wolfProvider Documentation

¢

wolfsSst

2026-01-19

CONTENTS CONTENTS
Contents

1 Introduction 4

2 OpenSSL Version Compatability 5

3 Building wolfProvider 6

3.1 Getting wolfProvider SourceCode Lo 6

3.2 wolfProvider Package Structure 6

3.3 Buildingon*nix L. L Lo e e e e e 6

3.3.1 BuildingOpenSSL e e e e e e e e 6

3.3.2 BuildingwolfSSL L 7

3.3.3 BuildingwolfProvider L 8

3.4 BuildingonWInCE e e 9

3.5 Build Options (./configure Options) e 9

3.6 BuildDefines e e 10

4 FIPS 140-3 Support 12

5 Logging 13

5.1 Controlling Logging Levels e 13

5.2 Controlling ComponentLogging o e 13

5.3 Setting a Custom Logging Callback oL 14

6 Portability 16

6.1 Threading e e e 16

6.2 Dynamic MemoryUsage e e e e e e e e e e e e e 16

6.3 Logging L e e e e e e e e e e e 16

7 Loading wolfProvider 17

7.1 Configuring OpenSSL to Enable ProviderUsage 17

7.2 Loading wolfProvider from an OpenSSL ConfigurationFile 17

7.3 wolfProvider Static Entrypoint e 18

8 wolfProvider Design 19

8.1 wolfProvider Entry Points e e e e e e e 20

8.2 wolfProvider Dispatch Table Functions 21

8.2.1 wolfprov_teardown L L e e 21

8.2.2 wolfprov_gettable_paramso 21

8.2.3 wolfprov_get_params e e e e e e e e 21

8.2.4 wolfssl_prov_get_capabilities 21

8.2.5 wolfprov_query e e e e e e e 22

9 Notes on Open Source Integration 23

9.1 Tested OpenSource Projects i i i i i i i e e e e e e 23

9.1.1 Network and Web Technologies 23

9.1.2 Security and Authenticationo o o 23

9.1.3 Systemand NetworkTools 23

9.1.4 Directoryand Identity Services. e 23

9.1.5 Cryptographyand PKL e 23

9.1.6 DevelopmentandTesting e 24

9.1.7 Remote AccessandDisplay 24

9.1.8 Other Utilities e 24

9.2 GeneralSetup L e e e e 24

9.3 TestingandValidation e e e 25

COPYRIGHT ©2024 wolfSSL Inc. 2

CONTENTS CONTENTS

10 Support and OpenSSL Version Adding 26

COPYRIGHT ©2024 wolfSSL Inc. 3

17 INTRODUCTION

1 Introduction

The wolfCrypt Provider (wolfProvider) is an OpenSSL provider for the wolfCrypt and wolfCrypt FIPS
cryptography libraries. wolfProvider provides an OpenSSL provider implementation, as a shared or
static library, to allow applications currently using OpenSSL to leverage wolfCrypt cryptography for
FIPS and non-FIPS use cases.

wolfProvider is structured as a separate standalone library which links against wolfSSL (libwolfssl) and
OpenSSL. wolfProvider implements and exposes an OpenSSL provider implementation which wraps
the wolfCrypt native APl internally. A high-level diagram of wolfProvider and how it relates to applica-
tions and OpenSSL is displayed below in Figure 1.

For more details on the design and architecture of wolfProvider see the wolfProvider Design chapter.

Application
libssl OpenSSL SSL/TLS API
libcrypto OpenSSL EVP API OpenSSL Crypto API

OpenSSL Provider Framework
<openssl/provider.h> and internal OpenSSL

ECDH ECDSA RSA AES SHA
libwolfprov

wolfProvider Library
libwolfssl wolfCrypt or wolfCrypt FIPS Library

Figure 1: wolfProvider Overview
wolfProvider is compiled by default as a shared library called libwolfprov which can be dynamically

registered at runtime by an application or OpenSSL through a config file. wolfProvider also provides
an entry point for applications to load the provider when compiled in a static build.

COPYRIGHT ©2024 wolfSSL Inc. 4

2 OPENSSL VERSION COMPATABILITY

2 OpenSSL Version Compatability

wolfProvider has been tested against the following versions of OpenSSL. wolfProvider may work with
other versions, but may require some modification or adjustment:

* OpenSSL 3.0.0
* OpenSSL 3.5.0

If you are interested in having wolfSSL add support to wolfProvider for other OpenSSL versions, please
contact wolfSSL at facts@wolfssl.com.

COPYRIGHT ©2024 wolfSSL Inc. 5

mailto:facts@wolfssl.com

3 BUILDING WOLFPROVIDER

3 Building wolfProvider

3.1 Getting wolfProvider Source Code

The most recent version of wolfProvider can be obtained directly from wolfSSL Inc. Contact facts@wo
Ifssl.com for more information.

3.2 wolfProvider Package Structure

The general wolfProvider package is structured as follows:

certs/ (Test certificates and keys, used with unit tests)
examples/ (Code examples)
include/
wolfprovider/ (wolfProvider header files)
IDE/ (Integration examples)
scripts/ (wolfProvider scripts for testing and building)
src/ (wolfProvider source files)
test/ (wolfProvider test files)
provider.conf (Example OpenSSL config file using wolfProvider)
provider-fips.conf (Example OpenSSL config file using wolfProvider
FIPS)
user_settings.h (EXAMPLE user_settings.h)

3.3 Building on *nix

The quickest method is to use the scripts/build-wolfprovider. sh script as follows

./scripts/build-wolfprovider.sh

It will clone, configure, compile, and install OpenSSL and wolfSSL with a default set of options. Two

methods are available to override these defaults:

Setting the various environment variables prior to calling the script:

OPENSSL_TAG=openssl1-3.2.0 WOLFSSL_TAG=v5.7.2-stable WOLFPROV_DEBUG=1 ./scripts
/build-wolfprovider.sh

Specifying arguments for the script to parse:

./scripts/build-wolfprovider.sh --openssl-ver=openssl-3.2.0 --wolfssl-ver=v5
.7.2-stable --debug

Of course, these methods can be combined to achieve the desired build combination as well.

For afull list of environment variables and scriptargumentsdo . /scripts/build-wolfprovider.sh
--help.

If desired, each component can be manually compiled using the following guide.

3.3.1 Building OpenSSL

A pre-installed version of OpenSSL may be used with wolfProvider, or OpenSSL can be recompiled
for use with wolfProvider. General instructions for compiling OpenSSL on *nix-like platforms will be
similar to the following. For complete and comprehensive OpenSSL build instructions, reference the
OpenSSL INSTALL file and documentation.

COPYRIGHT ©2024 wolfSSL Inc. 6

mailto:facts@wolfssl.com
mailto:facts@wolfssl.com

3.3 Building on *nix 3 BUILDING WOLFPROVIDER

git clone https://github.com/openssl/openssl.git
cd openssl

./config no-fips -shared

make

sudo make install

3.3.2 Building wolfSSL

If using a FIPS-validated version of wolfSSL with wolfProvider, follow the build instructions provided
with your specific FIPS validated source bundle and Security Policy. In addition to the correct “-enable-
fips” configure option, wolfProvider will need wolfSSL to be compiled with “WOLFSSL_PUBLIC_MP”
defined. For example, building the “wolfCrypt Linux FIPSv2" bundle on Linux:

cd wolfssl-X.X.X-commercial-fips-linuxv

./configure --enable-fips=v2 CFLAGS"=-"DWOLFSSL_PUBLIC_MP

make

./wolfcrypt/test/testwolfcrypt

< modify fips_test.c using verifyCore hash output from testwolfcrypt >
make

./wolfcrypt/test/testwolfcrypt

< all algorithms should PASS >

sudo make install

If available, it may be easier to instead make then run the . /fips-hash. sh utility and then make once
again. This utility automates the process of updating fips_test.c with the testwolfcrypt hash output.

To build non-FIPS wolfSSL for use with wolfProvider:
cd wolfssl-X.X.X

./configure --enable-opensslcoexist --enable-cmac --enable-keygen --enable-sha
--enable-des3 --enable-aesctr --enable-aesccm --enable-x963kdf --enable-
compkey CPPFLAGS="-DHAVE_AES_ECB -DWOLFSSL_AES_DIRECT -DWC_RSA_NO_PADDING -
DWOLFSSL_PUBLIC_MP -DHAVE_PUBLIC_FFDHE -DWOLFSSL_DH_EXTRA -
DWOLFSSL_PSS_LONG_SALT -DWOLFSSL_PSS_SALT_LEN_DISCOVER -DRSA_MIN_SIZE=1024"
--enable-certgen --enable-aeskeywrap --enable-enckeys --enable-basel6 --
with-eccminsz=192
make
sudo make install

Add --enable-aesgcm-stream if available for better AES-GCM support. Add --enable-
curve25519 to include support for X25519 Key Exchange. Add --enable-curve448 to include
support for X448 Key Exchange. Add - -enable-ed25519 to include support for Ed25519 signatures
and certificates.. Add - -enable-ed448 to include support for Ed448 signature and certificates.

Add - -enable-pwdbased to the configure command above if PKCS#12 is used in OpenSSL.

Add to CPPFLAGS -DHAVE_FFDHE_6144 -DHAVE_FFDHE_8192 -DFP_MAX_BITS=16384 to enable
predefined 6144-bit and 8192-bit DH parameters.

Add to - -enable-hmac-copy if performing HMAC repeatedly with the same key to improve perfor-
mance. (Available with wolfSSL 5.7.8+.)

Add --enable-sp=yes,asm' '--enable-sp-math-all' to use SP Integer maths. Replace
-DFP_MAX_BITS=16384 with -DSP_INT_BITS=8192' when used.

COPYRIGHT ©2024 wolfSSL Inc. 7

3.3 Building on *nix 3 BUILDING WOLFPROVIDER

Remove -DWOLFSSL_PSS_LONG_SALT -DWOLFSSL_PSS_SALT_LEN_DISCOVER and add --enable-
fips=v2 to the configure command above if building from a FIPS v2 bundle and not the git repository.
Change --enable-fips=v2to --enable-fips=ready if using a FIPS Ready bundle.

If ‘~with-eccminsz=192’ is not supported by wolfSSL, add ‘-DECC_MIN_KEY_SZ=192’' to the CPPFLAGS.

"

If cloning wolfSSL from GitHub, you will need to run the autogen. sh script before running ./con-
figure. This will generate the configure script:

./autogen.sh

3.3.3 Building wolfProvider

When building wolfProvider on Linux or other *nix-like systems, use the autoconf system. To configure
and compile wolfProvider run the following two commands from the wolfProvider root directory:

./configure

make

If building wolfProvider from GitHub, run autogen.sh before running configure:

./autogen.sh

Any number of build options can be appended to ./configure. For a list of available build options, please

reference the “Build Options” section below or run the following command to see a list of available
build options to pass to the ./configure script:

./configure --help

wolfProvider will use the system default OpenSSL library installation unless changed with the “-~with-
openssl” configure option:

./configure --with-openssl=/usr/local/ssl

The custom OpenSSL installation location may also need to be added to your library search path. On
Linux, LD_LIBRARY_PATH is used:

export LD_LIBRARY_PATH=/usxr/local/ssl:$LD_LIBRARY_PATH

To build then install wolfProvider, run:

make
make install

You may need superuser privileges to install, in which case precede the command with sudo:

sudo make install

To test the build, run the built-in tests from the root wolfProvider directory:
./test/unit.test

Or use autoconf to run the tests:

make check

If you get an error like error while loading shared libraries: libssl.so.3then the library
cannot be found. Use the LD_LIBRARY_PATH environment variable as described in the section above.

COPYRIGHT ©2024 wolfSSL Inc. 8

3.4 Building on WinCE 3 BUILDING WOLFPROVIDER

3.4 Building on WinCE

For full wolfProvider compatibility, ensure you have the following flags in your user_settings.h file
for wolfCrypt:

#define WOLFSSL_CMAC
#define WOLFSSL_KEY_GEN
#undef NO_SHA

#undef NO_DES

#define WOLFSSL_AES_COUNTER
#define HAVE_AESCCM
#define HAVE_AES_ECB
#define WOLFSSL_AES_DIRECT
#define WC_RSA_NO_PADDING
#define WOLFSSL_PUBLIC_MP
#define ECC_MIN_KEY_SZ=192

Add wolfProvider flags to your user_settings.h file depending on which algorithms and features
you want to use. You can find a list of wolfProvider user settings flags in the user_settings.h filein
wolfProvider’s directory.

Build wcecompat, wolfCrypt and OpenSSL for Windows CE, and keep track of their paths.

In the wolfProvider directory, open the sources file and change the OpenSSL, wolfCrypt, and
user_settings.h paths to the directories you are using. You will need to update the paths in the
INCLUDES and TARGETLIBS sections.

Load the wolfProvider project in Visual Studio. Include either bench.c, or unit.h and unit.c de-
pending on if you want to run the benchmark or unit tests.

Build the project, and you will end up with a wolfProvider.exe executable. You can run this executable
with - -help to see a full list of options. You may need to run it with the --static flag to use wolf-
Provider as a static provider.

3.5 Build Options (./configure Options)

The following are options which may be appended to the . /configure script to customize how the
wolfProvider library is built.

By default, wolfProvider only builds a shared library, with building of a static library disabled. This
speeds up build times by a factor of two. Either mode can be explicitly disabled or enabled if desired.

Option Default Value Description

-disable-option- Disabled

checking

-enable-silent-rules Disabled less verbose build output (undo: “make
V=1")

-disable-silent-rules Disabled verbose build output (undo: “make V=0")

-enable-static Disabled Build static libraries

-enable-pic[=PKGS] Use Both try to use only PIC/non-PIC objects

-enable-shared Enabled Build shared libraries

-enable-fast- Enabled optimize for fast installation

install[=PKGS]

-enable-aix- aix shared library versioning (aka “SONAME")

soname=aix|svr4|both variant to provide on AIX

COPYRIGHT ©2024 wolfSSL Inc. 9

3.6 Build Defines

3 BUILDING WOLFPROVIDER

Option

Default Value

Description

-enable-dependency-
tracking
-disable-dependency-
tracking
-disable-libtool-lock
-enable-debug
-enable-coverage
-enable-usersettings

-enable-dynamic
-enable-singlethreaded

-with-openss|=DIR

-with-wolfss|=DIR

Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Enabled

Disabled

do not reject slow dependency extractors
speeds up one-time build

avoid locking (might break parallel builds)
Enable wolfProvider debugging support
Build to generate code coverage stats
Use your own user_settings.h and do not
add Makefile CFLAGS

Enable loading wolfProvider as a dynamic
provider

Enable wolfProvider single threaded

OpenSSL installation location to link
against. If not set, use the system default
library and include paths.

wolfSSL installation location to link against.
If not set, use the system default library
and include paths.

3.6 Build Defines

wolfProvider exposes several preprocessor defines that allow users to configure how wolfProvider is
built. These are described in the table below.

Define

Description

WOLFPROVIDER_USER_SETTINGS

WOLFPROV_DEBUG
WP_CHECK_FORCE_FAIL
WP_ALLOW_NON_FIPS

WP_HAVE_AESCCM

WP_HAVE_AESCFB
WP_HAVE_AESCBC

WP_HAVE_AESCTR
WP_HAVE_AESCTS

WP_HAVE_AESECB
WP_HAVE_AESGCM
WP_HAVE_CMAC
WP_HAVE_DES3CBC
WP_HAVE_DH
WP_HAVE_DIGEST

WP_HAVE_ECC
WP_HAVE_EC_P192

COPYRIGHT ©2024 wolfSSL Inc.

10

Read user-specified defines from
user_settings.h.

Output debug information

Force failure checking for testing purposes
Allow certain non-FIPS algorithms in FIPS
mode

AES encryption in CCM (Counter with
CBC-MAC) mode

AES encryption in CFB (Cipher Feedback) mode
AES encryption in CBC (Cipher Block Chaining)
mode

AES encryption in CTR (Counter) mode

AES encryption in CTS (Ciphertext Stealing)
mode

AES encryption in ECB (Electronic Codebook)
mode

AES encryption in GCM (Galois/Counter Mode)
mode

CMAC (Cipher-based Message Authentication
Code) support

Triple DES encryption in CBC mode
Diffie-Hellman key exchange support

General digest/hash algorithm support
General Elliptic Curve Cryptography support
P-192 elliptic curve support

3.6 Build Defines 3 BUILDING WOLFPROVIDER

Define Description
WP_HAVE_EC_P224 P-224 elliptic curve support
WP_HAVE_EC _P256 P-256 elliptic curve support
WP_HAVE_EC_P384 P-384 elliptic curve support
WP_HAVE_EC_P521 P-521 elliptic curve support
WP_HAVE_ECDH ECDH (Elliptic Curve Diffie-Hellman) key
exchange support
WP_HAVE_ECDSA ECDSA (Elliptic Curve Digital Signature
Algorithm) support
WP_HAVE_ECKEYGEN Elliptic curve key generation support
WP_HAVE_ED25519 Ed25519 elliptic curve signature support
WP_HAVE_ED448 Ed448 elliptic curve signature support
WP_HAVE_GMAC GMAC (Galois/Counter Mode Authentication)
support
WP_HAVE_HKDF HKDF (HMAC-based Key Derivation Function)
support
WP_HAVE_HMAC HMAC (Hash-based Message Authentication
Code) support
WP_HAVE_KRB5KDF Kerberos 5 Key Derivation Function support
WP_HAVE_MD5 MD5 hash algorithm support
WP_HAVE_MD5_SHA1 MD5+SHA1 combination support
WP_HAVE_PBE Password-Based Encryption support
WP_HAVE_RANDOM Random number generation support
WP_HAVE_RSA RSA encryption and signature support
WP_HAVE_SHA1 SHA1 hash algorithm support
WP_HAVE_SHA224 SHA224 hash algorithm support
WP_HAVE_SHA256 SHA256 hash algorithm support
WP_HAVE_SHA384 SHA384 hash algorithm support
WP_HAVE_SHA3 SHA3 family hash algorithm support
WP_HAVE_SHA3 224 SHA3-224 hash algorithm support
WP_HAVE_SHA3 256 SHA3-256 hash algorithm support
WP_HAVE_SHA3 384 SHA3-384 hash algorithm support
WP_HAVE_SHA3_512 SHA3-512 hash algorithm support
WP_HAVE_SHA512 SHA512 hash algorithm support
WP_HAVE_SHA512_224 SHA512/224 hash algorithm support
WP_HAVE_SHA512_256 SHA512/256 hash algorithm support
WP_HAVE_SHAKE_256 SHAKE256 extendable output function
support
WP_HAVE_TLS1_PRF TLS1 Pseudo-Random Function support
WP_HAVE_X25519 X25519 elliptic curve support
WP_HAVE_X448 X448 elliptic curve support
WP_RSA_PSS_ENCODING RSA-PSS (Probabilistic Signature Scheme)

encoding support

COPYRIGHT ©2024 wolfSSL Inc. 11

4 FIPS 140-3 SUPPORT

4 FIPS 140-3 Support

wolfProvider has been designed to work with FIPS 140-3 validated versions of wolfCrypt when com-
piled against a FIPS-validated version of wolfCrypt. This usage scenario requires a properly licensed
and validated version of wolfCrypt, as obtained from wolfSSL Inc.

Note that wolfCrypt FIPS libraries cannot be “switched” into non-FIPS mode. wolfCrypt FIPS and regular
wolfCrypt are two separate source code packages.

When wolfProvider is compiled to use wolfCrypt FIPS, it will only include support and register provider
callbacks for FIPS-validated algorithms, modes, and key sizes. If OpenSSL based applications call non-
FIPS validated algorithms, execution may not enter wolfProvider and could be handled by the default
OpenSSL provider or other registered provider providers, based on the OpenSSL configuration.

NOTE : If targeting FIPS compliance, and non-wolfCrypt FIPS algorithms are called from a different
provider, those algorithms are outside the scope of both wolfProvider and wolfCrypt FIPS and may not
be FIPS validated.

For more information on using wolfCrypt FIPS (140-2 / 140-3), contact wolfSSL at facts@wolfssl.com.

COPYRIGHT ©2024 wolfSSL Inc. 12

5 LOGGING

5 Logging

wolfProvider supports output of log messages for informative and debug purposes. To enable debug
logging, wolfProvider must first be compiled with debug support enabled. If using Autoconf, this is
done using the --enable-debug option to . /configure:

./configure --enable-debug

If not using Autoconf/configure, define WOLFPROV_DEBUG when compiling the wolfProvider library.

5.1 Controlling Logging Levels

wolfProvider supports the following logging levels. These are defined in the “include/wolf-
provider/wp_logging.h” header file as part of the wolfProvider_LogType enum:

Log Enum Description Log Enum Value

WP_LOG_ERROR Logs errors 0x0001

WP_LOG_ENTER Logs when entering 0x0002
functions

WP_LOG_LEAVE Logs when leaving 0x0004
functions

WP_LOG_INFO Logs informative 0x0008
messages

WP_LOG_VERBOSE Verbose logs, including 0x0010

encrypted/decrypted/di-
gested data
WP_LOG_LEVEL_DEFAULT Default log level, all except WP_LOG_ERROR | WP_LOG_ENTER |
verbose level WP_LOG_LEAVE | WP_LOG_INFO
WP_LOG_LEVEL_ALL All log levels are enabled WP_LOG_ERROR | WP_LOG_ENTER |
WP_LOG_LEAVE | WP_LOG_INFO |
WP_LOG_VERBOSE

The default wolfProvider logging level includes WP_LOG_ERROR, WP_LOG_ENTER, WP_LOG_LEAVE, and
WP_LOG_INFO. This includes all log levels except verbose logs (WP_LOG_VERBOSE).

Log levels can be controlled using the wolfProv_SetlLoglLevel (int mask). For example, to turn on
only error and informative logs:

#include <wolfprovider/wp_logging.h>

ret = wolfProv_SetLogLevel (WP_LOG_ERROR | WP_LOG_INFO);
if (ret !'= 0) {

printf“(Failed to set logging level\”n);
}

5.2 Controlling Component Logging

wolfProvider allows logging on a per-component basis. Components are defined in the wolf-
Provider_LogComponents enum in include/wolfprovider/wp_logging.h:

COPYRIGHT ©2024 wolfSSL Inc. 13

5.3 Setting a Custom Logging Callback 5 LOGGING

Log Component Enum Description Component Enum Value
WP_LOG_RNG Random number 0x0001
generation
WP_LOG_DIGEST Digests 0x0002
(SHA-1/2/3)
WP_LOG_MAC MAC functions 0x0004
(HMAC, CMAQ)
WP_LOG_CIPHER Ciphers (AES, 0x0008
3DES)
WP_LOG_PK Public Key 0x0010
Algorithms (RSA,
ECQ)
WP_LOG_KE Key Agreement 0x0020
Algorithms (DH,
ECDH)
WP_LOG_KDF Password Based 0x0040
Key Derivation
Algorithms
WP_LOG_PROVIDER All provider 0x0080
specific logs
WP_LOG_COMPONENTS_ALL Log all WP_LOG_RNG | WP_LOG_DIGEST |
components WP_LOG_MAC | WP_LOG_CIPHER |

WP_LOG_PK | WP_LOG_KE |
WP_LOG_KDF | WP_LOG_PROVIDER
WP_LOG_COMPONENTS_DEFAULT Default WP_LOG_COMPONENTS_ALL
components
logged (all).

The default wolfProvider logging configuration logs all components (WP_LOG_COMPONENTS_DEFAULT).

Components logged can be controlled using the wolfProv_SetLogComponents(int mask). For
example, to turn on logging only for the Digest and Cipher algorithms:

#include <wolfprovider/wp_logging.h>

ret = wolfProv_SetLogComponents (WP_LOG_DIGEST | WP_LOG_CIPHER);
if (ret !'= 0) {
printf”(Failed to set log components\”n);

}

5.3 Setting a Custom Logging Callback

By default wolfProvider outputs debug log messages using fprintf() to stderr.

Applications that want to have more control over how or where log messages are output can write and
register a custom logging callback with wolfProvider. The logging callback should match the prototype
of wolfProvider_Logging_cb in include/wolfprovider/wp_logging.h:

/**

* wolfProvider logging callback.

* logLevel - [IN] - Log level of message

* component - [IN] - Component that log message is coming from
* logMessage - [IN] - Log message

*/

COPYRIGHT ©2024 wolfSSL Inc. 14

5.3 Setting a Custom Logging Callback 5 LOGGING

typedef void (* wolfProvider_Logging_cb)(const int loglevel,
const int component,
const char *const logMessage);

The callback can then be registered with wolfProvider using thewolfProv_SetLoggingCb (wolfProv_Logging_cb
logf). For example:

void customLogCallback (const int loglLevel, const int component,
const char* const logMessage)

{

(void)logLevel;

(void)component;

fprintf(stderr, “wolfProvider log message: %d\"n, logMessage);
}
int main (void)
{

int ret;

. ret = wolfProv_SetlLoggingCb((void(*)(void))my_Logging_cb);
if (ret !'= 0) {
/* failed to set logging callback */

}

}

COPYRIGHT ©2024 wolfSSL Inc. 15

6 PORTABILITY

6 Portability

wolfProvider has been designed to leverage the portability of the associated wolfCrypt and OpenSSL
libraries.

6.1 Threading

wolfProvider is thread safe and uses mutex locking mechanisms from wolfCrypt (wc_LockMutex(),
wc_UnLockMutex ())where necessary. wolfCrypt has mutex operations abstracted for supported plat-
forms.

6.2 Dynamic Memory Usage

wolfProvider uses OpenSSL's memory allocation functions to remain consistent with OpenSSL behavior.
Allocation functions used internally to wolfProvider include OPENSSL_malloc (), OPENSSL_free(),
OPENSSL_zalloc(), and OPENSSL_realloc().

6.3 Logging
wolfProvider logs by default to stderr via fprintf (). Applications can override this by registering a
custom logging function (see Chapter 5).

Additional macros that may be defined when compiling wolfProvider to adjust logging behavior in-
clude:

WOLFPROV_USER_LOG - Macro that defines the nameof function for log output. Users can define this
to a custom log function to be used in place of fprintf.

WOLFPROV_LOG_PRINTF - Define that toggles the usageof fprintf (to stderr) to use printf (to stdout)
instead. Not applicable if using WOLFPROV_USER_LOG or custom logging callback.

COPYRIGHT ©2024 wolfSSL Inc. 16

7 LOADING WOLFPROVIDER

7 Loading wolfProvider

7.1 Configuring OpenSSL to Enable Provider Usage

For documentation on how applications use and consume OpenSSL providers, refer to the OpenSSL
documentation:

OpenSSL 3.0

If the application is configured to read/use an OpenSSL config file, additional provider setup steps can
be done there. For OpenSSL config documentation, reference the OpenSSL documentation:

OpenSSL 3.0

An application can read and consume the default OpenSSL config file (openssl.cnf) or config as set by
OPENSSL_CONF environment variable and default [openss|_conf] section.

Alternatively to using an OpenSSL config file, applications can explicitly initialize and register wolf-
Provider using the desired OSSL_PROVIDER_* APIs. As one example, initializing wolfProvider and reg-
istering for all algorithms could be done using:

OSSL_PROVIDER *prov = NULL;

const char *build = NULL;

OSSL_PARAM request[] = {
{ "buildinfo", OSSL_PARAM_UTF8_PTR, &build, @, @ },
{ NULL, @, NULL, o, 0 }

b

if ((prov = OSSL_PROVIDER_load(NULL, "libwolfprov")) != NULL
&& OSSL_PROVIDER_get_params(prov, request))
printf("Provider 'libwolfprov' buildinfo: %s\n", build);
else

ERR_print_errors_fp(stderr);

if (OSSL_PROVIDER_self_test(prov) == 0)
printf("Provider selftest failed\n");
else

printf("Provider selftest passed\n");

OSSL_PROVIDER_unload(pzrov);

7.2 Loading wolfProvider from an OpenSSL Configuration File

wolfProvider can be loaded from an OpenSSL config file if an application using OpenSSL is set up to
process a config file. An example of how the wolfProvider library may be added to a config file is below.

openssl_conf = openssl_init

[openss]_init]
providers = provider_sect

[provider_sect]
libwolfprov = libwolfprov_sect

[1ibwolfprov_sect]
activate =1

COPYRIGHT ©2024 wolfSSL Inc. 17

https://www.openssl.org/docs/man3.0/man7/provider.html
https://www.openssl.org/docs/man3.0/man5/config.html

7.3 wolfProvider Static Entrypoint 7 LOADING WOLFPROVIDER

7.3 wolfProvider Static Entrypoint

When wolfProvider is used as a static library, applications can call the following entry point to load
wolfProvider:

#include <wolfprovider/wp_wolfprovider.h>
wolfssl_provider_init(const OSSL_CORE_HANDLE* handle, const OSSL_DISPATCH* in,
const OSSL_DISPATCH** out, void** provCtx);

COPYRIGHT ©2024 wolfSSL Inc. 18

8 WOLFPROVIDER DESIGN

8 wolfProvider Design

wolfProvider is composed of the following source files, all located under the “src” subdirectory of the
wolfProvider package.

Source File

Description

wp_wolfprov.c

wp_internal.c

wp_logging.c

wp_aes_aead.c

wp_aes_block.c
wp_aes_stream.c
wp_aes_wrap.c
wp_cmac.c

wp_dec_epki2pki.c

wp_dec_pem2der.c

wp_des.c
wp_dh_exch.c
wp_dh_kmgmt.c
wp_digests.c
wp_drbg.c
wp_ecc_kmgmt.c

wp_ecdh_exch.c

wp_ecdsa_sig.c
wp_ecx_exch.c

wp_ecx_kmgmt.c
wp_ecx_sig.c
wp_file_store.c

wp_fips.c
wp_gmac.c

COPYRIGHT ©2024 wolfSSL Inc.

Contains library entry points. Calls OpenSSL
IMPLEMENT_DYNAMIC_BIND_FN for dynamic
loading of the library using the OpenSSL provider
framework. Also includes static entry points
when compiled and used as a static library.
Includes wolfprovider_bind() function, which
handles registration of provider algorithm
callbacks. Also includes other wolfprovider
internal functionality.

wolfProvider logging framework and function
implementations.

wolfProvider AES-AEAD (Authenticated
Encryption with Associated Data)
implementation.

wolfProvider AES-ECB and AES-CBC
implementation.

wolfProvider AES stream cipher implementation.
wolfProvider AES key wrapping implementation.
wolfProvider CMAC (Cipher-based Message
Authentication Code) implementation.
wolfProvider encrypted private key to private key
conversion implementation.

wolfProvider PEM to DER format conversion
implementation.

wolfProvider DES implementation.

wolfProvider DH key exchange implementation.
wolfProvider DH key management
implementation.

wolfProvider message digest implementations
(SHA-1, SHA-2, SHA-3, ..).

wolfProvider DRBG (Deterministic Random Bit
Generator) implementation.

wolfProvider ECC key management
implementation.

wolfProvider ECDH key exchange
implementation.

wolfProvider ECDSA signature implementation.
wolfProvider ECX key exchange implementation
(X25519, X448, ...).

wolfProvider ECX key management
implementation.

wolfProvider ECX signature implementation
(Ed25519, Ed448, ...).

wolfProvider file storage implementation.
wolfProvider FIPS validation implementation.
wolfProvider GMAC (Galois/Counter Mode)
implementation.

19

8.1 wolfProvider Entry Points

8 WOLFPROVIDER DESIGN

Source File Description

wp_hkdf.c wolfProvider HKDF (HMAC-based Key Derivation
Function) implementation.

wp_hmac.c wolfProvider HMAC implementation.

wp_kbkdf.c wolfProvider KBKDF (Key-Based Key Derivation

wp_kdf_exch.c
wp_kdf_kmgmt.c

wp_krb5kdf.c
wp_mac_kmgmt.c

wp_mac_sig.c
wp_params.c

wp_pbkdf2.c
wp_rsa_asym.c
wp_rsa_kem.c
wp_rsa_kmgmt.c
wp_rsa_sig.c

wp_tls1_prf.c
wp_tls_capa.c

Function) implementation.

wolfProvider KDF key exchange implementation.
wolfProvider KDF key management
implementation.

wolfProvider Kerberos 5 KDF implementation.
wolfProvider MAC key management
implementation.

wolfProvider MAC signature implementation.
wolfProvider parameter handling
implementation.

wolfProvider PBKDF2 (Password-Based Key
Derivation Function 2) implementation.
wolfProvider RSA asymmetric encryption
implementation.

wolfProvider RSA KEM (Key Encapsulation
Mechanism) implementation.

wolfProvider RSA key management
implementation.

wolfProvider RSA signature implementation.
wolfProvider TLS 1.0 PRF implementation.
wolfProvider TLS capabilities implementation.

8.1 wolfProvider Entry Points

The main entry points into the wolfProvider library are OSSL_provider_init() and wolfssl_provider_init().

OSSL_provider_init() is the standard OpenSSL provider entry point that is called automatically by
OpenSSL when the provider is loaded dynamically. This function is defined in wp_wolfprov.c and
serves as a wrapper that callswolfssl_provider_init().

wolfssl_provider_init() is the core initialization function that:
* Sets up the provider context
+ Initializes the dispatch table with provider functions
+ Handles FIPS mode configuration
+ Sets up debugging if enabled

* Returns the provider's dispatch table containing function pointers for:

wolfprov_teardown - Provider cleanup
wolfprov_gettable_params - Parameter table retrieval
wolfprov_get_params - Parameter retrieval
wolfprov_query - Operation querying

wolfssl prov_get_capabilities - Capability reporting

The provider is loaded by OpenSSL when applications request wolfProvider algorithms, and the dis-
patch table allows OpenSSL to call the appropriate wolfProvider functions for cryptographic opera-
tions.

COPYRIGHT ©2024 wolfSSL Inc. 20

8.2 wolfProvider Dispatch Table Functions 8 WOLFPROVIDER DESIGN

8.2 wolfProvider Dispatch Table Functions

The wolfProvider dispatch table contains several key functions that handle different aspects of provider
operation. Each function serves a specific purpose in the OpenSSL provider framework.

Note on OSSL Parameters (Referenced Later): OSSL parameters are a standardized way for OpenSSL
to exchange configuration data and capabilities information with providers. Parameters can repre-
sent simple values (integers, strings, booleans) or complex structures, and they enable applications
to query provider capabilities, configure behavior, and retrieve status information. The parameter
system provides a type-safe, extensible mechanism for provider-application communication.

8.2.1 wolfprov_teardown

The wolfprov_teardown() function is responsible for cleaning up wolfProvider when it is unloaded
by OpenSSL. It performs the following cleanup tasks:

* Frees allocated provider context and resources

* Cleans up any remaining algorithm implementations

* Removes registered callbacks and handlers

* Ensures proper memory deallocation to prevent memory leaks
* Resets any global state maintained by the provider

This function is called automatically by OpenSSL when the provider is being unloaded, ensuring that
all resources are properly released.

8.2.2 wolfprov_gettable_params

The wolfprov_gettable_params () function returns a table of parameter descriptors that define
what parameters the provider supports. This function accomplishes the following tasks:

+ Defines the structure and types of parameters that can be retrieved

+ Provides metadata about parameter names, types, and descriptions

+ Enables OpenSSL to understand what parameters are available from the provider
* Supports parameter validation and type checking

+ Allows applications to discover available provider parameters

The returned table contains parameter definitions that applications can use to query provider capabil-
ities and configuration options.

8.2.3 wolfprov_get_params

The wolfprov_get_params () function retrieves specific parameter values from the provider. This
function:

+ Accepts parameter requests from OpenSSL or applications

* Returns the current values of requested parameters

* Handles parameter type conversion and validation

* Provides access to provider configuration and state information

* Supports both simple parameters and complex parameter structures

Common parameters that can be retrieved include provider version, supported algorithms, FIPS mode
status, and other configuration details.

8.2.4 wolfssl_prov_get_capabilities

The wolfssl_prov_get_capabilities() function reports the cryptographic capabilities of wolf-
Provider to OpenSSL. It provides capability information which:

COPYRIGHT ©2024 wolfSSL Inc. 21

8.2 wolfProvider Dispatch Table Functions 8 WOLFPROVIDER DESIGN

* Returns information about supported algorithms and operations

* Provides details about algorithm parameters and constraints

* Indicates FIPS compliance and validation status

* Reports performance characteristics and limitations

* Enables OpenSSL to make informed decisions about algorithm selection

The capabilities information helps OpenSSL determine when to use wolfProvider algorithms and how
to configure them appropriately for different use cases.

8.2.5 wolfprov_query

The wolfprov_query () function is the primary mechanism for algorithm discovery and registration
in wolfProvider. It serves as the central routing mechanism that:

* Handles requests from OpenSSL for specific algorithm implementations

* Returns the appropriate algorithm structure when a supported algorithm is requested
* Provides operation-specific dispatch tables for cryptographic operations

* Manages algorithm registration and lookup within the provider

* Supports both symmetric and asymmetric cryptographic operations

* Enables dynamic algorithm discovery based on OpenSSL's requirements

When OpenSSL requests an algorithm (such as AES, RSA, SHA-256, etc.), wolfprov_query() deter-
mines if wolfProvider supports that algorithm and returns the corresponding implementation struc-
ture. This function acts as the central routing mechanism that connects OpenSSL's algorithm requests
to the specific wolfProvider implementations found in the various source files (e.g., wp_aes_block.c,
wp_rsa_sig.c, etc.).

COPYRIGHT ©2024 wolfSSL Inc. 22

9 NOTES ON OPEN SOURCE INTEGRATION

9 Notes on Open Source Integration

wolfProvider conforms to the general OpenSSL provider framework and architecture. As such, it can
be leveraged from any OpenSSL-consuming application that correctly loads and initializes providers
and wolfProvider through an OpenSSL configuration file or programmatically via API calls.

wolfSSL has tested wolfProvider with numerous open source projects through automated CI/CD work-
flows. This chapter contains notes and tips on wolfProvider integration with the tested projects.

9.1 Tested Open Source Projects

The following Open Source Projects (OSPs) have been tested and verified to work with wolfProvider:

9.1.1 Network and Web Technologies

* cURL - Command line tool for transferring data with URLs
* gRPC - High-performance RPC framework

+ libwebsockets - Lightweight C library for websockets

* Nginx - High-performance HTTP server and reverse proxy
* Qt5 Network - Qt networking module

9.1.2 Security and Authentication

* OpenSSH - Secure shell implementation

* libssh2 - SSH2 library

+ libfido2 - FIDO2 library for WebAuthn

* OpenSC - Smart card tools and middleware
* pam-pkcs11 - PAM module for PKCS#11

* OpenVPN - VPN solution

+ Stunnel - SSL wrapper for network services

9.1.3 System and Network Tools

+ systemd - System and service manager

+ tcpdump - Network packet analyzer

* rsync - File synchronization utility

* tnftp - Enhanced FTP client

* iperf - Network performance measurement tool
+ IPMItool - IPMI management tool

* PPP - Point-to-Point Protocol implementation

9.1.4 Directory and Identity Services

* OpenlLDAP - Lightweight Directory Access Protocol
+ SSSD - System Security Services Daemon
* Net-SNMP - Network management protocol implementation

9.1.5 Cryptography and PKI

* cjose - C library for JWT

+ libeac3 - Electronic Authentication Components
+ libhashkit2 - Consistent hashing library

* liboauth2 - OAuth2 library

COPYRIGHT ©2024 wolfSSL Inc. 23

9.2 General Setup 9 NOTES ON OPEN SOURCE INTEGRATION

* libtss2 - TPM2 Software Stack

* tpm2-tools - TPM2 tools

+ xmlsec - XML Security library

+ sscep - SCEP client implementation

9.1.6 Development and Testing

+ Asan - Address Sanitizer testing
* Codespell - Spell checker for source code
* Multi-Compiler - Multi-compiler testing

9.1.7 Remote Access and Display
* x11vnc - VNC server for X11
* python3-ntp - Python NTP library
9.1.8 Other Utilities
*+ Socat - Multipurpose relay for bidirectional data transfer
* Simple - Simple test applications
9.2 General Setup

Most of these projects require similar setup steps:
1. Clone from Github

Build with Autotools

Configure with OpenSSL

Make and Install

s N

Use wolfProvider:

export OPENSSL_CONF=/path/to/provider.conf
export OPENSSL_MODULES=/path/to/wolfprov-install/lib

After running make (or the equivalent build script) the configured version of OpenSSL can be checked
by running 1dd /path/to/compiled/binary. This will provide a list of which libraries are linked
against. If the incorrect version is present then setting some combination of these four environment
variables before rebuilding may help:

export LD_LIBRARY_PATH="/path/to/wolfssl/install/lib:/path/to/openssl/install/
1lib64"

export PKG_CONFIG_PATH="/path/to/openssl/install/1ib64/pkgconfig"

export LDFLAGS="-L/path/to/openssl/install/1ib64"

export CPPFLAGS="-I/path/to/openssl/install/include"

Further, wolfProvider gives some ability to determine if the library is actually using wolfProvider. Just
do export WOLFPROV_FORCE_FAIL=1 or WOLFPROV_FORCE_FAIL=1 /command/to/run and if the
command ends up using wolfProvider crypto it will fail.

If the project being used is included in the list of tested open source project’s then the testing scripts
can be referenced. These can be found in the wolfssl/wolfProvider repository on GitHub under
.github/workflows/.

COPYRIGHT ©2024 wolfSSL Inc. 24

https://github.com/wolfSSL/wolfProvider

9.3 Testing and Validation 9 NOTES ON OPEN SOURCE INTEGRATION

9.3 Testing and Validation

All of the above referenced open source project’s are continuously tested in the wolfProvider CI/CD
pipeline with:

* OpenSSL version 3.5.0

+ wolfSSL with both master and stable releases

* Force failure testing to ensure proper error handling
* FIPS testing is also done through a Jenkins pipeline

This comprehensive testing ensures that wolfProvider maintains compatibility with a wide range of
open source projects and their various use cases.

COPYRIGHT ©2024 wolfSSL Inc. 25

10 SUPPORT AND OPENSSL VERSION ADDING

10 Support and OpenSSL Version Adding

For support with wolfProvider contact the wolfSSL support team at support@wolfssl.com. To have
additional OpenSSL version support implemented in wolfProvider, contact wolfSSL at facts@wolfssl.co
m.

COPYRIGHT ©2024 wolfSSL Inc. 26

mailto:support@wolfssl.com
mailto:facts@wolfssl.com
mailto:facts@wolfssl.com

	Introduction
	OpenSSL Version Compatability
	Building wolfProvider
	Getting wolfProvider Source Code
	wolfProvider Package Structure
	Building on *nix
	Building OpenSSL
	Building wolfSSL
	Building wolfProvider

	Building on WinCE
	Build Options (./configure Options)
	Build Defines

	FIPS 140-3 Support
	Logging
	Controlling Logging Levels
	Controlling Component Logging
	Setting a Custom Logging Callback

	Portability
	Threading
	Dynamic Memory Usage
	Logging

	Loading wolfProvider
	Configuring OpenSSL to Enable Provider Usage
	Loading wolfProvider from an OpenSSL Configuration File
	wolfProvider Static Entrypoint

	wolfProvider Design
	wolfProvider Entry Points
	wolfProvider Dispatch Table Functions
	wolfprov_teardown
	wolfprov_gettable_params
	wolfprov_get_params
	wolfssl_prov_get_capabilities
	wolfprov_query

	Notes on Open Source Integration
	Tested Open Source Projects
	Network and Web Technologies
	Security and Authentication
	System and Network Tools
	Directory and Identity Services
	Cryptography and PKI
	Development and Testing
	Remote Access and Display
	Other Utilities

	General Setup
	Testing and Validation

	Support and OpenSSL Version Adding

