
wolfSentry Documentation

2026-01-19

1

CONTENTS CONTENTS

Contents

1 wolfSentry – The Wolfssl Embedded Firewall/IDPS 5
1.1 Description . 5
1.2 Documentation . 5
1.3 Dependencies . 5
1.4 Building . 6

1.4.1 Build and Self-Test Examples . 11
1.5 Project Examples . 12

2 Building and Initializing wolfSentry for an application on FreeRTOS/lwIP 13

3 Configuring wolfSentry using a JSON document 19
3.1 JSON Basics . 19
3.2 JSON load flags . 20
3.3 Overview of JSON syntax . 20
3.4 Descriptions of elements . 22
3.5 Formal ABNF grammar . 25

4 wolfSentry Release History and Change Log 31

5 wolfSentry Release 1.6.3 (January 22, 2025) 31
5.1 New Features . 31
5.2 Noteworthy Changes and Additions . 31
5.3 Bug Fixes, Cleanups, and Debugging Aids . 31
5.4 Self-Test Enhancements . 31

6 wolfSentry Release 1.6.2 (January 2, 2024) 32
6.1 Noteworthy Changes and Additions . 32
6.2 Bug Fixes, Cleanups, and Debugging Aids . 32
6.3 Self-Test Enhancements . 32

7 wolfSentry Release 1.6.1 (November 18, 2023) 33
7.1 New Features . 33
7.2 Noteworthy Changes and Additions . 33
7.3 Bug Fixes, Cleanups, and Debugging Aids . 33
7.4 Self-Test Enhancements . 34

8 wolfSentry Release 1.6.0 (October 24, 2023) 35
8.1 New Features . 35
8.2 Noteworthy Changes and Additions . 35
8.3 Performance Improvements . 35
8.4 Documentation . 35
8.5 Bug Fixes and Cleanups . 36
8.6 Self-Test Enhancements . 36

9 wolfSentry Release 1.5.0 (September 13, 2023) 38
9.1 Noteworthy Changes and Additions . 38
9.2 Performance Improvements . 38
9.3 Documentation . 38
9.4 Bug Fixes and Cleanups . 39
9.5 Self-Test Enhancements . 39

10 wolfSentry Release 1.4.1 (July 20, 2023) 41
10.1 Bug Fixes and Cleanups . 41

COPYRIGHT ©2024 wolfSSL Inc. 2

CONTENTS CONTENTS

10.2 Self-Test Enhancements . 41

11 wolfSentry Release 1.4.0 (July 19, 2023) 42
11.1 New Features . 42
11.2 Noteworthy Changes and Additions . 42
11.3 Bug Fixes and Cleanups . 43
11.4 Self-Test Enhancements . 44

12 wolfSentry Release 1.3.1 (July 5, 2023) 45
12.1 Bug Fixes and Cleanups . 45
12.2 Self-Test Enhancements . 45

13 wolfSentry Release 1.3 (May 19, 2023) 46
13.1 New Features . 46

13.1.1 Route dump to JSON . 46
13.2 Bug Fixes and Cleanups . 46
13.3 Self-Test Enhancements . 46

14 wolfSentry Release 1.2.2 (May 4, 2023) 47
14.1 Noteworthy Changes and Additions . 47
14.2 Bug Fixes and Cleanups . 47
14.3 Self-Test Enhancements . 47

15 wolfSentry Release 1.2.1 (Apr 5, 2023) 49
15.1 Noteworthy Changes and Additions . 49
15.2 Bug Fixes . 49

16 wolfSentry Release 1.2.0 (Mar 24, 2023) 50
16.1 New Features . 50

16.1.1 lwIP full firewall integration . 50
16.2 Noteworthy Changes and Additions . 50
16.3 Bug Fixes . 50

17 wolfSentry Release 1.1.0 (Feb 23, 2023) 51
17.1 New Features . 51
17.2 Noteworthy Changes and Additions . 51
17.3 Bug Fixes . 51

18 wolfSentry Release 1.0.0 (Jan 18, 2023) 52
18.1 Noteworthy Changes and Additions . 52
18.2 Bug Fixes . 52

19 wolfSentry Release 0.8.0 (Jan 6, 2023) 53
19.1 New Features . 53

19.1.1 Multithreaded application support . 53
19.2 Updated Examples . 53

19.2.1 examples/notification-demo . 53
19.3 Noteworthy Changes and Additions . 53

19.3.1 New public utility APIs, macros, types, etc. 53
19.4 Bug Fixes . 54

20 wolfSentry Release 0.7.0 (Nov 7, 2022) 55
20.1 New Features . 55

20.1.1 Support for freeform user-defined JSON objects in the “user-values” (key-value
pair) section of the config package. 55

20.1.2 Support for setting a user KV as read-only. 55

COPYRIGHT ©2024 wolfSSL Inc. 3

CONTENTS CONTENTS

20.2 Updated Examples . 55
20.2.1 examples/notification-demo . 55

20.3 Noteworthy Changes and Additions . 56
20.3.1 Cleanup of JSON DOM implementation . 56
20.3.2 New utility APIs . 56

20.4 Bug Fixes . 56

21 wolfSentry Release 0.6.0 (Sep 30, 2022) 57
21.1 New Features . 57

21.1.1 Core support for automatic penalty boxing, with configurable threshold when
derogatory count reaches threshold . 57

21.2 Noteworthy Changes and Additions . 57
21.3 Bug Fixes . 57

22 wolfSentry Release 0.5.0 (Aug 1, 2022) 58
22.1 New Example . 58
22.2 Noteworthy Changes . 58
22.3 Bug Fixes . 58

23 wolfSentry Release 0.4.0 (May 27, 2022) 59
23.1 New Features . 59
23.2 Noteworthy Changes . 59
23.3 Bug Fixes . 59

24 wolfSentry Release 0.3.0 (Dec 30, 2021) 60
24.1 New Ports and Examples . 60
24.2 New Features . 60
24.3 Bug Fixes . 60

COPYRIGHT ©2024 wolfSSL Inc. 4

1 WOLFSENTRY – THE WOLFSSL EMBEDDED FIREWALL/IDPS

1 wolfSentry – The Wolfssl Embedded Firewall/IDPS

1.1 Description
wolfSentry is the wolfSSL embedded IDPS (Intrusion Detection and Prevention System). In simple
terms, wolfSentry is an embedded firewall engine (both static and fully dynamic), with prefix-based
and wildcard-capable lookup of known hosts/netblocks qualified by interface, address family, proto-
col, port, and other traffic parameters. Additionally, wolfSentry can be used as a dynamically config-
urable logic hub, arbitrarily associating user-defined events with user-defined actions, contextualized
by connection attributes. The evolution of client-server relationships can thus be tracked in detail,
freely passing traffic matching expected usage patterns, while efficiently rejecting abusive traffic.
wolfSentry is fully integrated with the lwIP stack, through a patchset in the lwip/ subdirectory of the
source tree, and has basic integration with the wolfSSL library for application-level filtering of inbound
and outbound connections.
The wolfSentry engine is dynamically configurable programmatically through an API, or from a tex-
tual input file in JSON supplied to the engine, or dynamically and incrementally with JSON fragments,
or any combination of these methods. Reconfiguration is protected by transactional semantics, and
advanced internal locks on threaded targets assure seamless service availability with atomic policy
transition. Callbacks allow for transport-agnostic remote logging, e.g. through MQTT, syslog, or DDS
message buses.
wolfSentry is designed from the ground up to function well in resource-constrained, bare-metal, and
realtime environments, with algorithms to stay within designated maximum memory footprints and
maintain deterministic throughput. This allows full firewall and IDPS functionality on embedded tar-
gets such as FreeRTOS, Nucleus, NUTTX, Zephyr, VxWorks, and Green Hills Integrity, and on ARM and
other common embedded CPUs and MCUs. wolfSentry with dynamic firewalling can add as little as
64k to the code footprint, and 32k to the volatile state footprint, and can fully leverage the existing
logic and state of applications and sibling libraries.

1.2 Documentation
With doxygen installed, the HTML version of the full API reference manual can be generated from
the top of the wolfSentry source tree with make doc-html. This, and the source code itself, are the
recommended API references.
The PDF version of the API reference manual is pregenerated and included with source distributions
in the doc/ subdirectory at doc/wolfSentry_refman.pdf. The latest version is always available on
GitHub.

1.3 Dependencies
In its default build, wolfSentry depends on a POSIX runtime, specifically the heap allocator,
clock_gettime, stdio, semaphore, pthreads, and string APIs. However, these dependencies can
be avoided with various build-time options. The recipe
make STATIC=1 SINGLETHREADED=1 NO_STDIO=1 EXTRA_CFLAGS="-DWOLFSENTRY_NO_CLOCK_BUILTIN
-DWOLFSENTRY_NO_MALLOC_BUILTIN"
builds a libwolfsentry.a that depends on only a handful of basic string functions and the inet_ntop()
library function (from POSIX.1-2001, and also implemented by lwIP). Allocator and time callbacks
must then be set in a struct wolfsentry_host_platform_interface supplied to wolfsen-
try_init().
The wolfSentry Makefile depends on a modern (v4.0+) Gnu make. The library itself can be built out-
side make, within another project/framework, by creating a user settings macro file and passing its

COPYRIGHT ©2024 wolfSSL Inc. 5

https://raw.githubusercontent.com/wolfSSL/wolfsentry/master/doc/wolfSentry_refman.pdf
https://raw.githubusercontent.com/wolfSSL/wolfsentry/master/doc/wolfSentry_refman.pdf

1.4 Building 1 WOLFSENTRY – THE WOLFSSL EMBEDDED FIREWALL/IDPS

path to the compiler with the WOLFSENTRY_USER_SETTINGS_FILEmacro.

1.4 Building
wolfSentry was written with portability in mind, with provisions for non-POSIX and C89 targets. For
example, all its dependencies can be met with the FreeRTOS/newlib-nano/lwIP runtime. If you have
difficulty building wolfSentry, please don’t hesitate to seek support through our support forums or
contact us directly at support@wolfssl.com.
The current wolfSentry release can be downloaded from the wolfSSL website as a ZIP file, and devel-
opers can browse the release history and clone the wolfSentry Git repository for the latest pre-release
updates.
There are several flags that can be passed to make to control the build parameters. make will store
them at build time in wolfsentry/wolfsentry_options.h in the build tree. If you are not using
make, then the C macro WOLFSENTRY_USER_SETTINGS_FILE should be defined to the path to a file
containing settings, both when building wolfSentry and when building the application.
The following feature control variables are recognized. True/false features (LWIP, NO_STDIO, NO_JSON,
etc.) are undefined by default, and activated when defined. Macros can be supplied using the EX-
TRA_CFLAGS option, or by placing them in a USER_SETTINGS_FILE. More detailed documentation
for macros is available in the reference manual “Startup/Configuration/Shutdown Subsystem” topic.

make Option Macro Option Description
SHELL Supplies an

explicit/alternative
path to bash.

AWK Supplies an
explicit/alternative
path to Gnu awk.

V Verbose make
output e.g. make
V=1 -j test

USER_MAKE_CONF User-defined make
clauses to include
at the top of the
main Makefile
e.g. make -j
USER_MAKE_CONF=Makefile.settings

EXTRA_CFLAGS Additional
arguments to be
passed verbatim to
the compiler

EXTRA_LDFLAGS Additional
arguments to be
passed verbatim to
the linker

SRC_TOP The source code top
level directory
(default pwd -P)

COPYRIGHT ©2024 wolfSSL Inc. 6

https://www.wolfssl.com/forums
mailto:support@wolfssl.com
https://www.wolfssl.com/download
https://github.com/wolfSSL/wolfsentry/tags
https://github.com/wolfSSL/wolfsentry

1.4 Building 1 WOLFSENTRY – THE WOLFSSL EMBEDDED FIREWALL/IDPS

make Option Macro Option Description
BUILD_TOP Build with artifacts

in an alternate
location (outside or
in a subdirectory of
the source tree)
e.g. make
BUILD_TOP=./build
-j test

DEBUG Compiler
debugging flag to
use (default -ggdb)

OPTIM The optimizer flag
to use (default -O3)

HOST The target host
tuple, for
cross-compilation
(default unset,
i.e. native targeting)

RUNTIME The target runtime
ecosystem – default
unset,
FreeRTOS-lwIP
and Linux-lwIP
are recognized

C_WARNFLAGS The warning flags
to use (overriding
the generally
applicable defaults)

STATIC Build statically
linked unit tests

STRIPPED Strip binaries of
debugging symbols

FUNCTION_SECTIONS Cull any unused
object code (with
function
granularity) to
minimize total size.

BUILD_DYNAMIC Build dynamically
linked library

VERY_QUIET Inhibit all non-error
output during build

TAR Path to GNU tar
binary for make
dist, should be set
to gtar for macOS

VERSION The version to
package for make
dist

LWIP WOLFSENTRY_LWIP True/false –
Activates
appropriate build
settings for lwIP

COPYRIGHT ©2024 wolfSSL Inc. 7

1.4 Building 1 WOLFSENTRY – THE WOLFSSL EMBEDDED FIREWALL/IDPS

make Option Macro Option Description
NO_STDIO_STREAMS WOLFSENTRY_NO_STDIO_STREAMS Define to omit

functionality that
depends on stdio
stream I/O

WOLFSENTRY_NO_STDIO_H Define to inhibit
inclusion of
stdio.h

NO_ADDR_BITMASK_MATCHING WOLFSENTRY_NO_ADDR_BITMASK_MATCHINGDefine to omit
support for bitmask
matching of
addresses,
i.e. support only
prefix matching.

NO_IPV6 WOLFSENTRY_NO_IPV6 Define to omit
support for the IPv6
address family.

NO_JSON WOLFSENTRY_NO_JSON Define to omit JSON
configuration
support

NO_JSON_DOM WOLFSENTRY_NO_JSON_DOM Define to omit JSON
DOM API

CALL_TRACE WOLFSENTRY_DEBUG_CALL_TRACE Define to activate
runtime call stack
logging (profusely
verbose)

USER_SETTINGS_FILE WOLFSENTRY_USER_SETTINGS_FILE A substitute
settings file,
replacing
autogenerated
wolfsen-
try_settings.h

SINGLETHREADED WOLFSENTRY_SINGLETHREADED Define to omit
thread safety logic,
and replace thread
safety functions
and macros with
no-op macros.

WOLFSENTRY_NO_PROTOCOL_NAMES If defined, omit
APIs for rendering
error codes and
source code files in
human readable
form. They will be
rendered
numerically.

WOLFSENTRY_NO_GETPROTOBY Define to disable
lookup and
rendering of
protocols and
services by name.

COPYRIGHT ©2024 wolfSSL Inc. 8

1.4 Building 1 WOLFSENTRY – THE WOLFSSL EMBEDDED FIREWALL/IDPS

make Option Macro Option Description
WOLFSENTRY_NO_ERROR_STRINGS If defined, omit

APIs for rendering
error codes and
source code files in
human readable
form. They will be
rendered
numerically.

WOLFSENTRY_NO_MALLOC_BUILTINS If defined, omit
built-in heap
allocator primitives;
the wolfsen-
try_host_platform_interface
supplied to
wolfSentry APIs
must include
implementations of
all functions in
struct wolfsen-
try_allocator.

WOLFSENTRY_HAVE_NONGNU_ATOMICS Define if gnu-style
atomic intrinsics are
not available.
WOLFSEN-
TRY_ATOMIC_*()
macro definitions
for intrinsics will
need to be supplied
in WOLFSEN-
TRY_USER_SETTINGS_FILE
(see wolfsen-
try_util.h).

WOLFSENTRY_NO_CLOCK_BUILTIN If defined, omit
built-in time
primitives; the
wolfsen-
try_host_platform_interface
supplied to
wolfSentry APIs
must include
implementations of
all functions in
struct wolfsen-
try_timecbs.

COPYRIGHT ©2024 wolfSSL Inc. 9

1.4 Building 1 WOLFSENTRY – THE WOLFSSL EMBEDDED FIREWALL/IDPS

make Option Macro Option Description
WOLFSENTRY_NO_SEM_BUILTIN If defined, omit

built-in semaphore
primitives; the
wolfsen-
try_host_platform_interface
supplied to
wolfSentry APIs
must include
implementations of
all functions in
struct wolfsen-
try_semcbs.

WOLFSENTRY_USE_NONPOSIX_SEMAPHORES Define if POSIX
semaphore API is
not available. If no
non-POSIX builtin
implementation is
present in wolf-
sentry_util.c,
then #WOLFSEN-
TRY_NO_SEM_BUILTIN
must be set, and
the wolfsen-
try_host_platform_interface
supplied to
wolfSentry APIs
must include a full
semaphore
implementation
(shim set) in its
wolfsen-
try_semcbs slot.

WOLFSENTRY_SEMAPHORE_INCLUDE Define to the path
of a header file
declaring a
semaphore API.

WOLFSENTRY_USE_NONPOSIX_THREADS Define if POSIX
thread API is not
available.
WOLFSEN-
TRY_THREAD_INCLUDE,
WOLFSEN-
TRY_THREAD_ID_T,
and WOLFSEN-
TRY_THREAD_GET_ID_HANDLER
will need to be
defined.

WOLFSENTRY_THREAD_INCLUDE Define to the path
of a header file
declaring a
threading API.

COPYRIGHT ©2024 wolfSSL Inc. 10

1.4 Building 1 WOLFSENTRY – THE WOLFSSL EMBEDDED FIREWALL/IDPS

make Option Macro Option Description
WOLFSENTRY_THREAD_ID_T Define to the

appropriate type
analogous to POSIX
pthread_t.

WOLFSENTRY_THREAD_GET_ID_HANDLER Define to the name
of a void function
analogous to POSIX
pthread_self,
returning a value of
type WOLFSEN-
TRY_THREAD_ID_T.

FREERTOS Build for FreeRTOS

1.4.1 Build and Self-Test Examples

Building and testing libwolfsentry.a on Linux:
make -j test
Build verbosely:
make V=1 -j test
Build with artifacts in an alternate location (outside or in a subdirectory of the source tree):
make BUILD_TOP=./build -j test
Install from an alternate build location to a non-standard destination:
make BUILD_TOP=./build INSTALL_DIR=/usr INSTALL_LIBDIR=/usr/lib64 install
Build libwolfsentry.a and test it in various configurations:
make -j check
Build and test libwolfsentry.a without support for multithreading:
make -j SINGLETHREADED=1 test
Other available make flags are STATIC=1, STRIPPED=1, NO_JSON=1, and NO_JSON_DOM=1, and the
defaults values for DEBUG, OPTIM, and C_WARNFLAGS can also be usefully overridden.
Build with a user-supplied makefile preamble to override defaults:
make -j USER_MAKE_CONF=Makefile.settings
(Makefile.settings can contain simple settings like OPTIM := -Os, or elaborate makefile code
including additional rules and dependency mechanisms.)
Build the smallest simplest possible library:
make -j SINGLETHREADED=1 NO_STDIO=1 DEBUG= OPTIM=-Os EXTRA_CFLAGS="-DWOLFSENTRY_NO_CLOCK_BUILTIN
-DWOLFSENTRY_NO_MALLOC_BUILTIN -DWOLFSENTRY_NO_ERROR_STRINGS -Wno-error=inline
-Wno-inline"
Build and test with user settings:
make -j USER_SETTINGS_FILE=user_settings.h test
Build for FreeRTOS on ARM32, assuming FreeRTOS and lwIP source trees are located as shown:

COPYRIGHT ©2024 wolfSSL Inc. 11

1.5 Project Examples 1 WOLFSENTRY – THE WOLFSSL EMBEDDED FIREWALL/IDPS

make -j HOST=arm-none-eabi RUNTIME=FreeRTOS-lwIP FREERTOS_TOP=../third/FreeRTOSv202212.00
LWIP_TOP=../third/lwip EXTRA_CFLAGS=-mcpu=cortex-m7

1.5 Project Examples
In the wolfsentry/examples/ subdirectory are a set of example ports and applications, including a
demo pop-up notification system implementing a toy TLS-enabled embedded web server, integrating
with the Linux D-Bus facility.
More comprehensive examples of API usage are intests/unittests.c, particularlytest_static_routes(),
test_dynamic_rules(), and test_json(), and the JSON configuration files at tests/test-
config*.json.
In the wolfSSL repository, see code in wolfssl/test.h gated on WOLFSSL_WOLFSENTRY_HOOKS, in-
cluding wolfsentry_store_endpoints(), wolfSentry_NetworkFilterCallback(), wolfsen-
try_setup(), andtcp_connect_with_wolfSentry(). See also code inexamples/server/server.c
and examples/client/client.c gated on WOLFSSL_WOLFSENTRY_HOOKS. Configure wolfssl with -
-enable-wolfsentry to buildwithwolfSentry integration, anduse--with-wolfsentry=/the/install/path
if wolfSentry is installed in a nonstandard location. The wolfSSL test client/server can be loaded with
user-supplied wolfSentry JSON configurations from the command line, using --wolfsentry-config
<file>.

COPYRIGHT ©2024 wolfSSL Inc. 12

https://github.com/wolfSSL/wolfssl

2 BUILDING AND INITIALIZING WOLFSENTRY FOR AN APPLICATION ON FREERTOS/LWIP

2 Building and InitializingwolfSentry for an application on FreeR-
TOS/lwIP

Building the wolfSentry library for FreeRTOS with lwIP and newlib-nano is supported directly by the
top level Makefile. E.g., for an ARM Cortex M7, libwolfsentry.a can be built with
make HOST=arm-none-eabi EXTRA_CFLAGS='-mcpu=cortex-m7' RUNTIME=FreeRTOS-lwIP

FREERTOS_TOP="$FREERTOS_TOP" LWIP_TOP="$LWIP_TOP"

FREERTOS_TOP is the path to the top of the FreeRTOS distribution, with FreeRTOS/Source directly
under it, and LWIP_TOP is the path to the top of the lwIP distribution, with src directly under it.
The below code fragments can be added to a FreeRTOS application to enable wolfSentry with dynami-
cally loaded policies (JSON). Many of the demonstrated code patterns are optional. The only calls that
are indispensable are wolfsentry_init(), wolfsentry_config_json_oneshot(), and wolfsen-
try_install_lwip_filter_callbacks(). Each of these also has API variants that give the user
more control.
#define WOLFSENTRY_SOURCE_ID WOLFSENTRY_SOURCE_ID_USER_BASE
#define WOLFSENTRY_ERROR_ID_USER_APP_ERR0 (WOLFSENTRY_ERROR_ID_USER_BASE-1)
/* user-defined error IDs count down starting at

WOLFSENTRY_ERROR_ID_USER_BASE (which is negative). */

#include <wolfsentry/wolfsentry_json.h>
#include <wolfsentry/wolfsentry_lwip.h>

static struct wolfsentry_context *wolfsentry_lwip_ctx = NULL;

static const struct wolfsentry_eventconfig demo_config = {
#ifdef WOLFSENTRY_HAVE_DESIGNATED_INITIALIZERS

.route_private_data_size = 64,

.route_private_data_alignment = 0, /* default alignment --
same as sizeof(void *). */

.max_connection_count = 10, /* by default, don't allow
more than 10 simultaneous

* connections that match
the same route.

*/
.derogatory_threshold_for_penaltybox = 4, /* after 4 derogatory

events matching the same route,
* put the route in penalty

box status.
*/

.penaltybox_duration = 300, /* keep routes in penalty
box status for 5 minutes.

* denominated in seconds
when passing to

* wolfsentry_init().
*/

.route_idle_time_for_purge = 0, /* 0 to disable --
autopurge doesn't usually make

* much sense as a default
config.

*/

COPYRIGHT ©2024 wolfSSL Inc. 13

2 BUILDING AND INITIALIZING WOLFSENTRY FOR AN APPLICATION ON FREERTOS/LWIP

.flags = WOLFSENTRY_EVENTCONFIG_FLAG_COMMENDABLE_CLEARS_DEROGATORY, /*
automatically clear

* derogatory count for a
route when a
commendable

* event matches the route.
*/

.route_flags_to_add_on_insert = 0,

.route_flags_to_clear_on_insert = 0,

.action_res_filter_bits_set = 0,

.action_res_filter_bits_unset = 0,

.action_res_bits_to_add = 0,

.action_res_bits_to_clear = 0
#else

64,
0,
10,
4,
300,
0,
WOLFSENTRY_EVENTCONFIG_FLAG_COMMENDABLE_CLEARS_DEROGATORY,
0,
0,
0,
0,
0,
0

#endif
};

/* This routine is to be called once by the application before any direct
calls

* to lwIP -- i.e., before lwip_init() or tcpip_init().
*/

wolfsentry_errcode_t activate_wolfsentry_lwip(const char *json_config, int
json_config_len)

{
wolfsentry_errcode_t ret;
char err_buf[512]; /* buffer for detailed error messages from

* wolfsentry_config_json_oneshot().
*/

/* Allocate a thread state struct on the stack. Note that the final
* semicolon is supplied by the macro definition, so that in single-

threaded
* application builds this expands to nothing at all.
*/
WOLFSENTRY_THREAD_HEADER_DECLS

if (wolfsentry_lwip_ctx != NULL) {
printf("activate_wolfsentry_lwip() called multiple times.\n");
WOLFSENTRY_ERROR_RETURN(ALREADY);

}

COPYRIGHT ©2024 wolfSSL Inc. 14

2 BUILDING AND INITIALIZING WOLFSENTRY FOR AN APPLICATION ON FREERTOS/LWIP

#ifdef WOLFSENTRY_ERROR_STRINGS
/* Enable pretty-printing of the app source code filename for
* WOLFSENTRY_ERROR_FMT/WOLFSENTRY_ERROR_FMT_ARGS().
*/
ret = WOLFSENTRY_REGISTER_SOURCE();
WOLFSENTRY_RERETURN_IF_ERROR(ret);

/* Enable pretty-printing of an app-specific error code. */
ret = WOLFSENTRY_REGISTER_ERROR(USER_APP_ERR0, "failure in application

code");
WOLFSENTRY_RERETURN_IF_ERROR(ret);

#endif

/* Initialize the thread state struct -- this sets the thread ID. */
WOLFSENTRY_THREAD_HEADER_INIT_CHECKED(WOLFSENTRY_THREAD_FLAG_NONE);

/* Call the main wolfSentry initialization routine.
*
* WOLFSENTRY_CONTEXT_ARGS_OUT() is a macro that abstracts away
* conditionally passing the thread struct pointer to APIs that need it.

If
* this is a single-threaded build (!defined(WOLFSENTRY_THREADSAFE)), then
* the thread arg is omitted entirely.
*
* WOLFSENTRY_CONTEXT_ARGS_OUT_EX() is a variant that allows the caller to
* supply the first arg explicitly, when "wolfsentry" is not the correct

arg
* to pass. This is used here to pass a null pointer for the host

platform
* interface ("hpi").
*/
ret = wolfsentry_init(

wolfsentry_build_settings,
WOLFSENTRY_CONTEXT_ARGS_OUT_EX(NULL /* hpi */),
&demo_config,
&wolfsentry_lwip_ctx);

if (ret < 0) {
printf("wolfsentry_init() failed: " WOLFSENTRY_ERROR_FMT "\n",

WOLFSENTRY_ERROR_FMT_ARGS(ret));
goto out;

}

/* Insert user-defined actions here, if any. */
ret = wolfsentry_action_insert(

WOLFSENTRY_CONTEXT_ARGS_OUT_EX(wolfsentry_lwip_ctx),
"my-action",
WOLFSENTRY_LENGTH_NULL_TERMINATED,
WOLFSENTRY_ACTION_FLAG_NONE,
my_action_handler,
NULL,
NULL);

if (ret < 0) {
printf("wolfsentry_action_insert() failed: " WOLFSENTRY_ERROR_FMT "\n

",

COPYRIGHT ©2024 wolfSSL Inc. 15

2 BUILDING AND INITIALIZING WOLFSENTRY FOR AN APPLICATION ON FREERTOS/LWIP

WOLFSENTRY_ERROR_FMT_ARGS(ret));
goto out;

}

if (json_config) {
if (json_config_len < 0)

json_config_len = (int)strlen(json_config);

/* Do the initial load of the policy. */
ret = wolfsentry_config_json_oneshot(

WOLFSENTRY_CONTEXT_ARGS_OUT_EX(wolfsentry_lwip_ctx),
(unsigned char *)json_config,
(size_t)json_config_len,
WOLFSENTRY_CONFIG_LOAD_FLAG_NONE,
err_buf,
sizeof err_buf);

if (ret < 0) {
printf("wolfsentry_config_json_oneshot() failed: %s\n", err_buf);
goto out;

}
} /* else the application will need to set up the policy programmatically,

* or itself call wolfsentry_config_json_oneshot() or sibling APIs.
*/

/* Install lwIP callbacks. Once this call returns with success, all lwIP
* traffic designated for filtration by the mask arguments shown below

will
* be subject to filtering (or other supplementary processing) according

to
* the policy loaded above.
*
* Note that if a given protocol is gated out of LWIP, its mask argument
* must be passed as zero here, else the call will return
* IMPLEMENTATION_MISSING error will occur.
*
* The callback installation also registers a cleanup routine that will be
* called automatically by wolfsentry_shutdown().
*/

#define LWIP_ALL_EVENTS (\
(1U << FILT_BINDING) | \
(1U << FILT_DISSOCIATE) | \
(1U << FILT_LISTENING) | \
(1U << FILT_STOP_LISTENING) | \
(1U << FILT_CONNECTING) | \
(1U << FILT_ACCEPTING) | \
(1U << FILT_CLOSED) | \
(1U << FILT_REMOTE_RESET) | \
(1U << FILT_RECEIVING) | \
(1U << FILT_SENDING) | \
(1U << FILT_ADDR_UNREACHABLE) | \
(1U << FILT_PORT_UNREACHABLE) | \
(1U << FILT_INBOUND_ERR) | \
(1U << FILT_OUTBOUND_ERR))

COPYRIGHT ©2024 wolfSSL Inc. 16

2 BUILDING AND INITIALIZING WOLFSENTRY FOR AN APPLICATION ON FREERTOS/LWIP

ret = wolfsentry_install_lwip_filter_callbacks(
WOLFSENTRY_CONTEXT_ARGS_OUT_EX(wolfsentry_lwip_ctx),

#if LWIP_ARP || LWIP_ETHERNET
LWIP_ALL_EVENTS, /* ethernet_mask */

#else
0,

#endif
#if LWIP_IPV4 || LWIP_IPV6

LWIP_ALL_EVENTS, /* ip_mask */
#else

0,
#endif
#if LWIP_ICMP || LWIP_ICMP6

LWIP_ALL_EVENTS, /* icmp_mask */
#else

0,
#endif
#if LWIP_TCP

LWIP_ALL_EVENTS, /* tcp_mask */
#else

0,
#endif
#if LWIP_UDP

LWIP_ALL_EVENTS /* udp_mask */
#else

0
#endif

);
if (ret < 0) {

printf("wolfsentry_install_lwip_filter_callbacks: "
WOLFSENTRY_ERROR_FMT "\n", WOLFSENTRY_ERROR_FMT_ARGS(ret));

}

out:
if (ret < 0) {

/* Clean up if initialization failed. */
wolfsentry_errcode_t shutdown_ret =

wolfsentry_shutdown(WOLFSENTRY_CONTEXT_ARGS_OUT_EX(&
wolfsentry_lwip_ctx));

if (shutdown_ret < 0)
printf("wolfsentry_shutdown: "

WOLFSENTRY_ERROR_FMT "\n", WOLFSENTRY_ERROR_FMT_ARGS(
shutdown_ret));

}

WOLFSENTRY_THREAD_TAILER_CHECKED(WOLFSENTRY_THREAD_FLAG_NONE);

WOLFSENTRY_ERROR_RERETURN(ret);
}

/* to be called once by the application after any final calls to lwIP. */
wolfsentry_errcode_t shutdown_wolfsentry_lwip(void)

COPYRIGHT ©2024 wolfSSL Inc. 17

2 BUILDING AND INITIALIZING WOLFSENTRY FOR AN APPLICATION ON FREERTOS/LWIP

{
wolfsentry_errcode_t ret;
if (wolfsentry_lwip_ctx == NULL) {

printf("shutdown_wolfsentry_lwip() called before successful activation
.\n");

return -1;
}

/* after successful shutdown, wolfsentry_lwip_ctx will once again be a
null

* pointer as it was before init.
*/
ret = wolfsentry_shutdown(WOLFSENTRY_CONTEXT_ARGS_OUT_EX4(&

wolfsentry_lwip_ctx, NULL));
if (ret < 0) {

printf("wolfsentry_shutdown: "
WOLFSENTRY_ERROR_FMT "\n", WOLFSENTRY_ERROR_FMT_ARGS(ret));

}

return ret;
}

COPYRIGHT ©2024 wolfSSL Inc. 18

3 CONFIGURING WOLFSENTRY USING A JSON DOCUMENT

3 Configuring wolfSentry using a JSON document

Most of the capabilities of wolfSentry can be configured, and dynamically reconfigured, by supplying
JSON documents to the library. To use this capability, add the following to wolfSentry initialization in
the application:
#include <wolfsentry/wolfsentry_json.h>

After initialization and installation of application-supplied callbacks (if any), call one of the APIs to load
the config:

• wolfsentry_config_json_oneshot()
• wolfsentry_config_json_oneshot_ex(), with an additional json_config arg for fine con-
trol of JSON parsing (see struct JSON_CONFIG in wolfsentry/centijson_sax.h)

• streaming API:
– wolfsentry_config_json_init() or wolfsentry_config_json_init_ex()
– wolfsentry_config_json_feed()
– wolfsentry_config_json_fini()

See wolfsentry/wolfsentry_json.h for details on arguments.

3.1 JSON Basics
wolfSentry configuration uses standard JSON syntax as defined in RFC 8259, as restricted by RFC 7493,
with certain additional requirements. In particular, certain sections in the JSON document are re-
stricted in their sequence of appearance.

• "wolfsentry-config-version" shall appear first, and each event definition shall appear be-
fore any definitions for events, routes, or default policies that refer to it through "aux-parent-
event", "parent-event", or "default-event" clauses.

• Within event definitions, the "label", "priority", and "config" elements shall appear before
any other elements.

These sequence constraints are necessary to allow for high efficiency SAX-style (sequential-
incremental) loading of the configuration.
All wildcard flags are implicitly set on routes, and are cleared for fields with explicit assignments
in the configuration. For example, if a route designates a particular "family", then WOLFSEN-
TRY_ROUTE_FLAG_SA_FAMILY_WILDCARD will be implicitly cleared. Thus, wildcard flags need not be
explicitly set or cleared in route definitions.
Note that certain element variants may be unavailable due to build settings:

• address_family_name: available if defined(WOLFSENTRY_PROTOCOL_NAMES)
• route_protocol_name: available if !defined(WOLFSENTRY_NO_GETPROTOBY)
• address_port_name: available if !defined(WOLFSENTRY_NO_GETPROTOBY)
• json_value_clause: available if defined(WOLFSENTRY_HAVE_JSON_DOM)

Caller-supplied event and action labels shall not begin with WOLFSENTRY_BUILTIN_LABEL_PREFIX
(by default "%"), as these are reserved for built-ins.
"config-update" allows the default configuration to be updated. It is termed an “update” because
wolfSentry is initially configured by the config argument to wolfsentry_init() (which can be
passed inNULL, signifyingbuilt-in defaults). Note that times (wolfsentry_eventconfig.penaltybox_duration
and wolfsentry_eventconfig.route_idle_time_for_purge) shall be passed to wolfsen-
try_init() denominated in seconds, notwithstanding the wolfsentry_time_t type of the
members.

COPYRIGHT ©2024 wolfSSL Inc. 19

3.2 JSON load flags 3 CONFIGURING WOLFSENTRY USING A JSON DOCUMENT

3.2 JSON load flags
Theflags argument towolfsentry_config_json_init() andwolfsentry_config_json_oneshot(),
constructed by bitwise-or, changes the way the JSON is processed, as follows:

• WOLFSENTRY_CONFIG_LOAD_FLAG_NONE – Not a flag, but all-zeros, signifying default behavior:
The wolfSentry core is locked, the current configuration is flushed, and the new configuration is
loaded incrementally. Any error during load leaves wolfSentry in an undefined state that can be
recovered with a subsequent flush and load that succeeds.

• WOLFSENTRY_CONFIG_LOAD_FLAG_NO_FLUSH – Inhibit initial flush of configuration, to al-
low incremental load. Error during load leaves wolfSentry in an undefined state that
can only be recovered with a subsequent flush and load that succeeds, unless WOLFSEN-
TRY_CONFIG_LOAD_FLAG_DRY_RUN or WOLFSENTRY_CONFIG_LOAD_FLAG_LOAD_THEN_COMMIT
was also supplied.

• WOLFSENTRY_CONFIG_LOAD_FLAG_DRY_RUN – Load into a temporary configuration, and deallo-
cate before return. Running configuration is unchanged.

• WOLFSENTRY_CONFIG_LOAD_FLAG_LOAD_THEN_COMMIT – Load into a newly allocated configu-
ration, and install it only if load completes successfully. On error, running configuration is un-
changed. On success, the old configuration is deallocated.

• WOLFSENTRY_CONFIG_LOAD_FLAG_NO_ROUTES_OR_EVENTS – Inhibit loading of "routes" and
"events" sections in the supplied JSON.

• WOLFSENTRY_CONFIG_LOAD_FLAG_FLUSH_ONLY_ROUTES – At beginning of load process, retain
all current configuration except for routes, which are flushed. This is convenient in combina-
tion with wolfsentry_route_table_dump_json_*() for save/restore of dynamically added
routes.

• WOLFSENTRY_CONFIG_LOAD_FLAG_JSON_DOM_DUPKEY_ABORT – When processing user-defined
JSON values, abort load on duplicate keys.

• WOLFSENTRY_CONFIG_LOAD_FLAG_JSON_DOM_DUPKEY_USEFIRST – When processing user-
defined JSON values, for any given key in an object use the first occurrence encountered.

• WOLFSENTRY_CONFIG_LOAD_FLAG_JSON_DOM_DUPKEY_USELAST – When processing user-
defined JSON values, for any given key in an object use the last occurrence encountered.

• WOLFSENTRY_CONFIG_LOAD_FLAG_JSON_DOM_MAINTAINDICTORDER – When processing
user-defined JSON values, store sequence information so that subsequent calls to wolfsen-
try_kv_render_value() or json_dom_dump(..., JSON_DOM_DUMP_PREFERDICTORDER)
render objects in their supplied sequence, rather than lexically sorted.

Note that WOLFSENTRY_CONFIG_LOAD_FLAG_JSON_DOM_* flags are allowed only if WOLFSEN-
TRY_HAVE_JSON_DOM is defined in the build, as it is with default settings.

3.3 Overview of JSON syntax
Below is a JSON “lint” pseudodocument demonstrating all available configuration nodes, with value
specifiers that refer to the ABNF definitions below. The allowed values are as in the ABNF formal
syntax later in this document.
{

"wolfsentry-config-version" : 1,
"config-update" : {

"max-connection-count" : uint32,
"penalty-box-duration" : duration,
"route-idle-time-for-purge" : duration,

COPYRIGHT ©2024 wolfSSL Inc. 20

3.3 Overview of JSON syntax 3 CONFIGURING WOLFSENTRY USING A JSON DOCUMENT

"derog-thresh-for-penalty-boxing" : uint16,
"derog-thresh-ignore-commendable" : boolean,
"commendable-clears-derogatory" : boolean,
"route-flags-to-add-on-insert" : route_flag_list,
"route-flags-to-clear-on-insert" : route_flag_list,
"action-res-filter-bits-set" : action_res_flag_list,
"action-res-filter-bits-unset" : action_res_flag_list,
"action-res-bits-to-add" : action_res_flag_list,
"action-res-bits-to-clear" : action_res_flag_list,
"max-purgeable-routes" : uint32,
"max-purgeable-idle-time" : duration

},
"events" : [

{ "label" : label,
"priority" : uint16,
"config" : {

"max-connection-count" : uint32,
"penalty-box-duration" : duration,
"route-idle-time-for-purge" : duration,
"derog-thresh-for-penalty-boxing" : uint16,
"derog-thresh-ignore-commendable" : boolean,
"commendable-clears-derogatory" : boolean,
"route-flags-to-add-on-insert" : route_flag_list,
"route-flags-to-clear-on-insert" : route_flag_list,
"action-res-filter-bits-set" : action_res_flag_list,
"action-res-filter-bits-unset" : action_res_flag_list,
"action-res-bits-to-add" : action_res_flag_list,
"action-res-bits-to-clear" : action_res_flag_list

},
"aux-parent-event" : label,
"post-actions" : action_list,
"insert-actions" : action_list,
"match-actions" : action_list,
"update-actions" : action_list,
"delete-actions" : action_list,
"decision-actions" : action_list

}
],
"default-policies" : {

"default-policy" : default_policy_value,
"default-event" ":" label

},
"routes" : [
{

"parent-event" : label,
"af-wild" : boolean,
"raddr-wild" : boolean,
"rport-wild" : boolean,
"laddr-wild" : boolean,
"lport-wild" : boolean,
"riface-wild" : boolean,
"liface-wild" : boolean,
"tcplike-port-numbers" : boolean,
"direction-in" : boolean,

COPYRIGHT ©2024 wolfSSL Inc. 21

3.4 Descriptions of elements 3 CONFIGURING WOLFSENTRY USING A JSON DOCUMENT

"direction-out" : boolean,
"penalty-boxed" : boolean,
"green-listed" : boolean,
"dont-count-hits" : boolean,
"dont-count-current-connections" : boolean,
"port-reset" : boolean,

"family" : address_family,
"protocol" : route_protocol,
"remote" : {

"interface" : uint8,
"address" : route_address,
"prefix-bits" : uint16,
"bitmask" : route_address,
"port" : endpoint_port

},
"local" : {

"interface" : uint8,
"address" : route_address,
"prefix-bits" : uint16,
"bitmask" : route_address,
"port" : endpoint_port

}
}

],
"user-values" : {
label : null,
label : true,
label : false,
label : number_sint64,
label : number_float,
label : string,
label : { "uint" : number_uint64 },
label : { "sint" : number_sint64 },
label : { "float" : number_float },
label : { "string" : string_value },
label : { "base64" : base64_value },
label : { "json" : json_value }

}
}

3.4 Descriptions of elements
wolfsentry-config-version – Shall appear first, with the value 1.
config-update – Sets default and global parameters. The default parameters apply to routes that
have no parent event, or a parent event with no config of its own.

• max-connection-count – If nonzero, the concurrent connection limit, beyond which additional
connection requests are rejected.

• penalty-box-duration – If nonzero, the duration that a route stays in penalty box status be-
fore automatic release.

• derog-thresh-for-penalty-boxing – If nonzero, the threshold at which accumulated

COPYRIGHT ©2024 wolfSSL Inc. 22

3.4 Descriptions of elements 3 CONFIGURING WOLFSENTRY USING A JSON DOCUMENT

derogatory counts (from WOLFSENTRY_ACTION_RES_DEROGATORY incidents) automatically
penalty boxes a route.

• derog-thresh-ignore-commendable – If true, then counts fromWOLFSENTRY_ACTION_RES_COMMENDABLE
are not subtracted from the derogatory count when checking for automatic penalty boxing.

• commendable-clears-derogatory – If true, then each count fromWOLFSENTRY_ACTION_RES_COMMENDABLE
zeroes the derogatory count.

• max-purgeable-routes – Global limit on the number of ephemeral routes to allow in the route
table, beyond which the least recently matched ephemeral route is forced out early. Not allowed
in config clauses of events.

• max-purgeable-idle-time – Global absolute maximum idle time for ephemeral routes, con-
trolling purges of stale (expired) ephemeral routeswith nonzerowolfsentry_route_metadata_exports.connection_count.
Default is no limit. Not allowed in config clauses of events.

• route-idle-time-for-purge – If nonzero, the time after themost recent dispatchmatch for a
route to be garbage-collected. Useful primarily in config clauses of events (see events below).

• route-flags-to-add-on-insert – List of route flags to set on new routes upon insertion. Use-
ful primarily in config clauses of events (see events below).

• route-flags-to-clear-on-insert – List of route flags to clear on new routes upon insertion.
Useful primarily in config clauses of events (see events below).

• action-res-filter-bits-set – List of action_res flags that must be set at lookup time
(dispatch) for referring routes tomatch. Useful primarily in config clauses of events (see events
below).

• action-res-filter-bits-unset – List of action_res flags that must be clear at lookup time
(dispatch) for referring routes tomatch. Useful primarily in config clauses of events (see events
below).

• action-res-bits-to-add – List of action_res flags to be set upon match.
• action-res-bits-to-clear – List of action_res flags to be cleared upon match.

events – The list of events with their respective definitions. This section can appear more than once,
but any given event definition shall precede any definitions that refer to it.
Each event is composed of the following elements, all of which are optional except for label. label,
priority, and config shall appear before the other elements.

• label – The name by which the event is identified. See the definition of label in the ABNF
grammar below for permissible values.

• priority – Thepriority of routes that have this event as theirparent-event (seeroutesbelow).
Lower number means higher priority.

• config – The configuration to associate with routes with this parent-event, as above for
config-update.

• aux-parent-event – An event reference for use by action handlers, e.g. built-in "%track-
peer-v1" creates routes with aux-parent-event as the new route’s parent-event.

• post-actions – List of actions to take when this event is passed via event_label to a dispatch
routine such as wolfsentry_route_event_dispatch().

• insert-actions – List of actions to take when a route is inserted with this event as parent-
event.

• match-actions – List of actions to take when a route is matched by a dispatch routine, and the
route has this event as its parent-event.

COPYRIGHT ©2024 wolfSSL Inc. 23

3.4 Descriptions of elements 3 CONFIGURING WOLFSENTRY USING A JSON DOCUMENT

• update-actions – List of actions to take when a route has a status update, such as a change of
penalty box status, and has this event as its parent-event.

• delete-actions – List of actions to take when a route is deleted, and has this event as its
parent-event.

• decision-actions – List of actions to take when dispatch final decision (final value of ac-
tion_results) is determined, and the matched route has this event as its parent-event.

default-policies – The global fallthrough default policies for dispatch routines such as wolfsen-
try_route_event_dispatch().

• default-policy – A simple action_result flag to set by default, either accept, reject, or
reset, the latter of which causes generation of TCP reset and ICMP unreachable reply packets
where relevant.

• default-event – An event to use when a dispatch routine is called with a null event_label.
routes – The list of routes with their respective definitions. This section can appear more than once.
Each route is composed of the following elements, all of which are optional.

• parent-event – The event whose attributes determine the dynamics of the route.
• family – The address family to match. See address_family definition in the ABNF grammar
below for permissible values.

• protocol – The protocol tomatch. See route_protocol definition in the ABNF grammar below
for permissible values.

• remote – The attributes to match for the remote endpoint of the traffic.
– interface – Network interface ID, as an arbitrary integer chosen and used consistently by
the caller or IP stack integration.

– address – The network address, in idiomatic form. IPv4, IPv6, and MAC addresses shall
enumerate all octets. See route_address definition in the ABNF grammar below for per-
missible values.

– prefix-bits – The number of bits in the address that traffic must match (mutually exclu-
sive with bitmask).

– bitmask – A bitmask to be applied to the traffic address before matching with the route
address (mutually exclusive with prefix-bits).

– port – The port number that traffic must match.
• local – The attributes tomatch for the local endpoint of the traffic. The samenodes are available
as for remote.

• direction-in – If true, match inbound traffic.
• direction-out – If true, match outbound traffic.
• penalty-boxed – If true, traffic matching the route is penalty boxed (rejected or reset).
• green-listed – If true, traffic matching the route is accepted.
• dont-count-hits – If true, inhibit statistical bookkeeping (no effect on dynamics).
• dont-count-current-connections – If true, inhibit tracking of concurrent connections, so
that max-connection-count has no effect on traffic matching this route.

• port-reset – If true, set the WOLFSENTRY_ACTION_RES_PORT_RESET flag in the ac-
tion_resultswhen this route is matched, causing TCP reset or ICMP unreachable reply packet
to begenerated if IP stack integration is activated (e.g.wolfsentry_install_lwip_filter_callbacks()).

user-values – One or more sections of fully user-defined data available to application code for any
use. Each key is a label as defined in the ABNF grammar below. The value can be any of:

COPYRIGHT ©2024 wolfSSL Inc. 24

3.5 Formal ABNF grammar 3 CONFIGURING WOLFSENTRY USING A JSON DOCUMENT

• null
• true
• false
• an integral number, implicitly a signed 64 bit integer
• a floating point number, as defined in the ABNF grammar below for number_float
• a quoted string allowing standard JSON escapes
• any of several explicitly typed constructs, with values as defined in the ABNF grammar below.

– { "uint" : number_uint64 }
– { "sint" : number_sint64 }
– { "float" : number_float }
– { "string" : string_value }
– { "base64" : base64_value }
– { "json" : json_value }

3.5 Formal ABNF grammar
Below is the formal ABNF definition of the configuration syntax and permitted values.
This definition uses ABNF syntax as prescribed in RFC 5234 and 7405, except:

• Whitespace is ignored, as provided in RFC 8259.
• a - operator is added, accepting a quoted literal string or a group of literal characters, to pro-
vide for omitted character(s) in the target text (here, trailing comma separators) by performing
all notional matching operations of the containing group up to that point with the target text
notionally extended with the argument to the operator.

The length limits used in the definition assume the default values in wolfsentry_settings.h, 32
octets for labels (WOLFSENTRY_MAX_LABEL_BYTES), and 16384 octets for user-defined values
(WOLFSENTRY_KV_MAX_VALUE_BYTES). These values can be overridden at build time with user-
supplied values.
"{"

DQUOTE %s"wolfsentry-config-version" DQUOTE ":" uint32
["," DQUOTE %s"config-update" DQUOTE ":" top_config_list ","]
*("," DQUOTE %s"events" ":" "["

event *("," event)
"]")
["," DQUOTE %s"default-policies" DQUOTE ":" "{"

default_policy_item *("," default_policy_item)
"}"]
*("," DQUOTE %s"routes" DQUOTE ":" "["

route *("," route)
"]")
*("," DQUOTE %s"user-values" DQUOTE ":" "{"

user_item *("," user_item)
"}")

"}"

event = "{" label_clause
["," priority_clause]
["," event_config_clause]
["," aux_parent_event_clause]
*("," action_list_clause) "}"

default_policy_item =

COPYRIGHT ©2024 wolfSSL Inc. 25

3.5 Formal ABNF grammar 3 CONFIGURING WOLFSENTRY USING A JSON DOCUMENT

(DQUOTE %s"default-policy" DQUOTE ":" default_policy_value) /
(DQUOTE %s"default-event" DQUOTE ":" label)

default_policy_value = (%s"accept" / %s"reject" / %s"reset")

label_clause = DQUOTE %s"label" DQUOTE ":" label

priority_clause = DQUOTE %s"priority" DQUOTE ":" uint16

event_config_clause = DQUOTE %s"config" DQUOTE ":" event_config_list

aux_parent_event_clause = DQUOTE %s"aux-parent-event" DQUOTE ":" label

action_list_clause = DQUOTE (%s"post-actions" / %s"insert-actions" / %s"match-
actions"

/ %s"update-actions" / %s"delete-actions" / %s"decision-actions")
DQUOTE

":" action_list

action_list = "[" label *("," label) "]"

event_config_list = "{" event_config_item *("," event_config_item) "}"

top_config_list = "{" top_config_item *("," top_config_item) "}"

top_config_item = event_config_item / max_purgeable_routes_clause /
max_purgeable_idle_time_clause

event_config_item =
(DQUOTE %s"max-connection-count" DQUOTE ":" uint32) /
(DQUOTE %s"penalty-box-duration" DQUOTE ":" duration) /
(DQUOTE %s"route-idle-time-for-purge" DQUOTE ":" duration) /
(DQUOTE %s"derog-thresh-for-penalty-boxing" DQUOTE ":" uint16 /
(DQUOTE %s"derog-thresh-ignore-commendable" DQUOTE ":" boolean /
(DQUOTE %s"commendable-clears-derogatory" DQUOTE ":" boolean /
(DQUOTE (%s"route-flags-to-add-on-insert" / %s"route-flags-to-clear-on-

insert") DQUOTE ":" route_flag_list) /
(DQUOTE (%s"action-res-filter-bits-set" / %s"action-res-filter-bits-unset" /

%s"action-res-bits-to-add" / %s"action-res-bits-to-clear") DQUOTE ":"
action_res_flag_list)

duration = number_sint64 / (DQUOTE number_sint64 [%s"d" / %s"h" / %s"m" / %s"
s"] DQUOTE)

max_purgeable_routes_clause = DQUOTE %s"max-purgeable-routes" DQUOTE ":"
uint32

max_purgeable_idle_time_clause = DQUOTE %s"max-purgeable-idle-time" DQUOTE ":"
duration

route_flag_list = "[" route_flag *("," route_flag) "]"

action_res_flag_list = "[" action_res_flag *("," action_res_flag) "]"

COPYRIGHT ©2024 wolfSSL Inc. 26

3.5 Formal ABNF grammar 3 CONFIGURING WOLFSENTRY USING A JSON DOCUMENT

route = "{"
[parent_event_clause ","]
*(route_flag_clause ",")
[family_clause ","
[route_protocol_clause ","]

]
[route_remote_endpoint_clause ","]
[route_local_endpoint_clause ","]
-","

"}"

parent_event_clause = DQUOTE %s"parent-event" DQUOTE ":" label
route_flag_clause = route_flag ":" boolean
family_clause = DQUOTE %s"family" DQUOTE ":" address_family
route_protocol_clause = DQUOTE %s"protocol" DQUOTE ":" route_protocol

route_remote_endpoint_clause = DQUOTE %s"remote" DQUOTE ":" route_endpoint
route_local_endpoint_clause = DQUOTE %s"local" DQUOTE ":" route_endpoint

route_endpoint = "{"
[route_interface_clause ","]
[route_address_clause ","
[(route_address_prefix_bits_clause / route_address_bitmask_clause) ","

]
]
[route_port_clause ","]
-","

"}"

route_interface_clause = DQUOTE %s"interface" DQUOTE ":" uint8

route_address_clause = DQUOTE %s"address" DQUOTE ":" route_address

route_address_bitmask_clause = DQUOTE %s"bitmask" DQUOTE ":" route_address

route_address = DQUOTE (route_address_ipv4 / route_address_ipv6 /
route_address_mac / route_address_user) DQUOTE

route_address_ipv4 = uint8 3*3("." uint8)

route_address_ipv6 = < IPv6address from RFC 5954 section 4.1 >

route_address_mac = 1*2HEXDIG (5*5(":" 1*2HEXDIG) / 7*7(":" 1*2HEXDIG))

route_address_user = < an address in a form recognized by a parser
installed with `wolfsentry_addr_family_handler_install

()`
>

address_family = uint16 / address_family_name

address_family_name = DQUOTE ("inet" / "inet6" / "link" / < a value
recognized by wolfsentry_addr_family_pton() >) DQUOTE

COPYRIGHT ©2024 wolfSSL Inc. 27

3.5 Formal ABNF grammar 3 CONFIGURING WOLFSENTRY USING A JSON DOCUMENT

route_address_prefix_bits_clause = DQUOTE %s"prefix-bits" DQUOTE ":" uint16

route_protocol = uint16 / route_protocol_name

route_protocol_name = DQUOTE < a value recognized by getprotobyname_r(),
requiring address family inet or inet6 >

route_port_clause = DQUOTE %s"port" DQUOTE ":" endpoint_port

endpoint_port = uint16 / endpoint_port_name

endpoint_port_name = DQUOTE < a value recognized by getservbyname_r() for the
previously designated protocol > DQUOTE

route_flag = DQUOTE (
%s"af-wild" /
%s"raddr-wild" /
%s"rport-wild" /
%s"laddr-wild" /
%s"lport-wild" /
%s"riface-wild" /
%s"liface-wild" /
%s"tcplike-port-numbers" /
%s"direction-in" /
%s"direction-out" /
%s"penalty-boxed" /
%s"green-listed" /
%s"dont-count-hits" /
%s"dont-count-current-connections" /
%s"port-reset"

) DQUOTE

action_res_flag = DQUOTE (
%s"none" /
%s"accept" /
%s"reject" /
%s"connect" /
%s"disconnect" /
%s"derogatory" /
%s"commendable" /
%s"stop" /
%s"deallocated" /
%s"inserted" /
%s"error" /
%s"fallthrough" /
%s"update" /
%s"port-reset" /
%s"sending" /
%s"received" /
%s"binding" /
%s"listening" /
%s"stopped-listening" /
%s"connecting-out" /
%s"closed" /

COPYRIGHT ©2024 wolfSSL Inc. 28

3.5 Formal ABNF grammar 3 CONFIGURING WOLFSENTRY USING A JSON DOCUMENT

%s"unreachable" /
%s"sock-error" /
%s"user+0" /
%s"user+1" /
%s"user+2" /
%s"user+3" /
%s"user+4" /
%s"user+5" /
%s"user+6" /
%s"user+7"

) DQUOTE

user_item = label ":" (null / true / false / number_sint64_decimal /
number_float / string / strongly_typed_user_item)

strongly_typed_user_item =
("{" DQUOTE %s"uint" DQUOTE ":" number_uint64 "}") /
("{" DQUOTE %s"sint" DQUOTE ":" number_sint64 "}") /
("{" DQUOTE %s"float" DQUOTE ":" number_float "}") /
("{" DQUOTE %s"string" DQUOTE ":" string_value "}") /
("{" DQUOTE %s"base64" DQUOTE ":" base64_value "}") /
json_value_clause

json_value_clause = "{" DQUOTE %s"json" DQUOTE ":" json_value "}"

null = %s"null"

true = %s"true"

false = %s"false"

boolean = true / false

number_uint64 = < decimal number in the range 0...18446744073709551615 > /
(DQUOTE < hexadecimal number in the range 0x0...0

xffffffffffffffff > DQUOTE) /
(DQUOTE < octal number in the range

00...01777777777777777777777 > DQUOTE)

number_sint64_decimal = < decimal number in the range
-9223372036854775808...9223372036854775807 >

number_sint64 = number_sint64_decimal /
(DQUOTE < hexadecimal number in the range -0x8000000000000000

...0x7fffffffffffffff > DQUOTE) /
(DQUOTE < octal number in the range

-01000000000000000000000...0777777777777777777777 > DQUOTE
)

number_float = < floating point value in a form and range recognized by the
linked strtod() implementation >

string_value = DQUOTE < any RFC 8259 JSON-valid string that decodes to at most
16384 octets > DQUOTE

COPYRIGHT ©2024 wolfSSL Inc. 29

3.5 Formal ABNF grammar 3 CONFIGURING WOLFSENTRY USING A JSON DOCUMENT

base64_value = DQUOTE < any valid RFC 4648 base64 encoding that decodes to at
most 16384 octets > DQUOTE

json_value = < any valid, complete and balanced RFC 8259 JSON expression, with
keys limited to WOLFSENTRY_MAX_LABEL_BYTES (default 32 bytes),
overall input length limited to WOLFSENTRY_JSON_VALUE_MAX_BYTES
if set (default unset), and overall depth limited to
WOLFSENTRY_MAX_JSON_NESTING (default 16) including the 4 parent
levels

>

label = DQUOTE < any RFC 8259 JSON-valid string that decodes to at at least 1
and at most 32 octets > DQUOTE

uint32 = < decimal integral number in the range 0...4294967295 >

uint16 = < decimal integral number in the range 0...65535 >

uint8 = < decimal integral number in the range 0...255 >

COPYRIGHT ©2024 wolfSSL Inc. 30

5 WOLFSENTRY RELEASE 1.6.3 (JANUARY 22, 2025)

4 wolfSentry Release History and Change Log

5 wolfSentry Release 1.6.3 (January 22, 2025)

Release 1.6.3 of the wolfSentry embedded firewall/IDPS has enhancements, additions, and improve-
ments including:

5.1 New Features
Implemented default policy in decisions on lock failures, to better support hard deadline use cases.
The lwIP integrated firewall has been updated to leverage this change. Client code calling the dispatch
interfaces directly can now check action_results for disposition even on error returns.

5.2 Noteworthy Changes and Additions
Add wolfsentry_set_deadline_rel(), wolfsentry_get_deadline_rel(), and wolfsen-
try_get_deadline_rel_usecs(), to facilitate deployment to deadline-scheduled runtimes.
wolfsentry_get_deadline_rel*() can be used within implementations of computationally
expensive plugins to prevent overrun or limit it to an application-defined tolerance.
Added WOLFSENTRY_SUCCESS_ID_NO_DEADLINE, WOLFSENTRY_SUCCESS_ID_EXPIRED, and WOLF-
SENTRY_SUCCESS_ID_NO_WAITING, returned by wolfsentry_get_deadline_rel*().
Added wolfsentry_lock_shared2mutex_is_reserved().

5.3 Bug Fixes, Cleanups, and Debugging Aids
Added WOLFSENTRY_STACKBUF() to refactor on-stack flexible-element struct instances for additional
portability, clarity, and efficiency.
Numerous minor fixes for analyzer hygiene on LLVM 19 and 20, gcc-15, and cppcheck 2.16.

5.4 Self-Test Enhancements
Fixes for several leaks and missing error handling in unit tests.
Added new C23 and -D_FORTIFY_SOURCE=3 tests.

COPYRIGHT ©2024 wolfSSL Inc. 31

6 WOLFSENTRY RELEASE 1.6.2 (JANUARY 2, 2024)

6 wolfSentry Release 1.6.2 (January 2, 2024)

Release 1.6.2 of the wolfSentry embedded firewall/IDPS has enhancements, additions, and improve-
ments including:

6.1 Noteworthy Changes and Additions
In scripts and Makefile, interpreters (bash and awk) now follow search PATH. Explicit override paths to
bash and awk can be supplied by passing values for SHELL and AWK to make.
Change type of length argument to wolfsentry_action_res_assoc_by_name() to int, to allow it
to accept WOLFSENTRY_LENGTH_NULL_TERMINATED (negative number).
Makefile option STRIPPED has been split into STRIPPED and FUNCTION_SECTIONS, the latter directing
the compiler and linker to cull any unused object code (with function granularity) tominimize total size.

6.2 Bug Fixes, Cleanups, and Debugging Aids
In handle_route_endpoint_clause(), add casts to work around an implicit-promotion bug in gcc-
7.5.
In wolfsentry_route_table_max_purgeable_idle_time_get() and _set(), don’t use atomic
operations, as the context is already locked and the operand is an int64_t. This avoids an inadvertent
dependency on software __atomic_load_8() and __atomic_store_8() on 32 bit targets.
Various fixes for benign cppcheck reports (duplicateCondition, unsignedLessThanZero, un-
readVariable, invalidPrintfArgType_uint, invalidPrintfArgType_sint, shadowFunction,
constVariablePointer, preprocessorErrorDirective).

6.3 Self-Test Enhancements
Add replace_rule_transactionally(), now used in test_static_routes() for a thorough
workout.
Enhance freertos-arm32-build-test target to do two builds, one with and one without FUNC-
TION_SECTIONS, for more thorough coverage.
Intest_lwip() (tests/unittests.c), pass a trivial JSONconfig toactivate_wolfsentry_lwip(),
to avoid compiler optimizing away wolfsentry_config_json_oneshot() and its dependencies.
Split cppcheck-analyze recipe into cppcheck-library, cppcheck-force-library, cppcheck-extras, and
cppcheck-force-extras, with increased coverage. Only cppcheck-library and cppcheck-extras are
included in the “check-all” dependency list.

COPYRIGHT ©2024 wolfSSL Inc. 32

7 WOLFSENTRY RELEASE 1.6.1 (NOVEMBER 18, 2023)

7 wolfSentry Release 1.6.1 (November 18, 2023)

Release 1.6.1 of the wolfSentry embedded firewall/IDPS has enhancements, additions, and improve-
ments including:

7.1 New Features
Dynamic rules with nonzero connection counts are now subject to deferred expiration, to assure traffic
over established connections is allowed until all connections are closed, evenwith pauses in traffic flow
exceeding the max idle time configured for the rule.
When a rulewith a nonzero connection count is deleted, actual deletion is deferreduntil all connections
are closed or the "max-purgeable-idle-time" is reached (see below). New success code WOLF-
SENTRY_SUCCESS_ID_DEFERRED is returned in that case. If an identical rule is inserted before the
deferred deletion, the existing rule is unmarked for deletion and the insertion call returns another
new success code, WOLFSENTRY_SUCCESS_ID_ALREADY_OK.
A "max-purgeable-idle-time" JSON configuration option has been added, forcing expiration
and purge of a zombie dynamic rule even if its current connection count is nonzero. New related
APIs are also added: wolfsentry_route_table_max_purgeable_idle_time_get(), wolfsen-
try_route_table_max_purgeable_idle_time_set(), andwolfsentry_route_purge_time_set().

7.2 Noteworthy Changes and Additions
A new FILT_CLOSE_WAIT event type is added to the lwIP integration patch, and a corresponding
WOLFSENTRY_ACTION_RES_CLOSE_WAIT result bit is added. Appropriate callbacks are added to
lwIP tcp_process() and tcp_receive(), and the lwIP glue logic now handles mapping from
FILT_CLOSE_WAIT to WOLFSENTRY_ACTION_RES_CLOSE_WAIT.
The lwIP patch has been rebased on upstream 5e3268cf3e (Oct 14 2023), while maintaining compati-
bility with lwIP 2.1.3-RELEASE.

7.3 Bug Fixes, Cleanups, and Debugging Aids
The lwIP patch includes several fixes: * In tcp_process(), when handling passive close and entering
CLOSE_WAIT, don’t tcp_filter_dispatch_incoming(FILT_CLOSED, ...) – this happens later,
at deallocation. * Fix TCP FILT_CLOSED callbacks to assure accurate interface ID and local_port are
passed.
The route/rule system includes several fixes: * Add error checking to meta.connection_count
decrement in wolfsentry_route_event_dispatch_0(), so that rule churn can never result in
count underflow. * Mask out internal flags (via new macro WOLFSENTRY_ROUTE_INTERNAL_FLAGS)
from route_exports->flags in wolfsentry_route_init_by_exports(). * In wolfsen-
try_route_init_by_exports(), fix pointer math in memset() argument to correctly treat
route_exports->private_data_size as abyte count. * Inwolfsentry_route_new_by_exports(),
fix check onroute_exports->private_data_size to properly reflectconfig->route_private_data_padding.
* Add missing implementation of wolfsentry_route_insert_by_exports(). * In wolfsen-
try_route_clone(), fix allocation to useWOLFSENTRY_MEMALIGN_1()when.route_private_data_alignment
is nonzero. * In wolfsentry_route_event_dispatch_0(), don’t increment/decrement counts
when WOLFSENTRY_ACTION_RES_FALLTHROUGH.
In src/lwip/packet_filter_glue.c, add action_results and local.sa.interface to WOLF-
SENTRY_DEBUG_LWIPmessages, and addmissing gates for LWIP_IPV6 in WOLFSENTRY_DEBUG_LWIP
paths.

COPYRIGHT ©2024 wolfSSL Inc. 33

7.4 Self-Test Enhancements 7 WOLFSENTRY RELEASE 1.6.1 (NOVEMBER 18, 2023)

In tcp_filter_with_wolfsentry(), don’t set WOLFSENTRY_ROUTE_FLAG_DIRECTION_IN for
FILT_REMOTE_RESET, andfix typo “&event” in call towolfsentry_route_event_dispatch_with_inited_result().
Remove several incorrect calls to wolfsentry_table_ent_delete_by_id_1() immediately follow-
ing failed calls to wolfsentry_table_ent_insert() – the former is implicit to the latter.

7.4 Self-Test Enhancements
Add to test_json() a workout of connection_count and deferred deletion dynamics.
Makefile.analyzers: add sanitize-all-NO_POSIX_MEMALIGN-gcc; tweak notification-
demo-build-test to explicitly use the master branch of wolfssl.
Makefile,Makefile.analyzers: tweaks for MacOS X compatibility.

COPYRIGHT ©2024 wolfSSL Inc. 34

8 WOLFSENTRY RELEASE 1.6.0 (OCTOBER 24, 2023)

8 wolfSentry Release 1.6.0 (October 24, 2023)

Release 1.6.0 of the wolfSentry embedded firewall/IDPS has enhancements, additions, and improve-
ments including:

8.1 New Features
This release adds native support for the CANbus address family, and for bitmask-based addressmatch-
ing. CAN addresses and bitmasks are nowhandled in configuration JSON, as numbers in decimal, octal,
or hexadecimal, supporting both 11 bit (part A) and 29 bit (part B) identifiers.

8.2 Noteworthy Changes and Additions
wolfsentry/wolfsentry.h:

• AddWOLFSENTRY_ROUTE_FLAG_REMOTE_ADDR_BITMASK andWOLFSENTRY_ROUTE_FLAG_LOCAL_ADDR_BITMASK
to wolfsentry_route_flags_t.

• Add WOLFSENTRY_ACTION_RES_USER0-WOLFSENTRY_ACTION_RES_USER6 to wolfsen-
try_action_res_t enum, add WOLFSENTRY_ACTION_RES_USER7 macro, and refactor WOLF-
SENTRY_ACTION_RES_USER_BASE as a macro aliased to WOLFSENTRY_ACTION_RES_USER0.

• Remove !WOLFSENTRY_NO_STDIO gate around wolfsentry_kv_render_value().
wolfsentry/wolfsentry_settings.h:

• Rename WOLFSENTRY_NO_STDIO to WOLFSENTRY_NO_STDIO_STREAMS.
• Rename WOLFSENTRY_HAVE_NONGNU_ATOMICS to WOLFSENTRY_NO_GNU_ATOMICS.
• Addedhandling forWOLFSENTRY_NO_SEM_BUILTIN,WOLFSENTRY_NO_ADDR_BITMASK_MATCHING,
and WOLFSENTRY_NO_IPV6.

• Gate inclusion of stdio.h on !WOLFSENTRY_NO_STDIO_H, formerly !WOLFSENTRY_NO_STDIO.
• AddedWOLFSENTRY_CONFIG_FLAG_ADDR_BITMASKS, and renameWOLFSENTRY_CONFIG_FLAG_NO_STDIO
to WOLFSENTRY_CONFIG_FLAG_NO_STDIO_STREAMS.

src/addr_families.c and wolfsentry/wolfsentry_af.h: Split WOLFSENTRY_AF_LINK into
WOLFSENTRY_AF_LINK48 and WOLFSENTRY_AF_LINK64, with WOLFSENTRY_AF_LINK aliased to
WOLFSENTRY_AF_LINK48.
src/kv.c: remove !WOLFSENTRY_NO_STDIO gate around wolfsentry_kv_render_value().
src/json/load_config.c: In convert_sockaddr_address(), add separate handling for WOLF-
SENTRY_AF_LINK48 and WOLFSENTRY_AF_LINK64.
Makefile:

• Refactor NO_STDIO, NO_JSON, NO_JSON_DOM, SINGLETHREADED, STATIC, and STRIPPED to pivot
on definedness, not oneness.

• Add feature flags NO_ADDR_BITMASK_MATCHING and NO_IPV6.
• Rename feature flag NO_STDIO to NO_STDIO_STREAMS.

8.3 Performance Improvements
src/routes.c: Added AF-mismatch optimization to wolfsentry_route_lookup_0().

8.4 Documentation
Add inline documentation for WOLFSENTRY_NO_GETPROTOBY, WOLFSENTRY_SEMAPHORE_INCLUDE,
WOLFSENTRY_THREAD_INCLUDE,WOLFSENTRY_THREAD_ID_T, andWOLFSENTRY_THREAD_GET_ID_HANDLER.

COPYRIGHT ©2024 wolfSSL Inc. 35

8.5 Bug Fixes and Cleanups 8 WOLFSENTRY RELEASE 1.6.0 (OCTOBER 24, 2023)

doc/json_configuration.md: add documentation and ABNF grammar for "bitmask" node in
route endpoints.

8.5 Bug Fixes and Cleanups
Fixes for user settings file handling:

• Don’t#include <wolfsentry/wolfsentry_options.h> if defined(WOLFSENTRY_USER_SETTINGS_FILE).
• Generate and install wolfsentry/wolfsentry_options.h only if USER_SETTINGS_FILE is un-
defined, and if USER_SETTINGS_FILE is defined, depend on it where previously the dependency
was unconditionally on wolfsentry/wolfsentry_options.h.

• If USER_SETTINGS_FILE is set search it to derive JSON build settings.
Makefile: Don’t add -pthread to LDFLAGS if RUNTIME is FreeRTOS-lwIP.
wolfsentry/wolfsentry_settings.h:

• Eliminate inclusion of errno.h – now included only in source files that need it.
• Fix handling for WOLFSENTRY_SEMAPHORE_INCLUDE to give it effect in all code paths (previously
ignored in POSIX and FreeRTOS paths).

src/routes.c:
• in wolfsentry_route_event_dispatch_0(), move update of meta.purge_after inside the
mutex.

• inwolfsentry_route_get_metadata(), conditionalize use of 64 bitWOLFSENTRY_ATOMIC_LOAD()
on pointer size, to avoid dependency on library implementation of __atomic_load_8().

src/wolfsentry_internal.c: fix use-after-free bug in wolfsentry_table_free_ents(), using
new table->coupled_ent_fnmechanism.
src/json/load_config.c: In convert_sockaddr_address(), handle sa->addr_len consis-
tently – don’t overwrite nonzero values.
src/json/{centijson_dom.c,centijson_sax.c,centijson_value.c}: eliminate direct calls to
heap allocator functions in WOLFSENTRY code paths, i.e. use only wolfsentry_allocator.
src/json/centijson_value.c: fix uninited-variable defect oncmp injson_value_dict_get_or_add_().

8.6 Self-Test Enhancements
Makefile.analyzers new and enhanced test targets:

• user-settings-build-test: construct a user settings file, then build and self-test using it.
• library-dependency-singlethreaded-build-test andlibrary-dependency-multithreaded-
build-test: comprehensive check for unexpected unresolved symbols in the library.

• no-addr-bitmask-matching-test, no-ipv6-test, linux-lwip-test-no-ipv6: tests for
new feature gates.

• freertos-arm32-build-test: newly refactored to perform a final link of test_lwip kernel
using lwIP and FreeRTOS kernel files and newlib-nano, followed by a check on the size of the
kernel.

Added wolfsentry/wolfssl_test.h, containing self-test and example logic relocated from wolf-
ssl/wolfssl/test.h verbatim.
tests/test-config*.json: added several bitmask-matched routes, added several diagnostic
events ("set-user-0" through "set-user-4"), and added no-bitmasks and no-ipv6 variants. Also
removed AF-wildcard route from tests/test-config-numeric.json to increase test coverage.
tests/unittests.c:

COPYRIGHT ©2024 wolfSSL Inc. 36

8.6 Self-Test Enhancements 8 WOLFSENTRY RELEASE 1.6.0 (OCTOBER 24, 2023)

• Additional tweaks for portability to 32 bit FreeRTOS
• Add FreeRTOS-specific implementations of test_lwip() and main().
• In test_json(), add wolfsentry_addr_family_handler_install(...,"my_AF2",...).
• In test_json(), add bitmask tests.
• Added stub implementations for various FreeRTOS/newlib dependencies to support final link in
freertos-arm32-build-test target.

COPYRIGHT ©2024 wolfSSL Inc. 37

9 WOLFSENTRY RELEASE 1.5.0 (SEPTEMBER 13, 2023)

9 wolfSentry Release 1.5.0 (September 13, 2023)

Release 1.5.0 of the wolfSentry embedded firewall/IDPS has enhancements, additions, and improve-
ments including:

9.1 Noteworthy Changes and Additions
In JSON configuration, recognize "events" as equivalent to legacy "events-insert", and "routes"
as equivalent to legacy "static-routes-insert". Legacy keys will continue to be recognized.
In the Makefile, FREERTOS_TOP and LWIP_TOP now refer to actual distribution top – previously,
FREERTOS_TOP expected a path to the FreeRTOS/Source subdirectory, and LWIP_TOP expected a
path to the src subdirectory.
Addedpublic functionswolfsentry_route_default_policy_set() andwolfsentry_route_default_policy_get(),
implicitly accessing the main route table.
Added public functions wolfsentry_get_object_type() and wolfsentry_object_release(),
companions to existing wolfsentry_object_checkout() and wolfsentry_get_object_id().
Added wolfsentry_lock_size() to facilitate caller-allocated wolfsentry_rwlocks.
WOLFSENTRY_CONTEXT_ARGS_OUT is now thefirst argument to utility routineswolfsentry_object_checkout(),
wolfsentry_defaultconfig_get(), and wolfsentry_defaultconfig_update(), rather than a
bare wolfsentry context pointer.
ports/Linux-lwIP/include/lwipopts.h: Add core locking code.
Removed unneeded routine wolfsentry_config_json_set_default_config().
Improved wolfsentry_kv_render_value() to use json_dump_string() for _KV_STRING render-
ing, if available, to get JSON-style escapes in output.
Implemented support for user-supplied semaphore callbacks.

9.2 Performance Improvements
The critical paths for traffic evaluation have been streamlined by eliminating ephemeral heap alloca-
tions, eliminating redundant internal initializations, adding early shortcircuit paths to avoid frivolous
processing, and eliminating redundant time lookups and context locking. This results in a 33%-49% re-
duction in cycles per wolfsentry_route_event_dispatch() on benchmark-test, and a 29%-61%
reduction on benchmark-singlethreaded-test, at under 100 cycles for a simple default-policy sce-
nario on a 64 bit target.

9.3 Documentation
Added doc/freertos-lwip-app.md, “Building and InitializingwolfSentry for an application on FreeR-
TOS/lwIP”.
Added doc/json_configuration.md, “Configuring wolfSentry using a JSON document”.
Doxygen-based annotations are now included in all wolfSentry header files, covering all functions,
macros, types, enums, and structures.
The PDF version of the reference manual is now included in the repository and releases at doc/wolf-
Sentry_refman.pdf.
The Makefile now has targets doc-html, doc-pdf, and related targets for generating and cleaning
the documentation artifacts.

COPYRIGHT ©2024 wolfSSL Inc. 38

9.4 Bug Fixes and Cleanups 9 WOLFSENTRY RELEASE 1.5.0 (SEPTEMBER 13, 2023)

9.4 Bug Fixes and Cleanups
lwip/LWIP_PACKET_FILTER_API.patch has fixes for -Wconversion and -Wshadow warnings.
src/json/centijson_sax.c: Fix bug in json_dump_double() such that floating point numbers
were rendered with an extra decimal place.
In wolfsentry_config_json_init_ex(), error if json_config.max_key_len is greater than
WOLFSENTRY_MAX_LABEL_BYTES (required for memory safety).
In wolfsentry_config_json_init_ex(), call wolfsentry_defaultconfig_get() to initialize
jps->default_config with settings previously passed to wolfsentry_init().
src/kv.c: Fixed _KV_STRING and _KV_BYTES cases in wolfsentry_kv_value_eq_1() (inadver-
tently inverted memcmp()), and fixed _KV_NONE case to return true.
Fixedwolfsentry_kv_render_value() for_KV_JSON case to passJSON_DOM_DUMP_PREFERDICTORDER
to json_dom_dump().
src/lwip/packet_filter_glue.c: In wolfsentry_install_lwip_filter_callbacks(), if er-
ror encountered, disable all callbacks to assure known state on return.
In wolfsentry_init_ex(), correctly convert user-supplied route_idle_time_for_purge from
seconds to wolfsentry_time_t.
Pass route_table->default_event to wolfsentry_route_event_dispatch_0() if caller-
supplied trigger event is null (changed in wolfsentry_route_event_dispatch_1(), wolfsen-
try_route_event_dispatch_by_id_1(), andwolfsentry_route_event_dispatch_by_route_1()).
Inwolfsentry_route_lookup_0(), fixed scopingof WOLFSENTRY_ACTION_RES_EXCLUDE_REJECT_ROUTES
to only checkWOLFSENTRY_ROUTE_FLAG_PENALTYBOXED, notWOLFSENTRY_ROUTE_FLAG_PORT_RESET.
In wolfsentry_route_delete_0(), properly set WOLFSENTRY_ROUTE_FLAG_PENDING_DELETE.
In wolfsentry_route_event_dispatch_0() and wolfsentry_route_event_dispatch_1(),
properly set WOLFSENTRY_ACTION_RES_ERROR at end if ret < 0.
Inwolfsentry_route_event_dispatch_1(), properly setWOLFSENTRY_ACTION_RES_FALLTHROUGH
when route_table->default_policy is used.
Added missing action_results reset to wolfsentry_route_delete_for_filter().
In wolfsentry_lock_init(), properly forbid all inapplicable flags.
Fixed wolfsentry_eventconfig_update_1() to copy over all relevant elements.
Fixed and updated expression for WOLFSENTRY_USER_DEFINED_TYPES.

9.5 Self-Test Enhancements
Makefile.analyzers: Added targets test_lwip, minimal-threaded-build-test, pahole-
test, route-holes-test, benchmark-test, benchmark-singlethreaded-test, and doc-
check.
Implemented tripwires in benchmark-test and benchmark-singlethreaded-test for unexpect-
edly high cycles/call.
Enlarged coverage of target notification-demo-build-test to run the applications and check for
expected and unexpected output.
tests/unittests.c:

• Add test_lwip() with associated helper functions;
• AddWOLFSENTRY_UNITTEST_BENCHMARKS sections intest_static_routes() andtest_json();

COPYRIGHT ©2024 wolfSSL Inc. 39

9.5 Self-Test Enhancements 9 WOLFSENTRY RELEASE 1.5.0 (SEPTEMBER 13, 2023)

• Add to test_init() tests of wolfsentry_errcode_source_string() and wolfsen-
try_errcode_error_string();

• Add to test_static_routes() tests of wolfsentry_route_default_policy_set()
and wolfsentry_get_object_type(), wolfsentry_object_checkout(), and wolfsen-
try_object_release().

COPYRIGHT ©2024 wolfSSL Inc. 40

10 WOLFSENTRY RELEASE 1.4.1 (JULY 20, 2023)

10 wolfSentry Release 1.4.1 (July 20, 2023)

Release 1.4.1 of the wolfSentry embedded firewall/IDPS has bug fixes including:

10.1 Bug Fixes and Cleanups
Add inline implementations of WOLFSENTRY_ERROR_DECODE_{ERROR_CODE,SOURCE_ID,LINE_NUMBER}()
for portable protection frommultiple argument evaluation, and refactorWOLFSENTRY_ERROR_ENCODE()
and WOLFSENTRY_SUCCESS_ENCODE() to avoid unnecessary dependence on non-portable (gnu-
specific) construct.
Use a local stack variable in WOLFSENTRY_ERROR_ENCODE_1() to assure a single evaluation of the
argument.
Add -Wno-inline to CALL_TRACE CFLAGS.
Correct the release date of 1.4.0 in ChangeLog.

10.2 Self-Test Enhancements
Add CALL_TRACE-test to Makefile.analyzers, and include it in the check-extra dep list.

COPYRIGHT ©2024 wolfSSL Inc. 41

11 WOLFSENTRY RELEASE 1.4.0 (JULY 19, 2023)

11 wolfSentry Release 1.4.0 (July 19, 2023)

Release 1.4.0 of the wolfSentry embedded firewall/IDPS has bug fixes and improvements including:

11.1 New Features
Routes can now be configured to match traffic with designated action_results bit constraints, and
can be configured to update action_results bits, by inserting the route with a parent event that
has the desired configuration. Parent events can now also be configured to add or clear route flags
for all routes inserted with that parent event.
Added new aux_eventmechanism to facilitate distinct configurations for a static generator route and
the narrower ephemeral routes dynamically created when it is matched.
Added a new built-in action, "%track-peer-v1", that can be used in combination with the above new
facilities to dynamically spawn ephemeral routes, allowing for automatic pinhole routes, automatic
adversary tracking, and easy implementation of dynamic blocks and/or notifications for port scanning
adversaries.

11.2 Noteworthy Changes and Additions
AddednewAPIswolfsentry_event_set_aux_event() andwolfsentry_event_get_aux_event().
Added flag filters and controls to struct wolfsentry_eventconfig, and added corresponding
clauses to JSON "config" sections:

• .action_res_filter_bits_set, “action-res-filter-bits-set”
• .action_res_filter_bits_unset, "action-res-filter-bits-unset"
• .action_res_bits_to_add, "action-res-bits-to-add"
• .action_res_bits_to_clear, "action-res-bits-to-clear"
• .route_flags_to_add_on_insert, "route-flags-to-add-on-insert"
• .route_flags_to_clear_on_insert, "route-flags-to-clear-on-insert"

Added new WOLFSENTRY_ACTION_RES_* (action result) flags to support filtering matches by generic
traffic type:

• WOLFSENTRY_ACTION_RES_SENDING
• WOLFSENTRY_ACTION_RES_RECEIVED
• WOLFSENTRY_ACTION_RES_BINDING
• WOLFSENTRY_ACTION_RES_LISTENING
• WOLFSENTRY_ACTION_RES_STOPPED_LISTENING
• WOLFSENTRY_ACTION_RES_CONNECTING_OUT
• WOLFSENTRY_ACTION_RES_CLOSED
• WOLFSENTRY_ACTION_RES_UNREACHABLE
• WOLFSENTRY_ACTION_RES_SOCK_ERROR

These flags are now passed by the lwIP integration code in src/lwip/packet_filter_glue.c. De-
tailed descriptions of these and other _ACTION_RES_ bits are in wolfsentry/wolfsentry.h.
Added wolfsentry_addr_family_max_addr_bits(), to allow programmatic determination of
whether a given address is a prefix or fully specified.
Added a family of functions to let routes be inserted directly from a prepared struct wolfsen-
try_route_exports, and related helper functions to prepare it:

• wolfsentry_route_insert_by_exports_into_table()
• wolfsentry_route_insert_by_exports()
• wolfsentry_route_insert_by_exports_into_table_and_check_out()

COPYRIGHT ©2024 wolfSSL Inc. 42

11.3 Bug Fixes and Cleanups 11 WOLFSENTRY RELEASE 1.4.0 (JULY 19, 2023)

• wolfsentry_route_insert_by_exports_and_check_out()
• wolfsentry_route_reset_metadata_exports()

Added convenience accessor/validator functions for routes:
• wolfsentry_route_get_addrs()
• wolfsentry_route_check_flags_sensical()

Refactored the event action list implementation so that the various action lists (WOLFSENTRY_ACTION_TYPE_POST,
_INSERT, _MATCH, _UPDATE, _DELETE, and _DECISION) are represented directly in the struct wolf-
sentry_event, rather than througha “subevent”. The relatedAPIs (wolfsentry_event_action_prepend(),
wolfsentry_event_action_append(), wolfsentry_event_action_insert_after(), wolf-
sentry_event_action_delete(), wolfsentry_event_action_list_start()) each gain an
additional argument, which_action_list. The old JSON grammar is still supported via internal
emulation (still tested by test-config.json). The JSON configuration for the new facility is "post-
actions", "insert-actions", "match-actions", "update-actions", "delete-actions", and
"decision-actions", each optional, and each expecting an array of zero or more actions.
Added a restriction that user-defined action and event labels can’t start with “%”, and correspondingly,
all built-in actions and events have labels that start with “%”. This can be overridden by predefining
WOLFSENTRY_BUILTIN_LABEL_PREFIX in user settings.
Removed unused flag WOLFSENTRY_ACTION_RES_CONTINUE, as it was semantically redundant rela-
tive to WOLFSENTRY_ACTION_RES_STOP.
Removed flags WOLFSENTRY_ACTION_RES_INSERT and WOLFSENTRY_ACTION_RES_DELETE, as the
former is superseded by the new builtin action facility, and the latter will be implemented later with
another builtin action.
Added flag WOLFSENTRY_ACTION_RES_INSERTED, to indicate when a side-effect route insertion was
performed. This flag is now always set by the route insert routines when they succeed. Action plugins
must copy this flag as shown in the new wolfsentry_builtin_action_track_peer() to assure
proper internal accounting.
Reduced number of available user-defined _ACTION_RESULT_ bits from 16 to 8, to accommodate new
generic traffic bits (see above).
In struct wolfsentry_route_metadata_exports, changed .connection_count, .deroga-
tory_count, and .commendable_count, from wolfsentry_hitcount_t to uint16_t, to match
internal representations. Similarly, in struct wolfsentry_route_exports, changed .par-
ent_event_label_len from size_t to int to match label_len arg type.
Added wolfsentry_table_ent_get_by_id() to the public API.
Renamedpublic APIwolfsentry_action_res_decode() aswolfsentry_action_res_assoc_by_flag()
for clarity and consistency.

11.3 Bug Fixes and Cleanups
Consistently set the WOLFSENTRY_ACTION_RES_FALLTHROUGH flag in action_results when
dispatch classification (_ACCEPT/_REJECT) was by fallthrough policy.
Refactored internal code to avoid function pointer casts, previously used to allow implementations
with struct pointers where a handler pointer has a type that expects void *. The refactored code has
shim implementations with fully conformant signatures, that cast the arguments to pass them to the
actual implementations. This works around over-eager analysis by the clang UB sanitizer.
Fix missing default cases in non-enum switch() constructs.

COPYRIGHT ©2024 wolfSSL Inc. 43

11.4 Self-Test Enhancements 11 WOLFSENTRY RELEASE 1.4.0 (JULY 19, 2023)

11.4 Self-Test Enhancements
Added new clauses to test-config*.json for wolfsentry_builtin_action_track_peer()
(events “ephemeral-pinhole-parent”, “pinhole-generator-parent”, “ephemeral-port-scanner-parent”,
“port-scanner-generator-parent”, and related routes), and added full dynamic workout for them to
test_json().
Add unit test coverage:

• wolfsentry_event_set_aux_event()
• wolfsentry_event_get_aux_event()
• wolfsentry_event_get_label()
• wolfsentry_addr_family_max_addr_bits()

COPYRIGHT ©2024 wolfSSL Inc. 44

12 WOLFSENTRY RELEASE 1.3.1 (JULY 5, 2023)

12 wolfSentry Release 1.3.1 (July 5, 2023)

Release 1.3.1 of the wolfSentry embedded firewall/IDPS has bug fixes and improvements including:

12.1 Bug Fixes and Cleanups
Updated lwIP patches to fix packet_filter_event_t checking on short-enum targets.
Fixed copying of route table header fields (table config) when cloning or rebuilding (preserve default
policy etc when loading with WOLFSENTRY_CONFIG_LOAD_FLAG_LOAD_THEN_COMMIT | WOLFSEN-
TRY_CONFIG_LOAD_FLAG_NO_FLUSH or WOLFSENTRY_CONFIG_LOAD_FLAG_FLUSH_ONLY_ROUTES).
Implemented proper locking in wolfsentry_route_get_reference(), and corresponding lock as-
sertion in wolfsentry_table_cursor_init().
Fixed logic in address matching to properly match zero-length addresses when peforming subnet
matching, even if the corresponding _ADDR_WILDCARD flag bit is clear.

12.2 Self-Test Enhancements
Makefile.analyzers: add -fshort-enums variants to sanitize-all and sanitize-all-gcc
recipes, and add short-enums-test recipe.
Added wolfsentry_route_event_dispatch() cases to test_json().
Added unit test coverage to confirm correct copying of route table header fields when cloning.

COPYRIGHT ©2024 wolfSSL Inc. 45

13 WOLFSENTRY RELEASE 1.3 (MAY 19, 2023)

13 wolfSentry Release 1.3 (May 19, 2023)

Release 1.3 of the wolfSentry embedded firewall/IDPS has bug fixes and improvements including:

13.1 New Features
13.1.1 Route dump to JSON

The route (rule) table can now be dumped in conformant JSON format to a byte stream, using wolfSen-
try intrinsics (no stdio dependencies), and subsequently reloaded.

• wolfsentry_route_table_dump_json_start(), _next(), _end()
• Byte streams using new WOLFSENTRY_BYTE_STREAM_*()macros, with stack and heap options.
• Retryable rendering on _BUFFER_TOO_SMALL error, by flushing the byte stream, calling WOLF-
SENTRY_BYTE_STREAM_RESET(), and retrying thewolfsentry_route_table_dump_json_*()
call.

• New flag WOLFSENTRY_CONFIG_LOAD_FLAG_FLUSH_ONLY_ROUTES, to allow reloads that leave
all event and key-value configuration intact, and only replace the routes.

13.2 Bug Fixes and Cleanups
• Non-threadsafe get{proto,serv}by{name.number}() calls (already configuration-gated)
have been replaced by their _r() counterparts, and gated on compatible glibc.

• Fixed an underread bug in convert_hex_byte() that affected parsing of MAC addresses.

13.3 Self-Test Enhancements
• Added __wolfsentry_wur to WOLFSENTRY_LOCAL.
• Added new clauses in test_json() to verify bitwise idempotency of route table export-ingest
cycles to/from JSON.

• Added new target notification-demo-build-test.

COPYRIGHT ©2024 wolfSSL Inc. 46

14 WOLFSENTRY RELEASE 1.2.2 (MAY 4, 2023)

14 wolfSentry Release 1.2.2 (May 4, 2023)

Release 1.2.2 of the wolfSentry embedded firewall/IDPS has bug fixes and improvements including:

14.1 Noteworthy Changes and Additions
Added C89 pedantic compatibility in core codebase, including unit tests, via -DWOLFSENTRY_C89.
Added error code IO_FAILED, returned for various stdio failures that previously returned
SYS_OP_FAILED or went undetected.
Refined wolfsentry_lock_unlock() so that final unlock while holding a promotion reservation is
not an error and implicitly drops the reservation.

14.2 Bug Fixes and Cleanups
Cleanups guided by clang-tidy and cppcheck: fixed a misused retval from posix_memalign(),
fixed overwritten retvals in wolfsentry_lock_unlock(), and effected myriad cleanups to improve
clarity and portability.
Fixed missing assignment of new->prev in wolfsentry_table_clone().
Fixed routemetadata coherency in transactional configurationupdates: addwolfsentry_route_copy_metadata(),
and call it from wolfsentry_context_exchange().
When wolfsentry_route_event_dispatch*() results in a default policy fallback, return
USED_FALLBACK success code.
Properly release lock promotion reservation in wolfsentry_config_json_init_ex() if obtained.
Fixed several accounting bugs in the lock kernel related to promotion reservations.
Copy fallthrough_route pointer in wolfsentry_route_table_clone_header(), rather than im-
properly trying to clone the fallthrough route.

14.3 Self-Test Enhancements
Added new global compiler warnings to Makefile:

• -Wmissing-prototypes
• -Wdeclaration-after-statement
• -Wnested-externs
• -Wlogical-not-parentheses
• -Wpacked-not-aligned

Added new targets to Makefile.analyzers:
• clang-tidy-build-test
• cppcheck-analyze
• c89-test
• m32-c89-test
• freertos-arm32-c89-build-test
• freertos-arm32-singlethreaded-build-test
• sanitize-aarch64-be-test
• sanitize-all-no-inline-gcc
• no-inline-test
• no-alloca-test
• release-check

COPYRIGHT ©2024 wolfSSL Inc. 47

14.3 Self-Test Enhancements 14 WOLFSENTRY RELEASE 1.2.2 (MAY 4, 2023)

Added WOLFSENTRY_CONFIG_LOAD_FLAG_NO_FLUSH coverage and an array of should-fail JSON ob-
jects to unittests.c:test_json().
Added more arg-not-null and thread-inited checks to thread/lock routines in src/wolfsen-
try_util.c, and corresponding unit test coverage for all null/uninited arg permutations.
Added assert in release recipe to assure that wolfsentry.h has a version that matches the tagged ver-
sion.

COPYRIGHT ©2024 wolfSSL Inc. 48

15 WOLFSENTRY RELEASE 1.2.1 (APR 5, 2023)

15 wolfSentry Release 1.2.1 (Apr 5, 2023)

Release 1.2.1 of the wolfSentry embedded firewall/IDPS has bug fixes and improvements including:

15.1 Noteworthy Changes and Additions
Added API wolfsentry_route_render_flags(), now used in wolfsentry_route_render() and
wolfsentry_route_exports_render().
Refactored wolfsentry_route_lookup_0() to consistently return the highest-priority matching
route, breaking ties using compare_match_exactness().
Added DEBUG_ROUTE_LOOKUP code paths in wolfsentry_route_lookup_0(), for verbose trou-
bleshooting of configurations and internal logic.
Added to convert_hex_byte() (and therefore toMAC address parsing) tolerance for single-hex-digit
byte values, as in a:b:c:1:2:3.

15.2 Bug Fixes
Removed several inappropriate wildcard flags on queries in lwIP event handlers, particularly
_SA_LOCAL_PORT_WILDCARD for FILT_PORT_UNREACHABLE and *_INTERFACE_WILDCARD for
FILT_BINDING/FILT_LISTENING/FILT_STOP_LISTENING and when event->netif is null.
Added nullness checks for laddr and raddr in lwIP event handlers, and if null, set all-zeros address.
Refactored wildcard handling in wolfsentry_route_init(), wolfsentry_route_new(), and
wolfsentry_route_insert_1(), to zero out wildcard fields at insert time, rather than at init time,
so that routes used as targets contain accurate information for compare_match_exactness(),
regardless of wildcard bits.
Fixed WOLFSENTRY_VERSION_* values, which were inadvertently swapped in release 1.2.0.

COPYRIGHT ©2024 wolfSSL Inc. 49

16 WOLFSENTRY RELEASE 1.2.0 (MAR 24, 2023)

16 wolfSentry Release 1.2.0 (Mar 24, 2023)

Production Release 1.2.0 of the wolfSentry embedded firewall/IDPS has bug fixes and improvements
including:

16.1 New Features
16.1.1 lwIP full firewall integration

WhenwolfSentry is built withmake options LWIP=1 LWIP_TOP=<path-to-lwIP-source>, the library
is built with new APIs wolfsentry_install_lwip_filter_ethernet_callback(), wolfsen-
try_install_lwip_filter_ip_callbacks(), wolfsentry_install_lwip_filter_icmp_callbacks(),
wolfsentry_install_lwip_filter_tcp_callback(), wolfsentry_install_lwip_filter_udp_callback(),
and the all-on-one wolfsentry_install_lwip_filter_callbacks(). For each layer/protocol,
a simple bitmask, of type packet_filter_event_mask_t, allows events to be selectively filtered,
with other traffic passed with negligible overhead. For example, TCP connection requests can be fully
evaluated by wolfSentry, while traffic within established TCP connections can pass freely.
wolfSentry LWIP=1 relies on a patchset to lwIP, gated on the macro LWIP_PACKET_FILTER_API,
that adds generic filter callback APIs to each layer and protocol. See lwip/README.md for details.
In addition toLWIP_DEBUG instrumentation, the new integration supportsWOLFSENTRY_DEBUG_PACKET_FILTER,
which renders the key attributes and outcome for all callout events.

16.2 Noteworthy Changes and Additions
Routes and default actions can now be annotated to return WOLFSENTRY_ACTION_RES_PORT_RESET
in their action_results. This is used in the new lwIP integration to control whether TCP reset and
ICMP port-unreachable packets are sent (versus dropping the rejected packet unacknowledged).
A new ports/ tree is added, and the former FreeRTOS/ tree is moved to ports/FreeRTOS-lwIP.
New helper macros are added for managing thread state: WOLFSENTRY_THREAD_HEADER_DECLS,
WOLFSENTRY_THREAD_HEADER_INIT(), WOLFSENTRY_THREAD_HEADER_INIT_CHECKED().
NewflagsWOLFSENTRY_ROUTE_FLAG_PORT_RESET andWOLFSENTRY_ACTION_RES_EXCLUDE_REJECT_ROUTES
to support firewall functionalities.

16.3 Bug Fixes
Wildcard matching in the routes/rules table now works correctly even for non-contiguous wildcard
matching.
struct wolfsentry_sockaddr now aligns its addr member to a 4 byte boundary, for safe casting
to (int *), using a new attr_align_to()macro.
The route lookup algorithm has been improved for correct results with non-contiguous wildcards, to
correctly break ties using the new compare_match_exactness(), and to correctly give priority to
routes with a matching event.
When matching target routes (e.g. with wolfsentry_route_event_dispatch()), ignore failure in
wolfsentry_event_get_reference() if WOLFSENTRY_ROUTE_FLAG_PARENT_EVENT_WILDCARD is
set in the flags.

COPYRIGHT ©2024 wolfSSL Inc. 50

17 WOLFSENTRY RELEASE 1.1.0 (FEB 23, 2023)

17 wolfSentry Release 1.1.0 (Feb 23, 2023)

Production Release 1.1.0 of the wolfSentry embedded firewall/IDPS has bug fixes and improvements
including:

17.1 New Features
Internal settings, types, alignments, constants, a complete set of internal shims, and Makefile clauses,
for portability to native FreeRTOS with threads on 32 bit gcc targets.

17.2 Noteworthy Changes and Additions
rwlock control contexts cannowbeallocated inside interrupt handlers, andWOLFSENTRY_LOCK_FLAG_RETAIN_SEMAPHORE
can be supplied to the new wolfsentry_context_lock_mutex_timed_ex(), allowing safe trylock
followed by automatic lock recursion.
API routines are now marked warn-unused-return by default, subject to user-defined override. This
new default warns on untrapped errors, to aid preventing undefined behavior.
API arguments previously accepting “long” ints for counts of seconds now expect time_t, for porta-
bility to ARM32 and FreeRTOS.
New unit test: test_json_corpus, for highly configurable bulk trial runs of the JSON processing
subsystem.
New tests in Makefile.analyzers: no-getprotoby-test, freertos-arm32-build-test.
A new guard macro, WOLFSENTRY_NO_GETPROTOBY, allows narrow elimination of dependencies on
getprotobyname() and getprotobynumber().
Recursive JSON DOM tree processing logic was refactored to greatly reduce stack burden.
Substantial enlargement of code coverage by unit tests, guided by gcov.
New conveniencemacros for typical threaded state trackingwrappers: WOLFSENTRY_THREAD_HEADER_CHECKED()
and WOLFSENTRY_THREAD_TAILER_CHECKED().

17.3 Bug Fixes
Cloning of user-defined deep JSON objects is now implemented, as needed for configuration load dry
runs and load-then-commit semantics.
JSON processing of UTF-8 surrogate pairs is now fixed.
Fixed retval testing in wolfsentry_action_list_{append,prepend,insert}_1(), and added
missing point_action lookup in wolfsentry_action_list_insert_after().
Fixed potential use-after-free defect in wolfsentry_event_delete().

COPYRIGHT ©2024 wolfSSL Inc. 51

18 WOLFSENTRY RELEASE 1.0.0 (JAN 18, 2023)

18 wolfSentry Release 1.0.0 (Jan 18, 2023)

Production Release 1.0.0 of the wolfSentry embedded firewall/IDPS has bug fixes and improvements
including:

18.1 Noteworthy Changes and Additions
• Makefile improvements around wolfsentry_options.h, and a new com-bundle rule.
• A newmacroWOLFSENTRY_USE_NONPOSIX_THREADS, separated fromWOLFSENTRY_USE_NONPOSIX_SEMAPHORES,
supporting mixed-model targets, e.g. Mac OS X.

18.2 Bug Fixes
• In examples/notification-demo/log_server/log_server.c, in main(), properly reset
transaction_successful at top of the accept loop.

COPYRIGHT ©2024 wolfSSL Inc. 52

19 WOLFSENTRY RELEASE 0.8.0 (JAN 6, 2023)

19 wolfSentry Release 0.8.0 (Jan 6, 2023)

Preview Release 0.8.0 of the wolfSentry embedded firewall/IDPS has bug fixes and new features in-
cluding:

19.1 New Features
19.1.1 Multithreaded application support

• Automatic locking on API entry, using a high performance, highly portable semaphore-based
readwrite lock facility, with error checking and opportunistic lock sharing.

• Thread-specific deadlines set by the caller, limiting waits for lock acquisition as needed for real-
time applications.

• A mechanism for per-thread private data, accessible to user plugins.
• No dependencies on platform-supplied thread-local storage.

19.2 Updated Examples
19.2.1 examples/notification-demo

• Add interrupt handling for clean error-checked shutdown in log_server.
• Add /kill-server admin command to log_server.
• Reduce penalty-box-duration in notify-config.{json,h} to 10s for demo convenience.

19.3 Noteworthy Changes and Additions
• A newfirst argument towolfsentry_init_ex() andwolfsentry_init(), caller_build_settings,
for runtime error-checking of application/library compatibility. This mechanism will also allow
future library changes to be conditionalized on caller version and/or configuration expectations
as needed, often avoiding the need for application recompilation.

• src/util.c was renamed to src/wolfsentry_util.c.
• wolfsentry/wolfsentry_settings.hwas added, containing setup code previously in wolf-
sentry/wolfsentry.h.

• Error IDs in enum wolfsentry_error_id are all now negative, and a new WOLFSEN-
TRY_SUCCESS_ID_* namespace was added, with positive values and supporting macros.

19.3.1 New public utility APIs, macros, types, etc.

• WOLFSENTRY_VERSION_*macros, for version testing
• wolfsentry_init_thread_context(), wolfsentry_alloc_thread_context(), wolf-
sentry_get_thread_id(), wolfsentry_get_thread_user_context(), wolfsen-
try_get_thread_deadline(), wolfsentry_get_thread_flags(), wolfsentry_destroy_thread_context(),
wolfsentry_free_thread_context(), wolfsentry_set_deadline_rel_usecs(), wolf-
sentry_set_deadline_abs(), wolfsentry_clear_deadline(), wolfsentry_set_thread_readonly(),
wolfsentry_set_thread_readwrite()

• WOLFSENTRY_DEADLINE_NEVER and WOLFSENTRY_DEADLINE_NOW, used internally and for test-
ing values returned by wolfsentry_get_thread_deadline()

• Many new values in the WOLFSENTRY_LOCK_FLAG_* set.

COPYRIGHT ©2024 wolfSSL Inc. 53

19.4 Bug Fixes 19 WOLFSENTRY RELEASE 0.8.0 (JAN 6, 2023)

• wolfsentry_lock_*()APIs nowfirmed, andnewwolfsentry_context_lock_shared_with_reservation_abstimed().
• WOLFSENTRY_CONTEXT_* helper macros.
• WOLFSENTRY_UNLOCK_*(), WOLFSENTRY_SHARED_*(), WOLFSENTRY_MUTEX_*(), and WOLF-
SENTRY_PROMOTABLE_*() helper macros

• WOLFSENTRY_ERROR_UNLOCK_AND_RETURN(), WOLFSENTRY_SUCCESS_UNLOCK_AND_RETURN(),
and related helper macros.

19.4 Bug Fixes
• Various fixes, and additional hardening and cleanup, in the readwrite lock kernel.
• Various fixes in Makefile, for proper handling and installation of wolfsentry_options.h.

COPYRIGHT ©2024 wolfSSL Inc. 54

20 WOLFSENTRY RELEASE 0.7.0 (NOV 7, 2022)

20 wolfSentry Release 0.7.0 (Nov 7, 2022)

Preview Release 0.7.0 of the wolfSentry embedded firewall/IDPS has bug fixes and new features in-
cluding:

20.1 New Features
20.1.1 Support for freeform user-defined JSON objects in the “user-values” (key-value pair) sec-

tion of the config package.

• Uses syntax "key" : { "json" : x } where x is any valid standalone JSON expression.
• Key length limited to WOLFSENTRY_MAX_LABEL_BYTES by default.
• String length limited to WOLFSENTRY_KV_MAX_VALUE_BYTES by default.
• JSON tree depth limited to WOLFSENTRY_MAX_JSON_NESTING by default.
• All default limits subject to caller runtime override using the json_config arg to the new APIs
wolfsentry_config_json_init_ex() and wolfsentry_config_json_oneshot_ex(), ac-
cepting a JSON_CONFIG * (accepted as const).

20.1.1.1 New APIs for JSON KVs
• wolfsentry_user_value_store_json()
• wolfsentry_user_value_get_json()
• WOLFSENTRY_KV_V_JSON()
• wolfsentry_config_json_init_ex()
• wolfsentry_config_json_oneshot_ex()

20.1.1.2 New config load flags controlling JSON KV parsing
• WOLFSENTRY_CONFIG_LOAD_FLAG_JSON_DOM_DUPKEY_ABORT
• WOLFSENTRY_CONFIG_LOAD_FLAG_JSON_DOM_DUPKEY_USEFIRST
• WOLFSENTRY_CONFIG_LOAD_FLAG_JSON_DOM_DUPKEY_USELAST
• WOLFSENTRY_CONFIG_LOAD_FLAG_JSON_DOM_MAINTAINDICTORDER

20.1.2 Support for setting a user KV as read-only.

• Read-only KVs can’t be deleted or overwritten without first setting them read-write.
• Mechanism can be used to protect user-configured data from dynamic changes by JSON config-
uration package – JSON cannot change or override the read-only bit.

20.1.2.1 KV mutability APIs:
• wolfsentry_user_value_set_mutability()
• wolfsentry_user_value_get_mutability()

20.2 Updated Examples
20.2.1 examples/notification-demo

• Update and clean up udp_to_dbus, and add --kv-string and --kv-int command line args
for runtime ad hoc config overrides.

COPYRIGHT ©2024 wolfSSL Inc. 55

20.3 Noteworthy Changes and Additions 20 WOLFSENTRY RELEASE 0.7.0 (NOV 7, 2022)

• Rename config node controlling the udp_to_dbus listen address from “notification-dest-addr”
to “notification-listen-addr”.

20.2.1.1 Added examples/notification-demo/log_server
• Toy embedded web server demonstrating HTTPS with dynamic insertion of limited-lifespan wolf-
Sentry rules blocking (penalty boxing) abusive peers.

• Demonstrates mutual authentication using TLS, and role-based authorizations pivoting on client
certificate issuer (certificate authority).

20.3 Noteworthy Changes and Additions
• JSON strings (natively UTF-8) are now consistently passed in and out with unsigned char point-
ers.

• wolfsentry_kv_render_value() now has a struct wolfsentry_context * as its first ar-
gument (necessitated by addition of freeform JSON rendering).

• Added new API routine wolfsentry_centijson_errcode_translate(), allowing conver-
sion of all CentiJSON return codes (e.g. from json_dom_parse(), json_value_path(),
and json_value_build_path()) from native CentiJSON to roughly-corresponding native
wolfSentry codes.

20.3.1 Cleanup of JSON DOM implementation

• Added json_ prefix to all JSON functions and types.
• CentiJSON now uses wolfSentry configured allocator for all heap operations.

20.3.2 New utility APIs

• wolfsentry_get_allocator()
• wolfsentry_get_timecbs()

20.4 Bug Fixes
• Fix error-path memory leak in JSON KV handling.
• Fix “echo: write error: Broken pipe” condition in recipe for rule “force”
• Various minor portability fixes.
• Enlarged scope for build-time pedantic warnings – now includes all of CentiJSON.

COPYRIGHT ©2024 wolfSSL Inc. 56

21 WOLFSENTRY RELEASE 0.6.0 (SEP 30, 2022)

21 wolfSentry Release 0.6.0 (Sep 30, 2022)

Preview Release 0.6.0 of the wolfSentry embedded firewall/IDPS has bug fixes and new features in-
cluding:

21.1 New Features
21.1.1 Core support for automatic penalty boxing, with configurable threshold when deroga-

tory count reaches threshold

21.1.1.1 New APIs for manipulating route derogatory/commendable counts from application/-
plugin code:

• wolfsentry_route_increment_derogatory_count()
• wolfsentry_route_increment_commendable_count()
• wolfsentry_route_reset_derogatory_count()
• wolfsentry_route_reset_commendable_count()

21.1.1.2 New JSON config nodes:
• derog-thresh-for-penalty-boxing
• derog-thresh-ignore-commendable
• commendable-clears-derogatory

21.1.1.3 Automatic purging of expired routes:
• constant time garbage collection
• wolfsentry_route_table_max_purgeable_routes_get()
• wolfsentry_route_table_max_purgeable_routes_set()
• wolfsentry_route_stale_purge_one()

21.2 Noteworthy Changes and Additions
• New API wolfsentry_route_insert_and_check_out(), allowing efficient update of route
state after insert; also related new API wolfsentry_object_checkout().

• NewAPIswolfsentry_route_event_dispatch_by_route() andwolfsentry_route_event_dispatch_by_route_with_inited_result(),
analogous to the _by_id() variants, but accepting a struct wolfsentry_route pointer directly.

• wolfsentry_route_init() and wolfsentry_route_new() now allow (and ignore) nonzero
supplied values in wildcarded wolfsentry_sockaddr members.

• New debugging aid, make CALL_TRACE=1, gives full call stack trace with codepoints and error
codes, to aid debugging of library, plugins, and configurations.

21.3 Bug Fixes
• src/internal.c: fix wrong constant of iteration in wolfsentry_table_ent_get_by_id().

COPYRIGHT ©2024 wolfSSL Inc. 57

22 WOLFSENTRY RELEASE 0.5.0 (AUG 1, 2022)

22 wolfSentry Release 0.5.0 (Aug 1, 2022)

Preview Release 0.5.0 of the wolfSentry embedded firewall/IDPS has bug fixes and new features in-
cluding:

22.1 New Example
22.1.0.1 examples/notification-demo Added examples/notification-demo, demonstrating plugin
actions, JSON event representation, and pop-up messages using the D-Bus notification facility and a
middleware translation daemon.

22.2 Noteworthy Changes
• Added new API wolfsentry_init_ex() with wolfsentry_init_flags_t argument.
• Added runtime error-checking on lock facility.

22.3 Bug Fixes
Fix missing assignment in wolfsentry_list_ent_insert_after().

COPYRIGHT ©2024 wolfSSL Inc. 58

23 WOLFSENTRY RELEASE 0.4.0 (MAY 27, 2022)

23 wolfSentry Release 0.4.0 (May 27, 2022)

Preview Release 0.4.0 of the wolfSentry embedded firewall/IDPS has bug fixes and new features in-
cluding:

23.1 New Features
• User-defined key-value pairs in JSON configuration: allows user plugins to access custom config
parameters in the wolfSentry config using the new wolfsentry_user_value_*() family of API
functions. Binary configuration data can be supplied in the configuration using base64 encoding,
and are decoded at parse time and directly available to user plugins in the original raw binary
form. The key-value facility also supports a custom validator callback to enforce constraints on
user-defined config params in the JSON.

• User-defined address families: allows user plugins for custom address families and formats, us-
ing new wolfsentry_addr_family_*() API routines. This allows idiomatic formats for non-
Internet addresses in the JSON config, useful for various buses and device namespaces.

• Formalization of the concepts of default events and fallthrough rules in the route tables.
• A new subevent action list facility to support logging and notifications around the final decisions
of the rule engine, alongside the existing subevents for rule insertions, matches, and deletions.

• Themain plugin interface (wolfsentry_action_callback_t) now passes two separate routes,
a “trigger_route” with full attributes of the instant traffic, and a “rule_route” that matches
that traffic. In dynamic rule scenarios, plugins can manipulate the passed rule_route and set
the WOLFSENTRY_ACTION_RES_INSERT bit in the to define a new rule that will match the traffic
thereafter. All actions in the chain retain readonly access to the unmodified trigger route for
informational purposes.

• The JSON DOM facility from CentiJSON is now included in the library by default (disabled bymake
NO_JSON_DOM=1), layered on the SAX facility used directly by the wolfSentry core to process the
JSON config package. The DOM facility can be used as a helper in user plugins and applications,
for convenient JSON parsing, random access, and production.

23.2 Noteworthy Changes
• In the JSON config, non-event-specific members of top level node “config-update” node have
been moved to the new top level node “default-policies”, which must appear after “event-insert”.
“default-policies” members are “default-policy-static”, “default-policy-dynamic”, “default-event-
static”, and “default-event-dynamic”.

23.3 Bug Fixes
• In wolfsentry_config_json_init(), properly copy the load_flags from the caller into the
_json_process_state.

• The JSON SAX API routines (wolfsentry/centijson_sax.h) are now properly exported.

COPYRIGHT ©2024 wolfSSL Inc. 59

24 WOLFSENTRY RELEASE 0.3.0 (DEC 30, 2021)

24 wolfSentry Release 0.3.0 (Dec 30, 2021)

Preview Release 0.3.0 of the wolfSentry embedded firewall/IDPS has bug fixes and new features in-
cluding:

24.1 New Ports and Examples
24.1.0.1 examples/Linux-LWIP This demo uses Linux-hosted LWIP in Docker containers to show
packet-level and connection-level filtering using wolfSentry. Filtering can be by MAC, IPv4, or IPv6
address. Demos include pre-accept TCP filtering, and filtering of ICMP packets.
See examples/Linux-LWIP/README.md for the installation and usage guide, and examples/Linux-
LWIP/echo-config.json for the associated wolfSentry configuration.

24.1.0.2 FreeRTOS with LWIP on STM32 This demo is similar to Linux-LWIP, but targets the STM32
ARM core and the STM32CubeMX or STM32CubeIDE toolchain, with a FreeRTOS+LWIP runtime. It
shows wolfSentry functionality in a fully embedded (bare metal) application.
See examples/STM32/README.md for the installation andusageguide, and examples/STM32/Src/sentry.c
for the compiled-in wolfSentry configuration.

24.2 New Features
• Autogeneration and inclusion of wolfsentry_options.h, synchronizing applications with wolf-
Sentry library options as built.

• New APIs wolfsentry_route_event_dispatch_[by_id]with_inited_result(), for easy
caller designation of known traffic attributes, e.g. WOLFSENTRY_ACTION_RES_CONNECT or WOLF-
SENTRY_ACTION_RES_DISCONNECT.

• Efficient support for aligned heap allocations on targets that don’t have a native aligned
allocation API: wolfsentry_free_aligned_cb_t, wolfsentry_allocator.free_aligned,
wolfsentry_builtin_free_aligned(), wolfsentry_free_aligned(), and WOLFSEN-
TRY_FREE_ALIGNED().

• Semaphore wrappers for FreeRTOS, for use by the wolfsentry_lock_*() shareable-
upgradeable lock facility.

24.3 Bug Fixes
• wolfsentry_route_event_dispatch_1(): don’t impose config.penaltybox_duration
on routes with route->meta.last_penaltybox_time == 0.

• trivial fixes for backward compat with gcc-5.4.0, re -Wconversion and -Winline.
Please send questions or comments to douzzer@wolfssl.com

COPYRIGHT ©2024 wolfSSL Inc. 60

	wolfSentry – The Wolfssl Embedded Firewall/IDPS
	Description
	Documentation
	Dependencies
	Building
	Build and Self-Test Examples

	Project Examples

	Building and Initializing wolfSentry for an application on FreeRTOS/lwIP
	Configuring wolfSentry using a JSON document
	JSON Basics
	JSON load flags
	Overview of JSON syntax
	Descriptions of elements
	Formal ABNF grammar

	wolfSentry Release History and Change Log
	wolfSentry Release 1.6.3 (January 22, 2025)
	New Features
	Noteworthy Changes and Additions
	Bug Fixes, Cleanups, and Debugging Aids
	Self-Test Enhancements

	wolfSentry Release 1.6.2 (January 2, 2024)
	Noteworthy Changes and Additions
	Bug Fixes, Cleanups, and Debugging Aids
	Self-Test Enhancements

	wolfSentry Release 1.6.1 (November 18, 2023)
	New Features
	Noteworthy Changes and Additions
	Bug Fixes, Cleanups, and Debugging Aids
	Self-Test Enhancements

	wolfSentry Release 1.6.0 (October 24, 2023)
	New Features
	Noteworthy Changes and Additions
	Performance Improvements
	Documentation
	Bug Fixes and Cleanups
	Self-Test Enhancements

	wolfSentry Release 1.5.0 (September 13, 2023)
	Noteworthy Changes and Additions
	Performance Improvements
	Documentation
	Bug Fixes and Cleanups
	Self-Test Enhancements

	wolfSentry Release 1.4.1 (July 20, 2023)
	Bug Fixes and Cleanups
	Self-Test Enhancements

	wolfSentry Release 1.4.0 (July 19, 2023)
	New Features
	Noteworthy Changes and Additions
	Bug Fixes and Cleanups
	Self-Test Enhancements

	wolfSentry Release 1.3.1 (July 5, 2023)
	Bug Fixes and Cleanups
	Self-Test Enhancements

	wolfSentry Release 1.3 (May 19, 2023)
	New Features
	Route dump to JSON

	Bug Fixes and Cleanups
	Self-Test Enhancements

	wolfSentry Release 1.2.2 (May 4, 2023)
	Noteworthy Changes and Additions
	Bug Fixes and Cleanups
	Self-Test Enhancements

	wolfSentry Release 1.2.1 (Apr 5, 2023)
	Noteworthy Changes and Additions
	Bug Fixes

	wolfSentry Release 1.2.0 (Mar 24, 2023)
	New Features
	lwIP full firewall integration

	Noteworthy Changes and Additions
	Bug Fixes

	wolfSentry Release 1.1.0 (Feb 23, 2023)
	New Features
	Noteworthy Changes and Additions
	Bug Fixes

	wolfSentry Release 1.0.0 (Jan 18, 2023)
	Noteworthy Changes and Additions
	Bug Fixes

	wolfSentry Release 0.8.0 (Jan 6, 2023)
	New Features
	Multithreaded application support

	Updated Examples
	examples/notification-demo

	Noteworthy Changes and Additions
	New public utility APIs, macros, types, etc.

	Bug Fixes

	wolfSentry Release 0.7.0 (Nov 7, 2022)
	New Features
	Support for freeform user-defined JSON objects in the ``user-values'' (key-value pair) section of the config package.
	Support for setting a user KV as read-only.

	Updated Examples
	examples/notification-demo

	Noteworthy Changes and Additions
	Cleanup of JSON DOM implementation
	New utility APIs

	Bug Fixes

	wolfSentry Release 0.6.0 (Sep 30, 2022)
	New Features
	Core support for automatic penalty boxing, with configurable threshold when derogatory count reaches threshold

	Noteworthy Changes and Additions
	Bug Fixes

	wolfSentry Release 0.5.0 (Aug 1, 2022)
	New Example
	Noteworthy Changes
	Bug Fixes

	wolfSentry Release 0.4.0 (May 27, 2022)
	New Features
	Noteworthy Changes
	Bug Fixes

	wolfSentry Release 0.3.0 (Dec 30, 2021)
	New Ports and Examples
	New Features
	Bug Fixes

