
wolfSSH Documentation

2026-01-19

1

CONTENTS CONTENTS

Contents

1 Introduction 6
1.1 Protocol Overview . 6
1.2 Why Choose wolfSSH? . 6

1.2.1 Features . 6

2 Building wolfSSH 7
2.1 Getting the Source Code . 7
2.2 wolfSSH Dependencies . 7
2.3 Building with autotools . 7
2.4 Building on Windows . 8

2.4.1 User Macros for Building on Windows . 8
2.5 Building in a non-standard environment . 9
2.6 Cross Compiling . 9
2.7 Install to Custom Directory . 9

3 Getting Started 11
3.1 Testing . 11

3.1.1 wolfSSH Unit Test . 11
3.1.2 Testing Notes . 11

3.2 Examples . 12
3.2.1 wolfSSH Echo Server . 12
3.2.2 wolfSSH Client . 12
3.2.3 wolfSSH portfwd . 13
3.2.4 wolfSSH scpclient . 13
3.2.5 wolfSSH sftpclient . 13
3.2.6 wolfSSH server . 14

3.3 SCP . 14
3.4 SFTP . 14
3.5 Shell Support . 15
3.6 Post-Quantum . 15
3.7 Certificate Support . 16

4 Library Design 18
4.1 Directory Layout . 18

5 wolfSSH User Authentication Callback 19
5.1 Callback Function Prototype . 19
5.2 Callback Function Authentication Type Constants . 19
5.3 Callback Function Return Code Constants . 20
5.4 Callback Function Data Types . 20

5.4.1 Password . 20
5.4.2 Keyboard-Interactive . 21
5.4.3 Public Key . 21

6 Callback Function Setup API 23
6.1 Setting the User Authentication Callback Function . 23
6.2 Setting the User Authentication Callback Context Data 23
6.3 Getting the User Authentication Callback Context Data 23
6.4 Setting the Keyboard Authentication Prompts Callback Function 23
6.5 Example Echo Server User Authentication . 23

7 Building and Using wolfSSH SFTP 25

COPYRIGHT ©2024 wolfSSL Inc. 2

CONTENTS CONTENTS

7.1 Building wolfSSH SFTP . 25
7.2 Using wolfSSH SFTP Apps . 25

8 Port Forwarding 27
8.1 Building wolfSSH with Port Forwarding . 27
8.2 Using wolfSSH Port Forwarding Example App . 27

9 Notes and Limitations 28

10 Licensing 29
10.1 Open Source . 29
10.2 Commercial Licensing . 29

10.2.1 Support Packages . 29

11 Support and Consulting 30
11.1 How to Get Support . 30

11.1.1 Bugs Reports and Support Issues . 30
11.2 Consulting . 30

11.2.1 Feature Additions and Porting . 30
11.2.2 Competitive Upgrade Program . 30
11.2.3 Design Consulting . 31

12 wolfSSH Updates 32
12.1 Product Release Information . 32

13 API Reference 33
13.1 Error Codes . 33

13.1.1 WS_ErrorCodes (enum) . 33
13.1.2 WS_IOerrors (enum) . 33

13.2 Initialization / Shutdown . 34
13.2.1 wolfSSH_Init() . 34
13.2.2 wolfSSH_Cleanup() . 34

13.3 Debugging output functions . 35
13.3.1 wolfSSH_Debugging_ON() . 35
13.3.2 wolfSSH_Debugging_OFF() . 35

13.4 Context Functions . 35
13.4.1 wolfSSH_CTX_new() . 35
13.4.2 wolfSSH_CTX_free() . 36
13.4.3 wolfSSH_CTX_SetBanner() . 36
13.4.4 wolfSSH_CTX_UsePrivateKey_buffer() . 36

13.5 SSH Session Functions . 37
13.5.1 wolfSSH_new() . 37
13.5.2 wolfSSH_free() . 37
13.5.3 wolfSSH_set_fd() . 38
13.5.4 wolfSSH_get_fd() . 38

13.6 Data High Water Mark Functions . 38
13.6.1 wolfSSH_SetHighwater() . 38
13.6.2 wolfSSH_GetHighwater() . 39
13.6.3 wolfSSH_SetHighwaterCb() . 39
13.6.4 wolfSSH_SetHighwaterCtx() . 39
13.6.5 wolfSSH_GetHighwaterCtx() . 40

13.7 Error Checking . 40
13.7.1 wolfSSH_get_error() . 40
13.7.2 wolfSSH_get_error_name() . 40
13.7.3 wolfSSH_ErrorToName() . 41

COPYRIGHT ©2024 wolfSSL Inc. 3

CONTENTS CONTENTS

13.8 I/O Callbacks . 41
13.8.1 wolfSSH_SetIORecv() . 41
13.8.2 wolfSSH_SetIOSend() . 41
13.8.3 wolfSSH_SetIOReadCtx() . 42
13.8.4 wolfSSH_SetIOWriteCtx() . 42
13.8.5 wolfSSH_GetIOReadCtx() . 42
13.8.6 wolfSSH_GetIOWriteCtx() . 43

13.9 User Authentication . 43
13.9.1 wolfSSH_SetUserAuth() . 43
13.9.2 wolfSSH_SetUserAuthCtx() . 43
13.9.3 wolfSSH_GetUserAuthCtx() . 44
13.9.4 wolfSSH_SetKeyboardAuthPrompts() . 44
13.9.5 wolfSSH_SetKeyboardAuthCtx() . 44

13.10Set Username . 45
13.10.1wolfSSH_SetUsername() . 45

13.11Connection Functions . 45
13.11.1wolfSSH_accept() . 45
13.11.2wolfSSH_connect() . 46
13.11.3wolfSSH_shutdown() . 46
13.11.4wolfSSH_stream_read() . 46
13.11.5wolfSSH_stream_send() . 47
13.11.6wolfSSH_stream_exit() . 48
13.11.7wolfSSH_TriggerKeyExchange() . 48

13.12Channel Callbacks . 48
13.12.1Callback Function Prototypes . 49
13.12.2wolfSSH_CTX_SetChannelOpenCb . 49
13.12.3wolfSSH_CTX_SetChannelOpenRespCb . 49
13.12.4wolfSSH_CTX_SetChannelReqShellCb . 50
13.12.5wolfSSH_CTX_SetChannelReqSubsysCb . 50
13.12.6wolfSSH_CTX_SetChannelReqExecCb . 50
13.12.7wolfSSH_CTX_SetChannelEofCb . 50
13.12.8wolfSSH_CTX_SetChannelCloseCb . 51
13.12.9wolfSSH_SetChannelOpenCtx . 51
13.12.10wolfSSH_SetChannelReqCtx . 51
13.12.11wolfSSH_SetChannelEofCtx . 52
13.12.12wolfSSH_SetChannelCloseCtx . 52
13.12.13wolfSSH_GetChannelOpenCtx . 52
13.12.14wolfSSH_GetChannelReqCtx . 52
13.12.15wolfSSH_GetChannelEofCtx . 53
13.12.16wolfSSH_GetChannelCloseCtx . 53
13.12.17wolfSSH_ChannelGetSessionType . 53
13.12.18wolfSSH_ChannelGetSessionCommand . 54

13.13Testing Functions . 54
13.13.1wolfSSH_GetStats() . 54
13.13.2wolfSSH_KDF() . 54

13.14Session Functions . 55
13.14.1wolfSSH_GetSessionType() . 55
13.14.2wolfSSH_GetSessionCommand() . 55

13.15Port Forwarding Functions . 56
13.15.1wolfSSH_ChannelFwdNew() . 56
13.15.2wolfSSH_ChannelFree() . 56
13.15.3wolfSSH_worker() . 56
13.15.4wolfSSH_ChannelGetId() . 57
13.15.5wolfSSH_ChannelFind() . 57

COPYRIGHT ©2024 wolfSSL Inc. 4

CONTENTS CONTENTS

13.15.6wolfSSH_ChannelRead() . 57
13.15.7wolfSSH_ChannelSend() . 58
13.15.8wolfSSH_ChannelExit() . 58
13.15.9wolfSSH_ChannelNext() . 59

13.16Key Load Functions . 59
13.16.1wolfSSH_ReadKey_buffer() . 59
13.16.2wolfSSH_ReadKey_file() . 59

13.17Key Exchange Algorithm Configuration . 60
13.17.1wolfSSH Set Algo Lists . 60
13.17.2wolfSSH Get Algo List . 61
13.17.3wolfSSH_CheckAlgoName . 61
13.17.4wolfSSH Query Algorithms . 62

14 wolfSSL SFTP API Reference 63
14.1 Connection Functions . 63

14.1.1 wolfSSH_SFTP_accept() . 63
14.1.2 wolfSSH_SFTP_connect() . 63
14.1.3 wolfSSH_SFTP_negotiate() . 64

14.2 Protocol Level Functions . 64
14.2.1 wolfSSH_SFTP_RealPath() . 64
14.2.2 wolfSSH_SFTP_Close() . 65
14.2.3 wolfSSH_SFTP_Open() . 66
14.2.4 wolfSSH_SFTP_SendReadPacket() . 66
14.2.5 wolfSSH_SFTP_SendWritePacket() . 67
14.2.6 wolfSSH_SFTP_STAT() . 68
14.2.7 wolfSSH_SFTP_LSTAT() . 69
14.2.8 wolfSSH_SFTPNAME_free() . 69
14.2.9 void wolfSSH_SFTPNAME_free(WS_SFTPNMAE* name); 70

14.3 Reget / Reput Functions . 70
14.3.1 wolfSSH_SFTP_SaveOfst() . 70
14.3.2 wolfSSH_SFTP_GetOfst() . 71
14.3.3 wolfSSH_SFTP_ClearOfst() . 72
14.3.4 wolfSSH_SFTP_Interrupt() . 72

14.4 Command Functions . 73
14.4.1 wolfSSH_SFTP_Remove() . 73
14.4.2 wolfSSH_SFTP_MKDIR() . 74
14.4.3 wolfSSH_SFTP_RMDIR() . 74
14.4.4 wolfSSH_SFTP_Rename() . 75
14.4.5 wolfSSH_SFTP_LS() . 75
14.4.6 wolfSSH_SFTP_Get() . 76
14.4.7 wolfSSH_SFTP_Put() . 77

14.5 SFTP Server Functions . 78
14.5.1 wolfSSH_SFTP_read() . 78

COPYRIGHT ©2024 wolfSSL Inc. 5

1 INTRODUCTION

1 Introduction

This manual is written as a technical guide to the wolfSSH embedded library. It will explain how to
build and get started with wolfSSH, provide an overview of build options, features, support, and much
more.
wolfSSH is an implementation of the SSH (Secure Shell) server written in C and uses the wolfCrypt
library which is also available from wolfSSL. Furthermore, wolfSSH has been built from the ground up
in order for it to have multi-platform use. This implementation is based off of the SSH v2 specification.

1.1 Protocol Overview
SSH is a layered set of protocols that providemultiplexed streams of data between two peers. Typically,
it is used for securing a connection to a shell on the server. However, it is also commonly used to
securely copy files between two machines or tunnel the X display protocol.

1.2 Why Choose wolfSSH?
The wolfSSH library is a lightweight SSHv2 server library written in ANSI C and targeted for embedded,
RTOS, and resource-constrained environments - primarily because of its small size, speed, and feature
set. It is commonly used in standard operating environments as well because of its royalty-free pricing
and excellent cross platform support. wolfSSH supports the industry standard SSH v2. wolfSSH is
powered by the wolfCrypt library. A version of the wolfCrypt cryptography library has been FIPS 140-3
validated (Certificate #4718) and FIPS 140-2 validated (Certificate #3389). For additional information,
visit the wolfCrypt FIPS FAQ or contact fips@wolfssl.com.

1.2.1 Features

• SSH v2.0 (server and client)
• Minimum footprint size of 33kB
• Runtime memory usage between 1.4 and 2kB, not including a configurable receive buffer
• Multiple hashing functions: SHA-1, SHA-2 (SHA-256, SHA-384, SHA-512)
• Block and authenticated ciphers: AES-CBC, AES-CTR, AES-GCM
• Key exchange options: DHE and ECDHE (with curves NISTP256, NISTP384, NISTP521)
• Public key authentication options: RSA and ECDSA (with curves NISTP256, NISTP384, NISTP521)
• User authentication support (password, keyboard-interactive and public key authentication)
• Simple API
• PEM and DER X.509 certificate support
• Hardware Cryptography Support: Intel AES-NI support, Intel AVX1/2, RDRAND, RDSEED, Cavium
NITROX support, STM32F2/F4 hardware crypto support, Freescale CAU /mmCAU / SEC,Microchip
PIC32MZ

• Post quantum hybrid key exchange with Hybrid ECDH-P256 Kyber-Level1
• Support for SFTP, SCP, SSH-AGENT, local and remote port forwarding

COPYRIGHT ©2024 wolfSSL Inc. 6

2 BUILDING WOLFSSH

2 Building wolfSSH

wolfSSH is written with portability in mind and should generally be easy to build on most systems.
If you have difficulty building, please don’t hesitate to seek support through our support forums,
https://www.wolfssl.com/forums, or contact us directly at support@wolfssl.com.
This section explains how to build wolfSSH on Linux, un*x-like (BSD, macOS) and Windows environ-
ments, and provides guidance for building in a non-standard environment. You will find a getting
started guide and example in section 3.
When using the autotools system to build, wolfSSH uses a single Makefile to build all parts and exam-
ples of the library, which is both simpler and faster than using Makefiles recursively.

2.1 Getting the Source Code
The most recent, up to date version can be downloaded from the GitHub website here: https://github
.com/wolfSSL/wolfssh.
Either click the “Download ZIP” button or use the following command in your terminal:
$ git clone https://github.com/wolfSSL/wolfssh.git

2.2 wolfSSH Dependencies
Since wolfSSH is dependent on wolfCrypt, a configuration of wolfSSL is necessary. wolfSSL can be
downloadedhere: https://github.com/wolfSSL/wolfssl. The simplest configuration ofwolfSSL required
for wolfSSH is the default build that can be built from the root directory of wolfSSL with the following
commands:
$./autogen.sh (only if you cloned from GitHub)
$./configure --enable-wolfssh
$ make check
$ sudo make install

To use the key generation function in wolfSSH, wolfSSL will need to be configured with keygen:
--enable-keygen

If the bulk of wolfSSL code isn’t desired, wolfSSL can be configured with the crypto only option:
--enable-cryptonly

2.3 Building with autotools
When building on Linux, BSD, macOS, Solaris, or other un*x-like environments, use the autotools sys-
tem. To build wolfSSH run the following commands:
$./autogen.sh (only if you cloned from GitHub)
$./configure
$ make
$ make install

You can append build options to the configure command. For a list of available configure options and
their purposes run:
$./configure --help

COPYRIGHT ©2024 wolfSSL Inc. 7

https://github.com/wolfSSL/wolfssh
https://github.com/wolfSSL/wolfssh
https://github.com/wolfSSL/wolfssl

2.4 Building on Windows 2 BUILDING WOLFSSH

To build wolfSSH run:
$ make

To ensure that wolfSSH has been built correctly, check to see if all of the tests have passed with:
$ make check

To install wolfSSH run:
$ make install

You may need superuser privileges to install, in which case run the install with sudo:
$ sudo make install

If you want to build only the wolfSSH library located in wolfssh/src/ and not the additional items (ex-
amples and tests) you can run the following command from the wolfSSH root directory:
$ make src/libwolfssh.la

2.4 Building on Windows
The Visual Studio project file can be found in the directory ide\winvs.
The solution file, ‘wolfssh.sln’, facilitates building wolfSSH and its example and test programs. The
solution provides both Debug and Release builds of Static and Dynamic 32- or 64-bit libraries. The file
user_settings.h should be used in the wolfSSL build to configure it.
This project assumes that the wolfSSH and wolfSSL source directories are installed side-by-side and do
not have the version number in their names:
Projects\
wolfssh\
wolfssl\

The file wolfssh\ide\winvs\user_settings.h contains the settings used to configure wolfSSL
with the appropriate settings. This file must be copied from the directory wolfssh\ide\winvs
to wolfssl\IDE\WIN. If you change one copy you must change both copies. The option
WOLFCRYPT_ONLY disables the build of the wolfSSL files and only builds the wolfCrypt algorithms. To
also keep wolfSSL, delete that option.

2.4.1 User Macros for Building on Windows

The solution is using user macros to indicate the location of the wolfSSL library and headers. All paths
are set to the default build destinations in the wolfssl64 solution. The user macro wolfCryptDir is used
as the base path for finding the libraries. It is initially set to ..\..\..\..\wolfssl. And then, for
example, the additional include directories value for the API test project is set to $(wolfCryptDir).
The wolfCryptDir path must be relative to the project files, which are all one directory down
wolfssh/wolfssh.vcxproj
unit-test/unit-test.vcxproj

The other user macros are the directories where the wolfSSL libraries for the different builds may be
found. So the user macro ‘wolfCryptDllRelease64’ is initially set to:
$(wolfCryptDir)\x64\DLL Release

COPYRIGHT ©2024 wolfSSL Inc. 8

2.5 Building in a non-standard environment 2 BUILDING WOLFSSH

This value is used in the debugging environment for the echoserver’s 64-bit DLL Release build is set
to:
PATH=$(wolfCryptDllRelease64);%PATH%

When you run the echoserver from the debugger, it finds the wolfSSL DLL in that directory.

2.5 Building in a non-standard environment
While not officially supported, we try to help users wishing to build wolfSSH in a non-standard envi-
ronment, particularly with embedded and cross-compiled systems. Below are some notes on getting
started with this:

1. The source and header files need to remain in the same directory structure as they are in the
wolfSSH download package.

2. Some build systems will want to explicitly know where the wolfSSH header files are located, so
you may need to specify that. They are located in the /wolfssh directory. Typically, you can add
the directory to your include path to resolve header problems.

3. wolfSSH defaults to a little endian system unless the configure process detects big endian.
Since users building in a non-standard environment aren’t using the configure process,
BIG_ENDIAN_ORDER will need to be defined if using a big endian system.

4. Try to build the library and let us know if you run into any problems. If you need help, contact us
at support@wolfssl.com.

2.6 Cross Compiling
Many users on embedded platforms cross compile for their environment. The easiest way to cross
compile the library is to use the configure system. It will generate a Makefile which can then be used
to build wolfSSH.
When cross compiling, you’ll need to specify the host to configure, such as:
$./configure --host=arm-linux

You may also need to specify the compiler, linker, etc. that you want to use:
$./configure --host=arm-linux CC=arm-linux-gcc AR=arm-
linux-ar
RANLIB=arm-linux

After correctly configuring wolfSSH for cross compilation you should be able to follow standard auto-
conf practices for building and installing the library:
$ make
$ sudo make install

If you have any additional tips or feedback for cross compiling wolfSSH, please let us know at
info@wolfssl.com.

2.7 Install to Custom Directory
To setup a custom install directory for wolfSSL use the following:
$./configure --prefix=~/wolfSSL
$ make
$ make install

COPYRIGHT ©2024 wolfSSL Inc. 9

2.7 Install to Custom Directory 2 BUILDING WOLFSSH

This will place the library in ~/wolfSSL/lib and the includes in ~/wolfssl/include. To set up a custom
install directory for wolfSSH and specify the custom wolfSSL library and include directories use the
following:
$./configure --prefix=~/wolfssh --libdir=~/wolfssl/lib --includedir=~/

wolfssl/include
$ make
$ make install

Make sure the paths above match your actual locations.

COPYRIGHT ©2024 wolfSSL Inc. 10

3 GETTING STARTED

3 Getting Started

After downloading and building wolfSSH, there are some automated test and example programs to
show the uses of the library.

3.1 Testing
3.1.1 wolfSSH Unit Test

The wolfSSH unit test is used to verify the API. Both positive and negative test cases are performed.
This test can be run manually and it additionally runs as part of other automated processes such as
the make and make check commands.
All examples and tests must be run from the wolfSSH home directory so the test tools can find their
certificates and keys.
To run the unit test manually:
$./tests/unit.test

or
$ make check (when using autoconf)

3.1.2 Testing Notes

After cloning the repository, be sure to make the testing private keys read- only for the user, otherwise
ssh_client will tell you to do it.
$ chmod 0600 ./keys/gretel-key-rsa.pem ./keys/hansel-key-rsa.pem \

./keys/gretel-key-ecc.pem ./keys/hansel-key-ecc.pem

Authentication against the example echoserver can be done with a password or public key. To use a
password the command line:
$ ssh -p 22222 USER@localhost

Where the USER and password pairs are:
jill:upthehill
jack:fetchapail

To use public key authentication use the command line:
$ ssh -i ./keys/USER-key-TYPE.pem -p 22222 USER@localhost

Where the USER can be gretel or hansel, and TYPE is rsa or ecc.
Keep in mind, the echoserver has several fake accounts in its wsUserAuth callback function. (jack, jill,
hansel, and gretel) When the shell support is enabled, those fake accounts will not work. They don’t
exist in the system’s passwd file. The users will authenticate, but the server will err out because they
don’t exist in the system. You can add your own username to the password or public key list in the
echoserver. That account will be logged into a shell started by the echoserver with the privileges of
the user running echoserver.

COPYRIGHT ©2024 wolfSSL Inc. 11

3.2 Examples 3 GETTING STARTED

3.2 Examples
3.2.1 wolfSSH Echo Server

The echoserver is the workhorse of wolfSSH. It originally only allowed one to authenticate one of the
canned account and would repeat the characters typed into it. When enabling shell support, see the
later section, it can spawn a user shell. It will need an actual user nameon themachine and an updated
user authentication callback function to validate the credentials. The echoserver can also handle SCP
and SFTP connections. From the terminal run:

$./examples/echoserver/echoserver -f

The option -f enables echo-only mode. From another terminal run:
$ ssh jill@localhost -p 22222

When prompted for a password, enter “upthehill”. The server will send a canned banner to the client:
wolfSSH Example Echo Server

Characters typed into the client will be echoed to the screen by the server. If the characters are echoed
twice, the client has local echo enabled. The echo server isn’t being a proper terminal so the CR/LF
translation will not work as expected.
The following control characters will trigger special actions in the echoserver:

• CTRL-C: Terminate the connection.
• CTRL-E: Print out some session statistics.
• CTRL-F: Trigger a new key exchange.

The echoserver tool accepts the following command line options:
-1 exit after a single (one) connection
-e expect ECC public key from client
-E use ECC private key
-f echo input
-p <num> port to accept on, default 22222
-N use non-blocking sockets
-d <string> set the home directory for SFTP connections
-j <file> load in a public key to accept from peer

3.2.2 wolfSSH Client

The client establishes a connection to an SSH server. In its simplest mode, it sends the string “Hello,
wolfSSH!” to the server, prints the response, and then exits. With the pseudo terminal option, the client
will be a real client.
The client tool accepts the following command line options:

-h <host> host to connect to, default 127.0.0.1
-p <num> port to connect on, default 22222
-u <username> username to authenticate as (REQUIRED)
-P <password> password for username, prompted if omitted
-e use sample ecc key for user
-i <filename> filename for the user's private key
-j <filename> filename for the user's public key
-x exit after successful connection without doing

read/write
-N use non-blocking sockets

COPYRIGHT ©2024 wolfSSL Inc. 12

3.2 Examples 3 GETTING STARTED

-t use psuedo terminal
-c <command> executes remote command and pipe stdin/stdout
-a Attempt to use SSH-AGENT

3.2.3 wolfSSH portfwd

The portfwd tool establishes a connection to an SSH server and sets up a listener for local port for-
warding or requests a listener for remote port forwarding. After a connection, the tool terminates.
The portfwd tool accepts the following command line options:

-h <host> host to connect to, default 127.0.0.1
-p <num> port to connect on, default 22222
-u <username> username to authenticate as (REQUIRED)
-P <password> password for username, prompted if omitted
-F <host> host to forward from, default 0.0.0.0
-f <num> host port to forward from (REQUIRED)
-T <host> host to forward to, default to host
-t <num> port to forward to (REQUIRED)

3.2.4 wolfSSH scpclient

The scpclient, wolfscp, establishes a connection to an SSH server and copies the specified files from or
to the local machine. When using the wolfSSH example, absolute paths must be used, and directories
must end with a /.
The scpclient tool accepts the following command line options:

-H <host> host to connect to, default 127.0.0.1
-p <num> port to connect on, default 22222
-u <username> username to authenticate as (REQUIRED)
-P <password> password for username, prompted if omitted
-L <from>:<to> copy from local to server
-S <from>:<to> copy from server to local

3.2.5 wolfSSH sftpclient

The sftpclient, wolfsftp, establishes a connection to an SSH server and allows directory navigation,
getting and putting files, making and removing directories, etc.
The sftpclient tool accepts the following command line options:

-h <host> host to connect to, default 127.0.0.1
-p <num> port to connect on, default 22222
-u <username> username to authenticate as (REQUIRED)
-P <password> password for username, prompted if omitted
-d <path> set the default local path
-N use non blocking sockets
-e use ECC user authentication
-l <filename> local filename
-r <filename> remote filename
-g put local filename as remote filename
-G get remote filename as local filename

COPYRIGHT ©2024 wolfSSL Inc. 13

3.3 SCP 3 GETTING STARTED

3.2.6 wolfSSH server

This tool is a place holder.

3.3 SCP
wolfSSH includes server-side support for scp, which includes support for both copying files ‘to’ the
server, and copying files ‘from’ the server. Both single file and recursive directory copy are supported
with the default send and receive callbacks.
To compile wolfSSH with scp support, use the --enable-scp build option or define WOLFSSL_SCP:

$./configure --enable-scp
$ make

The wolfSSL example server has been set up to accept a single scp request, and is compiled by default
when compiling the wolfSSH library. To start the example server, run:
$./examples/server/server

Standard scp commands can be used on the client side. The following are a few examples, where scp
represents the ssh client you are using.
To copy a single file TO the server, using the default example user “jill”:
$ scp -P 22222 <local_file> jill@127.0.0.1:<remote_path>

To copy the same single file TO the server, but with timestamp and in verbose mode:
$ scp -v -p -P 22222 <local_file> jill@127.0.0.1:<remote_path>

To recursively copy a directory TO the server:
$ scp -P 22222 -r <local_dir> jill@127.0.0.1:<remote_dir>

To copy a single file FROM the server to the local client:
$ scp -P 22222 jill@127.0.0.1:<remote_file> <local_path>

To recursively copy a directory FROM the server to the local client:
$ scp -P 22222 -r jill@127.0.0.1:<remote_dir> <local_path>

3.4 SFTP
wolfSSH provides server and client side support for SFTP version 3. This allows the user to set up an
encrypted connection for managing file systems.
To compile wolfSSHwith SFTP support, use the --enable-sftp build option or define WOLFSSH_SFTP:

$./configure --enable-sftp
$ make

For full API usage and implementation details, please see the wolfSSH User Manual.
The SFTP client created is located in the directory examples/sftpclient/ and the server is ran using the
same echoserver as with wolfSSH.

src/wolfssh$./examples/sftpclient/wolfsftp

A full list of supported commands can be seen with typeing “help” after a connection.

COPYRIGHT ©2024 wolfSSL Inc. 14

3.5 Shell Support 3 GETTING STARTED

wolfSSH sftp> help

Commands :
cd <string> change directory
chmod <mode> <path> change mode
get <remote file> <local file> pulls file(s) from server
ls list current directory
mkdir <dir name> creates new directory on server
put <local file> <remote file> push file(s) to server
pwd list current path
quit exit
rename <old> <new> renames remote file
reget <remote file> <local file> resume pulling file
reput <remote file> <local file> resume pushing file
<crtl + c> interrupt get/put cmd

An example of connecting to another system would be
src/wolfssh$./examples/sftpclient/wolfsftp -p 22 -u user -h 192.168.1.111

3.5 Shell Support
wolfSSH’s example echoserver can now fork a shell for the user trying to log in. This currently has only
been tested on Linux andmacOS. The file echoserver.c must bemodified to have the user’s credentials
in the user authentication callback, or the user authentication callback needs to be changed to verify
the provided password.
To compile wolfSSH with shell support, use the –enable-shell build option or define WOLFSSH_SHELL:
$./configure --enable-shell
$ make

By default, the echoserver will try to start a shell. To use the echo testing behavior, give the echoserver
the command line option -f.
$./examples/echoserver/echoserver -f

3.6 Post-Quantum
wolfSSH now supports the post-quantum algorithm Kyber. It uses the NIST submission’s Level 1 pa-
rameter set implemented by liboqs via an integration with wolfSSH. It is hybridized with ECDHE over
the P-256 ECC curve.
In order be able to use liboqs, you must have it built and installed on your system. We support the
0.7.0 release of liboqs. You can download it from the following link:

https://github.com/open-quantum-safe/liboqs/archive/refs/tags/0.7.0.tar.gz

Once unpacked, this would be sufficient:
$ cd liboqs-0.7.0
$ mkdir build
$ cd build
$ cmake -DOQS_USE_OPENSSL=0 ..
$ make all
$ sudo make install

COPYRIGHT ©2024 wolfSSL Inc. 15

3.7 Certificate Support 3 GETTING STARTED

In order to enable support for Kyber Level1 hybridizedwith ECDHEover the P-256 ECC curve inwolfSSH,
use the --with-liboqs build option during configuration:

$./configure --with-liboqs

The wolfSSH client and server will automatically negotiate using Kyber Level1 hybridized with ECDHE
over the P-256 ECC curve if this feature is enabled.

$./examples/echoserver/echoserver -f

$./examples/client/client -u jill -P upthehill

On the client side, you will see the following output:
Server said: Hello, wolfSSH!

If you want to see inter-operability with OpenQauntumSafe’s fork of OpenSSH, you can build and exe-
cute the fork while the echoserver is running. Download the release from here:

https://github.com/open-quantum-safe/openssh/archive/refs/tags/OQS-OpenSSH
-snapshot-2021-08.tar.gz

The following is sufficient for build and execution:
$ tar xmvf openssh-OQS-OpenSSH-snapshot-2021-08.tar.gz
$ cd openssh-OQS-OpenSSH-snapshot-2021-08/
$./configure --with-liboqs-dir=/usr/local
$ make all
$./ssh -o"KexAlgorithms +ecdh-nistp256-kyber-512-sha256" \
-o"PubkeyAcceptedAlgorithms +ssh-rsa" \
-o"HostkeyAlgorithms +ssh-rsa" \
jill@localhost -p 22222

NOTE: when prompted, enter the password which is “upthehill”.
You can type a line of text and when you press enter, the line will be echoed back. Use CTRL-C to
terminate the connection.

3.7 Certificate Support
wolfSSH can accept X.509 certificates in place of just public keys when authenticating a user.
To compile wolfSSH with X.509 support, use the --enable-certs build option or define WOLF-
SSH_CERTS:

$./configure --enable-certs
$ make

To provide a CA root certificate to validate a user’s certificate, give the echoserver the command line
option -a.

$./examples/echoserver/echoserver -a ./keys/ca-cert-ecc.pem

The echoserver and client have a fake user named “john” whose certificate will be used for authenti-
cation.
An example echoserver/client connection using the example certificate john-cert.der would be:

COPYRIGHT ©2024 wolfSSL Inc. 16

3.7 Certificate Support 3 GETTING STARTED

$./examples/echoserver/echoserver -a ./keys/ca-cert-ecc.pem -K john:./
keys/john-cert.der

$./examples/client/client -u john -J ./keys/john-cert.der -i ./keys/john-
key.der

COPYRIGHT ©2024 wolfSSL Inc. 17

4 LIBRARY DESIGN

4 Library Design

The wolfSSH library is meant to be included directly into an application. The primary use case in mind
during development is replacing serial- or telnet-basedmenus on embedded devices. The library is ag-
nostic to networking using I/O callbacks, but provides callbacks for *NIX and Windows networking by
default as examples. Timing is platform specific and should be provided by the application, functions
will be provided to perform actions on timeouts.

4.1 Directory Layout
The wolfSSH library header files are located in the wolfssh directory. The only header required to be
included in a source file is wolfssh/ssh.h. An example is shown below.
#include <wolfssh/ssh.h>

The wolfSFTP library header file is also included in the wolfssh directory. To call this header file use:
#include <wolfssh/wolfsftp.h>

All main source files are located in the src directory that resides in the root directory.

COPYRIGHT ©2024 wolfSSL Inc. 18

5 WOLFSSH USER AUTHENTICATION CALLBACK

5 wolfSSH User Authentication Callback

wolfSSH needs to be able to authenticate users connecting to the server nomatter which environment
the library is embedded. Lookups may need to be done using passwords or RSA public keys stored in
a text file, database, or hard coded into the application.
wolfSSH provides a callback hook that receives the username, either the password or public key pro-
vided in the user authenticationmessage and the requested authentication type. The callback function
then performs the appropriate lookups and gives a reply. Providing a callback is required.
The callback should return one of several failures or a success. The library will treat all the failures the
same except for logging purposes, i.e. return the User Authorization Failuremessage to the client who
will try again.
For password lookups, the plaintext password is given to the callback function. The username and
password should be checked and if they match, a success returned. On success, the SSH handshake
continues immediately. Password changing is not supported at this time.
For public key lookups, the public key blob from the client is given to the callback function. The public
key is checked against the server’s list of valid client public keys. If the public key provided matches
the known public key for that user. The wolfSSH library performs the actual validation of the user
authentication signature following the process described in RFC 4252 §7.
Commonly for public keys, the server stores either the users’ public keys as generated by the ssh-
keygen utility or stores a fingerprint of the public key. This value for a user is what is compared. The
client will provide a signature of the session ID and the user authentication request message using its
private key; the server verifies this signature using the public key.

5.1 Callback Function Prototype
The prototype for the user authentication callback function is:
int UserAuthCb(byte authType , const WS_UserAuthData*
authData , void* ctx);

This function prototype is of the type:
WS_CallbackUserAuth

The parameter authType is either:
WOLFSSH_USERAUTH_PASSWORD

or
WOLFSSH_USERAUTH_PUBLICKEY

The parameter, authData, is a pointer to the authentication data.
See section 5.4 for a description of WS_UserAuthData
The parameter ctx is an application defined context; wolfSSH does nothing with and knows nothing
about the data in the context, it only provides the context pointer to the callback function.

5.2 Callback Function Authentication Type Constants
The following are values passed to the user authentication callback function in the authType parame-
ter. It guides the callback function as to the type of authentication data to check. A system could use
either a password or public key for different users.

COPYRIGHT ©2024 wolfSSL Inc. 19

5.3 Callback Function Return Code Constants 5 WOLFSSH USER AUTHENTICATION CALLBACK

WOLFSSH_USERAUTH_PASSWORD
WOLFSSH_USERAUTH_KEYBOARD
WOLFSSH_USERAUTH_PUBLICKEY

5.3 Callback Function Return Code Constants
The following are the return codes the callback function shall return to the library. The failure code
indicates that nothing was done and the callback couldn’t do any checking.
The invalid codes indicate why the user authentication is being rejected:
invalid username
invalid password
invalid public key

The server indicates success or failure to the client, the specific failure type is only used for logging.
There is a special success and failure response the callback can return to the library, partial-success.
This means the authentication type was successful, but another authentication type is still required to
fully authenticate. The server will send a user authentication failure message with the partial-success
flag set to client.
WOLFSSH_USERAUTH_SUCCESS
WOLFSSH_USERAUTH_FAILURE
WOLFSSH_USERAUTH_INVALID_USER
WOLFSSH_USERAUTH_INVALID_PASSWORD
WOLFSSH_USERAUTH_INVALID_PUBLICKEY
WOLFSSH_USERAUTH_PARTIAL_SUCCESS
WOLFSSH_USERAUTH_SUCCESS_ANOTHER

5.4 Callback Function Data Types
The client data is passed to the callback function in a structure called WS_UserAuthData. It contains
pointers to the data in the message. Common fields are in this structure. Method specific fields are in
a union of structures in the user authentication data.
typedef struct WS_UserAuthData {

byte authType ;
byte* username ;
word32 usernameSz ;
byte* serviceName ;
word32 serviceNameSz ;
union {

WS_UserAuthData_Password password ;
WS_UserAuthData_PublicKey publicKey ;
WS_UserAuthData_Keyboard keyboard ;

} sf;
} WS_UserAuthData;

5.4.1 Password

The username and usernameSz parameters are the username provided by the client and its size in
octets.
The passwordand passwordSz fields are the client’s password and its size in octets.

COPYRIGHT ©2024 wolfSSL Inc. 20

5.4 Callback Function Data Types 5 WOLFSSH USER AUTHENTICATION CALLBACK

While set if provided by the client, the parameters hasNewPassword, newPassword, and newPass-
wordSz are not used. There is no mechanism to tell the client to change its password at this time.
typedef struct WS_UserAuthData_Password {

uint8_t* password ;
uint32_t passwordSz ;
uint8_t hasNewPasword ;
uint8_t* newPassword ;
uint32_t newPasswordSz ;

} WS_UserAuthData_Password;

5.4.2 Keyboard-Interactive

The Keyboard-Interactive mode allows for an arbitrary number of prompts and responses from the
server to the client. The structure that contains the information is as follows:
typedef struct WS_UserAuthData_Keyboard {

word32 promptCount;
word32 responseCount;
word32 promptNameSz;
word32 promptInstructionSz;
word32 promptLanguageSz;
byte* promptName;
byte* promptInstruction;
byte* promptLanguage;
word32* promptLengths;
word32* responseLengths;
byte* promptEcho;
byte** responses;
byte** prompts;

} WS_UserAuthData_Keyboard;
On the client side, during authentication, the promptName and promptInstruction will indicate to
the user information about the authentication. The promptLanguage field is a deprecated part of the
API and is ignored.
The promptCount indicates how many prompts there are. prompts contains the array of prompts,
promptLengths is an array containing the length of prompt in prompts. promptEcho in an array of
booleans indicating whether or not each prompt response should be echoed to the user as they are
typing.
Conversely there is responseCount to set the number of responses given. responses and respon-
seLengths contain the response data for the prompts.
The server can set the prompts using the wolfSSH_SetKeyboardAuthPrompts() callback.
The WS_CallbackKeyboardAuthPrompts callback should set the promptCount, prompts,
promptLengths and promptEcho. The other prompt* items are optional.
The server should return WOLFSSH_USERAUTH_SUCCESS_ANOTHER from the WS_CallbackUserAuth
callback to execute subsequent request / response rounds.

5.4.3 Public Key

wolfSSH will support multiple public key algorithms. The publicKeyType member points to the algo-
rithm name used.
The publicKey field points at the public key blob provided by the client.

COPYRIGHT ©2024 wolfSSL Inc. 21

5.4 Callback Function Data Types 5 WOLFSSH USER AUTHENTICATION CALLBACK

The public key checking will have either one or two steps. First, if the hasSignature field is not set,
there is no signature. Only verify the username and publicKey are expected. This step is optional
depending on client configuration, and can save fromdoing costly public key operationswith an invalid
user. Second, the hasSignature field is set and signature field points to the client signature. Again
the username and publicKey should be checked. wolfSSH will automatically check the signature.
Each of the fields has a size value in octets.
typedef struct WS_UserAuthData_PublicKey {

byte* publicKeyType;
word32 publicKeyTypeSz;
byte* publicKey;
word32 publicKeySz;
byte hasSignature;
byte* signature;
word32 signatureSz;

} WS_UserAuthData_PublicKey;

COPYRIGHT ©2024 wolfSSL Inc. 22

6 CALLBACK FUNCTION SETUP API

6 Callback Function Setup API

The following functions are used to set up the user authentication callback function.

6.1 Setting the User Authentication Callback Function
void wolfSSH_SetUserAuth(WOLFSSH_CTX* ctx , WS_CallbackUserAuth
cb);

The callback function is set on thewolfSSL CTX object that is used to create thewolfSSH session objects.
All sessions using this CTX will use the same callback function. This context is not to be confused with
the callback function’s context.

6.2 Setting the User Authentication Callback Context Data
void wolfSSH_SetUserAuthCtx(WOLFSSH* ssh , void* ctx);

Each wolfSSH session may have its own user authentication context data or share some. The wolfSSH
library knows nothing of the contents of this context data. It is up to the application to create, release,
and if needed provide a mutex for the data. The callback receives this context data from the library.

6.3 Getting the User Authentication Callback Context Data
void* wolfSSH_GetUserAuthCtx(WOLFSSH* ssh);

This returns the pointer to the user authentication context data stored in the providedwolfSSH session.
This is not to be confused with the wolfSSH’s context data used to create the session.

6.4 Setting the Keyboard Authentication Prompts Callback Function
void wolfSSH_SetKeyboardAuthPrompts(WOLFSSH_CTX* ctx,

WS_CallbackKeyboardAuthPrompts cb);

The server needs to specify the prompts that are to be given to the client so that it can authenticate
in Keyboard-Interactive mode. This callback allows the server to set the prompts ready to send to the
client.
Without this set, Keyboard-Interactive mode will be disabled on the server, even if attempts are made
to explicitly enable it.

6.5 Example Echo Server User Authentication
The example echo server implements the authentication callback with sample users using passwords
and public keys. The example callback, wsUserAuth, is set on the wolfSSH context:
wolfSSH_SetUserAuth(ctx, wsUserAuth);

The example password file (passwd.txt) is a simple list of usernames and passwords seperated with a
colon respectively. The defaults that exist within this file are as follows.
jill:upthehill
jack:fetchapail

The public key file are the concatenation of the public key outputs of running ssh-keygen twice.
ssh-rsa AAAAB3NzaC1yc...d+JI8wrAhfE4x hansel
ssh-rsa AAAAB3NzaC1yc...UoGCPIKuqcFMf gretel

COPYRIGHT ©2024 wolfSSL Inc. 23

6.5 Example Echo Server User Authentication 6 CALLBACK FUNCTION SETUP API

All users’ authorization data is stored in a linked list of pairs of usernames and SHA-256 hashes of
either the password or the public key blob.
The public key blobs in the configuration file are Base64 encoded and are decoded before hashing.
The pointer to the list of username-hash pairs is stored into a new wolfSSH session:
wolfSSH_SetUserAuthCtx(ssh, &pwMapList);

The callback function first checks if the authType is either public key or a password, and returns the
general user authentication failure error code if neither. Then it hashes the public key or password
passed in via the authData. It then walks through the list trying to find the username, and if not
found returns the invalid user error code. If found, it compares the calculated hash of the public key
or password passed in and the hash stored in the pair. If they match, the function returns success,
otherwise it returns the invalid password or public key error code.

COPYRIGHT ©2024 wolfSSL Inc. 24

7 BUILDING AND USING WOLFSSH SFTP

7 Building and Using wolfSSH SFTP

7.1 Building wolfSSH SFTP
It is assumed that wolfSSL has already been built to be used with wolfSSH. To see building instructions
for wolfSSL visit Chapter 2.
To build wolfSSH with support for SFTP use –enable-sftp, in the case of building with autotools, or
define the macro WOLFSSH_SFTP if building without autotools. An example of this would be:
./configure --enable-sftp && make

By default the internal buffer size for handling reads and writes for get and put commands is set
to 1024 bytes. This value can be overwritten in the case that the application needs to consume less
resources or in the case that a larger buffer is desired. To override the default size define the macro
WOLFSSH_MAX_SFTP_RW at compile time. An example of setting it would be as follows:
./configure --enable-sftp
C_EXTRA_FLAGS’=WOLFSSH_MAX_SFTP_RW=2048

7.2 Using wolfSSH SFTP Apps
A SFTP server and client application are bundled with wolfSSH. Both applications get built by autotools
when building the wolfSSH library with SFTP support. The server application is located in examples/e-
choserver/ and is called echoserver. The client application is located in wolfsftp/client/ and is called
wolfsftp.
An example of starting up a server that would handle incoming SFTP client connections would be as
follow:
./examples/echoserver/echoserver

Where the command is being ran from the root wolfSSH directory. This starts up a server that is able
to handle both SSH and SFTP connections.
Starting the client with specific username:
$./wolfsftp/client/wolfsftp -u <username>

The default “username:password” to run the test is either: “jack:fetchapail” or “jill:upthehill”. The de-
fault port is 22222.
A full list of supported commands can be seen with typeing “help” after a connection.
wolfSSH sftp> help

Commands :
cd <string> change directory
chmod <mode> <path> change mode
get <remote file> <local file> pulls file(s) from server
ls list current directory
mkdir <dir name> creates new directory on server
put <local file> <remote file> push file(s) to server
pwd list current path
quit exit
rename <old> <new> renames remote file
reget <remote file> <local file> resume pulling file
reput <remote file> <local file> resume pushing file
<crtl + c> interrupt get/put cmd

COPYRIGHT ©2024 wolfSSL Inc. 25

7.2 Using wolfSSH SFTP Apps 7 BUILDING AND USING WOLFSSH SFTP

An example of connecting to another system would be
src/wolfssh$./examples/sftpclient/wolfsftp -p 22 -u user -h 192.168.1.111

COPYRIGHT ©2024 wolfSSL Inc. 26

8 PORT FORWARDING

8 Port Forwarding

8.1 Building wolfSSH with Port Forwarding
It is assumed that wolfSSL has already been built to be used with wolfSSH. To see building instructions
for wolfSSL view Chapter 2.
To build wolfSSH with support for port forwarding use –enable-fwd, in the case of building with au-
totools, or define the macro WOLFSSH_FWD if building without autotools. An example of this would
be
./configure --enable-fwd && make

8.2 Using wolfSSH Port Forwarding Example App
The portfwd example tool will create a “direct-tcpip” style channel. These directions assume you have
OpenSSH’s server running in the background with port forwarding enabled. This example forwards
the port for the wolfSSL client to the server as the application. It assumes that all programs are run
on the same machine in different terminals.
src/wolfssl$./examples/server/server
src/wolfssh$./examples/portfwd/portfwd -p 22 -u <username> \

-f 12345 -t 11111
src/wolfssl$./examples/client/client -p 12345

By default, the wolfSSL server listens on port 11111. The client is set to try to connect to port 12345.
The portfwd logs in as user “username”, opens a listener on port 12345 and connects to the server on
port 11111. Packets are routed back and forth between the client and server. “Hello, wolfSSL!”
The source for portfwd provides an example on how to set up and use the port forwarding support in
wolfSSH.
The echoserver will handle local and remote port forwarding. To connect with the ssh tool, using one
of the following command lines. You can run either of the ssh command lines from anywhere:
src/wolfssl$./examples/server/server
src/wolfssh$./examples/echoserver/echoserver
anywhere 1$ ssh -p 22222 -L 12345:localhost:11111 jill@localhost
anywhere 2$ ssh -p 22222 -R 12345:localhost:11111 jill@localhost
src/wolfssl$./examples/client/client -p 12345

This will allow port forwarding between the wolfSSL client and server like in the previous example.

COPYRIGHT ©2024 wolfSSL Inc. 27

9 NOTES AND LIMITATIONS

9 Notes and Limitations

In portions of the implementation file attributes are not being considered and default attributes or
mode values are used. Specifically in wolfSSH_SFTP_Open, getting timestamps from files, and all
extended file attributes.

COPYRIGHT ©2024 wolfSSL Inc. 28

10 LICENSING

10 Licensing

10.1 Open Source
wolfSSL, yaSSL, wolfCrypt, yaSSH and TaoCrypt software are free software downloads and may be
modified to the needs of the user as long as the user adheres to version two of the GPL License. The
GPLv2 license can be found on the gnu.org website: http://www.gnu.org/licenses/old-licenses/gpl-
2.0.html.
wolfSSH software is a free software download andmay bemodified to the needs of the user as long as
the user adheres to version three of the GPL license. The GPLv3 license can be found on the gnu.org
website (https://www.gnu.org/licenses/gpl.html).

10.2 Commercial Licensing
Businesses and enterprises who wish to incorporate wolfSSL products into proprietary appliances or
other commercial software products for re-distribution must license commercial versions.
Please contact licensing@wolfssl.com with inquiries.

10.2.1 Support Packages

Support packages for wolfSSL products are available on an annual basis directly from wolfSSL. With
three different package options, you can compare them side-by-side and choose the package that best
fits your specific needs. Please see our Support Packages page for more details.

COPYRIGHT ©2024 wolfSSL Inc. 29

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.wolfssl.com/products/support-and-maintenance

11 SUPPORT AND CONSULTING

11 Support and Consulting

11.1 How to Get Support
For general product support, wolfSSLmaintains an online forum for thewolfSSL product family. Please
post to the forums or contact wolfSSL directly with any questions.

• wolfSSL Forums: https://www.wolfssl.com/forums
• Email Support: support@wolfssl.com

For information regarding wolfSSL products, questions regarding licensing, or general comments,
please contact wolfSSL by emailing info@wolfssl.com.

11.1.1 Bugs Reports and Support Issues

If you are submitting a bug report or asking about a problem, please include the following information
with your submission:

1. wolfSSL version number
2. Operating System version
3. Compiler version
4. The exact error you are seeing
5. A description of how we can reproduce or try to replicate this problem

With the above information, we will do our best to resolve your problems. Without this information, it
is very hard to pinpoint the source of the problem. wolfSSL values your feedback and makes it a top
priority to get back to you as soon as possible.

11.2 Consulting
wolfSSL offers both on and off site consulting - providing feature additions, porting, a Competitive
Upgrade Program , and design consulting.

11.2.1 Feature Additions and Porting

We can add additional features that you may need which are not currently offered in our products
on a contract or co-development basis. We also offer porting services on our products to new host
languages or new operating environments.

11.2.2 Competitive Upgrade Program

We will help you move from an outdated or expensive SSL/TLS library to wolfSSL with low cost and
minimal disturbance to your code base.
Program Outline:

1. You need to currently be using a commercial competitor to wolfSSL.
2. You will receive up to one week of on-site consulting to switch out your old SSL library for wolfSSL.

Travel expenses are not included.
3. Normally, up to one week is the right amount of time for us to make the replacement in your

code and do initial testing. Additional consulting on a replacement is available as needed.
4. You will receive the standard wolfSSL royalty free license to ship with your product.

The purpose of this program is to enable users who are currently spending too much on their embed-
ded SSL implementation to move to wolfSSL with ease. If you are interested in learning more, then
please contact us at info@wolfssl.com.

COPYRIGHT ©2024 wolfSSL Inc. 30

https://www.wolfssl.com/forums

11.2 Consulting 11 SUPPORT AND CONSULTING

11.2.3 Design Consulting

If your application or framework needs to be secured with SSL/TLS but you are uncertain about how
the optimal design of a secured system would be structured, we can help!
We offer design consulting for building SSL/TLS security into devices using wolfSSL. Our consultants
can provide you with the following services:

COPYRIGHT ©2024 wolfSSL Inc. 31

12 WOLFSSH UPDATES

12 wolfSSH Updates

12.1 Product Release Information
We regularly post update information on Twitter. For additional release information, you can keep
track of our projects on GitHub, follow us on Facebook, or follow our daily blog.

• wolfSSH on GitHub https://www.github.com/wolfssl/wolfssh
• wolfSSL on Twitter https://twitter.com/wolfSSL
• wolfSSL on Facebook https://www.facebook.com/wolfSSL
• wolfSSL on Reddit https://www.reddit.com/r/wolfssl/
• Daily Blog https://wolfssl.com/wolfSSL/Blog/Blog.html

COPYRIGHT ©2024 wolfSSL Inc. 32

https://www.github.com/wolfssl/wolfssh
https://twitter.com/wolfSSL
https://www.facebook.com/wolfSSL
https://www.reddit.com/r/wolfssl/
https://wolfssl.com/wolfSSL/Blog/Blog.html

13 API REFERENCE

13 API Reference

This section describes the public application program interfaces for the wolfSSH library.

13.1 Error Codes
13.1.1 WS_ErrorCodes (enum)

The following API response codes are defined in: wolfssh/wolfssh/error.h and describe the different
types of errors that can occur.

• WS_SUCCESS (0): Function success
• WS_FATAL_ERROR (-1): General function failure
• WS_BAD_ARGUMENT (-2): Function argument out of bounds
• WS_MEMORY_E (-3): Memory allocation error
• WS_BUFFER_E (-4): Input/output buffer size error
• WS_PARSE_E (-5): General parsing error
• WS_NOT_COMPILED (-6): Feature not compiled in
• WS_OVERFLOW_E (-7): Would overflow if continued
• WS_BAD_USAGE (-8): Bad example usage
• WS_SOCKET_ERROR_E (-9): Socket error
• WS_WANT_READ (-10): IO callback would read block error
• WS_WANT_WRITE (-11): IO callback would write block error
• WS_RECV_OVERFLOW_E (-12): Received buffer overflow
• WS_VERSION_E (-13): Peer using wrong version of SSH
• WS_SEND_OOB_READ_E (-14): Attempted to read buffer out of bounds
• WS_INPUT_CASE_E (-15): Bad process input state, programming error
• WS_BAD_FILETYPE_E (-16): Bad filetype
• WS_UNIMPLEMENTED_E (-17): Feature not implemented
• WS_RSA_E (-18): RSA buffer error
• WS_BAD_FILE_E (-19): Bad file
• WS_INVALID_ALGO_ID (-20): invalid algorithm ID
• WS_DECRYPT_E (-21): Decrypt error
• WS_ENCRYPT_E (-22): Encrypt error
• WS_VERIFY_MAC_E (-23): verify mac error
• WS_CREATE_MAC_E (-24): Create mac error
• WS_RESOURCE_E (-25): Insufficient resources for new channel
• WS_INVALID_CHANTYPE (-26): Invalid channel type
• WS_INVALID_CHANID(-27): Peer requested invalid channel ID
• WS_INVALID_USERNAME(-28): Invalid user name
• WS_CRYPTO_FAILED(-29): Crypto action failed
• WS_INVALID_STATE_E(-30): Invalid State
• WC_EOF(-31): End of File
• WS_INVALID_PRIME_CURVE(-32): Invalid prime curve in ECC
• WS_ECC_E(-33): ECDSA buffer error
• WS_CHANOPEN_FAILED(-34): Peer returned channel open failure
• WS_REKEYING(-35): Rekeying with peer
• WS_CHANNEL_CLOSED(-36): Channel closed

13.1.2 WS_IOerrors (enum)

These are the return codes the library expects to receive from a user-provided I/O callback. Otherwise
the library expects the number of bytes read or written from the I/O action.

• WS_CBIO_ERR_GENERAL (-1): General unexpected error

COPYRIGHT ©2024 wolfSSL Inc. 33

13.2 Initialization / Shutdown 13 API REFERENCE

• WS_CBIO_ERR_WANT_READ (-2): Socket read would block, call again
• WS_CBIO_ERR_WANT_WRITE (-2): Socket write would block, call again
• WS_CBIO_ERR_CONN_RST (-3): Connection reset
• WS_CBIO_ERR_ISR (-4): Interrupt
• WS_CBIO_ERR_CONN_CLOSE (-5): Connection closed or EPIPE
• WS_CBIO_ERR_TIMEOUT (-6): Socket timeout”

13.2 Initialization / Shutdown
13.2.1 wolfSSH_Init()

Synopsis
Description
Initializes the wolfSSH library for use. Must be called once per application and before any other calls
to the library.
Return Values
WS_SUCCESS WS_CRYPTO_FAILED
Parameters
None
See Also
wolfSSH_Cleanup()
#include <wolfssh/ssh.h>
int wolfSSH_Init(void);

13.2.2 wolfSSH_Cleanup()

Synopsis
Description
Cleans up the wolfSSH library when done. Should be called at before termination of the application.
After calling, do not make any more calls to the library.
Return Values
WS_SUCCESS
WS_CRYPTO_FAILED
Parameters
None
See Also
wolfSSH_Init()
#include <wolfssh/ssh.h>
int wolfSSH_Cleanup(void);

COPYRIGHT ©2024 wolfSSL Inc. 34

13.3 Debugging output functions 13 API REFERENCE

13.3 Debugging output functions
13.3.1 wolfSSH_Debugging_ON()

Synopsis
Description
Enables debug logging during runtime. Does nothing when debugging is disabled at build time.
Return Values
None
Parameters
None
See Also
wolfSSH_Debugging_OFF()
#include <wolfssh/ssh.h>
void wolfSSH_Debugging_ON(void);

13.3.2 wolfSSH_Debugging_OFF()

Synopsis
Description
Disables debug logging during runtime. Does nothing when debugging is disabled at build time.
Return Values
None
Parameters
None
See Also
wolfSSH_Debugging_ON()
#include <wolfssh/ssh.h>
void wolfSSH_Debugging_OFF(void);

13.4 Context Functions
13.4.1 wolfSSH_CTX_new()

Synopsis
Description
Creates a wolfSSH context object. This object can be configured and then used as a factory for wolfSSH
session objects.
Return Values
WOLFSSH_CTX* – returns pointer to allocated WOLFSSH_CTX object or NULL
Parameters

COPYRIGHT ©2024 wolfSSL Inc. 35

13.4 Context Functions 13 API REFERENCE

side – indicate client side (unimplemented) or server side heap – pointer to a heap to use for memory
allocations
See Also
wolfSSH_wolfSSH_CTX_free()
#include <wolfssh/ssh.h>
WOLFSSH_CTX* wolfSSH_CTX_new(byte side , void* heap);

13.4.2 wolfSSH_CTX_free()

Synopsis
Description
Deallocates a wolfSSH context object.
Return Values
None
Parameters
ctx – the wolfSSH context used to initialize the wolfSSH session
See Also
wolfSSH_wolfSSH_CTX_new()
#include <wolfssh/ssh.h>
void wolfSSH_CTX_free(WOLFSSH_CTX* ctx);

13.4.3 wolfSSH_CTX_SetBanner()

Synopsis
Description
Sets a banner message that a user can see.
Return Values
WS_BAD_ARGUMENT WS_SUCCESS
Parameters
ssh - Pointer to wolfSSH session newBanner - The banner message text.
#include <wolfssh/ssh.h>
int wolfSSH_CTX_SetBanner(WOLFSSH_CTX* ctx , const char*
newBanner);

13.4.4 wolfSSH_CTX_UsePrivateKey_buffer()

Synopsis
Description
This function loads a private key buffer into the SSH context. It is called with a buffer as input instead
of a file. The buffer is provided by the in argument of size inSz. The argument format specifies the
type of buffer: WOLFSSH_FORMAT_ASN1 orWOLFSSL_FORMAT_PEM (unimplemented at this time).
Return Values

COPYRIGHT ©2024 wolfSSL Inc. 36

13.5 SSH Session Functions 13 API REFERENCE

WS_SUCCESS WS_BAD_ARGUMENT – at least one of the parameters is invalid WS_BAD_FILETYPE_E –
wrong formatWS_UNIMPLEMENTED_E – support for PEM format not implementedWS_MEMORY_E –
out of memory conditionWS_RSA_E – cannot decode RSA keyWS_BAD_FILE_E – cannot parse buffer
Parameters
ctx – pointer to the wolfSSH context in – buffer containing the private key to be loaded inSz – size of
the input buffer format – format of the private key located in the input buffer
See Also
wolfSSH_UseCert_buffer() wolfSSH_UseCaCert_buffer()
#include <wolfssh/ssh.h>
int wolfSSH_CTX_UsePrivateKey_buffer(WOLFSSH_CTX* ctx ,
const byte* in , word32 inSz , int format);

13.5 SSH Session Functions
13.5.1 wolfSSH_new()

Synopsis
Description
Creates a wolfSSH session object. It is initialized with the provided wolfSSH context.
Return Values
WOLFSSH* – returns pointer to allocated WOLFSSH object or NULL
Parameters
ctx – the wolfSSH context used to initialize the wolfSSH session
See Also
wolfSSH_free()
#include <wolfssh/ssh.h>
WOLFSSH* wolfSSH_new(WOLFSSH_CTX* ctx);

13.5.2 wolfSSH_free()

Synopsis
Description
Deallocates a wolfSSH session object.
Return Values
None
Parameters
ssh – session to deallocate
See Also
wolfSSH_new()
#include <wolfssh/ssh.h>
void wolfSSH_free(WOLFSSH* ssh);

COPYRIGHT ©2024 wolfSSL Inc. 37

13.6 Data High Water Mark Functions 13 API REFERENCE

13.5.3 wolfSSH_set_fd()

Synopsis
Description
Assigns the provided file descriptor to the ssh object. The ssh session will use the file descriptor for
network I/O in the default I/O callbacks.
Return Values

13.5.3.1 WS_SUCCESS WS_BAD_ARGUMENT – one of the parameters is invalid
Parameters
ssh – session to set the fd fd – file descriptor for the socket used by the session
See Also
wolfSSH_get_fd()
#include <wolfssh/ssh.h>
int wolfSSH_set_fd(WOLFSSH* ssh , int fd);

13.5.4 wolfSSH_get_fd()

Synopsis
Description
This function returns the file descriptor (fd) used as the input/output facility for the SSH connection.
Typically this will be a socket file descriptor.
Return Values
int – file descriptorWS_BAD_ARGUEMENT
Parameters
ssh – pointer to the SSL session.
See Also
wolfSSH_set_fd()
#include <wolfssh/ssh.h>
int wolfSSH_get_fd(const WOLFSSH* ssh);

13.6 Data High Water Mark Functions
13.6.1 wolfSSH_SetHighwater()

Synopsis
Description
Sets the highwater mark for the ssh session.
Return Values
WS_SUCCESS WS_BAD_ARGUMENT
Parameters
ssh - Pointer to wolfSSH session highwater - data indicating the highwater security mark

COPYRIGHT ©2024 wolfSSL Inc. 38

13.6 Data High Water Mark Functions 13 API REFERENCE

#include <wolfssh/ssh.h>
int wolfSSH_SetHighwater(WOLFSSH* ssh , word32 highwater);

13.6.2 wolfSSH_GetHighwater()

Synopsis
Description
Returns the highwater security mark
Return Values
word32 - The highwater security mark.
Parameters
ssh - Pointer to wolfSSH session
#include <wolfssh/ssh.h>
word32 wolfSSH_GetHighwater(WOLFSSH* ssh);

13.6.3 wolfSSH_SetHighwaterCb()

Synopsis
Description
The wolfSSH_SetHighwaterCb function sets the highwater security mark for the SSH session as well as
the high water call back.
Return Values
none
Parameters
ctx – The wolfSSH context used to initialize the wolfSSH session. highwater - The highwater security
mark. cb - The call back highwater function.
#include <wolfssh/ssh.h>
void wolfSSH_SetHighwaterCb(WOLFSSH_CTX* ctx , word32 highwater ,
WS_CallbackHighwater cb);

13.6.4 wolfSSH_SetHighwaterCtx()

Synopsis
Description
The wolfSSH_SetHighwaterCTX function sets the highwater security mark for the given context.
Return Values
none
Parameters
ssh - pointer to wolfSSH session ctx - pointer to highwater security mark in the wolfSSH context.
#include <wolfssh/ssh.h>
void wolfSSH_SetHighwaterCtx(WOLFSSH* ssh, void* ctx);

COPYRIGHT ©2024 wolfSSL Inc. 39

13.7 Error Checking 13 API REFERENCE

13.6.5 wolfSSH_GetHighwaterCtx()

Synopsis
Description
The wolfSSH_GetHighwaterCtx() returns the highwaterCtx security mark from the SSH session.
Return Values
void* - the highwater security mark NULL - if there is an error with the WOLFSSH object.
Parameters
ssh - pointer to WOLFSSH object
#include <wolfssh/ssh.h>
void wolfSSH_GetHighwaterCtx(WOLFSSH* ssh);

13.7 Error Checking
13.7.1 wolfSSH_get_error()

Synopsis
Description
Returns the error set in the wolfSSH session object.
Return Values
WS_ErrorCodes (enum)
Parameters
ssh – pointer to WOLFSSH object
See Also
wolfSSH_get_error_name()
#include <wolfssh/ssh.h>
int wolfSSH_get_error(const WOLFSSH* ssh);

13.7.2 wolfSSH_get_error_name()

Synopsis
Description
Returns the name of the error set in the wolfSSH session object.
Return Values
const char* – error name string
Parameters
ssh – pointer to WOLFSSH object
See Also
wolfSSH_get_error()
#include <wolfssh/ssh.h>
const char* wolfSSH_get_error_name(const WOLFSSH* ssh);

COPYRIGHT ©2024 wolfSSL Inc. 40

13.8 I/O Callbacks 13 API REFERENCE

13.7.3 wolfSSH_ErrorToName()

Synopsis
Description
Returns the name of an error when called with an error number in the parameter.
Return Values
const char* – name of error string
Parameters
err - the int value of the error
#include <wolfssh/ssh.h>
const char* wolfSSH_ErrorToName(int err);

13.8 I/O Callbacks
13.8.1 wolfSSH_SetIORecv()

Synopsis
Description
This function registers a receive callback for wolfSSL to get input data.
Return Values
None
Parameters
ctx – pointer to the SSH context cb – function to be registered as the receive callback for the wolfSSH
context, ctx. The signature of this function must follow that as shown above in the Synopsis section.
#include <wolfssh/ssh.h>
void wolfSSH_SetIORecv(WOLFSSH_CTX* ctx , WS_CallbackIORecv cb);

13.8.2 wolfSSH_SetIOSend()

Synopsis
Description
This function registers a send callback for wolfSSL to write output data.
Return Values
None
Parameters
ctx – pointer to the wolfSSH context cb – function to be registered as the send callback for the wolfSSH
context, ctx. The signature of this function must follow that as shown above in the Synopsis section.
#include <wolfssh/ssh.h>
void wolfSSH_SetIOSend(WOLFSSH_CTX* ctx , WS_CallbackIOSend cb);

COPYRIGHT ©2024 wolfSSL Inc. 41

13.8 I/O Callbacks 13 API REFERENCE

13.8.3 wolfSSH_SetIOReadCtx()

Synopsis
Description
This function registers a context for the SSH session receive callback function.
Return Values
None
Parameters
ssh – pointer to WOLFSSH object ctx – pointer to the context to be registered with the SSH session (
ssh) receive callback function.
#include <wolfssh/ssh.h>
void wolfSSH_SetIOReadCtx(WOLFSSH* ssh , void* ctx);

13.8.4 wolfSSH_SetIOWriteCtx()

Synopsis
Description
This function registers a context for the SSH session’s send callback function.
Return Values
None
Parameters
ssh – pointer to WOLFSSH session. ctx – pointer to be registered with the SSH session’s (ssh) send
callback function.
#include <wolfssh/ssh.h>
void wolfSSH_SetIOWriteCtx(WOLFSSH* ssh , void* ctx);

13.8.5 wolfSSH_GetIOReadCtx()

Synopsis
Description
This function return the ioReadCtx member of the WOLFSSH structure.
Return Values
Void* - pointer to the ioReadCtx member of the WOLFSSH structure.
Parameters
ssh – pointer to WOLFSSH object
#include <wolfssh/ssh.h>
void* wolfSSH_GetIOReadCtx(WOLFSSH* ssh);

COPYRIGHT ©2024 wolfSSL Inc. 42

13.9 User Authentication 13 API REFERENCE

13.8.6 wolfSSH_GetIOWriteCtx()

Synopsis
Description
This function returns the ioWriteCtx member of the WOLFSSH structure.
Return Values
Void* – pointer to the ioWriteCtx member of the WOLFSSH structure.
Parameters
ssh – pointer to WOLFSSH object
#include <wolfssh/ssh.h>
void* wolfSSH_GetIOWriteCtx(WOLFSSH* ssh);

13.9 User Authentication
13.9.1 wolfSSH_SetUserAuth()

Synopsis
Description
The wolfSSH_SetUserAuth() function is used to set the user authentication for the current wolfSSH
context if the context does not equal NULL.
Return Values
None
Parameters
ctx – pointer to the wolfSSH context cb – call back function for the user authentication
#include <wolfssh/ssh.h>
void wolfSSH_SetUserAuth(WOLFSSH_CTX* ctx ,
WS_CallbackUserAuth cb)

13.9.2 wolfSSH_SetUserAuthCtx()

Synopsis
Description
The wolfSSH_SetUserAuthCtx() function is used to set the value of the user authentication context in
the SSH session.
Return Values
None
Parameters
ssh – pointer to WOLFSSH object userAuthCtx – pointer to the user authentication context
#include <wolfssh/ssh.h>
void wolfSSH_SetUserAuthCtx(WOLFSSH* ssh , void*
userAuthCtx)

COPYRIGHT ©2024 wolfSSL Inc. 43

13.9 User Authentication 13 API REFERENCE

13.9.3 wolfSSH_GetUserAuthCtx()

Synopsis
Description
The wolfSSH_GetUserAuthCtx() function is used to return the pointer to the user authentication con-
text.
Return Values
Void* – pointer to the user authentication context Null – returns if ssh is equal to NULL
Parameters
ssh – pointer to WOLFSSH object
#include <wolfssh/ssh.h>
void* wolfSSH_GetUserAuthCtx(WOLFSSH* ssh)

13.9.4 wolfSSH_SetKeyboardAuthPrompts()

Synopsis
Description
The wolfSSH_SetKeyboardAuthPrompts() function is used to setup the callback which will provide the
server with the prompts to send to the client.
Return Values
None
Parameters
ctx - pointer to the wolfSSH context cb - callback function to provide the keyboard prompts
#include <wolfssh/ssh.h>
void wolfSSH_SetKeyboardAuthPrompts(WOLFSSH_CTX* ctx,

WS_CallbackKeyboardAuthPrompts cb)

13.9.5 wolfSSH_SetKeyboardAuthCtx()

Synopsis
Description
The wolfSSH_SetKeyboardAuthCtx() function is used to setup the user context for the wolf-
SSH_SetKeyboardAuthPrompts() function.
Return Values
None
Parameters
ssh - pointer to the WOLFSSH object **keyboardAuthCtx* - pointer to the user context data
#include <wolfssh/ssh.h>
void wolfSSH_SetKeyboardAuthCtx(WOLFSSH* ssh, void* keyboardAuthCtx)

COPYRIGHT ©2024 wolfSSL Inc. 44

13.10 Set Username 13 API REFERENCE

13.10 Set Username
13.10.1 wolfSSH_SetUsername()

Synopsis
Description
Sets the username required for the SSH connection.
Return Values
WS_BAD_ARGUMENT WS_SUCCESS WS_MEMORY_E
Parameters
ssh - Pointer to wolfSSH session username - The input username for the SSH connection.
#include <wolfssh/ssh.h>
int wolfSSH_setUsername(WOLFSSH* ssh , const char* username);

13.11 Connection Functions
13.11.1 wolfSSH_accept()

Synopsis
Description
wolfSSH_accept is called on the server side and waits for an SSH client to initiate the SSH handshake.
wolfSSL_accept() works with both blocking and non-blocking I/O. When the underlying I/O is
non-blocking, wolfSSH_accept() will return when the underlying I/O could not satisfy the needs of
wolfSSH_accept to continue the handshake. In this case, a call to wolfSSH_get_error() will yield
either WS_WANT_READ or WS_WANT_WRITE. The calling process must then repeat the call to
wolfSSH_accept when data is available to read and wolfSSH will pick up where it left off. When using
a non-blocking socket, nothing needs to be done, but select() can be used to check for the required
condition.
If the underlying I/O is blocking, wolfSSH_accept() will only return once the handshake has been fin-
ished or an error occurred.
Return Values
WS_SUCCESS - The function succeeded. WS_BAD_ARGUMENT - A parameter value was null.
WS_FATAL_ERROR – There was an error, call wolfSSH_get_error() for more detail
Parameters
ssh – pointer to the wolfSSH session
See Also
wolfSSH_stream_read()
#include <wolfssh/ssh.h>
int wolfSSH_accept(WOLFSSH* ssh);

COPYRIGHT ©2024 wolfSSL Inc. 45

13.11 Connection Functions 13 API REFERENCE

13.11.2 wolfSSH_connect()

Synopsis
Description
This function is called on the client side and initiates an SSH handshake with a server. When this
function is called, the underlying communication channel has already been set up.
wolfSSH_connect() works with both blocking and non-blocking I/O. When the underlying I/O is
non-blocking, wolfSSH_connect() will return when the underlying I/O could not satisfy the needs
of wolfSSH_connect to continue the handshake. In this case, a call to wolfSSH_get_error() will yield
either WS_WANT_READ or WS_WANT_WRITE. The calling process must then repeat the call to wolf-
SSH_connect() when the underlying I/O is ready and wolfSSH will pick up where it left off. When using
a non-blocking socket, nothing needs to be done, but select() can be used to check for the required
condition.
If the underlying I/O is blocking, wolfSSH_connect() will only return once the handshake has been
finished or an error occurred.
Return Values
WS_BAD_ARGUMENT WS_FATAL_ERROR WS_SUCCESS - This will return if the call is successful.
Parameters
ssh - Pointer to wolfSSH session
#include <wolfssh/ssh.h>
int wolfSSH_connect(WOLFSSH* ssh);

13.11.3 wolfSSH_shutdown()

Synopsis
Description
Closes and disconnects the SSH channel.
Return Values
WS_BAD_ARGUMENT - returned if the parameter is NULLWS_SUCCES - returns when everything has
been correctly shutdown
Parameters
ssh - Pointer to wolfSSH session
#include <wolfssh/ssh.h>
int wolfSSH_shutdown(WOLFSSH* ssh);

13.11.4 wolfSSH_stream_read()

Synopsis
Description
wolfSSH_stream_read reads up to bufSz bytes from the internal decrypted data stream buffer. The
bytes are removed from the internal buffer.
wolfSSH_stream_read() works with both blocking and non-blocking I/O. When the underlying I/O is
non-blocking, wolfSSH_stream_read() will return when the underlying I/O could not satisfy the needs
of wolfSSH_stream_read to continue the read. In this case, a call to wolfSSH_get_error() will yield

COPYRIGHT ©2024 wolfSSL Inc. 46

13.11 Connection Functions 13 API REFERENCE

either WS_WANT_READ or WS_WANT_WRITE. The calling process must then repeat the call to wolf-
SSH_stream_read when data is available to read and wolfSSH will pick up where it left off. When using
a non-blocking socket, nothing needs to be done, but select() can be used to check for the required
condition.
If the underlying I/O is blocking, wolfSSH_stream_read() will only return when data is available or an
error occurred.
Return Values
>0 – number of bytes read upon success 0 – returned on socket failure caused by either a clean connec-
tion shutdown or a socket. WS_BAD_ARGUMENT – returns if one ormore parameters is equal to NULL
WS_EOF – returns when end of stream is reached WS_FATAL_ERROR – there was an error, call wolf-
SSH_get_error() for more detailWS_REKEYING if currently a rekey is in process, use wolfSSH_worker()
to complete
Parameters
ssh – pointer to the wolfSSH session
#include <wolfssh/ssh.h>
int wolfSSH_stream_read(WOLFSSH* ssh ,
byte* buf , word32 bufSz);

buf – buffer where wolfSSH_stream_read() will place the data bufSz – size of the buffer
See Also
wolfSSH_accept() wolfSSH_stream_send()

13.11.5 wolfSSH_stream_send()

Synopsis
Description
wolfSSH_stream_sendwritesbufSzbytes frombuf to the SSH streamdata buffer. wolfSSH_stream_send()
works with both blocking and non-blocking I/O. When the underlying I/O is non-blocking, wolf-
SSH_stream_send() will return a want write error when the underlying I/O could not satisfy the needs
of wolfSSH_stream_send and there is still pending data in the SSH stream data buffer to be sent. In
this case, a call to wolfSSH_get_error() will yield either WS_WANT_READ or WS_WANT_WRITE. The
calling process must then repeat the call to wolfSSH_stream_send when the socket is ready to send
and wolfSSH will send out any pending data left in the SSH stream data buffer then pull data from the
input buf. When using a non-blocking socket, nothing needs to be done, but select() can be used to
check for the required condition.
If the underlying I/O is blocking, wolfSSH_stream_send() will only return when the data has been sent
or an error occurred.
In cases where I/O want write/read is not the error encountered (i.e. WS_REKEYING) then wolf-
SSH_worker() should be called until the internal SSH processes are completed.
Return Values
>0 – number of bytes written to SSH stream data buffer upon success 0 – returned on socket
failure caused by either a clean connection shutdown or a socket error, call wolfSSH_get_error()
for more detail WS_FATAL_ERROR – there was an error, call wolfSSH_get_error() for more detail
WS_BAD_ARGUMENT if any of the parameters is nullWS_REKEYING if currently a rekey is in process,
use wolfSSH_worker() to complete
Parameters

COPYRIGHT ©2024 wolfSSL Inc. 47

13.12 Channel Callbacks 13 API REFERENCE

ssh – pointer to the wolfSSH session buf – buffer wolfSSH_stream_send() will send
#include <wolfssh/ssh.h>
int wolfSSH_stream_send(WOLFSSH* ssh , byte* buf , word32
bufSz);

bufSz – size of the buffer
See Also
wolfSSH_accept() wolfSSH_stream_read()

13.11.6 wolfSSH_stream_exit()

Synopsis
Description
This function is used to exit the SSH stream.
Return Values
WS_BAD_ARGUMENT - returned if a parameter value is NULLWS_SUCCESS - returns if function was a
success
Parameters
ssh – Pointer to wolfSSH session status – the status of the SSH connection
#include <wolfssh/ssh.h>
int wolfSSH_stream_exit(WOLFSSH* ssh, int status);

13.11.7 wolfSSH_TriggerKeyExchange()

Synopsis
Description
Triggers key exchange process. Prepares and sends packet of allocated handshake info.
Return Values
WS_BAD_ARGUEMENT – if ssh is NULLWS_SUCCESS
Parameters
ssh – pointer to the wolfSSH session
#include <wolfssh/ssh.h>
int wolfSSH_TriggerKeyExchange(WOLFSSH* ssh);

13.12 Channel Callbacks
Interfaces to the wolfSSH library return single int values. Communicating status of asynchronous
information, like the peer opening a channel, isn’t easy with that interface. wolfSSH uses callback
functions to notify the calling application of changes in state of a channel.
There are callback functions for receipt of the following SSHv2 protocol messages:

• SSH_MSG_CHANNEL_OPEN
• SSH_MSG_CHANNEL_OPEN_CONFIRMATION
• SSH_MSG_CHANNEL_OPEN_FAILURE

COPYRIGHT ©2024 wolfSSL Inc. 48

13.12 Channel Callbacks 13 API REFERENCE

• SSH_MSG_CHANNEL_REQUEST
– “shell”
– “subsystem”
– “exec”

• SSH_MSG_CHANNEL_EOF
• SSH_MSG_CHANNEL_CLOSE

13.12.1 Callback Function Prototypes

The channel callback functions all take a pointer to a WOLFSSH_CHANNEL object, channel, and a
pointer to the application defined data structure, ctx. Properties about the channel may be queried
using API functions.
typedef int (*WS_CallbackChannelOpen)(WOLFSSH_CHANNEL* channel, void* ctx);
typedef int (*WS_CallbackChannelReq)(WOLFSSH_CHANNEL* channel, void* ctx);
typedef int (*WS_CallbackChannelEof)(WOLFSSH_CHANNEL* channel, void* ctx);
typedef int (*WS_CallbackChannelClose)(WOLFSSH_CHANNEL* channel, void* ctx);

13.12.2 wolfSSH_CTX_SetChannelOpenCb

Synopsis
#include <wolfssh/ssh.h>
int wolfSSH_CTX_SetChannelOpenCb(WOLFSSH_CTX* ctx,

WS_CallbackChannelOpen cb);

Description
Sets the callback function, cb, into thewolfSSH ctx usedwhenaChannelOpen (SSH_MSG_CHANNEL_OPEN)
message is received from the peer.
Return Values

• WS_SUCCESS - Setting callback in ctx was successful
• WS_SSH_CTX_NULL_E - ctx is NULL

13.12.3 wolfSSH_CTX_SetChannelOpenRespCb

Synopsis
#include <wolfssh/ssh.h>
int wolfSSH_CTX_SetChannelOpenRespCb(WOLFSSH_CTX* ctx,

WS_CallbackChannelOpen confCb,
WS_CallbackChannelOpen failCb);

Description
Sets the callback functions, confCb and failCb, into the wolfSSH ctx used when a Channel
Open Confirmation (SSH_MSG_CHANNEL_OPEN_CONFIRMATION) or a Channel Open Failure
(SSH_MSG_CHANNEL_OPEN_FAILURE) message is received from the peer.
Return Values

• WS_SUCCESS - Setting callbacks in ctx was successful
• WS_SSH_CTX_NULL_E - ctx is NULL

COPYRIGHT ©2024 wolfSSL Inc. 49

13.12 Channel Callbacks 13 API REFERENCE

13.12.4 wolfSSH_CTX_SetChannelReqShellCb

Synopsis
#include <wolfssh/ssh.h>
int wolfSSH_CTX_SetChannelReqShellCb(WOLFSSH_CTX* ctx,

WS_CallbackChannelReq cb);

Description
Sets the callback function, cb, into thewolfSSH ctx usedwhenaChannel Request (SSH_MSG_CHANNEL_REQUEST)
message is received from the peer for a shell.
Return Values

• WS_SUCCESS - Setting callback in ctx was successful
• WS_SSH_CTX_NULL_E - ctx is NULL

13.12.5 wolfSSH_CTX_SetChannelReqSubsysCb

Synopsis
#include <wolfssh/ssh.h>
int wolfSSH_CTX_SetChannelReqSubsysCb(WOLFSSH_CTX* ctx,

WS_CallbackChannelReq cb);

Description
Sets the callback function, cb, into thewolfSSH ctx usedwhenaChannel Request (SSH_MSG_CHANNEL_REQUEST)
message is received from the peer for a subsystem. A common example of a subsystem is SFTP.
Return Values

• WS_SUCCESS - Setting callback in ctx was successful
• WS_SSH_CTX_NULL_E - ctx is NULL

13.12.6 wolfSSH_CTX_SetChannelReqExecCb

Synopsis
#include <wolfssh/ssh.h>
int wolfSSH_CTX_SetChannelReqExecCb(WOLFSSH_CTX* ctx,

WS_CallbackChannelReq cb);

Description
Sets the callback function, cb, into thewolfSSH ctx usedwhenaChannel Request (SSH_MSG_CHANNEL_REQUEST)
message is received from the peer for a command to exec.
Return Values

• WS_SUCCESS - Setting callback in ctx was successful
• WS_SSH_CTX_NULL_E - ctx is NULL

13.12.7 wolfSSH_CTX_SetChannelEofCb

Synopsis
#include <wolfssh/ssh.h>
int wolfSSH_CTX_SetChannelEof(WOLFSSH_CTX* ctx,

WS_CallbackChannelEof cb);

COPYRIGHT ©2024 wolfSSL Inc. 50

13.12 Channel Callbacks 13 API REFERENCE

Description
Sets the callback function, cb, into thewolfSSH ctx usedwhenaChannel EOF (SSH_MSG_CHANNEL_EOF)
message is received from the peer. This message indicates that the peer isn’t going to transmit any
more data on this channel.
Return Values

• WS_SUCCESS - Setting callback in ctx was successful
• WS_SSH_CTX_NULL_E - ctx is NULL

13.12.8 wolfSSH_CTX_SetChannelCloseCb

Synopsis
#include <wolfssh/ssh.h>
int wolfSSH_CTX_SetChannelClose(WOLFSSH_CTX* ctx,

WS_CallbackChannelClose cb);

Description
Sets the callback function, cb, into thewolfSSH ctx usedwhenaChannel Close (SSH_MSG_CHANNEL_CLOSE)
message is received from the peer. This message indicates that the peer is interested in terminating
this channel.
Return Values

• WS_SUCCESS - Setting callback in ctx was successful
• WS_SSH_CTX_NULL_E - ctx is NULL

13.12.9 wolfSSH_SetChannelOpenCtx

Synopsis
#include <wolfssh/ssh.h>
int wolfSSH_SetChannelOpenCtx(WOLFSSH* ssh, void* ctx);

Description
Sets the context, ctx, into the wolfSSH ssh object used when the callback for the Channel Open
(SSH_MSG_CHANNEL_OPEN)message, ChannelOpenConfirmation (SSH_MSG_CHANNEL_CONFIRMATION)
message, or Channel Open Failure (SSH_MSG_CHANNEL_FAILURE) is received from the peer.
Return Values

• WS_SUCCESS - Setting context in ssh was successful
• WS_SSH_NULL_E - ssh is NULL

13.12.10 wolfSSH_SetChannelReqCtx

Synopsis
#include <wolfssh/ssh.h>
int wolfSSH_SetChannelReqCtx(WOLFSSH* ssh, void* ctx);

Description
Sets the context, ctx, into the wolfSSH ssh object used when the callback for the Channel Request
(SSH_MSG_CHANNEL_REQUEST) message is received from the peer.
Return Values

COPYRIGHT ©2024 wolfSSL Inc. 51

13.12 Channel Callbacks 13 API REFERENCE

• WS_SUCCESS - Setting context in ssh was successful
• WS_SSH_NULL_E - ssh is NULL

13.12.11 wolfSSH_SetChannelEofCtx

Synopsis
#include <wolfssh/ssh.h>
int wolfSSH_SetChannelEofCtx(WOLFSSH* ssh, void* ctx);

Description
Sets the context, ctx, into the wolfSSH ssh object used when the callback for the Channel EOF
(SSH_MSG_CHANNEL_EOF) message is received from the peer.
Return Values

• WS_SUCCESS - Setting context in ssh was successful
• WS_SSH_NULL_E - ssh is NULL

13.12.12 wolfSSH_SetChannelCloseCtx

Synopsis
#include <wolfssh/ssh.h>
int wolfSSH_SetChannelCloseCtx(WOLFSSH* ssh, void* ctx);

Description
Sets the context, ctx, into the wolfSSH ssh object used when the callback for the Channel Close
(SSH_MSG_CHANNEL_CLOSE) message is received from the peer.
Return Values

• WS_SUCCESS - Setting context in ssh was successful
• WS_SSH_NULL_E - ssh is NULL

13.12.13 wolfSSH_GetChannelOpenCtx

Synopsis
#include <wolfssh/ssh.h>
void* wolfSSH_GetChannelOpenCtx(WOLFSSH* ssh);

Description
Gets the context from the wolfSSH ssh object used when the callback for the Channel Open
(SSH_MSG_CHANNEL_OPEN) message.
Return Values

• pointer to the context data

13.12.14 wolfSSH_GetChannelReqCtx

Synopsis
#include <wolfssh/ssh.h>
void* wolfSSH_GetChannelReqCtx(WOLFSSH* ssh);

COPYRIGHT ©2024 wolfSSL Inc. 52

13.12 Channel Callbacks 13 API REFERENCE

Description
Gets the context from the wolfSSH ssh object used when the callback for the Channel Request
(SSH_MSG_CHANNEL_REQUEST) message.
Return Values

• pointer to the context data

13.12.15 wolfSSH_GetChannelEofCtx

Synopsis
#include <wolfssh/ssh.h>
void* wolfSSH_GetChannelEofCtx(WOLFSSH* ssh);

Description
Gets the context from the wolfSSH ssh object used when the callback for the Channel EOF
(SSH_MSG_CHANNEL_EOF) message.
Return Values

• pointer to the context data

13.12.16 wolfSSH_GetChannelCloseCtx

Synopsis
#include <wolfssh/ssh.h>
void* wolfSSH_GetChannelCloseCtx(WOLFSSH* ssh);

Description
Gets the context from the wolfSSH ssh object used when the callback for the Channel Close
(SSH_MSG_CHANNEL_CLOSE) message.
Return Values

• pointer to the context data

13.12.17 wolfSSH_ChannelGetSessionType

Synopsis
#include <wolfssh/ssh.h>
WS_SessionType wolfSSH_ChannelGetSessionType(const WOLFSSH_CHANNEL* channel);

Description
Returns theWS_SessionType for the specified channel.
Return Values

• WS_SessionType - type for the session

COPYRIGHT ©2024 wolfSSL Inc. 53

13.13 Testing Functions 13 API REFERENCE

13.12.18 wolfSSH_ChannelGetSessionCommand

Synopsis
#include <wolfssh/ssh.h>
const char* wolfSSH_ChannelGetSessionCommand(const WOLFSSH_CHANNEL* channel);

Description
Returns a pointer to the command the user wishes to execute over the specified channel.
Return Values

• const char* - pointer to the string holding the command sent by the user

13.13 Testing Functions
13.13.1 wolfSSH_GetStats()

Synopsis
Description
Updates txCount , rxCount , seq , and peerSeq with their respective ssh session statistics.
Return Values
none
Parameters
ssh – pointer to the wolfSSH session txCount – address where total transferred bytes in ssh session
are stored. rxCount – address where total received bytes in ssh session are stored. seq – packet
sequence number is initially 0 and is incremented after every packet peerSeq – peer packet sequence
number is initially 0 and is incremented after every packet
#include <wolfssh/ssh.h>
void wolfSSH_GetStats(WOLFSSH* ssh , word32* txCount , word32*
rxCount ,
word32* seq , word32* peerSeq)

13.13.2 wolfSSH_KDF()

Synopsis
Description
This is used so that the API test can do known answer tests for the key derivation.
The Key Derivation Function derives a symmetric key based on source keyingmaterial, k and h. Where
k is the Diffie-Hellman shared secret and h is the hash of the handshake that was produced during
initial key exchange. Multiple types of keys could be derived which are specified by the keyId and
hashId.
Initial IV client to server: keyId = A
Initial IV server to client: keyId = B
Encryption key client to server: keyId = C
Encryption key server to client: keyId = D
Integrity key client to server: keyId = E
Integrity key server to client : keyId = F

COPYRIGHT ©2024 wolfSSL Inc. 54

13.14 Session Functions 13 API REFERENCE

Return Values
WS_SUCCESS WS_CRYPTO_FAILED
Parameters
hashId – typeof hash to generate keyingmaterial. e.g. (WC_HASH_TYPE_SHAandWC_HASH_TYPE_SHA256
) keyId – letter A - F to indicate which key to make key – generated key used for comparisons to
expected key
#include <wolfssh/ssh.h>
int wolfSSH_KDF(byte hashId , byte keyId , byte* key , word32
keySz ,
const byte* k , word32 kSz , const byte* h , word32
hSz ,
const byte* sessionId , word32 sessionIdSz);

keySz – needed size of key k – shared secret from the Diffie-Hellman key exchange kSz – size of the
shared secret (k) h – hash of the handshake that was produced during key exchange hSz – size of the
hash (h) sessionId – unique identifier from first h calculated. sessionIdSz – size of the sessionId

13.14 Session Functions
13.14.1 wolfSSH_GetSessionType()

Synopsis
Description
The wolfSSH_GetSessionType() is used to return the type of session
Return Values
WOLFSSH_SESSION_UNKNOWNWOLFSSH_SESSION_SHELLWOLFSSH_SESSION_EXECWOLFSSH_SESSION_SUBSYSTEM
Parameters
ssh - pointer to wolfSSH session
#include <wolfssh/ssh.h>
WS_SessionType wolfSSH_GetSessionType(const WOLFSSH* ssh);

13.14.2 wolfSSH_GetSessionCommand()

Synopsis
Description
This function is used to return the current command in the session.
Return Values
const char* - Pointer to command
Parameters
ssh - pointer to wolfSSH session
#include <wolfssh/ssh.h>
const char* wolfSSH_GetSessionCommand(const WOLFSSH* ssh);

COPYRIGHT ©2024 wolfSSL Inc. 55

13.15 Port Forwarding Functions 13 API REFERENCE

13.15 Port Forwarding Functions
13.15.1 wolfSSH_ChannelFwdNew()

Synopsis
Description
Sets up a TCP/IP forwarding channel on a WOLFSSH session. When the SSH session is connected
and authenticated, a local listener is created on the interface for address host on port hostPort. Any
new connections on that listener will trigger a new channel request to the SSH server to establish a
connection to host on port hostPort.
Return Values
WOLFSSH_CHAN* – NULL on error or new channel record
Parameters
ssh – wolfSSH session host – host address to bind listener hostPort – host port to bind listener origin
– IP address of the originating connection originPort – port number of the originating connection
#include <wolfssh/ssh.h>
WOLFSSH_CHANNEL* wolfSSH_ChannelFwdNew(WOLFSSH* ssh ,
const char* host , word32 hostPort ,
const char* origin , word32 originPort);

13.15.2 wolfSSH_ChannelFree()

Synopsis
Description
Releases the memory allocated for the channel channel. The channel is removed from its session’s
channel list.
Return Values
int – error code
Parameters
channel – wolfSSH channel to free
#include <wolfssh/ssh.h>
int wolfSSH_ChannelFree(WOLFSSH_CHANNEL* channel);

13.15.3 wolfSSH_worker()

Synopsis
Description
ThewolfSSHworker function babysits the connection and as data is received processes it. SSH sessions
have many bookkeeping messages for the session and this takes care of them automatically. When
data for a particular channel is received, the worker places the data into the channel. (The function
wolfSSH_stream_read() does much the same but also returns the receive data for a single channel.)
wolfSSH_worker() will perform the following actions:

1. Attempt to send any pending data in the outputBuffer.
2. Call DoReceive() on the session’s socket.
3. If data is received for a particular channel, return data received notice and set the channel ID.

COPYRIGHT ©2024 wolfSSL Inc. 56

13.15 Port Forwarding Functions 13 API REFERENCE

Return Values
int – error or statusWS_CHANNEL_RXD – data has been received on a channel and the ID is set
Parameters
ssh – pointer to the wolfSSH session id – pointer to the location to save the ID value
#include <wolfssh/ssh.h>
int wolfSSH_worker(WOLFSSH* ssh , word32* channelId);

13.15.4 wolfSSH_ChannelGetId()

Synopsis
Description
Given a channel, returns the ID or peer’s ID for the channel.
Return Values
int – error code
Parameters
channel – pointer to channel id – pointer to location to save the ID value peer – either self (my channel
ID) or peer (my peer’s channel ID)
#include <wolfssh/ssh.h>
int wolfSSH_ChannelGetId(WOLFSSH_CHANNEL* channel ,
word32* id , byte peer);

13.15.5 wolfSSH_ChannelFind()

Synopsis
Description
Given a session ssh , find the channel associated with id.
Return Values
WOLFSSH_CHANNEL* – pointer to the channel, NULL if the ID isn’t in the list
Parameters
ssh – wolfSSH session id – channel ID to find peer – either self (my channel ID) or peer (my peer’s
channel ID)
#include <wolfssh/ssh.h>
WOLFSSH_CHANNEL* wolfSSH_ChannelFind(WOLFSSH* ssh ,
word32 id , byte peer);

13.15.6 wolfSSH_ChannelRead()

Synopsis
Description
Copies data out of a channel object.
Return Values

COPYRIGHT ©2024 wolfSSL Inc. 57

13.15 Port Forwarding Functions 13 API REFERENCE

int – bytes read >0 – number of bytes read upon success 0 – returns on socket failure cause by
either a clean connection shutdown or a socket error, call wolfSSH_get_error() for more detail
WS_FATAL_ERROR – there was some other error, call wolfSSH_get_error() for more detail
Parameters
channel – pointer to thewolfSSH channel buf – buffer where wolfSSH_ChannelReadwill place the data
bufSz – size of the buffer
#include <wolfssh/ssh.h>
int wolfSSH_ChannelRead(WOLFSSH_CHANNEL* channel ,
byte* buf , word32 bufSz);

13.15.7 wolfSSH_ChannelSend()

Synopsis
Description
Sends data to the peer via the specified channel. Data is packaged into a channel data message.
This will send as much data as possible via the peer socket. If there is more to be sent, calls to wolf-
SSH_worker() will continue sending more data for the channel to the peer.
Return Values
int – bytes sent >0 – number of bytes sent upon success 0 – returns on socket failure cause by
either a clean connection shutdown or a socket error, call wolfSSH_get_error() for more detail
WS_FATAL_ERROR – there was some other error, call wolfSSH_get_error() for more detail
Parameters
channel – pointer to the wolfSSH channel buf – buffer wolfSSH_ChannelSend() will send bufSz – size
of the buffer
#include <wolfssh/ssh.h>
int* wolfSSH_ChannelSend(WOLFSSH_CHANNEL* channel ,
const byte* buf , word32 bufSz);

13.15.8 wolfSSH_ChannelExit()

Synopsis
Description
Terminates a channel, sending the close message to the peer, marks the channel as closed. This does
not free the channel and it remains on the channel list. After closure, data can not be sent on the
channel, but datamay still be available to be received. (At themoment, it sends EOF, close, and deletes
the channel.)
Return Values
int – error code
Parameters
channel – wolfSSH session channel
#include <wolfssh/ssh.h>
int wolfSSH_ChannelExit(WOLFSSH_CHANNEL* channel);

COPYRIGHT ©2024 wolfSSL Inc. 58

13.16 Key Load Functions 13 API REFERENCE

13.15.9 wolfSSH_ChannelNext()

Synopsis
Description
Returns the next channel after channel in ssh ’s channel list. If channel is NULL, the first channel from
the channel list for ssh is returned.
Return Values
WOLFSSH_CHANNEL* – pointer to either the first channel, next channel, or NULL
Parameters
ssh – wolfSSH session channel – wolfSSH session channel
#include <wolfssh/ssh.h>
WOLFSSH_CHANNEL* wolfSSH_ChannelFwdNew(WOLFSSH* ssh ,
WOLFSSH_CHANNEL* channel);

13.16 Key Load Functions
13.16.1 wolfSSH_ReadKey_buffer()

Synopsis
#include <wolfssh/ssh.h>

int wolfSSH_ReadKey_buffer(const byte* in, word32 inSz,
int format, byte** out, word32* outSz,
const byte** outType, word32* outTypeSz,
void* heap);

Description
Reads a key file from the buffer in of size inSz and tries to decode it as a format type key. The for-
mat can beWOLFSSH_FORMAT_ASN1,WOLFSSH_FORMAT_PEM,WOLFSSH_FORMAT_SSH, orWOLF-
SSH_FORMAT_OPENSSH. The key ready for use by wolfSSH_UsePrivateKey_buffer() is stored in
the buffer pointed to by out, of size outSz. If out is NULL, heap is used to allocate a buffer for the key.
The type string of the key is stored in outType, with its string length in outTypeSz.
Return Values

• WS_SUCCESS - read key is successful
• WS_BAD_ARGUMENT - parameter has a bad value
• WS_MEMORY_E - failure allocating memory
• WS_BUFFER_E - buffer not large enough for indicated size
• WS_PARSE_E - problem parsing the key file
• WS_UNIMPLEMENTED_E - key type not supported
• WS_RSA_E - something wrong with RSA (PKCS1) key
• WS_ECC_E - something wrong with ECC (X9.63) key
• WS_KEY_AUTH_MAGIC_E - OpenSSH key auth magic value bad
• WS_KEY_FORMAT_E - OpenSSH key format incorrect
• WS_KEY_CHECK_VAL_E - OpenSSH key check value corrupt

13.16.2 wolfSSH_ReadKey_file()

Synopsis

COPYRIGHT ©2024 wolfSSL Inc. 59

13.17 Key Exchange Algorithm Configuration 13 API REFERENCE

#include <wolfssh/ssh.h>

int wolfSSH_ReadKey_file(const char* name,
byte** out, word32* outSz,
const byte** outType, word32* outTypeSz,
byte* isPrivate, void* heap);

Description
Reads the key from the file name. The format is guessed based on data in the file. The key buffer out,
the key type outType, and their sizes are passed to wolfSSH_ReadKey_buffer(). The flag isPrivate is
set as appropriate. Any memory allocations use the specified heap.
Return Values

• WS_SUCCESS - read key is successful
• WS_BAD_ARGUMENT - parameter has a bad value
• WS_BAD_FILE_E - problem reading the file
• WS_MEMORY_E - failure allocating memory
• WS_BUFFER_E - buffer not large enough for indicated size
• WS_PARSE_E - problem parsing the key file
• WS_UNIMPLEMENTED_E - key type not supported
• WS_RSA_E - something wrong with RSA (PKCS1) key
• WS_ECC_E - something wrong with ECC (X9.63) key
• WS_KEY_AUTH_MAGIC_E - OpenSSH key auth magic value bad
• WS_KEY_FORMAT_E - OpenSSH key format incorrect
• WS_KEY_CHECK_VAL_E - OpenSSH key check value corrupt

13.17 Key Exchange Algorithm Configuration
wolfSSH sets up a set of algorithm lists used during the Key Exchange (KEX) based on the availability
of algorithms in the wolfCrypt library used.
Provided are some accessor functions to see which algorithms are available to use and to see the
algorithm lists used in the KEX. The accessor functions come in sets of four: set or get from CTX object,
and set or get from SSH object. All SSH objects made with a CTX inherit the CTX’s algorithm lists, and
they may be provided their own.
By default, any algorithms using SHA-1 are disabled but may be re-enabled using one of the following
functions. If SHA-1 is disabled in wolfCrypt, then SHA-1 cannot be used.

13.17.1 wolfSSH Set Algo Lists

Synopsis
#include <wolfssh/ssh.h>

int wolfSSH_CTX_SetAlgoListKex(WOLFSSH_CTX* ctx, const char* list);
int wolfSSH_CTX_SetAlgoListKey(WOLFSSH_CTX* ctx, const char* list);
int wolfSSH_CTX_SetAlgoListCipher(WOLFSSH_CTX* ctx, const char* list);
int wolfSSH_CTX_SetAlgoListMac(WOLFSSH_CTX* ctx, const char* list);
int wolfSSH_CTX_SetAlgoListKeyAccepted(WOLFSSH_CTX* ctx, const char* list);

int wolfSSH_SetAlgoListKex(WOLFSSH* ssh, const char* list);
int wolfSSH_SetAlgoListKey(WOLFSSH* ssh, const char* list);
int wolfSSH_SetAlgoListCipher(WOLFSSH* ssh, const char* list);
int wolfSSH_SetAlgoListMac(WOLFSSH* ssh, const char* list);

COPYRIGHT ©2024 wolfSSL Inc. 60

13.17 Key Exchange Algorithm Configuration 13 API REFERENCE

int wolfSSH_SetAlgoListKeyAccepted(WOLFSSH* ssh, const char* list);

Description
These functions act as setters for the various algorithm lists set in the wolfSSH ctx or ssh objects. The
strings are sent to the peer during the KEX Initialization and are used to compare against when the
peer sends its KEX Initialization message. The KeyAccepted list is used for user authentication.
The CTX versions of the functions set the algorithm list for the specifiedWOLFSSH_CTX object, ctx. They
have default values set at compile time. The specified value is used instead. Note, the library does not
copy this string, it is owned by the application and it is up to the application to free it when the CTX is
deallocated by the application. When creating an SSH object using a CTX, the SSH object inherits the
CTX’s strings. The SSH object algorithm lists may be overridden.
Kex specifies the key exchange algorithm list. Key specifies the server public key algorithm list. Ci-
pher specifies the bulk encryption algorithm list. Mac specifies the message authentication code al-
gorithm list. KeyAccepted specifies the public key algorithms allowed for user authentication.
Return Values

• WS_SUCCESS - successful
• WS_SSH_CTX_NULL_E - provided CTX was null
• WS_SSH_NULL_E - provide SSH was null

13.17.2 wolfSSH Get Algo List

Synopsis
#include <wolfssh/ssh.h>

const char* wolfSSH_CTX_GetAlgoListKex(WOLFSSH_CTX* ctx);
const char* wolfSSH_CTX_GetAlgoListKey(WOLFSSH_CTX* ctx);
const char* wolfSSH_CTX_GetAlgoListCipher(WOLFSSH_CTX* ctx);
const char* wolfSSH_CTX_GetAlgoListMac(WOLFSSH_CTX* ctx);
const char* wolfSSH_CTX_GetAlgoListKeyAccepted(WOLFSSH_CTX* ctx);

const char* wolfSSH_GetAlgoListKex(WOLFSSH* ssh);
const char* wolfSSH_GetAlgoListKey(WOLFSSH* ssh);
const char* wolfSSH_GetAlgoListCipher(WOLFSSH* ssh);
const char* wolfSSH_GetAlgoListMac(WOLFSSH* ssh);
const char* wolfSSH_GetAlgoListKeyAccepted(WOLFSSH* ssh);

Description
These functions act as getters for the various algorithm lists set in the wolfSSH ctx or ssh objects.
Kex specifies the key exchange algorithm list. Key specifies the server public key algorithm list. Ci-
pher specifies the bulk encryption algorithm list. Mac specifies the message authentication code al-
gorithm list. KeyAccepted specifies the public key algorithms allowed for user authentication.
Return Values
These functions return a pointer to either the default value set at compile time or the value set at run
time with the setter functions. If the ctx or ssh parameters are NULL the functions return NULL.

13.17.3 wolfSSH_CheckAlgoName

Synopsis

COPYRIGHT ©2024 wolfSSL Inc. 61

13.17 Key Exchange Algorithm Configuration 13 API REFERENCE

#include <wolfssh/ssh.h>

int wolfSSH_CheckAlgoName(const char* name);

Description
Given a single algorithm name checks to see if it is valid.
Return Values

• WS_SUCCESS - name is a valid algorithm name
• WS_INVALID_ALGO_ID - name is an invalid algorithm name

13.17.4 wolfSSH Query Algorithms

Synopsis
#include <wolfssh/ssh.h>

const char* wolfSSH_QueryKex(word32* index);
const char* wolfSSH_QueryKey(word32* index);
const char* wolfSSH_QueryCipher(word32* index);
const char* wolfSSH_QueryMac(word32* index);

Description
Returns the name string for a valid algorithm of the particular type: Kex, Key, Cipher, or Mac. Note, Key
types are also used for the user authentication accepted key types. The value passed as index must
be initialized to 0, the passed in on each call to the function. At the end of the list, the index is invalid.
Return Values
Returns a constant string with the name of an algorithm. Null indicates the end of the list.

COPYRIGHT ©2024 wolfSSL Inc. 62

14 WOLFSSL SFTP API REFERENCE

14 wolfSSL SFTP API Reference

14.1 Connection Functions
14.1.1 wolfSSH_SFTP_accept()

Synopsis:
Description:
Function to handle an incoming connection request from a client.
Return Values:
Returns WS_SFTP_COMPLETE on success.
Parameters:
ssh - pointer to WOLFSSH structure used for connection
Example:
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_accept(WOLFSSH* ssh);

WOLFSSH* ssh;

//create new WOLFSSH structure
...

if (wolfSSH_SFTP_accept(ssh) != WS_SUCCESS) {
//handle error case
}

See Also:
wolfSSH_SFTP_free() wolfSSH_new() wolfSSH_SFTP_connect()

14.1.2 wolfSSH_SFTP_connect()

Synopsis:
Description:
Function for initiating a connection to a SFTP server.
Return Values:
WS_SFTP_COMPLETE: on success.
Parameters:
ssh - pointer to WOLFSSH structure to be used for connection
Example:
See Also:
wolfSSH_SFTP_accept() wolfSSH_new() wolfSSH_free()
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_connect(WOLFSSH* ssh);

WOLFSSH* ssh;

COPYRIGHT ©2024 wolfSSL Inc. 63

14.2 Protocol Level Functions 14 WOLFSSL SFTP API REFERENCE

//after creating a new WOLFSSH structrue

wolfSSH_SFTP_connect(ssh);

14.1.3 wolfSSH_SFTP_negotiate()

Synopsis:
Description:
Function to handle either an incoming connection from client or to send out a connection request to
a server. It is dependent on which side of the connection the created WOLFSSH structure is set to for
which action is performed.
Return Values:
Returns WS_SUCCESS on success.
Parameters:
ssh - pointer to WOLFSSH structure used for connection
Example:
See Also:
wolfSSH_SFTP_free()
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_negotiate(WOLFSSH* ssh)

WOLFSSH* ssh;

//create new WOLFSSH structure with side of connection
set
....

if (wolfSSH_SFTP_negotiate(ssh) != WS_SUCCESS) {
//handle error case
}

wolfSSH_new() wolfSSH_SFTP_connect() wolfSSH_SFTP_accept()

14.2 Protocol Level Functions
14.2.1 wolfSSH_SFTP_RealPath()

Synopsis:
Description:
Function to send REALPATH packet to peer. It gets the name of the file returned from peer.
Return Values:
Returns a pointer to a WS_SFTPNAME structure on success and NULL on error.
Parameters:
ssh - pointer to WOLFSSH structure used for connection dir - directory / file name to get real path of
Example:

COPYRIGHT ©2024 wolfSSL Inc. 64

14.2 Protocol Level Functions 14 WOLFSSL SFTP API REFERENCE

#include <wolfssh/wolfsftp.h>
WS_SFTPNAME* wolfSSH_SFTP_RealPath(WOLFSSH* ssh , char*
dir);

See Also:
wolfSSH_SFTP_accept() wolfSSH_SFTP_connect()
WOLFSSH* ssh ;

//set up ssh and do sftp connections
...

if (wolfSSH_SFTP_read(ssh) != WS_SUCCESS) {
//handle error case
}

14.2.2 wolfSSH_SFTP_Close()

Synopsis:
Description:
Function to to send a close packet to the peer.
Return Values:
WS_SUCCESS on success.
Parameters:
ssh - pointer to WOLFSSH structure used for connection handle - handle to try and close handleSz -
size of handle buffer
Example:
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_Close(WOLFSSH* ssh , byte* handle , word32
handleSz);

See Also:
wolfSSH_SFTP_accept() wolfSSH_SFTP_connect()
WOLFSSH* ssh;
byte handle[HANDLE_SIZE];
word32 handleSz = HANDLE_SIZE;

//set up ssh and do sftp connections
...

if (wolfSSH_SFTP_Close(ssh, handle, handleSz) !=
WS_SUCCESS) {
//handle error case
}

COPYRIGHT ©2024 wolfSSL Inc. 65

14.2 Protocol Level Functions 14 WOLFSSL SFTP API REFERENCE

14.2.3 wolfSSH_SFTP_Open()

Synopsis:
Description:
Function to to send an open packet to the peer. This sets handleSz with the size of resulting buffer and
gets the resulting handle from the peer and places it in the buffer handle.
Available reasons for open: WOLFSSH_FXF_READWOLFSSH_FXF_WRITEWOLFSSH_FXF_APPENDWOLF-
SSH_FXF_CREAT WOLFSSH_FXF_TRUNC WOLFSSH_FXF_EXCL
Return Values:
WS_SUCCESS on success.
Parameters:
ssh - pointer to WOLFSSH structure used for connection dir - name of file to open reason - reason for
opening the file atr - initial attributes for file handle - resulting handle from open handleSz - gets set
to the size of resulting handle
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_Open(WOLFSSH* ssh , char* dir , word32
reason ,
WS_SFTP_FILEATRB* atr , byte* handle , word32* handleSz) ;

Example:
See Also:
wolfSSH_SFTP_accept() wolfSSH_SFTP_connect()
WOLFSSH* ssh ;
char name[NAME_SIZE];
byte handle[HANDLE_SIZE];
word32 handleSz = HANDLE_SIZE;
WS_SFTP_FILEATRB atr;

//set up ssh and do sftp connections
...

if (wolfSSH_SFTP_Open(ssh , name , WOLFSSH_FXF_WRITE |
WOLFSSH_FXF_APPEND | WOLFSSH_FXF_CREAT , & atr , handle ,
& handleSz)
!= WS_SUCCESS) {
//handle error case
}

14.2.4 wolfSSH_SFTP_SendReadPacket()

Synopsis:
Description:
Function to to send a read packet to the peer. The buffer handle should contain the result of a previous
call to wolfSSH_SFTP_Open. The resulting bytes from a read are placed into the “out” buffer.
Return Values:
Returns the number of bytes read on success. A negative value is returned on failure.

COPYRIGHT ©2024 wolfSSL Inc. 66

14.2 Protocol Level Functions 14 WOLFSSL SFTP API REFERENCE

Parameters:
ssh - pointer toWOLFSSH structure used for connectionhandle - handle to try and read fromhandleSz
- size of handle buffer ofst - offset to start reading from out - buffer to hold result from read outSz -
size of out buffer
Example:
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_SendReadPacket(WOLFSSH* ssh , byte*
handle , word32
handleSz , word64 ofst , byte* out , word32 outSz);

See Also:
wolfSSH_SFTP_SendWritePacket() wolfSSH_SFTP_Open()
WOLFSSH* ssh;
byte handle[HANDLE_SIZE];
word32 handleSz = HANDLE_SIZE;
byte out[OUT_SIZE];
word32 outSz = OUT_SIZE;
word32 ofst = 0;
int ret;

//set up ssh and do sftp connections
...
//get handle with wolfSSH_SFTP_Open()

if ((ret = wolfSSH_SFTP_SendReadPacket(ssh, handle,
handleSz, ofst,
out, outSz)) < 0) {
//handle error case
}
//ret holds the number of bytes placed into out buffer

14.2.5 wolfSSH_SFTP_SendWritePacket()

Synopsis:
Description:
Function to send a write packet to the peer. The buffer handle should contain the result of a previous
call to wolfSSH_SFTP_Open().
Return Values:
Returns the number of bytes written on success. A negative value is returned on failure.
Parameters:
ssh - pointer toWOLFSSH structure used for connectionhandle - handle to try and read fromhandleSz
- size of handle buffer ofst - offset to start reading from out - buffer to send to peer for writing outSz
- size of out buffer
Example:
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_SendWritePacket(WOLFSSH* ssh , byte*
handle , word32
handleSz , word64 ofst , byte* out , word32 outSz);

COPYRIGHT ©2024 wolfSSL Inc. 67

14.2 Protocol Level Functions 14 WOLFSSL SFTP API REFERENCE

See Also:
wolfSSH_SFTP_SendReadPacket() wolfSSH_SFTP_Open()
WOLFSSH* ssh;
byte handle[HANDLE_SIZE];
word32 handleSz = HANDLE_SIZE;
byte out[OUT_SIZE];
word32 outSz = OUT_SIZE;
word32 ofst = 0;
int ret;

//set up ssh and do sftp connections
...
//get handle with wolfSSH_SFTP_Open()

if ((ret = wolfSSH_SFTP_SendWritePacket(ssh, handle,
handleSz, ofst,
out,outSz)) < 0) {
//handle error case
}
//ret holds the number of bytes written

14.2.6 wolfSSH_SFTP_STAT()

Synopsis:
Description:
Function to send a STAT packet to the peer. This will get the attributes of file or directory. If the file or
attribute does not exist the peer will return resulting in this function returning an error value.
Return Values:
WS_SUCCESS on success.
Parameters:
ssh - pointer toWOLFSSH structure used for connection dir - NULL terminated name of file or directory
to get attributes of atr - resulting attributes are set into this structure
Example:
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_STAT(WOLFSSH* ssh , char* dir ,
WS_SFTP_FILEATRB* atr);

See Also:
wolfSSH_SFTP_LSTAT() wolfSSH_SFTP_connect()
WOLFSSH* ssh;
byte name[NAME_SIZE];
int ret;
WS_SFTP_FILEATRB atr;

//set up ssh and do sftp connections
...

COPYRIGHT ©2024 wolfSSL Inc. 68

14.2 Protocol Level Functions 14 WOLFSSL SFTP API REFERENCE

if ((ret = wolfSSH_SFTP_STAT(ssh, name, &atr)) < 0) {
//handle error case
}

14.2.7 wolfSSH_SFTP_LSTAT()

Synopsis:
Description:
Function to send a LSTAT packet to the peer. This will get the attributes of file or directory. It follows
symbolic links where a STAT packet will not follow symbolic links. If the file or attribute does not exist
the peer will return resulting in this function returning an error value.
Return Values:
WS_SUCCESS on success.
Parameters:
ssh - pointer toWOLFSSH structure used for connection dir - NULL terminated name of file or directory
to get attributes of atr - resulting attributes are set into this structure
Example:
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_LSTAT(WOLFSSH* ssh , char* dir ,
WS_SFTP_FILEATRB* atr);

See Also:
wolfSSH_SFTP_STAT() wolfSSH_SFTP_connect()
WOLFSSH* ssh;
byte name[NAME_SIZE];
int ret;
WS_SFTP_FILEATRB atr;

//set up ssh and do sftp connections
...

if ((ret = wolfSSH_SFTP_LSTAT(ssh, name, &atr)) < 0) {
//handle error case
}

14.2.8 wolfSSH_SFTPNAME_free()

Synopsis:
Description:
Function to free a single WS_SFTPNAME node. Note that if this node is in the middle of a list of nodes
then the list will be broken.
Return Values:
None
Parameters:
name - structure to be free’d

COPYRIGHT ©2024 wolfSSL Inc. 69

14.3 Reget / Reput Functions 14 WOLFSSL SFTP API REFERENCE

Example:
See Also:
#include <wolfssh/wolfsftp.h>

14.2.9 void wolfSSH_SFTPNAME_free(WS_SFTPNMAE* name);

WOLFSSH* ssh;
WS_SFTPNAME* name;

//set up ssh and do sftp connections
...
name = wolfSSH_SFTP_RealPath(ssh, path);
if (name != NULL) {
wolfSSH_SFTPNAME_free(name);
}

wolfSSH_SFTPNAME_list_free
wolfSSH_SFTPNAME_list_free()
Synopsis:
Description:
Function to free a all WS_SFTPNAME nodes in a list.
Return Values:
None
Parameters:
name - head of list to be free’d
Example:
#include <wolfssh/wolfsftp.h>
void wolfSSH_SFTPNAME_list_free(WS_SFTPNMAE* name);

See Also:
wolfSSH_SFTPNAME_free()
WOLFSSH* ssh;
WS_SFTPNAME* name;

//set up ssh and do sftp connections
...

name = wolfSSH_SFTP_LS(ssh, path);
if (name != NULL) {
wolfSSH_SFTPNAME_list_free(name);
}

14.3 Reget / Reput Functions
14.3.1 wolfSSH_SFTP_SaveOfst()

Synopsis:

COPYRIGHT ©2024 wolfSSL Inc. 70

14.3 Reget / Reput Functions 14 WOLFSSL SFTP API REFERENCE

Description:
Function to save an offset for an interrupted get or put command. The offset can be recovered by
calling wolfSSH_SFTP_GetOfst
Return Values:
Returns WS_SUCCESS on success.
Parameters:
ssh - pointer to WOLFSSH structure for connection from - NULL terminated string of source path to -
NULL terminated string with destination path ofst - offset into file to be saved
Example:
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_SaveOfst(WOLFSSH* ssh , char* from , char*
to ,
word64 ofst);

See Also:
wolfSSH_SFTP_GetOfst() wolfSSH_SFTP_Interrupt()
WOLFSSH* ssh;
char from[NAME_SZ];
char to[NAME_SZ];
word64 ofst;

//set up ssh and do sftp connections
...

if (wolfSSH_SFTP_SaveOfst(ssh, from, to, ofst) !=
WS_SUCCESS) {
//handle error case
}

14.3.2 wolfSSH_SFTP_GetOfst()

Synopsis:
Description:
Function to retrieve an offset for an interrupted get or put command.
Return Values:
Returns offset value on success. If not stored offset is found then 0 is returned.
Parameters:
ssh - pointer to WOLFSSH structure for connection from - NULL terminated string of source path to -
NULL terminated string with destination path
Example:
#include <wolfssh/wolfsftp.h>
word64 wolfSSH_SFTP_GetOfst(WOLFSSH* ssh, char* from,
char* to);

COPYRIGHT ©2024 wolfSSL Inc. 71

14.3 Reget / Reput Functions 14 WOLFSSL SFTP API REFERENCE

WOLFSSH* ssh;
char from[NAME_SZ];
char to[NAME_SZ];
word64 ofst;

//set up ssh and do sftp connections
...

ofst = wolfSSH_SFTP_GetOfst(ssh, from, to);
//start reading/writing from ofst

See Also:
wolfSSH_SFTP_SaveOfst() wolfSSH_SFTP_Interrup()

14.3.3 wolfSSH_SFTP_ClearOfst()

Synopsis:
Description:
Function to clear all stored offset values.
Return Values:
WS_SUCCESS on success
Parameters:
ssh - pointer to WOLFSSH structure
Example:
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_ClearOfst(WOLFSSH* ssh);

See Also:
wolfSSH_SFTP_SaveOfst() wolfSSH_SFTP_GetOfst()

14.3.4 wolfSSH_SFTP_Interrupt()

Synopsis:
Description:
Function to set interrupt flag and stop a get/put command.
Return Values:
None
Parameters:
ssh - pointer to WOLFSSH structure
Example:
WOLFSSH* ssh;

//set up ssh and do sftp connections
...

COPYRIGHT ©2024 wolfSSL Inc. 72

14.4 Command Functions 14 WOLFSSL SFTP API REFERENCE

if (wolfSSH_SFTP_ClearOfst(ssh) != WS_SUCCESS) {
//handle error
}

#include <wolfssh/wolfsftp.h>
void wolfSSH_SFTP_Interrupt(WOLFSSH* ssh);

See Also:
wolfSSH_SFTP_SaveOfst() wolfSSH_SFTP_GetOfst()
WOLFSSH* ssh;
char from[NAME_SZ];
char to[NAME_SZ];
word64 ofst;

//set up ssh and do sftp connections
...

wolfSSH_SFTP_Interrupt(ssh);
wolfSSH_SFTP_SaveOfst(ssh, from, to, ofst);

14.4 Command Functions
14.4.1 wolfSSH_SFTP_Remove()

Synopsis:
Description:
Function for sending a “remove” packet across the channel. The file name passed in as “f” is sent to
the peer for removal.
Return Values:
WS_SUCCESS : returns WS_SUCCESS on success.
Parameters:
ssh - pointer to WOLFSSH structure used for connection f - file name to be removed
Example:
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_Remove(WOLFSSH* ssh , char* f);

WOLFSSH* ssh;
int ret;
char* name[NAME_SZ];

//set up ssh and do sftp connections
...

ret = wolfSSH_SFTP_Remove(ssh, name);

See Also:
wolfSSH_SFTP_accept() wolfSSH_SFTP_connect()

COPYRIGHT ©2024 wolfSSL Inc. 73

14.4 Command Functions 14 WOLFSSL SFTP API REFERENCE

14.4.2 wolfSSH_SFTP_MKDIR()

Synopsis:
Description:
Function for sending a “mkdir” packet across the channel. The directory name passed in as “dir” is sent
to the peer for creation. Currently the attributes passed in are not used and default attributes is set
instead.
Return Values:
WS_SUCCESS : returns WS_SUCCESS on success.
Parameters:
ssh - pointer to WOLFSSH structure used for connection dir - NULL terminated directory to be created
atr - attributes to be used with directory creation
Example:
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_MKDIR(WOLFSSH* ssh , char* dir ,
WS_SFTP_FILEATRB*
atr);

See Also:
wolfSSH_SFTP_accept() wolfSSH_SFTP_connect()

14.4.3 wolfSSH_SFTP_RMDIR()

Synopsis:
Description:
Function for sending a “rmdir” packet across the channel. The directory name passed in as “dir” is sent
to the peer for deletion.
Return Values:
WS_SUCCESS : returns WS_SUCCESS on success.
Parameters:
ssh - pointer to WOLFSSH structure used for connection dir - NULL terminated directory to be remove
WOLFSSH* ssh;
int ret;
char* dir[DIR_SZ];

//set up ssh and do sftp connections
...

ret = wolfSSH_SFTP_MKDIR(ssh, dir, DIR_SZ);

#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_RMDIR(WOLFSSH* ssh , char* dir);

Example:
See Also:
wolfSSH_SFTP_accept() wolfSSH_SFTP_connect()

COPYRIGHT ©2024 wolfSSL Inc. 74

14.4 Command Functions 14 WOLFSSL SFTP API REFERENCE

WOLFSSH* ssh;
int ret;
char* dir[DIR_SZ];

//set up ssh and do sftp connections
...

ret = wolfSSH_SFTP_RMDIR(ssh, dir);

14.4.4 wolfSSH_SFTP_Rename()

Synopsis:
Description:
Function for sending a “rename” packet across the channel. This tries to have a peer file renamed from
“old” to “nw”.
Return Values:
WS_SUCCESS : returns WS_SUCCESS on success.
Parameters:
ssh - pointer to WOLFSSH structure used for connection old - Old file name nw - New file name
Example:
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_Rename(WOLFSSH* ssh , const char* old ,
const char*
nw);

WOLFSSH* ssh;
int ret;
char* old[NAME_SZ];
char* nw[NAME_SZ]; //new file name

//set up ssh and do sftp connections
...

ret = wolfSSH_SFTP_Rename(ssh, old, nw);

See Also:
wolfSSH_SFTP_accept() wolfSSH_SFTP_connect()

14.4.5 wolfSSH_SFTP_LS()

Synopsis:
Description:
Function for performing LS operation which gets a list of all files and directories in the current work-
ing directory. This is a high level function that performs REALPATH, OPENDIR, READDIR, and CLOSE
operations.
Return Values:
On Success, returns a pointer to a list of WS_SFTPNAME structures. NULL on failure.

COPYRIGHT ©2024 wolfSSL Inc. 75

14.4 Command Functions 14 WOLFSSL SFTP API REFERENCE

Parameters:
ssh - pointer to WOLFSSH structure used for connection dir - directory to list
Example:
#include <wolfssh/wolfsftp.h>
WS_SFTPNAME* wolfSSH_SFTP_LS(WOLFSSH* ssh , char* dir);

See Also:
wolfSSH_SFTP_accept() wolfSSH_SFTP_connect() wolfSSH_SFTPNAME_list_free()
WOLFSSH* ssh;
int ret;
char* dir[DIR_SZ];
WS_SFTPNAME* name;
WS_SFTPNAME* tmp;

//set up ssh and do sftp connections
...

name = wolfSSH_SFTP_LS(ssh, dir);
tmp = name;
while (tmp != NULL) {
printf("%s\n", tmp->fName);
tmp = tmp->next;
}
wolfSSH_SFTPNAME_list_free(name);

14.4.6 wolfSSH_SFTP_Get()

Synopsis:
Description:
Function for performing get operation which gets a file from the peer and places it in a local directory.
This is a high level function that performs LSTAT, OPEN, READ, and CLOSE operations. To interrupt the
operation call the function wolfSSH_SFTP_Interrupt. (See the API documentation of this function for
more information on what it does)
Return Values:
WS_SUCCESS : on success. All other return values should be considered error cases.
Parameters:
ssh - pointer to WOLFSSH structure used for connection from - file name to get to - file name to place
result at resume - flag to try resume of operation. 1 for yes 0 for no statusCb - callback function to
get status
Example:
#include <wolfssh/wolfsftp.h>

int wolfSSH_SFTP_Get(WOLFSSH* ssh , char* from , char* to ,
byte resume ,
WS_STATUS_CB* statusCb);

See Also:
wolfSSH_SFTP_accept() wolfSSH_SFTP_connect()

COPYRIGHT ©2024 wolfSSL Inc. 76

14.4 Command Functions 14 WOLFSSL SFTP API REFERENCE

static void myStatusCb(WOLFSSH* sshIn, long bytes, char*
name)
{
char buf[80];
WSNPRINTF(buf, sizeof(buf), "Processed %8ld\t bytes
\r", bytes);
WFPUTS(buf, fout);
(void)name;
(void)sshIn;
}
...
WOLFSSH* ssh;
char* from[NAME_SZ];
char* to[NAME_SZ];

//set up ssh and do sftp connections
...

if (wolfSSH_SFTP_Get(ssh , from , to , 0 , & myStatusCb) !=
WS_SUCCESS) {
//handle error case
}

14.4.7 wolfSSH_SFTP_Put()

Synopsis:
Description:
Function for performing put operation which pushes a file local file to a peers directory. This is a high
level function that performs OPEN, WRITE, and CLOSE operations. To interrupt the operation call the
function wolfSSH_SFTP_Interrupt. (See the API documentation of this function for more information
on what it does)
Return Values:
WS_SUCCESS on success. All other return values should be considered error cases.
Parameters:
ssh - pointer to WOLFSSH structure used for connection from - file name to push to - file name to
place result at resume - flag to try resume of operation. 1 for yes 0 for no statusCb - callback function
to get status
Example:
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_Put(WOLFSSH* ssh , char* from , char* to ,
byte resume , WS_STATUS_CB* statusCb);

See Also:
wolfSSH_SFTP_accept() wolfSSH_SFTP_connect()
static void myStatusCb(WOLFSSH* sshIn, long bytes, char*
name)
{
char buf[80];
WSNPRINTF(buf, sizeof(buf), "Processed %8ld\t bytes

COPYRIGHT ©2024 wolfSSL Inc. 77

14.5 SFTP Server Functions 14 WOLFSSL SFTP API REFERENCE

\r", bytes);
WFPUTS(buf, fout);
(void)name;
(void)sshIn;
}
...

WOLFSSH* ssh;
char* from[NAME_SZ];
char* to[NAME_SZ];

//set up ssh and do sftp connections
...

if (wolfSSH_SFTP_Put(ssh, from, to, 0, &myStatusCb) !=
WS_SUCCESS) {
//handle error case
}

14.5 SFTP Server Functions
14.5.1 wolfSSH_SFTP_read()

Synopsis:
Description:
Main SFTP server function that handles incoming packets. This function tries to read from the I/O
buffer and calls internal functions to depending on the SFTP packet type received.
Return Values:
WS_SUCCESS: on success.
Parameters:
ssh - pointer to WOLFSSH structure used for connection
Example:
#include <wolfssh/wolfsftp.h>
int wolfSSH_SFTP_read(WOLFSSH* ssh);

See Also:
wolfSSH_SFTP_accept() wolfSSH_SFTP_connect()
WOLFSSH* ssh;

//set up ssh and do sftp connections
...
if (wolfSSH_SFTP_read(ssh) != WS_SUCCESS) {
//handle error case
}

COPYRIGHT ©2024 wolfSSL Inc. 78

	Introduction
	Protocol Overview
	Why Choose wolfSSH?
	Features

	Building wolfSSH
	Getting the Source Code
	wolfSSH Dependencies
	Building with autotools
	Building on Windows
	User Macros for Building on Windows

	Building in a non-standard environment
	Cross Compiling
	Install to Custom Directory

	Getting Started
	Testing
	wolfSSH Unit Test
	Testing Notes

	Examples
	wolfSSH Echo Server
	wolfSSH Client
	wolfSSH portfwd
	wolfSSH scpclient
	wolfSSH sftpclient
	wolfSSH server

	SCP
	SFTP
	Shell Support
	Post-Quantum
	Certificate Support

	Library Design
	Directory Layout

	wolfSSH User Authentication Callback
	Callback Function Prototype
	Callback Function Authentication Type Constants
	Callback Function Return Code Constants
	Callback Function Data Types
	Password
	Keyboard-Interactive
	Public Key

	Callback Function Setup API
	Setting the User Authentication Callback Function
	Setting the User Authentication Callback Context Data
	Getting the User Authentication Callback Context Data
	Setting the Keyboard Authentication Prompts Callback Function
	Example Echo Server User Authentication

	Building and Using wolfSSH SFTP
	Building wolfSSH SFTP
	Using wolfSSH SFTP Apps

	Port Forwarding
	Building wolfSSH with Port Forwarding
	Using wolfSSH Port Forwarding Example App

	Notes and Limitations
	Licensing
	Open Source
	Commercial Licensing
	Support Packages

	Support and Consulting
	How to Get Support
	Bugs Reports and Support Issues

	Consulting
	Feature Additions and Porting
	Competitive Upgrade Program
	Design Consulting

	wolfSSH Updates
	Product Release Information

	API Reference
	Error Codes
	WS_ErrorCodes (enum)
	WS_IOerrors (enum)

	Initialization / Shutdown
	wolfSSH_Init()
	wolfSSH_Cleanup()

	Debugging output functions
	wolfSSH_Debugging_ON()
	wolfSSH_Debugging_OFF()

	Context Functions
	wolfSSH_CTX_new()
	wolfSSH_CTX_free()
	wolfSSH_CTX_SetBanner()
	wolfSSH_CTX_UsePrivateKey_buffer()

	SSH Session Functions
	wolfSSH_new()
	wolfSSH_free()
	wolfSSH_set_fd()
	wolfSSH_get_fd()

	Data High Water Mark Functions
	wolfSSH_SetHighwater()
	wolfSSH_GetHighwater()
	wolfSSH_SetHighwaterCb()
	wolfSSH_SetHighwaterCtx()
	wolfSSH_GetHighwaterCtx()

	Error Checking
	wolfSSH_get_error()
	wolfSSH_get_error_name()
	wolfSSH_ErrorToName()

	I/O Callbacks
	wolfSSH_SetIORecv()
	wolfSSH_SetIOSend()
	wolfSSH_SetIOReadCtx()
	wolfSSH_SetIOWriteCtx()
	wolfSSH_GetIOReadCtx()
	wolfSSH_GetIOWriteCtx()

	User Authentication
	wolfSSH_SetUserAuth()
	wolfSSH_SetUserAuthCtx()
	wolfSSH_GetUserAuthCtx()
	wolfSSH_SetKeyboardAuthPrompts()
	wolfSSH_SetKeyboardAuthCtx()

	Set Username
	wolfSSH_SetUsername()

	Connection Functions
	wolfSSH_accept()
	wolfSSH_connect()
	wolfSSH_shutdown()
	wolfSSH_stream_read()
	wolfSSH_stream_send()
	wolfSSH_stream_exit()
	wolfSSH_TriggerKeyExchange()

	Channel Callbacks
	Callback Function Prototypes
	wolfSSH_CTX_SetChannelOpenCb
	wolfSSH_CTX_SetChannelOpenRespCb
	wolfSSH_CTX_SetChannelReqShellCb
	wolfSSH_CTX_SetChannelReqSubsysCb
	wolfSSH_CTX_SetChannelReqExecCb
	wolfSSH_CTX_SetChannelEofCb
	wolfSSH_CTX_SetChannelCloseCb
	wolfSSH_SetChannelOpenCtx
	wolfSSH_SetChannelReqCtx
	wolfSSH_SetChannelEofCtx
	wolfSSH_SetChannelCloseCtx
	wolfSSH_GetChannelOpenCtx
	wolfSSH_GetChannelReqCtx
	wolfSSH_GetChannelEofCtx
	wolfSSH_GetChannelCloseCtx
	wolfSSH_ChannelGetSessionType
	wolfSSH_ChannelGetSessionCommand

	Testing Functions
	wolfSSH_GetStats()
	wolfSSH_KDF()

	Session Functions
	wolfSSH_GetSessionType()
	wolfSSH_GetSessionCommand()

	Port Forwarding Functions
	wolfSSH_ChannelFwdNew()
	wolfSSH_ChannelFree()
	wolfSSH_worker()
	wolfSSH_ChannelGetId()
	wolfSSH_ChannelFind()
	wolfSSH_ChannelRead()
	wolfSSH_ChannelSend()
	wolfSSH_ChannelExit()
	wolfSSH_ChannelNext()

	Key Load Functions
	wolfSSH_ReadKey_buffer()
	wolfSSH_ReadKey_file()

	Key Exchange Algorithm Configuration
	wolfSSH Set Algo Lists
	wolfSSH Get Algo List
	wolfSSH_CheckAlgoName
	wolfSSH Query Algorithms

	wolfSSL SFTP API Reference
	Connection Functions
	wolfSSH_SFTP_accept()
	wolfSSH_SFTP_connect()
	wolfSSH_SFTP_negotiate()

	Protocol Level Functions
	wolfSSH_SFTP_RealPath()
	wolfSSH_SFTP_Close()
	wolfSSH_SFTP_Open()
	wolfSSH_SFTP_SendReadPacket()
	wolfSSH_SFTP_SendWritePacket()
	wolfSSH_SFTP_STAT()
	wolfSSH_SFTP_LSTAT()
	wolfSSH_SFTPNAME_free()
	void wolfSSH_SFTPNAME_free(WS_SFTPNMAE* name);

	Reget / Reput Functions
	wolfSSH_SFTP_SaveOfst()
	wolfSSH_SFTP_GetOfst()
	wolfSSH_SFTP_ClearOfst()
	wolfSSH_SFTP_Interrupt()

	Command Functions
	wolfSSH_SFTP_Remove()
	wolfSSH_SFTP_MKDIR()
	wolfSSH_SFTP_RMDIR()
	wolfSSH_SFTP_Rename()
	wolfSSH_SFTP_LS()
	wolfSSH_SFTP_Get()
	wolfSSH_SFTP_Put()

	SFTP Server Functions
	wolfSSH_SFTP_read()

