Helper function to import Pem rsa key directly.
Parameters:

* dev pointer to a TPM2_DEV struct

* parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy
+ keyBlob pointer to a struct of WOLFTPM2_KEYBLOB type, to import the rsa key to

+ input buffer holding the rsa pem

* inSz length of the input pem buffer

* pass optional password of the key

+ scheme value of TPMI_ALG_RSA_SCHEME type, specifying the RSA scheme

* hashAlg value of TPMI_ALG_HASH type, specifying the TPM hashing algorithm

COPYRIGHT ©2024 wolfSSL Inc. 250

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.51 function wolfTPM2_RsaKey_TpmToWolf

WOLFTPM_API int wolfTPM2_RsaKey_TpmToWolf(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * tpmKey,
RsaKey * wolfKey

)
Extract a RSA TPM key and convert it to a wolfcrypt key.

Parameters:

* dev pointer to a TPM2_DEV struct
+ tpmKey pointer to a struct of WOLFTPM2_KEY type, holding a TPM key
+ wolfKey pointer to an empty struct of RsaKey type, to store the converted key

See:

+ wolfTPM2_RsaKey_WolfToTpm
* wolfTPM2_RsaKey WolfToTpm_ex

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.52 function wolfTPM2_RsaKey TpmToPemPub

WOLFTPM_API int wolfTPM2_RsaKey_TpmToPemPub (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * keyBlob,
byte * penm,
word32 * pemSz

)

Convert a public RSA TPM key to PEM format public key. Note: This API is a
wolfTPM2_ExportPublicKeyBuffer.

Parameters:

* dev pointer to a TPM2_DEV struct
+ keyBlob pointer to a struct of WOLFTPM2_KEY type, holding a TPM key

wrapper around

* pem pointer to an array of byte type, used as temporary storage for PEM conversation

* pemSz pointer to integer variable, to store the used buffer size
See:

* wolfTPM2_ExportPublicKeyBuffer
* wolfTPM2_RsaKey_TpmToWolf
* wolfTPM2_RsaKey_WolfToTpm

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)

COPYRIGHT ©2024 wolfSSL Inc. 251

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

* BAD_FUNC_ARG: check the provided arguments

5.3.6.53 function wolfTPM2_RsaKey WolfToTpm

WOLFTPM_API int wolfTPM2_RsaKey_WolfToTpm(
WOLFTPM2_DEV * dev,
RsaKey * wolfKey,
WOLFTPM2_KEY * tpmKey

)

Import a RSA wolfcrypt key into the TPM.
Parameters:

+ dev pointer to a TPM2_DEV struct
+ wolfKey pointer to a struct of RsaKey type, holding a wolfcrypt key
* tpmKey pointer to an empty struct of WOLFTPM2_KEY type, to hold the imported TPM key

See: wolfTPM2_RsaKey_TpmToWolf
Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Allows the use of externally generated keys by wolfcrypt to be used with TPM 2.0

5.3.6.54 function wolfTPM2_RsaKey WolfToTpm_ex

WOLFTPM_API int wolfTPM2_RsaKey_WolfToTpm_ex(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
RsaKey * wolfKey,
WOLFTPM2_KEY * tpmKey

)
Import a RSA wolfcrypt key into the TPM under a specific Primary Key or Hierarchy.
Parameters:

+ dev pointer to a TPM2_DEV struct

* parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy
+ wolfKey pointer to a struct of RsaKey type, holding a wolfcrypt key

* tpmKey pointer to an empty struct of WOLFTPM2_KEY type, to hold the imported TPM key

See:

* wolfTPM2_RsaKey_WolfToTpm
* wolfTPM2_RsaKey_TpmToWolf

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Allows the use of wolfcrypt generated keys with wolfTPM

COPYRIGHT ©2024 wolfSSL Inc. 252

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.55 function wolfTPM2_CreateRsaKeyBlob

WOLFTPM_API int wolfTPM2_CreateRsaKeyBlob(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
RsaKey * wolfKey,
WOLFTPM2_KEYBLOB * tpmKey
)

Create an encrypted RSA key blob from a wolfCrypt key under a specific parent key.
Parameters:

+ dev pointer to a TPM2_DEV struct

* parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy

+ wolfKey pointer to a struct of RsaKey type, holding a wolfcrypt key

+ tpmKey pointer to an empty struct of WOLFTPM2_KEYBLOB type, to hold the encrypted key blob

See:

* wolfTPM2_LoadKey
* wolfTPM2_RsaKey_WolfToTpm_ex
* wolfTPM2_CreateEccKeyBlob

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Creates an encrypted version of the key in WOLFTPM2_KEYBLOB to load the key.

5.3.6.56 function wolfTPM2_RsaKey_PubPemToTpm

WOLFTPM_API int wolfTPM2_RsaKey_PubPemToTpm(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * tpmKey,
const byte * penm,
word32 pemSz
)

Import a PEM format public key from a file into the TPM.
Parameters:

+ dev pointer to a TPM2_DEV struct

* tpmKey pointer to an empty struct of WOLFTPM2_KEY type, to hold the imported TPM key
* pem pointer to an array of byte type, containing a PEM formatted public key material

* pemSz pointer to integer variable, specifying the size of PEM key data

See:

» wolfTPM2_RsaKey WolfToTpm
+ wolfTPM2_RsaKey_TpmToPem
* wolfTPM2_RsaKey_TpmToWolf

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)

COPYRIGHT ©2024 wolfSSL Inc. 253

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.57 function wolfTPM2_DecodeRsaDer

WOLFTPM_API int wolfTPM2_DecodeRsaDer (
const byte * der,
woxrd32 derSz,
TPM2B_PUBLIC * pub,
TPM2B_SENSITIVE * sens,
TPMA_OBJECT attributes

)

Import DER RSA private or public key into TPM public and sensitive structures. This does not make any
calls to TPM hardware.

Parameters:

+ der The der encoding of the content of the extension.

+ derSz The size in bytes of the der encoding.

* pub pointer to a populated structure of TPM2B_PUBLIC type

*+ sens pointer to a populated structure of TPM2B_SENSITIVE type

+ attributesintegervalue of TPMA_OBJECT type, can contain one or more attributes, e.g. TPMA_OBJECT_fixedTPM
(or 0 to automatically populate)

See:

» wolfTPM2_ImportPublicKeyBuffer
* wolfTPM2_ImportPrivateKeyBuffer
* wolfTPM2_DecodeEccDer

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)

5.3.6.58 function wolfTPM2_EccKey_TpmToWolf

WOLFTPM_API int wolfTPM2_EccKey_TpmToWolf(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * tpmKey,
ecc_key * wolfKey

)

Extract a ECC TPM key and convert to to a wolfcrypt key.
Parameters:

+ dev pointer to a TPM2_DEV struct
+ tpmKey pointer to a struct of WOLFTPM2_KEY type, holding a TPM key
+ wolfKey pointer to an empty struct of ecc_key type, to store the converted key

See:

* wolfTPM2_EccKey_WolfToTpm
* wolfTPM2_EccKey_WolfToTpm_ex

Return:

* TPM_RC_SUCCESS: successful
» TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 254

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.59 function wolfTPM2_EccKey_WolfToTpm

WOLFTPM_API int wolfTPM2_EccKey_WolfToTpm(
WOLFTPM2_DEV * dev,
ecc_key * wolfKey,
WOLFTPM2_KEY * tpmKey

)

Import a ECC wolfcrypt key into the TPM.
Parameters:

+ dev pointer to a TPM2_DEV struct
+ wolfKey pointer to a struct of ecc_key type, holding a wolfcrypt key
+ tpmKey pointer to an empty struct of WOLFTPM2_KEY type, to hold the imported TPM key

See: wolfTPM2_EccKey_TpmToWolf
Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Allows the use of externally generated keys by wolfcrypt to be used with TPM 2.0

5.3.6.60 function wolfTPM2_EccKey WolfToTpm_ex

WOLFTPM_API int wolfTPM2_EccKey_WolfToTpm_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * parentKey,
ecc_key * wolfKey,
WOLFTPM2_KEY * tpmKey
)

Import ECC wolfcrypt key into the TPM under a specific Primary Key or Hierarchy.
Parameters:

*+ dev pointer to a TPM2_DEV struct

* parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy
+ wolfKey pointer to a struct of ecc_key type, holding a wolfcrypt key

+ tpmKey pointer to an empty struct of WOLFTPM2_KEY type, to hold the imported TPM key

See:

* wolfTPM2_EccKey_WolfToTPM
» wolfTPM2_EccKey_TpmToWolf

Return:

« TPM_RC_SUCCESS: successful
» TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Allows the use of wolfcrypt generated keys with wolfTPM

5.3.6.61 function wolfTPM2_CreateEccKeyBlob

WOLFTPM_API int wolfTPM2_CreateEccKeyBlob(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * parentKey,

COPYRIGHT ©2024 wolfSSL Inc. 255

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

ecc_key * wolfKey,
WOLFTPM2_KEYBLOB * tpmKey
)

Create an encrypted ECC key blob from a wolfCrypt key under a specific parent key.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy

+ wolfKey pointer to a struct of ecc_key type, holding a wolfcrypt key

+ tpmKey pointer to an empty struct of WOLFTPM2_KEYBLOB type, to hold the encrypted key blob

* wolfTPM2_LoadKey
* wolfTPM2_EccKey_WolfToTpm_ex
* wolfTPM2_CreateRsaKeyBlob

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Creates an encrypted version of the key in WOLFTPM2_KEYBLOB to load the key.

5.3.6.62 function wolfTPM2_EccKey WolfToPubPoint

WOLFTPM_API int wolfTPM2_EccKey_WolfToPubPoint(
WOLFTPM2_DEV * dev,
ecc_key * wolfKey,
TPM2B_ECC_POINT * pubPoint

)

Import a ECC public key generated from wolfcrypt key into the TPM.
Parameters:

*+ dev pointer to a TPM2_DEV struct
+ wolfKey pointer to a struct of ecc_key type, holding a wolfcrypt public ECC key
* pubPoint pointer to an empty struct of TPM2B_ECC_POINT type

See: wolfTPM2_EccKey_TpmToWolf
Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Allows the use of externally generated public ECC key by wolfcrypt to be used with TPM 2.0

5.3.6.63 function wolfTPM2_DecodeEccDer

WOLFTPM_API int wolfTPM2_DecodeEccDex (
const byte * der,
woxrd32 derSz,
TPM2B_PUBLIC * pub,
TPM2B_SENSITIVE * sens,
TPMA_OBJECT attributes

COPYRIGHT ©2024 wolfSSL Inc. 256

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Import DER ECC private or public key into TPM public and sensitive structures. This does not make any
calls to TPM hardware.

Parameters:

+ der The der encoding of the content of the extension.

+ derSz The size in bytes of the der encoding.

* pub pointer to a populated structure of TPM2B_PUBLIC type

* sens pointer to a populated structure of TPM2B_SENSITIVE type

« attributesintegervalue of TPMA_OBJECT type, can contain one or more attributes, e.g. TPMA_OBJECT_fixedTPM
(or 0 to automatically populate)

See:

+ wolfTPM2_ImportPublicKeyBuffer
+ wolfTPM2_ImportPrivateKeyBuffer
* wolfTPM2_DecodeRsaDer

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)

5.3.6.64 function wolfTPM2_SignHash

WOLFTPM_API int wolfTPM2_SignHash(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * digest,
int digestSz,
byte * sig,
int * sigSz
)
Helper function to sign arbitrary data using a TPM key.
Parameters:

*+ dev pointer to a TPM2_DEV struct

+ key pointer to a struct of WOLFTPM2_KEY type, holding a TPM key material
+ digest pointer to a byte buffer, containing the arbitrary data

+ digestSz integer value, specifying the size of the digest buffer, in bytes

* sig pointer to a byte buffer, containing the generated signature

+ sigSz integer value, specifying the size of the signature buffer, in bytes

* wolfTPM2_VerifyHash
+ wolfTPM2_SignHashScheme
* wolfTPM2_VerifyHashScheme

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.65 function wolfTPM2_SignHashScheme

WOLFTPM_API int wolfTPM2_SignHashScheme(
WOLFTPM2_DEV * dev,

COPYRIGHT ©2024 wolfSSL Inc. 257

53

wolftom/tpm2_wrap.h 5 API REFERENCE

)

WOLFTPM2_KEY * key,

const byte * digest,

int digestSz,

byte * sig,

int * sigSz,
TPMI_ALG_SIG_SCHEME sigAlg,
TPMI_ALG_HASH hashAlg

Advanced helper function to sign arbitrary data using a TPM key, and specify the signature scheme
and hashing algorithm.

Parameters:

dev pointer to a TPM2_DEV struct

key pointer to a struct of WOLFTPM2_KEY type, holding a TPM key material

digest pointer to a byte buffer, containing the arbitrary data

digestSz integer value, specifying the size of the digest buffer, in bytes

sig pointer to a byte buffer, containing the generated signature

sigSz integer value, specifying the size of the signature buffer, in bytes

sigAlg integer value of TPMI_ALG_SIG_SCHEME type, specifying a supported TPM 2.0 signature
scheme

hashAlg integer value of TPMI_ALG_HASH type, specifying a supported TPM 2.0 hash algorithm

wolfTPM2_SignHash
wolfTPM2_VerifyHash
wolfTPM2_VerifyHashScheme

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

5.3.6.66 function wolfTPM2_VerifyHash
WOLFTPM_API int wolfTPM2_VerifyHash(

)

WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * sig,
int sigSz,

const byte * digest,
int digestSz

Helper function to verify a TPM generated signature.

Parameters:

See:

dev pointer to a TPM2_DEV struct

key pointer to a struct of WOLFTPM2_KEY type, holding a TPM 2.0 key material
sig pointer to a byte buffer, containing the generated signature

sigSz integer value, specifying the size of the signature buffer, in bytes

digest pointer to a byte buffer, containing the signed data

digestSz integer value, specifying the size of the digest buffer, in bytes

COPYRIGHT ©2024 wolfSSL Inc. 258

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

* wolfTPM2_SignHash

+ wolfTPM2_SignHashScheme
* wolfTPM2_VerifyHashScheme
* wolfTPM2_VerifyHash_ex

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.67 function wolfTPM2_VerifyHash_ex

WOLFTPM_API int wolfTPM2_VerifyHash_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * sig,
int sigSz,
const byte * digest,
int digestSz,
int hashAlg
)

Helper function to verify a TPM generated signature.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to a struct of WOLFTPM2_KEY type, holding a TPM 2.0 key material
* sig pointer to a byte buffer, containing the generated signature

+ sigSz integer value, specifying the size of the signature buffer, in bytes

+ digest pointer to a byte buffer, containing the signed data

+ digestSz integer value, specifying the size of the digest buffer, in bytes

* hashAlg hash algorithm used to sign

See:

* wolfTPM2_SignHash
* wolfTPM2_SignHashScheme
* wolfTPM2_VerifyHashScheme

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.68 function wolfTPM2_VerifyHashScheme

WOLFTPM_API int wolfTPM2_VerifyHashScheme(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * sig,
int sigSz,
const byte * digest,
int digestSz,
TPMI_ALG_SIG_SCHEME sigAlg,
TPMI_ALG_HASH hashAlg

COPYRIGHT ©2024 wolfSSL Inc. 259

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Advanced helper function to verify a TPM generated signature.

Parameters:

dev pointer to a TPM2_DEV struct

key pointer to a struct of WOLFTPM2_KEY type, holding a TPM 2.0 key material

sig pointer to a byte buffer, containing the generated signature

sigSz integer value, specifying the size of the signature buffer, in bytes

digest pointer to a byte buffer, containing the signed data

digestSz integer value, specifying the size of the digest buffer, in bytes

sigAlg integer value of TPMI_ALG_SIG_SCHEME type, specifying a supported TPM 2.0 signature
scheme

hashAlg integer value of TPMI_ALG_HASH type, specifying a supported TPM 2.0 hash algorithm

wolfTPM2_SignHash
wolfTPM2_SignHashScheme
wolfTPM2_VerifyHash

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.69 function wolfTPM2_VerifyHashTicket
WOLFTPM_API int wolfTPM2_VerifyHashTicket(

)

WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,

const byte * sig,

int sigSz,

const byte * digest,

int digestSz,
TPMI_ALG_SIG_SCHEME sigAlg,
TPMI_ALG_HASH hashAlg,
TPMT_TK_VERIFIED * checkTicket

Advanced helper function to verify a TPM generated signature and return ticket.

Parameters:

dev pointer to a TPM2_DEV struct

key pointer to a struct of WOLFTPM2_KEY type, holding a TPM 2.0 key material

sig pointer to a byte buffer, containing the generated signature

sigSz integer value, specifying the size of the signature buffer, in bytes

digest pointer to a byte buffer, containing the signed data

digestSz integer value, specifying the size of the digest buffer, in bytes

sigAlg integer value of TPMI_ALG_SIG_SCHEME type, specifying a supported TPM 2.0 signature
scheme

hashAlg integer value of TPMI_ALG_HASH type, specifying a supported TPM 2.0 hash algorithm
checkTicket returns the validation ticket proving the signature for digest was checked

wolfTPM2_VerifyHashScheme
wolfTPM2_VerifyHashTicket
wolfTPM2_VerifyHash

COPYRIGHT ©2024 wolfSSL Inc. 260

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.70 function wolfTPM2_ECDHGenKey

WOLFTPM_API int wolfTPM2_ECDHGenKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * ecdhKey,
int curve_id,
const byte * auth,
int authSz
)

Generates and then loads a ECC key-pair with NULL hierarchy for Diffie-Hellman exchange.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ ecdhKey pointer to an empty structure of WOLFTPM2_KEY type

+ curve_id integer value, specifying a valid TPM_ECC_CURVE value

+ auth pointer to a string constant, specifying the password authorization for the TPM 2.0 Key
« authSz integer value, specifying the size of the password authorization, in bytes

* wolfTPM2_ECDHGen

* wolfTPM2_ECDHGenZ

* wolfTPM2_ECDHEGenKey
* wolfTPM2_ECDHEGenZ

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.71 function wolfTPM2_ECDHGen

WOLFTPM_API int wolfTPM2_ECDHGen(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * privKey,
TPM2B_ECC_POINT * pubPoint,
byte * out,
int * outSz

)
Generates ephemeral key and computes Z (shared secret)
Parameters:

+ dev pointer to a TPM2_DEV struct

* privKey pointer to a structure of WOLFTPM2_KEY type

+ pubPoint pointer to an empty structure of TPM2B_ECC_POINT type
+ out pointer to a byte buffer, to store the generated shared secret

* outSz integer value, specifying the size of the shared secret, in bytes

See:

COPYRIGHT ©2024 wolfSSL Inc. 261

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

+ wolfTPM2_ECDHGenZ

* wolfTPM2_ECDHGenKey
* wolfTPM2_ECDHEGenKey
* wolfTPM2_ECDHEGenZ

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: One shot API using private key handle to generate key-pair and return public point and shared
secret

5.3.6.72 function wolfTPM2_ECDHGenZ

WOLFTPM_API int wolfTPM2_ECDHGenZ (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * privKey,
const TPM2B_ECC_POINT * pubPoint,
byte * out,
int * outSz

)
Computes Z (shared secret) using pubPoint and loaded private ECC key.
Parameters:

+ dev pointer to a TPM2_DEV struct

* privKey pointer to a structure of WOLFTPM2_KEY type, containing a valid TPM handle
* pubPoint pointer to a populated structure of TPM2B_ECC_POINT type

+ out pointer to a byte buffer, to store the computed shared secret

+ outSz integer value, specifying the size of the shared secret, in bytes

See:

* WolfTPM2_ECDHGen

* wolfTPM2_ECDHGenKey
* wolfTPM2_ECDHEGenKey
* wolfTPM2_ECDHEGenZ

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.73 function wolfTPM2_ECDHEGenKey

WOLFTPM_API int wolfTPM2_ECDHEGenKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * ecdhKey,
int curve_id

)
Generates ephemeral ECC key and returns array index (2 phase method)
Parameters:

* dev pointer to a TPM2_DEV struct
+ ecdhKey pointer to an empty structure of WOLFTPM2_KEY type

COPYRIGHT ©2024 wolfSSL Inc. 262

53

wolftom/tpm2_wrap.h 5 API REFERENCE

curve_id integer value, specifying a valid TPM_ECC_CURVE value

wolfTPM2_ECDHEGenZ
wolfTPM2_ECDHGen
wolfTPM2_ECDHGenKey
wolfTPM2_ECDHGenZ

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

Note: One time use key

5.3.6.74 function wolfTPM2_ECDHEGenZ
WOLFTPM_API int wolfTPM2_ECDHEGenZ(

)

WOLFTPM2_DEV * dev,

WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEY * ecdhKey,

const TPM2B_ECC_POINT * pubPoint,
byte * out,

int * outSz

Computes Z (shared secret) using pubPoint and counter (2 phase method)

Parameters:

See:

dev pointer to a TPM2_DEV struct

parentKey pointer to a structure of WOLFTPM2_KEY type, containing a valid TPM handle of a
primary key

ecdhKey pointer to a structure of WOLFTPM2_KEY type, containing a valid TPM handle
pubPoint pointer to an empty struct of TPM2B_ECC_POINT type

out pointer to a byte buffer, to store the computed shared secret

outSz integer value, specifying the size of the shared secret, in bytes

wolfTPM2_ECDHEGenKey
wolfTPM2_ECDHGen
wolfTPM2_ECDHGenKey
wolfTPM2_ECDHGenZ

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

Note: The counter, array ID, can only be used one time

5.3.6.75 function wolfTPM2_RsaEncrypt
WOLFTPM_API int wolfTPM2_RsaEncrypt(

WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
TPM_ALG_ID padScheme,

COPYRIGHT ©2024 wolfSSL Inc. 263

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

const byte * msg,
int msgSz,

byte * out,

int * outSz

)
Perform RSA encryption using a TPM 2.0 key.
Parameters:

* dev pointer to a TPM2_DEV struct

+ key pointer to a struct of WOLFTPM2_KEY type, holding a TPM key material

+ padScheme integer value of TPM_ALG_ID type, specifying the padding scheme
* msg pointer to a byte buffer, containing the arbitrary data for encryption

* msgSz integer value, specifying the size of the arbitrary data buffer

+ out pointer to a byte buffer, where the encrypted data will be stored

+ outSz integer value, specifying the size of the encrypted data buffer

See: wolfTPM2_RsaDecrypt
Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.76 function wolfTPM2_RsaDecrypt

WOLFTPM_API int wolfTPM2_RsaDecrypt (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,

TPM_ALG_ID padScheme,
const byte * in,

int inSz,

byte * msg,

int * msgSz

)

Perform RSA decryption using a TPM 2.0 key.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to a struct of WOLFTPM2_KEY type, holding a TPM key material

+ padScheme integer value of TPM_ALG_ID type, specifying the padding scheme
+ in pointer to a byte buffer, containing the encrypted data

* inSz integer value, specifying the size of the encrypted data buffer

* msg pointer to a byte buffer, containing the decrypted data

* msgSz pointer to size of the encrypted data buffer, on return set actual size

See: wolfTPM2_RsaEncrypt
Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 264

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.77 function wolfTPM2_ReadPCR

WOLFTPM_API int wolfTPM2_ReadPCR(
WOLFTPM2_DEV * dev,
int pcrIndex,
int hashAlg,
byte * digest,
int * pbDigestLen
)
Read the values of a specified TPM 2.0 Platform Configuration Registers(PCR)
Parameters:

+ dev pointer to a TPM2_DEV struct

* pcrIndex integer value, specifying a valid PCR index, between 0 and 23 (TPM locality could have
an impact on successful access)

* hashAlg integer value, specifying a TPM_ALG_SHA256 or TPM_ALG_SHA1 registers to be
accessed

+ digest pointer to a byte buffer, where the PCR values will be stored

+ pDigestLen pointer to an integer variable, where the size of the digest buffer will be stored

See: wolfTPM2_ExtendPCR
Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Make sure to specify the correct hashing algorithm, because there are two sets of PCR registers,
one for SHA256 and the other for SHA1(deprecated, but still possible to be read)

5.3.6.78 function wolfTPM2_ResetPCR

WOLFTPM_API int wolfTPM2_ResetPCR(
WOLFTPM2_DEV * dev,
int pcrIndex

)

Reset a PCR register to its default value.
Parameters:

*+ dev pointer to a TPM2_DEV struct
+ pcrIndex integer value, specifying a valid PCR index between 0 and 15

See:

* wolfTPM2_ReadPCR
* wolfTPM2_ExtendPCR

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Only PCR registers 0-15 can be reset, and this operation requires platform authorization

COPYRIGHT ©2024 wolfSSL Inc. 265

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.79 function wolfTPM2_ExtendPCR

WOLFTPM_API int wolfTPM2_ExtendPCR(
WOLFTPM2_DEV * dev,
int pcrIndex,
int hashAlg,
const byte * digest,
int digestlLen

)
Extend a PCR register with a user provided digest.
Parameters:

+ dev pointer to a TPM2_DEV struct

* pcrIndex integer value, specifying a valid PCR index, between 0 and 23 (TPM locality could have
an impact on successful access)

* hashAlg integer value, specifying a TPM_ALG_SHA256 or TPM_ALG_SHA1 registers to be
accessed

+ digest pointer to a byte buffer, containing the digest value to be extended into the PCR

+ digestLen the size of the digest buffer

See: wolfTPM2_ReadPCR
Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Make sure to specify the correct hashing algorithm

5.3.6.80 function wolfTPM2_NVCreateAuth

WOLFTPM_API int wolfTPM2_NVCreateAuth(
WOLFTPM2_DEV * dev,
WOLFTPM2_HANDLE * parent,
WOLFTPM2_NV * nv,
woxrd32 nvIndex,
word32 nvAttributes,
woxrd32 maxSize,
const byte * auth,
int authSz

)
Creates a new NV Index to be later used for storing data into the TPM's NVRAM.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ parent pointer to a WOLFTPM2_HANDLE, specifying the TPM hierarchy for the new NV Index
* nv pointer to an empty structure of WOLFTPM2_NV type, to hold the new NV Index

* nvindex integer value, holding the NV Index Handle given by the TPM upon success

* nvAttributes integer value, use wolfTPM2_GetNvAttributesTemplate to create correct value
* maxSize integer value, specifying the maximum number of bytes written at this NV Index

+ auth pointer to a string constant, specifying the password authorization for this NV Index

+ authSz integer value, specifying the size of the password authorization, in bytes

See:
* wolfTPM2_NVCreateAuthPolicy

COPYRIGHT ©2024 wolfSSL Inc. 266

53

wolftom/tpm2_wrap.h 5 API REFERENCE

wolfTPM2_NVWriteAuth
wolfTPM2_NVReadAuth
wolfTPM2_NVDeleteAuth
wolfTPM2_NVOpen

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

Note: This is a wolfTPM2 wrapper around TPM2_NV_DefineSpace

5.3.6.81 function wolfTPM2_NVCreateAuthPolicy
WOLFTPM_API int wolfTPM2_NVCreateAuthPolicy(

)

WOLFTPM2_DEV * dev,
WOLFTPM2_HANDLE * parent,
WOLFTPM2_NV * nv,

word32 nvIndex,

word32 nvAttributes,
word32 maxSize,

const byte * auth,

int authSz,

const byte * authPolicy,
int authPolicySz

Creates a new NV Index to be later used for storing data into the TPM's NVRAM.

Parameters:

See:

dev pointer to a TPM2_DEV struct

parent pointer to a WOLFTPM2_HANDLE, specifying the TPM hierarchy for the new NV Index
nv pointer to an empty structure of WOLFTPM2_NV type, to hold the new NV Index

nvIndex integer value, holding the NV Index Handle given by the TPM upon success
nvAttributes integer value, use wolfTPM2_GetNvAttributesTemplate to create correct value
maxSize integer value, specifying the maximum number of bytes written at this NV Index
auth pointer to a string constant, specifying the password authorization for this NV Index
authSz integer value, specifying the size of the password authorization, in bytes

authPolicy optional policy for using this key (The policy is computed using the nameAlg of the
object)

authPolicySz size of the authPolicy

wolfTPM2_NVCreateAuth
wolfTPM2_NVWriteAuth
wolfTPM2_NVReadAuth
wolfTPM2_NVDeleteAuth
wolfTPM2_NVOpen

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

Note: This is a wolfTPM2 wrapper around TPM2_NV_DefineSpace

COPYRIGHT ©2024 wolfSSL Inc. 267

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.82 function wolfTPM2_NVWriteAuth

WOLFTPM_API int wolfTPM2_NVWriteAuth(
WOLFTPM2_DEV * dev,
WOLFTPM2_NV * nv,
woxrd32 nvIndex,
byte * dataBuf,
word32 dataSz,
word32 offset

)

Stores user data to a NV Index, at a given offset.
Parameters:

* dev pointer to a TPM2_DEV struct

* nv pointer to a populated structure of WOLFTPM2_NV type

* nvIindex integer value, holding an existing NV Index Handle value

+ dataBuf pointer to a byte buffer, containing the user data to be written to the TPM’s NVRAM

+ dataSz integer value, specifying the size of the user data buffer, in bytes

+ offset integer value of word32 type, specifying the offset from the NV Index memory start, can
be zero

« wolfTPM2_NVReadAuth

* wolfTPM2_NVCreateAuth

* wolfTPM2_NVDeleteAuth

* wolfTPM2_NVWriteAuthPolicy

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: User data size should be less or equal to the NV Index maxSize specified using wolfTPM2_CreateAuth

5.3.6.83 function wolfTPM2_NVWriteAuthPolicy

WOLFTPM_API int wolfTPM2_NVWriteAuthPolicy(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * tpmSession,
TPM_ALG_ID pcrAlg,
byte * pcrArray,
word32 pcrArraySz,

WOLFTPM2_NV * nv,
word32 nvIndex,
byte * dataBuf,
word32 dataSz,
word32 offset

)

Stores user data to a NV Index, at a given offset. Allows using a policy session and PCR's for authenti-
cation.

Parameters:
+ dev pointer to a TPM2_DEV struct

COPYRIGHT ©2024 wolfSSL Inc. 268

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

* tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

pcrAlg the hash algorithm to use with PCR policy

+ pcrArray array of PCR Indexes to use when creating the policy

pcrArraySz the number of PCR Indexes in the pcrArray

* nv pointer to a populated structure of WOLFTPM2_NV type

* nvindex integer value, holding an existing NV Index Handle value

+ dataBuf pointer to a byte buffer, containing the user data to be written to the TPM’s NVRAM
dataSz integer value, specifying the size of the user data buffer, in bytes

offset integer value of word32 type, specifying the offset from the NV Index memory start, can
be zero

* wolfTPM2_NVReadAuth
* wolfTPM2_NVCreateAuth
« wolfTPM2_NVDeleteAuth
« wolfTPM2_NVWriteAuth

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: User data size should be less or equal to the NV Index maxSize specified using wolfTPM2_CreateAuth

5.3.6.84 function wolfTPM2_NVExtend

WOLFTPM_API int wolfTPM2_NVExtend(
WOLFTPM2_DEV * dev,
WOLFTPM2_NV * nv,
word32 nvIndex,
byte * dataBuf,
word32 dataSz

)
Extend data to an NV index.
Parameters:

* dev pointer to a TPM2_DEV struct

* nv pointer to a populated structure of WOLFTPM2_NV type

* nvIndex integer value, holding an existing NV Index Handle value

+ dataBuf pointer to a byte buffer, containing the user data to be written to the TPM’s NVRAM
+ dataSz integer value, specifying the size of the user data buffer, in bytes

* wolfTPM2_NVReadAuth
« wolfTPM2_NVCreateAuth
* wolfTPM2_NVOpen

« wolfTPM2_NVDeleteAuth

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: When NV index is read it will return the digest

COPYRIGHT ©2024 wolfSSL Inc. 269

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.85 function wolfTPM2_NVReadAuth

WOLFTPM_API int wolfTPM2_NVReadAuth(
WOLFTPM2_DEV * dev,
WOLFTPM2_NV * nv,
word32 nvIndex,
byte * dataBuf,
word32 * pDataSz,
word32 offset

)
Reads user data from a NV Index, starting at the given offset.
Parameters:

* dev pointer to a TPM2_DEV struct

* nv pointer to a populated structure of WOLFTPM2_NV type

* nvIindex integer value, holding an existing NV Index Handle value

+ dataBuf pointer to an empty byte buffer, used to store the read data from the TPM's NVRAM

+ pDataSz pointer to an integer variable, used to store the size of the data read from NVRAM, in
bytes

« offset integer value of word32 type, specifying the offset from the NV Index memory start, can
be zero

« wolfTPM2_NVWriteAuth

* WolfTPM2_NVCreateAuth

* wolfTPM2_NVDeleteAuth

» wolfTPM2_NVReadAuthPolicy

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: User data size should be less or equal to the NV Index maxSize specified using wolfTPM2_CreateAuth

5.3.6.86 function wolfTPM2_NVReadAuthPolicy

WOLFTPM_API int wolfTPM2_NVReadAuthPolicy(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * tpmSession,
TPM_ALG_ID pcrAlg,
byte * pcrArray,
word32 pcrArraySz,

WOLFTPM2_NV * nv,
word32 nvIndex,
byte * dataBuf,
word32 * pDataSz,
word32 offset

)

Reads user data from a NV Index, starting at the given offset. Allows using a policy session and PCR's
for authentication.

Parameters:
+ dev pointer to a TPM2_DEV struct

COPYRIGHT ©2024 wolfSSL Inc. 270

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

* tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

*+ pcrAlg the hash algorithm to use with PCR policy

+ pcrArray array of PCR Indexes to use when creating the policy

* pcrArraySz the number of PCR Indexes in the pcrArray

* nv pointer to a populated structure of WOLFTPM2_NV type

* nvindex integer value, holding an existing NV Index Handle value

+ dataBuf pointer to an empty byte buffer, used to store the read data from the TPM’'s NVRAM

« pDataSz pointer to an integer variable, used to store the size of the data read from NVRAM, in

bytes

offset integer value of word32 type, specifying the offset from the NV Index memory start, can

be zero

* wolfTPM2_NVWriteAuth
« wolfTPM2_NVCreateAuth
« wolfTPM2_NVDeleteAuth
« wolfTPM2_NVReadAuth

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: User data size should be less or equal to the NV Index maxSize specified using wolfTPM2_CreateAuth

5.3.6.87 function wolfTPM2_NVReadCert

WOLFTPM_API int wolfTPM2_NVReadCert(
WOLFTPM2_DEV * dev,
TPM_HANDLE handle,
uint8_t * buffer,
uint32_t * len
)

Helper to get size of NV and read buffer without authentication. Typically used for reading a certificate
from an NV.

Parameters:

* dev pointer to a TPM2_DEV struct

* handle integer value, holding an existing NV Index Handle value

+ buffer pointer to an empty byte buffer, used to store the read data from the TPM's NVRAM

+ len pointer to an integer variable, used to store the size of the data read from NVRAM, in bytes

See:

* wolfTPM2_NVWriteAuth
« wolfTPM2_NVCreateAuth
« wolfTPM2_NVDeleteAuth

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 271

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

5.3.6.88 function wolfTPM2_NVIncrement

WOLFTPM_API int wolfTPM2_NVIncrement (
WOLFTPM2_DEV * dev,
WOLFTPM2_NV * nv

)
Increments an NV one-way counter.
Parameters:

+ dev pointer to a TPM2_DEV struct
* nv pointer to a populated structure of WOLFTPM2_NV type

See:

* wolfTPM2_NVOpen
* wolfTPM2_NVCreateAuth

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.89 function wolfTPM2_NVOpen

WOLFTPM_API int wolfTPM2_NVOpen(
WOLFTPM2_DEV * dev,
WOLFTPM2_NV * nv,
word32 nvIndex,
const byte * auth,
word32 authSz

)
Open an NV and populate the required authentication and name hash.
Parameters:

*+ dev pointer to a TPM2_DEV struct

* nv pointer to an empty structure of WOLFTPM2_NV type, to hold the new NV Index

* nvindex integer value, holding the NV Index Handle given by the TPM upon success

+ auth pointer to a string constant, specifying the password authorization for this NV Index
+ authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_NVCreateAuth
« wolfTPM2_UnloadHandle

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.90 function wolfTPM2_NVWriteLock

WOLFTPM_API int wolfTPM2_NVWriteLock(
WOLFTPM2_DEV * dev,
WOLFTPM2_NV * nv

COPYRIGHT ©2024 wolfSSL Inc. 272

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Lock writes on the specified NV Index.
Parameters:

* dev pointer to a TPM2_DEV struct
* nv pointer to an structure of WOLFTPM2_NV type loaded using wolfTPM2_NVOpen

See:

* wolfTPM2_NVOpen

* wolfTPM2_NVCreateAuth
* wolfTPM2_NVWriteAuth
« wolfTPM2_NVReadAuth

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.91 function wolfTPM2_NVDeleteAuth

WOLFTPM_API int wolfTPM2_NVDeleteAuth(
WOLFTPM2_DEV * dev,
WOLFTPM2_HANDLE * parent,
woxrd32 nvIndex

)
Destroys an existing NV Index.
Parameters:

* dev pointer to a TPM2_DEV struct
*+ parent pointer to a WOLFTPM2_HANDLE, specifying the TPM hierarchy for the new NV Index
* nvindex integer value, holding the NV Index Handle given by the TPM upon success

See:

* WolfTPM2_NVCreateAuth
* wolfTPM2_NVWriteAuth
« wolfTPM2_NVReadAuth

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.92 function wolfTPM2_NVCreate

WOLFTPM_API int wolfTPM2_NVCreate(
WOLFTPM2_DEV * dev,
TPM_HANDLE authHandle,
woxrd32 nvIndex,
word32 nvAttributes,
word32 maxSize,
const byte * auth,
int authSz

COPYRIGHT ©2024 wolfSSL Inc. 273

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Deprecated, use newer APL.
See: wolfTPM2_NVCreateAuth

5.3.6.93 function wolfTPM2_NVWrite

WOLFTPM_API int wolfTPM2_NVWrite(
WOLFTPM2_DEV * dev,
TPM_HANDLE authHandle,
woxrd32 nvIndex,
byte * dataBuf,
word32 dataSz,
word32 offset

)
Deprecated, use newer APL.
See: wolfTPM2_NVWriteAuth

5.3.6.94 function wolfTPM2_NVRead

WOLFTPM_API int wolfTPM2_NVRead(
WOLFTPM2_DEV * dev,
TPM_HANDLE authHandle,
woxrd32 nvIndex,
byte * dataBuf,
word32 * dataSz,
word32 offset

)
Deprecated, use newer APL.
See: wolfTPM2_NVReadAuth

5.3.6.95 function wolfTPM2_NVDelete

WOLFTPM_API int wolfTPM2_NVDelete(
WOLFTPM2_DEV * dev,
TPM_HANDLE authHandle,
word32 nvIndex

)
Deprecated, use newer API.
See: wolfTPM2_NVDeleteAuth

5.3.6.96 function wolfTPM2_NVReadPublic

WOLFTPM_API int wolfTPM2_NVReadPublic(
WOLFTPM2_DEV * dev,
word32 nvIndex,
TPMS_NV_PUBLIC * nvPublic

)

Extracts the public information about an nvindex, such as maximum size.

Parameters:
+ dev pointer to a TPM2_DEV struct

COPYRIGHT ©2024 wolfSSL Inc. 274

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

* nvindex integer value, holding the NV Index Handle given by the TPM upon success
nvPublic pointer to a TPMS_NV_PUBLIC, used to store the extracted nvIndex public information

See:

« wolfTPM2_NVCreateAuth
« wolfTPM2_NVDeleteAuth
« wolfTPM2_NVWriteAuth
* wolfTPM2_NVReadAuth

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.97 function wolfTPM2_NVStoreKey

WOLFTPM_API int wolfTPM2_NVStoreKey (
WOLFTPM2_DEV * dev,
TPM_HANDLE primaryHandle,
WOLFTPM2_KEY * key,
TPM_HANDLE persistentHandle

)

Helper function to store a TPM 2.0 Key into the TPM’'s NVRAM.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ primaryHandle integer value, specifying a TPM 2.0 Hierarchy. typically TPM_RH_OWNER
+ key pointer to a structure of WOLFTPM2_KEY type, containing the TPM 2.0 key for storing
+ persistentHandle integer value, specifying an existing nvindex

See:

* wolfTPM2_NVDeleteKey
» wolfTPM2_NVCreateAuth
* wolfTPM2_NVDeleteAuth

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.98 function wolfTPM2_NVDeleteKey

WOLFTPM_API int wolfTPM2_NVDeleteKey (
WOLFTPM2_DEV * dev,
TPM_HANDLE primaryHandle,
WOLFTPM2_KEY * key

)

Helper function to delete a TPM 2.0 Key from the TPM’s NVRAM.
Parameters:

* dev pointer to a TPM2_DEV struct
« primaryHandle integer value, specifying a TPM 2.0 Hierarchy. typically TPM_RH_OWNER
+ key pointer to a structure of WOLFTPM2_KEY type, containing the nvindex handle value

COPYRIGHT ©2024 wolfSSL Inc. 275

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

See:

* wolfTPM2_NVDeleteKey
* wWolfTPM2_NVCreateAuth
* wolfTPM2_NVDeleteAuth

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.99 function wolfTPM2_GetRng

WOLFTPM_API struct WC_RNG * wolfTPM2_GetRng(
WOLFTPM2_DEV * dev

)
Get the wolfcrypt RNG instance used for wolfTPM.
Parameters:
+ dev pointer to a TPM2_DEV struct
See: wolfTPM2_GetRandom
Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Only if wolfcrypt is enabled and configured for use instead of the TPM RNG

5.3.6.100 function wolfTPM2_GetRandom

WOLFTPM_API int wolfTPM2_GetRandom(
WOLFTPM2_DEV * dev,
byte * buf,
word32 len

)
Get a set of random number, generated with the TPM RNG or wolfcrypt RNG.
Parameters:

+ dev pointer to a TPM2_DEV struct
+ buf pointer to a byte buffer, used to store the generated random numbers
+ len integer value of word32 type, used to store the size of the buffer, in bytes

See: wolfTPM2_GetRandom
Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Define WOLFTPM2_USE_HW_RNG to use the TPM RNG source

COPYRIGHT ©2024 wolfSSL Inc. 276

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.101 function wolfTPM2_UnloadHandle

WOLFTPM_API int wolfTPM2_UnloadHandle(
WOLFTPM2_DEV * dev,
WOLFTPM2_HANDLE * handle

)
Use to discard any TPM loaded object.

Parameters:

+ dev pointer to a TPM2_DEV struct
* handle pointer to a structure of WOLFTPM2_HANDLE type, with a valid TPM 2.0 handle value

See: wolfTPM2_Clear
Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.102 function wolfTPM2_Clear

WOLFTPM_API int wolfTPM2_Clear(
WOLFTPM2_DEV * dev

)
Deinitializes wolfTPM and wolfcrypt(if enabled)

Parameters:

* dev pointer to a TPM2_DEV struct
See: wolfTPM2_Clear
Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.103 function wolfTPM2_HashStart

WOLFTPM_API int wolfTPM2_HashStart(
WOLFTPM2_DEV * dev,
WOLFTPM2_HASH * hash,
TPMI_ALG_HASH hashAlg,
const byte * usageAuth,
word32 usageAuthSz

)
Helper function to start a TPM generated hash.
Parameters:

+ dev pointer to a TPM2_DEV struct

* hash pointer to a WOLFTPM2_HASH structure

* hashAlg integer value, specifying a valid TPM 2.0 hash algorithm

+ usageAuth pointer to a string constant, specifying the authorization for subsequent use of the
hash

+ usageAuthSz integer value, specifying the size of the authorization, in bytes

COPYRIGHT ©2024 wolfSSL Inc. 277

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

See:

* wolfTPM2_HashUpdate
* wolfTPM2_HashFinish

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.104 function wolfTPM2_HashUpdate

WOLFTPM_API int wolfTPM2_HashUpdate(
WOLFTPM2_DEV * dev,
WOLFTPM2_HASH * hash,
const byte * data,
word32 dataSz

)
Update a TPM generated hash with new user data.

Parameters:

* dev pointer to a TPM2_DEV struct

* hash pointer to a WOLFTPM2_HASH structure

+ data pointer to a byte buffer, containing the user data to be added to the hash

+ dataSz integer value of word32 type, specifying the size of the user data, in bytes

See:

* wolfTPM2_HashStart
* wolfTPM2_HashFinish

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Make sure the auth is correctly set

5.3.6.105 function wolfTPM2_HashFinish

WOLFTPM_API int wolfTPM2_HashFinish(
WOLFTPM2_DEV * dev,
WOLFTPM2_HASH * hash,
byte * digest,
word32 * digestSz

)

Finalize a TPM generated hash and get the digest output in a user buffer.
Parameters:

+ dev pointer to a TPM2_DEV struct

* hash pointer to a WOLFTPM2_HASH structure

+ digest pointer to a byte buffer, used to store the resulting digest

+ digestSz pointer to size of digest buffer, on return set to bytes stored in digest buffer

See:

COPYRIGHT ©2024 wolfSSL Inc. 278

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

« wolfTPM2_HashStart
* wolfTPM2_HashUpdate

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Make sure the auth is correctly set

5.3.6.106 function wolfTPM2_LoadKeyedHashKey

WOLFTPM_API int wolfTPM2_LoadKeyedHashKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
WOLFTPM2_HANDLE * parent,
int hashAlg,
const byte * keyBuf,
word32 keySz,
const byte * usageAuth,
word32 usageAuthSz
)

Creates and loads a new TPM key of KeyedHash type, typically used for HMAC operations.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to an empty structure of WOLFTPM2_KEY type, to store the generated key

* parent pointer to a structure of WOLFTPM2_KEY type, containing a valid TPM handle of a primary
key

* hashAlg integer value, specifying a valid TPM 2.0 hash algorithm

+ keyBuf pointer to a byte array, containing derivation values for the new KeyedHash key

+ keySz integer value, specifying the size of the derivation values stored in keyBuf, in bytes

+ usageAuth pointer to a string constant, specifying the authorization of the new key

+ usageAuthSz integer value, specifying the size of the authorization, in bytes

See:

* wolfTPM2_HmacStart
* wolfTPM2_HmacUpdate
* wolfTPM2_HmacFinish

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: To generate HMAC using the TPM it is recommended to use the wolfTPM2_Hmac wrappers

5.3.6.107 function wolfTPM2_HmacStart

WOLFTPM_API int wolfTPM2_HmacStart(
WOLFTPM2_DEV * dev,
WOLFTPM2_HMAC * hmac,
WOLFTPM2_HANDLE * parent,
TPMI_ALG_HASH hashAlg,
const byte * keyBuf,

COPYRIGHT ©2024 wolfSSL Inc. 279

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

word32 keySz,
const byte * usageAuth,
word32 usageAuthSz

)

Helper function to start a TPM generated hmac.
Parameters:

* dev pointer to a TPM2_DEV struct

* hmac pointer to a WOLFTPM2_HMAC structure

* parent pointer to a structure of WOLFTPM2_KEY type, containing a valid TPM handle of a primary
key

* hashAlg integer value, specifying a valid TPM 2.0 hash algorithm

+ keyBuf pointer to a byte array, containing derivation values for the new KeyedHash key

+ keySz integer value, specifying the size of the derivation values stored in keyBuf, in bytes

+ usageAuth pointer to a string constant, specifying the authorization for subsequent use of the
hmac

+ usageAuthSz integer value, specifying the size of the authorization, in bytes

* wolfTPM2_HmacUpdate
« wolfTPM2_HmacFinish
* wolfTPM2_LoadKeyedHashKey

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.108 function wolfTPM2_HmacUpdate

WOLFTPM_API int wolfTPM2_HmacUpdate(
WOLFTPM2_DEV * dev,
WOLFTPM2_HMAC * hmac,
const byte * data,
word32 dataSz

)

Update a TPM generated hmac with new user data.
Parameters:

+ dev pointer to a TPM2_DEV struct

* hmac pointer to a WOLFTPM2_HMAC structure

+ data pointer to a byte buffer, containing the user data to be added to the hmac
dataSz integer value of word32 type, specifying the size of the user data, in bytes
+ dev pointer to a TPM2_DEV struct

* hmac pointer to an active WOLFTPM2_HMAC structure

+ data pointer to data to add to HMAC

+ dataSz size of data in bytes

See:

« wolfTPM2_HmacStart
* wolfTPM2_HMACFinish
* wolfTPM2_HmacStart
* wolfTPM2_HmacFinish

COPYRIGHT ©2024 wolfSSL Inc. 280

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

Return:

¢ TPM_RC_SUCCESS: successful

* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

« TPM_RC_SUCCESS: successful

* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note:

* Make sure the TPM authorization is correctly set
+ Adds data to an active HMAC sequence

Update an HMAC operation with data

5.3.6.109 function wolfTPM2_HmacFinish

WOLFTPM_API int wolfTPM2_HmacFinish(
WOLFTPM2_DEV * dev,
WOLFTPM2_HMAC * hmac,
byte * digest,
word32 * digestSz

)

Finalize a TPM generated hmac and get the digest output in a user buffer.
Parameters:

+ dev pointer to a TPM2_DEV struct
* hmac pointer to a WOLFTPM2_HMAC structure
« digest pointer to a byte buffer, used to store the resulting hmac digest

+ digestSz integer value of word32 type, specifying the size of the digest, in bytes

See:

* wolfTPM2_HmacStart
* wolfTPM2_HmacUpdate

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Make sure the TPM authorization is correctly set

5.3.6.110 function wolfTPM2_LoadSymmetricKey

WOLFTPM_API int wolfTPM2_LoadSymmetricKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
int alg,
const byte * keyBuf,
word32 keySz
)

Loads an external symmetric key into the TPM.
Parameters:

+ dev pointer to a TPM2_DEV struct

COPYRIGHT ©2024 wolfSSL Inc. 281

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

+ key pointer to an empty structure of WOLFTPM2_KEY type, to store the TPM handle and key
information

+ alg integer value, specifying a valid TPM 2.0 symmetric key algorithm, e.g. TPM_ALG_CFB for AES
CFB

+ keyBuf pointer to a byte array, containing private material of the symmetric key

+ keySz integer value, specifying the size of the key material stored in keyBuf, in bytes

+ dev pointer to a TPM2_DEV struct

+ key pointer to an empty WOLFTPM2_KEY structure to store loaded key

+ alg algorithm type (TPM_ALG_AES, etc)

+ keyBuf pointer to key material

+ keySz size of key material in bytes

See:

* wolfTPM2_EncryptDecryptBlock
* wolfTPM2_EncryptDecrypt

* TPM2_EncryptDecrypt2

* wolfTPM2_EncryptDecryptBlock
* wolfTPM2_EncryptDecrypt

Return:

» TPM_RC_SUCCESS: successful

* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

¢ TPM_RC_SUCCESS: successful

* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Creates and loads a symmetric key for encryption/decryption operations

Load a symmetric key into the TPM

5.3.6.111 function wolfTPM2_EncryptDecryptBlock

WOLFTPM_API int wolfTPM2_EncryptDecryptBlock(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * in,
byte * out,
word32 inOutSz,
byte * iv,
word32 ivSz,
int isDecrypt

5.3.6.112 function wolfTPM2_EncryptDecrypt

WOLFTPM_API int wolfTPM2_EncryptDecrypt(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * in,
byte * out,
woxrd32 inOutSz,
byte * iv,
word32 ivSz,

COPYRIGHT ©2024 wolfSSL Inc. 282

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

int isDecrypt

5.3.6.113 function wolfTPM2_SetCommand

WOLFTPM_API int wolfTPM2_SetCommand (
WOLFTPM2_DEV * dev,
TPM_CC commandCode,
int enableFlag

)

Vendor specific TPM command, used to enable other restricted TPM commands.
Parameters:

+ dev pointer to a TPM2_DEV struct
+ commandCode integer value, representing a valid vendor command
+ enableFlag integer value, non-zero values represent “to enable”

See: TPM2_GPIO_Config
Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.114 function wolfTPM2_Reset

WOLFTPM_API int wolfTPM2_Reset(
WOLFTPM2_DEV * dev,
int doShutdown,
int doStartup

)
Helper function to shutdown, startup or reset the TPM.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ doStartup integer value, non-zero values represent “perform Startup after Shutdown”

+ doShutdown integer value, non-zero values represent “perform Shutdown”
See:

* WolfTPM2_Init
* wWolfTPM2_Reset

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note:
* The behavior depends on the doStartup and doShutdown flags:

* - Bothflags set to 1: Performs a full TPM restart (shutdown then startup)
* - Only doStartup=1: Just starts up the TPM
* - Only doShutdown=1: Just shuts down the TPM

COPYRIGHT ©2024 wolfSSL Inc. 283

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.115 function wolfTPM2_Shutdown

WOLFTPM_API int wolfTPM2_Shutdown(
WOLFTPM2_DEV * dev,
int doStartup

)
Helper function to shutdown or reset the TPM.
Parameters:

+ dev pointer to a TPM2_DEV struct
+ doStartup integer value, non-zero values represent “perform Startup after Shutdown”

See:

* WoIfTPM2_Init
* wolfTPM2_Shutdown

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: If doStartup is set, then TPM2_Startup is performed right after TPM2_Shutdown

5.3.6.116 function wolfTPM2_UnloadHandles

WOLFTPM_API int wolfTPM2_UnloadHandles(
WOLFTPM2_DEV * dev,
word32 handleStart,
word32 handleCount

)
One-shot API to unload subsequent TPM handles.

Parameters:

* dev pointer to a TPM2_DEV struct
* handleStart integer value of word32 type, specifying the value of the first TPM handle
* handleCount integer value of word32 type, specifying the number of handles

See: wolfTPM2_Init
Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.117 function wolfTPM2_UnloadHandles_AllTransient

WOLFTPM_API int wolfTPM2_UnloadHandles_AllTransient(
WOLFTPM2_DEV * dev

)
One-shot API to unload all transient TPM handles.

Parameters:
* dev pointer to a TPM2_DEV struct

See:

COPYRIGHT ©2024 wolfSSL Inc. 284

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

* wolfTPM2_UnloadHandles
* wolfTPM2_CreatePrimary

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: If there are Primary Keys as transient objects, they need to be recreated before TPM keys can
be used

5.3.6.118 function wolfTPM2_GetKeyTemplate_RSA

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA(
TPMT_PUBLIC * publicTemplate,
TPMA_OBJECT objectAttributes

)

Prepares a TPM public template for new RSA key based on user selected object attributes.
Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new RSA tem-
plate

+ objectAttributes integer value of TPMA_OBJECT type, can contain one or more attributes,
e.g. TPMA_OBJECT _fixedTPM

* wolfTPM2_GetKeyTemplate_RSA_ex

* wolfTPM2_GetKeyTemplate_ECC

» wolfTPM2_GetKeyTemplate_Symmetric
* wolfTPM2_GetKeyTemplate_KeyedHash
* wolfTPM2_GetKeyTemplate_KeySeal

Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.119 function wolfTPM2_GetKeyTemplate_RSA_ex

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_ex(
TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID nameAlg,
TPMA_OBJECT objectAttributes,
int keyBits,
long exponent,
TPM_ALG_ID sigScheme,
TPM_ALG_ID sigHash
)

Prepares a TPM public template for new RSA key based on user selected object attributes.
Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new RSA tem-
plate

* nameAlg integer value of TPM_ALG_ID type, specifying a TPM supported hashing algorithm, typ-
ically TPM_ALG_SHA256 for SHA 256

COPYRIGHT ©2024 wolfSSL Inc. 285

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

objectAttributes integer value of TPMA_OBJECT type, can contain one or more attributes,
e.g. TPMA_OBJECT_fixedTPM

keyBits integer value, specifying the size of the symmetric key, typically 128 or 256 bits
exponent integer value of word32 type, specifying the RSA exponent

sigScheme integer value of TPM_ALG_ID type, specifying a TPM supported signature scheme
sigHash integer value of TPM_ALG_ID type, specifying a TPM supported signature hash scheme

See:

wolfTPM2_GetKeyTemplate_RSA
wolfTPM2_GetKeyTemplate_ECC
wolfTPM2_GetKeyTemplate_ECC_ex
wolfTPM2_GetKeyTemplate_Symmetric
wolfTPM2_GetKeyTemplate_KeyedHash
wolfTPM2_GetKeyTemplate_KeySeal

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.120 function wolfTPM2_GetKeyTemplate_ECC

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC(
TPMT_PUBLIC * publicTemplate,
TPMA_OBJECT objectAttributes,
TPM_ECC_CURVE cuzrve,

TPM_ALG_ID sigScheme

)

Prepares a TPM public template for new ECC key based on user selected object attributes.
Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new ECC key
template

+ objectAttributes integer value of TPMA_OBJECT type, can contain one or more attributes,
e.g. TPMA_OBJECT _fixedTPM

* curve integer value of TPM_ECC_CURVE type, specifying a TPM supported ECC curve ID

+ sigScheme integer value of TPM_ALG_ID type, specifying a TPM supported signature scheme

* wolfTPM2_GetKeyTemplate_ECC_ex

* wolfTPM2_GetKeyTemplate_RSA

* wolfTPM2_GetKeyTemplate_Symmetric
» wolfTPM2_GetKeyTemplate_KeyedHash
* wolfTPM2_GetKeyTemplate_KeySeal

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.121 function wolfTPM2_GetKeyTemplate_ECC_ex

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_ex(
TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID nameAlg,
TPMA_OBJECT objectAttributes,

COPYRIGHT ©2024 wolfSSL Inc. 286

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

TPM_ECC_CURVE curve,
TPM_ALG_ID sigScheme,
TPM_ALG_ID sigHash

)

Prepares a TPM public template for new ECC key based on user selected object attributes.
Parameters:

* publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new ECC key
template

* nameAlg integer value of TPM_ALG_ID type, specifying a TPM supported hashing algorithm, typ-
ically TPM_ALG_SHA256 for SHA 256

+ objectAttributes integer value of TPMA_OBJECT type, can contain one or more attributes,
e.g. TPMA_OBJECT _fixedTPM

* curve integer value of TPM_ECC_CURVE type, specifying a TPM supported ECC curve ID

+ sigScheme integer value of TPM_ALG_ID type, specifying a TPM supported signature scheme

+ sigHash integer value of TPM_ALG_ID type, specifying a TPM supported signature hash scheme

* wolfTPM2_GetKeyTemplate_ECC

* wolfTPM2_GetKeyTemplate_RSA

» wolfTPM2_GetKeyTemplate_Symmetric
* wolfTPM2_GetKeyTemplate_KeyedHash
* wolfTPM2_GetKeyTemplate_KeySeal

Return:

« TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.122 function wolfTPM2_GetKeyTemplate_Symmetric

WOLFTPM_API int wolfTPM2_GetKeyTemplate_Symmetric(
TPMT_PUBLIC * publicTemplate,
int keyBits,
TPM_ALG_ID algMode,
int isSign,
int isDecrypt

)
Prepares a TPM public template for new Symmetric key.
Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new Symmetric
key template

+ keyBits integer value, specifying the size of the symmetric key, typically 128 or 256 bits

+ algMode integer value of TPM_ALG_ID type, specifying a TPM supported symmetric algorithm,
e.g. TPM_ALG_CFB for AES CFB

+ isSign integer value, non-zero values represent “a signing key”

+ isDecrypt integer value, non-zero values represent “a decryption key”

* wolfTPM2_GetKeyTemplate_RSA

* wolfTPM2_GetKeyTemplate_ECC

+ wolfTPM2_GetKeyTemplate_KeyedHash
* wolfTPM2_GetKeyTemplate_KeySeal

COPYRIGHT ©2024 wolfSSL Inc. 287

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.123 function wolfTPM2_GetKeyTemplate_KeyedHash

WOLFTPM_API int wolfTPM2_GetKeyTemplate_KeyedHash(
TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID hashAlg,
int isSign,
int isDecrypt
)

Prepares a TPM public template for new KeyedHash key.
Parameters:

* publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template

+ hashAlg integer value of TPM_ALG_ID type, specifying a TPM supported hashing algorithm,
e.g. TPM_ALG_SHA256 for SHA 256

+ isSign integer value, non-zero values represent “a signing key”

+ isDecrypt integer value, non-zero values represent “a decryption key”

* wolfTPM2_GetKeyTemplate_RSA

* wolfTPM2_GetKeyTemplate_ECC

» wolfTPM2_GetKeyTemplate_Symmetric
* wolfTPM2_GetKeyTemplate_KeySeal

Return:

« TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.124 function wolfTPM2_GetKeyTemplate_KeySeal

WOLFTPM_API int wolfTPM2_GetKeyTemplate_KeySeal(
TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID nameAlg

)
Prepares a TPM public template for new key for sealing secrets.
Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template
* nameAlg integer value of TPM_ALG_ID type, specifying a TPM supported hashing algorithm, typ-
ically TPM_ALG_SHA256 for SHA 256

See:

* wolfTPM2_GetKeyTemplate_ECC

» wolfTPM2_GetKeyTemplate_Symmetric
» wolfTPM2_GetKeyTemplate_KeyedHash
* wolfTPM2_GetKeyTemplate_KeySeal

Return:

» TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 288

53

wolftom/tpm2_wrap.h 5 API REFERENCE

Note: There are strict requirements for a Key Seal, therefore most of the key parameters are prede-
termined by the wrapper

5.3.6.125 function wolfTPM2_GetKeyTemplate_EK
WOLFTPM_API int wolfTPM2_GetKeyTemplate_EK(

)

TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID alg,

int keyBits,

TPM_ECC_CURVE curvelD,
TPM_ALG_ID nameAlg,

int highRange

Prepares a TPM public template for generating the TPM Endorsement Key.

Parameters:

publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template
alg can be only TPM_ALG_RSA or TPM_ALG_ECC, see Note above

keyBits integer value, specifying bits for the key, typically 2048 (RSA) or 256 (ECC)

curvelD use one of the accepted TPM_ECC_CURVE values like TPM_ECC_NIST_P256 (only used
when alg=TPM_ALG_ECC)

nameAlg integer value of TPMI_ALG_HASH type, specifying a valid TPM2 hashing algorithm (typ-
ically TPM_ALG_SHA256)

highRange integer value: 0O=low range, 1=high range

wolfTPM2_GetKeyTemplate_ECC_EK

wolfTPM2_GetKeyTemplate_RSA_SRK
wolfTPM2_GetKeyTemplate_RSA_AIK
wolfTPM2_GetKeyTemplate_EKIndex

Return:

TPM_RC_SUCCESS: successful
BAD_FUNC_ARG: check the provided arguments

5.3.6.126 function wolfTPM2_GetKeyTemplate_EKIndex
WOLFTPM_API int wolfTPM2_GetKeyTemplate_EKIndex(

)

woxrd32 nvIndex,

TPMT_PUBLIC * publicTemplate

Helper to get the Endorsement public key template by NV index.

Parameters:

See:

nvIndex handle for NV index. Typically starting from TPM_20_TCG_NV_SPACE
publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template

wolfTPM2_GetKeyTemplate_EK
wolfTPM2_GetKeyTemplate_ECC_EK
wolfTPM2_GetKeyTemplate_RSA_SRK
wolfTPM2_GetKeyTemplate_RSA_AIK

Return:

COPYRIGHT ©2024 wolfSSL Inc. 289

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.127 function wolfTPM2_GetKeyTemplate_RSA_EK

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_EK(
TPMT_PUBLIC * publicTemplate

)
Prepares a TPM public template for generating the TPM Endorsement Key of RSA type.
Parameters:
+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template
See:

* wolfTPM2_GetKeyTemplate_EK

* wolfTPM2_GetKeyTemplate_ECC_EK
* wolfTPM2_GetKeyTemplate_RSA_SRK
* wolfTPM2_GetKeyTemplate_RSA_AIK

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.128 function wolfTPM2_GetKeyTemplate_ECC_EK

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_EK(
TPMT_PUBLIC * publicTemplate
)

Prepares a TPM public template for generating the TPM Endorsement Key of ECC type.
Parameters:

*+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template
See:

* wolfTPM2_GetKeyTemplate_EK

* wolfTPM2_GetKeyTemplate_RSA_EK
* wolfTPM2_GetKeyTemplate_ECC_SRK
* wolfTPM2_GetKeyTemplate_ECC_AIK

Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.129 function wolfTPM2_GetKeyTemplate_RSA_SRK

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_SRK(
TPMT_PUBLIC * publicTemplate
)

Prepares a TPM public template for generating a new TPM Storage Key of RSA type.
Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template

COPYRIGHT ©2024 wolfSSL Inc. 290

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

See:

* wolfTPM2_GetKeyTemplate_ECC_SRK
* wolfTPM2_GetKeyTemplate_RSA_AIK
* wolfTPM2_GetKeyTemplate_RSA_EK

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.130 function wolfTPM2_GetKeyTemplate_ECC_SRK

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_SRK(
TPMT_PUBLIC * publicTemplate
)

Prepares a TPM public template for generating a new TPM Storage Key of ECC type.
Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template
See:

* wolfTPM2_GetKeyTemplate_RSA_SRK
* wolfTPM2_GetKeyTemplate_ECC_AIK
* wolfTPM2_GetKeyTemplate_ECC_EK

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.131 function wolfTPM2_GetKeyTemplate_RSA_AIK

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_AIK(
TPMT_PUBLIC * publicTemplate

)
Prepares a TPM public template for generating a new TPM Attestation Key of RSA type.
Parameters:
+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template
See:

* wolfTPM2_GetKeyTemplate_ECC_AIK
* wolfTPM2_GetKeyTemplate_RSA_SRK

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.132 function wolfTPM2_GetKeyTemplate_ECC_AIK

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_AIK(
TPMT_PUBLIC * publicTemplate

)

COPYRIGHT ©2024 wolfSSL Inc. 291

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Prepares a TPM public template for generating a new TPM Attestation Key of ECC type.
Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template
See:

* wolfTPM2_GetKeyTemplate_RSA_AIK
* wolfTPM2_GetKeyTemplate_ECC_SRK

Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.133 function wolfTPM2_GetKeyTemplate_RSA_IAK

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_IAK(
TPMT_PUBLIC * publicTemplate,
int keyBits,
TPM_ALG_ID hashAlg

5.3.6.134 function wolfTPM2_GetKeyTemplate_ECC_IAK

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_TAK(
TPMT_PUBLIC * publicTemplate,
TPM_ECC_CURVE curvelD,
TPM_ALG_ID hashAlg

5.3.6.135 function wolfTPM2_GetKeyTemplate_ECC_IDevID

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_IDevID(
TPMT_PUBLIC * publicTemplate,
TPM_ECC_CURVE curvelD,
TPM_ALG_ID hashAlg

5.3.6.136 function wolfTPM2_GetKeyTemplate_RSA_IDevID

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_IDevID(
TPMT_PUBLIC * publicTemplate,
int keyBits,
TPM_ALG_ID hashAlg

5.3.6.137 function wolfTPM2_SetKeyTemplate_Unique

WOLFTPM_API int wolfTPM2_SetKeyTemplate_Unique(
TPMT_PUBLIC * publicTemplate,
const byte * unique,
int uniqueSz

)
Sets the unique area of a public template used by Create or CreatePrimary.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 292

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template
unique optional pointer to buffer to populate unique area of public template. If NULL, the buffer
will be zeroized.

* uniqueSz size to fill the unique field. If zero the key size is used.

See:

* wolfTPM2_CreateKey
* wolfTPM2_CreatePrimaryKey

Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.138 function wolfTPM2_GetNvAttributesTemplate

WOLFTPM_API int wolfTPM2_GetNvAttributesTemplate(
TPM_HANDLE auth,
word32 * nvAttributes

)
Prepares a TPM NV Index template.

Parameters:

+ auth integer value, representing the TPM Hierarchy under which the new TPM NV index will be
created
* nvAttributes pointer to an empty integer variable, to store the NV Attributes

See:

« wolfTPM2_CreateAuth
* WolfTPM2_WriteAuth
« wolfTPM2_ReadAuth
« wolfTPM2_DeleteAuth

Return:

» TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.139 function wolfTPM2_CreateEK

WOLFTPM_API int wolfTPM2_CreateEK(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * ekKey,
TPM_ALG_ID alg

)

Generates a new TPM Endorsement key, based on the user selected algorithm, RSA or ECC.
Parameters:

*+ dev pointer to a TPM2_DEV struct
+ ekKey pointer to an empty WOLFTPM2_KEY structure, to store information about the new EK
+ alg can be only TPM_ALG_RSA or TPM_ALG_ECC, see Note above

See:

* wolfTPM2_CreateSRK
* wolfTPM2_GetKeyTemplate_RSA_EK

COPYRIGHT ©2024 wolfSSL Inc. 293

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

* wolfTPM2_GetKeyTemplate_ECC_EK
Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: Although only RSA and ECC can be used for EK, symmetric keys can be created and used by the
TPM

5.3.6.140 function wolfTPM2_CreateSRK

WOLFTPM_API int wolfTPM2_CreateSRK(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * srkKey,
TPM_ALG_ID alg,
const byte * auth,
int authSz

)

Generates a new TPM Primary Key that will be used as a Storage Key for other TPM keys.
Parameters:

* dev pointer to a TPM2_DEV struct

+ srkKey pointer to an empty WOLFTPM2_KEY structure, to store information about the new EK
+ alg can be only TPM_ALG_RSA or TPM_ALG_ECC, see Note above

+ auth pointer to a string constant, specifying the password authorization for the TPM 2.0 Key
+ authSz integer value, specifying the size of the password authorization, in bytes

* wolfTPM2_CreateEK

* wolfTPM2_CreateAndLoadAIK

* wolfTPM2_GetKeyTemplate_RSA_SRK
* wolfTPM2_GetKeyTemplate_ECC_SRK

Return:

« TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Although only RSA and ECC can be used for EK, symmetric keys can be created and used by the
TPM

5.3.6.141 function wolfTPM2_CreateAndLoadAIK

WOLFTPM_API int wolfTPM2_CreateAndLoadAIK(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * aikKey,
TPM_ALG_ID alg,
WOLFTPM2_KEY * srkKey,
const byte * auth,
int authSz
)

Generates a new TPM Attestation Key under the provided Storage Key.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 294

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

+ dev pointer to a TPM2_DEV struct

+ aikKey pointer to an empty WOLFTPM2_KEY structure, to store the newly generated TPM key

+ alg can be only TPM_ALG_RSA or TPM_ALG_ECC

+ srkKey pointer to a WOLFTPM2_KEY structure, pointing to valid TPM handle of a loaded Storage
Key

+ auth pointer to a string constant, specifying the password authorization for the TPM 2.0 Key

+ authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_CreateSRK
* wolfTPM2_GetKeyTemplate_RSA_AIK
* wolfTPM2_GetKeyTemplate_ECC_AIK

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.142 function wolfTPM2_GetTime

WOLFTPM_API int wolfTPM2_GetTime(
WOLFTPM2_KEY * aikKey,
GetTime_Out * getTimeOut

)

One-shot API to generate a TPM signed timestamp.
Parameters:

+ aikKey pointer to a WOLFTPM2_KEY structure, containing valid TPM handle of a loaded attesta-
tion key

+ getTimeOut pointer to an empty structure of GetTime_Out type, to store the output of the com-
mand

* wolfTPM2_CreateSRK
* wolfTPM2_GetKeyTemplate_RSA_EK
* wolfTPM2_GetKeyTemplate_ECC_EK

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: The attestation key must be generated and loaded prior to this call

5.3.6.143 function wolfTPM2_CSR_SetCustomExt

WOLFTPM_API int wolfTPM2_CSR_SetCustomExt(
WOLFTPM2_DEV * dev,
WOLFTPM2_CSR * csr1,
int critical,
const char * oid,
const byte * der,
word32 dexrSz

COPYRIGHT ©2024 wolfSSL Inc. 295

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Helper for Certificate Signing Request (CSR) generation to set a custom request extension oid and
value usage for a WOLFTPM2_CSR structure.

Parameters:

+ dev pointer to a TPM2_DEV struct (not used)

* csr pointer to a WOLFTPM2_CSR structure

« critical If 0, the extension will not be marked critical, otherwise it will be marked critical.
+ oid Dot separated oid as a string. For example “1.2.840.10045.3.1.7"

+ der The der encoding of the content of the extension.

+ derSz The size in bytes of the der encoding.

* wolfTPM2_CSR_SetSubject

* wolfTPM2_CSR_SetKeyUsage

* wolfTPM2_CSR_MakeAndSign

* wolfTPM2_CSR_MakeAndSign_ex

Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.144 function wolfTPM2_CSR_SetKeyUsage

WOLFTPM_API int wolfTPM2_CSR_SetKeyUsage(
WOLFTPM2_DEV * dev,
WOLFTPM2_CSR * csr,
const char * keyUsage

)

Helper for Certificate Signing Request (CSR) generation to set a extended key usage or key usage for
a WOLFTPM2_CSR structure. Pass either extended key usage or key usage values. Mixed string types
are not supported, however you can call wolfTPM2_CSR_SetKeyUsage twice (once for extended key
usage strings and once for standard key usage strings).

Parameters:

+ dev pointer to a TPM2_DEV struct (not used)

* csr pointer to a WOLFTPM2_CSR structure

+ keyUsage string list of comma separated key usage attributes. Possible Extended Key Usage val-
ues: any, serverAuth, clientAuth, codeSigning, emailProtection, timeStamping and OCSPSigning
Possible Key Usage values: digitalSignature, nonRepudiation, contentCommitment, keyEncipher-
ment, dataEncipherment, keyAgreement, keyCertSign, cRLSign, encipherOnly, decipherOnly De-
fault: “serverAuth,clientAuth,codeSigning”

* wolfTPM2_CSR_SetSubject

* wolfTPM2_CSR_SetCustomExt

* wolfTPM2_CSR_MakeAndSign

* wolfTPM2_CSR_MakeAndSign_ex

Return:

» TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 296

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.145 function wolfTPM2_CSR_SetSubject

WOLFTPM_API int wolfTPM2_CSR_SetSubject(
WOLFTPM2_DEV * dev,
WOLFTPM2_CSR * csr,
const char * subject

)
Helper for Certificate Signing Request (CSR) generation to set a subject for a WOLFTPM2_CSR structure.
Parameters:

+ dev pointer to a TPM2_DEV struct (not used)
* csr pointer to a WOLFTPM2_CSR structure
+ subject distinguished name string using /CN= syntax. Example: “/C=US/ST=Washington/L=Seattle/O=wolfSSL/O!

See:

* wolfTPM2_CSR_SetKeyUsage

* wolfTPM2_CSR_SetCustomExt

» wolfTPM2_CSR_MakeAndSign

* wolfTPM2_CSR_MakeAndSign_ex

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.146 function wolfTPM2_CSR_MakeAndSign_ex

WOLFTPM_API int wolfTPM2_CSR_MakeAndSign_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_CSR * csr,
WOLFTPM2_KEY * key,
int outFormat,
byte * out,
int outSz,
int sigType,
int selfSignCert,
int devId

)

Helper for Certificate Signing Request (CSR) generation using a TPM based key (WOLFTPM2_KEY struc-
ture with subject and key usage already set.

Parameters:

+ dev pointer to a TPM2_DEV struct

* ¢sr pointer to a WOLFTPM2_CSR structure

+ key WOLFTPM2_KEY structure

» outFormat CTC_FILETYPE_ASN1 or CTC_FILETYPE_PEM

+ out destination buffer for CSR as ASN.1/DER or PEM

+ outSz destination buffer maximum size

+ sigType Use 0 to automatically select SHA2-256 based on keyType (CTC_SHA256wWRSA or
CTC_SHA256WECDSA). See wolfCrypt “enum Ctc_SigType” for list of possible values.

+ selfSignCert If set to 1 (non-zero) then result will be a self signed certificate. Zero (0) will generate
a CSR (Certificate Signing Request) to be used by a CA.

+ devld The device identifier used when registering the crypto callback. Use INVALID_DEVID (-2)
to automatically register the required crypto callback.

COPYRIGHT ©2024 wolfSSL Inc. 297

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

See:

* wolfTPM2_CSR_SetSubject

* wolfTPM2_CSR_SetKeyUsage
* wolfTPM2_CSR_SetCustomExt
* wolfTPM2_CSR_MakeAndSign

Return:

* Success: Positive integer (size of the output)
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.147 function wolfTPM2_CSR_MakeAndSign

WOLFTPM_API int wolfTPM2_CSR_MakeAndSign(
WOLFTPM2_DEV * dev,
WOLFTPM2_CSR * csr,
WOLFTPM2_KEY * key,
int outFormat,
byte * out,
int outSz

)

Helper for Certificate Signing Request (CSR) generation using a TPM based key (WOLFTPM2_KEY struc-
ture with subject and key usage already set.

Parameters:

+ dev pointer to a TPM2_DEV struct

* csr pointer to a WOLFTPM2_CSR structure

+ key WOLFTPM2_KEY structure

« outFormat CTC_FILETYPE_ASN1 or CTC_FILETYPE_PEM
« out destination buffer for CSR as ASN.1/DER or PEM

« outSz destination buffer maximum size

See:

» wolfTPM2_CSR_SetSubject

* wolfTPM2_CSR_SetKeyUsage

* wWolfTPM2_CSR_SetCustomExt

* wolfTPM2_CSR_MakeAndSign_ex

Return:

* Success: Positive integer (size of the output)
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.148 function wolfTPM2_CSR_Generate_ex

WOLFTPM_API int wolfTPM2_CSR_Generate_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const char * subject,
const char * keyUsage,
int outFormat,
byte * out,
int outSz,

COPYRIGHT ©2024 wolfSSL Inc. 298

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

int sigType,
int selfSignCert,
int devId

)

Helper for Certificate Signing Request (CSR) generation using a TPM based key (WOLFTPM2_KEY). Sin-
gle shot API for outputting a CSR or self-signed cert based on TPM key.

Parameters:

* dev pointer to a TPM2_DEV struct

+ key pointer to a loaded WOLFTPM2_KEY structure

+ subject distinguished name string using /CN= syntax. Example: “/C=US/ST=Washington/L=Seattle/O=wolfSSL/O!

+ keyUsage string list of comma separated key usage attributes. Possible values: any, server-
Auth, clientAuth, codeSigning, emailProtection, timeStamping and OCSPSigning Default: “server-
Auth,clientAuth,codeSigning”

+ outFormat CTC_FILETYPE_ASN1 or CTC_FILETYPE_PEM

+ out destination buffer for CSR as ASN.1/DER or PEM

+ outSz destination buffer maximum size

+ sigType Use 0 to automatically select SHA2-256 based on keyType (CTC_SHA256wWRSA or

CTC_SHA256WECDSA). See wolfCrypt “enum Ctc_SigType” for list of possible values.

selfSignCert If setto 1 (non-zero) then result will be a self signed certificate. Zero (0) will generate

a CSR (Certificate Signing Request) to be used by a CA.

+ devld The device identifier used when registering the crypto callback. Use INVALID_DEVID (-2)
to automatically register the required crypto callback.

* dev pointer to a TPM2_DEV struct

+ key pointer to a loaded WOLFTPM2_KEY structure

* subject distinguished name string using /CN= syntax

+ keyUsage string list of comma separated key usage attributes

+ outFormat output format (CTC_FILETYPE_ASN1 or CTC_FILETYPE_PEM)

+ out pointer to buffer for CSR/cert output

+ outSz size of output buffer

+ sigType signature algorithm (0 for default SHA2-256)

+ selfSignCert If 1, generate self-signed cert; if 0, generate CSR

+ devld device ID for crypto callback (-2 for auto-register)

* wolfTPM2_SetCryptoDevCb

« wolfTPM2_CSR_Generate

* wolfTPM2_CSR_Generate

* wolfTPM2_CSR_MakeAndSign_ex

Return:

* Success: Positive integer (size of the output)

* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

* Success: Positive integer (size of the output)

« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Single shot API for outputting a CSR or self-signed cert based on TPM key

Generate a Certificate Signing Request (CSR) or self-signed certificate with extended options

5.3.6.149 function wolfTPM2_CSR_Generate

COPYRIGHT ©2024 wolfSSL Inc. 299

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM_API int wolfTPM2_CSR_Generate(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const char * subject,
const char * keyUsage,
int outFormat,
byte * out,
int outSz

)

Helper for Certificate Signing Request (CSR) generation using a TPM based key (WOLFTPM2_KEY). Sin-
gle shot API for outputting a CSR or self-signed cert based on TPM key.

Parameters:

* dev pointer to a TPM2_DEV struct

+ key pointer to a loaded WOLFTPM2_KEY structure

* subject distinguished name string using /CN= syntax. Example: “/C=US/ST=Washington/L=Seattle/O=wolfSSL/O!

+ keyUsage string list of comma separated key usage attributes. Possible values: any, server-
Auth, clientAuth, codeSigning, emailProtection, timeStamping and OCSPSigning Default: “server-
Auth,clientAuth,codeSigning”

+ outFormat CTC_FILETYPE_ASN1 or CTC_FILETYPE_PEM

+ out destination buffer for CSR as ASN.1/DER or PEM

*+ outSz destination buffer maximum size

See:

* wolfTPM2_SetCryptoDevCb
« wolfTPM2_CSR_Generate_ex

Return:

* Success: Positive integer (size of the output)
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.150 function wolfTPM2_ChangePlatformAuth

WOLFTPM_API int wolfTPM2_ChangePlatformAuth(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * session

)

Helper to set the platform hierarchy authentication value to random. Setting the platform auth to
random value is used to prevent application from being able to use platform hierarchy. This is defined
in section 10 of the TCG PC Client Platform specification.

Parameters:

+ dev pointer to a TPM2_DEV struct
* session the current session, a session is required to protect the new platform auth

See:

* TPM2_HierarchyChangeAuth
* wolfTPM2_ChangeHierarchyAuth

Return:

* Success: Positive integer (size of the output)
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)

COPYRIGHT ©2024 wolfSSL Inc. 300

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

* BAD_FUNC_ARG: check the provided arguments

5.3.6.151 function wolfTPM2_ChangeHierarchyAuth

WOLFTPM_API int wolfTPM2_ChangeHierarchyAuth(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * session,
TPMI_RH_HIERARCHY_AUTH authHandle

)

Helper to set the hierarchy authentication value to random. Setting the platform auth to random value
is used to prevent application from being able to use platform hierarchy. This is defined in section 10
of the TCG PC Client Platform specification.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ session the current session, a session is required to protect the new platform auth
+ authHandle the auth hierarchy (example: TPM_RH_PLATFORM or TPM_RH_LOCKOUT)

See:

* TPM2_HierarchyChangeAuth
* wolfTPM2_ChangePlatformAuth

Return:

* Success: Positive integer (size of the output)
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.152 function wolfTPM2_EncryptSecret

WOLFTPM_LOCAL int wolfTPM2_EncryptSecret(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * tpmKey,
TPM2B_DATA * secret,
TPM2B_ENCRYPTED_SECRET * encSecret,
const char * label

5.3.6.153 function wolfTPM2_CryptoDevCb

WOLFTPM_API int wolfTPM2_CryptoDevCbh(
int devId,
wc_CryptoInfo * info,
void * ctx

)

Areference crypto callback API for using the TPM for crypto offload. This callback function is registered
using wolfTPM2_SetCryptoDevCb or wc_CryptoDev_RegisterDevice.

Parameters:

* devlid The devid used when registering the callback. Any signed integer value besides
INVALID_DEVID

+ info point to wc_Cryptolnfo structure with detailed information about crypto type and parame-
ters

+ ctx The user context supplied when callback was registered with wolfTPM2_SetCryptoDevCb

COPYRIGHT ©2024 wolfSSL Inc. 301

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

See:

* wolfTPM2_SetCryptoDevCb
* wolfTPM2_ClearCryptoDevCh

Return:

¢ TPM_RC_SUCCESS: successful
+ CRYPTOCB_UNAVAILABLE: Do not use TPM hardware, fall-back to default software crypto.
+ WC_HW_E: generic hardware failure

5.3.6.154 function wolfTPM2_SetCryptoDevCb

WOLFTPM_API int wolfTPM2_SetCryptoDevCb (
WOLFTPM2_DEV * dev,
CryptoDevCallbackFunc cb,
TpmCryptoDevCtx * tpmCtx,
int * pDevId

)

Register a crypto callback function and return assigned devld.
Parameters:

* dev pointer to a TPM2_DEV struct

+ cb The wolfTPM2_CryptoDevCb API is a template, but you can also provide your own

* tpmCtx The user supplied context. For wolfTPM2_CryptoDevCb use TpmCryptoDevCtx, but can
also be your own.

+ pDevld Pointer to automatically assigned device ID.

See:

* wolfTPM2_CryptoDevCb
* wolfTPM2_ClearCryptoDevCb

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.155 function wolfTPM2_ClearCryptoDevCh

WOLFTPM_API int wolfTPM2_ClearCryptoDevCb (
WOLFTPM2_DEV * dev,
int devId

)
Clears the registered crypto callback.

Parameters:

* dev pointer to a TPM2_DEV struct
+ devld The devld used when registering the callback

See:

* wolfTPM2_CryptoDevCb
* wolfTPM2_SetCryptoDevCb

Return:
* TPM_RC_SUCCESS: successful

COPYRIGHT ©2024 wolfSSL Inc. 302

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

5.3.6.156 function wolfTPM2_PK_RsaSign

WOLFTPM_API int wolfTPM2_PK_RsaSign(
WOLFSSL * ssl1,
const unsigned char * in,
unsigned int inSz,
unsigned char * out,
word32 * outSz,
const unsigned char * keyDer,
unsigned int keySz,
void * ctx

5.3.6.157 function wolfTPM2_PK_RsaSignCheck

WOLFTPM_API int wolfTPM2_PK_RsaSignCheck(
WOLFSSL * ss1,
unsigned char * sig,
unsigned int sigSz,
unsigned char ** out,
const unsigned char * keyDer,
unsigned int keySz,
void * ctx

5.3.6.158 function wolfTPM2_PK_RsaPssSign

WOLFTPM_API int wolfTPM2_PK_RsaPssSign(
WOLFSSL * ss1,
const unsigned char * in,
unsigned int inSz,
unsigned char * out,
unsigned int * outSz,
int hash,
int mgf,
const unsigned char * keyDer,
unsigned int keySz,
void * ctx

5.3.6.159 function wolfTPM2_PK_RsaPssSignCheck

WOLFTPM_API int wolfTPM2_PK_RsaPssSignCheck(
WOLFSSL * ss1,
unsigned char * sig,
unsigned int sigSz,
unsigned char ** out,
int hash,
int mgf,
const unsigned char * keyDer,
unsigned int keySz,

COPYRIGHT ©2024 wolfSSL Inc. 303

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

void * ctx

5.3.6.160 function wolfTPM2_PK_EccSign

WOLFTPM_API int wolfTPM2_PK_EccSign(
WOLFSSL * ssl1,
const unsigned char * in,
unsigned int inSz,
unsigned char * out,
word32 * outSz,
const unsigned char * keyDer,
unsigned int keySz,
void * ctx

5.3.6.161 function wolfTPM_PK_SetCh

WOLFTPM_API int wolfTPM_PK_SetCh(
WOLFSSL_CTX * ctx

)

5.3.6.162 function wolfTPM_PK_SetChCtx

WOLFTPM_API int wolfTPM_PK_SetCbCtx(
WOLFSSL * ssl1,
void * userCtx

5.3.6.163 function wolfTPM2_New

WOLFTPM_API WOLFTPM2_DEV * wolfTPM2_New (
void

)
Allocate and initialize a WOLFTPM2_DEV.

See: wolfTPM2_Free
Return:

* pointer to new device struct
* NULL: on any error

5.3.6.164 function wolfTPM2_Free

WOLFTPM_API int wolfTPM2_Free(
WOLFTPM2_DEV * dev

)
Cleanup and Free a WOLFTPM2_DEV that was allocated by wolfTPM2_New.

Parameters:

* dev pointer to a TPM2_DEV struct
See: wolfTPM2_New
Return: TPM_RC_SUCCESS: successful

COPYRIGHT ©2024 wolfSSL Inc. 304

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.165 function wolfTPM2_NewKeyBlob

WOLFTPM_API WOLFTPM2_KEYBLOB * wolfTPM2_NewKeyBlob (
void

)

Allocate and initialize a WOLFTPM2_KEYBLOB.

See: wolfTPM2_FreeKeyBlob

Return:

* pointer to newly initialized WOLFTPM2_KEYBLOB
* NULL on any error

5.3.6.166 function wolfTPM2_FreeKeyBlob

WOLFTPM_API int wolfTPM2_FreeKeyBlob(
WOLFTPM2_KEYBLOB * blob
)

Free a WOLFTPM2_KEYBLOB that was allocated with wolfTPM2_NewKeyBlob.
Parameters:
* blob pointer to a WOLFTPM2_KEYBLOB that was allocated by wolfTPM2_NewKeyBlob
See: wolfTPM2_NewKeyBlob
Return: TPM_RC_SUCCESS: successful

5.3.6.167 function wolfTPM2_NewPublicTemplate

WOLFTPM_API TPMT_PUBLIC * wolfTPM2_NewPublicTemplate(
void

)

Allocate and initialize a TPMT_PUBLIC.

See: wolfTPM2_FreePublicTemplate

Return:

* pointer to newly initialized
* NULL on any error

5.3.6.168 function wolfTPM2_FreePublicTemplate

WOLFTPM_API int wolfTPM2_FreePublicTemplate(
TPMT_PUBLIC * PublicTemplate
)

Free a TPMT_PUBLIC that was allocated with wolfTPM2_NewPublicTemplate.
Parameters:
* PublicTemplate pointerto a TPMT_PUBLIC that was allocated with wolfTPM2_NewPublicTemplate
See: wolfTPM2_NewPublicTemplate
Return: TPM_RC_SUCCESS: successful

COPYRIGHT ©2024 wolfSSL Inc. 305

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

5.3.6.169 function wolfTPM2_NewKey

WOLFTPM_API WOLFTPM2_KEY * wolfTPM2_NewKey (
void

)

Allocate and initialize a WOLFTPM2_KEY.

See: wolfTPM2_FreeKey

Return:

* pointer to newly initialized WOLFTPM2_KEY
* NULL on any error

5.3.6.170 function wolfTPM2_FreeKey

WOLFTPM_API int wolfTPM2_FreeKey (
WOLFTPM2_KEY * key
)

Free a WOLFTPM2_KEY that was allocated with wolfTPM2_NewKey.
Parameters:

+ key pointer to a WOLFTPM2_KEY that was allocated by wolfTPM2_NewKey
See: wolfTPM2_NewKey
Return: TPM_RC_SUCCESS: successful

5.3.6.171 function wolfTPM2_NewSession

WOLFTPM_API WOLFTPM2_SESSION * wolfTPM2_NewSession(
void

)

Allocate and initialize a WOLFTPM2_SESSION.

See: wolfTPM2_FreeSession

Return:

* pointer to newly initialized WOLFTPM2_SESSION
* NULL on any error

5.3.6.172 function wolfTPM2_FreeSession

WOLFTPM_API int wolfTPM2_FreeSession(
WOLFTPM2_SESSION * session
)

Free a WOLFTPM2_SESSION that was allocated with wolfTPM2_NewSession.
Parameters:
* session pointer to a WOLFTPM2_SESSION struct
See: wolfTPM2_NewSession
Return: TPM_RC_SUCCESS: successful

COPYRIGHT ©2024 wolfSSL Inc. 306

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

5.3.6.173 function wolfTPM2_NewCSR

WOLFTPM_API WOLFTPM2_CSR * wolfTPM2_NewCSR(
void

)

Allocate and initialize a WOLFTPM2_CSR.

See: wolfTPM2_FreeCSR

Return:

* pointer to newly initialized WOLFTPM2_CSR
* NULL on any error

5.3.6.174 function wolfTPM2_FreeCSR

WOLFTPM_API int wolfTPM2_FreeCSR(
WOLFTPM2_CSR * csr
)

Free a WOLFTPM2_CSR that was allocated with wolfTPM2_NewCSR.
Parameters:

* csr pointer to a WOLFTPM2_CSR that was allocated by wolfTPM2_NewCSR
See: wolfTPM2_NewCSR
Return: TPM_RC_SUCCESS: successful

5.3.6.175 function wolfTPM2_GetHandleRefFromKey

WOLFTPM_API WOLFTPM2_HANDLE * wolfTPM2_GetHandleRefFromKey (
WOLFTPM2_KEY * Kkey
)

Retrieve the WOLFTPM2_HANDLE from a WOLFTPM2_KEY.
Parameters:

+ key pointer to a WOLFTPM2_KEY struct
Return:

* pointer to handle in the key structure
* NULL if key pointer is NULL

5.3.6.176 function wolfTPM2_GetHandleRefFromKeyBlob

WOLFTPM_API WOLFTPM2_HANDLE * wolfTPM2_GetHandleRefFromKeyBlob (
WOLFTPM2_KEYBLOB * keyBlob

)
Retrieve the WOLFTPM2_HANDLE from a WOLFTPM2_KEYBLOB.
Parameters:
+ keyBlob pointer to a WOLFTPM2_KEYBLOB struct
Return:

+ pointer to handle in the key blob structure
* NULL if key pointer is NULL

COPYRIGHT ©2024 wolfSSL Inc. 307

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

5.3.6.177 function wolfTPM2_GetHandleRefFromSession

WOLFTPM_API WOLFTPM2_HANDLE * wolfTPM2_GetHandleRefFromSession(
WOLFTPM2_SESSION * session

)
Retrieve the WOLFTPM2_HANDLE from a WOLFTPM2_SESSION.
Parameters:
* session pointer to a WOLFTPM2_SESSION struct
Return:

* pointer to handle in the session structure
* NULL if key pointer is NULL

5.3.6.178 function wolfTPM2_GetHandleValue

WOLFTPM_API TPM_HANDLE wolfTPM2_GetHandleValue(
WOLFTPM2_HANDLE * handle

)
Get the 32-bit handle value from the WOLFTPM2_HANDLE.
Parameters:

* handle pointer to WOLFTPM2_HANDLE structure
Return: TPM_HANDLE value from TPM

5.3.6.179 function wolfTPM2_SetKeyAuthPassword

WOLFTPM_API int wolfTPM2_SetKeyAuthPassword(
WOLFTPM2_KEY * key,
const byte * auth,
int authSz

)
Set the authentication data for a key.
Parameters:

+ key pointer to wrapper key struct
+ auth pointer to auth data
+ authSz length in bytes of auth data

Return:

» TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.180 function wolfTPM2_GetKeyBlobAsBuffer

WOLFTPM_API int wolfTPM2_GetKeyBlobAsBuffer(
byte * buffer,
word32 bufferSz,
WOLFTPM2_KEYBLOB * key

COPYRIGHT ©2024 wolfSSL Inc. 308

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Marshal data from a keyblob to a binary buffer. This can be stored to disk for loading in a separate
process or after power cycling. If buffer is not provided then size only will be returned.

Parameters:

+ buffer pointer to buffer in which to store marshaled keyblob
* bufferSz size of the above buffer
+ key pointer to keyblob to marshal

See: wolfTPM2_SetKeyBlobFromBuffer
Return:

* Positive integer (size of the output)
+ BUFFER_E: insufficient space in provided buffer
* BAD_FUNC_ARG: check the provided arguments

5.3.6.181 function wolfTPM2_GetKeyBlobAsSeparateBuffers

WOLFTPM_API int wolfTPM2_GetKeyBlobAsSeparateBuffers(
byte * pubBuffer,
word32 * pubBufferSz,
byte * privBuffer,
word32 * privBufferSz,
WOLFTPM2_KEYBLOB * key

)

Marshal data from a keyblob to a binary buffer. This can be stored to disk for loading in a separate
process or after power cycling. If either buffer is NULL then the size will be returned for each part.

Parameters:

+ pubBuffer pointer to buffer in which to store the public part of the marshaled keyblob
pubBufferSz pointer to the size of the above buffer

privBuffer pointer to buffer in which to store the private part of the marshaled keyblob
privBufferSz pointer to the size of the above buffer

key pointer to keyblob to marshal

See: wolfTPM2_GetKeyBlobAsSeparateBuffers

Return:

¢ TPM_RC_SUCCESS: successful

* BUFFER_E: insufficient space in provided buffer

* BAD_FUNC_ARG: check the provided arguments

* LENGTH_ONLY_E: Returning length only (when either of the buffers is NULL)

5.3.6.182 function wolfTPM2_SetKeyBlobFromBuffer

WOLFTPM_API int wolfTPM2_SetKeyBlobFromBuffer(
WOLFTPM2_KEYBLOB * key,
byte * buffer,
word32 bufferSz

)

Unmarshal data into a WOLFTPM2_KEYBLOB struct. This can be used to load a keyblob that was pre-
viously marshaled by wolfTPM2_GetKeyBlobAsBuffer.

Parameters:

+ key pointer to keyblob to load and unmarshall data into

COPYRIGHT ©2024 wolfSSL Inc. 309

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

* buffer pointer to buffer containing marshalled keyblob to load from
* bufferSz size of the above buffer

See: wolfTPM2_GetKeyBlobAsBuffer
Return:

¢ TPM_RC_SUCCESS: successful
+ BUFFER_E: buffer is too small or there is extra data remaining and not unmarshalled
* BAD_FUNC_ARG: check the provided arguments

5.3.6.183 function wolfTPM2_PolicyRestart

WOLFTPM_API int wolfTPM2_PolicyRestart(
WOLFTPM2_DEV * dev,
TPM_HANDLE sessionHandle

)

Restart the policy digest for a policy session.
Parameters:

+ dev pointer to a TPM2_DEV struct
+ sessionHandle the handle of the current session, a session is required to use policy pcr

See:

* wolfTPM2_GetPolicyDigest
+ wolfTPM2_PolicyPCR
* wolfTPM2_PolicyAuthorize

Return:

» TPM_RC_SUCCESS: successful
« INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

5.3.6.184 function wolfTPM2_GetPolicyDigest

WOLFTPM_API int wolfTPM2_GetPolicyDigest(
WOLFTPM2_DEV * dev,
TPM_HANDLE sessionHandle,
byte * policyDigest,
word32 * policyDigestSz
)

Get the policy digest of the session that was passed in wolfTPM2_GetPolicyDigest.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ sessionHandle the handle of the current session, a session is required to use policy pcr
+ policyDigest output digest of the policy

+ policyDigestSz pointer to the size of the policyDigest

See:

» wolfTPM2_PolicyPCR
* wolfTPM2_PolicyAuthorize
* wolfTPM2_PolicyRestart

Return:

COPYRIGHT ©2024 wolfSSL Inc. 310

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

¢ TPM_RC_SUCCESS: successful
+ INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

5.3.6.185 function wolfTPM2_PolicyPCR

WOLFTPM_API int wolfTPM2_PolicyPCR(
WOLFTPM2_DEV * dev,
TPM_HANDLE sessionHandle,
TPM_ALG_ID pcrAlg,
byte * pcrArray,
word32 pcrArraySz

)

Apply the PCR's to the policy digest for the policy session.
Parameters:

* dev pointer to a TPM2_DEV struct

+ sessionHandle the handle of the current policy session, a session is required to use policy PCR
* pcrAlg the hash algorithm to use with PCR policy

+ pcrArray array of PCR Indexes to use when creating the policy

* pcrArraySz the number of PCR Indexes in the pcrArray

* wolfTPM2_GetPolicyDigest
* wolfTPM2_PolicyPCR

* wolfTPM2_PolicyAuthorize
* wolfTPM2_PolicyRestart

Return:

¢ TPM_RC_SUCCESS: successful
+ INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

5.3.6.186 function wolfTPM2_PolicyAuthorize

WOLFTPM_API int wolfTPM2_PolicyAuthorize(
WOLFTPM2_DEV * dev,
TPM_HANDLE sessionHandle,
const TPM2B_PUBLIC * pub,
const TPMT_TK_VERIFIED * checkTicket,
const byte * pcrDigest,
word32 pcrDigestSz,
const byte * policyRef,
word32 policyRefSz
)

Apply the PCR's to the policy digest for the policy session.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ sessionHandle the handle of the current policy session, a session is required to use policy PCR
* pub pointer to a populated structure of TPM2B_PUBLIC type

+ checkTicket returns the validation ticket proving the signature for digest was checked

+ pcrDigest digest for the PCR(s) collected with wolfTPM2_PCRGetDigest

COPYRIGHT ©2024 wolfSSL Inc. 311

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

* pcrDigestSz size of the PCR digest
+ policyRef optional nonce
* policyRefSz optional nonce size

* wolfTPM2_GetPolicyDigest
» wolfTPM2_PolicyPCR

* wolfTPM2_PolicyAuthorize
* wolfTPM2_PolicyRestart

* wolfTPM2_PCRGetDigest

Return:

¢ TPM_RC_SUCCESS: successful
+ INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

5.3.6.187 function wolfTPM2_PCRGetDigest

WOLFTPM_API int wolfTPM2_PCRGetDigest (
WOLFTPM2_DEV * dev,
TPM_ALG_ID pcrAlg,
byte * pcrArray,
word32 pcrArraySz,
byte * pcrDigest,
word32 * pcrDigestSz
)

Get a cumulative digest of the PCR'’s specified.
Parameters:

+ dev pointer to a TPM2_DEV struct

* pcrAlg the hash algorithm to use with pcr policy

* pcrArray array of pcr Index to use when creating the policy

* pcrArraySz the number of Index in the pcrArray

+ pcrDigest digest for the PCR(s) collected with wolfTPM2_PCRGetDigest
* pcrDigestSz size of the PCR digest

See:

* wolfTPM2_PolicyPCR
* wolfTPM2_PolicyAuthorize

Return:

¢ TPM_RC_SUCCESS: successful
« INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

5.3.6.188 function wolfTPM2_PolicyRefMake

WOLFTPM_API int wolfTPM2_PolicyRefMake (
TPM_ALG_ID pcrAlg,
byte * digest,
word32 * digestSz,
const byte * policyRef,
word32 policyRefSz

COPYRIGHT ©2024 wolfSSL Inc. 312

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

Utility for generating a policy ref digest. If no policy reference (nonce) used then just rehash the pro-
vided digest again (update -> final)

Parameters:

* pcrAlg the hash algorithm to use with pcr policy
+ digest input/out digest

+ digestSz input/out digest size

+ policyRef optional nonce

+ policyRefSz optional nonce size

See:

* wolfTPM2_PolicyPCRMake
* wolfTPM2_PolicyAuthorizeMake

Return:

« TPM_RC_SUCCESS: successful
« INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

5.3.6.189 function wolfTPM2_PolicyPCRMake

WOLFTPM_API int wolfTPM2_PolicyPCRMake (
TPM_ALG_ID pcrAlg,
byte * pcrArray,
word32 pcrArraySz,
const byte * pcrDigest,
word32 pcrDigestSz,
byte * digest,
word32 * digestSz
)

Utility for generating a policy PCR digest.
Parameters:

* pcrAlg the hash algorithm to use with pcr policy

+ pcrArray optional array of pcrs to be used when creating the tpm object

* pcrArraySz length of the pcrArray

+ pcrDigest digest for the PCR(s) collected (can get using wolfTPM2_PCRGetDigest)
* pcrDigestSz size of the PCR digest

+ digest input/out digest

+ digestSz input/out digest size

* wolfTPM2_PolicyPCRMake
* wolfTPM2_PolicyAuthorizeMake
* wolfTPM2_PCRGetDigest

Return:

¢ TPM_RC_SUCCESS: successful
+ INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

5.3.6.190 function wolfTPM2_PolicyHash

COPYRIGHT ©2024 wolfSSL Inc. 313

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM_API int wolfTPM2_PolicyHash(
TPM_ALG_ID hashAlg,
byte * digest,
word32 * digestSz,
TPM_CC cc,
const byte * input,
word32 inputSz
)

Utility for creating a policy hash. Generic helper that takes command code and input array. policyDi-
gestnew = hash(policyDigestOld | | [cc] | | [Input])

Parameters:

+ hashAlg the hash algorithm to use with pcr policy
+ digest input/out digest (input “old” / output “new")
+ digestSz input/out digest size

* ccis the command code used

* input pointer to a array to use (optional)

* inputSz size of input

See: wolfTPM2_PolicyPCRMake
Return:

¢ TPM_RC_SUCCESS: successful
+ INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

5.3.6.191 function wolfTPM2_PolicyAuthorizeMake

WOLFTPM_API int wolfTPM2_PolicyAuthorizeMake (
TPM_ALG_ID pcrAlg,
const TPM2B_PUBLIC * pub,
byte * digest,
word32 * digestSz,
const byte * policyRef,
word32 policyRefSz
)

Utility for generating a policy authorization digest based on a public key.
Parameters:

* pcrAlg the hash algorithm to use with pcr policy

* pub pointer to a populated structure of TPM2B_PUBLIC type
+ digest input/out digest

+ digestSz input/out digest size

+ policyRef optional nonce

+ policyRefSz optional nonce size

See:

* wolfTPM2_PolicyPCRMake
* wolfTPM2_PolicyHash

Return:

¢ TPM_RC_SUCCESS: successful
+ INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 314

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.192 function wolfTPM2_PolicyPassword

WOLFTPM_API int wolfTPM2_PolicyPasswoxd(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * tpmSession,
const byte * auth,
int authSz

)

Wrapper for setting a policy password and calling TPM2_PolicyPassword. This will set a password (in
clear) for the policy session instead of HMAC.

Parameters:

+ dev pointer to a TPM2_DEV struct

* tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

+ auth pointer to a string constant, specifying the password authorization for the policy session

authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_PolicyAuthValue
» wolfTPM2_PolicyCommandCode

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.193 function wolfTPM2_PolicyAuthValue

WOLFTPM_API int wolfTPM2_PolicyAuthValue(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * tpmSession,
const byte * auth,
int authSz

)
Wrapper for setting a policy auth value that is added to the HMAC key for a policy session.
Parameters:

+ dev pointer to a TPM2_DEV struct

* tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

+ auth pointer to a string constant, specifying the password authorization for the policy session

+ authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_PolicyPassword
* wolfTPM2_PolicyCommandCode

Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 315

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.6.194 function wolfTPM2_PolicyCommandCode

WOLFTPM_API int wolfTPM2_PolicyCommandCode (
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * tpmSession,
TPM_CC cc

)

Wrapper for setting a policy command code.
Parameters:

+ dev pointer to a TPM2_DEV struct

* tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

* ¢cc TPM_CC command code

See:

* wolfTPM2_PolicyPassword
* wolfTPM2_PolicyAuthValue

Return:

» TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

5.3.6.195 function wolfTPM2_SetIdentityAuth

WOLFTPM_API int wolfTPM2_SetIdentityAuth(
WOLFTPM2_DEV * dev,
WOLFTPM2_HANDLE * handle,
uint8_t * masterPassword,
uintl6_t masterPasswordSz

)
Set authentication for pre-provisioned identity keys.
Parameters:

+ dev pointer to a TPM2_DEV struct

* handle pointer to WOLFTPM2_HANDLE for the identity key
* masterPassword pointer to master password data

* masterPasswordSz size of master password in bytes

See: wolfTPM2_CreateAndLoadAIK
Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Used with IAK and IDevID keys on ST33KTPM devices

5.3.6.196 function GetKeyTemplateRSA

WOLFTPM_LOCAL int GetKeyTemplateRSA(
TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID nameAlg,

TPMA_OBJECT objectAttributes,
int keyBits,

COPYRIGHT ©2024 wolfSSL Inc. 316

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

long exponent,
TPM_ALG_ID sigScheme,
TPM_ALG_ID sigHash

)

Internal helper to create RSA key template.
Parameters:

* publicTemplate pointer to TPMT_PUBLIC template to populate
* nameAlg hash algorithm for key name

+ objectAttributes TPM object attributes

+ keyBits RSA key size in bits

+ exponent RSA public exponent

+ sigScheme signature scheme algorithm

+ sigHash hash algorithm for signatures

See: GetKeyTemplateECC
Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: Used internally by key creation functions

5.3.6.197 function GetKeyTemplateECC

WOLFTPM_LOCAL int GetKeyTemplateECC(

TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID nameAlg,
TPMA_OBJECT objectAttributes,
TPM_ECC_CURVE curve,
TPM_ALG_ID sigScheme,
TPM_ALG_ID sigHash

)

Internal helper to create ECC key template.
Parameters:

* publicTemplate pointer to TPMT_PUBLIC template to populate
+ nameAlg hash algorithm for key name

+ objectAttributes TPM object attributes

* curve ECC curve identifier

+ sigScheme signature scheme algorithm

+ sigHash hash algorithm for signatures

See: GetKeyTemplateRSA
Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: Used internally by key creation functions
5.3.6.198 function wolfTPM2_FirmwareUpgradeHash

WOLFTPM_API int wolfTPM2_FirmwareUpgradeHash(
WOLFTPM2_DEV * dev,

COPYRIGHT ©2024 wolfSSL Inc. 317

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

TPM_ALG_ID hashAlg,
uint8_t * manifest_hash,
uint32_t manifest_hash_sz,
uint8_t * manifest,
uint32_t manifest_sz,
wolfTPM2FwDataCb cb,

void * cb_ctx

)
Calculate hash of firmware manifest for upgrade.
Parameters:

+ dev pointer to a TPM2_DEV struct

* hashAlg hash algorithm to use (TPM_ALG_SHA384 or TPM_ALG_SHA512)
« manifest_hash buffer to store computed manifest hash

* manifest_hash_sz size of manifest hash buffer

* manifest pointer to firmware manifest data

* manifest_sz size of firmware manifest

+ cb callback function for firmware data access

+ cb_ctx context pointer passed to callback

See:

* wolfTPM2_FirmwareUpgrade
* wolfTPM2_FirmwareUpgradeRecover

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Supports SHA2-384 or SHA2-512 for manifest hash

5.3.6.199 function wolfTPM2_FirmwareUpgrade

WOLFTPM_API int wolfTPM2_FirmwareUpgrade(
WOLFTPM2_DEV * dev,
uint8_t * manifest,
uint32_t manifest_sz,
wolfTPM2FwDataCb cb,
void * cb_ctx

)
Perform TPM firmware upgrade.
Parameters:

+ dev pointer to a TPM2_DEV struct

* manifest pointer to firmware manifest data
« manifest_sz size of firmware manifest

+ cb callback function for firmware data access
+ cb_ctx context pointer passed to callback

See:

* wolfTPM2_FirmwareUpgradeHash
* wolfTPM2_FirmwareUpgradeRecover

Return:

COPYRIGHT ©2024 wolfSSL Inc. 318

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Upgrades TPM firmware using provided manifest and data callback

5.3.6.200 function wolfTPM2_FirmwareUpgradeRecover

WOLFTPM_API int wolfTPM2_FirmwareUpgradeRecover(
WOLFTPM2_DEV * dev,
uint8_t * manifest,
uint32_t manifest_sz,
wolfTPM2FwDataCb cb,
void * cb_ctx

)
Recover from failed TPM firmware upgrade.
Parameters:

+ dev pointer to a TPM2_DEV struct

* manifest pointer to firmware manifest data
* manifest_sz size of firmware manifest

+ cb callback function for firmware data access
+ cb_ctx context pointer passed to callback

See:

* wolfTPM2_FirmwareUpgrade
» wolfTPM2_FirmwareUpgradeHash

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Attempts to recover TPM after interrupted/failed upgrade

5.3.6.201 function wolfTPM2_FirmwareUpgradeCancel

WOLFTPM_API int wolfTPM2_FirmwareUpgradeCancel(
WOLFTPM2_DEV * dev

)
Cancel ongoing TPM firmware upgrade.
Parameters:

+ dev pointer to a TPM2_DEV struct
See:

* wolfTPM2_FirmwareUpgrade
* wolfTPM2_FirmwareUpgradeRecover

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Aborts current firmware upgrade process

COPYRIGHT ©2024 wolfSSL Inc. 319

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

5.3.7 Attributes Documentation

5.3.7.1 variable C

C{
#endif

typedef struct WOLFTPM2_HANDLE {

TPM_HANDLE hndl;
TPM2B_AUTH auth;
TPMT_SYM_DEF symmetric;
TPM2B_NAME name;

unsigned int policyPass : 1;
unsigned int policyAuth : 1;
unsigned int namelLoaded : 1;

} WOLFTPM2_HANDLE;

5.3.8 Source code

/* tpm2_wrap.h

Copyright (C) 2006-2025 wolfSSL Inc.
This file is part of wolfTPM.

wolfTPM is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

wolfTPM is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ©2110-1335, USA

* ok ok k% ok ok ok ok ok ok ok F o ok ok F F ok o

~

#ifndef __TPM2_WRAP_H__
#define __TPM2_WRAP_H__

#include <wolftpm/tpm2.h>
#ifdef __cplusplus

extern "C" {
#endif

typedef struct WOLFTPM2_HANDLE {
TPM_HANDLE hndl;

COPYRIGHT ©2024 wolfSSL Inc. 320

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

TPM2B_AUTH auth;
TPMT_SYM_DEF symmetric;
TPM2B_NAME name;

/* bit-fields */
unsigned int policyPass : 1;
unsigned int policyAuth : 1; /* Handle requires policy auth */
unsigned int nameLoaded : 1; /* flag to indicate if "name" was loaded
- and computed */

} WOLFTPM2_HANDLE;

#define TPM_SES_PWD OxFF /* Session type for Password that fits in one byte */

typedef struct WOLFTPM2_SESSION {

TPM_ST type; /* Trial, Policy or HMAC; or TPM_SES_PWD */
WOLFTPM2_HANDLE handle; /* Session handle from StartAuthSession */
TPM2B_NONCE nonceTPM; /* Value from StartAuthSession */
TPM2B_NONCE nonceCaller; /* Fresh nonce at each command */
TPM2B_DIGEST salt; /* User defined */

TPMI_ALG_HASH authHash;

TPMA_SESSION sessionAttributes;

TPM2B_AUTH* bind; /* pointer to bind auth password */
} WOLFTPM2_SESSION;

typedef struct WOLFTPM2_DEV {

TPM2_CTX ctx;

TPM2_AUTH_SESSION session[MAX_SESSION_NUM];
} WOLFTPM2_DEV;

/* Public Key with Handle.
* Must have "handle" and "pub" as first members */
typedef struct WOLFTPM2_KEY {
WOLFTPM2_HANDLE handle;
TPM2B_PUBLIC pub;
} WOLFTPM2_KEY;

/* Primary Key - From TPM2_CreatePrimary that include creation hash and ticket.
* WOLFTPM2_PKEY can be cast to WOLFTPM2_KEY.
* Must have "handle" and "pub" as first members */
typedef struct WOLFTPM2_PKEY {
WOLFTPM2_HANDLE handle;
TPM2B_PUBLIC pub;

TPM2B_DIGEST creationHash;
TPMT_TK_CREATION creationTicket;
} WOLFTPM2_PKEY;

/* Private/Public Key:
* WOLFTPM2_KEYBLOB can be cast to WOLFTPM2_KEY
* Must have "handle" and "pub" as first members */
typedef struct WOLFTPM2_KEYBLOB {
WOLFTPM2_HANDLE handle;
TPM2B_PUBLIC pub;
TPM2B_PRIVATE priv;

COPYRIGHT ©2024 wolfSSL Inc. 321

5.3 wolftom/tom2_wrap.h

5 APIREFERENCE

/* Note: Member "name" moved to "handle.name"

} WOLFTPM2_KEYBLOB;

typedef struct WOLFTPM2_HASH {
WOLFTPM2_HANDLE handle;
} WOLFTPM2_HASH;

typedef struct WOLFTPM2_NV {
WOLFTPM2_HANDLE handle;
TPMA_NV attributes;

} WOLFTPM2_NV;

typedef struct WOLFTPM2_HMAC {
WOLFTPM2_HASH hash;
WOLFTPM2_KEY key;

/* option bits */
wordl6 hmacKeylLoaded:1;
wordl6 hmacKeyKeep:1;

} WOLFTPM2_HMAC;

#ifdef WOLFTPM2_CERT_GEN

typedef struct WOLFTPM2_CSR {
Cert req;

} WOLFTPM2_CSR;

#endif

/* buffer similar to TPM2B_MAX_BUFFER that can be used */

typedef struct WOLFTPM2_BUFFER {
int size;
byte buffer[MAX_DIGEST_BUFFER];
} WOLFTPM2_BUFFER;

typedef enum WOLFTPM2_MFG {
TPM_MFG_UNKNOWN = @,
TPM_MFG_INFINEON,
TPM_MFG_STM,
TPM_MFG_MCHP,
TPM_MFG_NUVOTON,
TPM_MFG_NATIONTECH,

} WOLFTPM2_MFG;

typedef struct WOLFTPM2_CAPS {
WOLFTPM2_MFG mfg;
char mfgStr[4 + 1];
char vendoxrStx[(4 * 4) + 1];
word32 tpmType;
wordl6 fwVerMajor;
word1l6 fwVerMinor;
word32 fwVerVendor;

#if defined(WOLFTPM_SLB9672) || defined(WOLFTPM_SLB9673)

word32 keyGroupld;
wordl6 fwCounter;
word1l6 fwCounterSame;

COPYRIGHT ©2024 wolfSSL Inc. 322

*/

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

byte opMode;

#endif
/* bits */
wordl6e fips14@_2 : 1; /* using FIPS mode */
woxrdl6 cc_eal4d :1; /* Common Criteria EAL4+ */

wordl6 req_wait_state : 1; /* requires SPI wait state */
} WOLFTPM2_CAPS;
/* Wrapper API's to simplify TPM use */

/* For devtpm and swtpm builds, the ioCb and userCtx are not used and should be
» set to NULL */

WOLFTPM_API int wolfTPM2_Test(TPM2HalIoCb ioCb, void* userCtx, WOLFTPM2_CAPS*
< caps),;

WOLFTPM_API int wolfTPM2_Init (WOLFTPM2_DEV* dev, TPM2HalIoCb ioCb, void*
< userCtx);

WOLFTPM_API int wolfTPM2_OpenExisting(WOLFTPM2_DEV* dev, TPM2HalIoCb ioCb,
< void* userCtx);

WOLFTPM_API int wolfTPM2_Cleanup (WOLFTPM2_DEV* dev);

WOLFTPM_API int wolfTPM2_Cleanup_ex(WOLFTPM2_DEV* dev, int doShutdown);
WOLFTPM_API int wolfTPM2_GetTpmDevId(WOLFTPM2_DEV* dev);

WOLFTPM_API int wolfTPM2_SelfTest(WOLFTPM2_DEV* dev);

WOLFTPM_API int wolfTPM2_GetCapabilities(WOLFTPM2_DEV* dev, WOLFTPM2_CAPS*
< caps),

WOLFTPM_API int wolfTPM2_GetHandles(TPM_HANDLE handle, TPML_HANDLE* handles);

WOLFTPM_API int wolfTPM2_UnsetAuth(WOLFTPM2_DEV* dev, int index);

WOLFTPM_API int wolfTPM2_UnsetAuthSession(WOLFTPM2_DEV* dev, int index,
< WOLFTPM2_SESSION* session);

WOLFTPM_API int wolfTPM2_SetAuth(WOLFTPM2_DEV* dev, int index,
TPM_HANDLE sessionHandle, const TPM2B_AUTH* auth, TPMA_SESSION
«~ sessionAttributes,
const TPM2B_NAME* name);

WOLFTPM_API int wolfTPM2_SetAuthPassword(WOLFTPM2_DEV* dev, int index, const
< TPM2B_AUTH* auth);

WOLFTPM_API int wolfTPM2_SetAuthHandle(WOLFTPM2_DEV* dev, int index, const
<~ WOLFTPM2_HANDLE* handle);

COPYRIGHT ©2024 wolfSSL Inc. 323

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM_API int wolfTPM2_SetAuthSession(WOLFTPM2_DEV* dev, int index,
WOLFTPM2_SESSION* tpmSession, TPMA_SESSION sessionAttributes);

WOLFTPM_API int wolfTPM2_SetSessionHandle(WOLFTPM2_DEV* dev, int index,
WOLFTPM2_SESSION* tpmSession);

WOLFTPM_API int wolfTPM2_SetAuthHandleName(WOLFTPM2_DEV* dev, int index, const
<» WOLFTPM2_HANDLE* handle);

WOLFTPM_API int wolfTPM2_StartSession(WOLFTPM2_DEV* dev,
WOLFTPM2_SESSION* session, WOLFTPM2_KEY* tpmKey,
WOLFTPM2_HANDLE* bind, TPM_SE sesType, int encDecAlg);

WOLFTPM_API int wolfTPM2_CreateAuthSession_EkPolicy(WOLFTPM2_DEV* dev,
WOLFTPM2_SESSION* tpmSession);

WOLFTPM_API int wolfTPM2_CreatePrimaryKey(WOLFTPM2_DEV* dev,
WOLFTPM2_KEY* key, TPM_HANDLE primaryHandle, TPMT_PUBLIC* publicTemplate,
const byte* auth, int authSz);

WOLFTPM_API int wolfTPM2_CreatePrimaryKey_ex(WOLFTPM2_DEV* dev, WOLFTPM2_PKEY*
~ pkey,

TPM_HANDLE primaryHandle, TPMT_PUBLIC* publicTemplate,

const byte* auth, int authSz);

WOLFTPM_API int wolfTPM2_ChangeAuthKey(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
WOLFTPM2_HANDLE* parent, const byte* auth, int authSz);

WOLFTPM_API int wolfTPM2_CreateKey(WOLFTPM2_DEV* dev,
WOLFTPM2_KEYBLOB* keyBlob, WOLFTPM2_HANDLE* parent,
TPMT_PUBLIC* publicTemplate, const byte* auth, int authSz);

WOLFTPM_API int wolfTPM2_LoadKey(WOLFTPM2_DEV* dev,
WOLFTPM2_KEYBLOB* keyBlob, WOLFTPM2_HANDLE* parent);

WOLFTPM_API int wolfTPM2_CreateAndLoadKey(WOLFTPM2_DEV* dev,
WOLFTPM2_KEY* key, WOLFTPM2_HANDLE* parent, TPMT_PUBLIC* publicTemplate,
const byte* auth, int authSz);

WOLFTPM_API int wolfTPM2_CreatelLoadedKey(WOLFTPM2_DEV* dev, WOLFTPM2_KEYBLOB*
- keyBlob,

WOLFTPM2_HANDLE* parent, TPMT_PUBLIC* publicTemplate,

const byte* auth, int authSz);

WOLFTPM_API int wolfTPM2_LoadPublicKey(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
const TPM2B_PUBLIC* pub);

WOLFTPM_API int wolfTPM2_LoadPublicKey_ex(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
const TPM2B_PUBLIC* pub, TPM_HANDLE hierarchy);

WOLFTPM_API int wolfTPM2_LoadPrivateKey(WOLFTPM2_DEV* dev,
const WOLFTPM2_KEY* parentKey, WOLFTPM2_KEY* key, const TPM2B_PUBLIC* pub,

COPYRIGHT ©2024 wolfSSL Inc. 324

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

TPM2B_SENSITIVE* sens);

WOLFTPM_API int wolfTPM2_ImportPrivateKey(WOLFTPM2_DEV* dev,
const WOLFTPM2_KEY* parentKey, WOLFTPM2_KEYBLOB* keyBlob, const
< TPM2B_PUBLIC* pub,
TPM2B_SENSITIVE* sens);

WOLFTPM_API int wolfTPM2_LoadRsaPublicKey(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
const byte* rsaPub, word32 rsaPubSz, word32 exponent);

WOLFTPM_API int wolfTPM2_LoadRsaPublicKey_ex (WOLFTPM2_DEV* dev, WOLFTPM2_KEY*
 key,

const byte* rsaPub, word32 rsaPubSz, word32 exponent,

TPMI_ALG_RSA_SCHEME scheme, TPMI_ALG_HASH hashAlg);

WOLFTPM_API int wolfTPM2_ImportRsaPrivateKey(WOLFTPM2_DEV* dev,
const WOLFTPM2_KEY* parentKey, WOLFTPM2_KEYBLOB* keyBlob,
const byte* rsaPub, word32 rsaPubSz, word32 exponent,
const byte* rsaPriv, word32 rsaPrivSz,

TPMI_ALG_RSA_SCHEME scheme, TPMI_ALG_HASH hashAlg);

WOLFTPM_API int wolfTPM2_ImportRsaPrivateKeySeed(WOLFTPM2_DEV* dev,
const WOLFTPM2_KEY* parentKey, WOLFTPM2_KEYBLOB* keyBlob,
const byte* rsaPub, word32 rsaPubSz, word32 exponent,
const byte* rsaPriv, word32 rsaPrivSz,
TPMI_ALG_RSA_SCHEME scheme, TPMI_ALG_HASH hashAlg,
TPMA_OBJECT attributes, byte* seed, word32 seedSz);

WOLFTPM_API int wolfTPM2_LoadRsaPrivateKey(WOLFTPM2_DEV* dev,
const WOLFTPM2_KEY* parentKey, WOLFTPM2_KEY* key,
const byte* rsaPub, word32 rsaPubSz, word32 exponent,
const byte* rsaPriv, word32 rsaPrivSz);

WOLFTPM_API int wolfTPM2_LoadRsaPrivateKey_ex(WOLFTPM2_DEV* dev,
const WOLFTPM2_KEY* parentKey, WOLFTPM2_KEY* key,
const byte* rsaPub, word32 rsaPubSz, word32 exponent,
const byte* rsaPriv, word32 rsaPrivSz,
TPMI_ALG_RSA_SCHEME scheme, TPMI_ALG_HASH hashAlg);

WOLFTPM_API int wolfTPM2_LoadEccPublicKey(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
int curveld, const byte* eccPubX, word32 eccPubXSz,
const byte* eccPubY, word32 eccPubYSz);

WOLFTPM_API int wolfTPM2_ImportEccPrivateKey(WOLFTPM2_DEV* dev,
const WOLFTPM2_KEY* parentKey, WOLFTPM2_KEYBLOB* keyBlob, int curveld,
const byte* eccPubX, word32 eccPubXSz,
const byte* eccPubY, word32 eccPubYSz,
const byte* eccPriv, word32 eccPrivSz);

WOLFTPM_API int wolfTPM2_ImportEccPrivateKeySeed(WOLFTPM2_DEV* dev,
const WOLFTPM2_KEY* parentKey, WOLFTPM2_KEYBLOB* keyBlob, int curveld,
const byte* eccPubX, word32 eccPubXSz,
const byte* eccPubY, word32 eccPubYSz,
const byte* eccPriv, word32 eccPrivSz,

COPYRIGHT ©2024 wolfSSL Inc. 325

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

TPMA_OBJECT attributes, byte* seed, word32 seedSz);

WOLFTPM_API int wolfTPM2_LoadEccPrivateKey(WOLFTPM2_DEV* dev,
const WOLFTPM2_KEY* parentKey, WOLFTPM2_KEY* key,
int curveld, const byte* eccPubX, word32 eccPubXSz,
const byte* eccPubY, word32 eccPubYSz,
const byte* eccPriv, word32 eccPrivSz);

WOLFTPM_API int wolfTPM2_ReadPublicKey(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
const TPM_HANDLE handle);

WOLFTPM_API int wolfTPM2_CreateKeySeal (WOLFTPM2_DEV* dev,
WOLFTPM2_KEYBLOB* keyBlob, WOLFTPM2_HANDLE* parent,
TPMT_PUBLIC* publicTemplate, const byte* auth, int authSz,
const byte* sealData, int sealSize);

WOLFTPM_API int wolfTPM2_CreateKeySeal_ex(WOLFTPM2_DEV* dev,
WOLFTPM2_KEYBLOB* keyBlob, WOLFTPM2_HANDLE* parent,
TPMT_PUBLIC* publicTemplate, const byte* auth, int authSz,
TPM_ALG_ID pcrAlg, byte* pcrArray, word32 pcrArraySz,
const byte* sealData, int sealSize);

WOLFTPM_API int wolfTPM2_ComputeName(const TPM2B_PUBLIC* pub, TPM2B_NAME* out);

WOLFTPM_API int wolfTPM2_SensitiveToPrivate(TPM2B_SENSITIVE* sens,

< TPM2B_PRIVATE* priv,
TPMI_ALG_HASH nameAlg, TPM2B_NAME* name, const WOLFTPM2_KEY* parentKey,
TPMT_SYM_DEF_OBJECT* sym, TPM2B_DATA* symSeed);

#ifndef WOLFTPM2_NO_WOLFCRYPT

WOLFTPM_API int wolfTPM2_ImportPrivateKeyBuffer(WOLFTPM2_DEV* dev,
const WOLFTPM2_KEY* parentKey, int keyType, WOLFTPM2_KEYBLOB* keyBlob,
int encodingType, const char* input, word32 inSz, const char* pass,
TPMA_OBJECT objectAttributes, byte* seed, word32 seedSz);

WOLFTPM_API int wolfTPM2_ImportPublicKeyBuffer (WOLFTPM2_DEV* dev, int keyType,
WOLFTPM2_KEY* key, int encodingType, const char* input, word32 inSz,
TPMA_OBJECT objectAttributes);

WOLFTPM_API int wolfTPM2_ExportPublicKeyBuffer(WOLFTPM2_DEV* dev,
< WOLFTPM2_KEY* tpmKey,
int encodingType, byte* out, word32* outSz);

#ifndef NO_RSA

WOLFTPM_API int wolfTPM2_RsaPrivateKeyImportDer(WOLFTPM2_DEV* dev,
const WOLFTPM2_KEY* parentKey, WOLFTPM2_KEYBLOB* keyBlob, const byte*
<~ 1input,
word32 inSz, TPMI_ALG_RSA_SCHEME scheme, TPMI_ALG_HASH hashAlg);

WOLFTPM_API int wolfTPM2_RsaPrivateKeyImportPem(WOLFTPM2_DEV* dev,
const WOLFTPM2_KEY* parentKey, WOLFTPM2_KEYBLOB* keyBlob,
const char* input, word32 inSz, char* pass,
TPMI_ALG_RSA_SCHEME scheme, TPMI_ALG_HASH hashAlg);

COPYRIGHT ©2024 wolfSSL Inc. 326

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM_API int wolfTPM2_RsaKey_TpmToWolf (WOLFTPM2_DEV* dev, WOLFTPM2_KEY*
< tpmKey,
RsaKey* wolfKey);

WOLFTPM_API int wolfTPM2_RsaKey_TpmToPemPub(WOLFTPM2_DEV* dev,
WOLFTPM2_KEY* keyBlob,
byte* pem, word32* pemSz);

WOLFTPM_API int wolfTPM2_RsaKey_WolfToTpm(WOLFTPM2_DEV* dev, RsaKey* wolfKey,
WOLFTPM2_KEY* tpmKey) ;

WOLFTPM_API int wolfTPM2_RsaKey_WolfToTpm_ex(WOLFTPM2_DEV* dev,
const WOLFTPM2_KEY* parentKey, RsaKey* wolfKey, WOLFTPM2_KEY* tpmKey);

WOLFTPM_API int wolfTPM2_CreateRsaKeyBlob(WOLFTPM2_DEV* dev, const
< WOLFTPM2_KEY* parentKey,
RsaKey* wolfKey, WOLFTPM2_KEYBLOB* tpmKey);

WOLFTPM_API int wolfTPM2_RsaKey_PubPemToTpm(WOLFTPM2_DEV* dev,
WOLFTPM2_KEY* tpmKey, const byte* pem, word32 pemSz);

WOLFTPM_API int wolfTPM2_DecodeRsaDer(const byte* der, word32 derSz,
TPM2B_PUBLIC* pub, TPM2B_SENSITIVE* sens, TPMA_OBJECT attributes);
#endif

#ifdef HAVE_ECC
WOLFTPM_API int wolfTPM2_EccKey_TpmToWolf (WOLFTPM2_DEV* dev, WOLFTPM2_KEY*
< tpmKey,

ecc_key* wolfKey);

WOLFTPM_API int wolfTPM2_EccKey_WolfToTpm(WOLFTPM2_DEV* dev, ecc_key* wolfKey,
WOLFTPM2_KEY* tpmKey);

WOLFTPM_API int wolfTPM2_EccKey_WolfToTpm_ex (WOLFTPM2_DEV* dev, WOLFTPM2_KEY*
~ parentKey,
ecc_key* wolfKey, WOLFTPM2_KEY* tpmKey);

WOLFTPM_API int wolfTPM2_CreateEccKeyBlob(WOLFTPM2_DEV* dev, WOLFTPM2_KEY*
~ parentKey,
ecc_key* wolfKey, WOLFTPM2_KEYBLOB* tpmKey);

WOLFTPM_API int wolfTPM2_EccKey_WolfToPubPoint (WOLFTPM2_DEV* dev, ecc_key*
< wolfKey,
TPM2B_ECC_POINT* pubPoint);

WOLFTPM_API int wolfTPM2_DecodeEccDer(const byte* der, word32 derSz,
TPM2B_PUBLIC* pub, TPM2B_SENSITIVE* sens, TPMA_OBJECT attributes);

#endif

#endif

WOLFTPM_API int wolfTPM2_SignHash(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
const byte* digest, int digestSz, byte* sig, int* sigSz);

WOLFTPM_API int wolfTPM2_SignHashScheme (WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,

COPYRIGHT ©2024 wolfSSL Inc. 327

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

const byte* digest, int digestSz, byte* sig, int* sigSz,
TPMI_ALG_SIG_SCHEME sigAlg, TPMI_ALG_HASH hashAlg);

WOLFTPM_API int wolfTPM2_VerifyHash(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
const byte* sig, int sigSz, const byte* digest, int digestSz);

WOLFTPM_API int wolfTPM2_VerifyHash_ex(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
const byte* sig, int sigSz, const byte* digest, int digestSz,
int hashAlg);

WOLFTPM_API int wolfTPM2_VerifyHashScheme (WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
const byte* sig, int sigSz, const byte* digest, int digestSz,
TPMI_ALG_SIG_SCHEME sigAlg, TPMI_ALG_HASH hashAlg);

WOLFTPM_API int wolfTPM2_VerifyHashTicket (WOLFTPM2_DEV* dev,
WOLFTPM2_KEY* key, const byte* sig, int sigSz, const byte* digest,
int digestSz, TPMI_ALG_SIG_SCHEME sigAlg, TPMI_ALG_HASH hashAlg,
TPMT_TK_VERIFIED* checkTicket);

WOLFTPM_API int wolfTPM2_ECDHGenKey (WOLFTPM2_DEV* dev, WOLFTPM2_KEY* ecdhKey,
int curve_id, const byte* auth, int authSz);

WOLFTPM_API int wolfTPM2_ECDHGen(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* privKey,
TPM2B_ECC_POINT* pubPoint, byte* out, int* outSz);

WOLFTPM_API int wolfTPM2_ECDHGenZ (WOLFTPM2_DEV* dev, WOLFTPM2_KEY* privKey,
const TPM2B_ECC_POINT* pubPoint, byte* out, int* outSz);

WOLFTPM_API int wolfTPM2_ECDHEGenKey (WOLFTPM2_DEV* dev, WOLFTPM2_KEY* ecdhKey,
int curve_id);

WOLFTPM_API int wolfTPM2_ECDHEGenZ (WOLFTPM2_DEV* dev, WOLFTPM2_KEY* parentKey,
WOLFTPM2_KEY* ecdhKey, const TPM2B_ECC_POINT* pubPoint,
byte* out, int* outSz);

WOLFTPM_API int wolfTPM2_RsaEncrypt (WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
TPM_ALG_ID padScheme, const byte* msg, int msgSz, byte* out, int* outSz);

WOLFTPM_API int wolfTPM2_RsaDecrypt(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
TPM_ALG_ID padScheme, const byte* in, int inSz, byte* msg, int* msgSz);
WOLFTPM_API int wolfTPM2_ReadPCR(WOLFTPM2_DEV* dev,
int pcrIndex, int hashAlg, byte* digest, int* pDigestlLen);
WOLFTPM_API int wolfTPM2_ResetPCR(WOLFTPM2_DEV* dev, int pcrIndex);
WOLFTPM_API int wolfTPM2_ExtendPCR(WOLFTPM2_DEV* dev, int pcrIndex, int

<~ hashAlg,
const byte* digest, int digestlLen);

COPYRIGHT ©2024 wolfSSL Inc. 328

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM_API int wolfTPM2_NVCreateAuth(WOLFTPM2_DEV* dev, WOLFTPM2_HANDLE*
- parent,
WOLFTPM2_NV* nv, word32 nvIndex, word32 nvAttributes, word32 maxSize,
const byte* auth, int authSz);

WOLFTPM_API int wolfTPM2_NVCreateAuthPolicy(WOLFTPM2_DEV* dev,

< WOLFTPM2_HANDLE* parent,
WOLFTPM2_NV* nv, word32 nvIndex, word32 nvAttributes, word32 maxSize,
const byte* auth, int authSz, const byte* authPolicy, int authPolicySz);

WOLFTPM_API int wolfTPM2_NVWriteAuth(WOLFTPM2_DEV* dev, WOLFTPM2_NV* nv,
word32 nvIndex, byte* dataBuf, word32 dataSz, word32 offset);

WOLFTPM_API int wolfTPM2_NVWriteAuthPolicy(WOLFTPM2_DEV* dev,

< WOLFTPM2_SESSION* tpmSession,
TPM_ALG_ID pcrAlg, byte* pcrArray, word32 pcrArraySz, WOLFTPM2_NV* nv,
word32 nvIndex, byte* dataBuf, word32 dataSz, word32 offset);

WOLFTPM_API int wolfTPM2_NVExtend(WOLFTPM2_DEV* dev, WOLFTPM2_NV* nv,
word32 nvIndex, byte* dataBuf, word32 dataSz);

WOLFTPM_API int wolfTPM2_NVReadAuth(WOLFTPM2_DEV* dev, WOLFTPM2_NV* nv,
word32 nvIndex, byte* dataBuf, word32* pDataSz, word32 offset);

WOLFTPM_API int wolfTPM2_NVReadAuthPolicy(WOLFTPM2_DEV* dev, WOLFTPM2_SESSION*
< tpmSession,
TPM_ALG_ID pcrAlg, byte* pcrArray, word32 pcrArraySz, WOLFTPM2_NV* nv,
word32 nvIndex, byte* dataBuf, word32* pDataSz, word32 offset);

WOLFTPM_API int wolfTPM2_NVReadCert (WOLFTPM2_DEV* dev, TPM_HANDLE handle,
uint8_t* buffer, uint32_t* len);

WOLFTPM_API int wolfTPM2_NVIncrement(WOLFTPM2_DEV* dev, WOLFTPM2_NV* nv);

WOLFTPM_API int wolfTPM2_NVOpen(WOLFTPM2_DEV* dev, WOLFTPM2_NV* nv,
word32 nvIndex, const byte* auth, word32 authSz);

WOLFTPM_API int wolfTPM2_NVWritelLock(WOLFTPM2_DEV* dev, WOLFTPM2_NV* nv);

WOLFTPM_API int wolfTPM2_NVDeleteAuth(WOLFTPM2_DEV* dev, WOLFTPM2_HANDLE*
- parent,
woxrd32 nvIndex);

WOLFTPM_API int wolfTPM2_NVCreate(WOLFTPM2_DEV* dev, TPM_HANDLE authHandle,
word32 nvIndex, word32 nvAttributes, word32 maxSize, const byte* auth, int

< authSz);

WOLFTPM_API int wolfTPM2_NVWrite(WOLFTPM2_DEV* dev, TPM_HANDLE authHandle,
word32 nvIndex, byte* dataBuf, word32 dataSz, word32 offset);

WOLFTPM_API int wolfTPM2_NVRead (WOLFTPM2_DEV* dev, TPM_HANDLE authHandle,
word32 nvIndex, byte* dataBuf, word32* dataSz, word32 offset);

WOLFTPM_API int wolfTPM2_NVDelete(WOLFTPM2_DEV* dev, TPM_HANDLE authHandle,
word32 nvIndex);

COPYRIGHT ©2024 wolfSSL Inc. 329

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM_API int wolfTPM2_NVReadPublic (WOLFTPM2_DEV* dev, word32 nvIndex,
TPMS_NV_PUBLIC* nvPublic);

WOLFTPM_API int wolfTPM2_NVStoreKey(WOLFTPM2_DEV* dev, TPM_HANDLE
< primaryHandle,
WOLFTPM2_KEY* key, TPM_HANDLE persistentHandle);

WOLFTPM_API int wolfTPM2_NVDeleteKey(WOLFTPM2_DEV* dev, TPM_HANDLE
< primaryHandle,
WOLFTPM2_KEY* key);

WOLFTPM_API struct WC_RNG* wolfTPM2_GetRng(WOLFTPM2_DEV* dev);
WOLFTPM_API int wolfTPM2_GetRandom(WOLFTPM2_DEV* dev, byte* buf, word32 len);

WOLFTPM_API int wolfTPM2_UnloadHandle (WOLFTPM2_DEV* dev, WOLFTPM2_HANDLE*
< handle);

WOLFTPM_API int wolfTPM2_Clear (WOLFTPM2_DEV* dev);

WOLFTPM_API int wolfTPM2_HashStart(WOLFTPM2_DEV* dev, WOLFTPM2_HASH* hash,
TPMI_ALG_HASH hashAlg, const byte* usageAuth, word32 usageAuthSz);

WOLFTPM_API int wolfTPM2_HashUpdate(WOLFTPM2_DEV* dev, WOLFTPM2_HASH* hash,
const byte* data, word32 dataSz);

WOLFTPM_API int wolfTPM2_HashFinish(WOLFTPM2_DEV* dev, WOLFTPM2_HASH* hash,
byte* digest, word32* digestSz);

WOLFTPM_API int wolfTPM2_LoadKeyedHashKey (WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
WOLFTPM2_HANDLE* parent, int hashAlg, const byte* keyBuf, word32 keySz,
const byte* usageAuth, word32 usageAuthSz);

WOLFTPM_API int wolfTPM2_HmacStart (WOLFTPM2_DEV* dev, WOLFTPM2_HMAC* hmac,
WOLFTPM2_HANDLE* parent, TPMI_ALG_HASH hashAlg, const byte* keyBuf, word32
- keySz,
const byte* usageAuth, word32 usageAuthSz);

WOLFTPM_API int wolfTPM2_HmacUpdate(WOLFTPM2_DEV* dev, WOLFTPM2_HMAC* hmac,
const byte* data, word32 dataSz);

WOLFTPM_API int wolfTPM2_HmacFinish(WOLFTPM2_DEV* dev, WOLFTPM2_HMAC* hmac,
byte* digest, word32* digestSz);

WOLFTPM_API int wolfTPM2_LoadSymmetricKey(WOLFTPM2_DEV* dev,
WOLFTPM2_KEY* key, int alg, const byte* keyBuf, word32 keySz);

#define WOLFTPM2_ENCRYPT NO
#define WOLFTPM2_DECRYPT YES
WOLFTPM_API int wolfTPM2_EncryptDecryptBlock(WOLFTPM2_DEV* dev, WOLFTPM2_KEY*
o key,
const byte* in, byte* out, word32 inOutSz, byte* iv, word32 ivSz,
int isDecrypt);

COPYRIGHT ©2024 wolfSSL Inc. 330

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM_API int wolfTPM2_EncryptDecrypt(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
const byte* in, byte* out, word32 inOutSz,
byte* iv, word32 ivSz, int isDecrypt);

WOLFTPM_API int wolfTPM2_SetCommand (WOLFTPM2_DEV* dev, TPM_CC commandCode,
int enableFlag);

WOLFTPM_API int wolfTPM2_Reset(WOLFTPM2_DEV* dev, int doShutdown, int
< doStartup);

WOLFTPM_API int wolfTPM2_Shutdown(WOLFTPM2_DEV* dev, int doStartup);

WOLFTPM_API int wolfTPM2_UnloadHandles(WOLFTPM2_DEV* dev, word32 handleStart,
woxrd32 handleCount);

WOLFTPM_API int wolfTPM2_UnloadHandles_AllTransient (WOLFTPM2_DEV* dev);

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA(TPMT_PUBLIC* publicTemplate,
TPMA_OBJECT objectAttributes);

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_ex(TPMT_PUBLIC* publicTemplate,
TPM_ALG_ID nameAlg, TPMA_OBJECT objectAttributes, int keyBits, long

< exponent,
TPM_ALG_ID sigScheme, TPM_ALG_ID sigHash);

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC(TPMT_PUBLIC* publicTemplate,
TPMA_OBJECT objectAttributes, TPM_ECC_CURVE curve, TPM_ALG_ID sigScheme);

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_ex(TPMT_PUBLIC* publicTemplate,
TPM_ALG_ID nameAlg, TPMA_OBJECT objectAttributes, TPM_ECC_CURVE curve,
TPM_ALG_ID sigScheme, TPM_ALG_ID sigHash);

WOLFTPM_API int wolfTPM2_GetKeyTemplate_Symmetric(TPMT_PUBLIC* publicTemplate,
int keyBits, TPM_ALG_ID algMode, int isSign, int isDecrypt);

WOLFTPM_API int wolfTPM2_GetKeyTemplate_KeyedHash(TPMT_PUBLIC* publicTemplate,
TPM_ALG_ID hashAlg, int isSign, int isDecrypt);

WOLFTPM_API int wolfTPM2_GetKeyTemplate_KeySeal(TPMT_PUBLIC* publicTemplate,
~ TPM_ALG_ID nameAlg);

WOLFTPM_API int wolfTPM2_GetKeyTemplate_EK(TPMT_PUBLIC* publicTemplate,
< TPM_ALG_ID alg,
int keyBits, TPM_ECC_CURVE curvelID, TPM_ALG_ID nameAlg, int highRange);

WOLFTPM_API int wolfTPM2_GetKeyTemplate_EKIndex(word32 nvIndex,
TPMT_PUBLIC* publicTemplate);

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_EK(TPMT_PUBLIC* publicTemplate);

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_EK(TPMT_PUBLIC* publicTemplate);

COPYRIGHT ©2024 wolfSSL Inc. 331

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_SRK(TPMT_PUBLIC* publicTemplate);
WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_SRK(TPMT_PUBLIC* publicTemplate);
WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_AIK(TPMT_PUBLIC* publicTemplate);
WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_AIK(TPMT_PUBLIC* publicTemplate);

#ifdef WOLFTPM_PROVISIONING
WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_IAK(TPMT_PUBLIC* publicTemplate,
<~ 1int keyBits,
TPM_ALG_ID hashAlg);
WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_IAK(TPMT_PUBLIC* publicTemplate,
TPM_ECC_CURVE curveID, TPM_ALG_ID hashAlg);

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_IDevID(TPMT_PUBLIC* publicTemplate,
TPM_ECC_CURVE curveID, TPM_ALG_ID hashAlg);

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_IDevID(TPMT_PUBLIC*

< publicTemplate, int keyBits,
TPM_ALG_ID hashAlg);

#endif

WOLFTPM_API int wolfTPM2_SetKeyTemplate_Unique(TPMT_PUBLIC* publicTemplate,
< const byte* unique, int uniqueSz);

WOLFTPM_API int wolfTPM2_GetNvAttributesTemplate(TPM_HANDLE auth, word32*
<~ nvAttributes);

WOLFTPM_API int wolfTPM2_CreateEK (WOLFTPM2_DEV* dev, WOLFTPM2_KEY* ekKey,
< TPM_ALG_ID alg);

WOLFTPM_API int wolfTPM2_CreateSRK(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* srkKey,
«~ TPM_ALG_ID alg,

const byte* auth, int authSz);
WOLFTPM_API int wolfTPM2_CreateAndLoadAIK(WOLFTPM2_DEV* dev, WOLFTPM2_KEY*
o aikKey,

TPM_ALG_ID alg, WOLFTPM2_KEY* srkKey, const byte* auth, int authSz);

WOLFTPM_API int wolfTPM2_GetTime (WOLFTPM2_KEY* aikKey, GetTime_Out*
< getTimeOut);
#ifdef WOLFTPM2_CERT_GEN

WOLFTPM_API int wolfTPM2_CSR_SetCustomExt (WOLFTPM2_DEV* dev, WOLFTPM2_CSR* csr,
int critical, const char *oid, const byte *der, word32 dexrSz);

WOLFTPM_API int wolfTPM2_CSR_SetKeyUsage (WOLFTPM2_DEV* dev, WOLFTPM2_CSR* csr,
const char* keyUsage);

WOLFTPM_API int wolfTPM2_CSR_SetSubject(WOLFTPM2_DEV* dev, WOLFTPM2_CSR* csr,
const char* subject);

COPYRIGHT ©2024 wolfSSL Inc. 332

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM_API int wolfTPM2_CSR_MakeAndSign_ex(WOLFTPM2_DEV* dev, WOLFTPM2_CSR*
& CST,

WOLFTPM2_KEY* key, int outFormat, byte* out, int outSz,

int sigType, int selfSignCert, int devId);

WOLFTPM_API int wolfTPM2_CSR_MakeAndSign(WOLFTPM2_DEV* dev, WOLFTPM2_CSR* csr,
WOLFTPM2_KEY* key, int outFormat, byte* out, int outSz);

WOLFTPM_API int wolfTPM2_CSR_Generate_ex(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
const char* subject, const char* keyUsage, int outFormat,
byte* out, int outSz, int sigType, int selfSignCert, int devId);

WOLFTPM_API int wolfTPM2_CSR_Generate(WOLFTPM2_DEV* dev, WOLFTPM2_KEY* key,
const char* subject, const char* keyUsage, int outFormat,
byte* out, int outSz);

#endif /* WOLFTPM2_CERT_GEN */

WOLFTPM_API int wolfTPM2_ChangePlatformAuth(WOLFTPM2_DEV* dev,
<~ WOLFTPM2_SESSION* session);

WOLFTPM_API int wolfTPM2_ChangeHierarchyAuth(WOLFTPM2_DEV* dev,
< WOLFTPM2_SESSION* session,
TPMI_RH_HIERARCHY_AUTH authHandle);

/* moved to tpm.h native code. macros here for backwards compatibility */
#define wolfTPM2_SetupPCRSel TPM2_SetupPCRSel

#define wolfTPM2_GetAlgName TPM2_GetAlgName

#define wolfTPM2_GetRCString TPM2_GetRCString

#define wolfTPM2_GetCurveSize TPM2_GetCurveSize

/* for encrypting secrets (like salt) used in auth sessions and external key
- 1import */
WOLFTPM_LOCAL int wolfTPM2_EncryptSecret(WOLFTPM2_DEV* dev, const
< WOLFTPM2_KEY* tpmKey,
TPM2B_DATA *secret, TPM2B_ENCRYPTED_SECRET *encSecret, const char* label);

#if defined (WOLFTPM_CRYPTOCB) || defined(HAVE_PK_CALLBACKS)
struct TpmCryptoDevCtx;

typedef struct TpmCryptoDevCtx {
WOLFTPM2_DEV* dev;
#ifndef NO_RSA
WOLFTPM2_KEY* rsaKey; /* RSA */
#ifdef WOLFSSL_KEY_GEN
WOLFTPM2_KEYBLOB* rsaKeyGen; /* RSA KeyGen */
#endif
#endif
#ifdef HAVE_ECC
WOLFTPM2_KEY* eccKey; /* ECDSA - public only */
WOLFTPM2_KEYBLOB* ecdsaKey; /* ECDSA - retain encrypted private portion
-~ from keygen */

COPYRIGHT ©2024 wolfSSL Inc. 333

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM2_KEY* ecdhKey; /* ECDH */
#endif
WOLFTPM2_KEY* storageKey;
#ifdef WOLFTPM_USE_SYMMETRIC
unsigned short useSymmetricOnTPM:1; /* if set indicates desire to use
~ symmetric algorithms on TPM */
#endif
unsigned short useFIPSMode:1; /* if set requires FIPS mode on TPM and no
» fallback to software algos */
} TpmCryptoDevCtx;

#endif /* WOLFTPM_CRYPTOCB || HAVE_PK_CALLBACKS */
#ifdef WOLFTPM_CRYPTOCB

WOLFTPM_API int wolfTPM2_CryptoDevCb(int devId, wc_CryptoInfo* info, void*
< Cctx);

WOLFTPM_API int wolfTPM2_SetCryptoDevCb(WOLFTPM2_DEV* dev,
- CryptoDevCallbackFunc cb,
TpmCryptoDevCtx* tpmCtx, int* pDevId);

WOLFTPM_API int wolfTPM2_ClearCryptoDevCb(WOLFTPM2_DEV* dev, int devId);
#endif /* WOLFTPM_CRYPTOCB */

#1f defined(HAVE_PK_CALLBACKS) && !defined(WOLFTPM2_NO_WRAPPER) && \
!defined (WOLFCRYPT_ONLY)
#ifndef NO_RSA
WOLFTPM_API int wolfTPM2_PK_RsaSign(WOLFSSL* ssl1,
const unsigned char* in, unsigned int inSz,
unsigned char* out, word32* outSz,
const unsigned char* keyDer, unsigned int keySz,
void* ctx);

WOLFTPM_API int wolfTPM2_PK_RsaSignCheck(WOLFSSL* ss1,
unsigned char* sig, unsigned int sigSz,
unsigned char** out,
const unsigned char* keyDer, unsigned int keySz,
void* ctx);

#ifdef WC_RSA_PSS

WOLFTPM_API int wolfTPM2_PK_RsaPssSign(WOLFSSL* ss1,
const unsigned char* in, unsigned int inSz,
unsigned char* out, unsigned int* outSz,
int hash, int mgf,
const unsigned char* keyDer, unsigned int keySz,
void* ctx);

WOLFTPM_API int wolfTPM2_PK_RsaPssSignCheck(WOLFSSL* ss1,
unsigned char* sig, unsigned int sigSz, unsigned char** out,
int hash, int mgf,
const unsigned char* keyDer, unsigned int keySz,
void* ctx);

COPYRIGHT ©2024 wolfSSL Inc. 334

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

#endif /* WC_RSA_PSS */
#endif /* INO_RSA */

#ifdef HAVE_

WOLFTPM_API

ECC
int wolfTPM2_PK_EccSign(WOLFSSL* ssl1,

const unsigned char* in, unsigned int inSz,
unsigned char* out, word32* outSz,

const unsigned char* keyDer, unsigned int keySz,
void* ctx);

#endif

/* Helpers for setting generic PK callbacks */

WOLFTPM_API
WOLFTPM_API

int wolfTPM_PK_SetChb(WOLFSSL_CTX* ctx);
int wolfTPM_PK_SetCbCtx(WOLFSSL* ssl, void* userCtx);

#endif /* HAVE_PK_CALLBACKS */

#ifndef WOLFTPM2_NO_HEAP

WOLFTPM_API
WOLFTPM_API
WOLFTPM_API
WOLFTPM_API
WOLFTPM_API

WOLFTPM_API

WOLFTPM_API

WOLFTPM_API

WOLFTPM_API

WOLFTPM_API

WOLFTPM2_DEV* wolfTPM2_New(void);

int wolfTPM2_Free(WOLFTPM2_DEV *dev);
WOLFTPM2_KEYBLOB* wolfTPM2_NewKeyBlob(void);

int wolfTPM2_FreeKeyBlob(WOLFTPM2_KEYBLOB* blob);
TPMT_PUBLIC* wolfTPM2_NewPublicTemplate(void);

int wolfTPM2_FreePublicTemplate(TPMT_PUBLIC* PublicTemplate);

WOLFTPM2_KEY* wolfTPM2_NewKey (void);

int wolfTPM2_FreeKey(WOLFTPM2_KEY* key);

WOLFTPM2_SESSION* wolfTPM2_NewSession(void);

int wolfTPM2_FreeSession(WOLFTPM2_SESSION* session);

#ifdef WOLFTPM2_CERT_GEN

WOLFTPM_API
WOLFTPM_API
#endif

WOLFTPM2_CSR* wolfTPM2_NewCSR(void);
int wolfTPM2_FreeCSR(WOLFTPM2_CSR* csr);

#endif /* IWOLFTPM2_NO_HEAP */

WOLFTPM_API

WOLFTPM_API

WOLFTPM2_HANDLE* wolfTPM2_GetHandleRefFromKey (WOLFTPM2_KEY* key);

WOLFTPM2_HANDLE*

« wolfTPM2_GetHandleRefFromKeyBlob (WOLFTPM2_KEYBLOB* keyBlob);

WOLFTPM_API

WOLFTPM2_HANDLE*

< wolfTPM2_GetHandleRefFromSession(WOLFTPM2_SESSION* session);

COPYRIGHT ©2024 wolfSSL Inc. 335

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM_API TPM_HANDLE wolfTPM2_GetHandleValue(WOLFTPM2_HANDLE* handle);

WOLFTPM_API int wolfTPM2_SetKeyAuthPassword(WOLFTPM2_KEY *key, const byte*
< auth,
int authSz);

WOLFTPM_API int wolfTPM2_GetKeyBlobAsBuffer(byte *buffer, word32 bufferSz,
WOLFTPM2_KEYBLOB* key);

WOLFTPM_API int wolfTPM2_GetKeyBlobAsSeparateBuffers(byte* pubBuffer,
word32* pubBufferSz, byte* privBuffer, word32* privBufferSz,
WOLFTPM2_KEYBLOB* key) ;

WOLFTPM_API int wolfTPM2_SetKeyBlobFromBuffer(WOLFTPM2_KEYBLOB* key,
byte *buffer, word32 bufferSz);

WOLFTPM_API int wolfTPM2_PolicyRestart(WOLFTPM2_DEV* dev, TPM_HANDLE
< sessionHandle);

WOLFTPM_API int wolfTPM2_GetPolicyDigest(WOLFTPM2_DEV* dev, TPM_HANDLE
< sessionHandle,
byte* policyDigest, word32* policyDigestSz);

WOLFTPM_API int wolfTPM2_PolicyPCR(WOLFTPM2_DEV* dev, TPM_HANDLE sessionHandle,
TPM_ALG_ID pcrAlg, byte* pcrArray, word32 pcrArraySz);

WOLFTPM_API int wolfTPM2_PolicyAuthorize(WOLFTPM2_DEV* dev, TPM_HANDLE
< sessionHandle,
const TPM2B_PUBLIC* pub, const TPMT_TK_VERIFIED* checkTicket,
const byte* pcrDigest, word32 pcrDigestSz,
const byte* policyRef, word32 policyRefSz);

WOLFTPM_API int wolfTPM2_PCRGetDigest(WOLFTPM2_DEV* dev, TPM_ALG_ID pcrAlg,
byte* pcrArray, word32 pcrArraySz, byte* pcrDigest, word32* pcrDigestSz);

WOLFTPM_API int wolfTPM2_PolicyRefMake(TPM_ALG_ID pcrAlg, byte* digest, word32*
< digestSz,
const byte* policyRef, word32 policyRefSz);

WOLFTPM_API int wolfTPM2_PolicyPCRMake(TPM_ALG_ID pcrAlg,

byte* pcrArray, word32 pcrArraySz, const byte* pcrDigest, word32
< pcrDigestSz,

byte* digest, word32* digestSz);

WOLFTPM_API int wolfTPM2_PolicyHash(TPM_ALG_ID hashAlg,
byte* digest, word32* digestSz, TPM_CC cc,
const byte* input, word32 inputSz);

WOLFTPM_API int wolfTPM2_PolicyAuthorizeMake(TPM_ALG_ID pcrAlg,
const TPM2B_PUBLIC* pub, byte* digest, word32* digestSz,
const byte* policyRef, word32 policyRefSz);

WOLFTPM_API int wolfTPM2_PolicyPassword(WOLFTPM2_DEV* dev,

COPYRIGHT ©2024 wolfSSL Inc. 336

5.3 wolftom/tom2_wrap.h 5 API REFERENCE

WOLFTPM2_SESSION* tpmSession, const byte* auth, int authSz);

WOLFTPM_API int wolfTPM2_PolicyAuthValue(WOLFTPM2_DEV* dev,
WOLFTPM2_SESSION* tpmSession, const byte* auth, int authSz);

WOLFTPM_API int wolfTPM2_PolicyCommandCode(WOLFTPM2_DEV* dev,
WOLFTPM2_SESSION* tpmSession, TPM_CC cc);

/* Pre-provisioned IAK and IDevID key/cert from TPM vendor */
/* Tested with ST33KTPM devices */

/* Default assumes: ECDSA SECP384R1, SHA2-384 */

#ifdef WOLFTPM_MFG_IDENTITY

/* Initial Attestation Key (IAK):

* Restrictive: Can only sign data generated by the TPM like a TPM2_Quote */
#ifndef TPM2_IAK_KEY_HANDLE
#define TPM2_IAK_KEY_HANDLE 0x81020001
#endif
#ifndef TPM2_IAK_CERT_HANDLE
#define TPM2_IAK_CERT_HANDLE 0x1C90100
#endif

/* Initial Device ID (IDevID):

* Non-Restrictive: Can sign external data */
#ifndef TPM2_IDEVID_KEY_HANDLE
#define TPM2_IDEVID_KEY_HANDLE ©0x81020000
#endif
#ifndef TPM2_IDEVID_CERT_HANDLE
#define TPM2_IDEVID_CERT_HANDLE ©0x1C90200
#endif

WOLFTPM_API int wolfTPM2_SetIdentityAuth(WOLFTPM2_DEV* dev, WOLFTPM2_HANDLE*
< handle,
uint8_t* masterPassword, uintl6_t masterPasswordSz);

#endif /* WOLFTPM_MFG_IDENTITY */

/* Internal API's */
WOLFTPM_LOCAL int GetKeyTemplateRSA(TPMT_PUBLIC* publicTemplate,
TPM_ALG_ID nameAlg, TPMA_OBJECT objectAttributes, int keyBits, long
< exponent,
TPM_ALG_ID sigScheme, TPM_ALG_ID sigHash);

WOLFTPM_LOCAL int GetKeyTemplateECC(TPMT_PUBLIC* publicTemplate,

TPM_ALG_ID nameAlg, TPMA_OBJECT objectAttributes, TPM_ECC_CURVE curve,
TPM_ALG_ID sigScheme, TPM_ALG_ID sigHash);

#ifdef WOLFTPM_FIRMWARE_UPGRADE
typedef int (*wolfTPM2FwDataCb) (
uint8_t* data, uint32_t data_req_sz, uint32_t offset, void* cb_ctx);

WOLFTPM_API int wolfTPM2_FirmwareUpgradeHash(WOLFTPM2_DEV* dev,

COPYRIGHT ©2024 wolfSSL Inc. 337

5.4 hal/tom_io.h 5 APIREFERENCE

TPM_ALG_ID hashAlg, /* Can use SHA2-384 or SHA2-512 for manifest hash */
uint8_t* manifest_hash, uint32_t manifest_hash_sz,

uint8_t* manifest, uint32_t manifest_sz,

wolfTPM2FwDataCb cb, void* cb_ctx);

WOLFTPM_API int wolfTPM2_FirmwareUpgrade(WOLFTPM2_DEV* dev,
uint8_t* manifest, uint32_t manifest_sz,
wolfTPM2FwDataCb cb, void* cb_ctx);
WOLFTPM_API int wolfTPM2_FirmwareUpgradeRecover (WOLFTPM2_DEV* dev,
uint8_t* manifest, uint32_t manifest_sz,
wolfTPM2FwDataCb cb, void* cb_ctx);
WOLFTPM_API int wolfTPM2_FirmwareUpgradeCancel (WOLFTPM2_DEV* dev);
#endif /* WOLFTPM_FIRMWARE_UPGRADE */
#ifdef __cplusplus
} /* extern "C" */

#endif

#endif /* __TPM2_WRAP_H__ */

5.4 hal/tpm_io.h

5.4.1 Functions

Name
WOLFTPM_API int TPM2_IoCh(TPM2_CTX * ctx, const BYTE * txBuf,
BYTE * rxBuf, UINT16 xferSz, void * userCtx)
WOLFTPM_LOCAL int TPM2_IoCh_Linux_I2C(TPM2_CTX * ctx, int

isRead, word32 addr, byte * buf, word16 size,
void * userCtx)

WOLFTPM_LOCAL int TPM2_IoCb_STCubeMX_I2C(TPM2_CTX * ctx,
int isRead, word32 addr, byte * buf, word16
size, void * userCtx)

WOLFTPM_LOCAL int TPM2_IoCb _Infineon I2C(TPM2_CTX * ctX, int
isRead, word32 addr, byte * buf, word16 size,
void * userCtx)

WOLFTPM_LOCAL int TPM2_IoCh_Espressif I2C(TPM2_CTX * ctx, int
isRead, word32 addr, byte * buf, word16 size,
void * userCtx)

WOLFTPM_LOCAL int TPM2_IoCb_MicrochipHarmony_I2C(TPM2_CTX
* ctx, int isRead, word32 addr, byte * buf,
word16 size, void * userCtx)

WOLFTPM_LOCAL int TPM2_IoCb_Zephyr I2C(TPM2_CTX * ctx, int
isRead, word32 addr, byte * buf, word16 size,
void * userCtx)

WOLFTPM_LOCAL int TPM2_IoCh_Atmel SPI(TPM2_CTX * ctx, const
byte * txBuf, byte * rxBuf, word16 xferSz, void *
userCtx)

COPYRIGHT ©2024 wolfSSL Inc. 338

5.4 hal/tom_io.h 5 APIREFERENCE

Name

WOLFTPM_LOCAL int TPM2_IoCbh_Barebox_SPI(TPM2_CTX * ctx,
const byte * txBuf, byte * rxBuf, word16 xferSz,
void * userCtx)

WOLFTPM_LOCAL int TPM2_IoCh_Uboot_SPI(TPM2_CTX * ctx, const
byte * txBuf, byte * rxBuf, word16 xferSz, void *
userCtx)

WOLFTPM_LOCAL int TPM2_IoCb_Linux_SPI(TPM2_CTX * ctx, const
byte * txBuf, byte * rxBuf, word16 xferSz, void *
userCtx)

WOLFTPM_LOCAL int TPM2_IoCb_STCubeMX_SPI(TPM2_CTX * ctx,
const byte * txBuf, byte * rxBuf, word16 xferSz,
void * userCtx)

WOLFTPM_LOCAL int TPM2_IoCh_QNX_SPI(TPM2_CTX * ctx, const
byte * txBuf, byte * rxBuf, word16 xferSz, void *
userCtx)

WOLFTPM_LOCAL int TPM2_IoCh_ Xilinx SPI(TPM2_CTX * ctx, const
byte * txBuf, byte * rxBuf, word16 xferSz, void *
userCtx)

WOLFTPM_LOCAL int TPM2_IoCb_Infineon_SPI(TPM2_CTX * ctx,
const byte * txBuf, byte * rxBuf, word16 xferSz,
void * userCtx)

WOLFTPM_LOCAL int TPM2_IoCb_Infineon_TriCore_SPI(TPM2_CTX *
ctx, const byte * txBuf, byte * rxBuf, word16
xferSz, void * userCtx)

WOLFTPM_LOCAL int TPM2_IoCb_Microchip_SPI(TPM2_CTX * ctx,
const byte * txBuf, byte * rxBuf, word16 xferSz,
void * userCtx)

WOLFTPM_LOCAL int TPM2_IoCb_Mmio(TPM2_CTX * ctx, int isRead,
word32 addr, byte * buf, word16 size, void *
userCtx)

5.4.2 Attributes

Name

5.4.3 Functions Documentation

5.4.3.1 function TPM2_IoCb

WOLFTPM_API int TPM2_IoCb(
TPM2_CTX * ctx,
const BYTE * txBuf,
BYTE * rxBuf,
UINT16 xferSz,
void * userCtx

5.4.3.2 function TPM2_IoCb_Linux_I2C

COPYRIGHT ©2024 wolfSSL Inc. 339

5.4 hal/tpm_io.h

5 APIREFERENCE

WOLFTPM_LOCAL int TPM2_IoCb_Linux_I2C(
TPM2_CTX * ctx,
int isRead,
word32 addr,
byte * buf,
wordl6 size,
void * userCtx

5.4.3.3 function TPM2_IoCb_STCubeMX_I2C

WOLFTPM_LOCAL int TPM2_IoCb_STCubeMX_I2C(
TPM2_CTX * ctx,
int isRead,
word32 addr,
byte * buf,
woxrdl6 size,
void * userCtx

5.4.3.4 function TPM2_IoCb_Infineon_I2C

WOLFTPM_LOCAL int TPM2_IoCb_Infineon_I2C(
TPM2_CTX * ctx,
int isRead,
word32 addr,
byte * buf,
wordl6 size,
void * userCtx

5.4.3.5 function TPM2_IoCb_Espressif 12C

WOLFTPM_LOCAL int TPM2_IoCb_Espressif_I2C(
TPM2_CTX * ctx,
int isRead,
word32 addr,
byte * buf,
wordl6e size,
void * userCtx

5.4.3.6 function TPM2_IoCb_MicrochipHarmony_I2C

WOLFTPM_LOCAL int TPM2_IoCbh_MicrochipHarmony_I2C(
TPM2_CTX * ctx,
int isRead,
word32 addr,
byte * buf,
wordl6 size,
void * userCtx

COPYRIGHT ©2024 wolfSSL Inc. 340

5.4 hal/tpm_io.h

5 APIREFERENCE

5.4.3.7 function TPM2_IoCb_Zephyr_12C

WOLFTPM_LOCAL int TPM2_IoCb_Zephyr_I2C(
TPM2_CTX * ctx,
int isRead,
word32 addr,
byte * buf,
wordl6 size,
void * userCtx

5.4.3.8 function TPM2_IoCb_Atmel_SPI

WOLFTPM_LOCAL int TPM2_IoCb_Atmel_SPI(
TPM2_CTX * ctx,
const byte * txBuf,
byte * rxBuf,
wordl6e xferSz,
void * userCtx

5.4.3.9 function TPM2_IoCb_Barebox_SPI

WOLFTPM_LOCAL int TPM2_IoCb_Barebox_SPI(
TPM2_CTX * ctx,
const byte * txBuf,
byte * rxBuf,
wordle xfexrSz,
void * userCtx

5.4.3.10 function TPM2_ IoCbh Uboot _SPI

WOLFTPM_LOCAL int TPM2_IoCb_Uboot_SPI(
TPM2_CTX * ctx,
const byte * txBuf,
byte * rxBuf,
wordle xfexrSz,
void * userCtx

5.4.3.11 function TPM2_IoCb_Linux_SPI

WOLFTPM_LOCAL int TPM2_IoCb_Linux_SPI(
TPM2_CTX * ctx,
const byte * txBuf,
byte * rxBuf,
wordle xferSz,
void * userCtx

5.4.3.12 function TPM2_IoCb_STCubeMX_SPI

WOLFTPM_LOCAL int TPM2_IoCb_STCubeMX_SPI(
TPM2_CTX * ctx,

COPYRIGHT ©2024 wolfSSL Inc. 341

5.4 hal/tom_io.h 5 APIREFERENCE

const byte * txBuf,
byte * rxBuf,
wordle xfexrSz,

void * userCtx

5.4.3.13 function TPM2_IoCb_QNX_SPI

WOLFTPM_LOCAL int TPM2_IoCb_QNX_SPI(
TPM2_CTX * ctx,
const byte * txBuf,
byte * rxBuf,
wordl6e xferSz,
void * userCtx

5.4.3.14 function TPM2_IoCb_Xilinx_SPI

WOLFTPM_LOCAL int TPM2_IoCb_Xilinx_SPI(
TPM2_CTX * ctx,
const byte * txBuf,
byte * rxBuf,
wordle xfexSz,
void * userCtx

5.4.3.15 function TPM2_IoCb Infineon_SPI

WOLFTPM_LOCAL int TPM2_IoCb_Infineon_SPI(
TPM2_CTX * ctx,
const byte * txBuf,
byte * rxBuf,
wordle xferSz,
void * userCtx

5.4.3.16 function TPM2_IoCb_Infineon_TriCore_SPI

WOLFTPM_LOCAL int TPM2_IoCb_Infineon_TriCore_SPI(
TPM2_CTX * ctx,
const byte * txBuf,
byte * rxBuf,
wordle xfexSz,
void * userCtx

5.4.3.17 function TPM2_IoCb_Microchip_SPI

WOLFTPM_LOCAL int TPM2_IoCbh_Microchip_SPI(
TPM2_CTX * ctx,
const byte * txBuf,
byte * rxBuf,
wordl6e xferSz,
void * userCtx

COPYRIGHT ©2024 wolfSSL Inc. 342

5.4 hal/tom_io.h 5 APIREFERENCE

5.4.3.18 function TPM2_IoCbh_Mmio

WOLFTPM_LOCAL int TPM2_IoCb_Mmio(
TPM2_CTX * ctx,
int isRead,
word32 addr,
byte * buf,
woxrdl6 size,
void * userCtx

5.4.4 Attributes Documentation

5.4.4.1 variable C

C{
#endif

#1f defined (WOLFTPM_LINUX_DEV) || defined(WOLFTPM_SWTPM) || \
defined (WOLFTPM_WINAPI)

#define TPM2_IoCb NULL
#else
#ifdef WOLFTPM_EXAMPLE_HAL

#ifdef WOLFTPM_ADV_IO
WOLFTPM_API int TPM2_IoCb(TPM2_CTX* ctx, INT32 isRead, UINT32 addr,
BYTE* buf, UINT16 size, void* userCtx);

5.4.5 Source code

/* tpm_io.h

Copyright (C) 2006-2025 wolfSSL Inc.
This file is part of wolfTPM.

wolfTPM is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

wolfTPM is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

* ok ok ok ok ko ok ok F F ok ok F F oF

You should have received a copy of the GNU General Public License

COPYRIGHT ©2024 wolfSSL Inc. 343

5.4 hal/tom_io.h 5 APIREFERENCE

* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ©2110-1335, USA
*/

#ifndef _TPM_IO H_
#define _TPM_IO H_

#include <wolftpm/tpm2.h>

#ifdef __cplusplus
extern "C" {
#endif

/* TPM2 IO Examples */

#if defined (WOLFTPM_LINUX_DEV) || defined (WOLFTPM_SWTPM) || \
defined (WOLFTPM_WINAPTI)

/* HAL not required, so use NULL */
#define TPM2_ToCb NULL

#else
#ifdef WOLFTPM_EXAMPLE_HAL

#ifdef WOLFTPM_ADV_IO

WOLFTPM_API int TPM2_IoCb(TPM2_CTX* ctx, INT32 isRead, UINT32 addr,
BYTE* buf, UINT16 size, void* userCtx);

#else

WOLFTPM_API int TPM2_IoCb(TPM2_CTX* ctx, const BYTE* txBuf, BYTE* rxBuf,
UINT16 xferSz, void* usexrCtx);

#endif

/* Platform support, in alphabetical order */
#ifdef WOLFTPM_I2C

#if defined(_linux__)
WOLFTPM_LOCAL int TPM2_IoCb_Linux_I2C(TPM2_CTX* ctx, int isRead, word32 addr,
« byte* buf,
woxrdl6 size, void* usexrCtx);
#elif defined(WOLFSSL_STM32_CUBEMX)
WOLFTPM_LOCAL int TPM2_IoCb_STCubeMX_I2C(TPM2_CTX* ctx, int isRead, word32
< addr,
byte* buf, wordl6 size, void* userCtx);
#elif defined(CY_USING_HAL)
WOLFTPM_LOCAL int TPM2_IoCb_Infineon_I2C(TPM2_CTX* ctx, int isRead, woxrd32
< addr,
byte* buf, wordl6 size, void* userCtx);
#elif defined (WOLFSSL_ESPIDF)
WOLFTPM_LOCAL int TPM2_IoCb_Espressif_I2C(TPM2_CTX* ctx, int isRead, word32
< addr,
byte* buf, wordlé size, void* userCtx);
#elif defined (WOLFTPM_MICROCHIP_HARMONY)

COPYRIGHT ©2024 wolfSSL Inc. 344

5.4 hal/tom_io.h 5 APIREFERENCE

WOLFTPM_LOCAL int TPM2_IoCb_MicrochipHarmony_I2C(TPM2_CTX* ctx, int isRead,

< word32 addr,
byte* buf, wordl6 size, void* userCtx);

#elif defined (WOLFSSL_ZEPHYR)

WOLFTPM_LOCAL int TPM2_IoCb_Zephyr_I2C(TPM2_CTX* ctx, int isRead, word32 addr,
byte* buf, wordl6 size, void* userCtx);

#endif /* __ linux__ */

#else /* SPI */

#if defined (WOLFSSL_ATMEL)
WOLFTPM_LOCAL int TPM2_IoCb_Atmel_ SPI(TPM2_CTX* ctx, const byte* txBuf, byte*
< TXBuf,
woxrdle xfexrSz, void* userCtx);
#elif defined(__BAREBOX_)
WOLFTPM_LOCAL int TPM2_IoCb_Barebox_SPI(TPM2_CTX* ctx, const byte* txBuf,
byte* rxBuf, wordl6é xferSz, void* userCtx);
#elif defined(__UBOOT_)
WOLFTPM_LOCAL int TPM2_IoCb_Uboot_SPI(TPM2_CTX* ctx, const byte* txBuf,
byte* rxBuf, wordl6 xferSz, void* userCtx);
#elif defined(__linux__)
WOLFTPM_LOCAL int TPM2_IoCb_Linux_SPI(TPM2_CTX* ctx, const byte* txBuf, byte*
< IXBuf,
woxrdl6 xfexrSz, void* usexrCtx);
#elif defined(WOLFSSL_STM32_CUBEMX)
WOLFTPM_LOCAL int TPM2_IoCb_STCubeMX_SPI(TPM2_CTX* ctx, const byte* txBuf,
<~ byte* rxBuf,
woxrd1l6 xferSz, void* usexrCtx);
#elif defined(__QNX__) || defined(__QNXTO__)
WOLFTPM_LOCAL int TPM2_IoCb_QNX_SPI(TPM2_CTX* ctx, const byte* txBuf,
byte* rxBuf, wordl6 xferSz, void* userCtx);
#elif defined(__XILINX_)
WOLFTPM_LOCAL int TPM2_IoCb_Xilinx_SPI(TPM2_CTX* ctx, const byte* txBuf,
byte* rxBuf, wordl6é xferSz, void* userCtx);
#elif defined(CY_USING_HAL)
WOLFTPM_LOCAL int TPM2_IoCb_Infineon_SPI(TPM2_CTX* ctx, const byte* txBuf,
byte* rxBuf, wordl6 xferSz, void* userCtx);
#elif defined (WOLFTPM_INFINEON_TRICORE)
WOLFTPM_LOCAL int TPM2_IoCb_Infineon_TriCore_SPI(TPM2_CTX* ctx, const byte*
< txBuf,
byte* rxBuf, wordl6é xferSz, void* userCtx);
#elif defined (WOLFTPM_MICROCHIP_HARMONY)
WOLFTPM_LOCAL int TPM2_IoCb_Microchip_SPI(TPM2_CTX* ctx, const byte* txBuf,
«~ byte* rxBuf,
woxrd1l6 xfexrSz, void* usexrCtx);
#endif

#endif /* WOLFTPM_I2C */

#if defined (WOLFTPM_MMIO)
/* requires WOLFTPM_ADV_IO */
WOLFTPM_LOCAL int TPM2_IoCb_Mmio(TPM2_CTX* ctx, int isRead, word32 addr, byte*
= bUf,
wordl6e size, void* userCtx);

COPYRIGHT ©2024 wolfSSL Inc. 345

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

#endif

#endif
#endif

#ifdef __cplusplus

}
#endif

#endif

5.5 wolfTPM2 Wrappers

More...

5.5.1 Functions

Name

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int
WOLFTPM_APT int
WOLFTPM_API int
WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_Test * caps)Test initialization of a
TPM and optionally the TPM capabilities can be
received.

**wolfTPM2_Init ioCb, void * userCtx)Complete
initialization of a TPM.
**wolfTPM2_OpenExisting ioCb, void *
userCtx)Use an already initialized TPM, in its
current TPM locality.

**wolfTPM2_Cleanup * dev)Easy to use TPM
and wolfcrypt deinitialization.
**wolfTPM2_Cleanup_ex * dey, int
doShutdown)Deinitialization of a TPM (and
wolfcrypt if it was used)
**wolfTPM2_GetTpmDevld * dev)Provides the
device ID of a TPM.

**wolfTPM2_SelfTest * dev)Asks the TPM to
perform its self test.
**wolfTPM2_GetCapabilities * caps)Reports the
available TPM capabilities.
**wolfTPM2_GetHandles * handles)Gets a list
of handles.

**wolfTPM2_UnsetAuth * dev, int index)Clears
one of the TPM Authorization slots, pointed by
its index number.
**wolfTPM2_UnsetAuthSession *
session)Clears one of the TPM Authorization
session slots, pointed by its index number and
saves the nonce from the TPM so the session
can continue to be used again with
wolfTPM2_SetAuthSession.
**wolfTPM2_SetAuth * name)Sets a TPM
Authorization slot using the provided index,
session handle, attributes and auth.

346

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_SetAuthPassword * auth)Sets a
TPM Authorization slot using the provided user
auth, typically a password.
**wolfTPM2_SetAuthHandle * dev, int index,
const WOLFTPM2_HANDLE * handle)Sets a
TPM Authorization slot using the user auth
associated with a wolfTPM2 Handle.
**WolfTPM2_SetAuthSession
sessionAttributes)Sets a TPM Authorization slot
using the provided TPM session handle, index
and session attributes.
**wolfTPM2_SetSessionHandle *
tpmSession)Sets a TPM Authorization slot
using the provided wolfTPM2 session object.
**wolfTPM2_SetAuthHandleName * dev, int
index, const WOLFTPM2_HANDLE *
handle)Updates the Name used in a TPM
Session with the Name associated with
wolfTPM2 Handle.

**wolfTPM2_StartSession sesType, int
encDecAlg)Create a TPM session, Policy, HMAC
or Trial.
**wolfTPM2_CreateAuthSession_EkPolicy *
tpmSession)Creates a TPM session with Policy
Secret to satisfy the default EK policy.
**wolfTPM2_CreatePrimaryKey *
publicTemplate, const byte * auth, int
authSz)Single function to prepare and create a
TPM 2.0 Primary Key.
**wolfTPM2_CreatePrimaryKey_ex *
publicTemplate, const byte * auth, int
authSz)Single function to prepare and create a
TPM 2.0 Primary Key.
**wolfTPM2_ChangeAuthKey * key,
WOLFTPM2_HANDLE * parent, const byte *
auth, int authSz)Change the authorization
secret of a TPM 2.0 key.
**wolfTPM2_CreateKey * publicTemplate, const
byte * auth, int authSz)Single function to
prepare and create a TPM 2.0 Key.
**wolfTPM2_LoadKey * keyBlob,
WOLFTPM2_HANDLE * parent)Single function
to load a TPM 2.0 key.
**wolfTPM2_CreateAndLoadKey *
publicTemplate, const byte * auth, int
authSz)Single function to create and load a
TPM 2.0 Key in one step.
**wolfTPM2_CreateLoadedKey *
publicTemplate, const byte * auth, int
authSz)Creates and loads a key using single
TPM 2.0 operation, and stores encrypted
private key material.

347

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_LoadPublicKey * pub)Wrapper to
load the public part of an external key.
**wolfTPM2_LoadPrivateKey * sens)Single
function to import an external private key and
load it into the TPM in one step.
**wolfTPM2_ImportPrivateKey * sens)Single
function to import an external private key and
load it into the TPM in one step.
**wolfTPM2_LoadRsaPublicKey * key, const
byte * rsaPub, word32 rsaPubSz, word32
exponent)Helper function to import the public
part of an external RSA key.
**wolfTPM2_LoadRsaPublicKey_ex
hashAlg)Advanced helper function to import
the public part of an external RSA key.
**wolfTPM2_ImportRsaPrivateKey
hashAlg)Import an external RSA private key.
**wolfTPM2_ImportRsaPrivateKeySeed
attributes, byte * seed, word32 seedSz)Import
an external RSA private key with custom seed.
**wolfTPM2_LoadRsaPrivateKey * key, const
byte * rsaPub, word32 rsaPubSz, word32
exponent, const byte * rsaPriv, word32
rsaPrivSz)Helper function to import and load
an external RSA private key in one step.
**wolfTPM2_LoadRsaPrivateKey_ex
hashAlg)Advanced helper function to import
and load an external RSA private key in one
step.

**wolfTPM2_LoadEccPublicKey * key, int
curveld, const byte * eccPubX, word32
eccPubXSz, const byte * eccPubY, word32
eccPubYSz)Helper function to import the public
part of an external ECC key.
**wolfTPM2_ImportEccPrivateKey * keyBlob,
int curveld, const byte * eccPubX, word32
eccPubXSz, const byte * eccPubY, word32
eccPubYSz, const byte * eccPriv, word32
eccPrivSz)Helper function to import the private
material of an external ECC key.
**wolfTPM2_ImportEccPrivateKeySeed
attributes, byte * seed, word32 seedSz)Helper
function to import the private material of an
external ECC key.
**wolfTPM2_LoadEccPrivateKey * key, int
curveld, const byte * eccPubX, word32
eccPubXSz, const byte * eccPubY, word32
eccPubYSz, const byte * eccPriv, word32
eccPrivSz)Helper function to import and load
an external ECC private key in one step.

348

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int
WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_ReadPublicKey handle)Helper
function to receive the public part of a loaded
TPM object using its handle.
**wolfTPM2_CreateKeySeal * publicTemplate,
const byte * auth, int authSz, const byte *
sealData, int sealSize)Using this wrapper a
secret can be sealed inside a TPM 2.0 Key.
**wolfTPM2_CreateKeySeal_ex pcrAlg, byte *
pcrArray, word32 pcrArraySz, const byte *
sealData, int sealSize)Using this wrapper a
secret can be sealed inside a TPM 2.0 Key with
pcr selection.

**wolfTPM2_ComputeName * out)Helper
function to generate a hash of the public area
of an object in the format expected by the TPM.
**wolfTPM2_SensitiveToPrivate.
**wolfTPM2_ImportPrivateKeyBuffer
objectAttributes, byte * seed, word32
seedSz)Helper function to import PEM/DER or
RSA/ECC private key.
**wolfTPM2_ImportPublicKeyBuffer
objectAttributes)Helper function to import
PEM/DER formatted RSA/ECC public key.
**wolfTPM2_ExportPublicKeyBuffer * tpmKey,
int encodingType, byte * out, word32 *
outSz)Helper function to export a TPM RSA/ECC
public key with PEM/DER formatting.
**wolfTPM2_RsaPrivateKeyImportDer
hashAlg)Helper function to import Der rsa key
directly.
**wolfTPM2_RsaPrivateKeylmportPem
hashAlg)Helper function to import Pem rsa key
directly.

**wolfTPM2_RsaKey_TpmToWolf * tpmKey,
RsaKey * wolfKey)Extract a RSA TPM key and
convert it to a wolfcrypt key.
**wolfTPM2_RsaKey_TpmToPemPub * keyBlob,
byte * pem, word32 * pemSz)Convert a public
RSA TPM key to PEM format public key. Note:
This APl is a wrapper around
wolfTPM2_ExportPublicKeyBuffer.
**wolfTPM2_RsaKey_WolfToTpm *
tpmKey)Import a RSA wolfcrypt key into the
TPM.

**wolfTPM2_RsaKey_WolfToTpm_ex *
tpmKey)Import a RSA wolfcrypt key into the
TPM under a specific Primary Key or Hierarchy.
**wolfTPM2_CreateRsaKeyBlob *
tpmKey)Create an encrypted RSA key blob from
a wolfCrypt key under a specific parent key.

349

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APIT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_RsaKey_PubPemToTpm * tpmKey,
const byte * pem, word32 pemSz)Import a PEM
format public key from a file into the TPM.
**wolfTPM2_DecodeRsaDer attributes)Import
DER RSA private or public key into TPM public
and sensitive structures. This does not make
any calls to TPM hardware.
**wolfTPM2_EccKey_TpmToWolf * tpmKey,
ecc_key * wolfKey)Extract a ECC TPM key and
convert to to a wolfcrypt key.
**wolfTPM2_EccKey_WolfToTpm *
tpmKey)Import a ECC wolfcrypt key into the
TPM.

**wolfTPM2_EccKey_WolfToTpm_ex *
tpmKey)Import ECC wolfcrypt key into the TPM
under a specific Primary Key or Hierarchy.
**wolfTPM2_CreateEccKeyBlob *
tpmKey)Create an encrypted ECC key blob from
a wolfCrypt key under a specific parent key.
**wolfTPM2_EccKey_WolfToPubPoint *
pubPoint)Import a ECC public key generated
from wolfcrypt key into the TPM.
**wolfTPM2_DecodeEccDer attributes)Import
DER ECC private or public key into TPM public
and sensitive structures. This does not make
any calls to TPM hardware.
**wolfTPM2_SignHash * key, const byte *
digest, int digestSz, byte * sig, int *
sigSz)Helper function to sign arbitrary data
using a TPM key.
**wolfTPM2_SignHashScheme
hashAlg)Advanced helper function to sign
arbitrary data using a TPM key, and specify the
signature scheme and hashing algorithm.
**wolfTPM2_VerifyHash * key, const byte * sig,
int sigSz, const byte * digest, int
digestSz)Helper function to verify a TPM
generated signature.
**wolfTPM2_VerifyHash_ex * key, const byte *
sig, int sigSz, const byte * digest, int digestSz,
int hashAlg)Helper function to verify a TPM
generated signature.
**wolfTPM2_VerifyHashScheme
hashAlg)Advanced helper function to verify a
TPM generated signature.
**wolfTPM2_VerifyHashTicket *
checkTicket)Advanced helper function to verify
a TPM generated signature and return ticket.

350

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APIT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_ECDHGenKey * ecdhKey, int
curve_id, const byte * auth, int
authSz)Generates and then loads a ECC
key-pair with NULL hierarchy for Diffie-Hellman
exchange.

**wolfTPM2_ECDHGen * pubPoint, byte * out,
int * outSz)Generates ephemeral key and
computes Z (shared secret)
**wolfTPM2_ECDHGenZ * pubPoint, byte * out,
int * outSz)Computes Z (shared secret) using
pubPoint and loaded private ECC key.
**wolfTPM2_ECDHEGenKey * ecdhKey, int
curve_id)Generates ephemeral ECC key and
returns array index (2 phase method)
**wolfTPM2_ECDHEGenZ * pubPoint, byte *
out, int * outSz)Computes Z (shared secret)
using pubPoint and counter (2 phase method)
**wolfTPM2_RsaEncrypt padScheme, const
byte * msg, int msgSz, byte * out, int *
outSz)Perform RSA encryption using a TPM 2.0
key.

**wolfTPM2_RsaDecrypt padScheme, const
byte * in, int inSz, byte * msg, int *
msgSz)Perform RSA decryption using a TPM 2.0
key.

**wolfTPM2_ReadPCR * dev, int pcrIndex, int
hashAlg, byte * digest, int * pDigestLen)Read
the values of a specified TPM 2.0 Platform
Configuration Registers(PCR)
**wolfTPM2_ResetPCR * dey, int pcrIndex)Reset
a PCRregister to its default value.
**wolfTPM2_ExtendPCR * dev, int pcrIndex, int
hashAlg, const byte * digest, int
digestLen)Extend a PCR register with a user
provided digest.

**wolfTPM2_NVCreateAuth * nv, word32
nvindex, word32 nvAttributes, word32 maxSize,
const byte * auth, int authSz)Creates a new NV
Index to be later used for storing data into the
TPM's NVRAM.
**wolfTPM2_NVCreateAuthPolicy * nv, word32
nvindex, word32 nvAttributes, word32 maxSize,
const byte * auth, int authSz, const byte *
authPolicy, int authPolicySz)Creates a new NV
Index to be later used for storing data into the
TPM's NVRAM.

**wolfTPM2_NVWriteAuth * nv, word32
nvindex, byte * dataBuf, word32 dataSz,
word32 offset)Stores user data to a NV Index,
at a given offset.

351

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APIT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_NVWriteAuthPolicy * nv, word32
nvIindex, byte * dataBuf, word32 dataSz,
word32 offset)Stores user data to a NV Index,
at a given offset. Allows using a policy session
and PCR’s for authentication.
**wolfTPM2_NVExtend * nv, word32 nvIindex,
byte * dataBuf, word32 dataSz)Extend data to
an NV index.

**wolfTPM2_NVReadAuth * nv, word32
nvindex, byte * dataBuf, word32 * pDataSz,
word32 offset)Reads user data from a NV
Index, starting at the given offset.
**wolfTPM2_NVReadAuthPolicy * nv, word32
nvIindex, byte * dataBuf, word32 * pDataSz,
word32 offset)Reads user data from a NV
Index, starting at the given offset. Allows using
a policy session and PCR’s for authentication.
**wolfTPM2_NVReadCert handle, uint8_t *
buffer, uint32_t * len)Helper to get size of NV
and read buffer without authentication.
Typically used for reading a certificate from an
NV.

**wolfTPM2_NVIncrement * nv)Increments an
NV one-way counter.

**wolfTPM2_NVOpen * nv, word32 nvIindex,
const byte * auth, word32 authSz)Open an NV
and populate the required authentication and
name hash.

**wolfTPM2_NVWriteLock * nv)Lock writes on
the specified NV Index.
**wolfTPM2_NVDeleteAuth * dev,
WOLFTPM2_HANDLE * parent, word32
nvindex)Destroys an existing NV Index.
**wolfTPM2_NVCreate authHandle, word32
nvindex, word32 nvAttributes, word32 maxSize,
const byte * auth, int authSz)Deprecated, use
newer APIL.

**wolfTPM2_NVWrite authHandle, word32
nvindex, byte * dataBuf, word32 dataSz,
word32 offset)Deprecated, use newer APL
**wolfTPM2_NVRead authHandle, word32
nvindex, byte * dataBuf, word32 * dataSz,
word32 offset)Deprecated, use newer APL
**wolfTPM2_NVDelete authHandle, word32
nvindex)Deprecated, use newer APIL.
**wolfTPM2_NVReadPublic * nvPublic)Extracts
the public information about an nvIindex, such
as maximum size.

**wolfTPM2_NVStoreKey
persistentHandle)Helper function to store a
TPM 2.0 Key into the TPM’s NVRAM.

352

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API struct WC_RNG *

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APIT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_NVDeleteKey * key)Helper
function to delete a TPM 2.0 Key from the
TPM’s NVRAM.

**wolfTPM2_GetRng * dev)Get the wolfcrypt
RNG instance used for wolfTPM.
**wolfTPM2_GetRandom * dev, byte * buf,
word32 len)Get a set of random number,
generated with the TPM RNG or wolfcrypt RNG.
**wolfTPM2_UnloadHandle * dev,
WOLFTPM2_HANDLE * handle)Use to discard
any TPM loaded object.

**wolfTPM2_Clear * dev)Deinitializes wolfTPM
and wolfcrypt(if enabled)
**wolfTPM2_HashStart hashAlg, const byte *
usageAuth, word32 usageAuthSz)Helper
function to start a TPM generated hash.
**wolfTPM2_HashUpdate * hash, const byte *
data, word32 dataSz)Update a TPM generated
hash with new user data.
**wolfTPM2_HashFinish * hash, byte * digest,
word32 * digestSz)Finalize a TPM generated
hash and get the digest output in a user buffer.
**wolfTPM2_LoadKeyedHashKey * key,
WOLFTPM2_HANDLE * parent, int hashAlg,
const byte * keyBuf, word32 keySz, const byte *
usageAuth, word32 usageAuthSz)Creates and
loads a new TPM key of KeyedHash type,
typically used for HMAC operations.
**wolfTPM2_HmacStart hashAlg, const byte *
keyBuf, word32 keySz, const byte * usageAuth,
word32 usageAuthSz)Helper function to start a
TPM generated hmac.
**wolfTPM2_HmacUpdate * hmac, const byte *
data, word32 dataSz)Update a TPM generated
hmac with new user data.
**wolfTPM2_HmacFinish * hmac, byte * digest,
word32 * digestSz)Finalize a TPM generated
hmac and get the digest output in a user buffer.
**wolfTPM2_LoadSymmetricKey * key, int alg,
const byte * keyBuf, word32 keySz)Loads an
external symmetric key into the TPM.
**wWolfTPM2_SetCommand commandCode, int
enableFlag)Vendor specific TPM command,
used to enable other restricted TPM
commands.

**wolfTPM2_Reset * dev, int doShutdown, int
doStartup)Helper function to shutdown,
startup or reset the TPM.
**wolfTPM2_Shutdown * dev, int
doStartup)Helper function to shutdown or
reset the TPM.

353

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_UnloadHandles * dev, word32
handleStart, word32 handleCount)One-shot
API to unload subsequent TPM handles.
**wolfTPM2_UnloadHandles_AllTransient *
dev)One-shot API to unload all transient TPM
handles.

**wolfTPM2_GetKeyTemplate_RSA
objectAttributes)Prepares a TPM public
template for new RSA key based on user
selected object attributes.
**wolfTPM2_GetKeyTemplate_RSA_ex
sigHash)Prepares a TPM public template for
new RSA key based on user selected object
attributes.

**wolfTPM2_GetKeyTemplate_ECC
sigScheme)Prepares a TPM public template for
new ECC key based on user selected object
attributes.
**wolfTPM2_GetKeyTemplate_ECC_ex
sigHash)Prepares a TPM public template for
new ECC key based on user selected object
attributes.
**wolfTPM2_GetKeyTemplate_Symmetric
algMode, int isSign, int isDecrypt)Prepares a
TPM public template for new Symmetric key.
**wolfTPM2_GetKeyTemplate_KeyedHash
hashAlg, int isSign, int isDecrypt)Prepares a
TPM public template for new KeyedHash key.
**wolfTPM2_GetKeyTemplate_KeySeal
nameAlg)Prepares a TPM public template for
new key for sealing secrets.
**wolfTPM2_GetKeyTemplate_EK nameAlg, int
highRange)Prepares a TPM public template for
generating the TPM Endorsement Key.
**wolfTPM2_GetKeyTemplate_EKIndex *
publicTemplate)Helper to get the Endorsement
public key template by NV index.
**wolfTPM2_GetKeyTemplate_RSA_EK *
publicTemplate)Prepares a TPM public
template for generating the TPM Endorsement
Key of RSA type.
**wolfTPM2_GetKeyTemplate_ECC_EK *
publicTemplate)Prepares a TPM public
template for generating the TPM Endorsement
Key of ECC type.
**wolfTPM2_GetKeyTemplate_RSA_SRK *
publicTemplate)Prepares a TPM public
template for generating a new TPM Storage
Key of RSA type.

354

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_APT int
WOLFTPM_APT int

WOLFTPM_APIT int
WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_GetKeyTemplate_ECC_SRK *
publicTemplate)Prepares a TPM public
template for generating a new TPM Storage
Key of ECC type.
**wolfTPM2_GetKeyTemplate_RSA_AIK *
publicTemplate)Prepares a TPM public
template for generating a new TPM Attestation
Key of RSA type.
**wolfTPM2_GetKeyTemplate_ECC_AIK *
publicTemplate)Prepares a TPM public
template for generating a new TPM Attestation
Key of ECC type.
**wolfTPM2_SetKeyTemplate_Unique *
publicTemplate, const byte * unique, int
uniqueSz)Sets the unique area of a public
template used by Create or CreatePrimary.
**wolfTPM2_GetNvAttributesTemplate auth,
word32 * nvAttributes)Prepares a TPM NV
Index template.

**wolfTPM2_CreateEK alg)Generates a new
TPM Endorsement key, based on the user
selected algorithm, RSA or ECC.
**wolfTPM2_CreateSRK alg, const byte * auth,
int authSz)Generates a new TPM Primary Key
that will be used as a Storage Key for other
TPM keys.

**wolfTPM2_CreateAndLoadAIK * srkKey, const
byte * auth, int authSz)Generates a new TPM
Attestation Key under the provided Storage
Key.

**wolfTPM2_GetTime * getTimeOut)One-shot
API to generate a TPM signed timestamp.
**wolfTPM2_CSR_SetCustomExt structure.
**wolfTPM2_CSR_SetKeyUsage structure. Pass
either extended key usage or key usage values.
Mixed string types are not supported, however
you can call wolfTPM2_CSR_SetKeyUsage
twice (once for extended key usage strings and
once for standard key usage strings).
**wolfTPM2_CSR_SetSubject structure.
**wolfTPM2_CSR_MakeAndSign_ex structure
with subject and key usage already set.
**wolfTPM2_CSR_MakeAndSign structure with
subject and key usage already set.
**wolfTPM2_CSR_Generate_ex). Single shot API
for outputting a CSR or self-signed cert based
on TPM key.

**wolfTPM2_CSR_Generate). Single shot API for
outputting a CSR or self-signed cert based on
TPM key.

355

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APIT int

WOLFTPM_API WOLFTPM2_DEV.
WOLFTPM_APT int

WOLFTPM_API WOLFTPM2_KEYBLOB.
WOLFTPM_API int

WOLFTPM_API TPMT_PUBLIC.
WOLFTPM_APT int

WOLFTPM_API WOLFTPM2_KEY.
WOLFTPM_API int

WOLFTPM_API WOLFTPM2_SESSION.
WOLFTPM_APT int

WOLFTPM_API WOLFTPM2_CSR.
WOLFTPM_API int

WOLFTPM_API WOLFTPM2_HANDLE *
WOLFTPM_API WOLFTPM2_HANDLE *

WOLFTPM_API WOLFTPM2_HANDLE *
WOLFTPM_API TPM_HANDLE

WOLFTPM_APT int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_ChangePlatformAuth *
session)Helper to set the platform hierarchy
authentication value to random. Setting the
platform auth to random value is used to
prevent application from being able to use
platform hierarchy. This is defined in section 10
of the TCG PC Client Platform specification.
**wolfTPM2_ChangeHierarchyAuth
authHandle)Helper to set the hierarchy
authentication value to random. Setting the
platform auth to random value is used to
prevent application from being able to use
platform hierarchy. This is defined in section 10
of the TCG PC Client Platform specification.
wolfTPM2_CryptoDevCh(int devld,
wc_Cryptolnfo * info, void * ctx)A reference
crypto callback API for using the TPM for crypto
offload. This callback function is registered
using wolfTPM2_SetCryptoDevCb or
wc_CryptoDev_RegisterDevice.
**wolfTPM2_SetCryptoDevCb * tpmCtx, int *
pDevld)Register a crypto callback function and
return assigned devld.
**wolfTPM2_ClearCryptoDevCb * deyv, int
devld)Clears the registered crypto callback.

**wolfTPM2_Free that was allocated by
wolfTPM2_New.

**wolfTPM2_FreeKeyBlob that was allocated
with wolfTPM2_NewKeyBlob.

**wolfTPM2_FreePublicTemplate that was
allocated with wolfTPM2_NewPublicTemplate.

**wolfTPM2_FreeKey that was allocated with
wolfTPM2_NewKey.

**wolfTPM2_FreeSession that was allocated
with wolfTPM2_NewSession.

**wolfTPM2_FreeCSR that was allocated with
wolfTPM2_NewCSR.
**wolfTPM2_GetHandleRefFromKey.
**wolfTPM2_GetHandleRefFromKeyBlob.
**wWolfTPM2_GetHandleRefFromSession.
wolfTPM2_GetHandleValue(WOLFTPM2_HANDLE
* handle)Get the 32-bit handle value from the
WOLFTPM2_HANDLE.
**wolfTPM2_SetKeyAuthPassword * key, const
byte * auth, int authSz)Set the authentication
data for a key.

356

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_API int

COPYRIGHT ©2024 wolfSSL Inc.

**wolfTPM2_GetKeyBlobAsBuffer *
key)Marshal data from a keyblob to a binary
buffer. This can be stored to disk for loading in
a separate process or after power cycling. If
buffer is not provided then size only will be
returned.
**wolfTPM2_GetKeyBlobAsSeparateBuffers *
key)Marshal data from a keyblob to a binary
buffer. This can be stored to disk for loading in
a separate process or after power cycling. If
either buffer is NULL then the size will be
returned for each part.
**wolfTPM2_SetKeyBlobFromBuffer struct.
This can be used to load a keyblob that was
previously marshaled by
wolfTPM2_GetKeyBlobAsBuffer.
**wolfTPM2_PolicyRestart
sessionHandle)Restart the policy digest for a
policy session.

**wolfTPM2_GetPolicyDigest sessionHandle,
byte * policyDigest, word32 *
policyDigestSz)Get the policy digest of the
session that was passed in
wolfTPM2_GetPolicyDigest.
**wolfTPM2_PolicyPCR pcrAlg, byte * pcrArray,
word32 pcrArraySz)Apply the PCR's to the
policy digest for the policy session.
**wolfTPM2_PolicyAuthorize * checkTicket,
const byte * pcrDigest, word32 pcrDigestSz,
const byte * policyRef, word32
policyRefSz)Apply the PCR's to the policy digest
for the policy session.
**wolfTPM2_PCRGetDigest pcrAlg, byte *
pcrArray, word32 pcrArraySz, byte * pcrDigest,
word32 * pcrDigestSz)Get a cumulative digest
of the PCR's specified.
**wolfTPM2_PolicyRefMake pcrAlg, byte *
digest, word32 * digestSz, const byte *
policyRef, word32 policyRefSz)Utility for
generating a policy ref digest. If no policy
reference (nonce) used then just rehash the
provided digest again (update -> final)
**wolfTPM2_PolicyPCRMake pcrAlg, byte *
pcrArray, word32 pcrArraySz, const byte *
pcrDigest, word32 pcrDigestSz, byte * digest,
word32 * digestSz)Utility for generating a
policy PCR digest.

**wolfTPM2_PolicyHash cc, const byte * input,
word32 inputSz)Utility for creating a policy
hash. Generic helper that takes command code
and input array. policyDigestnew =
hash(policyDigestOld

357

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Name

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_LOCAL int
WOLFTPM_LOCAL int

WOLFTPM_APT int

WOLFTPM_API int

WOLFTPM_API int

WOLFTPM_APIT int

**wolfTPM2_PolicyAuthorizeMake * pub, byte *
digest, word32 * digestSz, const byte *
policyRef, word32 policyRefSz)Utility for
generating a policy authorization digest based
on a public key.

**wolfTPM2_PolicyPassword * tpmSession,
const byte * auth, int authSz)Wrapper for
setting a policy password and calling
TPM2_PolicyPassword. This will set a password
(in clear) for the policy session instead of
HMAC.

**wolfTPM2_PolicyAuthValue * tpmSession,
const byte * auth, int authSz)Wrapper for
setting a policy auth value that is added to the
HMAC key for a policy session.
**wolfTPM2_PolicyCommandCode cc)Wrapper
for setting a policy command code.
**wolfTPM2_SetldentityAuth * dev,
WOLFTPM2_HANDLE * handle, uint8_t *
masterPassword, uint16_t
masterPasswordSz)Set authentication for
pre-provisioned identity keys.
**GetKeyTemplateRSA sigHash)Internal helper
to create RSA key template.
**GetKeyTemplateECC sigHash)Internal helper
to create ECC key template.
**wolfTPM2_FirmwareUpgradeHash cb, void *
cb_ctx)Calculate hash of firmware manifest for
upgrade.

**wolfTPM2_FirmwareUpgrade cb, void *
cb_ctx)Perform TPM firmware upgrade.
**wolfTPM2_FirmwareUpgradeRecover cb, void
* cb_ctx)Recover from failed TPM firmware
upgrade.
**wolfTPM2_FirmwareUpgradeCancel *
dev)Cancel ongoing TPM firmware upgrade.

5.5.2 Detailed Description

This module describes the rich API of wolfTPM called wrappers.

wolfTPM wrappers are used in two main cases:

* Perform common TPM 2.0 tasks, like key generation and storage
+ Perform complex TPM 2.0 tasks, like attestation and parameter encryption

wolfTPM enables quick and rapid use of TPM 2.0 thanks to its many wrapper functions.

5.5.3 Functions Documentation

WOLFTPM_API int wolfTPM2_Test(
TPM2HalIoCb ioCb,
void * userCtx,

COPYRIGHT ©2024 wolfSSL Inc.

358

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM2_CAPS * caps
)

Test initialization of a TPM and optionally the TPM capabilities can be received.

Parameters:

+ ioCb function pointer to a IO callback (see [hal#file-tpm-io.h))
+ userCtx pointer to a user context (can be NULL)
* caps to a structure of WOLFTPM2_CAPS type for returning the TPM capabilities (can be NULL)

See:

* wolfTPM2_Init
« TPM2_Init

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_Init(
WOLFTPM2_DEV * dev,
TPM2HalIoCb ioCb,
void * userCtx

)

Complete initialization of a TPM.

Parameters:

+ dev pointer to an empty structure of WOLFTPM2_DEV type
* ioCb function pointer to a IO callback (see [hal#file-tpm-io.h))
+ userCtx pointer to a user context (can be NULL)

* wolfTPM2_OpenExisting
* wolfTPM2_Test
« TPM2_Init

Return:

» TPM_RC_SUCCESS: successful
» TPM_RC_FAILURE: generic failure (check TPM IO communication)
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 359

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Example

int rc;
WOLFTPM2_DEV dev;

rc = wolfTPM2_Init(&dev, TPM2_IoCb, usexrCtx);
if (xrc !'= TPM_RC_SUCCESS) {

goto exit;

WOLFTPM_API int wolfTPM2_OpenExisting(
WOLFTPM2_DEV * dev,
TPM2HalIoCb ioCb,
void * userCtx

)

Use an already initialized TPM, in its current TPM locality.

Parameters:

+ dev pointer to an empty structure of WOLFTPM2_DEV type
+ ioCb function pointer to a IO callback (see [hal#file-tpm-io.h))
+ userCtx pointer to a user context (can be NULL)

* WolfTPM2_Init
* wolfTPM2_Cleanup
* TPM2_Init

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO communication)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_Cleanup(
WOLFTPM2_DEV * dev
)

Easy to use TPM and wolfcrypt deinitialization.

Parameters:

+ dev pointer to a populated structure of WOLFTPM2_DEV type

COPYRIGHT ©2024 wolfSSL Inc. 360

5.5 wolfTPM2 Wrappers 5 API REFERENCE

See:

* wolfTPM2_OpenExisting
« WolfTPM2_Test
* TPM2_Init

Return:

« TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO communication)
* BAD_FUNC_ARG: check the provided arguments

Note: Calls wolfTPM2_Cleanup_ex with appropriate doShutdown parameter
Example

int rc;

rc = wolfTPM2_Cleanup(&dev);
if (xc != TPM_RC_SUCCESS) {

goto exit;

WOLFTPM_API int wolfTPM2_Cleanup_ex(
WOLFTPM2_DEV * dev,
int doShutdown

)
Deinitialization of a TPM (and wolfcrypt if it was used)

Parameters:

+ dev pointer to a populated structure of WOLFTPM2_DEV type
« doShutdown flag value, if true a TPM2_Shutdown command will be executed

See:

* wolfTPM2_OpenExisting
* wolfTPM2_Test
« TPM2_Init

Return:

« TPM_RC_SUCCESS: successful
» TPM_RC_FAILURE: generic failure (check TPM IO communication)
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 361

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Example

int rc;

//pexrform TPM2_Shutdown after deinitialization
rc = wolfTPM2_Cleanup_ex(&dev, 1);
if (rc !'= TPM_RC_SUCCESS) {
//wolfTPM2_Cleanup_ex failed
goto exit;

WOLFTPM_API int wolfTPM2_GetTpmDevId (
WOLFTPM2_DEV * dev

)

Provides the device ID of a TPM.

Parameters:

+ dev pointer to an populated structure of WOLFTPM2_DEV type

See:

* wolfTPM2_GetCapabilities
* wolfTPM2_Init

Return:

* aninteger value of a valid TPM device ID
« or INVALID_DEVID if the TPM initialization could not extract DevID

Example

int tpmDevId;

tpmDevId = wolfTPM2_GetTpmDevId(&dev);
if (tpmDevId != INVALID_DEVID) {
//wolfTPM2_Cleanup_ex failed
goto exit;

WOLFTPM_API int wolfTPM2_SelfTest(
WOLFTPM2_DEV * dev

)

Asks the TPM to perform its self test.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 362

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ dev pointer to a populated structure of WOLFTPM2_DEV type
See:

* wolfTPM2_OpenExisting
* WolfTPM2_Test
* TPM2_Init

Return:

« TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO communication and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Example

int rc;

//pexform TPM2_Shutdown after deinitialization
rc = wolfTPM2_SelfTest(&dev);
if (rc != TPM_RC_SUCCESS) {
//wolfTPM2_SelfTest failed
goto exit;

WOLFTPM_API int wolfTPM2_GetCapabilities(
WOLFTPM2_DEV * dev,
WOLFTPM2_CAPS * caps

)
Reports the available TPM capabilities.
Parameters:

+ dev pointer to a populated structure of WOLFTPM2_DEV type
* caps pointer to an empty structure of WOLFTPM2_CAPS type to store the capabilities

See:

* wolfTPM2_GetTpmDevld
* wolfTPM2_SelfTest
* WolfTPM2_Init

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO communication and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 363

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Example

int rc;
WOLFTPM2_CAPS caps;

rc = wolfTPM2_GetCapabilities(&dev, &caps);
if (xrc !'= TPM_RC_SUCCESS) {

goto exit;

WOLFTPM_API int wolfTPM2_GetHandles(
TPM_HANDLE handle,
TPML_HANDLE * handles

)

Gets a list of handles.

Parameters:

* handle handle to start from (example: PCR_FIRST, NV_INDEX_FIRST, HMAC_SESSION_FIRST, POL-
ICY_SESSION_FIRST, PERMANENT_FIRST, TRANSIENT _FIRST or PERSISTENT_FIRST)
* handles pointer to TPML_HANDLE to return handle results (optional)

See: wolfTPM2_GetCapabilities

Return:

+ 0 or greater: successful, count of handles
* TPM_RC_FAILURE: generic failure (check TPM IO communication and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Example

int persistent_handle_count;

persistent_handle_count = wolfTPM2_GetHandles (PERSISTENT_FIRST, NULL);

WOLFTPM_API int wolfTPM2_UnsetAuth(
WOLFTPM2_DEV * dev,
int index

)

Clears one of the TPM Authorization slots, pointed by its index number.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 364

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ dev pointer to a TPM2_DEV struct
index integer value, specifying the TPM Authorization slot, between zero and three

See:

« wolfTPM2_SetAuth

* wolfTPM2_SetAuthPassword
* WolfTPM2_SetAuthHandle

» wolfTPM2_SetAuthSession

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: unable to get lock on the TPM2 Context
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_UnsetAuthSession(
WOLFTPM2_DEV * dev,
int index,
WOLFTPM2_SESSION * session

)

Clears one of the TPM Authorization session slots, pointed by its index number and saves the nonce
from the TPM so the session can continue to be used again with wolfTPM2_SetAuthSession.

Parameters:

+ dev pointer to a TPM2_DEV struct

index integer value, specifying the TPM Authorization slot, between zero and three

» session pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

See:

« wolfTPM2_StartSession
» wolfTPM2_SetAuthSession

Return:

« TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: unable to get lock on the TPM2 Context
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_SetAuth(
WOLFTPM2_DEV * dev,
int index,
TPM_HANDLE sessionHandle,
const TPM2B_AUTH * auth,

COPYRIGHT ©2024 wolfSSL Inc. 365

5.5 wolfTPM2 Wrappers 5 API REFERENCE

TPMA_SESSION sessionAttributes,
const TPM2B_NAME * name

)

Sets a TPM Authorization slot using the provided index, session handle, attributes and auth.

Parameters:

* dev pointer to a TPM2_DEV struct

+ index integer value, specifying the TPM Authorization slot, between zero and three

+ sessionHandle integer value of TPM_HANDLE type

+ auth pointer to a structure of type TPM2B_AUTH containing one TPM Authorization

+ sessionAttributes integer value of type TPMA_SESSION, selecting one or more attributes for the
Session

* name pointer to a TPM2B_NAME structure

See:

* wolfTPM2_SetAuthPassword
« wolfTPM2_SetAuthHandle
* wolfTPM2_SetAuthSession

Return:

« TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: Itis recommended to use one of the other wolfTPM2 wrappers, like wolfTPM2_SetAuthPassword.
Because the wolfTPM2_SetAuth wrapper provides complete control over the TPM Authorization slot
for advanced use cases. In most scenarios, wolfTPM2_SetAuthHandle and SetAuthPassword are used.

WOLFTPM_API int wolfTPM2_SetAuthPasswoxrd(
WOLFTPM2_DEV * dev,
int index,
const TPM2B_AUTH * auth

)

Sets a TPM Authorization slot using the provided user auth, typically a password.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ index integer value, specifying the TPM Authorization slot, between zero and three
+ auth pointer to a structure of type TPM2B_AUTH, typically containing a TPM Key Auth

« wolfTPM2_SetAuthHandle
* wolfTPM2_SetAuthSession
« wolfTPM2_SetAuth

COPYRIGHT ©2024 wolfSSL Inc. 366

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: Often used for authorizing the loading and use of TPM keys, including Primary Keys

WOLFTPM_API int wolfTPM2_SetAuthHandle(
WOLFTPM2_DEV * dev,
int index,
const WOLFTPM2_HANDLE * handle

)

Sets a TPM Authorization slot using the user auth associated with a wolfTPM2 Handle.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ index integer value, specifying the TPM Authorization slot, between zero and three
* handle pointer to a populated structure of WOLFTPM2_HANDLE type

See:

* WolfTPM2_SetAuth

* wolfTPM2_SetAuthPassword
« wolfTPM2_SetAuthHandle

* wolfTPM2_SetAuthSession

Return:

« TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: This wrapper is especially useful when using a TPM key for multiple operations and TPM Autho-
rization is required again.

WOLFTPM_API int wolfTPM2_SetAuthSession(
WOLFTPM2_DEV * dev,
int index,
WOLFTPM2_SESSION * tpmSession,
TPMA_SESSION sessionAttributes

)

Sets a TPM Authorization slot using the provided TPM session handle, index and session attributes.

Parameters:

+ dev pointer to a TPM2_DEV struct

COPYRIGHT ©2024 wolfSSL Inc. 367

5.5 wolfTPM2 Wrappers 5 API REFERENCE

index integer value, specifying the TPM Authorization slot, between zero and three

* tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

sessionAttributes integer value of type TPMA_SESSION, selecting one or more attributes for the
Session

See:

* wolfTPM2_SetAuth

« wolfTPM2_SetAuthPassword
« wolfTPM2_SetAuthHandle

* WolfTPM2_SetSessionHandle

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: This wrapper is useful for configuring TPM sessions, e.g. session for parameter encryption

WOLFTPM_API int wolfTPM2_SetSessionHandle(
WOLFTPM2_DEV * dev,
int index,
WOLFTPM2_SESSION * tpmSession

)

Sets a TPM Authorization slot using the provided wolfTPM2 session object.

Parameters:

* dev pointer to a TPM2_DEV struct

index integer value, specifying the TPM Authorization slot, between zero and three

* tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

See:

« wolfTPM2_SetAuth

« wolfTPM2_SetAuthPassword
* wolfTPM2_SetAuthHandle

* wolfTPM2_SetAuthSession

Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: This wrapper is useful for configuring TPM sessions, e.g. session for parameter encryption

COPYRIGHT ©2024 wolfSSL Inc. 368

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_SetAuthHandleName (
WOLFTPM2_DEV * dev,
int index,
const WOLFTPM2_HANDLE * handle

)

Updates the Name used in a TPM Session with the Name associated with wolfTPM2 Handle.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ index integer value, specifying the TPM Authorization slot, between zero and three
* handle pointer to a populated structure of WOLFTPM2_HANDLE type

See:

« wolfTPM2_SetAuth

* wolfTPM2_SetAuthPassword
* wolfTPM2_SetAuthHandle

« wolfTPM2_SetAuthSession

Return:

« TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: Typically, this wrapper is used from another wrappers and in very specific use cases. For exam-
ple, wolfTPM2_NVWriteAuth

WOLFTPM_API int wolfTPM2_StartSession(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * session,
WOLFTPM2_KEY * tpmKey,
WOLFTPM2_HANDLE * bind,

TPM_SE sesType,
int encDecAlg

)

Create a TPM session, Policy, HMAC or Trial.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ session pointer to an empty WOLFTPM2_SESSION struct

+ tpmKey pointer to a WOLFTPM2_KEY that will be used as a salt for the session

* bind pointer to a WOLFTPM2_HANDLE that will be used to make the session bounded

+ sesType byte value, the session type (HMAC, Policy or Trial)

+ encDecAlginteger value, specifying the algorithm in case of parameter encryption (TPM_ALG_CFB
or TPM_ALG_XOR). Any value not CFB or XOR is considered NULL and parameter encryption is
disabled.

COPYRIGHT ©2024 wolfSSL Inc. 369

5.5 wolfTPM2 Wrappers 5 API REFERENCE

See: wolfTPM2_SetAuthSession
Return:

« TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: This wrapper can also be used to start TPM session for parameter encryption, see wolfTPM
nvram or keygen example

WOLFTPM_API int wolfTPM2_CreateAuthSession_EkPolicy(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * tpmSession

)

Creates a TPM session with Policy Secret to satisfy the default EK policy.

Parameters:

* dev pointer to a TPM2_DEV struct
+ tpmSession pointer to an empty WOLFTPM2_SESSION struct

See:

* wolfTPM2_SetAuthSession
» wolfTPM2_StartSession

Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments
¢« TPM_RC_FAILURE: check TPM return code, check available handles, check TPM IO

Note: This wrapper can be used only if the EK authorization is not changed from default

WOLFTPM_API int wolfTPM2_CreatePrimaryKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
TPM_HANDLE primaryHandle,
TPMT_PUBLIC * publicTemplate,
const byte * auth,
int authSz
)

Single function to prepare and create a TPM 2.0 Primary Key.

Parameters:

+ dev pointer to a TPM2_DEV struct

COPYRIGHT ©2024 wolfSSL Inc. 370

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ key pointer to an empty struct of WOLFTPM2_KEY type

« primaryHandle integer value, specifying one of four TPM 2.0 Primary Seeds: TPM_RH_OWNER,
TPM_RH_ENDORSEMENT, TPM_RH_PLATFORM or TPM_RH_NULL

publicTemplate pointer to a TPMT_PUBLIC structure populated manually or using one of the
wolfTPM2_GetKeyTemplate_... wrappers

+ auth pointer to a string constant, specifying the password authorization for the Primary Key
authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_CreateKey

* wolfTPM2_CreatePrimaryKey_ex
* wolfTPM2_GetKeyTemplate_RSA
* wolfTPM2_GetKeyTemplate_ECC

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: TPM 2.0 allows only asymmetric RSA or ECC primary keys. Afterwards, both symmetric and
asymmetric keys can be created under a TPM 2.0 Primary Key Typically, Primary Keys are used to
create Hierarchies of TPM 2.0 Keys. The TPM uses a Primary Key to wrap the other keys, signing or

decrypting.

WOLFTPM_API int wolfTPM2_CreatePrimaryKey_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_PKEY * pkey,
TPM_HANDLE primaryHandle,
TPMT_PUBLIC * publicTemplate,
const byte * auth,
int authSz

)

Single function to prepare and create a TPM 2.0 Primary Key.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ pkey pointer to an empty struct of WOLFTPM2_PKEY type including the creation hash and ticket.
« primaryHandle integer value, specifying one of four TPM 2.0 Primary Seeds: TPM_RH_OWNER,
TPM_RH_ENDORSEMENT, TPM_RH_PLATFORM or TPM_RH_NULL

publicTemplate pointer to a TPMT_PUBLIC structure populated manually or using one of the
wolfTPM2_GetKeyTemplate_... wrappers

+ auth pointer to a string constant, specifying the password authorization for the Primary Key
authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_CreateKey

COPYRIGHT ©2024 wolfSSL Inc. 371

5.5 wolfTPM2 Wrappers 5 API REFERENCE

* wolfTPM2_CreatePrimaryKey
* wolfTPM2_GetKeyTemplate_RSA
* wolfTPM2_GetKeyTemplate_ECC

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: TPM 2.0 allows only asymmetric RSA or ECC primary keys. Afterwards, both symmetric and
asymmetric keys can be created under a TPM 2.0 Primary Key Typically, Primary Keys are used to
create Hierarchies of TPM 2.0 Keys. The TPM uses a Primary Key to wrap the other keys, signing or
decrypting.

WOLFTPM_API int wolfTPM2_ChangeAuthKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
WOLFTPM2_HANDLE * parent,
const byte * auth,
int authSz
)

Change the authorization secret of a TPM 2.0 key.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to an empty struct of WOLFTPM2_KEY type

* parent pointer to a struct of WOLFTPM2_HANDLE type, specifying a TPM 2.0 Primary Key to be
used as the parent(Storage Key)

+ auth pointer to a string constant, specifying the password authorization of the TPM 2.0 key

+ authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_CreatePrimaryKey
« wolfTPM2_SetAuthHandle
* wolfTPM2_UnloadHandle

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: TPM does not allow the authorization secret of a Primary Key to be changed. Instead, use
wolfTPM2_CreatePrimary to create the same PrimaryKey with a new auth.

COPYRIGHT ©2024 wolfSSL Inc. 372

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_CreateKey(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEYBLOB * keyBlob,
WOLFTPM2_HANDLE * parent,
TPMT_PUBLIC * publicTemplate,
const byte * auth,
int authSz

)

Single function to prepare and create a TPM 2.0 Key.

Parameters:

* dev pointer to a TPM2_DEV struct

+ keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

+ parent pointer to a struct of WOLFTPM2_HANDLE type, specifying the a 2.0 Primary Key to be
used as the parent(Storage Key)

publicTemplate pointer to a TPMT_PUBLIC structure populated manually or using one of the
wolfTPM2_GetKeyTemplate_... wrappers

+ auth pointer to a string constant, specifying the password authorization for the TPM 2.0 Key
authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_LoadKey

* wolfTPM2_GetKeyTemplate_RSA
* wolfTPM2_GetKeyTemplate_ECC
* wolfTPM2_CreatePrimaryKey

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: This function only creates the key material and stores it into the keyblob argument. To load the
key use wolfTPM2_LoadKey

WOLFTPM_API int wolfTPM2_LoadKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEYBLOB * keyBlob,
WOLFTPM2_HANDLE * parent

)

Single function to load a TPM 2.0 key.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ keyBlob pointer to a struct of WOLFTPM2_KEYBLOB type

COPYRIGHT ©2024 wolfSSL Inc. 373

5.5 wolfTPM2 Wrappers 5 API REFERENCE

* parent pointer to a struct of WOLFTPM2_HANDLE type, specifying a TPM 2.0 Primary Key to be
used as the parent(Storage Key)

See:

* wolfTPM2_CreateKey

* wolfTPM2_CreatePrimaryKey

* wolfTPM2_GetKeyTemplate_RSA
* wolfTPM2_GetKeyTemplate_ECC

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: To load a TPM 2.0 key its parent(Primary Key) should also be loaded prior to this operation.
Primary Keys are loaded when they are created.

WOLFTPM_API int wolfTPM2_CreateAndLoadKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
WOLFTPM2_HANDLE * parent,
TPMT_PUBLIC * publicTemplate,
const byte * auth,
int authSz
)

Single function to create and load a TPM 2.0 Key in one step.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to an empty struct of WOLFTPM2_KEY type

* parent pointer to a struct of WOLFTPM2_HANDLE type, specifying a TPM 2.0 Primary Key to be
used as the parent(Storage Key)

publicTemplate pointer to a TPMT_PUBLIC structure populated manually or using one of the
wolfTPM2_GetKeyTemplate_... wrappers

+ auth pointer to a string constant, specifying the password authorization of the TPM 2.0 key
authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_CreateKey
* wolfTPM2_GetKeyTemplate_RSA
* wolfTPM2_GetKeyTemplate_ECC

Return:

¢ TPM_RC_SUCCESS: successful

COPYRIGHT ©2024 wolfSSL Inc. 374

5.5 wolfTPM2 Wrappers 5 API REFERENCE

* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_CreatelLoadedKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEYBLOB * keyBlob,
WOLFTPM2_HANDLE * parent,
TPMT_PUBLIC * publicTemplate,
const byte * auth,
int authSz

)

Creates and loads a key using single TPM 2.0 operation, and stores encrypted private key material.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type, contains private key material
as encrypted data

* parent pointer to a struct of WOLFTPM2_HANDLE type, specifying a TPM 2.0 Primary Key to be

used as the parent(Storage Key)

publicTemplate pointer to a TPMT_PUBLIC structure populated manually or using one of the

wolfTPM2_GetKeyTemplate_... wrappers

+ auth pointer to a string constant, specifying the password authorization of the TPM 2.0 key

authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_CreateAndLoadKey
* wolfTPM2_CreateKey
* wolfTPM2_LoadKey

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_LoadPublicKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const TPM2B_PUBLIC * pub

)

Wrapper to load the public part of an external key.
Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 375

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ dev pointer to a TPM2_DEV struct
+ key pointer to an empty struct of WOLFTPM2_KEY type
* pub pointer to a populated structure of TPM2B_PUBLIC type

See:

* wolfTPM2_LoadRsaPublicKey
* wolfTPM2_LoadEccPublicKey
+ wolfTPM2_wolfTPM2_LoadPrivateKey

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: The key must be formatted to the format expected by the TPM, see the ‘pub’ argument and the
alternative wrappers.

WOLFTPM_API int wolfTPM2_LoadPrivateKey (
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEY * key,
const TPM2B_PUBLIC * pub,
TPM2B_SENSITIVE * sens

)

Single function to import an external private key and load it into the TPM in one step.

Parameters:

+ dev pointer to a TPM2_DEV struct

* parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys)
+ key pointer to an empty struct of WOLFTPM2_KEY type

* pub pointer to a populated structure of TPM2B_PUBLIC type

* sens pointer to a populated structure of TPM2B_SENSITIVE type

See:

* wolfTPM2_CreateKey
* wolfTPM2_GetKeyTemplate_RSA
* wolfTPM2_GetKeyTemplate_ECC

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 376

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Note: The private key material needs to be prepared in a format that the TPM expects, see the ‘sens’
argument

WOLFTPM_API int wolfTPM2_ImportPrivateKey(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,
const TPM2B_PUBLIC * pub,
TPM2B_SENSITIVE * sens

)

Single function to import an external private key and load it into the TPM in one step.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys)
+ keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

* pub pointer to a populated structure of TPM2B_PUBLIC type

* sens pointer to a populated structure of TPM2B_SENSITIVE type

See:

* wolfTPM2_ImportRsaPrivateKey
* wolfTPM2_ImportEccPrivateKey

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: The primary key material needs to be prepared in a format that the TPM expects, see the ‘sens’
argument

WOLFTPM_API int wolfTPM2_LoadRsaPublicKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * rsaPub,
woxrd32 rsaPubSz,
word32 exponent

)

Helper function to import the public part of an external RSA key.

Parameters:

* dev pointer to a TPM2_DEV struct
+ key pointer to an empty struct of WOLFTPM2_KEY type

COPYRIGHT ©2024 wolfSSL Inc. 377

5.5 wolfTPM2 Wrappers 5 API REFERENCE

rsaPub pointer to a byte buffer containing the public key material
rsaPubSz integer value of word32 type, specifying the buffer size
exponent integer value of word32 type, specifying the RSA exponent

See:

wolfTPM2_LoadRsaPublicKey_ex
wolfTPM2_LoadPublicKey
wolfTPM2_LoadEccPublicKey
wolfTPM2_ReadPublicKey

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Recommended for use, because it does not require TPM format of the public part

WOLFTPM_API int wolfTPM2_LoadRsaPublicKey_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * rsaPub,
word32 rsaPubSz,
word32 exponent,
TPMI_ALG_RSA_SCHEME scheme,
TPMI_ALG_HASH hashAlg
)

Advanced helper function to import the public part of an external RSA key.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to an empty struct of WOLFTPM2_KEY type

* rsaPub pointer to a byte buffer containing the public key material

* rsaPubSz integer value of word32 type, specifying the buffer size

+ exponent integer value of word32 type, specifying the RSA exponent

+ scheme value of TPMI_ALG_RSA_SCHEME type, specifying the RSA scheme

* hashAlg value of TPMI_ALG_HASH type, specifying the TPM hashing algorithm

* wolfTPM2_LoadRsaPublicKey
* wolfTPM2_LoadPublicKey
* wolfTPM2_LoadEccPublicKey
* wolfTPM2_ReadPublicKey

Return:

COPYRIGHT ©2024 wolfSSL Inc. 378

55

wolfTPM2 Wrappers 5 API REFERENCE

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

Note: Allows the developer to specify TPM hashing algorithm and RSA scheme

WOLFTPM_API int wolfTPM2_ImportRsaPrivateKey(

)

WOLFTPM2_DEV * dev,

const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,
const byte * rsaPub,

word32 rsaPubSz,

word32 exponent,

const byte * rsaPriv,

word32 rsaPrivSz,
TPMI_ALG_RSA_SCHEME scheme,
TPMI_ALG_HASH hashAlg

Import an external RSA private key.

Parameters:

See:

dev pointer to a TPM2_DEV struct

parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and
the key will be imported under the OWNER hierarchy)

keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

rsaPub pointer to a byte buffer, containing the public part of the RSA key

rsaPubSz integer value of word32 type, specifying the public part buffer size

exponent integer value of word32 type, specifying the RSA exponent

rsaPriv pointer to a byte buffer, containing the private material of the RSA key

rsaPrivSz integer value of word32 type, specifying the private material buffer size

scheme value of TPMI_ALG_RSA_SCHEME type, specifying the RSA scheme

hashAlg integer value of TPMI_ALG_HASH type, specifying a supported TPM 2.0 hash algorithm

wolfTPM2_ImportRsaPrivateKeySeed
wolfTPM2_LoadRsaPrivateKey
wolfTPM2_LoadRsaPrivateKey_ex
wolfTPM2_LoadPrivateKey

Return:

TPM_RC_SUCCESS: successful

TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

BUFFER_E: arguments size is larger than what the TPM buffers allow

COPYRIGHT ©2024 wolfSSL Inc. 379

55

wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_ImportRsaPrivateKeySeed(

)

WOLFTPM2_DEV * dev,

const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,
const byte * rsaPub,

woxrd32 rsaPubSz,

word32 exponent,

const byte * rsaPriv,
woxrd32 rsaPrivSz,
TPMI_ALG_RSA_SCHEME scheme,
TPMI_ALG_HASH hashAlg,
TPMA_OBJECT attributes,
byte * seed,

word32 seedSz

Import an external RSA private key with custom seed.

Parameters:

dev pointer to a TPM2_DEV struct

parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and
the key will be imported under the OWNER hierarchy)

keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

rsaPub pointer to a byte buffer, containing the public part of the RSA key

rsaPubSz integer value of word32 type, specifying the public part buffer size

exponent integer value of word32 type, specifying the RSA exponent

rsaPriv pointer to a byte buffer, containing the private material of the RSA key

rsaPrivSz integer value of word32 type, specifying the private material buffer size

scheme value of TPMI_ALG_RSA_SCHEME type, specifying the RSA scheme

hashAlg integer value of TPMI_ALG_HASH type, specifying a supported TPM 2.0 hash algorithm
attributes integer value of TPMA_OBJECT type, can contain one or more attributes, e.g. TPMA_OBJECT_fixedTPM
(or 0 to automatically populate)

seedSz Optional (use NULL) or supply a custom seed for KDF

seed Size of the seed (use 32 bytes for SHA2-256)

wolfTPM2_ImportRsaPrivateKey
wolfTPM2_LoadRsaPrivateKey
wolfTPM2_LoadRsaPrivateKey_ex
wolfTPM2_LoadPrivateKey

Return:

TPM_RC_SUCCESS: successful

TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

BUFFER_E: arguments size is larger than what the TPM buffers allow

COPYRIGHT ©2024 wolfSSL Inc. 380

55

wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_LoadRsaPrivateKey(

)

WOLFTPM2_DEV * dev,

const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEY * key,

const byte * rsaPub,

woxrd32 rsaPubSz,

word32 exponent,

const byte * rsaPriv,

woxrd32 rsaPrivSz

Helper function to import and load an external RSA private key in one step.

Parameters:

dev pointer to a TPM2_DEV struct

parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and
the key will be imported under the OWNER hierarchy)

key pointer to an empty struct of WOLFTPM2_KEY type

rsaPub pointer to a byte buffer, containing the public part of the RSA key

rsaPubSz integer value of word32 type, specifying the public part buffer size

exponent integer value of word32 type, specifying the RSA exponent

rsaPriv pointer to a byte buffer, containing the private material of the RSA key

rsaPrivSz integer value of word32 type, specifying the private material buffer size

wolfTPM2_ImportRsaPrivateKey
wolfTPM2_LoadRsaPrivateKey_ex
wolfTPM2_LoadPrivateKey

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_LoadRsaPrivateKey_ex(

)

WOLFTPM2_DEV * dev,

const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEY * key,

const byte * rsaPub,

woxrd32 rsaPubSz,

word32 exponent,

const byte * rsaPriv,

word32 rsaPrivSz,
TPMI_ALG_RSA_SCHEME scheme,
TPMI_ALG_HASH hashAlg

Advanced helper function to import and load an external RSA private key in one step.

COPYRIGHT ©2024 wolfSSL Inc. 381

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Parameters:

See:

dev pointer to a TPM2_DEV struct

parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and

the key will be imported under the OWNER hierarchy)
key pointer to an empty struct of WOLFTPM2_KEY type
rsaPub pointer to a byte buffer, containing the public part of the RSA key

rsaPubSz integer value of word32 type, specifying the public part buffer size

exponent integer value of word32 type, specifying the RSA exponent

rsaPriv pointer to a byte buffer, containing the private material of the RSA key
rsaPrivSz integer value of word32 type, specifying the private material buffer size

scheme value of TPMI_ALG_RSA_SCHEME type, specifying the RSA scheme

hashAlg value of TPMI_ALG_HASH type, specifying the TPM hashing algorithm

wolfTPM2_LoadRsaPrivateKey
wolfTPM2_LoadPrivateKey
wolfTPM2_ImportRsaPrivateKey
wolfTPM2_LoadEccPrivateKey

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_LoadEccPublicKey (

)

WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
int curveld,

const byte * eccPubX,
woxrd32 eccPubXSz,
const byte * eccPuby,
word32 eccPubYSz

Helper function to import the public part of an external ECC key.

Parameters:

dev pointer to a TPM2_DEV struct

key pointer to an empty struct of WOLFTPM2_KEY type

curveld integer value, one of the accepted TPM_ECC_CURVE values
eccPubX pointer to a byte buffer containing the public material of point X
eccPubXSz integer value of word32 type, specifying the point X buffer size
eccPubY pointer to a byte buffer containing the public material of point'Y
eccPubYSz integer value of word32 type, specifying the point Y buffer size

COPYRIGHT ©2024 wolfSSL Inc. 382

55

wolfTPM2 Wrappers 5 API REFERENCE

See:

wolfTPM2_LoadPublicKey
wolfTPM2_LoadRsaPublicKey
wolfTPM2_ReadPublicKey
wolfTPM2_LoadEccPrivateKey

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

Note: Recommended for use, because it does not require TPM format of the public part

WOLFTPM_API int wolfTPM2_ImportEccPrivateKey(

)

WOLFTPM2_DEV * dev,

const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,

int curveld,

const byte * eccPubX,

word32 eccPubXSz,

const byte * eccPuby,

word32 eccPubYSz,

const byte * eccPriv,

word32 eccPrivSz

Helper function to import the private material of an external ECC key.

Parameters:

See:

dev pointer to a TPM2_DEV struct

parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and
the key will be imported under the OWNER hierarchy)

keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

curveld integer value, one of the accepted TPM_ECC_CURVE values
eccPubX pointer to a byte buffer containing the public material of point X
eccPubXSz integer value of word32 type, specifying the point X buffer size
eccPubY pointer to a byte buffer containing the public material of pointY
eccPubYSz integer value of word32 type, specifying the point Y buffer size
eccPriv pointer to a byte buffer containing the private material

eccPrivSz integer value of word32 type, specifying the private material size

wolfTPM2_ImportEccPrivateKeySeed
wolfTPM2_LoadEccPrivateKey
wolfTPM2_LoadEccPrivateKey_ex
wolfTPM2_LoadPrivateKey

COPYRIGHT ©2024 wolfSSL Inc. 383

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Return:

* TPM_RC_SUCCESS: successful
» TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_ImportEccPrivateKeySeed(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,
int curveld,
const byte * eccPubX,
word32 eccPubXSz,
const byte * eccPuby,
word32 eccPubYSz,
const byte * eccPriv,
word32 eccPrivSz,
TPMA_OBJECT attributes,
byte * seed,
word32 seedSz

)

Helper function to import the private material of an external ECC key.

Parameters:

+ dev pointer to a TPM2_DEV struct

parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and

the key will be imported under the OWNER hierarchy)

+ keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

+ curveld integer value, one of the accepted TPM_ECC_CURVE values

+ eccPubX pointer to a byte buffer containing the public material of point X

+ eccPubXSz integer value of word32 type, specifying the point X buffer size

+ eccPubY pointer to a byte buffer containing the public material of point Y

+ eccPubYSz integer value of word32 type, specifying the point Y buffer size

+ eccPriv pointer to a byte buffer containing the private material

+ eccPrivSz integer value of word32 type, specifying the private material size

+ attributesintegervalue of TPMA_OBJECT type, can contain one or more attributes, e.g. TPMA_OBJECT_fixedTPM
(or 0 to automatically populate)

+ seedSz Optional (use NULL) or supply a custom seed for KDF

+ seed Size of the seed (use 32 bytes for SHA2-256)

See:

* wolfTPM2_ImportEccPrivateKey
* wolfTPM2_LoadEccPrivateKey

* wolfTPM2_LoadEccPrivateKey_ex
* wolfTPM2_LoadPrivateKey

Return:

COPYRIGHT ©2024 wolfSSL Inc. 384

55

wolfTPM2 Wrappers 5 API REFERENCE

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_LoadEccPrivateKey (

)

WOLFTPM2_DEV * dev,

const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEY * key,

int curveld,

const byte * eccPubX,

woxrd32 eccPubXSz,

const byte * eccPuby,

word32 eccPubYSz,

const byte * eccPriv,

word32 eccPrivSz

Helper function to import and load an external ECC private key in one step.

Parameters:

dev pointer to a TPM2_DEV struct

parentKey pointer to a struct of WOLFTPM2_HANDLE type (can be NULL for external keys and
the key will be imported under the OWNER hierarchy)

key pointer to an empty struct of WOLFTPM2_KEY type

curveld integer value, one of the accepted TPM_ECC_CURVE values
eccPubX pointer to a byte buffer containing the public material of point X
eccPubXSz integer value of word32 type, specifying the point X buffer size
eccPubY pointer to a byte buffer containing the public material of pointY
eccPubYSz integer value of word32 type, specifying the point Y buffer size
eccPriv pointer to a byte buffer containing the private material

eccPrivSz integer value of word32 type, specifying the private material size

wolfTPM2_ImportEccPrivateKey
wolfTPM2_LoadEccPublicKey
wolfTPM2_LoadPrivateKey

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_ReadPublicKey (

WOLFTPM2_DEV * dev,

COPYRIGHT ©2024 wolfSSL Inc. 385

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM2_KEY * key,
const TPM_HANDLE handle
)

Helper function to receive the public part of a loaded TPM object using its handle.

Parameters:

* dev pointer to a TPM2_DEV struct
+ key pointer to an empty struct of WOLFTPM2_KEY type
* handle integer value of TPM_HANDLE type, specifying handle of a loaded TPM object

* wolfTPM2_LoadRsaPublicKey
* wolfTPM2_LoadEccPublicKey
* wolfTPM2_LoadPublicKey

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: The public part of a TPM symmetric keys contains just TPM meta data

WOLFTPM_API int wolfTPM2_CreateKeySeal(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEYBLOB * keyBlob,
WOLFTPM2_HANDLE * parent,
TPMT_PUBLIC * publicTemplate,
const byte * auth,
int authSz,
const byte * sealData,
int sealSize

)

Using this wrapper a secret can be sealed inside a TPM 2.0 Key.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type
* parent pointer to a struct of WOLFTPM2_HANDLE type, specifying the a 2.0 Primary Key to be
used as the parent(Storage Key)
* publicTemplate pointer to a TPMT_PUBLIC structure populated using one of the wolfTPM2_GetKeyTemplate_Key
+ auth pointer to a string constant, specifying the password authorization for the TPM 2.0 Key
+ authSz integer value, specifying the size of the password authorization, in bytes
+ sealData pointer to a byte buffer, containing the secret(user data) to be sealed
+ sealSize integer value, specifying the size of the seal buffer, in bytes

COPYRIGHT ©2024 wolfSSL Inc. 386

5.5 wolfTPM2 Wrappers 5 API REFERENCE

See:

* wolfTPM2_GetKeyTemplate_KeySeal
* TPM2_Unseal
* wolfTPM2_CreatePrimary

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: The secret size can not be larger than 128 bytes

WOLFTPM_API int wolfTPM2_CreateKeySeal_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEYBLOB * keyBlob,
WOLFTPM2_HANDLE * parent,
TPMT_PUBLIC * publicTemplate,
const byte * auth,
int authSz,

TPM_ALG_ID pcrAlg,
byte * pcrArray,
word32 pcrArraySz,
const byte * sealData,
int sealSize

)

Using this wrapper a secret can be sealed inside a TPM 2.0 Key with pcr selection.

Parameters:

+ dev pointer to a WOLFTPM2_DEV struct

+ keyBlob pointer to an empty struct of WOLFTPM2_KEYBLOB type

* parent pointer to a struct of WOLFTPM2_HANDLE type, specifying the a 2.0 Primary Key to be
used as the parent(Storage Key)

publicTemplate pointer to a TPMT_PUBLIC structure populated using one of the wolfTPM2_GetKeyTemplate_Key
+ auth pointer to a string constant, specifying the password authorization for the TPM 2.0 Key
authSz integer value, specifying the size of the password authorization, in bytes

+ pcrAlg hash algorithm to use when calculating pcr digest

pcrArray optional array of pcrs to be used when creating the tpm object

pcrArraySz length of the pcrArray

sealData pointer to a byte buffer, containing the secret(user data) to be sealed

+ sealSize integer value, specifying the size of the seal buffer, in bytes

See:

* wolfTPM2_GetKeyTemplate_KeySeal
* TPM2_Unseal
* wolfTPM2_CreatePrimary

COPYRIGHT ©2024 wolfSSL Inc. 387

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Return:

* TPM_RC_SUCCESS: successful
» TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: The secret size can not be larger than 128 bytes

WOLFTPM_API int wolfTPM2_ComputeName (
const TPM2B_PUBLIC * pub,
TPM2B_NAME * out

)

Helper function to generate a hash of the public area of an object in the format expected by the TPM.

Parameters:

+ pub pointer to a populated structure of TPM2B_PUBLIC type, containing the public area of a TPM
object
+ out pointer to an empty struct of TPM2B_NAME type, to store the computed name

See: wolfTPM2_ImportPrivateKey

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Computed TPM name includes hash of the TPM_ALG_ID and the public are of the object

WOLFTPM_API int wolfTPM2_SensitiveToPrivate(
TPM2B_SENSITIVE * sens,
TPM2B_PRIVATE * priv,
TPMI_ALG_HASH nameAlg,
TPM2B_NAME * name,
const WOLFTPM2_KEY * parentKey,
TPMT_SYM_DEF_OBJECT * sym,
TPM2B_DATA * symSeed
)

Helper function to convert TPM2B_SENSITIVE.

Parameters:

*+ sens pointer to a correctly populated structure of TPM2B_SENSITIVE type

* priv pointer to an empty struct of TPM2B_PRIVATE type

+ nameAlg integer value of TPMI_ALG_HASH type, specifying a valid TPM2 hashing algorithm
* name pointer to a TPM2B_NAME structure

COPYRIGHT ©2024 wolfSSL Inc. 388

55

wolfTPM2 Wrappers 5 API REFERENCE

parentKey pointer to a WOLFTPM2_KEY structure, specifying a parentKey, if it exists
sym pointer to a structure of TPMT_SYM_DEF_OBJECT type
symSeed pointer to a structure of derived secret (RSA=random, ECC=ECDHE)

See: wolfTPM2_ImportPrivateKey

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_ImportPrivateKeyBuffer(

)

WOLFTPM2_DEV * dev,

const WOLFTPM2_KEY * parentKey,
int keyType,

WOLFTPM2_KEYBLOB * keyBlob,
int encodingType,

const char * input,

word32 inSz,

const char * pass,
TPMA_OBJECT objectAttributes,
byte * seed,

word32 seedSz

Helper function to import PEM/DER or RSA/ECC private key.

Parameters:

dev pointer to a TPM2_DEV struct

keyType The type of key (TPM_ALG_RSA or TPM_ALG_ECC)

parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy
keyBlob pointer to a struct of WOLFTPM2_KEYBLOB type, to import the private key to
encodingType ENCODING_TYPE_PEM or ENCODING_TYPE_ASN1 (DER)

input buffer holding the rsa pem

inSz length of the input pem buffer

pass optional password of the key

objectAttributes integer value of TPMA_OBJECT type, can contain one or more attributes,
e.g. TPMA_OBJECT _fixedTPM

seedSz Optional (use NULL) or supply a custom seed for KDF

seed Size of the seed (use 32 bytes for SHA2-256)

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 389

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

WOLFTPM_API int wolfTPM2_ImportPublicKeyBuffer(
WOLFTPM2_DEV * dev,
int keyType,
WOLFTPM2_KEY * key,
int encodingType,
const char * input,
woxrd32 inSz,
TPMA_OBJECT objectAttributes
)

Helper function to import PEM/DER formatted RSA/ECC public key.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ keyType The type of key (TPM_ALG_RSA or TPM_ALG_ECC)

+ key pointer to a struct of WOLFTPM2_KEY type, to import the public key to
+ encodingType ENCODING_TYPE_PEM or ENCODING_TYPE_ASN1 (DER)

* input buffer holding the rsa pem

+ inSz length of the input pem buffer

+ objectAttributes integer value of OR'd TPMA_OBJECT_* types

Return:

* TPM_RC_SUCCESS: successful - populates key->pub
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_ExportPublicKeyBuffer(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * tpmKey,
int encodingType,
byte * out,
word32 * outSz

)

Helper function to export a TPM RSA/ECC public key with PEM/DER formatting.

Parameters:

+ dev pointer to a TPM2_DEV struct

* tpmKey pointer to a WOLFTPM2_KEY with populated key

+ encodingType ENCODING_TYPE_PEM or ENCODING_TYPE_ASN1 (DER)
+ out buffer to export public key

+ outSz pointer to length of the out buffer

Return:

* TPM_RC_SUCCESS: successful - populates key->pub
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)

COPYRIGHT ©2024 wolfSSL Inc. 390

5.5 wolfTPM2 Wrappers 5 API REFERENCE

* BUFFER_E: insufficient space in provided buffer
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_RsaPrivateKeyImportDer(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,
const byte * input,
word32 inSz,
TPMI_ALG_RSA_SCHEME scheme,
TPMI_ALG_HASH hashAlg

)

Helper function to import Der rsa key directly.

Parameters:

+ dev pointer to a TPM2_DEV struct

* parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy
+ keyBlob pointer to a struct of WOLFTPM2_KEYBLOB type, to import the rsa key to

* input buffer holding the rsa der

* inSz length of the input der buffer

+ scheme value of TPMI_ALG_RSA_SCHEME type, specifying the RSA scheme

* hashAlg value of TPMI_ALG_HASH type, specifying the TPM hashing algorithm

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_RsaPrivateKeyImportPem(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEYBLOB * keyBlob,
const char * input,
word32 inSz,
char * pass,
TPMI_ALG_RSA_SCHEME scheme,
TPMI_ALG_HASH hashAlg
)

Helper function to import Pem rsa key directly.

Parameters:

* dev pointer to a TPM2_DEV struct
* parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy
+ keyBlob pointer to a struct of WOLFTPM2_KEYBLOB type, to import the rsa key to

COPYRIGHT ©2024 wolfSSL Inc. 391

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ input buffer holding the rsa pem

* inSz length of the input pem buffer

* pass optional password of the key

+ scheme value of TPMI_ALG_RSA_SCHEME type, specifying the RSA scheme

*+ hashAlg value of TPMI_ALG_HASH type, specifying the TPM hashing algorithm

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_RsaKey_TpmToWolf(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * tpmKey,
RsaKey * wolfKey

)

Extract a RSA TPM key and convert it to a wolfcrypt key.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ tpmKey pointer to a struct of WOLFTPM2_KEY type, holding a TPM key
+ wolfKey pointer to an empty struct of RsaKey type, to store the converted key

See:

» wolfTPM2_RsaKey_ WolfToTpm
* wolfTPM2_RsaKey_WolfToTpm_ex

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_RsaKey_TpmToPemPub (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * keyBlob,
byte * penm,
word32 * pemSz

)

Convert a public RSA TPM key to PEM format public key. Note: This API is a wrapper around
wolfTPM2_ExportPublicKeyBuffer.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 392

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ dev pointer to a TPM2_DEV struct

+ keyBlob pointer to a struct of WOLFTPM2_KEY type, holding a TPM key

* pem pointer to an array of byte type, used as temporary storage for PEM conversation
* pemSz pointer to integer variable, to store the used buffer size

See:

* wolfTPM2_ExportPublicKeyBuffer
* wolfTPM2_RsaKey_TpmToWolf
» wolfTPM2_RsaKey WolfToTpm

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_RsaKey_WolfToTpm(
WOLFTPM2_DEV * dev,
RsaKey * wolfKey,
WOLFTPM2_KEY * tpmKey

)
Import a RSA wolfcrypt key into the TPM.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ wolfKey pointer to a struct of RsaKey type, holding a wolfcrypt key
+ tpmKey pointer to an empty struct of WOLFTPM2_KEY type, to hold the imported TPM key

See: wolfTPM2_RsaKey_TpmToWolf

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Allows the use of externally generated keys by wolfcrypt to be used with TPM 2.0

WOLFTPM_API int wolfTPM2_RsaKey_WolfToTpm_ex(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
RsaKey * wolfKey,
WOLFTPM2_KEY * tpmKey

COPYRIGHT ©2024 wolfSSL Inc. 393

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Import a RSA wolfcrypt key into the TPM under a specific Primary Key or Hierarchy.
Parameters:

+ dev pointer to a TPM2_DEV struct

* parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy
+ wolfKey pointer to a struct of RsaKey type, holding a wolfcrypt key

+ tpmKey pointer to an empty struct of WOLFTPM2_KEY type, to hold the imported TPM key

* wolfTPM2_RsaKey_WolfToTpm
* wolfTPM2_RsaKey_TpmToWolf

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Allows the use of wolfcrypt generated keys with wolfTPM

WOLFTPM_API int wolfTPM2_CreateRsaKeyBlob(
WOLFTPM2_DEV * dev,
const WOLFTPM2_KEY * parentKey,
RsaKey * wolfKey,
WOLFTPM2_KEYBLOB * tpmKey
)

Create an encrypted RSA key blob from a wolfCrypt key under a specific parent key.

Parameters:

+ dev pointer to a TPM2_DEV struct

* parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy

+ wolfKey pointer to a struct of RsaKey type, holding a wolfcrypt key

+ tpmKey pointer to an empty struct of WOLFTPM2_KEYBLOB type, to hold the encrypted key blob

* wolfTPM2_LoadKey
* wolfTPM2_RsaKey WolfToTpm_ex
* wolfTPM2_CreateEccKeyBlob

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 394

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Note: Creates an encrypted version of the key in WOLFTPM2_KEYBLOB to load the key.

WOLFTPM_API int wolfTPM2_RsaKey_PubPemToTpm(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * tpmKey,
const byte * penm,
word32 pemSz
)

Import a PEM format public key from a file into the TPM.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ tpmKey pointer to an empty struct of WOLFTPM2_KEY type, to hold the imported TPM key
* pem pointer to an array of byte type, containing a PEM formatted public key material

* pemSz pointer to integer variable, specifying the size of PEM key data

See:

* wolfTPM2_RsaKey_WolfToTpm
+ wolfTPM2_RsaKey_TpmToPem
* wolfTPM2_RsaKey_TpmToWolf

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)

WOLFTPM_API int wolfTPM2_DecodeRsaDer (
const byte * der,
woxrd32 derSz,
TPM2B_PUBLIC * pub,
TPM2B_SENSITIVE * sens,
TPMA_OBJECT attributes

)

Import DER RSA private or public key into TPM public and sensitive structures. This does not make any
calls to TPM hardware.

Parameters:

+ der The der encoding of the content of the extension.

+ derSz The size in bytes of the der encoding.

* pub pointer to a populated structure of TPM2B_PUBLIC type

* sens pointer to a populated structure of TPM2B_SENSITIVE type

« attributesintegervalue of TPMA_OBJECT type, can contain one or more attributes, e.g. TPMA_OBJECT_fixedTPM
(or 0 to automatically populate)

COPYRIGHT ©2024 wolfSSL Inc. 395

5.5 wolfTPM2 Wrappers 5 API REFERENCE

See:

* wolfTPM2_ImportPublicKeyBuffer
* wolfTPM2_ImportPrivateKeyBuffer
* wolfTPM2_DecodeEccDer

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)

WOLFTPM_API int wolfTPM2_EccKey_TpmToWolf(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * tpmKey,
ecc_key * wolfKey

)

Extract a ECC TPM key and convert to to a wolfcrypt key.

Parameters:

+ dev pointer to a TPM2_DEV struct
* tpmKey pointer to a struct of WOLFTPM2_KEY type, holding a TPM key
+ wolfKey pointer to an empty struct of ecc_key type, to store the converted key

See:

* wolfTPM2_EccKey_WolfToTpm
* wolfTPM2_EccKey_WolfToTpm_ex

Return:

« TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_EccKey_WolfToTpm(
WOLFTPM2_DEV * dev,
ecc_key * wolfKey,
WOLFTPM2_KEY * tpmKey

)

Import a ECC wolfcrypt key into the TPM.
Parameters:

+ dev pointer to a TPM2_DEV struct

COPYRIGHT ©2024 wolfSSL Inc. 396

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ wolfKey pointer to a struct of ecc_key type, holding a wolfcrypt key
* tpmKey pointer to an empty struct of WOLFTPM2_KEY type, to hold the imported TPM key

See: wolfTPM2_EccKey_TpmToWolf

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Allows the use of externally generated keys by wolfcrypt to be used with TPM 2.0

WOLFTPM_API int wolfTPM2_EccKey_WolfToTpm_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * parentKey,
ecc_key * wolfKey,
WOLFTPM2_KEY * tpmKey
)

Import ECC wolfcrypt key into the TPM under a specific Primary Key or Hierarchy.

Parameters:

+ dev pointer to a TPM2_DEV struct

* parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy
+ wolfKey pointer to a struct of ecc_key type, holding a wolfcrypt key

+ tpmKey pointer to an empty struct of WOLFTPM2_KEY type, to hold the imported TPM key

See:

+ wolfTPM2_EccKey_WolfToTPM
» wolfTPM2_EccKey_TpmToWolf

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Allows the use of wolfcrypt generated keys with wolfTPM

WOLFTPM_API int wolfTPM2_CreateEccKeyBlob(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * parentKey,
ecc_key * wolfKey,
WOLFTPM2_KEYBLOB * tpmKey

COPYRIGHT ©2024 wolfSSL Inc. 397

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Create an encrypted ECC key blob from a wolfCrypt key under a specific parent key.

Parameters:

+ dev pointer to a TPM2_DEV struct

* parentKey pointer to a WOLFTPM2_KEY struct, pointing to a Primary Key or TPM Hierarchy

+ wolfKey pointer to a struct of ecc_key type, holding a wolfcrypt key

+ tpmKey pointer to an empty struct of WOLFTPM2_KEYBLOB type, to hold the encrypted key blob

* wolfTPM2_LoadKey
* wolfTPM2_EccKey_WolfToTpm_ex
* wolfTPM2_CreateRsaKeyBlob

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Creates an encrypted version of the key in WOLFTPM2_KEYBLOB to load the key.

WOLFTPM_API int wolfTPM2_EccKey_WolfToPubPoint(
WOLFTPM2_DEV * dev,
ecc_key * wolfKey,
TPM2B_ECC_POINT * pubPoint

)
Import a ECC public key generated from wolfcrypt key into the TPM.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ wolfKey pointer to a struct of ecc_key type, holding a wolfcrypt public ECC key
* pubPoint pointer to an empty struct of TPM2B_ECC_POINT type

See: wolfTPM2_EccKey_TpmToWolf

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Allows the use of externally generated public ECC key by wolfcrypt to be used with TPM 2.0

COPYRIGHT ©2024 wolfSSL Inc. 398

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_DecodeEccDer (
const byte * der,
woxrd32 derSz,
TPM2B_PUBLIC * pub,
TPM2B_SENSITIVE * sens,
TPMA_OBJECT attributes

)

Import DER ECC private or public key into TPM public and sensitive structures. This does not make any
calls to TPM hardware.

Parameters:

+ der The der encoding of the content of the extension.

+ derSz The size in bytes of the der encoding.

* pub pointer to a populated structure of TPM2B_PUBLIC type

*+ sens pointer to a populated structure of TPM2B_SENSITIVE type

+ attributesintegervalue of TPMA_OBJECT type, can contain one or more attributes, e.g. TPMA_OBJECT_fixedTPM
(or 0 to automatically populate)

See:

+ wolfTPM2_ImportPublicKeyBuffer
* wolfTPM2_ImportPrivateKeyBuffer
* wolfTPM2_DecodeRsaDer

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)

WOLFTPM_API int wolfTPM2_SignHash(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * digest,
int digestSz,
byte * sig,
int * sigSz

)

Helper function to sign arbitrary data using a TPM key.

Parameters:

* dev pointer to a TPM2_DEV struct

+ key pointer to a struct of WOLFTPM2_KEY type, holding a TPM key material
+ digest pointer to a byte buffer, containing the arbitrary data

+ digestSz integer value, specifying the size of the digest buffer, in bytes

* sig pointer to a byte buffer, containing the generated signature

* sigSz integer value, specifying the size of the signature buffer, in bytes

COPYRIGHT ©2024 wolfSSL Inc. 399

5.5 wolfTPM2 Wrappers 5 API REFERENCE

See:

* wolfTPM2_VerifyHash
* wolfTPM2_SignHashScheme
* wolfTPM2_VerifyHashScheme

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_SignHashScheme (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * digest,
int digestSz,
byte * sig,
int * sigSz,
TPMI_ALG_SIG_SCHEME sigAlg,
TPMI_ALG_HASH hashAlg
)

Advanced helper function to sign arbitrary data using a TPM key, and specify the signature scheme
and hashing algorithm.

Parameters:

* dev pointer to a TPM2_DEV struct

+ key pointer to a struct of WOLFTPM2_KEY type, holding a TPM key material

+ digest pointer to a byte buffer, containing the arbitrary data

+ digestSz integer value, specifying the size of the digest buffer, in bytes

* sig pointer to a byte buffer, containing the generated signature

* sigSz integer value, specifying the size of the signature buffer, in bytes

+ sigAlg integer value of TPMI_ALG_SIG_SCHEME type, specifying a supported TPM 2.0 signature
scheme

+ hashAlg integer value of TPMI_ALG_HASH type, specifying a supported TPM 2.0 hash algorithm

* wolfTPM2_SignHash
* wolfTPM2_VerifyHash
* wolfTPM2_VerifyHashScheme

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 400

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_VerifyHash(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * sig,
int sigSz,
const byte * digest,
int digestSz
)

Helper function to verify a TPM generated signature.

Parameters:

* dev pointer to a TPM2_DEV struct

* key pointer to a struct of WOLFTPM2_KEY type, holding a TPM 2.0 key material
* sig pointer to a byte buffer, containing the generated signature

* sigSz integer value, specifying the size of the signature buffer, in bytes

+ digest pointer to a byte buffer, containing the signed data

+ digestSz integer value, specifying the size of the digest buffer, in bytes

See:

* wolfTPM2_SignHash

+ wolfTPM2_SignHashScheme
* wolfTPM2_VerifyHashScheme
* wolfTPM2_VerifyHash_ex

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_VerifyHash_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * sig,
int sigSz,
const byte * digest,
int digestSz,
int hashAlg
)

Helper function to verify a TPM generated signature.

Parameters:

+ dev pointer to a TPM2_DEV struct

COPYRIGHT ©2024 wolfSSL Inc. 401

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ key pointer to a struct of WOLFTPM2_KEY type, holding a TPM 2.0 key material
* sig pointer to a byte buffer, containing the generated signature

* sigSz integer value, specifying the size of the signature buffer, in bytes

+ digest pointer to a byte buffer, containing the signed data

+ digestSz integer value, specifying the size of the digest buffer, in bytes

* hashAlg hash algorithm used to sign

* wolfTPM2_SignHash
* wolfTPM2_SignHashScheme
* wolfTPM2_VerifyHashScheme

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_VerifyHashScheme(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * sig,
int sigSz,
const byte * digest,
int digestSz,
TPMI_ALG_SIG_SCHEME sigAlg,
TPMI_ALG_HASH hashAlg
)

Advanced helper function to verify a TPM generated signature.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to a struct of WOLFTPM2_KEY type, holding a TPM 2.0 key material

* sig pointer to a byte buffer, containing the generated signature

* sigSz integer value, specifying the size of the signature buffer, in bytes

+ digest pointer to a byte buffer, containing the signed data

+ digestSz integer value, specifying the size of the digest buffer, in bytes

+ sigAlg integer value of TPMI_ALG_SIG_SCHEME type, specifying a supported TPM 2.0 signature
scheme

* hashAlg integer value of TPMI_ALG_HASH type, specifying a supported TPM 2.0 hash algorithm

* wolfTPM2_SignHash
* wolfTPM2_SignHashScheme
* wolfTPM2_VerifyHash

COPYRIGHT ©2024 wolfSSL Inc. 402

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Return:

* TPM_RC_SUCCESS: successful
» TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_VerifyHashTicket(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const byte * sig,
int sigSz,
const byte * digest,
int digestSz,
TPMI_ALG_SIG_SCHEME sigAlg,
TPMI_ALG_HASH hashAlg,
TPMT_TK_VERIFIED * checkTicket

)

Advanced helper function to verify a TPM generated signature and return ticket.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to a struct of WOLFTPM2_KEY type, holding a TPM 2.0 key material

+ sig pointer to a byte buffer, containing the generated signature

+ sigSz integer value, specifying the size of the signature buffer, in bytes

+ digest pointer to a byte buffer, containing the signed data

+ digestSz integer value, specifying the size of the digest buffer, in bytes

+ sigAlg integer value of TPMI_ALG_SIG_SCHEME type, specifying a supported TPM 2.0 signature
scheme

+ hashAlg integer value of TPMI_ALG_HASH type, specifying a supported TPM 2.0 hash algorithm

+ checkTicket returns the validation ticket proving the signature for digest was checked

* wolfTPM2_VerifyHashScheme
» wolfTPM2_VerifyHashTicket
* wolfTPM2_VerifyHash

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_ECDHGenKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * ecdhKey,

COPYRIGHT ©2024 wolfSSL Inc. 403

5.5 wolfTPM2 Wrappers 5 API REFERENCE

int curve_id,
const byte * auth,
int authSz

)

Generates and then loads a ECC key-pair with NULL hierarchy for Diffie-Hellman exchange.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ ecdhKey pointer to an empty structure of WOLFTPM2_KEY type

+ curve_id integer value, specifying a valid TPM_ECC_CURVE value

+ auth pointer to a string constant, specifying the password authorization for the TPM 2.0 Key
« authSz integer value, specifying the size of the password authorization, in bytes

See:

* WolfTPM2_ECDHGen

* wolfTPM2_ECDHGenZ

* wolfTPM2_ECDHEGenKey
* wolfTPM2_ECDHEGenZ

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_ECDHGen(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * privKey,
TPM2B_ECC_POINT * pubPoint,
byte * out,
int * outSz

)

Generates ephemeral key and computes Z (shared secret)

Parameters:

+ dev pointer to a TPM2_DEV struct

* privKey pointer to a structure of WOLFTPM2_KEY type

* pubPoint pointer to an empty structure of TPM2B_ECC_POINT type
+ out pointer to a byte buffer, to store the generated shared secret

+ outSz integer value, specifying the size of the shared secret, in bytes

See:

* wolfTPM2_ECDHGenZ
* wolfTPM2_ECDHGenKey

COPYRIGHT ©2024 wolfSSL Inc. 404

5.5 wolfTPM2 Wrappers 5 API REFERENCE

* wolfTPM2_ECDHEGenKey
* wolfTPM2_ECDHEGenZ

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: One shot API using private key handle to generate key-pair and return public point and shared
secret

WOLFTPM_API int wolfTPM2_ECDHGenZ (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * privKey,
const TPM2B_ECC_POINT * pubPoint,
byte * out,
int * outSz

)

Computes Z (shared secret) using pubPoint and loaded private ECC key.

Parameters:

* dev pointer to a TPM2_DEV struct

+ privKey pointer to a structure of WOLFTPM2_KEY type, containing a valid TPM handle
* pubPoint pointer to a populated structure of TPM2B_ECC_POINT type

+ out pointer to a byte buffer, to store the computed shared secret

+ outSz integer value, specifying the size of the shared secret, in bytes

See:

* wolfTPM2_ECDHGen

* wolfTPM2_ECDHGenKey
* wolfTPM2_ECDHEGenKey
* wolfTPM2_ECDHEGenZ

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_ECDHEGenKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * ecdhKey,
int curve_id

COPYRIGHT ©2024 wolfSSL Inc. 405

55

wolfTPM2 Wrappers

5 APIREFERENCE

Generates ephemeral ECC key and returns array index (2 phase method)

Parameters:

See:

dev pointer to a TPM2_DEV struct
ecdhKey pointer to an empty structure of WOLFTPM2_KEY type
curve_id integer value, specifying a valid TPM_ECC_CURVE value

wolfTPM2_ECDHEGenZ
wolfTPM2_ECDHGen
wolfTPM2_ECDHGenKey
wolfTPM2_ECDHGenZ

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

Note: One time use key

WOLFTPM_API int wolfTPM2_ECDHEGenZ(

)

WOLFTPM2_DEV * dev,

WOLFTPM2_KEY * parentKey,
WOLFTPM2_KEY * ecdhKey,

const TPM2B_ECC_POINT * pubPoint,
byte * out,

int * outSz

Computes Z (shared secret) using pubPoint and counter (2 phase method)

Parameters:

See:

dev pointer to a TPM2_DEV struct

parentKey pointer to a structure of WOLFTPM2_KEY type, containing a valid TPM handle of a

primary key

ecdhKey pointer to a structure of WOLFTPM2_KEY type, containing a valid TPM handle

pubPoint pointer to an empty struct of TPM2B_ECC_POINT type
out pointer to a byte buffer, to store the computed shared secret
outSz integer value, specifying the size of the shared secret, in bytes

wolfTPM2_ECDHEGenKey
wolfTPM2_ECDHGen
wolfTPM2_ECDHGenKey
wolfTPM2_ECDHGenZ

COPYRIGHT ©2024 wolfSSL Inc. 406

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Return:

* TPM_RC_SUCCESS: successful
» TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: The counter, array ID, can only be used one time

WOLFTPM_API int wolfTPM2_RsaEncrypt(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
TPM_ALG_ID padScheme,
const byte * msg,
int msgSz,
byte * out,
int * outSz

)

Perform RSA encryption using a TPM 2.0 key.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to a struct of WOLFTPM2_KEY type, holding a TPM key material

+ padScheme integer value of TPM_ALG_ID type, specifying the padding scheme
* msg pointer to a byte buffer, containing the arbitrary data for encryption

* msgSz integer value, specifying the size of the arbitrary data buffer

+ out pointer to a byte buffer, where the encrypted data will be stored

+ outSz integer value, specifying the size of the encrypted data buffer

See: wolfTPM2_RsaDecrypt

Return:

« TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_RsaDecrypt(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
TPM_ALG_ID padScheme,
const byte * in,
int inSz,
byte * msg,
int * msgSz

)

Perform RSA decryption using a TPM 2.0 key.

COPYRIGHT ©2024 wolfSSL Inc. 407

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Parameters:

* dev pointer to a TPM2_DEV struct

+ key pointer to a struct of WOLFTPM2_KEY type, holding a TPM key material

+ padScheme integer value of TPM_ALG_ID type, specifying the padding scheme
* in pointer to a byte buffer, containing the encrypted data

* inSz integer value, specifying the size of the encrypted data buffer

* msg pointer to a byte buffer, containing the decrypted data

* msgSz pointer to size of the encrypted data buffer, on return set actual size

See: wolfTPM2_RsaEncrypt
Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_ReadPCR(
WOLFTPM2_DEV * dev,
int pcrIndex,
int hashAlg,
byte * digest,
int * pbDigestLen
)

Read the values of a specified TPM 2.0 Platform Configuration Registers(PCR)

Parameters:

*+ dev pointer to a TPM2_DEV struct

+ pcrIndex integer value, specifying a valid PCR index, between 0 and 23 (TPM locality could have
an impact on successful access)

* hashAlg integer value, specifying a TPM_ALG_SHA256 or TPM_ALG_SHA1 registers to be
accessed

+ digest pointer to a byte buffer, where the PCR values will be stored

+ pDigestLen pointer to an integer variable, where the size of the digest buffer will be stored

See: wolfTPM2_ExtendPCR
Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Make sure to specify the correct hashing algorithm, because there are two sets of PCR registers,
one for SHA256 and the other for SHA1(deprecated, but still possible to be read)

COPYRIGHT ©2024 wolfSSL Inc. 408

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_ResetPCR(
WOLFTPM2_DEV * dev,
int pcrIndex

)

Reset a PCR register to its default value.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ pcrIndex integer value, specifying a valid PCR index between 0 and 15

See:

* wolfTPM2_ReadPCR
* wolfTPM2_ExtendPCR

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Only PCR registers 0-15 can be reset, and this operation requires platform authorization

WOLFTPM_API int wolfTPM2_ExtendPCR(
WOLFTPM2_DEV * dev,
int pcrIndex,
int hashAlg,
const byte * digest,
int digestlLen

)

Extend a PCR register with a user provided digest.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ pcrIndex integer value, specifying a valid PCR index, between 0 and 23 (TPM locality could have
an impact on successful access)

+ hashAlg integer value, specifying a TPM_ALG_SHA256 or TPM_ALG_SHA1 registers to be
accessed

+ digest pointer to a byte buffer, containing the digest value to be extended into the PCR

+ digestLen the size of the digest buffer

See: wolfTPM2_ReadPCR

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)

COPYRIGHT ©2024 wolfSSL Inc. 409

5.5 wolfTPM2 Wrappers 5 API REFERENCE

* BAD_FUNC_ARG: check the provided arguments

Note: Make sure to specify the correct hashing algorithm

WOLFTPM_API int wolfTPM2_NVCreateAuth(
WOLFTPM2_DEV * dev,
WOLFTPM2_HANDLE * parent,
WOLFTPM2_NV * nv,
word32 nvIndex,
word32 nvAttributes,
word32 maxSize,
const byte * auth,
int authSz

)

Creates a new NV Index to be later used for storing data into the TPM’'s NVRAM.

Parameters:

* dev pointer to a TPM2_DEV struct

+ parent pointer to a WOLFTPM2_HANDLE, specifying the TPM hierarchy for the new NV Index
* nv pointer to an empty structure of WOLFTPM2_NV type, to hold the new NV Index

* nvIindex integer value, holding the NV Index Handle given by the TPM upon success

* nvAttributes integer value, use wolfTPM2_GetNvAttributesTemplate to create correct value
* maxSize integer value, specifying the maximum number of bytes written at this NV Index

+ auth pointer to a string constant, specifying the password authorization for this NV Index

+ authSz integer value, specifying the size of the password authorization, in bytes

* wolfTPM2_NVCreateAuthPolicy
* wolfTPM2_NVWriteAuth

« wolfTPM2_NVReadAuth

« wolfTPM2_NVDeleteAuth

* wolfTPM2_NVOpen

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: This is a wolfTPM2 wrapper around TPM2_NV_DefineSpace

WOLFTPM_API int wolfTPM2_NVCreateAuthPolicy(
WOLFTPM2_DEV * dev,
WOLFTPM2_HANDLE * parent,
WOLFTPM2_NV * nv,
word32 nvIndex,
word32 nvAttributes,

COPYRIGHT ©2024 wolfSSL Inc. 410

55

wolfTPM2 Wrappers 5 API REFERENCE

)

word32 maxSize,

const byte * auth,

int authSz,

const byte * authPolicy,
int authPolicySz

Creates a new NV Index to be later used for storing data into the TPM's NVRAM.

Parameters:

dev pointer to a TPM2_DEV struct

parent pointer to a WOLFTPM2_HANDLE, specifying the TPM hierarchy for the new NV Index
nv pointer to an empty structure of WOLFTPM2_NV type, to hold the new NV Index

nvIindex integer value, holding the NV Index Handle given by the TPM upon success
nvAttributes integer value, use wolfTPM2_GetNvAttributesTemplate to create correct value
maxSize integer value, specifying the maximum number of bytes written at this NV Index
auth pointer to a string constant, specifying the password authorization for this NV Index
authSz integer value, specifying the size of the password authorization, in bytes

authPolicy optional policy for using this key (The policy is computed using the nameAlg of the
object)

authPolicySz size of the authPolicy

wolfTPM2_NVCreateAuth
wolfTPM2_NVWriteAuth
wolfTPM2_NVReadAuth
wolfTPM2_NVDeleteAuth
wolfTPM2_NVOpen

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

Note: This is a wolfTPM2 wrapper around TPM2_NV_DefineSpace

WOLFTPM_API int wolfTPM2_NVWriteAuth(

)

WOLFTPM2_DEV * dev,
WOLFTPM2_NV * nv,
woxrd32 nvIndex,
byte * dataBuf,
word32 dataSz,
word32 offset

Stores user data to a NV Index, at a given offset.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 411

55

wolfTPM2 Wrappers 5 API REFERENCE

See:

dev pointer to a TPM2_DEV struct

nv pointer to a populated structure of WOLFTPM2_NV type

nvIindex integer value, holding an existing NV Index Handle value

dataBuf pointer to a byte buffer, containing the user data to be written to the TPM's NVRAM
dataSz integer value, specifying the size of the user data buffer, in bytes

offset integer value of word32 type, specifying the offset from the NV Index memory start, can
be zero

wolfTPM2_NVReadAuth
wolfTPM2_NVCreateAuth
wolfTPM2_NVDeleteAuth
wolfTPM2_NVWriteAuthPolicy

Return:

TPM_RC_SUCCESS: successful
TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

Note: User data size should be less or equal to the NV Index maxSize specified using wolfTPM2_CreateAuth

WOLFTPM_API int wolfTPM2_NVWriteAuthPolicy(

)

WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * tpmSession,
TPM_ALG_ID pcrAlg,

byte * pcrArray,

word32 pcrArraySz,

WOLFTPM2_NV * nv,

word32 nvIndex,

byte * dataBuf,

word32 dataSz,

word32 offset

Stores user data to a NV Index, at a given offset. Allows using a policy session and PCR’s for authenti-
cation.

Parameters:

dev pointer to a TPM2_DEV struct

tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

pcrAlg the hash algorithm to use with PCR policy

pcrArray array of PCR Indexes to use when creating the policy

pcrArraySz the number of PCR Indexes in the pcrArray

nv pointer to a populated structure of WOLFTPM2_NV type

nvIindex integer value, holding an existing NV Index Handle value

dataBuf pointer to a byte buffer, containing the user data to be written to the TPM’s NVRAM
dataSz integer value, specifying the size of the user data buffer, in bytes

COPYRIGHT ©2024 wolfSSL Inc. 412

5.5 wolfTPM2 Wrappers 5 API REFERENCE

offset integer value of word32 type, specifying the offset from the NV Index memory start, can
be zero

See:

* wolfTPM2_NVReadAuth
* wolfTPM2_NVCreateAuth
* wolfTPM2_NVDeleteAuth
* wolfTPM2_NVWriteAuth

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: User data size should be less or equal to the NV Index maxSize specified using wolfTPM2_CreateAuth

WOLFTPM_API int wolfTPM2_NVExtend(
WOLFTPM2_DEV * dev,
WOLFTPM2_NV * nv,
woxrd32 nvIndex,
byte * dataBuf,
word32 dataSz

)

Extend data to an NV index.

Parameters:

+ dev pointer to a TPM2_DEV struct

* nv pointer to a populated structure of WOLFTPM2_NV type

* nvindex integer value, holding an existing NV Index Handle value

+ dataBuf pointer to a byte buffer, containing the user data to be written to the TPM’s NVRAM
+ dataSz integer value, specifying the size of the user data buffer, in bytes

See:

* wolfTPM2_NVReadAuth
* wolfTPM2_NVCreateAuth
* wolfTPM2_NVOpen

« wolfTPM2_NVDeleteAuth

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: When NV index is read it will return the digest

COPYRIGHT ©2024 wolfSSL Inc. 413

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_NVReadAuth(
WOLFTPM2_DEV * dev,
WOLFTPM2_NV * nv,
woxrd32 nvIndex,
byte * dataBuf,
word32 * pDataSz,
word32 offset

)

Reads user data from a NV Index, starting at the given offset.

Parameters:

* dev pointer to a TPM2_DEV struct

* nv pointer to a populated structure of WOLFTPM2_NV type

* nvIindex integer value, holding an existing NV Index Handle value

+ dataBuf pointer to an empty byte buffer, used to store the read data from the TPM’'s NVRAM

+ pDataSz pointer to an integer variable, used to store the size of the data read from NVRAM, in
bytes

+ offset integer value of word32 type, specifying the offset from the NV Index memory start, can
be zero

* wolfTPM2_NVWriteAuth

« wolfTPM2_NVCreateAuth

« wolfTPM2_NVDeleteAuth

* wolfTPM2_NVReadAuthPolicy

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: User data size should be less or equal to the NV Index maxSize specified using wolfTPM2_CreateAuth

WOLFTPM_API int wolfTPM2_NVReadAuthPolicy(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * tpmSession,
TPM_ALG_ID pcrAlg,
byte * pcrArray,
word32 pcrArraySz,

WOLFTPM2_NV * nv,
woxrd32 nvIndex,
byte * dataBuf,
word32 * pDataSz,
word32 offset

COPYRIGHT ©2024 wolfSSL Inc. 414

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Reads user data from a NV Index, starting at the given offset. Allows using a policy session and PCR’s
for authentication.

Parameters:

+ dev pointer to a TPM2_DEV struct

* tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

* pcrAlg the hash algorithm to use with PCR policy

*+ pcrArray array of PCR Indexes to use when creating the policy

* pcrArraySz the number of PCR Indexes in the pcrArray

* nv pointer to a populated structure of WOLFTPM2_NV type

* nvIndex integer value, holding an existing NV Index Handle value

« dataBuf pointer to an empty byte buffer, used to store the read data from the TPM’'s NVRAM

+ pDataSz pointer to an integer variable, used to store the size of the data read from NVRAM, in

bytes

offset integer value of word32 type, specifying the offset from the NV Index memory start, can

be zero

See:

* wolfTPM2_NVWriteAuth
* wolfTPM2_NVCreateAuth
* wolfTPM2_NVDeleteAuth
* wolfTPM2_NVReadAuth

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: User data size should be less or equal to the NV Index maxSize specified using wolfTPM2_CreateAuth

WOLFTPM_API int wolfTPM2_NVReadCert (
WOLFTPM2_DEV * dev,
TPM_HANDLE handle,
uint8_t * buffer,
uint32_t * len
)

Helper to get size of NV and read buffer without authentication. Typically used for reading a certificate
from an NV.

Parameters:

+ dev pointer to a TPM2_DEV struct

* handle integer value, holding an existing NV Index Handle value

+ buffer pointer to an empty byte buffer, used to store the read data from the TPM's NVRAM

+ len pointer to an integer variable, used to store the size of the data read from NVRAM, in bytes

COPYRIGHT ©2024 wolfSSL Inc. 415

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

See:

* wolfTPM2_NVWriteAuth
« wolfTPM2_NVCreateAuth
« wolfTPM2_NVDeleteAuth

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_NVIncrement (
WOLFTPM2_DEV * dev,
WOLFTPM2_NV * nv

)
Increments an NV one-way counter.

Parameters:

+ dev pointer to a TPM2_DEV struct
* nv pointer to a populated structure of WOLFTPM2_NV type

See:

* wolfTPM2_NVOpen
* wolfTPM2_NVCreateAuth

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_NVOpen(
WOLFTPM2_DEV * dev,
WOLFTPM2_NV * nv,
word32 nvIndex,
const byte * auth,
word32 authSz

)

Open an NV and populate the required authentication and name hash.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 416

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ dev pointer to a TPM2_DEV struct

* nv pointer to an empty structure of WOLFTPM2_NV type, to hold the new NV Index

* nvIndex integer value, holding the NV Index Handle given by the TPM upon success

+ auth pointer to a string constant, specifying the password authorization for this NV Index
+ authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_NVCreateAuth
* wolfTPM2_UnloadHandle

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_NVWritelock(
WOLFTPM2_DEV * dev,
WOLFTPM2_NV * nv

)

Lock writes on the specified NV Index.

Parameters:

+ dev pointer to a TPM2_DEV struct
* nv pointer to an structure of WOLFTPM2_NV type loaded using wolfTPM2_NVOpen

See:

* wolfTPM2_NVOpen

« wolfTPM2_NVCreateAuth
* wWolfTPM2_NVWriteAuth
* wolfTPM2_NVReadAuth

Return:

* TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_NVDeleteAuth(
WOLFTPM2_DEV * dev,
WOLFTPM2_HANDLE * parent,
woxrd32 nvIndex

COPYRIGHT ©2024 wolfSSL Inc. 417

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Destroys an existing NV Index.

Parameters:

+ dev pointer to a TPM2_DEV struct
* parent pointer to a WOLFTPM2_HANDLE, specifying the TPM hierarchy for the new NV Index
* nvindex integer value, holding the NV Index Handle given by the TPM upon success

* wolfTPM2_NVCreateAuth
* wolfTPM2_NVWriteAuth
* wolfTPM2_NVReadAuth

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_NVCreate(
WOLFTPM2_DEV * dev,
TPM_HANDLE authHandle,
woxrd32 nvIndex,
word32 nvAttributes,
word32 maxSize,
const byte * auth,
int authSz

)

Deprecated, use newer APL.
See: wolfTPM2_NVCreateAuth

WOLFTPM_API int wolfTPM2_NVWrite(
WOLFTPM2_DEV * dev,
TPM_HANDLE authHandle,
woxrd32 nvIndex,
byte * dataBuf,
word32 dataSz,
word32 offset

)

Deprecated, use newer APL.
See: wolfTPM2_NVWriteAuth

COPYRIGHT ©2024 wolfSSL Inc. 418

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_NVRead(
WOLFTPM2_DEV * dev,
TPM_HANDLE authHandle,
woxrd32 nvIndex,
byte * dataBuf,
word32 * dataSz,
word32 offset

)

Deprecated, use newer API.
See: wolfTPM2_NVReadAuth

WOLFTPM_API int wolfTPM2_NVDelete(
WOLFTPM2_DEV * dev,
TPM_HANDLE authHandle,
word32 nvIndex

)

Deprecated, use newer APL.
See: wolfTPM2_NVDeleteAuth

WOLFTPM_API int wolfTPM2_NVReadPublic(
WOLFTPM2_DEV * dev,
woxrd32 nvIndex,
TPMS_NV_PUBLIC * nvPublic

)

Extracts the public information about an nvindex, such as maximum size.

Parameters:

+ dev pointer to a TPM2_DEV struct
* nvIindex integer value, holding the NV Index Handle given by the TPM upon success
* nvPublic pointer to a TPMS_NV_PUBLIC, used to store the extracted nvindex public information

* wolfTPM2_NVCreateAuth
« wolfTPM2_NVDeleteAuth
* WolfTPM2_NVWriteAuth
* wolfTPM2_NVReadAuth

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 419

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_NVStoreKey (
WOLFTPM2_DEV * dev,
TPM_HANDLE primaryHandle,
WOLFTPM2_KEY * key,
TPM_HANDLE persistentHandle

)

Helper function to store a TPM 2.0 Key into the TPM's NVRAM.

Parameters:

+ dev pointer to a TPM2_DEV struct

* primaryHandle integer value, specifying a TPM 2.0 Hierarchy. typically TPM_RH_OWNER
+ key pointer to a structure of WOLFTPM2_KEY type, containing the TPM 2.0 key for storing
+ persistentHandle integer value, specifying an existing nvindex

See:

* wolfTPM2_NVDeleteKey
« wolfTPM2_NVCreateAuth
« wolfTPM2_NVDeleteAuth

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_NVDeleteKey (
WOLFTPM2_DEV * dev,
TPM_HANDLE primaryHandle,
WOLFTPM2_KEY * key

)

Helper function to delete a TPM 2.0 Key from the TPM's NVRAM.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ primaryHandle integer value, specifying a TPM 2.0 Hierarchy. typically TPM_RH_OWNER
+ key pointer to a structure of WOLFTPM2_KEY type, containing the nvindex handle value

* wolfTPM2_NVDeleteKey
* wolfTPM2_NVCreateAuth
« wolfTPM2_NVDeleteAuth

Return:

COPYRIGHT ©2024 wolfSSL Inc. 420

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API struct WC_RNG * wolfTPM2_GetRng(
WOLFTPM2_DEV * dev

)

Get the wolfcrypt RNG instance used for wolfTPM.

Parameters:

+ dev pointer to a TPM2_DEV struct
See: wolfTPM2_GetRandom

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Only if wolfcrypt is enabled and configured for use instead of the TPM RNG

WOLFTPM_API int wolfTPM2_GetRandom(
WOLFTPM2_DEV * dev,
byte * buf,
woxrd32 len

)

Get a set of random number, generated with the TPM RNG or wolfcrypt RNG.

Parameters:

+ dev pointer to a TPM2_DEV struct
* buf pointer to a byte buffer, used to store the generated random numbers
* len integer value of word32 type, used to store the size of the buffer, in bytes

See: wolfTPM2_GetRandom

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Define WOLFTPM2_USE_HW_RNG to use the TPM RNG source

COPYRIGHT ©2024 wolfSSL Inc. 421

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_UnloadHandle(
WOLFTPM2_DEV * dev,
WOLFTPM2_HANDLE * handle

)

Use to discard any TPM loaded object.

Parameters:

*+ dev pointer to a TPM2_DEV struct
* handle pointer to a structure of WOLFTPM2_HANDLE type, with a valid TPM 2.0 handle value

See: wolfTPM2_Clear

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_Cleax(
WOLFTPM2_DEV * dev

)

Deinitializes wolfTPM and wolfcrypt(if enabled)

Parameters:

+ dev pointer to a TPM2_DEV struct
See: wolfTPM2_Clear

Return:

¢ TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_HashStart(
WOLFTPM2_DEV * dev,
WOLFTPM2_HASH * hash,
TPMI_ALG_HASH hashAlg,
const byte * usageAuth,
word32 usageAuthSz

)

Helper function to start a TPM generated hash.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 422

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ dev pointer to a TPM2_DEV struct

+ hash pointer to a WOLFTPM2_HASH structure

* hashAlg integer value, specifying a valid TPM 2.0 hash algorithm

+ usageAuth pointer to a string constant, specifying the authorization for subsequent use of the
hash

+ usageAuthSz integer value, specifying the size of the authorization, in bytes

See:

* wolfTPM2_HashUpdate
* wolfTPM2_HashFinish

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_HashUpdate(
WOLFTPM2_DEV * dev,
WOLFTPM2_HASH * hash,
const byte * data,
word32 dataSz

)

Update a TPM generated hash with new user data.

Parameters:

* dev pointer to a TPM2_DEV struct

* hash pointer to a WOLFTPM2_HASH structure

+ data pointer to a byte buffer, containing the user data to be added to the hash

+ dataSz integer value of word32 type, specifying the size of the user data, in bytes

See:

« wolfTPM2_HashStart
« wolfTPM2_HashFinish

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Make sure the auth is correctly set

COPYRIGHT ©2024 wolfSSL Inc. 423

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_HashFinish(
WOLFTPM2_DEV * dev,
WOLFTPM2_HASH * hash,
byte * digest,
word32 * digestSz

)

Finalize a TPM generated hash and get the digest output in a user buffer.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ hash pointer to a WOLFTPM2_HASH structure

+ digest pointer to a byte buffer, used to store the resulting digest

+ digestSz pointer to size of digest buffer, on return set to bytes stored in digest buffer

See:

* wolfTPM2_HashStart
* wolfTPM2_HashUpdate

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Make sure the auth is correctly set

WOLFTPM_API int wolfTPM2_LoadKeyedHashKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
WOLFTPM2_HANDLE * parent,
int hashAlg,
const byte * keyBuf,
word32 keySz,
const byte * usageAuth,
word32 usageAuthSz
)

Creates and loads a new TPM key of KeyedHash type, typically used for HMAC operations.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to an empty structure of WOLFTPM2_KEY type, to store the generated key

*+ parent pointer to a structure of WOLFTPM2_KEY type, containing a valid TPM handle of a primary
key

* hashAlg integer value, specifying a valid TPM 2.0 hash algorithm

+ keyBuf pointer to a byte array, containing derivation values for the new KeyedHash key

+ keySz integer value, specifying the size of the derivation values stored in keyBuf, in bytes

COPYRIGHT ©2024 wolfSSL Inc. 424

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ usageAuth pointer to a string constant, specifying the authorization of the new key
+ usageAuthSz integer value, specifying the size of the authorization, in bytes

See:

* wolfTPM2_HmacStart
* wolfTPM2_HmacUpdate
* wolfTPM2_HmacFinish

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: To generate HMAC using the TPM it is recommended to use the wolfTPM2_Hmac wrappers

WOLFTPM_API int wolfTPM2_HmacStart(
WOLFTPM2_DEV * dev,
WOLFTPM2_HMAC * hmac,
WOLFTPM2_HANDLE * parent,
TPMI_ALG_HASH hashAlg,
const byte * keyBuf,
word32 keySz,
const byte * usageAuth,
word32 usageAuthSz

)

Helper function to start a TPM generated hmac.

Parameters:

+ dev pointer to a TPM2_DEV struct

* hmac pointer to a WOLFTPM2_HMAC structure

* parent pointer to a structure of WOLFTPM2_KEY type, containing a valid TPM handle of a primary
key

+ hashAlg integer value, specifying a valid TPM 2.0 hash algorithm

+ keyBuf pointer to a byte array, containing derivation values for the new KeyedHash key

+ keySz integer value, specifying the size of the derivation values stored in keyBuf, in bytes

+ usageAuth pointer to a string constant, specifying the authorization for subsequent use of the
hmac

+ usageAuthSz integer value, specifying the size of the authorization, in bytes

See:

* wolfTPM2_HmacUpdate
* wolfTPM2_HmacFinish
* wolfTPM2_LoadKeyedHashKey

Return:

COPYRIGHT ©2024 wolfSSL Inc. 425

5.5 wolfTPM2 Wrappers 5 API REFERENCE

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_HmacUpdate(
WOLFTPM2_DEV * dev,
WOLFTPM2_HMAC * hmac,
const byte * data,
word32 dataSz

)

Update a TPM generated hmac with new user data.

Parameters:

+ dev pointer to a TPM2_DEV struct

* hmac pointer to a WOLFTPM2_HMAC structure

+ data pointer to a byte buffer, containing the user data to be added to the hmac

+ dataSz integer value of word32 type, specifying the size of the user data, in bytes
* dev pointer to a TPM2_DEV struct

* hmac pointer to an active WOLFTPM2_HMAC structure

+ data pointer to data to add to HMAC

+ dataSz size of data in bytes

See:

¢ wolfTPM2_HmacStart
* wolfTPM2_HMACFinish
« wolfTPM2_HmacStart
* wolfTPM2_HmacFinish

Return:

¢ TPM_RC_SUCCESS: successful

* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

« TPM_RC_SUCCESS: successful

* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note:

* Make sure the TPM authorization is correctly set
+ Adds data to an active HMAC sequence

Update an HMAC operation with data

COPYRIGHT ©2024 wolfSSL Inc. 426

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_HmacFinish(
WOLFTPM2_DEV * dev,
WOLFTPM2_HMAC * hmac,
byte * digest,
word32 * digestSz

)

Finalize a TPM generated hmac and get the digest output in a user buffer.

Parameters:

+ dev pointer to a TPM2_DEV struct

* hmac pointer to a WOLFTPM2_HMAC structure

« digest pointer to a byte buffer, used to store the resulting hmac digest

+ digestSz integer value of word32 type, specifying the size of the digest, in bytes

See:

* wolfTPM2_HmacStart
* wolfTPM2_HmacUpdate

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Make sure the TPM authorization is correctly set

WOLFTPM_API int wolfTPM2_LoadSymmetricKey (
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
int alg,
const byte * keyBuf,
word32 keySz
)

Loads an external symmetric key into the TPM.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to an empty structure of WOLFTPM2_KEY type, to store the TPM handle and key
information

+ alg integer value, specifying a valid TPM 2.0 symmetric key algorithm, e.g. TPM_ALG_CFB for AES
CFB

+ keyBuf pointer to a byte array, containing private material of the symmetric key

+ keySz integer value, specifying the size of the key material stored in keyBuf, in bytes

+ dev pointer to a TPM2_DEV struct

+ key pointer to an empty WOLFTPM2_KEY structure to store loaded key

+ alg algorithm type (TPM_ALG_AES, etc)

COPYRIGHT ©2024 wolfSSL Inc. 427

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

+ keyBuf pointer to key material
keySz size of key material in bytes

See:

* wolfTPM2_EncryptDecryptBlock
* wolfTPM2_EncryptDecrypt

* TPM2_EncryptDecrypt2

* wolfTPM2_EncryptDecryptBlock
* wolfTPM2_EncryptDecrypt

Return:

« TPM_RC_SUCCESS: successful

* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

¢ TPM_RC_SUCCESS: successful

TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Creates and loads a symmetric key for encryption/decryption operations

Load a symmetric key into the TPM

WOLFTPM_API int wolfTPM2_SetCommand(
WOLFTPM2_DEV * dev,
TPM_CC commandCode,
int enableFlag

)

Vendor specific TPM command, used to enable other restricted TPM commands.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ commandCode integer value, representing a valid vendor command
* enableFlag integer value, non-zero values represent “to enable”

See: TPM2_GPIO_Config
Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_Reset(
WOLFTPM2_DEV * dev,
int doShutdown,
int doStartup

COPYRIGHT ©2024 wolfSSL Inc. 428

5.5 wolfTPM2 Wrappers 5 API REFERENCE

)

Helper function to shutdown, startup or reset the TPM.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ doStartup integer value, non-zero values represent “perform Startup after Shutdown”
+ doShutdown integer value, non-zero values represent “perform Shutdown”

See:

* WoIfTPM2_Init
* wolfTPM2_Reset

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note:

* The behavior depends on the doStartup and doShutdown flags:

- Both flags set to 1: Performs a full TPM restart (shutdown then startup)

- Only doStartup=1: Just starts up the TPM

- Only doShutdown=1: Just shuts down the TPM

WOLFTPM_API int wolfTPM2_Shutdown(
WOLFTPM2_DEV * dev,
int doStartup

)

Helper function to shutdown or reset the TPM.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ doStartup integer value, non-zero values represent “perform Startup after Shutdown”

See:

* WolfTPM2_Init

COPYRIGHT ©2024 wolfSSL Inc. 429

5.5 wolfTPM2 Wrappers 5 API REFERENCE

* wolfTPM2_Shutdown

Return:

« TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: If doStartup is set, then TPM2_Startup is performed right after TPM2_Shutdown

WOLFTPM_API int wolfTPM2_UnloadHandles(
WOLFTPM2_DEV * dev,
word32 handleStart,
word32 handleCount

)
One-shot API to unload subsequent TPM handles.

Parameters:

+ dev pointer to a TPM2_DEV struct
* handleStart integer value of word32 type, specifying the value of the first TPM handle
* handleCount integer value of word32 type, specifying the number of handles

See: wolfTPM2_Init

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_UnloadHandles_AllTransient(
WOLFTPM2_DEV * dev

)

One-shot API to unload all transient TPM handles.

Parameters:

+ dev pointer to a TPM2_DEV struct
See:

* wolfTPM2_UnloadHandles
* wolfTPM2_CreatePrimary

Return:

COPYRIGHT ©2024 wolfSSL Inc. 430

5.5 wolfTPM2 Wrappers 5 API REFERENCE

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: If there are Primary Keys as transient objects, they need to be recreated before TPM keys can
be used

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA(
TPMT_PUBLIC * publicTemplate,
TPMA_OBJECT objectAttributes

)

Prepares a TPM public template for new RSA key based on user selected object attributes.

Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new RSA tem-
plate

+ objectAttributes integer value of TPMA_OBJECT type, can contain one or more attributes,
e.g. TPMA_OBJECT_fixedTPM

See:

* wolfTPM2_GetKeyTemplate_RSA_ex

* wolfTPM2_GetKeyTemplate_ECC

* wolfTPM2_GetKeyTemplate_Symmetric
» wolfTPM2_GetKeyTemplate_KeyedHash
* wolfTPM2_GetKeyTemplate_KeySeal

Return:

« TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_ex(
TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID nameAlg,
TPMA_OBJECT objectAttributes,
int keyBits,
long exponent,
TPM_ALG_ID sigScheme,
TPM_ALG_ID sigHash
)

Prepares a TPM public template for new RSA key based on user selected object attributes.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 431

55

wolfTPM2 Wrappers 5 API REFERENCE

See:

publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new RSA tem-
plate

nameAlg integer value of TPM_ALG_ID type, specifying a TPM supported hashing algorithm, typ-
ically TPM_ALG_SHA256 for SHA 256

objectAttributes integer value of TPMA_OBJECT type, can contain one or more attributes,
e.g. TPMA_OBJECT _fixedTPM

keyBits integer value, specifying the size of the symmetric key, typically 128 or 256 bits
exponent integer value of word32 type, specifying the RSA exponent

sigScheme integer value of TPM_ALG_ID type, specifying a TPM supported signature scheme
sigHash integer value of TPM_ALG_ID type, specifying a TPM supported signature hash scheme

wolfTPM2_GetKeyTemplate_RSA
wolfTPM2_GetKeyTemplate_ECC
wolfTPM2_GetKeyTemplate_ECC_ex
wolfTPM2_GetKeyTemplate_Symmetric
wolfTPM2_GetKeyTemplate_KeyedHash
wolfTPM2_GetKeyTemplate_KeySeal

Return:

TPM_RC_SUCCESS: successful
BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC(

)

TPMT_PUBLIC * publicTemplate,
TPMA_OBJECT objectAttributes,
TPM_ECC_CURVE cuzrve,
TPM_ALG_ID sigScheme

Prepares a TPM public template for new ECC key based on user selected object attributes.

Parameters:

publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new ECC key
template

objectAttributes integer value of TPMA_OBJECT type, can contain one or more attributes,
e.g. TPMA_OBJECT _fixedTPM

curve integer value of TPM_ECC_CURVE type, specifying a TPM supported ECC curve ID
sigScheme integer value of TPM_ALG_ID type, specifying a TPM supported signature scheme

wolfTPM2_GetKeyTemplate_ECC_ex
wolfTPM2_GetKeyTemplate_RSA
wolfTPM2_GetKeyTemplate_Symmetric
wolfTPM2_GetKeyTemplate_KeyedHash
wolfTPM2_GetKeyTemplate_KeySeal

COPYRIGHT ©2024 wolfSSL Inc. 432

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_ex(

TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID nameAlg,
TPMA_OBJECT objectAttributes,
TPM_ECC_CURVE cuzrve,
TPM_ALG_ID sigScheme,
TPM_ALG_ID sigHash

Prepares a TPM public template for new ECC key based on user selected object attributes.

Parameters:

* publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new ECC key
template

* nameAlg integer value of TPM_ALG_ID type, specifying a TPM supported hashing algorithm, typ-
ically TPM_ALG_SHA256 for SHA 256

+ objectAttributes integer value of TPMA_OBJECT type, can contain one or more attributes,
e.g. TPMA_OBJECT _fixedTPM

+ curve integer value of TPM_ECC_CURVE type, specifying a TPM supported ECC curve ID

+ sigScheme integer value of TPM_ALG_ID type, specifying a TPM supported signature scheme

+ sigHash integer value of TPM_ALG_ID type, specifying a TPM supported signature hash scheme

* wolfTPM2_GetKeyTemplate_ECC

* wolfTPM2_GetKeyTemplate_RSA

» wolfTPM2_GetKeyTemplate_Symmetric
» wolfTPM2_GetKeyTemplate_KeyedHash
* WolfTPM2_GetKeyTemplate_KeySeal

Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyTemplate_Symmetric(

TPMT_PUBLIC * publicTemplate,
int keyBits,

TPM_ALG_ID algMode,

int isSign,

int isDecrypt

COPYRIGHT ©2024 wolfSSL Inc. 433

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Prepares a TPM public template for new Symmetric key.

Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new Symmetric
key template

+ keyBits integer value, specifying the size of the symmetric key, typically 128 or 256 bits

+ algMode integer value of TPM_ALG_ID type, specifying a TPM supported symmetric algorithm,
e.g. TPM_ALG_CFB for AES CFB

+ isSign integer value, non-zero values represent “a signing key”

+ isDecrypt integer value, non-zero values represent “a decryption key”

* wolfTPM2_GetKeyTemplate_RSA

* wolfTPM2_GetKeyTemplate_ECC

» wolfTPM2_GetKeyTemplate_KeyedHash
* wolfTPM2_GetKeyTemplate_KeySeal

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyTemplate_KeyedHash(
TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID hashAlg,
int isSign,
int isDecrypt

)

Prepares a TPM public template for new KeyedHash key.

Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template

+ hashAlg integer value of TPM_ALG_ID type, specifying a TPM supported hashing algorithm,
e.g. TPM_ALG_SHA256 for SHA 256

+ isSign integer value, non-zero values represent “a signing key”

+ isDecrypt integer value, non-zero values represent “a decryption key"

* wolfTPM2_GetKeyTemplate_RSA

* wolfTPM2_GetKeyTemplate_ECC

» wolfTPM2_GetKeyTemplate_Symmetric
* wolfTPM2_GetKeyTemplate_KeySeal

Return:

COPYRIGHT ©2024 wolfSSL Inc. 434

5.5 wolfTPM2 Wrappers 5 API REFERENCE

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyTemplate_KeySeal(
TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID nameAlg

)

Prepares a TPM public template for new key for sealing secrets.

Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template
* nameAlg integer value of TPM_ALG_ID type, specifying a TPM supported hashing algorithm, typ-
ically TPM_ALG_SHA256 for SHA 256

See:

* wolfTPM2_GetKeyTemplate_ECC

* wolfTPM2_GetKeyTemplate_Symmetric
* wolfTPM2_GetKeyTemplate_KeyedHash
* wolfTPM2_GetKeyTemplate_KeySeal

Return:

« TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: There are strict requirements for a Key Seal, therefore most of the key parameters are prede-
termined by the wrapper

WOLFTPM_API int wolfTPM2_GetKeyTemplate_EK(

TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID alg,
int keyBits,
TPM_ECC_CURVE cuxrvelD,
TPM_ALG_ID nameAlg,
int highRange

)

Prepares a TPM public template for generating the TPM Endorsement Key.

Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template

+ alg can be only TPM_ALG_RSA or TPM_ALG_ECC, see Note above

+ keyBits integer value, specifying bits for the key, typically 2048 (RSA) or 256 (ECC)

+ curvelD use one of the accepted TPM_ECC_CURVE values like TPM_ECC_NIST_P256 (only used
when alg=TPM_ALG_ECC)

COPYRIGHT ©2024 wolfSSL Inc. 435

5.5 wolfTPM2 Wrappers 5 API REFERENCE

* nameAlg integer value of TPMI_ALG_HASH type, specifying a valid TPM2 hashing algorithm (typ-
ically TPM_ALG_SHA256)
+ highRange integer value: 0=low range, 1=high range

See:

* wolfTPM2_GetKeyTemplate_ECC_EK

* wolfTPM2_GetKeyTemplate_RSA_SRK
* wolfTPM2_GetKeyTemplate_RSA_AIK
* wolfTPM2_GetKeyTemplate_EKIndex

Return:

« TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyTemplate_EKIndex(
woxrd32 nvIndex,
TPMT_PUBLIC * publicTemplate

)

Helper to get the Endorsement public key template by NV index.

Parameters:

* nvIindex handle for NV index. Typically starting from TPM_20_TCG_NV_SPACE
+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template

See:

* wolfTPM2_GetKeyTemplate_EK

* wolfTPM2_GetKeyTemplate_ECC_EK
* wolfTPM2_GetKeyTemplate_RSA_SRK
* wolfTPM2_GetKeyTemplate_RSA_AIK

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_EK(
TPMT_PUBLIC * publicTemplate
)

Prepares a TPM public template for generating the TPM Endorsement Key of RSA type.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 436

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template
See:

* wolfTPM2_GetKeyTemplate_EK

* wolfTPM2_GetKeyTemplate_ECC_EK
* wolfTPM2_GetKeyTemplate_RSA_SRK
* wolfTPM2_GetKeyTemplate_RSA_AIK

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_EK(
TPMT_PUBLIC * publicTemplate
)
Prepares a TPM public template for generating the TPM Endorsement Key of ECC type.

Parameters:

*+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template

See:

* wolfTPM2_GetKeyTemplate_EK

» wolfTPM2_GetKeyTemplate_RSA_EK
* wolfTPM2_GetKeyTemplate_ECC_SRK
* wolfTPM2_GetKeyTemplate_ECC_AIK

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_SRK(
TPMT_PUBLIC * publicTemplate
)

Prepares a TPM public template for generating a new TPM Storage Key of RSA type.

Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template

See:

COPYRIGHT ©2024 wolfSSL Inc. 437

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

* wolfTPM2_GetKeyTemplate_ECC_SRK
* wolfTPM2_GetKeyTemplate_RSA_AIK
* wolfTPM2_GetKeyTemplate_RSA_EK

Return:

¢ TPM_RC_SUCCESS: successful

* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_SRK(

TPMT_PUBLIC * publicTemplate
)

Prepares a TPM public template for generating a new TPM Storage Key of ECC type.

Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template

See:

* wolfTPM2_GetKeyTemplate_RSA_SRK
* wolfTPM2_GetKeyTemplate_ECC_AIK
* wolfTPM2_GetKeyTemplate_ECC_EK

Return:

¢ TPM_RC_SUCCESS: successful

* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyTemplate_RSA_AIK(

TPMT_PUBLIC * publicTemplate
)

Prepares a TPM public template for generating a new TPM Attestation Key of RSA type.

Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template

See:

* wolfTPM2_GetKeyTemplate_ECC_AIK
* wolfTPM2_GetKeyTemplate_RSA_SRK

Return:

COPYRIGHT ©2024 wolfSSL Inc.

438

5.5 wolfTPM2 Wrappers 5 API REFERENCE

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyTemplate_ECC_AIK(
TPMT_PUBLIC * publicTemplate
)

Prepares a TPM public template for generating a new TPM Attestation Key of ECC type.

Parameters:

+ publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template
See:

* wolfTPM2_GetKeyTemplate_RSA_AIK
* wolfTPM2_GetKeyTemplate_ECC_SRK

Return:

« TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_SetKeyTemplate_Unique(
TPMT_PUBLIC * publicTemplate,
const byte * unique,
int uniqueSz

)

Sets the unique area of a public template used by Create or CreatePrimary.

Parameters:

publicTemplate pointer to an empty structure of TPMT_PUBLIC type, to store the new template
unique optional pointer to buffer to populate unique area of public template. If NULL, the buffer
will be zeroized.

* uniqueSz size to fill the unique field. If zero the key size is used.

See:

* wolfTPM2_CreateKey
* wolfTPM2_CreatePrimaryKey

Return:

» TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 439

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_GetNvAttributesTemplate(
TPM_HANDLE auth,
word32 * nvAttributes

)

Prepares a TPM NV Index template.
Parameters:

auth integer value, representing the TPM Hierarchy under which the new TPM NV index will be
created
nvAttributes pointer to an empty integer variable, to store the NV Attributes

See:

* wolfTPM2_CreateAuth
« wolfTPM2_WriteAuth
* wolfTPM2_ReadAuth
« wolfTPM2_DeleteAuth

Return:

* TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_CreateEK(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * ekKey,
TPM_ALG_ID alg

)

Generates a new TPM Endorsement key, based on the user selected algorithm, RSA or ECC.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ ekKey pointer to an empty WOLFTPM2_KEY structure, to store information about the new EK
+ alg can be only TPM_ALG_RSA or TPM_ALG_ECC, see Note above

« wolfTPM2_CreateSRK
* wolfTPM2_GetKeyTemplate_RSA_EK
* wolfTPM2_GetKeyTemplate_ECC_EK

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 440

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Note: Although only RSA and ECC can be used for EK, symmetric keys can be created and used by the
TPM

WOLFTPM_API int wolfTPM2_CreateSRK(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * srkKey,
TPM_ALG_ID alg,
const byte * auth,
int authSz

)

Generates a new TPM Primary Key that will be used as a Storage Key for other TPM keys.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ srkKey pointer to an empty WOLFTPM2_KEY structure, to store information about the new EK
+ alg can be only TPM_ALG_RSA or TPM_ALG_ECC, see Note above

+ auth pointer to a string constant, specifying the password authorization for the TPM 2.0 Key
+ authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_CreateEK

* wolfTPM2_CreateAndLoadAIK

* wolfTPM2_GetKeyTemplate_RSA_SRK
* wolfTPM2_GetKeyTemplate_ECC_SRK

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Although only RSA and ECC can be used for EK, symmetric keys can be created and used by the
TPM

WOLFTPM_API int wolfTPM2_CreateAndLoadAIK(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * aikKey,
TPM_ALG_ID alg,
WOLFTPM2_KEY * srkKey,
const byte * auth,
int authSz
)

Generates a new TPM Attestation Key under the provided Storage Key.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 441

5.5 wolfTPM2 Wrappers 5 API REFERENCE

dev pointer to a TPM2_DEV struct

aikKey pointer to an empty WOLFTPM2_KEY structure, to store the newly generated TPM key
alg can be only TPM_ALG_RSA or TPM_ALG_ECC

srkKey pointer to a WOLFTPM2_KEY structure, pointing to valid TPM handle of a loaded Storage
Key

auth pointer to a string constant, specifying the password authorization for the TPM 2.0 Key
authSz integer value, specifying the size of the password authorization, in bytes

See:

wolfTPM2_CreateSRK
wolfTPM2_GetKeyTemplate_RSA_AIK
wolfTPM2_GetKeyTemplate_ECC_AIK

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetTime(
WOLFTPM2_KEY * aikKey,
GetTime_Out * getTimeOut

)

One-shot API to generate a TPM signed timestamp.

Parameters:

+ aikKey pointer to a WOLFTPM2_KEY structure, containing valid TPM handle of a loaded attesta-
tion key

+ getTimeOut pointer to an empty structure of GetTime_Out type, to store the output of the com-
mand

« wolfTPM2_CreateSRK
* wolfTPM2_GetKeyTemplate_RSA_EK
* wolfTPM2_GetKeyTemplate_ECC_EK

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: The attestation key must be generated and loaded prior to this call

COPYRIGHT ©2024 wolfSSL Inc. 442

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_CSR_SetCustomExt (
WOLFTPM2_DEV * dev,
WOLFTPM2_CSR * csr,
int critical,
const char * oid,
const byte * der,
word32 dexrSz

)

Helper for Certificate Signing Request (CSR) generation to set a custom request extension oid and
value usage for a WOLFTPM2_CSR structure.

Parameters:

+ dev pointer to a TPM2_DEV struct (not used)

* csr pointer to a WOLFTPM2_CSR structure

« critical If 0, the extension will not be marked critical, otherwise it will be marked critical.
+ oid Dot separated oid as a string. For example “1.2.840.10045.3.1.7"

+ der The der encoding of the content of the extension.

+ derSz The size in bytes of the der encoding.

See:

* wolfTPM2_CSR_SetSubject

* wolfTPM2_CSR_SetKeyUsage

* wolfTPM2_CSR_MakeAndSign

* wolfTPM2_CSR_MakeAndSign_ex

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_CSR_SetKeyUsage(
WOLFTPM2_DEV * dev,
WOLFTPM2_CSR * csr,
const char * keyUsage

)

Helper for Certificate Signing Request (CSR) generation to set a extended key usage or key usage for
a WOLFTPM2_CSR structure. Pass either extended key usage or key usage values. Mixed string types
are not supported, however you can call wolfTPM2_CSR_SetKeyUsage twice (once for extended key
usage strings and once for standard key usage strings).

Parameters:

+ dev pointer to a TPM2_DEV struct (not used)
* csr pointer to a WOLFTPM2_CSR structure

COPYRIGHT ©2024 wolfSSL Inc. 443

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ keyUsage string list of comma separated key usage attributes. Possible Extended Key Usage val-
ues: any, serverAuth, clientAuth, codeSigning, emailProtection, timeStamping and OCSPSigning
Possible Key Usage values: digitalSignature, nonRepudiation, contentCommitment, keyEncipher-
ment, dataEncipherment, keyAgreement, keyCertSign, cRLSign, encipherOnly, decipherOnly De-
fault: “serverAuth,clientAuth,codeSigning”

See:

* wolfTPM2_CSR_SetSubject

« wolfTPM2_CSR_SetCustomExt

* wolfTPM2_CSR_MakeAndSign

* wolfTPM2_CSR_MakeAndSign_ex

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_CSR_SetSubject(
WOLFTPM2_DEV * dev,
WOLFTPM2_CSR * csr,
const char * subject

)

Helper for Certificate Signing Request (CSR) generation to set a subject for a WOLFTPM2_CSR structure.

Parameters:

+ dev pointer to a TPM2_DEV struct (not used)
* csr pointer to a WOLFTPM2_CSR structure
+ subject distinguished name string using /CN= syntax. Example: “/C=US/ST=Washington/L=Seattle/O=wolfSSL/O

See:

* wolfTPM2_CSR_SetKeyUsage

* wolfTPM2_CSR_SetCustomExt

* wolfTPM2_CSR_MakeAndSign

* wolfTPM2_CSR_MakeAndSign_ex

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_CSR_MakeAndSign_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_CSR * cs1,
WOLFTPM2_KEY * key,

COPYRIGHT ©2024 wolfSSL Inc. 444

5.5 wolfTPM2 Wrappers 5 API REFERENCE

int outFormat,
byte * out,
int outSz,
int sigType,
int selfSignCert,
int devId

)

Helper for Certificate Signing Request (CSR) generation using a TPM based key (WOLFTPM2_KEY struc-
ture with subject and key usage already set.

Parameters:

* dev pointer to a TPM2_DEV struct

* csr pointer to a WOLFTPM2_CSR structure

+ key WOLFTPM2_KEY structure

« outFormat CTC_FILETYPE_ASN1 or CTC_FILETYPE_PEM

« out destination buffer for CSR as ASN.1/DER or PEM

* outSz destination buffer maximum size

*» sigType Use 0 to automatically select SHA2-256 based on keyType (CTC_SHA256wWRSA or
CTC_SHA256WECDSA). See wolfCrypt “enum Ctc_SigType" for list of possible values.

+ selfSignCert If set to 1 (non-zero) then result will be a self signed certificate. Zero (0) will generate
a CSR (Certificate Signing Request) to be used by a CA.

+ devld The device identifier used when registering the crypto callback. Use INVALID_DEVID (-2)
to automatically register the required crypto callback.

See:

* wolfTPM2_CSR_SetSubject

* wolfTPM2_CSR_SetKeyUsage
« wolfTPM2_CSR_SetCustomExt
* wolfTPM2_CSR_MakeAndSign

Return:

* Success: Positive integer (size of the output)
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_CSR_MakeAndSign(
WOLFTPM2_DEV * dev,
WOLFTPM2_CSR * csr,
WOLFTPM2_KEY * key,
int outFormat,
byte * out,
int outSz

)

Helper for Certificate Signing Request (CSR) generation using a TPM based key (WOLFTPM2_KEY struc-
ture with subject and key usage already set.

COPYRIGHT ©2024 wolfSSL Inc. 445

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Parameters:

* dev pointer to a TPM2_DEV struct

* csr pointer to a WOLFTPM2_CSR structure

+ key WOLFTPM2_KEY structure

« outFormat CTC_FILETYPE_ASN1 or CTC_FILETYPE_PEM
+ out destination buffer for CSR as ASN.1/DER or PEM

« outSz destination buffer maximum size

* wolfTPM2_CSR_SetSubject

* wolfTPM2_CSR_SetKeyUsage

* wolfTPM2_CSR_SetCustomExt

* wolfTPM2_CSR_MakeAndSign_ex

Return:

* Success: Positive integer (size of the output)
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_CSR_Generate_ex(
WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const char * subject,
const char * keyUsage,
int outFormat,
byte * out,
int outSz,
int sigType,
int selfSignCert,
int devId

)

Helper for Certificate Signing Request (CSR) generation using a TPM based key (WOLFTPM2_KEY). Sin-
gle shot API for outputting a CSR or self-signed cert based on TPM key.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ key pointer to a loaded WOLFTPM2_KEY structure

+ subject distinguished name string using /CN= syntax. Example: “/C=US/ST=Washington/L=Seattle/O=wolfSSL/O!

+ keyUsage string list of comma separated key usage attributes. Possible values: any, server-
Auth, clientAuth, codeSigning, emailProtection, timeStamping and OCSPSigning Default: “server-
Auth,clientAuth,codeSigning”

+ outFormat CTC_FILETYPE_ASN1 or CTC_FILETYPE_PEM

+ out destination buffer for CSR as ASN.1/DER or PEM

+ outSz destination buffer maximum size

COPYRIGHT ©2024 wolfSSL Inc. 446

55

wolfTPM2 Wrappers 5 API REFERENCE

See:

sigType Use 0 to automatically select SHA2-256 based on keyType (CTC_SHA256wWRSA or
CTC_SHA256WECDSA). See wolfCrypt “enum Ctc_SigType” for list of possible values.
selfSignCert If set to 1 (non-zero) then result will be a self signed certificate. Zero (0) will generate
a CSR (Certificate Signing Request) to be used by a CA.

devId The device identifier used when registering the crypto callback. Use INVALID_DEVID (-2)
to automatically register the required crypto callback.

dev pointer to a TPM2_DEV struct

key pointer to a loaded WOLFTPM2_KEY structure

subject distinguished name string using /CN= syntax

keyUsage string list of comma separated key usage attributes

outFormat output format (CTC_FILETYPE_ASN1 or CTC_FILETYPE_PEM)

out pointer to buffer for CSR/cert output

outSz size of output buffer

sigType signature algorithm (0 for default SHA2-256)

selfSignCert If 1, generate self-signed cert; if 0, generate CSR

devld device ID for crypto callback (-2 for auto-register)

wolfTPM2_SetCryptoDevCb
wolfTPM2_CSR_Generate
wolfTPM2_CSR_Generate
wolfTPM2_CSR_MakeAndSign_ex

Return:

Success: Positive integer (size of the output)

TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

Success: Positive integer (size of the output)

TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
BAD_FUNC_ARG: check the provided arguments

Note: Single shot API for outputting a CSR or self-signed cert based on TPM key

Generate a Certificate Signing Request (CSR) or self-signed certificate with extended options

WOLFTPM_API int wolfTPM2_CSR_Generate(

)

WOLFTPM2_DEV * dev,
WOLFTPM2_KEY * key,
const char * subject,
const char * keyUsage,
int outFormat,

byte * out,

int outSz

Helper for Certificate Signing Request (CSR) generation using a TPM based key (WOLFTPM2_KEY). Sin-
gle shot API for outputting a CSR or self-signed cert based on TPM key.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 447

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ dev pointer to a TPM2_DEV struct

+ key pointer to a loaded WOLFTPM2_KEY structure

* subject distinguished name string using /CN=syntax. Example: “/C=US/ST=Washington/L=Seattle/O=wolfSSL/O!

+ keyUsage string list of comma separated key usage attributes. Possible values: any, server-
Auth, clientAuth, codeSigning, emailProtection, timeStamping and OCSPSigning Default: “server-
Auth,clientAuth,codeSigning”

* outFormat CTC_FILETYPE_ASN1 or CTC_FILETYPE_PEM

+ out destination buffer for CSR as ASN.1/DER or PEM

* outSz destination buffer maximum size

See:

* wolfTPM2_SetCryptoDevCb
* wolfTPM2_CSR_Generate_ex

Return:

* Success: Positive integer (size of the output)
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_ChangePlatformAuth(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * session

)

Helper to set the platform hierarchy authentication value to random. Setting the platform auth to
random value is used to prevent application from being able to use platform hierarchy. This is defined
in section 10 of the TCG PC Client Platform specification.

Parameters:

+ dev pointer to a TPM2_DEV struct
+ session the current session, a session is required to protect the new platform auth

See:

» TPM2_HierarchyChangeAuth
+ wolfTPM2_ChangeHierarchyAuth

Return:

* Success: Positive integer (size of the output)
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 448

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_ChangeHierarchyAuth(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * session,
TPMI_RH_HIERARCHY_AUTH authHandle

)

Helper to set the hierarchy authentication value to random. Setting the platform auth to random value
is used to prevent application from being able to use platform hierarchy. This is defined in section 10
of the TCG PC Client Platform specification.

Parameters:

* dev pointer to a TPM2_DEV struct
+ session the current session, a session is required to protect the new platform auth
+ authHandle the auth hierarchy (example: TPM_RH_PLATFORM or TPM_RH_LOCKOUT)

See:

* TPM2_HierarchyChangeAuth
* wolfTPM2_ChangePlatformAuth

Return:

* Success: Positive integer (size of the output)
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_CryptoDevCb(
int devId,
wc_CryptoInfo * info,
void * ctx

)

Areference crypto callback APIfor using the TPM for crypto offload. This callback function is registered
using wolfTPM2_SetCryptoDevCb or wc_CryptoDev_RegisterDevice.

Parameters:

+ devld The devld used when registering the callback. Any signed integer value besides
INVALID_DEVID

+ info point to wc_Cryptolnfo structure with detailed information about crypto type and parame-
ters

+ ctx The user context supplied when callback was registered with wolfTPM2_SetCryptoDevCb

» wolfTPM2_SetCryptoDevCb
* wolfTPM2_ClearCryptoDevCb

COPYRIGHT ©2024 wolfSSL Inc. 449

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Return:

* TPM_RC_SUCCESS: successful
+ CRYPTOCB_UNAVAILABLE: Do not use TPM hardware, fall-back to default software crypto.
+ WC_HW_E: generic hardware failure

WOLFTPM_API int wolfTPM2_SetCryptoDevCb(
WOLFTPM2_DEV * dev,
CryptobDevCallbackFunc cb,
TpmCryptoDevCtx * tpmCtx,
int * pDevId

)

Register a crypto callback function and return assigned devld.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ cb The wolfTPM2_CryptoDevCb API is a template, but you can also provide your own

* tpmCtx The user supplied context. For wolfTPM2_CryptoDevCb use TpmCryptoDevCtx, but can
also be your own.

* pDevld Pointer to automatically assigned device ID.

See:

* wolfTPM2_CryptoDevCb
* wolfTPM2_ClearCryptoDevCb

Return:

* TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_ClearCryptoDevCb(
WOLFTPM2_DEV * dev,
int devId

)

Clears the registered crypto callback.

Parameters:

* dev pointer to a TPM2_DEV struct
+ devld The devld used when registering the callback

See:

COPYRIGHT ©2024 wolfSSL Inc. 450

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

* wolfTPM2_CryptoDevCb
* wolfTPM2_SetCryptoDevCb

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API WOLFTPM2_DEV * wolfTPM2_New (
void

)

Allocate and initialize a WOLFTPM2_DEV.

See: wolfTPM2_Free

Return:

* pointer to new device struct
* NULL: on any error

WOLFTPM_API int wolfTPM2_Free(
WOLFTPM2_DEV * dev
)

Cleanup and Free a WOLFTPM2_DEV that was allocated by wolfTPM2_New.
Parameters:

+ dev pointer to a TPM2_DEV struct
See: wolfTPM2_New
Return: TPM_RC_SUCCESS: successful

WOLFTPM_API WOLFTPM2_KEYBLOB * wolfTPM2_NewKeyBlob (
void

)

Allocate and initialize a WOLFTPM2_KEYBLOB.

See: wolfTPM2_FreeKeyBlob

Return:

*+ pointer to newly initialized WOLFTPM2_KEYBLOB
* NULL on any error

COPYRIGHT ©2024 wolfSSL Inc. 451

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_FreeKeyBlob(
WOLFTPM2_KEYBLOB * blob
)

Free a WOLFTPM2_KEYBLOB that was allocated with wolfTPM2_NewKeyBlob.

Parameters:

* blob pointer to a WOLFTPM2_KEYBLOB that was allocated by wolfTPM2_NewKeyBlob
See: wolfTPM2_NewKeyBlob
Return: TPM_RC_SUCCESS: successful

WOLFTPM_API TPMT_PUBLIC * wolfTPM2_NewPublicTemplate(
void

)

Allocate and initialize a TPMT_PUBLIC.

See: wolfTPM2_FreePublicTemplate

Return:

* pointer to newly initialized
* NULL on any error

WOLFTPM_API int wolfTPM2_FreePublicTemplate(
TPMT_PUBLIC * PublicTemplate
)

Free a TPMT_PUBLIC that was allocated with wolfTPM2_NewPublicTemplate.

Parameters:

* PublicTemplate pointertoa TPMT_PUBLIC that was allocated with wolfTPM2_NewPublicTemplate
See: wolfTPM2_NewPublicTemplate
Return: TPM_RC_SUCCESS: successful

WOLFTPM_API WOLFTPM2_KEY * wolfTPM2_NewKey (
void

)

Allocate and initialize a WOLFTPM2_KEY.

See: wolfTPM2_FreeKey

Return:

COPYRIGHT ©2024 wolfSSL Inc. 452

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

* pointer to newly initialized WOLFTPM2_KEY
* NULL on any error

WOLFTPM_API int wolfTPM2_FreeKey (
WOLFTPM2_KEY * key

)

Free a WOLFTPM2_KEY that was allocated with wolfTPM2_NewKey.

Parameters:

* key pointer to a WOLFTPM2_KEY that was allocated by wolfTPM2_NewKey
See: wolfTPM2_NewKey
Return: TPM_RC_SUCCESS: successful

WOLFTPM_API WOLFTPM2_SESSION * wolfTPM2_NewSession(
void

)

Allocate and initialize a WOLFTPM2_SESSION.

See: wolfTPM2_FreeSession

Return:

* pointer to newly initialized WOLFTPM2_SESSION
* NULL on any error

WOLFTPM_API int wolfTPM2_FreeSession(
WOLFTPM2_SESSION * session
)

Free a WOLFTPM2_SESSION that was allocated with wolfTPM2_NewSession.

Parameters:
*+ session pointer to a WOLFTPM2_SESSION struct

See: wolfTPM2_NewSession
Return: TPM_RC_SUCCESS: successful

COPYRIGHT ©2024 wolfSSL Inc. 453

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

WOLFTPM_API WOLFTPM2_CSR * wolfTPM2_NewCSR(
void

)

Allocate and initialize a WOLFTPM2_CSR.

See: wolfTPM2_FreeCSR

Return:

* pointer to newly initialized WOLFTPM2_CSR
* NULL on any error

WOLFTPM_API int wolfTPM2_FreeCSR(
WOLFTPM2_CSR * csx

)

Free a WOLFTPM2_CSR that was allocated with wolfTPM2_NewCSR.
Parameters:

* ¢sr pointer to a WOLFTPM2_CSR that was allocated by wolfTPM2_NewCSR
See: wolfTPM2_NewCSR
Return: TPM_RC_SUCCESS: successful

WOLFTPM_API WOLFTPM2_HANDLE * wolfTPM2_GetHandleRefFromKey (
WOLFTPM2_KEY * key

)

Retrieve the WOLFTPM2_HANDLE from a WOLFTPM2_KEY.

Parameters:

+ key pointer to a WOLFTPM2_KEY struct

Return:

* pointer to handle in the key structure
* NULL if key pointer is NULL

WOLFTPM_API WOLFTPM2_HANDLE * wolfTPM2_GetHandleRefFromKeyBlob (
WOLFTPM2_KEYBLOB * keyBlob

)

COPYRIGHT ©2024 wolfSSL Inc. 454

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Retrieve the WOLFTPM2_HANDLE from a WOLFTPM2_KEYBLOB.
Parameters:

+ keyBlob pointer to a WOLFTPM2_KEYBLOB struct

Return:

+ pointer to handle in the key blob structure
* NULL if key pointer is NULL

WOLFTPM_API WOLFTPM2_HANDLE * wolfTPM2_GetHandleRefFromSession(
WOLFTPM2_SESSION * session

)

Retrieve the WOLFTPM2_HANDLE from a WOLFTPM2_SESSION.

Parameters:

*+ session pointer to a WOLFTPM2_SESSION struct

Return:

*+ pointer to handle in the session structure
* NULL if key pointer is NULL

WOLFTPM_API TPM_HANDLE wolfTPM2_GetHandleValue(
WOLFTPM2_HANDLE * handle

)

Get the 32-bit handle value from the WOLFTPM2_HANDLE.

Parameters:

* handle pointer to WOLFTPM2_HANDLE structure
Return: TPM_HANDLE value from TPM

WOLFTPM_API int wolfTPM2_SetKeyAuthPassword(
WOLFTPM2_KEY * key,
const byte * auth,
int authSz

COPYRIGHT ©2024 wolfSSL Inc. 455

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Set the authentication data for a key.

Parameters:

+ key pointer to wrapper key struct
+ auth pointer to auth data
+ authSz length in bytes of auth data

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyBlobAsBuffer(
byte * buffer,
woxrd32 buffexrSz,
WOLFTPM2_KEYBLOB * key

)

Marshal data from a keyblob to a binary buffer. This can be stored to disk for loading in a separate
process or after power cycling. If buffer is not provided then size only will be returned.

Parameters:

+ buffer pointer to buffer in which to store marshaled keyblob
* bufferSz size of the above buffer
+ key pointer to keyblob to marshal

See: wolfTPM2_SetKeyBlobFromBuffer

Return:

+ Positive integer (size of the output)
* BUFFER_E: insufficient space in provided buffer
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetKeyBlobAsSeparateBuffers(
byte * pubBuffer,
word32 * pubBufferSz,
byte * privBuffer,
word32 * privBufferSz,
WOLFTPM2_KEYBLOB * key

)

Marshal data from a keyblob to a binary buffer. This can be stored to disk for loading in a separate
process or after power cycling. If either buffer is NULL then the size will be returned for each part.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 456

5.5 wolfTPM2 Wrappers 5 API REFERENCE

+ pubBuffer pointer to buffer in which to store the public part of the marshaled keyblob
+ pubBufferSz pointer to the size of the above buffer

+ privBuffer pointer to buffer in which to store the private part of the marshaled keyblob
+ privBufferSz pointer to the size of the above buffer

+ key pointer to keyblob to marshal

See: wolfTPM2_GetKeyBlobAsSeparateBuffers
Return:

* TPM_RC_SUCCESS: successful

« BUFFER_E: insufficient space in provided buffer

* BAD_FUNC_ARG: check the provided arguments

* LENGTH_ONLY_E: Returning length only (when either of the buffers is NULL)

WOLFTPM_API int wolfTPM2_SetKeyBlobFromBuffer(
WOLFTPM2_KEYBLOB * key,
byte * buffer,
word32 bufferSz

)

Unmarshal data into a WOLFTPM2_KEYBLOB struct. This can be used to load a keyblob that was pre-
viously marshaled by wolfTPM2_GetKeyBlobAsBuffer.
Parameters:

+ key pointer to keyblob to load and unmarshall data into
+ buffer pointer to buffer containing marshalled keyblob to load from
* bufferSz size of the above buffer

See: wolfTPM2_GetKeyBlobAsBuffer

Return:

¢ TPM_RC_SUCCESS: successful
* BUFFER_E: buffer is too small or there is extra data remaining and not unmarshalled
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_PolicyRestart(
WOLFTPM2_DEV * dev,
TPM_HANDLE sessionHandle

)

Restart the policy digest for a policy session.

Parameters:

* dev pointer to a TPM2_DEV struct
+ sessionHandle the handle of the current session, a session is required to use policy pcr

COPYRIGHT ©2024 wolfSSL Inc. 457

5.5 wolfTPM2 Wrappers 5 API REFERENCE

See:

* wolfTPM2_GetPolicyDigest
* wolfTPM2_PolicyPCR
» wolfTPM2_PolicyAuthorize

Return:

« TPM_RC_SUCCESS: successful
« INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_GetPolicyDigest(
WOLFTPM2_DEV * dev,
TPM_HANDLE sessionHandle,
byte * policyDigest,
word32 * policyDigestSz
)

Get the policy digest of the session that was passed in wolfTPM2_GetPolicyDigest.

Parameters:

* dev pointer to a TPM2_DEV struct

+ sessionHandle the handle of the current session, a session is required to use policy pcr
+ policyDigest output digest of the policy

+ policyDigestSz pointer to the size of the policyDigest

See:

* wolfTPM2_PolicyPCR
* wolfTPM2_PolicyAuthorize
* wolfTPM2_PolicyRestart

Return:

¢ TPM_RC_SUCCESS: successful
+ INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_PolicyPCR(
WOLFTPM2_DEV * dev,
TPM_HANDLE sessionHandle,
TPM_ALG_ID pcrAlg,
byte * pcrArray,
word32 pcrArraySz

COPYRIGHT ©2024 wolfSSL Inc. 458

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Apply the PCR's to the policy digest for the policy session.
Parameters:

+ dev pointer to a TPM2_DEV struct

+ sessionHandle the handle of the current policy session, a session is required to use policy PCR
+ pcrAlg the hash algorithm to use with PCR policy

* pcrArray array of PCR Indexes to use when creating the policy

* pcrArraySz the number of PCR Indexes in the pcrArray

See:

* wolfTPM2_GetPolicyDigest
* wolfTPM2_PolicyPCR

» wolfTPM2_PolicyAuthorize
* wolfTPM2_PolicyRestart

Return:

* TPM_RC_SUCCESS: successful
« INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_PolicyAuthorize(
WOLFTPM2_DEV * dev,
TPM_HANDLE sessionHandle,
const TPM2B_PUBLIC * pub,
const TPMT_TK_VERIFIED * checkTicket,
const byte * pcrDigest,
word32 pcrDigestSz,
const byte * policyRef,
word32 policyRefSz
)

Apply the PCR’s to the policy digest for the policy session.

Parameters:

+ dev pointer to a TPM2_DEV struct

+ sessionHandle the handle of the current policy session, a session is required to use policy PCR
*+ pub pointer to a populated structure of TPM2B_PUBLIC type

+ checkTicket returns the validation ticket proving the signature for digest was checked

+ pcrDigest digest for the PCR(s) collected with wolfTPM2_PCRGetDigest

* pcrDigestSz size of the PCR digest

* policyRef optional nonce

+ policyRefSz optional nonce size

See:

* wolfTPM2_GetPolicyDigest

COPYRIGHT ©2024 wolfSSL Inc. 459

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

* wolfTPM2_PolicyPCR

* wolfTPM2_PolicyAuthorize
* wolfTPM2_PolicyRestart

* wolfTPM2_PCRGetDigest

Return:

* TPM_RC_SUCCESS: successful
+ INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_PCRGetDigest (
WOLFTPM2_DEV * dev,
TPM_ALG_ID pcrAlg,
byte * pcrArray,
word32 pcrArraySz,
byte * pcrDigest,
word32 * pcrDigestSz
)

Get a cumulative digest of the PCR’s specified.

Parameters:

+ dev pointer to a TPM2_DEV struct

* pcrAlg the hash algorithm to use with pcr policy

 pcrArray array of pcr Index to use when creating the policy

* pcrArraySz the number of Index in the pcrArray

+ pcrDigest digest for the PCR(s) collected with wolfTPM2_PCRGetDigest
+ pcrDigestSz size of the PCR digest

See:

* wolfTPM2_PolicyPCR
* wolfTPM2_PolicyAuthorize

Return:

¢ TPM_RC_SUCCESS: successful
+ INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_PolicyRefMake (
TPM_ALG_ID pcrAlg,
byte * digest,
word32 * digestSz,
const byte * policyRef,
word32 policyRefSz

COPYRIGHT ©2024 wolfSSL Inc. 460

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Utility for generating a policy ref digest. If no policy reference (nonce) used then just rehash the pro-
vided digest again (update -> final)

Parameters:

* pcrAlg the hash algorithm to use with pcr policy
+ digest input/out digest

+ digestSz input/out digest size

+ policyRef optional nonce

+ policyRefSz optional nonce size

See:

* wolfTPM2_PolicyPCRMake
* wolfTPM2_PolicyAuthorizeMake

Return:

» TPM_RC_SUCCESS: successful
« INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_PolicyPCRMake (
TPM_ALG_ID pcrAlg,
byte * pcrArray,
word32 pcrArraySz,
const byte * pcrDigest,
word32 pcrDigestSz,
byte * digest,
word32 * digestSz
)

Utility for generating a policy PCR digest.

Parameters:

* pcrAlg the hash algorithm to use with pcr policy

+ pcrArray optional array of pcrs to be used when creating the tpm object

* pcrArraySz length of the pcrArray

* pcrDigest digest for the PCR(s) collected (can get using wolfTPM2_PCRGetDigest)
+ pcrDigestSz size of the PCR digest

+ digest input/out digest

+ digestSz input/out digest size

* wolfTPM2_PolicyPCRMake
* wolfTPM2_PolicyAuthorizeMake
* wolfTPM2_PCRGetDigest

COPYRIGHT ©2024 wolfSSL Inc. 461

5.5 wolfTPM2 Wrappers 5 API REFERENCE

Return:

* TPM_RC_SUCCESS: successful
« INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_PolicyHash(
TPM_ALG_ID hashAlg,
byte * digest,
word32 * digestSz,
TPM_CC cc,
const byte * input,
word32 inputSz
)

Utility for creating a policy hash. Generic helper that takes command code and input array. policyDi-
gestnew = hash(policyDigestOld | | [cc] | | [Input])

Parameters:

* hashAlg the hash algorithm to use with pcr policy
+ digest input/out digest (input “old” / output “new")
+ digestSz input/out digest size

+ ccis the command code used

* input pointer to a array to use (optional)

* inputSz size of input

See: wolfTPM2_PolicyPCRMake

Return:

« TPM_RC_SUCCESS: successful
« INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_PolicyAuthorizeMake (
TPM_ALG_ID pcrAlg,
const TPM2B_PUBLIC * pub,
byte * digest,
word32 * digestSz,
const byte * policyRef,
word32 policyRefSz
)

Utility for generating a policy authorization digest based on a public key.

Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 462

5.5 wolfTPM2 Wrappers 5 API REFERENCE

* pcrAlg the hash algorithm to use with pcr policy

* pub pointer to a populated structure of TPM2B_PUBLIC type
+ digest input/out digest

+ digestSz input/out digest size

+ policyRef optional nonce

+ policyRefSz optional nonce size

See:

* wolfTPM2_PolicyPCRMake
* wolfTPM2_PolicyHash

Return:

« TPM_RC_SUCCESS: successful
« INPUT_SIZE_E: policyDigestSz is too small to hold the returned digest
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_PolicyPasswoxd(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * tpmSession,
const byte * auth,
int authSz

)

Wrapper for setting a policy password and calling TPM2_PolicyPassword. This will set a password (in
clear) for the policy session instead of HMAC.

Parameters:

*+ dev pointer to a TPM2_DEV struct

* tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

+ auth pointer to a string constant, specifying the password authorization for the policy session

+ authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_PolicyAuthValue
* wolfTPM2_PolicyCommandCode

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

COPYRIGHT ©2024 wolfSSL Inc. 463

5.5 wolfTPM2 Wrappers 5 API REFERENCE

WOLFTPM_API int wolfTPM2_PolicyAuthValue(
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * tpmSession,
const byte * auth,
int authSz
)

Wrapper for setting a policy auth value that is added to the HMAC key for a policy session.

Parameters:

+ dev pointer to a TPM2_DEV struct

* tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

+ auth pointer to a string constant, specifying the password authorization for the policy session

+ authSz integer value, specifying the size of the password authorization, in bytes

See:

* wolfTPM2_PolicyPassword
» wolfTPM2_PolicyCommandCode

Return:

« TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_PolicyCommandCode (
WOLFTPM2_DEV * dev,
WOLFTPM2_SESSION * tpmSession,
TPM_CC cc

)

Wrapper for setting a policy command code.

Parameters:

+ dev pointer to a TPM2_DEV struct

* tpmSession pointer to a WOLFTPM2_SESSION struct used with wolfTPM2_StartSession and
wolfTPM2_SetAuthSession

* ¢cc TPM_CC command code

See:

* wolfTPM2_PolicyPassword
* wolfTPM2_PolicyAuthValue

Return:

COPYRIGHT ©2024 wolfSSL Inc. 464

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

WOLFTPM_API int wolfTPM2_SetIdentityAuth(
WOLFTPM2_DEV * dev,
WOLFTPM2_HANDLE * handle,
uint8_t * masterPassword,
uintl6_t masterPasswordSz

)

Set authentication for pre-provisioned identity keys.

Parameters:

* dev pointer to a TPM2_DEV struct

* handle pointer to WOLFTPM2_HANDLE for the identity key
* masterPassword pointer to master password data

* masterPasswordSz size of master password in bytes

See: wolfTPM2_CreateAndLoadAIK

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Used with IAK and IDevID keys on ST33KTPM devices

WOLFTPM_LOCAL int GetKeyTemplateRSA(
TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID nameAlg,
TPMA_OBJECT objectAttributes,
int keyBits,
long exponent,
TPM_ALG_ID sigScheme,
TPM_ALG_ID sigHash

)

Internal helper to create RSA key template.

Parameters:

* publicTemplate pointer to TPMT_PUBLIC template to populate
* nameAlg hash algorithm for key name

+ objectAttributes TPM object attributes

+ keyBits RSA key size in bits

* exponent RSA public exponent

+ sigScheme signature scheme algorithm

+ sigHash hash algorithm for signatures

COPYRIGHT ©2024 wolfSSL Inc. 465

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

See: GetKeyTemplateECC
Return:

« TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: Used internally by key creation functions

WOLFTPM_LOCAL int GetKeyTemplateECC(

TPMT_PUBLIC * publicTemplate,
TPM_ALG_ID nameAlg,
TPMA_OBJECT objectAttributes,
TPM_ECC_CURVE cuzrve,
TPM_ALG_ID sigScheme,
TPM_ALG_ID sigHash

)

Internal helper to create ECC key template.

Parameters:

* publicTemplate pointer to TPMT_PUBLIC template to populate
* nameAlg hash algorithm for key name

+ objectAttributes TPM object attributes

* curve ECC curve identifier

+ sigScheme signature scheme algorithm

+ sigHash hash algorithm for signatures

See: GetKeyTemplateRSA

Return:

¢ TPM_RC_SUCCESS: successful
* BAD_FUNC_ARG: check the provided arguments

Note: Used internally by key creation functions

WOLFTPM_API int wolfTPM2_FirmwareUpgradeHash(
WOLFTPM2_DEV * dev,
TPM_ALG_ID hashAlg,
uint8_t * manifest_hash,
uint32_t manifest_hash_sz,
uint8_t * manifest,
uint32_t manifest_sz,
wolfTPM2FwDataCb cb,
void * cb_ctx

COPYRIGHT ©2024 wolfSSL Inc. 466

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Calculate hash of firmware manifest for upgrade.

Parameters:

+ dev pointer to a TPM2_DEV struct

* hashAlg hash algorithm to use (TPM_ALG_SHA384 or TPM_ALG_SHA512)
+ manifest_hash buffer to store computed manifest hash

« manifest_hash_sz size of manifest hash buffer

* manifest pointer to firmware manifest data

« manifest_sz size of firmware manifest

* cb callback function for firmware data access

+ cb_ctx context pointer passed to callback

* wolfTPM2_FirmwareUpgrade
* wolfTPM2_FirmwareUpgradeRecover

Return:

¢ TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Supports SHA2-384 or SHA2-512 for manifest hash

WOLFTPM_API int wolfTPM2_FirmwareUpgrade (
WOLFTPM2_DEV * dev,
uint8_t * manifest,
uint32_t manifest_sz,
wolfTPM2FwDataCb cb,
void * cb_ctx

)

Perform TPM firmware upgrade.

Parameters:

+ dev pointer to a TPM2_DEV struct

* manifest pointer to firmware manifest data
« manifest_sz size of firmware manifest

* cb callback function for firmware data access
+ cb_ctx context pointer passed to callback

* wolfTPM2_FirmwareUpgradeHash
* wolfTPM2_FirmwareUpgradeRecover

COPYRIGHT ©2024 wolfSSL Inc. 467

5.5 wolfTPM2 Wrappers

5 APIREFERENCE

Return:

* TPM_RC_SUCCESS: successful
» TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Upgrades TPM firmware using provided manifest and data callback

WOLFTPM_API int wolfTPM2_FirmwareUpgradeRecover
WOLFTPM2_DEV * dev,
uint8_t * manifest,
uint32_t manifest_sz,
wolfTPM2FwDataCb cb,
void * cb_ctx

)

Recover from failed TPM firmware upgrade.

Parameters:

+ dev pointer to a TPM2_DEV struct

* manifest pointer to firmware manifest data
* manifest_sz size of firmware manifest

* cb callback function for firmware data access
+ cb_ctx context pointer passed to callback

See:

* wolfTPM2_FirmwareUpgrade
* wolfTPM2_FirmwareUpgradeHash

Return:

« TPM_RC_SUCCESS: successful
« TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Attempts to recover TPM after interrupted/failed upgrade

WOLFTPM_API int wolfTPM2_FirmwareUpgradeCancel(
WOLFTPM2_DEV * dev

)

Cancel ongoing TPM firmware upgrade.

Parameters:

+ dev pointer to a TPM2_DEV struct

COPYRIGHT ©2024 wolfSSL Inc. 468

5.5 wolfTPM2 Wrappers 5 API REFERENCE

See:

* wolfTPM2_FirmwareUpgrade
* wolfTPM2_FirmwareUpgradeRecover

Return:

» TPM_RC_SUCCESS: successful
* TPM_RC_FAILURE: generic failure (check TPM IO and TPM return code)
* BAD_FUNC_ARG: check the provided arguments

Note: Aborts current firmware upgrade process

COPYRIGHT ©2024 wolfSSL Inc. 469

6 CITED SOURCES

6 Cited Sources

[1.] Wikipedia contributors. (2018, May 30). Trusted Platform Module. In Wikipedia, The Free Encyclope-
dia. Retrieved 22:46, June 20, 2018, from https://en.wikipedia.org/w/index.php?title=Trusted_Platform_Module&oldid:

[2.] Arthur W., Challener D., Goldman K. (2015) Platform Configuration Registers. In: A Practical Guide
to TPM 2.0. Apress, Berkeley, CA

COPYRIGHT ©2024 wolfSSL Inc. 470

	Intro
	Protocol overview
	Hierarchies
	Platform Configuration Registers (PCRs)
	Terminology
	Hardware
	Device Identification

	Building wolfTPM
	Build options and defines
	Building Infineon SLB9670
	Building ST ST33TP*
	Building Microchip ATTPM20
	Building Nuvoton
	Building for ``/dev/tpmX''
	Building for SWTPM
	Building for Windows TBS API

	Getting Started
	Examples
	Native API Test
	Wrapper API Test
	Attestation Use Cases
	Parameter Encryption
	CSR
	Certificate Signing
	PKCS #7
	TLS Examples
	Clock
	Key Generation
	Storing keys into the TPM's NVRAM
	Seal / Unseal
	GPIO Control

	Benchmarks

	wolfTPM Library Design
	Library Headers
	Example Design

	API Reference
	TPM2 Proprietary
	Functions
	Detailed Description
	Functions Documentation

	wolftpm/tpm2.h
	Classes
	Types
	Functions
	Attributes
	Types Documentation
	Functions Documentation
	Attributes Documentation
	Source code

	wolftpm/tpm2_wrap.h
	Classes
	Types
	Functions
	Attributes
	Types Documentation
	Functions Documentation
	Attributes Documentation
	Source code

	hal/tpm_io.h
	Functions
	Attributes
	Functions Documentation
	Attributes Documentation
	Source code

	wolfTPM2 Wrappers
	Functions
	Detailed Description
	Functions Documentation

	Cited Sources

