
wolfProvider Documentation

2026-01-19

1

CONTENTS CONTENTS

Contents

1 Introduction 4

2 OpenSSL Version Compatability 5

3 Building wolfProvider 6
3.1 Getting wolfProvider Source Code . 6
3.2 wolfProvider Package Structure . 6
3.3 Building on *nix . 6

3.3.1 Building OpenSSL . 6
3.3.2 Building wolfSSL . 7
3.3.3 Building wolfProvider . 8

3.4 Building on WinCE . 9
3.5 Build Options (./configure Options) . 9
3.6 Build Defines . 10

4 FIPS 140-3 Support 12

5 Logging 13
5.1 Controlling Logging Levels . 13
5.2 Controlling Component Logging . 13
5.3 Setting a Custom Logging Callback . 14

6 Portability 16
6.1 Threading . 16
6.2 Dynamic Memory Usage . 16
6.3 Logging . 16

7 Loading wolfProvider 17
7.1 Configuring OpenSSL to Enable Provider Usage . 17
7.2 Loading wolfProvider from an OpenSSL Configuration File 17
7.3 wolfProvider Static Entrypoint . 18

8 wolfProvider Design 19
8.1 wolfProvider Entry Points . 20
8.2 wolfProvider Dispatch Table Functions . 21

8.2.1 wolfprov_teardown . 21
8.2.2 wolfprov_gettable_params . 21
8.2.3 wolfprov_get_params . 21
8.2.4 wolfssl_prov_get_capabilities . 21
8.2.5 wolfprov_query . 22

9 Notes on Open Source Integration 23
9.1 Tested Open Source Projects . 23

9.1.1 Network and Web Technologies . 23
9.1.2 Security and Authentication . 23
9.1.3 System and Network Tools . 23
9.1.4 Directory and Identity Services . 23
9.1.5 Cryptography and PKI . 23
9.1.6 Development and Testing . 24
9.1.7 Remote Access and Display . 24
9.1.8 Other Utilities . 24

9.2 General Setup . 24
9.3 Testing and Validation . 25

COPYRIGHT ©2024 wolfSSL Inc. 2

CONTENTS CONTENTS

10 Support and OpenSSL Version Adding 26

COPYRIGHT ©2024 wolfSSL Inc. 3

1 INTRODUCTION

1 Introduction

The wolfCrypt Provider (wolfProvider) is an OpenSSL provider for the wolfCrypt and wolfCrypt FIPS
cryptography libraries. wolfProvider provides an OpenSSL provider implementation, as a shared or
static library, to allow applications currently using OpenSSL to leverage wolfCrypt cryptography for
FIPS and non-FIPS use cases.
wolfProvider is structured as a separate standalone library which links against wolfSSL (libwolfssl) and
OpenSSL. wolfProvider implements and exposes anOpenSSL provider implementationwhich wraps
the wolfCrypt native API internally. A high-level diagram of wolfProvider and how it relates to applica-
tions and OpenSSL is displayed below in Figure 1.
For more details on the design and architecture of wolfProvider see the wolfProvider Design chapter.

Figure 1: wolfProvider Overview

wolfProvider is compiled by default as a shared library called libwolfprov which can be dynamically
registered at runtime by an application or OpenSSL through a config file. wolfProvider also provides
an entry point for applications to load the provider when compiled in a static build.

COPYRIGHT ©2024 wolfSSL Inc. 4

2 OPENSSL VERSION COMPATABILITY

2 OpenSSL Version Compatability

wolfProvider has been tested against the following versions of OpenSSL. wolfProvider may work with
other versions, but may require some modification or adjustment:

• OpenSSL 3.0.0
• OpenSSL 3.5.0

If you are interested in having wolfSSL add support to wolfProvider for other OpenSSL versions, please
contact wolfSSL at facts@wolfssl.com.

COPYRIGHT ©2024 wolfSSL Inc. 5

mailto:facts@wolfssl.com

3 BUILDING WOLFPROVIDER

3 Building wolfProvider

3.1 Getting wolfProvider Source Code
The most recent version of wolfProvider can be obtained directly from wolfSSL Inc. Contact facts@wo
lfssl.com for more information.

3.2 wolfProvider Package Structure
The general wolfProvider package is structured as follows:
certs/ (Test certificates and keys, used with unit tests)
examples/ (Code examples)
include/

wolfprovider/ (wolfProvider header files)
IDE/ (Integration examples)
scripts/ (wolfProvider scripts for testing and building)
src/ (wolfProvider source files)
test/ (wolfProvider test files)
provider.conf (Example OpenSSL config file using wolfProvider)
provider-fips.conf (Example OpenSSL config file using wolfProvider

FIPS)
user_settings.h (EXAMPLE user_settings.h)

3.3 Building on *nix
The quickest method is to use the scripts/build-wolfprovider.sh script as follows:
./scripts/build-wolfprovider.sh

It will clone, configure, compile, and install OpenSSL and wolfSSL with a default set of options. Two
methods are available to override these defaults:
Setting the various environment variables prior to calling the script:
OPENSSL_TAG=openssl-3.2.0 WOLFSSL_TAG=v5.7.2-stable WOLFPROV_DEBUG=1 ./scripts

/build-wolfprovider.sh

Specifying arguments for the script to parse:
./scripts/build-wolfprovider.sh --openssl-ver=openssl-3.2.0 --wolfssl-ver=v5

.7.2-stable --debug

Of course, these methods can be combined to achieve the desired build combination as well.
For a full list of environment variables and script arguments do./scripts/build-wolfprovider.sh
--help.
If desired, each component can be manually compiled using the following guide.

3.3.1 Building OpenSSL

A pre-installed version of OpenSSL may be used with wolfProvider, or OpenSSL can be recompiled
for use with wolfProvider. General instructions for compiling OpenSSL on *nix-like platforms will be
similar to the following. For complete and comprehensive OpenSSL build instructions, reference the
OpenSSL INSTALL file and documentation.

COPYRIGHT ©2024 wolfSSL Inc. 6

mailto:facts@wolfssl.com
mailto:facts@wolfssl.com

3.3 Building on *nix 3 BUILDING WOLFPROVIDER

git clone https://github.com/openssl/openssl.git
cd openssl
./config no-fips -shared
make
sudo make install

3.3.2 Building wolfSSL

If using a FIPS-validated version of wolfSSL with wolfProvider, follow the build instructions provided
with your specific FIPS validated source bundle and Security Policy. In addition to the correct “–enable-
fips” configure option, wolfProvider will need wolfSSL to be compiled with “WOLFSSL_PUBLIC_MP”
defined. For example, building the “wolfCrypt Linux FIPSv2” bundle on Linux:
cd wolfssl-X.X.X-commercial-fips-linuxv
./configure --enable-fips=v2 CFLAGS”=-”DWOLFSSL_PUBLIC_MP
make
./wolfcrypt/test/testwolfcrypt
< modify fips_test.c using verifyCore hash output from testwolfcrypt >
make
./wolfcrypt/test/testwolfcrypt
< all algorithms should PASS >
sudo make install

If available, it may be easier to instead make then run the ./fips-hash.sh utility and then make once
again. This utility automates the process of updating fips_test.c with the testwolfcrypt hash output.
To build non-FIPS wolfSSL for use with wolfProvider:
cd wolfssl-X.X.X

./configure --enable-opensslcoexist --enable-cmac --enable-keygen --enable-sha
--enable-des3 --enable-aesctr --enable-aesccm --enable-x963kdf --enable-

compkey CPPFLAGS="-DHAVE_AES_ECB -DWOLFSSL_AES_DIRECT -DWC_RSA_NO_PADDING -
DWOLFSSL_PUBLIC_MP -DHAVE_PUBLIC_FFDHE -DWOLFSSL_DH_EXTRA -
DWOLFSSL_PSS_LONG_SALT -DWOLFSSL_PSS_SALT_LEN_DISCOVER -DRSA_MIN_SIZE=1024"
--enable-certgen --enable-aeskeywrap --enable-enckeys --enable-base16 --

with-eccminsz=192
make
sudo make install

Add --enable-aesgcm-stream if available for better AES-GCM support. Add --enable-
curve25519 to include support for X25519 Key Exchange. Add --enable-curve448 to include
support for X448 Key Exchange. Add --enable-ed25519 to include support for Ed25519 signatures
and certificates.. Add --enable-ed448 to include support for Ed448 signature and certificates.
Add --enable-pwdbased to the configure command above if PKCS#12 is used in OpenSSL.
Add to CPPFLAGS -DHAVE_FFDHE_6144 -DHAVE_FFDHE_8192 -DFP_MAX_BITS=16384 to enable
predefined 6144-bit and 8192-bit DH parameters.
Add to --enable-hmac-copy if performing HMAC repeatedly with the same key to improve perfor-
mance. (Available with wolfSSL 5.7.8+.)
Add --enable-sp=yes,asm' '--enable-sp-math-all' to use SP Integer maths. Replace
-DFP_MAX_BITS=16384 with -DSP_INT_BITS=8192‘ when used.

COPYRIGHT ©2024 wolfSSL Inc. 7

3.3 Building on *nix 3 BUILDING WOLFPROVIDER

Remove -DWOLFSSL_PSS_LONG_SALT -DWOLFSSL_PSS_SALT_LEN_DISCOVER and add --enable-
fips=v2 to the configure command above if building from a FIPS v2 bundle and not the git repository.
Change --enable-fips=v2 to --enable-fips=ready if using a FIPS Ready bundle.
If ‘–with-eccminsz=192’ is not supported by wolfSSL, add ‘-DECC_MIN_KEY_SZ=192’ to the CPPFLAGS.
“
If cloning wolfSSL from GitHub, you will need to run the autogen.sh script before running ./con-
figure. This will generate the configure script:
./autogen.sh

3.3.3 Building wolfProvider

When buildingwolfProvider on Linux or other *nix-like systems, use the autoconf system. To configure
and compile wolfProvider run the following two commands from the wolfProvider root directory:
./configure
make

If building wolfProvider from GitHub, run autogen.sh before running configure:
./autogen.sh

Anynumber of build options canbe appended to ./configure. For a list of available build options, please
reference the “Build Options” section below or run the following command to see a list of available
build options to pass to the ./configure script:
./configure --help

wolfProvider will use the system default OpenSSL library installation unless changed with the “–with-
openssl” configure option:
./configure --with-openssl=/usr/local/ssl

The custom OpenSSL installation location may also need to be added to your library search path. On
Linux, LD_LIBRARY_PATH is used:
export LD_LIBRARY_PATH=/usr/local/ssl:$LD_LIBRARY_PATH

To build then install wolfProvider, run:
make
make install

You may need superuser privileges to install, in which case precede the command with sudo:
sudo make install

To test the build, run the built-in tests from the root wolfProvider directory:
./test/unit.test

Or use autoconf to run the tests:
make check

If you get an error like error while loading shared libraries: libssl.so.3 then the library
cannot be found. Use the LD_LIBRARY_PATH environment variable as described in the section above.

COPYRIGHT ©2024 wolfSSL Inc. 8

3.4 Building on WinCE 3 BUILDING WOLFPROVIDER

3.4 Building on WinCE
For full wolfProvider compatibility, ensure you have the following flags in your user_settings.h file
for wolfCrypt:
#define WOLFSSL_CMAC
#define WOLFSSL_KEY_GEN
#undef NO_SHA
#undef NO_DES
#define WOLFSSL_AES_COUNTER
#define HAVE_AESCCM
#define HAVE_AES_ECB
#define WOLFSSL_AES_DIRECT
#define WC_RSA_NO_PADDING
#define WOLFSSL_PUBLIC_MP
#define ECC_MIN_KEY_SZ=192

Add wolfProvider flags to your user_settings.h file depending on which algorithms and features
you want to use. You can find a list of wolfProvider user settings flags in the user_settings.h file in
wolfProvider’s directory.
Build wcecompat, wolfCrypt and OpenSSL for Windows CE, and keep track of their paths.
In the wolfProvider directory, open the sources file and change the OpenSSL, wolfCrypt, and
user_settings.h paths to the directories you are using. You will need to update the paths in the
INCLUDES and TARGETLIBS sections.
Load the wolfProvider project in Visual Studio. Include either bench.c, or unit.h and unit.c de-
pending on if you want to run the benchmark or unit tests.
Build the project, and you will end up with a wolfProvider.exe executable. You can run this executable
with --help to see a full list of options. You may need to run it with the --static flag to use wolf-
Provider as a static provider.

3.5 Build Options (./configure Options)
The following are options which may be appended to the ./configure script to customize how the
wolfProvider library is built.
By default, wolfProvider only builds a shared library, with building of a static library disabled. This
speeds up build times by a factor of two. Either mode can be explicitly disabled or enabled if desired.

Option Default Value Description
–disable-option-
checking

Disabled

–enable-silent-rules Disabled less verbose build output (undo: “make
V=1”)

–disable-silent-rules Disabled verbose build output (undo: “make V=0”)
–enable-static Disabled Build static libraries
–enable-pic[=PKGS] Use Both try to use only PIC/non-PIC objects
–enable-shared Enabled Build shared libraries
–enable-fast-
install[=PKGS]

Enabled optimize for fast installation

–enable-aix-
soname=aix|svr4|both

aix shared library versioning (aka “SONAME”)
variant to provide on AIX

COPYRIGHT ©2024 wolfSSL Inc. 9

3.6 Build Defines 3 BUILDING WOLFPROVIDER

Option Default Value Description
–enable-dependency-
tracking

Disabled do not reject slow dependency extractors

–disable-dependency-
tracking

Disabled speeds up one-time build

–disable-libtool-lock Disabled avoid locking (might break parallel builds)
–enable-debug Disabled Enable wolfProvider debugging support
–enable-coverage Disabled Build to generate code coverage stats
–enable-usersettings Disabled Use your own user_settings.h and do not

add Makefile CFLAGS
–enable-dynamic Enabled Enable loading wolfProvider as a dynamic

provider
–enable-singlethreaded Disabled Enable wolfProvider single threaded

–with-openssl=DIR OpenSSL installation location to link
against. If not set, use the system default
library and include paths.

–with-wolfssl=DIR wolfSSL installation location to link against.
If not set, use the system default library
and include paths.

3.6 Build Defines
wolfProvider exposes several preprocessor defines that allow users to configure how wolfProvider is
built. These are described in the table below.

Define Description
WOLFPROVIDER_USER_SETTINGS Read user-specified defines from

user_settings.h.
WOLFPROV_DEBUG Output debug information
WP_CHECK_FORCE_FAIL Force failure checking for testing purposes
WP_ALLOW_NON_FIPS Allow certain non-FIPS algorithms in FIPS

mode
WP_HAVE_AESCCM AES encryption in CCM (Counter with

CBC-MAC) mode
WP_HAVE_AESCFB AES encryption in CFB (Cipher Feedback) mode
WP_HAVE_AESCBC AES encryption in CBC (Cipher Block Chaining)

mode
WP_HAVE_AESCTR AES encryption in CTR (Counter) mode
WP_HAVE_AESCTS AES encryption in CTS (Ciphertext Stealing)

mode
WP_HAVE_AESECB AES encryption in ECB (Electronic Codebook)

mode
WP_HAVE_AESGCM AES encryption in GCM (Galois/Counter Mode)

mode
WP_HAVE_CMAC CMAC (Cipher-based Message Authentication

Code) support
WP_HAVE_DES3CBC Triple DES encryption in CBC mode
WP_HAVE_DH Diffie-Hellman key exchange support
WP_HAVE_DIGEST General digest/hash algorithm support
WP_HAVE_ECC General Elliptic Curve Cryptography support
WP_HAVE_EC_P192 P-192 elliptic curve support

COPYRIGHT ©2024 wolfSSL Inc. 10

3.6 Build Defines 3 BUILDING WOLFPROVIDER

Define Description
WP_HAVE_EC_P224 P-224 elliptic curve support
WP_HAVE_EC_P256 P-256 elliptic curve support
WP_HAVE_EC_P384 P-384 elliptic curve support
WP_HAVE_EC_P521 P-521 elliptic curve support
WP_HAVE_ECDH ECDH (Elliptic Curve Diffie-Hellman) key

exchange support
WP_HAVE_ECDSA ECDSA (Elliptic Curve Digital Signature

Algorithm) support
WP_HAVE_ECKEYGEN Elliptic curve key generation support
WP_HAVE_ED25519 Ed25519 elliptic curve signature support
WP_HAVE_ED448 Ed448 elliptic curve signature support
WP_HAVE_GMAC GMAC (Galois/Counter Mode Authentication)

support
WP_HAVE_HKDF HKDF (HMAC-based Key Derivation Function)

support
WP_HAVE_HMAC HMAC (Hash-based Message Authentication

Code) support
WP_HAVE_KRB5KDF Kerberos 5 Key Derivation Function support
WP_HAVE_MD5 MD5 hash algorithm support
WP_HAVE_MD5_SHA1 MD5+SHA1 combination support
WP_HAVE_PBE Password-Based Encryption support
WP_HAVE_RANDOM Random number generation support
WP_HAVE_RSA RSA encryption and signature support
WP_HAVE_SHA1 SHA1 hash algorithm support
WP_HAVE_SHA224 SHA224 hash algorithm support
WP_HAVE_SHA256 SHA256 hash algorithm support
WP_HAVE_SHA384 SHA384 hash algorithm support
WP_HAVE_SHA3 SHA3 family hash algorithm support
WP_HAVE_SHA3_224 SHA3-224 hash algorithm support
WP_HAVE_SHA3_256 SHA3-256 hash algorithm support
WP_HAVE_SHA3_384 SHA3-384 hash algorithm support
WP_HAVE_SHA3_512 SHA3-512 hash algorithm support
WP_HAVE_SHA512 SHA512 hash algorithm support
WP_HAVE_SHA512_224 SHA512/224 hash algorithm support
WP_HAVE_SHA512_256 SHA512/256 hash algorithm support
WP_HAVE_SHAKE_256 SHAKE256 extendable output function

support
WP_HAVE_TLS1_PRF TLS1 Pseudo-Random Function support
WP_HAVE_X25519 X25519 elliptic curve support
WP_HAVE_X448 X448 elliptic curve support
WP_RSA_PSS_ENCODING RSA-PSS (Probabilistic Signature Scheme)

encoding support

COPYRIGHT ©2024 wolfSSL Inc. 11

4 FIPS 140-3 SUPPORT

4 FIPS 140-3 Support

wolfProvider has been designed to work with FIPS 140-3 validated versions of wolfCrypt when com-
piled against a FIPS-validated version of wolfCrypt. This usage scenario requires a properly licensed
and validated version of wolfCrypt, as obtained from wolfSSL Inc.
Note thatwolfCrypt FIPS libraries cannot be “switched” into non-FIPSmode. wolfCrypt FIPS and regular
wolfCrypt are two separate source code packages.
When wolfProvider is compiled to use wolfCrypt FIPS, it will only include support and register provider
callbacks for FIPS-validated algorithms, modes, and key sizes. If OpenSSL based applications call non-
FIPS validated algorithms, execution may not enter wolfProvider and could be handled by the default
OpenSSL provider or other registered provider providers, based on the OpenSSL configuration.
NOTE : If targeting FIPS compliance, and non-wolfCrypt FIPS algorithms are called from a different
provider, those algorithms are outside the scope of both wolfProvider and wolfCrypt FIPS andmay not
be FIPS validated.
For more information on using wolfCrypt FIPS (140-2 / 140-3), contact wolfSSL at facts@wolfssl.com.

COPYRIGHT ©2024 wolfSSL Inc. 12

5 LOGGING

5 Logging

wolfProvider supports output of log messages for informative and debug purposes. To enable debug
logging, wolfProvider must first be compiled with debug support enabled. If using Autoconf, this is
done using the --enable-debug option to ./configure:
./configure --enable-debug

If not using Autoconf/configure, define WOLFPROV_DEBUG when compiling the wolfProvider library.

5.1 Controlling Logging Levels
wolfProvider supports the following logging levels. These are defined in the “include/wolf-
provider/wp_logging.h” header file as part of the wolfProvider_LogType enum:

Log Enum Description Log Enum Value
WP_LOG_ERROR Logs errors 0x0001
WP_LOG_ENTER Logs when entering

functions
0x0002

WP_LOG_LEAVE Logs when leaving
functions

0x0004

WP_LOG_INFO Logs informative
messages

0x0008

WP_LOG_VERBOSE Verbose logs, including
encrypted/decrypted/di-
gested data

0x0010

WP_LOG_LEVEL_DEFAULT Default log level, all except
verbose level

WP_LOG_ERROR | WP_LOG_ENTER |
WP_LOG_LEAVE | WP_LOG_INFO

WP_LOG_LEVEL_ALL All log levels are enabled WP_LOG_ERROR | WP_LOG_ENTER |
WP_LOG_LEAVE | WP_LOG_INFO |
WP_LOG_VERBOSE

The default wolfProvider logging level includes WP_LOG_ERROR, WP_LOG_ENTER, WP_LOG_LEAVE, and
WP_LOG_INFO. This includes all log levels except verbose logs (WP_LOG_VERBOSE).
Log levels can be controlled using the wolfProv_SetLogLevel(int mask). For example, to turn on
only error and informative logs:
#include <wolfprovider/wp_logging.h>

ret = wolfProv_SetLogLevel(WP_LOG_ERROR | WP_LOG_INFO);
if (ret != 0) {

printf“(Failed to set logging level\”n);
}

5.2 Controlling Component Logging
wolfProvider allows logging on a per-component basis. Components are defined in the wolf-
Provider_LogComponents enum in include/wolfprovider/wp_logging.h:

COPYRIGHT ©2024 wolfSSL Inc. 13

5.3 Setting a Custom Logging Callback 5 LOGGING

Log Component Enum Description Component Enum Value
WP_LOG_RNG Random number

generation
0x0001

WP_LOG_DIGEST Digests
(SHA-1/2/3)

0x0002

WP_LOG_MAC MAC functions
(HMAC, CMAC)

0x0004

WP_LOG_CIPHER Ciphers (AES,
3DES)

0x0008

WP_LOG_PK Public Key
Algorithms (RSA,
ECC)

0x0010

WP_LOG_KE Key Agreement
Algorithms (DH,
ECDH)

0x0020

WP_LOG_KDF Password Based
Key Derivation
Algorithms

0x0040

WP_LOG_PROVIDER All provider
specific logs

0x0080

WP_LOG_COMPONENTS_ALL Log all
components

WP_LOG_RNG | WP_LOG_DIGEST |
WP_LOG_MAC | WP_LOG_CIPHER |
WP_LOG_PK | WP_LOG_KE |
WP_LOG_KDF | WP_LOG_PROVIDER

WP_LOG_COMPONENTS_DEFAULT Default
components
logged (all).

WP_LOG_COMPONENTS_ALL

The default wolfProvider logging configuration logs all components (WP_LOG_COMPONENTS_DEFAULT).
Components logged can be controlled using the wolfProv_SetLogComponents(int mask). For
example, to turn on logging only for the Digest and Cipher algorithms:
#include <wolfprovider/wp_logging.h>

ret = wolfProv_SetLogComponents(WP_LOG_DIGEST | WP_LOG_CIPHER);
if (ret != 0) {

printf“(Failed to set log components\”n);
}

5.3 Setting a Custom Logging Callback
By default wolfProvider outputs debug log messages using fprintf() to stderr.
Applications that want to havemore control over how or where logmessages are output can write and
register a custom logging callback with wolfProvider. The logging callback shouldmatch the prototype
of wolfProvider_Logging_cb in include/wolfprovider/wp_logging.h:
/**
* wolfProvider logging callback.
* logLevel - [IN] - Log level of message
* component - [IN] - Component that log message is coming from
* logMessage - [IN] - Log message
*/

COPYRIGHT ©2024 wolfSSL Inc. 14

5.3 Setting a Custom Logging Callback 5 LOGGING

typedef void (* wolfProvider_Logging_cb)(const int logLevel,
const int component,
const char *const logMessage);

The callback can thenbe registeredwithwolfProvider using thewolfProv_SetLoggingCb(wolfProv_Logging_cb
logf). For example:
void customLogCallback (const int logLevel, const int component,
const char* const logMessage)
{

(void)logLevel;
(void)component;
fprintf(stderr, “wolfProvider log message: %d\”n, logMessage);

}

int main (void)
{

int ret;
...

ret = wolfProv_SetLoggingCb((void(*)(void))my_Logging_cb);
if (ret != 0) {

/* failed to set logging callback */
}

...
}

COPYRIGHT ©2024 wolfSSL Inc. 15

6 PORTABILITY

6 Portability

wolfProvider has been designed to leverage the portability of the associated wolfCrypt and OpenSSL
libraries.

6.1 Threading
wolfProvider is thread safe and uses mutex locking mechanisms from wolfCrypt (wc_LockMutex(),
wc_UnLockMutex()) where necessary. wolfCrypt hasmutex operations abstracted for supported plat-
forms.

6.2 Dynamic Memory Usage
wolfProvider usesOpenSSL’smemory allocation functions to remain consistent withOpenSSL behavior.
Allocation functions used internally to wolfProvider include OPENSSL_malloc(), OPENSSL_free(),
OPENSSL_zalloc(), and OPENSSL_realloc().

6.3 Logging
wolfProvider logs by default to stderr via fprintf(). Applications can override this by registering a
custom logging function (see Chapter 5).
Additional macros that may be defined when compiling wolfProvider to adjust logging behavior in-
clude:
WOLFPROV_USER_LOG - Macro that defines the nameof function for log output. Users can define this
to a custom log function to be used in place of fprintf.
WOLFPROV_LOG_PRINTF - Define that toggles the usageof fprintf (to stderr) to use printf (to stdout)
instead. Not applicable if using WOLFPROV_USER_LOG or custom logging callback.

COPYRIGHT ©2024 wolfSSL Inc. 16

7 LOADING WOLFPROVIDER

7 Loading wolfProvider

7.1 Configuring OpenSSL to Enable Provider Usage
For documentation on how applications use and consume OpenSSL providers, refer to the OpenSSL
documentation:
OpenSSL 3.0
If the application is configured to read/use an OpenSSL config file, additional provider setup steps can
be done there. For OpenSSL config documentation, reference the OpenSSL documentation:
OpenSSL 3.0
An application can read and consume the default OpenSSL config file (openssl.cnf) or config as set by
OPENSSL_CONF environment variable and default [openssl_conf] section.
Alternatively to using an OpenSSL config file, applications can explicitly initialize and register wolf-
Provider using the desired OSSL_PROVIDER_* APIs. As one example, initializing wolfProvider and reg-
istering for all algorithms could be done using:

OSSL_PROVIDER *prov = NULL;
const char *build = NULL;
OSSL_PARAM request[] = {

{ "buildinfo", OSSL_PARAM_UTF8_PTR, &build, 0, 0 },
{ NULL, 0, NULL, 0, 0 }

};

if ((prov = OSSL_PROVIDER_load(NULL, "libwolfprov")) != NULL
&& OSSL_PROVIDER_get_params(prov, request))
printf("Provider 'libwolfprov' buildinfo: %s\n", build);

else
ERR_print_errors_fp(stderr);

if (OSSL_PROVIDER_self_test(prov) == 0)
printf("Provider selftest failed\n");

else
printf("Provider selftest passed\n");

OSSL_PROVIDER_unload(prov);

7.2 Loading wolfProvider from an OpenSSL Configuration File
wolfProvider can be loaded from an OpenSSL config file if an application using OpenSSL is set up to
process a config file. An example of how the wolfProvider librarymay be added to a config file is below.
openssl_conf = openssl_init

[openssl_init]
providers = provider_sect

[provider_sect]
libwolfprov = libwolfprov_sect

[libwolfprov_sect]
activate = 1

COPYRIGHT ©2024 wolfSSL Inc. 17

https://www.openssl.org/docs/man3.0/man7/provider.html
https://www.openssl.org/docs/man3.0/man5/config.html

7.3 wolfProvider Static Entrypoint 7 LOADING WOLFPROVIDER

7.3 wolfProvider Static Entrypoint
When wolfProvider is used as a static library, applications can call the following entry point to load
wolfProvider:
#include <wolfprovider/wp_wolfprovider.h>
wolfssl_provider_init(const OSSL_CORE_HANDLE* handle, const OSSL_DISPATCH* in,

const OSSL_DISPATCH** out, void** provCtx);

COPYRIGHT ©2024 wolfSSL Inc. 18

8 WOLFPROVIDER DESIGN

8 wolfProvider Design

wolfProvider is composed of the following source files, all located under the “src” subdirectory of the
wolfProvider package.

Source File Description
wp_wolfprov.c Contains library entry points. Calls OpenSSL

IMPLEMENT_DYNAMIC_BIND_FN for dynamic
loading of the library using the OpenSSL provider
framework. Also includes static entry points
when compiled and used as a static library.

wp_internal.c Includes wolfprovider_bind() function, which
handles registration of provider algorithm
callbacks. Also includes other wolfprovider
internal functionality.

wp_logging.c wolfProvider logging framework and function
implementations.

wp_aes_aead.c wolfProvider AES-AEAD (Authenticated
Encryption with Associated Data)
implementation.

wp_aes_block.c wolfProvider AES-ECB and AES-CBC
implementation.

wp_aes_stream.c wolfProvider AES stream cipher implementation.
wp_aes_wrap.c wolfProvider AES key wrapping implementation.
wp_cmac.c wolfProvider CMAC (Cipher-based Message

Authentication Code) implementation.
wp_dec_epki2pki.c wolfProvider encrypted private key to private key

conversion implementation.
wp_dec_pem2der.c wolfProvider PEM to DER format conversion

implementation.
wp_des.c wolfProvider DES implementation.
wp_dh_exch.c wolfProvider DH key exchange implementation.
wp_dh_kmgmt.c wolfProvider DH key management

implementation.
wp_digests.c wolfProvider message digest implementations

(SHA-1, SHA-2, SHA-3, …).
wp_drbg.c wolfProvider DRBG (Deterministic Random Bit

Generator) implementation.
wp_ecc_kmgmt.c wolfProvider ECC key management

implementation.
wp_ecdh_exch.c wolfProvider ECDH key exchange

implementation.
wp_ecdsa_sig.c wolfProvider ECDSA signature implementation.
wp_ecx_exch.c wolfProvider ECX key exchange implementation

(X25519, X448, …).
wp_ecx_kmgmt.c wolfProvider ECX key management

implementation.
wp_ecx_sig.c wolfProvider ECX signature implementation

(Ed25519, Ed448, …).
wp_file_store.c wolfProvider file storage implementation.
wp_fips.c wolfProvider FIPS validation implementation.
wp_gmac.c wolfProvider GMAC (Galois/Counter Mode)

implementation.

COPYRIGHT ©2024 wolfSSL Inc. 19

8.1 wolfProvider Entry Points 8 WOLFPROVIDER DESIGN

Source File Description
wp_hkdf.c wolfProvider HKDF (HMAC-based Key Derivation

Function) implementation.
wp_hmac.c wolfProvider HMAC implementation.
wp_kbkdf.c wolfProvider KBKDF (Key-Based Key Derivation

Function) implementation.
wp_kdf_exch.c wolfProvider KDF key exchange implementation.
wp_kdf_kmgmt.c wolfProvider KDF key management

implementation.
wp_krb5kdf.c wolfProvider Kerberos 5 KDF implementation.
wp_mac_kmgmt.c wolfProvider MAC key management

implementation.
wp_mac_sig.c wolfProvider MAC signature implementation.
wp_params.c wolfProvider parameter handling

implementation.
wp_pbkdf2.c wolfProvider PBKDF2 (Password-Based Key

Derivation Function 2) implementation.
wp_rsa_asym.c wolfProvider RSA asymmetric encryption

implementation.
wp_rsa_kem.c wolfProvider RSA KEM (Key Encapsulation

Mechanism) implementation.
wp_rsa_kmgmt.c wolfProvider RSA key management

implementation.
wp_rsa_sig.c wolfProvider RSA signature implementation.
wp_tls1_prf.c wolfProvider TLS 1.0 PRF implementation.
wp_tls_capa.c wolfProvider TLS capabilities implementation.

8.1 wolfProvider Entry Points
Themain entry points into thewolfProvider library areOSSL_provider_init() andwolfssl_provider_init().
OSSL_provider_init() is the standard OpenSSL provider entry point that is called automatically by
OpenSSL when the provider is loaded dynamically. This function is defined in wp_wolfprov.c and
serves as a wrapper that calls wolfssl_provider_init().
wolfssl_provider_init() is the core initialization function that:

• Sets up the provider context
• Initializes the dispatch table with provider functions
• Handles FIPS mode configuration
• Sets up debugging if enabled
• Returns the provider’s dispatch table containing function pointers for:

– wolfprov_teardown - Provider cleanup
– wolfprov_gettable_params - Parameter table retrieval
– wolfprov_get_params - Parameter retrieval
– wolfprov_query - Operation querying
– wolfssl_prov_get_capabilities - Capability reporting

The provider is loaded by OpenSSL when applications request wolfProvider algorithms, and the dis-
patch table allows OpenSSL to call the appropriate wolfProvider functions for cryptographic opera-
tions.

COPYRIGHT ©2024 wolfSSL Inc. 20

8.2 wolfProvider Dispatch Table Functions 8 WOLFPROVIDER DESIGN

8.2 wolfProvider Dispatch Table Functions
ThewolfProvider dispatch table contains several key functions that handle different aspects of provider
operation. Each function serves a specific purpose in the OpenSSL provider framework.
Note onOSSL Parameters (Referenced Later): OSSL parameters are a standardizedway forOpenSSL
to exchange configuration data and capabilities information with providers. Parameters can repre-
sent simple values (integers, strings, booleans) or complex structures, and they enable applications
to query provider capabilities, configure behavior, and retrieve status information. The parameter
system provides a type-safe, extensible mechanism for provider-application communication.

8.2.1 wolfprov_teardown

The wolfprov_teardown() function is responsible for cleaning up wolfProvider when it is unloaded
by OpenSSL. It performs the following cleanup tasks:

• Frees allocated provider context and resources
• Cleans up any remaining algorithm implementations
• Removes registered callbacks and handlers
• Ensures proper memory deallocation to prevent memory leaks
• Resets any global state maintained by the provider

This function is called automatically by OpenSSL when the provider is being unloaded, ensuring that
all resources are properly released.

8.2.2 wolfprov_gettable_params

The wolfprov_gettable_params() function returns a table of parameter descriptors that define
what parameters the provider supports. This function accomplishes the following tasks:

• Defines the structure and types of parameters that can be retrieved
• Provides metadata about parameter names, types, and descriptions
• Enables OpenSSL to understand what parameters are available from the provider
• Supports parameter validation and type checking
• Allows applications to discover available provider parameters

The returned table contains parameter definitions that applications can use to query provider capabil-
ities and configuration options.

8.2.3 wolfprov_get_params

The wolfprov_get_params() function retrieves specific parameter values from the provider. This
function:

• Accepts parameter requests from OpenSSL or applications
• Returns the current values of requested parameters
• Handles parameter type conversion and validation
• Provides access to provider configuration and state information
• Supports both simple parameters and complex parameter structures

Common parameters that can be retrieved include provider version, supported algorithms, FIPSmode
status, and other configuration details.

8.2.4 wolfssl_prov_get_capabilities

The wolfssl_prov_get_capabilities() function reports the cryptographic capabilities of wolf-
Provider to OpenSSL. It provides capability information which:

COPYRIGHT ©2024 wolfSSL Inc. 21

8.2 wolfProvider Dispatch Table Functions 8 WOLFPROVIDER DESIGN

• Returns information about supported algorithms and operations
• Provides details about algorithm parameters and constraints
• Indicates FIPS compliance and validation status
• Reports performance characteristics and limitations
• Enables OpenSSL to make informed decisions about algorithm selection

The capabilities information helps OpenSSL determine when to use wolfProvider algorithms and how
to configure them appropriately for different use cases.

8.2.5 wolfprov_query

The wolfprov_query() function is the primary mechanism for algorithm discovery and registration
in wolfProvider. It serves as the central routing mechanism that:

• Handles requests from OpenSSL for specific algorithm implementations
• Returns the appropriate algorithm structure when a supported algorithm is requested
• Provides operation-specific dispatch tables for cryptographic operations
• Manages algorithm registration and lookup within the provider
• Supports both symmetric and asymmetric cryptographic operations
• Enables dynamic algorithm discovery based on OpenSSL’s requirements

When OpenSSL requests an algorithm (such as AES, RSA, SHA-256, etc.), wolfprov_query() deter-
mines if wolfProvider supports that algorithm and returns the corresponding implementation struc-
ture. This function acts as the central routingmechanism that connects OpenSSL’s algorithm requests
to the specific wolfProvider implementations found in the various source files (e.g., wp_aes_block.c,
wp_rsa_sig.c, etc.).

COPYRIGHT ©2024 wolfSSL Inc. 22

9 NOTES ON OPEN SOURCE INTEGRATION

9 Notes on Open Source Integration

wolfProvider conforms to the general OpenSSL provider framework and architecture. As such, it can
be leveraged from any OpenSSL-consuming application that correctly loads and initializes providers
and wolfProvider through an OpenSSL configuration file or programmatically via API calls.
wolfSSL has tested wolfProvider with numerous open source projects through automated CI/CD work-
flows. This chapter contains notes and tips on wolfProvider integration with the tested projects.

9.1 Tested Open Source Projects
The following Open Source Projects (OSPs) have been tested and verified to work with wolfProvider:

9.1.1 Network and Web Technologies

• cURL - Command line tool for transferring data with URLs
• gRPC - High-performance RPC framework
• libwebsockets - Lightweight C library for websockets
• Nginx - High-performance HTTP server and reverse proxy
• Qt5 Network - Qt networking module

9.1.2 Security and Authentication

• OpenSSH - Secure shell implementation
• libssh2 - SSH2 library
• libfido2 - FIDO2 library for WebAuthn
• OpenSC - Smart card tools and middleware
• pam-pkcs11 - PAM module for PKCS#11
• OpenVPN - VPN solution
• Stunnel - SSL wrapper for network services

9.1.3 System and Network Tools

• systemd - System and service manager
• tcpdump - Network packet analyzer
• rsync - File synchronization utility
• tnftp - Enhanced FTP client
• iperf - Network performance measurement tool
• IPMItool - IPMI management tool
• PPP - Point-to-Point Protocol implementation

9.1.4 Directory and Identity Services

• OpenLDAP - Lightweight Directory Access Protocol
• SSSD - System Security Services Daemon
• Net-SNMP - Network management protocol implementation

9.1.5 Cryptography and PKI

• cjose - C library for JWT
• libeac3 - Electronic Authentication Components
• libhashkit2 - Consistent hashing library
• liboauth2 - OAuth2 library

COPYRIGHT ©2024 wolfSSL Inc. 23

9.2 General Setup 9 NOTES ON OPEN SOURCE INTEGRATION

• libtss2 - TPM2 Software Stack
• tpm2-tools - TPM2 tools
• xmlsec - XML Security library
• sscep - SCEP client implementation

9.1.6 Development and Testing

• Asan - Address Sanitizer testing
• Codespell - Spell checker for source code
• Multi-Compiler - Multi-compiler testing

9.1.7 Remote Access and Display

• x11vnc - VNC server for X11
• python3-ntp - Python NTP library

9.1.8 Other Utilities

• Socat - Multipurpose relay for bidirectional data transfer
• Simple - Simple test applications

9.2 General Setup
Most of these projects require similar setup steps:

1. Clone from Github
2. Build with Autotools
3. Configure with OpenSSL
4. Make and Install
5. Use wolfProvider:

export OPENSSL_CONF=/path/to/provider.conf
export OPENSSL_MODULES=/path/to/wolfprov-install/lib

After running make (or the equivalent build script) the configured version of OpenSSL can be checked
by running ldd /path/to/compiled/binary. This will provide a list of which libraries are linked
against. If the incorrect version is present then setting some combination of these four environment
variables before rebuilding may help:
export LD_LIBRARY_PATH="/path/to/wolfssl/install/lib:/path/to/openssl/install/

lib64"
export PKG_CONFIG_PATH="/path/to/openssl/install/lib64/pkgconfig"
export LDFLAGS="-L/path/to/openssl/install/lib64"
export CPPFLAGS="-I/path/to/openssl/install/include"

Further, wolfProvider gives some ability to determine if the library is actually using wolfProvider. Just
do export WOLFPROV_FORCE_FAIL=1 or WOLFPROV_FORCE_FAIL=1 /command/to/run and if the
command ends up using wolfProvider crypto it will fail.
If the project being used is included in the list of tested open source project’s then the testing scripts
can be referenced. These can be found in the wolfssl/wolfProvider repository on GitHub under
.github/workflows/.

COPYRIGHT ©2024 wolfSSL Inc. 24

https://github.com/wolfSSL/wolfProvider

9.3 Testing and Validation 9 NOTES ON OPEN SOURCE INTEGRATION

9.3 Testing and Validation
All of the above referenced open source project’s are continuously tested in the wolfProvider CI/CD
pipeline with:

• OpenSSL version 3.5.0
• wolfSSL with both master and stable releases
• Force failure testing to ensure proper error handling
• FIPS testing is also done through a Jenkins pipeline

This comprehensive testing ensures that wolfProvider maintains compatibility with a wide range of
open source projects and their various use cases.

COPYRIGHT ©2024 wolfSSL Inc. 25

10 SUPPORT AND OPENSSL VERSION ADDING

10 Support and OpenSSL Version Adding

For support with wolfProvider contact the wolfSSL support team at support@wolfssl.com. To have
additional OpenSSL version support implemented in wolfProvider, contact wolfSSL at facts@wolfssl.co
m.

COPYRIGHT ©2024 wolfSSL Inc. 26

mailto:support@wolfssl.com
mailto:facts@wolfssl.com
mailto:facts@wolfssl.com

	Introduction
	OpenSSL Version Compatability
	Building wolfProvider
	Getting wolfProvider Source Code
	wolfProvider Package Structure
	Building on *nix
	Building OpenSSL
	Building wolfSSL
	Building wolfProvider

	Building on WinCE
	Build Options (./configure Options)
	Build Defines

	FIPS 140-3 Support
	Logging
	Controlling Logging Levels
	Controlling Component Logging
	Setting a Custom Logging Callback

	Portability
	Threading
	Dynamic Memory Usage
	Logging

	Loading wolfProvider
	Configuring OpenSSL to Enable Provider Usage
	Loading wolfProvider from an OpenSSL Configuration File
	wolfProvider Static Entrypoint

	wolfProvider Design
	wolfProvider Entry Points
	wolfProvider Dispatch Table Functions
	wolfprov_teardown
	wolfprov_gettable_params
	wolfprov_get_params
	wolfssl_prov_get_capabilities
	wolfprov_query

	Notes on Open Source Integration
	Tested Open Source Projects
	Network and Web Technologies
	Security and Authentication
	System and Network Tools
	Directory and Identity Services
	Cryptography and PKI
	Development and Testing
	Remote Access and Display
	Other Utilities

	General Setup
	Testing and Validation

	Support and OpenSSL Version Adding

