
wolfHSM Documentation

2026-01-19

1

CONTENTS CONTENTS

Contents

0.1 Introduction . 3
0.1.1 Why Choose wolfHSM? . 3

0.2 Overview . 3
0.2.1 Features . 4
0.2.2 Architecture . 4
0.2.3 Ports . 4

0.3 Getting Started With wolfHSM . 5
0.3.1 Basic Client Configuration . 5
0.3.2 Basic Server Configuration . 7

0.4 Library Design / wolfHSM Internals . 9
0.4.1 Table of Contents: . 9
0.4.2 Generic Component Architecture . 10
0.4.3 Communications . 11
0.4.4 Non Volatile Memory . 13
0.4.5 Key Management . 14
0.4.6 Cryptographic Operations . 15
0.4.7 AUTOSAR SHE . 16

0.5 wolfHSM Client Library . 16
0.5.1 Table of Contents . 16
0.5.2 API Return Codes . 16
0.5.3 Split Transaction Processing . 16
0.5.4 The Client Context . 17
0.5.5 NVM Operations . 19
0.5.6 NVM Flags . 21
0.5.7 Key Management . 21
0.5.8 Key Revocation . 21
0.5.9 Cryptography . 23
0.5.10 AUTOSAR SHE API . 25

0.6 wolfHSM Server Library . 25
0.6.1 Getting Started . 25
0.6.2 Architecture . 25
0.6.3 API Reference . 25
0.6.4 Key Management . 25
0.6.5 Cryptographic . 26

0.7 Customizing wolfHSM . 26
0.7.1 Library Configuration . 26
0.7.2 DMA Callbacks . 26
0.7.3 DMA Address Allow List . 29
0.7.4 Custom Callbacks . 30

0.8 WolfHSM Porting . 34
0.8.1 WolfHSM Porting Overview . 35
0.8.2 WolfHSM Ports . 35
0.8.3 WolfHSM Porting Interface . 36

.1 wolfHSM API reference . 36
.1.1 Key Revocation . 36

.2 wolfhsm/wh_client.h . 37
.2.1 Types . 37
.2.2 Functions . 37
.2.3 Attributes . 50
.2.4 Types Documentation . 50
.2.5 Functions Documentation . 50
.2.6 Attributes Documentation . 105

COPYRIGHT ©2024 wolfSSL Inc. 2

0.1 Introduction CONTENTS

.2.7 Source code . 105
.3 wolfhsm/wh_client_crypto.h . 117

.3.1 Functions . 117

.3.2 Functions Documentation . 124

.3.3 Source code . 150
.4 wolfhsm/wh_server.h . 158

.4.1 Functions . 158

.4.2 Functions Documentation . 159

.4.3 Source code . 165

0.1 Introduction
This manual is written as a technical guide to the wolfHSM embedded hardware security module li-
brary. It will explain how to build and get started with wolfHSM, provide an overview of build options,
features, portability enhancements, support, and much more.
You can find the PDF version of this document here.

0.1.1 Why Choose wolfHSM?

Automotive HSMs (Hardware Security Modules) dramatically improve the security of cryptographic
keys and processing. They achieve this by isolating signature verification and cryptographic execution,
the very foundations of security, into physically independent processors. These HSMs are not just rec-
ommended, but often mandatory for ECUs that demand robust security. In line with this, wolfSSL has
seamlessly integrated our popular, rigorously tested, and industry-leading cryptographic library to
operate in widely used Automotive HSMs such as Aurix Tricore TC3XX. WolfHSM, with its sole depen-
dency on wolfCrypt, ensures portability across almost any runtime environment. It also facilitates a
user-friendly client interface, allowing direct utilization of wolfCrypt APIs.
wolfHSM provides a portable and open-source abstraction to hardware cryptography, non-volatile
memory, and isolated secure processing, maximizing security and performance for ECUs. By inte-
grating the wolfCrypt software crypto engine on hardware HSMs like Infineon Aurix Tricore TC3XX,
Chinese-mandated government algorithms like SM2, SM3, and SM4 are available. Additionally, Post
Quantum Cryptography algos like Kyber, LMS, XMSS, and others are easily made available to automo-
tive users to meet customer requirements. At the same time, when hardware cryptographic process-
ing is available on the HSM, we consume it to enhance performance.
wolfBoot is a mature, portable, secure bootloader solution designed for bare-metal bootloaders and
equipped with failsafe NVM controls. It offers comprehensive firmware authentication and update
mechanisms, leveraging a minimalistic design and a tiny HAL API, which makes it fully independent
from any operating system or bare-metal application. wolfBoot efficiently manages the flash interface
and pre-boot environment, accurately measures and authenticates applications, and utilizes low-level
hardware cryptography as needed. wolfBoot can use the wolfHSM client to support HSM-assisted
application core secure boot. Additionally, wolfBoot can run on the HSM core to ensure the HSM
server is intact, offering a secondary layer of protection. This setup ensures a secure boot sequence,
aligning well with the booting processes of HSM cores that rely on NVM support.

0.2 Overview
wolfHSM is a software framework that provides a unified API for HSMoperations such as cryptographic
operations, key management, and non-volatile storage. It is designed to improve portability of code
related to HSM applications, easing the challenge of moving between hardware with enhanced se-
curity features without being tied to any vendor-specific library calls. It dramatically simplifies client

COPYRIGHT ©2024 wolfSSL Inc. 3

https://www.wolfssl.com/documentation/manuals/wolfhsm/wolfHSM-Manual.pdf

0.2 Overview CONTENTS

applications by allowing direct use of wolfCrypt APIs, with the library automatically offloading all sen-
sitive cryptographic operations to the HSM core as remote procedure calls with no additional logic
required by the client app.
Although initially targeted to automotive-style HSM-enabled microcontrollers, wolfHSM provides an
extensible solution to support future capabilities of platforms while still supporting standardized in-
terfaces and protocols such as PKCS11 and AUTOSAR SHE. It has no external dependencies other than
wolfCrypt and is portable to almost any runtime environment.

0.2.1 Features

• Secure non-volatile object storage with user-based permissions
• Cryptographic key management with support for hardware keys
• Hardware cryptographic support for compatible devices
• Fully asynchronous client API
• Flexible callback architecture enables custom use cases without modifying library
• Use wolfCrypt APIs directly on client, with automatic offload to HSM core
• Image manager to support chain of trust
• Integration with AUTOSAR
• Integration with SHE+
• PKCS11 interface available
• TPM 2.0 interface available
• Secure OnBoard Communication (SecOC) module integration available
• Certificate handling
• Symmetric and Asymmetric keys and cryptography
• Supports “crypto agility” by providing every algorithm implemented in wolfCrypt, not just those
implemented by your silicon vendor

• FIPS 140-3 available

0.2.2 Architecture

wolfHSM employs a client-server architecture where the server runs in a trusted and secure environ-
ment (typically on a secure coprocessor) and the client is a library that can be linked against user
applications. This architecture ensures that sensitive cryptographic operations and key management
are handled securely within the server, while the client library abstracts away the lower level commu-
nication with the server.

• Server: The server component of wolfHSM is a standalone application that runs on the HSM core.
It handles cryptographic operations, key management, and non-volatile storage within a secure
environment. The server is responsible for processing requests from clients and returning the
results.

• Client: The client component of wolfHSM is a library that can be linked against user applications.
It provides APIs for sending requests to the server and receiving responses. The client abstracts
the complexities of communication and ensures that the application can interact with the HSM
securely and efficiently.

0.2.3 Ports

wolfHSM itself is not executable and it does not contain any code to interact with any specific hardware.
In order for wolfHSM to run on a specific device, the library must be configured with the necessary
hardware drivers and abstraction layers so that the server application can run and communicate with
the client. Specifically, getting wolfHSM to run on real hardware requires the implementation of the
following:

• Server application startup and hardware initialization

COPYRIGHT ©2024 wolfSSL Inc. 4

0.3 Getting Started With wolfHSM CONTENTS

• Server wolfCrypt configuration
• Server non-volatile memory configuration
• Server and client transport configuration
• Server and client connection handling

The code that provides these requirements and wraps the server API into a bootable application is
collectively referred to as a wolfHSM “port”.
Official ports of wolfHSM are provided for various supported architectures, with each port providing
the implementation of the wolfHSM abstractions tailored to the specific device. Each port contains:

• Standalone Reference Server Application: This application is meant to run on the HSM core and
handle all secure operations. It comes fully functional out-of-the-box but can also be customized
by the end user to support additional use cases

• Client Library: This library can be linked against user applications to facilitate communication
with the server

0.2.3.1 Supported Ports wolfHSM has supported ports for the following devices/environments:
• POSIX runtime
• ST Micro SPC58N*
• Infineon Aurix TC3xx*
• Infineon Aurix TC4xx* (coming soon)
• Infineon Traveo T2G* (coming soon)
• Renesas RH850* (coming soon)
• Renesas RL78* (coming soon)
• NXP S32* (coming soon)

With additional ports on the way.
• These ports, unfortunately, require an NDA with the silicon vendor to obtain any information
about the HSM core. Therefore, the wolfHSM ports for these platforms are not public and are
only available to qualified customers. If you wish to access a restricted wolfHSM port, please
contact us at support@wolfssl.com.

0.3 Getting Started With wolfHSM
Themost commonuse case forwolfHSM is addingHSM-enabled functionality to an existing application
that runs on one of the application cores of a multi-core device with an HSM coprocessor.
The first step required to run wolfHSM on a device is to follow the steps in the specific wolfHSM port
to get the reference server running on the HSM core. Once the wolfHSM server app is loaded on the
device and boots, client applications can link against the wolfHSM client library, configure an instance
of thewolfHSM client structure, and interact with theHSM through thewolfHSM client API and through
the wolfCrypt API.
Each wolfHSM port contains a client demo app showing how to set up the default communication
channel and interact with the server. The server reference implementation can also be customized
through server callbacks to extend its functionality, which can be invoked through client requests.

0.3.1 Basic Client Configuration

Configuring a wolfHSM client involves allocating a client context structure and initializing it with a valid
client configuration that enables it to communicate with a server.
The client context structure whClientContext holds the internal state of the client and its communi-
cation with the server. All client APIs take a pointer to the client context.

COPYRIGHT ©2024 wolfSSL Inc. 5

0.3 Getting Started With wolfHSM CONTENTS

The client configuration structure holds the communication layer configuration (whCommClientConfig)
that will be used to configure and initialize the context for the server communication. The whComm-
ClientConfig structure binds an actual transport implementation (either built-in or custom) to the
abstract comms interface for the client to use.
The general steps to configure a client are:

1. Allocate and initialize a transport configuration structure, context, and callback implementation
for the desired transport

2. Allocate comm client configuration structure and bind it to the transport configuration from step
1 so it can be used by the client

3. Allocate and initialize a client configuration structure using the comm client configuration in step
2

4. Allocate a client context structure
5. Initialize the client with the client configuration by calling wh_Client_Init()
6. Use the client APIs to interact with the server

Here is a bare-minimum example of configuring a client application to use the built-in sharedmemory
transport to send an echo request to the server.
#include <string.h> /* for memcmp() */
#include "wolfhsm/client.h" /* Client API (includes comm config) */
#include "wolfhsm/wh_transport_mem.h" /* transport implementation */

/* Step 1: Allocate and initialize the shared memory transport configuration */
/* Shared memory transport configuration */
static whTransportMemConfig transportMemCfg = { /* shared memory config */ };
/* Shared memory transport context (state) */
whTransportMemClientContext transportMemClientCtx = {0};
/* Callback structure that binds the abstract comm transport interface to
* our concrete implementation */

whTransportClientCb transportMemClientCb = {WH_TRANSPORT_MEM_CLIENT_CB};

/* Step 2: Allocate client comm configuration and bind to the transport */
/* Configure the client comms to use the selected transport configuration */
whCommClientConfig commClientCfg = {

.transport_cb = transportMemClientCb,

.transport_context = (void*)transportMemClientCtx,

.transport_config = (void*)transportMemCfg,

.client_id = 123, /* unique client identifier */
};

/* Step 3: Allocate and initialize the client configuration */
whClientConfig clientCfg= {

.comm = commClientCfg,
};

/* Step 4: Allocate the client context */
whClientContext clientCtx = {0};

/* Step 5: Initialize the client with the provided configuration */
wh_Client_Init(&clientCtx, &clientCfg);

/* Step 6: Use the client APIs to interact with the server */

/* Buffers to hold sent and received data */

COPYRIGHT ©2024 wolfSSL Inc. 6

0.3 Getting Started With wolfHSM CONTENTS

char recvBuffer[WH_COMM_DATA_LEN] = {0};
char sendBuffer[WH_COMM_DATA_LEN] = {0};

uint16_t sendLen = snprintf(&sendBuffer,
sizeof(sendBuffer),
"Hello World!\n");

uint16_t recvLen = 0;

/* Send an echo request and block on receiving a response */
wh_Client_Echo(client, sendLen, &sendBuffer, &recvLen, &recvBuffer);

if ((recvLen != sendLen) ||
(0 != memcmp(sendBuffer, recvBuffer, sendLen))) {
/* Error, we weren't echoed back what we sent */

}
For more information, refer to Chapter 5: Client Library.

0.3.2 Basic Server Configuration

Note: A wolfHSM port comes with a reference server application that is already configured to run on the
HSM core and so manual server configuration is not required.
Configuring a wolfHSM server involves allocating a server context structure and initializing it with a
valid client configuration that enables it to perform the requested operations. These operations usu-
ally include client communication, cryptographic operations, managing keys, and non-volatile object
storage. Depending on the required functionality, not all of these configuration components need to
be initialized.
The steps required to configure a server that supports client communication, NVM object storage
using the NVM flash configuration, and local crypto (software only) are:

1. Initialize the server comms configuration 1. Allocate and initialize a transport configuration struc-
ture, context, and callback implementation for the desired transport 2. Allocate and initialize a
comm server configuration structure using the transport configuration from step 1.1

2. Initialize the server NVM context 1. Allocate and initialize a config, context, and callback structure
for the low-level flash storage drivers (the implementation of these structures is provided by the
port) 2. Allocate and initialize an NVM flash config, context, and callback strucure and bind the
port flash configuration from step 2.1 to them 3. Allocate an NVM context structure and initialize
it with the configuration from step 2.2 using wh_Nvm_Init()

3. Allocate and initialize a crypto context structure for the server
4. Initialize wolfCrypt (before initializing the server)
5. Allocate and initialize a server config structure and bind the comm server configuration, NVM

context, and crypto context to it
6. Allocate a server context structure and initialize it with the server configuration using

wh_Server_Init()
7. Set the server connection state to connected using wh_Server_SetConnected() when the un-

derlying transport is ready to be used for client communication (see wolfHSM Examples for more
information)

8. Process client requests using wh_Server_HandleRequestMessage()
The server may be configured to support NVM object storage using NVM flash configuration. Include
the steps to initialize NVM on the server after step 1.
#include <string.h> /* for memcmp() */
#include "wolfhsm/server.h" /* Server API (includes comm config) */
#include "wolfhsm/wh_transport_mem.h" /* transport implementation */

COPYRIGHT ©2024 wolfSSL Inc. 7

https://github.com/wolfSSL/wolfHSM/tree/main/examples

0.3 Getting Started With wolfHSM CONTENTS

/* Step 1.1: Allocate and initialize the shared memory transport configuration
*/↪

/* Shared memory transport configuration */
static whTransportMemConfig transportMemCfg = { /* shared memory config */ };

/* Shared memory transport context (state) */
whTransportMemServerContext transportMemServerCtx = {0};

/* Callback structure that binds the abstract comm transport interface to
* our concrete implementation */

whTransportServerCb transportMemServerCb = {WH_TRANSPORT_MEM_SERVER_CB};

/* Step 1.2: Allocate a comm server configuration structure and bind to the
* transport */

/* Configure the server comms to use the selected transport configuration*/
whCommServerConfig commServerCfg = {

.transport_cb = transportMemServerCb,

.transport_context = (void*)transportMemServerCtx,

.transport_config = (void*)transportMemCfg,

.server_id = 456, /* unique server identifier */
};

/* Initialize the server NVM context */

/* Step 2.1: Allocate and initialize context and config for port-specific
* flash storage drivers */

/* Port Flash context (structure names are port-specific) */
MyPortFlashContext portFlashCtx = {0}

/* Port Flash config */
MyPortFlashConfig portFlashCfg = { /* port specific configuration */ };

/* NVM Flash callback implementation for Port Flash */
whFlashCb portFlashCb = { /* port flash implementation of NVM Flash callbacks */

/* Step 2.2: Allocate and initialize NVM flash config structure and bind to port
* configuration from step 2.1 */

whNvmFlashConfig nvmFlashCfg = {
.cb = portFlashCb,
.context = portFlashCtx,
.config = portFlashCfg,

};
whNvmFlashContext nfc = {0};

/* Step 2.3: Allocate NVM context, config, and callback structure and
initialize↪

* with NVM flash configuration from step 2.2 */
whNvmCb nvmFlashCb = {WH_NVM_FLASH_CB};

whNvmConfig nvmConf = {
.cb = nvmFlashCb;
.context = nfc;

COPYRIGHT ©2024 wolfSSL Inc. 8

0.4 Library Design / wolfHSM Internals CONTENTS

.config = nvmFlashCfg,
};
whNvmContext nvmCtx = {0};

wh_Nvm_Init(&nvmCtx, &whNvmConfig);

/* Step 3: Allocate and initialize a crypto context structure */
whServerCryptoContext cryptoCtx {

.devID = INVALID_DEVID; /* or set to custom crypto callback devID */
};

/* Allocate and initialize the Server configuration*/
whServerConfig serverCfg = {

.comm = commServerCfg,

.nvm = nvmCtx,

.crypto = cryptoCtx,
};

/* Step 4: Initialize wolfCrypt*/
wolfCrypt_Init();

/* Step 5: Allocate and initialize server config structure and bind the comm
* server configuration and crypto context to it*/

whServerContext server = {0};
wh_Server_Init(&server, &serverCfg);

/* Set server connection state to connected when transport is ready (e.g.
* shared memory buffers cleared) */

wh_Server_SetConnected(&server, WH_COMM_CONNECTED);

/* Process client requests*/
while (1) {

wh_Server_HandleRequestMessage(&server);
}

0.4 Library Design / wolfHSM Internals
wolfHSM is a modular and extensible library designed to provide a secure and efficient hardware se-
curity module (HSM) API for embedded systems. The library is built around a set of functional com-
ponents that can be easily configured and combined to meet the specific requirements of a given ap-
plication. This chapter provides an overview of the key functional components of wolfHSM, including
the component architecture, communications layer, non-volatile memory (NVM), key management,
cryptographic operations, and hardware security module (HSM) support.

0.4.1 Table of Contents:

• Generic Component Architecture
• Communications

– Key Components
* Client/Server APIs
* Comms Layer

• Non Volatile Memory
– NVM Metadata
– NVM Access and Flags

COPYRIGHT ©2024 wolfSSL Inc. 9

0.4 Library Design / wolfHSM Internals CONTENTS

– NVM Architecture
– NVM Back-Ends

• Key Management
– Key Revocation

• Cryptographic Operations
– Hardware Cryptography Support

0.4.2 Generic Component Architecture

To support easily porting wolfHSM to different hardware platforms and build environments, each com-
ponent of wolfHSM is designed to have a common initialization, configuration, and context storage
architecture to allow compile-time, link- time, and/or run-time selection of functional components.
Hardware specifics are abstracted from the logical operations by associating callback functions with
untyped context structures, referenced as a void*.

0.4.2.1 Example component initialization The prototypical compile-time static instance configu-
ration and initialization sequence of a wolfHSM component is:
#include "wolfhsm/component.h" /* wolfHSM abstract API reference for a

component */↪
#include "port/vendor/mycomponent.h" /* Platform specific definitions of

configuration↪
* and context structures, as well as

declarations of↪
* callback functions */

/* Provide the lookup table for function callbacks for mycomponent. Note the
type↪

is the abstract type provided in wolfhsm/component.h */
whComponentCb my_cb[1] = {MY_COMPONENT_CB};

/* Fixed configuration data. Note that pertinent data is copied out of the
structure↪

* during init() */
const myComponentConfig my_config = {

.my_number = 3,

.my_string = "This is a string",
}

/* Static allocation of the dynamic state of the myComponent. */
myComponentContext my_context[1] = {0};

/* Initialization of the component using platform-specific callbacks */
const whComponentConfig comp_config[1] = {

.cb = my_cb,

.context = my_context,

.config = my_config
};

whComponentContext comp_context[1] = {0};
int rc = wh_Component_Init(comp_context, comp_config);

rc = wh_Component_DoSomething(comp_context, 1, 2, 3);
rc = wh_Component_CleanUp(comp_context);

COPYRIGHT ©2024 wolfSSL Inc. 10

0.4 Library Design / wolfHSM Internals CONTENTS

0.4.3 Communications

The communication layer of wolfHSM is designed to provide reliable, bidirectional, and packet-based
communication between clients and servers. This layer abstracts the underlying transport mecha-
nisms, allowing for flexibility and modularity. A key aspect of wolfHSM communication is split request
and response functions for both client and server, enabling synchronous polling of message reception
or asynchronous handling based on interrupt/event support.

0.4.3.1 Key Components
• Client/Server APIs: Main interface for communicating between client and server. These are the
APIs that are directly used by user applications.

• Comms layer: Defines the format and structure of messages exchanged between clients and
servers, and provides an abstract interface to the underlying transport layer implementation,
exposing a consistent interface for sending and receiving messages.

• Transport Layer: Concrete implementations of the underlying transport. Defines how data is
actually transported between client and server.

0.4.3.2 Client/Server APIs High-level client and server APIs (defined in wolfhsm/wh_client.h
and wolfhsm/wh_server.h) are the primary interface for communication. These functions abstract
the low level communications details from the caller, providing a simple split transaction interface for
logical operations.
For example, using the client API to send an echo request to the server:
/* send the echo request */
wh_Client_EchoRequest(&clientCtx, sendLen, &sendBuffer));

/* optionally do stuff */

/* poll for the server response */
while (WH_ERROR_NOTREADY == wh_Client_EchoResponse(client, &recv_len,

recv_buffer));↪

0.4.3.3 Comms Layer The comms layer encapsulates the messaging structure and control logic to
send and receive data from lower level transports. The comms layer is directly invoked by the higher
level client and server APIs. The comms layer provides comm client and comm server abstractions
that hold communication state and provide the abstract interface functions to interact with lower level
transports. The comms layer API consists of send and receive functions for requests and responses,
where the requests and responses pertain to messages rather than high level operations.
Each client is only allowed a single outstanding request to the server at a time. The server will process
a single request at a time to ensure client isolation.

0.4.3.3.1 Messages Messages comprise a header with a variable length payload. The header indi-
cates the sequence id, and type of a request or response. The header also provides additional fields
to provide auxiliary flags or session information.
/* wolfhsm/wh_comm.h */

typedef struct {
uint16_t magic;
uint16_t kind;
uint16_t seq;

COPYRIGHT ©2024 wolfSSL Inc. 11

0.4 Library Design / wolfHSM Internals CONTENTS

uint16_t size;
} whCommHeader;
Messages are used to encapsulate the request data necessary for the server to execute the desired
function and for the response to provide the results of the function execution back to the client. Mes-
sage types are grouped based on the component that is performing the function and uniquely iden-
tify which of the enumerated functions is being performed. To ensure compatibility (endianness and
version), messages include a Magic field which has known values used to indicate what operations
are necessary to demarshall data passed within the payload for native processing. Each functional
component has a “remote” implementation that converts between native values and the “on-the-wire”
message formats. The servers ensures the response format matches the request format.
In addition to passing data contents within messages, certain message types also support passing
shared or mapped memory pointers, especially for performance- critical operations where the server
component may be able to directly access the data in a DMA fashion. To avoid integer pointer size
(IPS) and size_t differences, all pointers and sizes should be sent as uint64_t when possible.
Messages are encoded in the “on-the-wire” format using the Magic field of the header indicating the
specified endianness of structure members as well as the version of the communications header (cur-
rently 0x01). Server components that process request messages translate the provided values into
native format, perform the task, and then reencode the result into the format of the request. Client re-
sponse handling is not required to process messages that do not match the request format. Encoded
messages assume the same size and layout as the native structure, with the endianness specified by
the Magic field.
Here is an example of how the client comm layer sends a request:
uint16_t req_magic = wh_COMM_MAGIC_NATIVE;
uint16_t req_type = 123;
uint16_t request_id;
char* req_data = "RequestData";
rc = wh_CommClient_SendRequest(context, req_magic, req_type, &request_id,

sizeof(req_data), req_data);
/* Do other work */

uint16_t resp_magic, resp_type, resp_id, resp_size;
char response_data[20];
while((rc = wh_CommClient_RecvResponse(context,&resp_magic, &resp_type,

&resp_id,↪
&resp_size, resp_data)) == WH_ERROR_NOTREADY) {

/* Do other work or yield */
}
Note that transport errors passed into themessage layer are expected to be fatal and the client/server
should Cleanup any context as a result.

0.4.3.4 Transports Transports provide intact packets (byte sequences) of variable size (up to amax-
imum MTU), to the messaging layer for the library to process as a request or response. Transports
implement the abstract interface defined by whTransportClientCb and are invoked directly by the
commClient/commServer when needing to send and receive data.
Custom transport modules that implement the whTransportClientCb interface can be registered
with the server and client and then are automatically used via the standard server and client request/re-
sponse functions.
Examples of a memory buffer transport module and a POSIX TCP socket transport can be found in
wolfHSM’s supported transports.

COPYRIGHT ©2024 wolfSSL Inc. 12

0.4 Library Design / wolfHSM Internals CONTENTS

0.4.3.4.1 Supported Transports wolfHSM ships with two built-in transports: a memory buffer
transport (wh_transport_mem.c) and aPOSIX TCP socket transport (port/posix_transport_tcp.c).
The memory transport is the default transport for most embedded wolfHSM ports, and is part of the
core wolfHSM library. It provides a concrete implementation of the transport callbacks using shared
memory blocks between client and server. The shared memory transport mechanism works by allo-
cating two blocks of memory, one for incoming requests and one for outgoing responses. The client
writes requests to the incomingmemory block and reads responses from the outgoingmemory block.
The server reads requests from the incoming memory block and writes responses to the outgoing
memory block. Each block contains control and status flags signaling to the consumer when it is
ready for use. This mechanism is designed to be fast and efficient, as it avoids the need for system
calls or network communication.
The POSIX TCP transport is part of the wolfHSM POSIX port. It uses TCP sockets as the transport
medium for data between client and server. The sockets are IPv4 only and non-blocking.

0.4.4 Non Volatile Memory

Non-Volatile Memory (NVM) in the context of wolfHSM is used tomanage persistent objects withmeta-
data and data blocks. The NVM library ensures reliable, atomic operations to ensure transactions are
fully committed before returning success. Key operations include adding, listing, reading, and destroy-
ing objects, as well as obtaining associated metadata.
High level NVM features include:

• API’s to associate metadata (ID, Label, Length, Access, Flags) with variable-sized data within ac-
cessible NVM

• Always recoverable using 2 erasable partitions with status flags
• Objects are added by using the next entry and programmed into free space
• Duplicated id’s are allowed but only the latest is readable
• Objects are destroyed by copying the entire space to the inactive partition without the listed
objects

• Internal epoch counters used to identify the later objects during recovery

0.4.4.1 NVM Metadata In the wolfHSM library, Non-Volatile Memory (NVM) metadata is used to
manage and describe objects stored in NVM. Thismetadata provides essential information about each
object, such as its identifier, access permissions, flags, and other attributes. Themetadata ensures that
objects can be reliably managed, accessed, and manipulated within the NVM.
/* User-specified metadata for an NVM object */
typedef struct {

whNvmId id; /* Unique identifier */
whNvmAccess access; /* Access Permissions */
whNvmFlags flags; /* Additional flags */
whNvmSize len; /* Length of data in bytes */
uint8_t label[WOLFHSM_NVM_LABEL_LEN];

} whNvmMetadata;

• ID (whNvmId id): A unique identifier for the NVM object. This ID is used to reference and access
the specific object within the NVM. It allows for operations like reading, writing, and deleting the
object.

• Access (whNvmAccess access): Defines the access permissions for the object. This field specifies
who can access the object and under what conditions. It helps enforce security policies and
ensures that only authorized entities can interact with the object.

• Flags (whNvmFlags flags): Additional flags that provide extra information or modify the be-
havior of the object. Flags can be used to mark objects with special attributes or states, such as

COPYRIGHT ©2024 wolfSSL Inc. 13

0.4 Library Design / wolfHSM Internals CONTENTS

whether the object is read-only, temporary, or has other specific properties. Length (whNvmSize
len): The length of the data associated with the object, in bytes.

• Label (uint8_t label[]): A human-readable label or name for the object.

0.4.4.2 NVM Access and Flags NVM access controls are stored in the metadata for all objects and
are returned by wh_Nvm_GetMetadata() and related client APIs.
NVM flags provide object and key policy hints that are enforced by the NVM library and keystore. Rel-
evant flags include:

• WH_NVM_FLAGS_NONMODIFIABLE: Object cannot be modified and/or destroyed.
• WH_NVM_FLAGS_NONDESTROYABLE: Object cannot be destroyed.
• WH_NVM_FLAGS_NONEXPORTABLE: Object data cannot be read/exported.
• WH_NVM_FLAGS_USAGE_*: Key usage policy flags for encrypt/decrypt/sign/verify/wrap/derive.
• WH_NVM_FLAGS_USAGE_ANY: Allow all usage flags.

0.4.4.3 NVM Architecture The wolfHSM server follows the generic component architecture ap-
proach to handle Non-Volatile Memory (NVM) operations. The configuration is divided into generic
and specific parts, allowing for flexibility and customization.

1. Generic Configuration (wh_nvm.h): This header file defines the generic interface for NVMoper-
ations. It includes function pointers for NVM operations like nvm_Read, nvm_Write, nvm_Erase,
and nvm_Init. These function pointers are part of the whNvmConfig structure, which is used to
bind an actual NVM implementation to the abstract NVM interface.

2. Specific Configuration (wh_nvm_flash.c, wh_nvm_flash.h): These files provide a specific im-
plementation of the NVM interface for flash memory. The functions defined here adhere to the
function signatures defined in the generic interface, allowing them to be used as the actual im-
plementation for the NVM operations.

The whServerContext structure includes a whNvmConfig member. This is used to bind the NVM
operations to the server context, allowing the server to perform NVM operations using the configured
NVM interface.
Steps required to initialize NVM on the server are:

1. Allocate and initialize a whNvmConfig structure, providing bindings to a specific NVM back-end
(e.g., from wh_nvm_flash.c).

2. Allocate and initialize a whServerConfig structure, and set its nvmConfigmember to the whN-
vmConfig structure initialized in step 1.

3. Allocate a whServerContext structure.
4. Initialize the server with the whServerConfig structure by calling wh_Server_Init().

This allows the server to use the configured NVM operations on the given backing store, which can be
easily swapped out by providing a different implementation in the whNvmConfig structure.

0.4.4.4 NVM Back-Ends Currently, wolfHSM only supports one NVM back-end provider: the NVM
flash module (wh_nvm_flash.c). This module provides a concrete implementation of the NMV inter-
face functions (wh_nvm.h), mapping the NVM data store to a flash memory device. The low-level flash
drivers are device-specific and themselves specified as generic components (wh_flash.h) that can be
swapped out depending on the target hardware.

0.4.5 Key Management

ThewolfHSM library provides comprehensive keymanagement capabilities, including storing, loading,
and exporting keys from non-volatile memory, caching of frequently used keys in RAM for fast access,
and interacting with hardware-exclusive device keys. Keys are stored in non-volatile memory along

COPYRIGHT ©2024 wolfSSL Inc. 14

0.4 Library Design / wolfHSM Internals CONTENTS

side other NVM objects with corresponding access protections. wolfHSM will automatically load keys
into the necessary cryptographic hardware when the key is selected for use with a specific consumer.
More information on the key management API can be found in the client library and API documenta-
tion sections.

0.4.5.1 Key Revocation Key revocation provides a lightweight mechanism to invalidate a key with-
out destroying its storage. When a key is revoked on the server, its metadata is updated by set-
ting WH_NVM_FLAGS_NONMODIFIABLE and clearing all WH_NVM_FLAGS_USAGE_* bits. The key remains
present in cache/NVM, but is no longer eligible for cryptographic operations that enforce usage flags.
Runtime behavior for revoked keys:

• Cryptographic operations that enforce usage flags return WH_ERROR_USAGE when the required
usage bit is no longer set.

• The WH_NVM_FLAGS_NONMODIFIABLE setting prevents further keymetadata changes and blocks
NVM modification or destruction checks.

• Revocation does not automatically set WH_NVM_FLAGS_NONEXPORTABLE; export behavior
remains controlled by those flags.

Persistence behavior:
• Revocation is committed to NVM for keys that already exist in NVM, so the revoked state persists
across resets or power cycles.

• If a key exists only in cache and has not been committed, the revoked state is limited to the cache
lifetime.

0.4.6 Cryptographic Operations

One of the defining features of wolfHSM is that it enables the client application to use the wolfCrypt
API directly, but with the underlying cryptographic operations actually being executed on the HSM
core. This is an incredibly powerful feature for a number of reasons:

• client applications are dramatically simpler as they do not need to set up the complicated com-
munication transactions required to pass data back and forth between the HSM

• local and remote HSM implementations can be easily switched between by changing a single
parameter to the wolfCrypt call, enabling maximum flexibility of implementation and ease of de-
velopment. Client application development can be prototyped with local instances of wolfCrypt
before the HSM core is even brought on-line

• the wolfHSM API is simple, stable, well documented, and battle tested
The ability to easily redirect wolfCrypt API calls to the wolfHSM server is based on the “crypto callback”
(a.k.a cryptocb) of wolfCrypt.
The wolfHSM client is able to redirect wolfCrypt API calls to the wolfHSM server by implementing the
remote procedure call logic as a crypto callback. The Crypto callback framework in wolfCrypt enables
users to override the default implementation of select cryptographic algorithms and provide their
own custom implementations at runtime. The wolfHSM client library registers a crypto callback with
wolfCrypt that transforms each wolfCrypt crypto API function into a remote procedure call to the HSM
server to be executed in a secure environment. Crypto callbacks are selected for use based on the
device ID (devId) parameter accepted by most wolfCrypt API calls.
wolfHSM defines the WOLFHSM_DEV_ID value to represent the wolfHSM server crypto device, which
can be passed to any wolfCrypt function as the devId parameter. wolfCrypt APIs that support the
devId parameter can be passed WOLFHSM_DEV_ID and, if supported, the cryptographic operation will
be automatically exectued by the wolfHSM server.

COPYRIGHT ©2024 wolfSSL Inc. 15

https://www.wolfssl.com/documentation/manuals/wolfssl/chapter06.html#crypto-callbacks-cryptocb

0.5 wolfHSM Client Library CONTENTS

0.4.6.1 Hardware Cryptography Support Many HSM devices also have hardware acceleration ca-
pabilities for select algorithms available. In these cases, the wolfHSM server may also support offload-
ing the HSM server-side cryptography to device hardware. If supported, the wolfHSM server can be
configured to do this automatically with no input required from the user. Any port-specific hardware
acceleration capabilities will be documented in the wolfHSM port for that device.

0.4.7 AUTOSAR SHE

TODO

0.5 wolfHSM Client Library
The client library API is the primary mechanism through which users will interact with wolfHSM. Refer
to the API documentation for a full list of available functions and their descriptions.

0.5.1 Table of Contents

• API Return Codes
• Split Transaction Processing
• The Client Context

– Initializing the client context
• NVM Operations
• NVM Access and Flags
• Key Management
• Key Revocation
• Cryptography
• AUTOSAR SHE API

0.5.2 API Return Codes

All client API functions return a wolfHSM error code indicating success or the type of failure. Some
failures are critical errors, while others may simply indicate an action is required from the caller
(e.g. WH_ERROR_NOTREADY in the case of a non-blocking operation). Many client APIs also propagate
a server error code (and in some cases an additional status) to the caller, allowing for the case where
the underlying request transaction succeeded but the server was unable to perform the operation.
Examples of this include requesting an NVM object from the server that doesn’t exist, attempting
to add an object when NVM is full, or trying to use a cryptographic algorithm that the server is not
configured to support.
Error codes are defined in wolfhsm/wh_error.h. Refer to the API documentation for more details.

0.5.3 Split Transaction Processing

Most client APIs are fully asynchronous and decomposed into split transactions, meaning there is a
separate function for the operation request and response. The request function sends the request
to the server and immediately returns without blocking. The response function polls the underlying
transport for a response, processing it if it exists, and immediately returning if it has not yet arrived.
This allows for the client to request long running operations from the server without wasting client
CPU cycles. The following example shows an example asynchronous request and response invocation
using the “echo” message:
int rc;

/* send an echo request */

COPYRIGHT ©2024 wolfSSL Inc. 16

0.5 wolfHSM Client Library CONTENTS

rc = wh_Client_EchoRequest(&clientCtx, sendLen, &sendBuffer);
if (rc != WH_ERROR_OK) {

/* handle error */
}

/* do work... */

/* poll for a server response */
while ((rc = wh_Client_EchoResponse(client, &recv_len, recv_buffer)) ==

WH_ERROR_NOTREADY) {↪
/* do work or yield */

}

if (rc != WH_ERROR_OK) {
/* handle error */

}

0.5.4 The Client Context

The client context structure (whClientContext) holds the runtime state of the client and represents
the endpoint of the connection with the server. There is a one-to-one relationship between client and
server contexts, meaning an application that interacts with multiple servers will need multiple client
contexts - one for each server. Each client API function takes a client context as an argument, indicating
which server connection the operations will correspond to. If familiar with wolfSSL, the client context
structure is analogous to the WOLFSSL connection context structure.

0.5.4.1 Initializing the client context Before using any client APIs on a client context, the struc-
ture must be configured and initialized using the whClientConfig configuration structure and the
wh_Client_Init() function.
The client configuration structure holds the communication layer configuration (whCommClientConfig)
that will be used to configure and initialize the context for the server communication. The whComm-
ClientConfig structure binds an actual transport implementation (either built-in or custom) to the
abstract comms interface for the client to use.
The general steps to configure a client are:

1. Allocate and initialize a transport configuration structure, context, and callback implementation
for the desired transport

2. Allocate and comm client configuration structure and bind it to the transport configuration from
step 1 so it can be used by the client

3. Allocate and initialize a client configuration structure using the comm client configuration in step
2

4. Allocate a client context structure
5. Initialize the client with the client configuration by calling wh_Client_Init()
6. Use the client APIs to interact with the server

Here is a bare-minimum example of configuring a client application to use the built-in sharedmemory
transport:
#include <string.h> /* for memcmp() */
#include "wolfhsm/client.h" /* Client API (includes comm config) */
#include "wolfhsm/wh_transport_mem.h" /* transport implementation */

/* Step 1: Allocate and initialize the shared memory transport configuration */

COPYRIGHT ©2024 wolfSSL Inc. 17

0.5 wolfHSM Client Library CONTENTS

/* Shared memory transport configuration */
static whTransportMemConfig transportMemCfg = { /* shared memory config */ };
/* Shared memory transport context (state) */
whTransportMemClientContext transportMemClientCtx = {0};
/* Callback structure that binds the abstract comm transport interface to
* our concrete implementation */

whTransportClientCb transportMemClientCb = {WH_TRANSPORT_MEM_CLIENT_CB};

/* Step 2: Allocate client comm configuration and bind to the transport */
/* Configure the client comms to use the selected transport configuration */
whCommClientConfig commClientCfg[1] = {{

.transport_cb = transportMemClientCb,

.transport_context = (void*)transportMemClientCtx,

.transport_config = (void*)transportMemCfg,

.client_id = 123, /* unique client identifier */
}};

/* Step 3: Allocate and initialize the client configuration */
whClientConfig clientCfg= {

.comm = commClientCfg,
};

/* Step 4: Allocate the client context */
whClientContext clientCtx = {0};

/* Step 5: Initialize the client with the provided configuration */
wh_Client_Init(&clientCtx, &clientCfg);
The client context is now initialized and can be used with the client library API functions in order to do
work. Here is an example of sending an echo request to the server:
/* Step 6: Use the client APIs to interact with the server */

/* Buffers to hold sent and received data */
char recvBuffer[WH_COMM_DATA_LEN] = {0};
char sendBuffer[WH_COMM_DATA_LEN] = {0};

uint16_t sendLen = snprintf(&sendBuffer,
sizeof(sendBuffer),
"Hello World!\n");

uint16_t recvLen = 0;

/* Send an echo request and block on receiving a response */
wh_Client_Echo(client, sendLen, &sendBuffer, &recvLen, &recvBuffer);

if ((recvLen != sendLen) ||
(0 != memcmp(sendBuffer, recvBuffer, sendLen))) {
/* Error, we weren't echoed back what we sent */

}
While there are indeed a large number of nested configurations and structures to set up, designing
wolfHSM this way allowed for different transport implementations to be swapped in and out easily
without changing the client code. For example, in order to switch from the shared memory transport
to a TCP transport, only the transport configuration and callback structures need to be changed, and
the rest of the client code remains the same (everything after step 2 in the sequence above).

COPYRIGHT ©2024 wolfSSL Inc. 18

0.5 wolfHSM Client Library CONTENTS

#include <string.h> /* for memcmp() */
#include "wolfhsm/client.h" /* Client API (includes comm config) */
#include "port/posix_transport_tcp.h" /* transport implementation */

/* Step 1: Allocate and initialize the posix TCP transport configuration */
/* Client configuration/contexts */
whTransportClientCb posixTransportTcpCb = {PTT_CLIENT_CB};
posixTransportTcpClientContext posixTranportTcpCtx = {0};
posixTransportTcpConfig posixTransportTcpCfg = {

/* IP and port configuration */
};

/* Step 2: Allocate client comm configuration and bind to the transport */
/* Configure the client comms to use the selected transport configuration */
whCommClientConfig commClientCfg = {{

.transport_cb = posixTransportTcpCb,

.transport_context = (void*)posixTransportTcpCtx,

.transport_config = (void*)posixTransportTcpCfg,

.client_id = 123, /* unique client identifier */
}};

/* Subsequent steps remain the same... */
Note that the echo request in step 6 is just a simple usage example. Once the connection to the server
is set up, any of the client APIs are available for use.

0.5.5 NVM Operations

This section provides examples of how to use the client NVM API. Blocking APIs are used for simplicity,
though the split transaction APIs can be used in a similar manner.
Client usage of the server NVM storage first requires sending an initialization request to the server.
This currently does not trigger any action on the server side but it may in the future and so it is recom-
mended to include in client applications.
int rc;
int serverRc;
uint32_t clientId; /* unused for now */
uint32_t serverId;

rc = wh_Client_NvmInit(&clientCtx, &serverRc, &clientId, &serverId);

/* error check both local and remote error codes */
/* serverId holds unique ID of server */
Once initialized, the client can create and add an object using the NvmAddObject functions. Note that
a metadata entry must be created for every object.
int serverRc;

whNvmId id = 123;
whNvmAccess access = WOLFHSM_NVM_ACCESS_ANY;
whNvmFlags flags = WOLFHSM_NVM_FLAGS_ANY;
uint8_t label[] = “My Label”;

uint8_t myData[] = “This is my data.”

COPYRIGHT ©2024 wolfSSL Inc. 19

0.5 wolfHSM Client Library CONTENTS

whClient_NvmAddObject(&clientCtx, id, access, flags, strlen(label), &label,
sizeof(myData), &myData, &serverRc);↪

Data corresponding to an existing objects can be updated in place:
byte myUpdate[] = “This is my update.”

whClient_NvmAddObject(&clientCtx, &myMeta, sizeof(myUpdate), myUpdate);
For objects that should not be copied and sent over the transport, there exist DMA versions of the
NvmAddObject functions. These pass the data to the server by reference rather than by value, al-
lowing the server to access the data in memory directly. Note that if your platform requires custom
address translation or cache invalidation before the server may access client addresses, you will need
to implement a DMA callback.
whNvmMetadata myMeta = {

.id = 123,

.access = WOLFHSM_NVM_ACCESS_ANY,

.flags = WOLFHSM_NVM_FLAGS_ANY,

.label = “My ”Label
};

uint8_t myData[] = “This is my data”.

wh_Client_NvmAddObjectDma(client, &myMeta, sizeof(myData), &myData), &serverRc
);

NVMObject data can be read using the NvmRead functions. There also exist DMA versions of NvmRead
functions that can be used identically to their AddbjectDma counterparts.
const whNvmId myId = 123; /* ID of the object we want to read */
const whNvmSize offset = 0; /* byte offset into the object data */

whNvmSize outLen; /* will hold length in bytes of the requested data */
int outRc; /* will hold server return code */

byte myBuffer[BIG_SIZE];

whClient_NvmRead(&clientCtx, myId, offset, sizeof(myData), &serverRc, outLen,
&myBuffer)↪

/* or via DMA */
whClient_NvmReadDma(&clientCtx
iint wh_Client_NvmReadDma(&clientCtx, myid, offset, sizeof(myData), &myBuffer,

&serverRc);↪

Objects can be deleted/destroyed using the NvmDestroy functions. These functions take a list (array)
of object IDs to be deleted. IDs in the list that are not present in NVM do not cause an error.
whNvmId idList[] = {123, 456};
whNvmSize count = sizeof(myIds)/ sizeof(myIds[0]);
int serverRc;

wh_Client_NvmDestroyObjectsRequest(&clientCtx, count, &idList);
wh_Client_NvmDestroyObjectsResponse(&clientCtx, &serverRc);
The objects in NVM can also be enumerated using the NvmList functions. These functions retrieve

COPYRIGHT ©2024 wolfSSL Inc. 20

0.5 wolfHSM Client Library CONTENTS

the next matching id in the NVM list starting at start_id, and sets out_count to the total number
of IDs that match access and flags:
int wh_Client_NvmList(whClientContext* c,

whNvmAccess access, whNvmFlags flags, whNvmId start_id,
int32_t *out_rc, whNvmId *out_count, whNvmId *out_id);

For a full description of all the NVM API functions, please refer to the API documentation.

0.5.6 NVM Flags

NVM objects include flags in their metadata. Flags (such as WH_NVM_FLAGS_NONMODIFIABLE,
WH_NVM_FLAGS_NONDESTROYABLE, and WH_NVM_FLAGS_NONEXPORTABLE) are enforced by the server
NVM policy checks. Key usage flags (WH_NVM_FLAGS_USAGE_*) are enforced by the keystore during
cryptographic operations.

0.5.7 Key Management

Keys meant for use with wolfCrypt can be loaded into the HSM’s keystore and optionally saved to NVM
with the following APIs:
#include "wolfhsm/wh_client.h"

uint16_t keyId = WOLFHSM_KEYID_ERASED;
uint32_t keyLen;
byte key[AES_128_KEY_SIZE] = { /* AES key */ };
byte label[WOLFHSM_NVM_LABEL_LEN] = { /* Key label */ };

whClientContext clientCtx;
whClientCfg clientCfg = { /* config */ };

wh_Client_Init(&clientCtx, &clientCfg);

wh_Client_KeyCache(clientCtx, 0, label, sizeof(label), key, sizeof(key),
&keyId);↪

wh_Client_KeyCommit(clientCtx, keyId);
wh_Client_KeyEvict(clientCtx, keyId);
keyLen = sizeof(key);
wh_Client_KeyExport(clientCtx, keyId, label, sizeof(label), key, &keyLen);
wh_Client_KeyErase(clientCtx, keyId);
wh_Client_KeyCache will store the key and label in the HSM’s ram cache and correlate it with the
keyId passed in. Using a keyId of WOLFHSM_KEYID_ERASEDwill make wolfHSM assign a new, unique
keyId that will be returned through the keyId parameter. wolfHSM has a limited number of cache
slots, configured by WOLFHSM_NUM_RAMKEYS, and will return WH_ERROR_NOSPACE if all keyslots are
full. Keys that are in cache and NVM will be removed from the cache to make room for more keys
since they’re backed up in NVM. wh_Client_KeyCommit will save a cached key to NVM with the key
indicated by it’s keyId. wh_Client_KeyEvict will evict a key from the cache but will leave it in NVM
if it’s been commited. wh_Client_KeyExport will read the key contents out of the HSM back to the
client. wh_Client_KeyErase will remove the indicated key from cache and erase it from NVM.

0.5.8 Key Revocation

Key revocation updates key metadata to prevent further cryptographic use without destroying stor-
age. Revocation clears all WH_NVM_FLAGS_USAGE_* bits and sets WH_NVM_FLAGS_NONMODIFIABLE.
The revoked state is persisted when the key is already committed to NVM.

COPYRIGHT ©2024 wolfSSL Inc. 21

0.5 wolfHSM Client Library CONTENTS

Creating a key with NVM usage flags:
int rc;
uint16_t keyId = WH_KEYID_ERASED;
byte label[WH_NVM_LABEL_LEN] = "app-signing";
byte key[AES_128_KEY_SIZE] = { /* key bytes */ };
whNvmFlags flags = WH_NVM_FLAGS_USAGE_SIGN | WH_NVM_FLAGS_NONEXPORTABLE;

rc = wh_Client_KeyCache(&clientCtx, flags, label, sizeof(label),
key, sizeof(key), &keyId);

if (rc == WH_ERROR_OK) {
rc = wh_Client_KeyCommit(&clientCtx, keyId);

}
Revoking a key:
int rc;

rc = wh_Client_KeyRevoke(&clientCtx, keyId);
if (rc != WH_ERROR_OK) {

/* handle error */
}
Attempting to use a revoked key and handling failure:
int rc;
Aes aes;
byte iv[AES_BLOCK_SIZE] = {0};
byte plain[AES_BLOCK_SIZE] = {0};
byte cipher[AES_BLOCK_SIZE] = {0};

wc_AesInit(&aes, NULL, WOLFHSM_DEV_ID);
wh_Client_AesSetKeyId(&aes, keyId);
wc_AesSetIV(&aes, iv);

rc = wh_Client_AesCbc(&clientCtx, &aes, AES_ENCRYPTION,
plain, sizeof(plain), cipher);

if (rc == WH_ERROR_USAGE) {
/* key revoked or usage not permitted */

}
wc_AesFree(&aes);
Compatibility notes:

• Keys stored with WH_NVM_FLAGS_NONE (no usage flags) are treated as not permitted for crypto-
graphic use and will return WH_ERROR_USAGE.

• Keys committed to NVM retain revocation state across resets; cached-only keys do not persist
after reset or eviction.

0.5.8.1 Key revocation client API

0.5.8.1.1 wh_Client_KeyRevokeRequest Send a key revocation request to the server (non-
blocking).
This function prepares and sends a revoke request for the specified key ID. It returns after the request
is sent; use wh_Client_KeyRevokeResponse() to retrieve the result.
Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 22

0.5 wolfHSM Client Library CONTENTS

• c: Client context.
• keyId: Key ID to revoke.

Return values:
• WH_ERROR_OK on successful request send.
• A negative error code on failure.

Error codes:
• WH_ERROR_BADARGS if c is NULL or keyId is invalid.
• Propagates comm layer errors on send failure.

0.5.8.1.2 wh_Client_KeyRevokeResponse Receive a key revocation response.
This function polls for the revoke response and returns WH_ERROR_NOTREADY until the server reply is
available.
Parameters:

• c: Client context.
Return values:

• WH_ERROR_OK on success.
• WH_ERROR_NOTREADY if the response has not arrived.
• A negative error code on failure.

Error codes:
• WH_ERROR_BADARGS if c is NULL.
• Server error codes such as WH_ERROR_NOTFOUND.

0.5.8.1.3 wh_Client_KeyRevoke Revoke a key using a blocking request/response.
This helper sends a revoke request and waits for the response.
Parameters:

• c: Client context.
• keyId: Key ID to revoke.

Return values:
• WH_ERROR_OK on success.
• A negative error code on failure.

Error codes:
• Any error code returnedbywh_Client_KeyRevokeRequest()orwh_Client_KeyRevokeResponse().

0.5.9 Cryptography

When using wolfCrypt in the client application, compatible crypto operations can be executed on the
wolfHSM server by passing WOLFHSM_DEV_ID as the devId argument. The wolfHSM client must be
initialized before using any wolfHSM remote crypto.
If wolfHSM does not yet support that algorithm, the API call will return CRYPTOCB_UNAVAILABLE.
Here is an example of how a client application would perform an AES CBC encryption operation on
the wolfHSM server:

COPYRIGHT ©2024 wolfSSL Inc. 23

0.5 wolfHSM Client Library CONTENTS

#include "wolfhsm/client.h"
#include "wolfssl/wolfcrypt/aes.h"

whClientContext clientCtx;
whClientCfg clientCfg = { /* config */ };

wh_Client_Init(&clientCtx, &clientCfg);

Aes aes;
byte key[AES_128_KEY_SIZE] = { /* AES key */ };
byte iv[AES_BLOCK_SIZE] = { /* AES IV */ };

byte plainText[AES_BLOCK_SIZE] = { /* plaintext */ };
byte cipherText[AES_BLOCK_SIZE];

wc_AesInit(&aes, NULL, WOLFHSM_DEV_ID);

wc_AesSetKey(&aes, &key, AES_BLOCK_SIZE, &iv, AES_ENCRYPTION);

wc_AesCbcEncrypt(&aes, &cipherText, &plainText, sizeof(plainText));

wc_AesFree(&aes);
If it is necessary to use an HSM-owned key instead of a client-owned key (e.g. a HSM hardware key),
client API functions such as wh_Client_SetKeyAes (or similar for other crypto algorithms) will make
wolfHSM use the indicated HSM key for the subsequent cryptographic operation instead of requiring
a client-supplied key:
#include "wolfhsm/client.h"
#include "wolfssl/wolfcrypt/aes.h"

whClientContext clientCtx;
whClientCfg clientCfg = { /* config */ };

wh_Client_Init(&clientCtx, &clientCfg);

uint16_t keyId;
Aes aes;
byte key[AES_128_KEY_SIZE] = { /* AES key */ };
byte label[WOLFHSM_NVM_LABEL_LEN] = { /* Key label */ };
byte iv[AES_BLOCK_SIZE] = { /* AES IV */ };

byte plainText[AES_BLOCK_SIZE] = { /* plaintext */ };
byte cipherText[AES_BLOCK_SIZE];

wc_AesInit(&aes, NULL, WOLFHSM_DEV_ID);

/* IV needs to be set seperate from the key */
wc_AesSetIV(&aes, iv);

/* this key can be cached at any time before use, done here for the sake of
example */↪

wh_Client_KeyCache(clientCtx, 0, label, sizeof(label), key, sizeof(key),
&keyId);↪

COPYRIGHT ©2024 wolfSSL Inc. 24

0.6 wolfHSM Server Library CONTENTS

wh_Client_SetKeyAes(&aes, keyId);

wc_AesCbcEncrypt(&aes, &cipherText, &plainText, sizeof(plainText));

/* key eviction is optional, the key can be stored in cache or NVM and used
with wolfCrypt */↪

wh_Client_KeyEvict(clientCtx, keyId);

wc_AesFree(&aes);
If it is desired to run the crypto locally on the client, all that is necessary is to pass INVALID_DEVID to
wc_AesInit():
wc_AesInit(&aes, NULL, INVALID_DEVID);
Outside of the stepsmentioned above, the usage of the wolfHSM API should be otherwise unchanged.
Please consult the wolfCrypt API reference inside the wolfSSL manual for further usage instructions
and the extensive list of supported cryptographic algorithms.

0.5.9.1 CMAC For CMAC operations that need to use cached keys, seperate wolfHSM spe-
cific functions must be called to do the CMAC hash and verify operation in one function call.
The normal wc_AesCmacGenerate_ex and wc_AesCmacVerify_ex are acceptable to use if the
client can supply a key when the functions are invoked, but in order to use a pre-cached key,
wh_Client_AesCmacGenerate and wh_Client_AesCmacVerify must be used. The non-oneshot
functions wc_InitCmac_ex, wc_CmacUpdate and wc_CmacFinal can be used with either a client-
side key or a pre-cached key. To use a cached key for these functions, the caller should pass a NULL
key parameter and use wh_Client_SetKeyCmac to set the appropriate keyId.

0.5.10 AUTOSAR SHE API

0.6 wolfHSM Server Library
The wolfHSM server library is a server-side implementation of the wolfCrypt cryptography library. It
provides an interface for applications to offload cryptographic operations to a dedicated server, which
runs the wolfHSM server software. This allows the application to perform cryptographic operations
without having to manage the cryptographic keys or perform the operations locally.

0.6.1 Getting Started

TODO

0.6.2 Architecture

TODO

0.6.3 API Reference

TODO

0.6.4 Key Management

TODO

COPYRIGHT ©2024 wolfSSL Inc. 25

https://www.wolfssl.com/documentation/manuals/wolfssl/index.html

0.7 Customizing wolfHSM CONTENTS

0.6.5 Cryptographic

wolfHSM uses wolfCrypt for all cryptographic operations, which means wolfHSM can offload any al-
gorithm supported by wolfCypt to run on the wolfHSM server. This includes the Chinese government
mandated ShāngMì ciphers (SM2, SM3, SM4), as well as post-quantum algorithms such as Kyber, LMS,
XMSS, and more!

0.7 Customizing wolfHSM
wolfHSM provides multiple points of customization via build time options and user-supplied callbacks,
enabling it to to be tailored to a wide range of use cases and environments without requiring changes
to the core library code. This chapter provides an overview of the customization options available in
wolfHSM, including:

• Library Configuration: Compile-time options that can be used to enable or disable specific fea-
tures in the library.

• DMA Callbacks: Custom callbacks that can be registered with the server to perform operations
before and after accessing client memory directly.

• DMA Address Allow List: A mechanism for the server to restrict the client’s access to specific
memory regions.

• Custom Callbacks: Custom callbacks that can be registered with the server and invoked by the
client to perform specific operations that are not covered by the default HSM capabilities.

0.7.1 Library Configuration

The wolfHSM library has a number of build options that can be turned on or off though compile time
definitions. The library expects these configuration macros to be defined in a configuration header
named wh_config.h. This file should be defined by applications using wolfHSM and located in a
directory in the compilers include path.
An example wh_config.h is distributed with every wolfHSM port providing a known good configura-
tion.
For a full list of wolfHSM configuration settings that can be defined in wh_config.h, refer to the API
documentation.

0.7.2 DMA Callbacks

The Direct Memory Access (DMA) callback feature in wolfHSM provides hooks on the server side for
custom operations before and after accessing client memory directly. This is often required when
porting to a new shared memory architecture. The feature is particularly useful for scenarios where
the server needs to perform specific actions such as cache invalidation, address translation, or other
custom memory manipulations to ensure coherency between client and server memory.
Callbacks can be registered with a server using the wh_Server_DmaRegisterCb32() and
wh_Server_DmaRegisterCb64() functions, which bind the supplied callback to all DMA opera-
tions on the server context.
Separate callback functions for handling 32 and 64-bit addresses are required, corresponding to the
distinct 32 and 64-bit client DMA API functions. Callback functions are of type whServerDmaClient-
Mem32Cb and whServerDmaClientMem64Cb, respectively, defined as:
typedef int (*whServerDmaClientMem32Cb)(struct whServerContext_t* server,

uint32_t clientAddr, void** serverPtr,
uint32_t len, whServerDmaOper oper,
whServerDmaFlags flags);

typedef int (*whServerDmaClientMem64Cb)(struct whServerContext_t* server,

COPYRIGHT ©2024 wolfSSL Inc. 26

0.7 Customizing wolfHSM CONTENTS

uint64_t clientAddr, void** serverPtr,
uint64_t len, whServerDmaOper oper,
whServerDmaFlags flags);

The DMA callback functions receive the following arguments:
• server: A pointer to the server context.
• clientAddr: The client memory address to be accessed.
• serverPtr: A pointer to a the server memory address (also a pointer), which the callback will
set after applying any necessary transformations/remappings

• len: The length of the requested memory operation in bytes
• oper: The type of memory operation (injection point in the next section) that is about to be
performed on the transformed server address

• flags: Additional flags for the memory operation. Right now these are reserved for future use
and should be ignored.

The callback should return WH_ERROR_OK on success, or an error code if an error occurs. The server
will propagate the error code back to the client if the callback fails.

0.7.2.1 Callback Locations The DMA callbacks are at four distinct points around the server’s mem-
ory access:

• Pre-Read: Callback is invoked before reading data from the client memory. The server should
use the callback to perform any necessary pre-read operations, such as address translation or
cache invalidation.

• Post-Read: Callback is invoked after reading data from the client memory. The server should use
the callback to perform any necessary post-read operations, such as cache synchronization.

• Pre-Write: Callback is invoked before writing data to the client memory. The server should use
the callback to perform any necessary pre-write operations, such as address translation or cache
invalidation.

• Post-write: Callback is invoked after writing data to the client memory. The server should use
the callback to perform any necessary post-write operations, such as cache synchronization.

The point at which the callback is invoked is passed into the callback through the oper argument,
which can take the following values:
typedef enum {

WH_SERVER_DMA_OPER_PRE_READ, /* Pre-read operation */
WH_SERVER_DMA_OPER_POST_READ, /* Post-read operation */
WH_SERVER_DMA_OPER_PRE_WRITE, /* Pre-write operation */
WH_SERVER_DMA_OPER_POST_WRITE /* Post-write operation */

} whServerDmaOper;
This enables the callback to switch on the oper value and perform custom logic based on the type
of memory operation being performed. An example DMA callback implementation is shown below:
#include "wolfhsm/wh_server.h"
#include "wolfhsm/wh_error.h"

/* Example DMA callback for 32-bit client addresses */
int myDmaCallback32(whServerContext* server, uint32_t clientAddr,

void** xformedCliAddr, uint32_t len,
whServerDmaOper oper, whServerDmaFlags flags)

{
/* Optionally transform client address to server address space, e.g.

memmap() */↪
xformedCliAddr = (void)clientAddr; /* do transformation */

COPYRIGHT ©2024 wolfSSL Inc. 27

0.7 Customizing wolfHSM CONTENTS

switch (oper) {
case WH_DMA_OPER_CLIENT_READ_PRE:

/* Pre-Read Operation here, e.g. cache invalidation */
break;

case WH_DMA_OPER_CLIENT_READ_POST:
/* Post-Read Operation here */
break;

case WH_DMA_OPER_CLIENT_WRITE_PRE:
/* Pre-Write Operation here */
break;

case WH_DMA_OPER_CLIENT_WRITE_POST:
/* Post-Write Operation here, e.g. cache flush */
break;

default:
return WH_ERROR_BADARGS;

}

return WH_ERROR_OK;
}

0.7.2.2 Callback Registration The callback can be registered with the server context, either at ini-
tialization through the server configuration structure, or at any time after initialization using the call-
back registration functions.
To register the callback at initialization, the callback function should be included in the DMA configura-
tion structure within the server configuration structure. Note that the callback functions are optional,
so unused callbacks can be set to NULL.
#include "wolfhsm/wh_server.h"

/* Example of initializing a server config structr with a DMA32 callback then
initializing the server */↪

int main(void)
{

whServerDmaConfig dmaCfg = {0};
dmaCfg.dma32Cb = myDmaCallback32;

whServerConfig serverCfg = {
.dmaCfg = dmaCfg,

/* other configuration omitted for brevity */
};

whServerContext serverCtx;

wh_Server_Init(&serverCtx, &serverCfg);

/* server app logic */
}
To register the callback after initialization, first initialize the server context with the desired configura-
tion, then call the appropriate registration function.
#include "wolfhsm/wh_server.h"

COPYRIGHT ©2024 wolfSSL Inc. 28

0.7 Customizing wolfHSM CONTENTS

int main(void)
{

whServerConfig serverCfg = { /* server config */ };

whServerContext serverCtx;

wh_Server_Init(&serverCtx, &serverCfg);

/* register the callback defined above */
wh_Server_DmaRegisterCb32(&serverCtx, myDmaCallback32);

/* server app logic */
}

0.7.3 DMA Address Allow List

wolfHSM also exposes an “allow list” for client DMA addresses, providing a mechanism for the server
to restrict the client’s access to a pre-configured list of specific memory regions. This feature is partic-
ularly useful in scenarios where the server needs to limit the client’s access to certain memory regions
to prevent unauthorized access or to ensure that the client only accesses memory that is safe to ac-
cess. For example, in a multicore system with one client running per-core, it is most likely that clients
should not be able to access each others memory regions, nor read out server memory which could
contain sensitive information like cryptographic keys.
It is important to note that the software allow list feature is meant to work as a second layer of protec-
tion on top of device-specificmemory protectionmechanisms, and should not be considered a first line
of defense in preventing unauthorized memory accesses. It is imperative that the user configure the
device-specific memory protection mechanisms required to enforce the isolation of their applications
and segment the HSM core and associated memory from the rest of the system.

0.7.3.1 Registering an Allow List Similar to the DMA callbacks, the allow list can be registered
with the server context, either at initialization through the server configuration structure, or at any
time after initialization using the allow list registration functions.
To register the list at initialization, the list should be populated in the DMA configuration structure
inside the server configuration structure.
#include "wolfhsm/wh_server.h"
#include "wolfhsm/wh_error.h"

/* Define the allowed memory regions */
const whServerDmaAddrAllowList allowList = {

.readList = {
{(void*)0x20001000, 0x100}, /* Allow read from 0x20001000 to

0x200010FF */↪
{(void*)0x20002000, 0x200}, /* Allow read from 0x20002000 to

0x200021FF */↪
},
.writeList = {

{(void*)0x20003000, 0x100}, /* Allow write from 0x20003000 to
0x200030FF */↪

{(void*)0x20004000, 0x200}, /* Allow write from 0x20004000 to
0x200041FF */↪
},

COPYRIGHT ©2024 wolfSSL Inc. 29

0.7 Customizing wolfHSM CONTENTS

};

int main()
{

whServerConfig config;

whServerDmaConfig dmaCfg = {0};
dmaCfg.allowList = &allowList;

whServerConfig serverCfg = {
.dmaCfg = dmaCfg,
/* other configuration omitted for brevity */

};

whServerContext server;

wh_Server_Init(&server, &config);

/* Server is now configured with the allowlist */
/* Perform other server operations */

/* Allow list can also be registered after initialization if the
* list is not present in the server configuration struct using:
*
* wh_Server_DmaRegisterAllowList(&server, &allowList);
*/

}
Once registered, all DMA operations requested of the server by the client will be checked against the
allow list. If the client attempts to access a memory region that is not in the allow list, the server will
return an error to the client, and the operation will not be performed.

0.7.4 Custom Callbacks

The custom callback feature in wolfHSM allows developers to extend the functionality of the library by
registering custom callback functions on the server. These callbacks can then be invoked by clients to
perform specific operations that are not covered by the default HSM capabilities such as enabling or
disabling peripheral hardware, implementing custom monitoring or authentication routines, staging
secure boot for an additional core, etc.

0.7.4.1 Server side The server can register custom callback functions that define specific opera-
tions. These functions must be of type whServerCustomCb.
/* wh_server.h */

/* Type definition for a custom server callback */
typedef int (*whServerCustomCb)(

whServerContext* server, /* points to dispatching server ctx */
const whMessageCustomCb_Request* req, /* request from client to callback */
whMessageCustomCb_Response* resp /* response from callback to client */

);
Custom server callback functions are associated with unique identifiers (IDs), which correspond to
indices into the server’s custom callback dispatch table. The client will refer to the callback by it’s ID

COPYRIGHT ©2024 wolfSSL Inc. 30

0.7 Customizing wolfHSM CONTENTS

when it requests invocation.
The custom callback has access to data passed from the client by value or by reference (useful in a
shared memory system) through the whMessageCustomCb_Request argument passed into the call-
back function. The callback can act on the input data and produce output data that can be passed back
to the client through th ewhMessageCustomCb_Response argument. The custom callback does not
need to handle sending or receiving any of the input / output client data, as this is handled externally
by wolfHSM. The response structure also contains fields for an error code and return code to propa-
gate back to the client. The error code should be populated by the callback, and the return code will
be set the return value from the custom callback.

0.7.4.2 Client Side Clients can send requests to the server to invoke these custom callbacks. The
API provides a request and response function similar to the other functions in the client API. The client
should declare an instance of a custom request structure, populate it with its custom data, and then
send it to the server using wh_Client_CustomCbRequest(). The server response can then be polled
using wh_Client_CustomCbResponse(), and the response data will populate the output whMes-
sageCustomCb_Response() on successful receipt.
The client can also check the registration status of a given callback IDusing thewh_Client_CustomCheckRegistered()
family of functions. This function queries the server for whether a given callback ID is registered in its
internal callback table. The server responds with a true or false indicating the registration status.

0.7.4.3 Custom Messaging The client is able to pass data in and receive data from the custom
callbacks through the custom request and response message data structures. These custom request
and response messages are structured to include a unique ID, a type indicator, and a data payload.
The ID corresponds to the index in the server’s callback table. The type field indicating to the custom
callback how the data payload should be interpreted. The data payload is a fixed size data buffer that
the client can use in any way it wishes. The response structure contains additional error code values
described above.
/* request message to the custom server callback */
typedef struct {

uint32_t id; /* indentifier of registered callback */
uint32_t type; /* whMessageCustomCb_Type */
whMessageCustomCb_Data data;

} whMessageCustomCb_Request;

/* response message from the custom server callback */
typedef struct {

uint32_t id; /* indentifier of registered callback */
uint32_t type; /* whMessageCustomCb_Type */
int32_t rc; /* Return code from custom callback. Invalid if err != 0 */
int32_t err; /* wolfHSM-specific error. If err != 0, rc is invalid */
whMessageCustomCb_Data data;

} whMessageCustomCb_Response;

0.7.4.4 Defining Custom Data Types Custom data types can be defined using the whMessage-
CustomCb_Data union, which provides several helpful predefined structures for common data types
(e.g., dma32, dma64) and a raw data buffer (buffer) for user-defined schemas. Clients can indicate to
the server callback how it should interpret the data in the union through the type field in the request.
wolfHSM reserves the first few type indices for internal use, with the remainder of the type values
available for custom client types.

COPYRIGHT ©2024 wolfSSL Inc. 31

0.7 Customizing wolfHSM CONTENTS

0.7.4.5 Custom Callback Example In this example, a custom callback is implemented that is able
to process three types of client requests, one using the built-in DMA-style addressing type, and two
that use custom user defined types.
First, common messages shared between the client and server should be defined:
/* my_custom_cb.h */

#include "wolfhsm/wh_message_customcb.h"

#define MY_CUSTOM_CB_ID 0

enum {
MY_TYPE_A = WH_MESSAGE_CUSTOM_CB_TYPE_USER_DEFINED_START,
MY_TYPE_B,

} myUserDefinedTypes;

typedef struct {
int foo;
int bar;

} myCustomCbDataA;

typedef struct {
int noo;
int baz;

} myCustomCbDataB;
On the server side, the callback must be defined and then registered with the server context before
processing requests. Note that the callback can be registered at any time, not necessarily before
processing the first request.
#include "wolfhsm/wh_server.h"
#include "my_custom_cb.h"

int doWorkOnClientAddr(uint8_t* addr, uint32_t size) {
/* do work */

}

int doWorkWithTypeA(myCustomTypeA* typeA) {
/* do work */

}

int doWorkWithTypeB(myCustomTypeB* typeB) {
/* do work */

}

static int customServerCb(whServerContext* server,
const whMessageCustomCb_Request* req,
whMessageCustomCb_Response* resp)

{
int rc;

resp->err = WH_ERROR_OK;

/* detect and handle DMA request */
if (req->type == WH_MESSAGE_CUSTOM_CB_TYPE_DMA32) {

COPYRIGHT ©2024 wolfSSL Inc. 32

0.7 Customizing wolfHSM CONTENTS

uint8_t* clientPtr =
(uint8_t*)((uintptr_t)req->data.dma32.client_addr);↪

size_t clientSz = req->data.dma32.client_sz;

if (clientPtr == NULL) {
resp->err = WH_ERROR_BADARGS;

}
else {

rc = doWorkOnClientAddr(clientPtr, clientSz);
}

}
else if (req->type == MY_TYPE_A) {

myCustomCbDataA *data = (myCustomCbDataA*)((uintptr_t)req->data.data);
rc = doWorkWithTypeA(data);
/* optionally set error code of your choice */
if (/* error condition */) {

resp->err = WH_ERROR_ABORTED;
}

}
else if (req->type == MY_TYPE_B) {

myCustomCbDataB *data = (myCustomCbDataB)((uintptr_t)req->data.data);
rc = doWorkWithTypeB(data);
/* optionally set error code of your choice */
if (/* error condition */) {

resp->err = WH_ERROR_ABORTED;
}

}

return rc;
}

int main(void) {

whServerContext serverCtx;

whServerConfig serverCfg = {
/* your server configuration */

};

wh_Server_Init(&serverCtx, &serverCfg);

wh_Server_RegisterCustomCb(&serverCtx, MY_CUSTOM_CB_ID, customServerCb));

/* process server requests (simplified) */
while (1) {

wh_Server_HandleRequestMessage(&serverCtx);
}

}
Now the client is able to check the registration of the custom callback, as well as invoke it remotely:
#include "wh_client.h"
#include "my_custom_cb.h"

COPYRIGHT ©2024 wolfSSL Inc. 33

0.8 WolfHSM Porting CONTENTS

whClientContext clientCtx;
whClientConfig clientCfg = {

/* your client configuration */
};

whClient_Init(&clientCtx, &clientCfg);

bool isRegistered = wh_Client_CustomCheckRegistered(&client, MY_CUSTOM_CB_ID);

if (isRegistered) {
uint8_t buffer[LARGE_SIZE] = {/* data*/};
myCustomCbDataA typeA = {/* data */};
myCustomCbDataB typeB = {/* data */};

whMessageCustomCb_Request req = {0};
whMessageCustomCb_Request resp = {0};

/* send custom request with built-in DMA type */
req.id = MY_CUSTOM_CB_ID;
req.type = WH_MESSAGE_CUSTOM_CB_TYPE_DMA32;
req.data.dma32.client_addr = (uint32_t)((uintptr_t)&data);
req.data.dma32.client_sz = sizeof(data);
wh_Client_CustomCbRequest(clientCtx, &req);
wh_Client_CustomCbResponse(clientCtx, &resp);
/* do stuff with response */

/* send custom request with a user defined type */
memset(req, 0, sizeof(req));
req.id = MY_CUSTOM_CB_ID;
req.type = MY_TYPE_A;
memcpy(&req.data.data, typeA, sizeof(typeA));
wh_Client_CustomCbRequest(clientCtx, &req);
wh_Client_CustomCbResponse(clientCtx, &resp);
/* do stuff with response */

/* send custom request with a different user defined type */
memset(req, 0, sizeof(req));
req.id = MY_CUSTOM_CB_ID;
req.type = MY_TYPE_B;
memcpy(&req.data.data, typeA, sizeof(typeB));
wh_Client_CustomCbRequest(clientCtx, &req);
wh_Client_CustomCbResponse(clientCtx, &resp);
/* do stuff with response */

}

0.8 WolfHSM Porting
This porting section aims to provide you with wolfHSM porting-related material and information. We
will cover the following:

• WolfHSM Porting Overview
• WolfHSM Ports
• WolfHSM Porting Interface

COPYRIGHT ©2024 wolfSSL Inc. 34

0.8 WolfHSM Porting CONTENTS

0.8.1 WolfHSM Porting Overview

wolfHSM itself is not executable and it does not contain any code to interact with any specific hardware.
In order for wolfHSM to run on a specific device, the library must be configured with the necessary
hardware drivers and abstraction layers so that the server application can run and communicate with
the client. Specifically, getting wolfHSM to run on real hardware requires the implementation of the
following:

• Server application startup and hardware initialization
• Server wolfCrypt configuration
• Server non-volatile memory configuration
• Server and client transport configuration
• Server and client connection handling

The code that provides these requirements and wraps the server API into a bootable application is
collectively referred to as a wolfHSM “port”.
Official ports of wolfHSM are provided for various supported architectures, with each port providing
the implementation of the wolfHSM abstractions tailored to the specific device. Each port contains:

• Standalone Reference Server Application: This application is meant to run on the HSM core and
handle all secure operations. It comes fully functional out-of-the-box but can also be customized
by the end user to support additional use cases

• Client Library: This library can be linked against user applications to facilitate communication
with the server

0.8.2 WolfHSM Ports

0.8.2.1 Infineon Aurix TC3XX The distribution of this port is restricted by the vendor. Please con-
tact support@wolfssl.com for access.
Infineon Aurix TC3xx

• Up to 6x 300MHz TriCore application cores
• 1x 100MHz ARM Cortex M3 HSM core
• Crypto offload: TRNG, AES128, ECDSA, ED25519, SHA

0.8.2.2 ST SPC58NN The distribution of this port is restricted by the vendor. Please contact sup-
port@wolfssl.com for access.
** ST SPC58NN**

• 3x 200MHz e200z4256 PowerPC application cores
• 1x 100MHz e200z0 PowerPC HSM core with NVM
• Crypto offload: TRNG, AES128

0.8.2.3 POSIX The POSIX port provides multiple and fully functional implementations of different
wolfHSM abstractions that can be used to better understand the exact functionality expected for dif-
ferent hardware abstractions.
The POSIX port provides: - Memory buffer transport - TCP transport - Unix domain transport - RAM-
based and file-based NVM flash simulators

0.8.2.4 Skeleton The Skeleton port source code provides a non-functioning layout to be used as a
starting point for future hardware/platform ports. Each function provides the basic description and
expected flow with error cases explained so that ports can be used interchangeably with consistent
results.

COPYRIGHT ©2024 wolfSSL Inc. 35

.1 wolfHSM API reference CONTENTS

The Skeleton port provides stub implementations of: - Transport callbacks - NVM Flash callbacks -
Crypto callbacks

0.8.3 WolfHSM Porting Interface

Ports must implement hardware-specific interfaces: - NVM flash interface
Crypto Hardware - TRNG, Keys, symmetric/asymmetric crypto
Platform Interface - Boot sequence, application core reset, memory limitations - Port and configuration
are selected at compile time

.1 wolfHSM API reference

.1.1 Key Revocation

.1.1.1 wh_Client_KeyRevokeRequest Send a key revocation request to the server (non-blocking).
This function prepares and sends a revoke request for the specified key ID. It returns after the request
is sent; use wh_Client_KeyRevokeResponse() to retrieve the result.
Parameters:

• c: Client context.
• keyId: Key ID to revoke.

Return values:
• WH_ERROR_OK on successful request send.
• A negative error code on failure.

Error codes:
• WH_ERROR_BADARGS if c is NULL or keyId is invalid.
• Propagates comm layer errors on send failure.

.1.1.2 wh_Client_KeyRevokeResponse Receive a key revocation response.
This function polls for the revoke response and returns WH_ERROR_NOTREADY until the server reply is
available.
Parameters:

• c: Client context.
Return values:

• WH_ERROR_OK on success.
• WH_ERROR_NOTREADY if the response has not arrived.
• A negative error code on failure.

Error codes:
• WH_ERROR_BADARGS if c is NULL.
• Server error codes such as WH_ERROR_NOTFOUND.

.1.1.3 wh_Client_KeyRevoke Revoke a key using a blocking request/response.
This helper sends a revoke request and waits for the response.
Parameters:

• c: Client context.

COPYRIGHT ©2024 wolfSSL Inc. 36

.2 wolfhsm/wh_client.h CONTENTS

• keyId: Key ID to revoke.
Return values:

• WH_ERROR_OK on success.
• A negative error code on failure.

Error codes:
• Any error code returnedbywh_Client_KeyRevokeRequest()orwh_Client_KeyRevokeResponse().

.1.1.4 wh_Server_KeystoreRevokeKey Revoke a key by updating its metadata.
This server-side function marks a key as non-modifiable and clears all usage flags. If the key exists in
NVM, the metadata update is committed so the revoke state persists.
Parameters:

• server: Server context.
• keyId: Key ID to revoke.

Return values:
• WH_ERROR_OK on success.
• A negative error code on failure.

Error codes:
• WH_ERROR_BADARGS if parameters are invalid.
• WH_ERROR_NOTFOUND if the key is missing.
• Propagates NVM/storage errors (for example WH_ERROR_NOSPACE).

.2 wolfhsm/wh_client.h

.2.1 Types

Name
enum wc_CipherType { WC_CIPHER_NONE = 0}

.2.2 Functions

Name
int wh_Client_Init(whClientContext * c, const

whClientConfig * config)
int wh_Client_Cleanup(whClientContext *

c)Disconnects from the server and releases
client context resources.

int wh_Client_SendRequest(whClientContext * c,
uint16_t group, uint16_t action, uint16_t
data_size, const void * data)

int wh_Client_RecvResponse(whClientContext * c,
uint16_t * out_group, uint16_t * out_action,
uint16_t * out_size, void * data)

int wh_Client_CommInitRequest(whClientContext
* c)Sends a communication initialization
request to the server.

COPYRIGHT ©2024 wolfSSL Inc. 37

.2 wolfhsm/wh_client.h CONTENTS

Name
int wh_Client_CommInitResponse(whClientContext

* c, uint32_t * out_clientid, uint32_t *
out_serverid)Receives a communication
initialization response from the server.

int wh_Client_CommInit(whClientContext * c,
uint32_t * out_clientid, uint32_t *
out_serverid)Initializes communication with
the server with a blocking call.

int wh_Client_CommInfoRequest(whClientContext
* c)Sends a communications information
request to the server.

int wh_Client_CommInfoResponse(whClientContext
* c, uint8_t * out_version, uint8_t * out_build,
uint32_t * out_cfg_comm_data_len, uint32_t *
out_cfg_nvm_object_count, uint32_t *
out_cfg_keycache_count, uint32_t *
out_cfg_keycache_bufsize, uint32_t *
out_cfg_keycache_bigcount, uint32_t *
out_cfg_keycache_bigbufsize, uint32_t *
out_cfg_customcb_count, uint32_t *
out_cfg_dmaaddr_count, uint32_t *
out_debug_state, uint32_t * out_boot_state,
uint32_t * out_lifecycle_state, uint32_t *
out_nvm_state)Receives a communication
information response from the server.

int wh_Client_CommInfo(whClientContext * c,
uint8_t * out_version, uint8_t * out_build,
uint32_t * out_cfg_comm_data_len, uint32_t *
out_cfg_nvm_object_count, uint32_t *
out_cfg_keycache_count, uint32_t *
out_cfg_keycache_bufsize, uint32_t *
out_cfg_keycache_bigcount, uint32_t *
out_cfg_keycache_bigbufsize, uint32_t *
out_cfg_customcb_count, uint32_t *
out_cfg_dmaaddr_count, uint32_t *
out_debug_state, uint32_t * out_boot_state,
uint32_t * out_lifecycle_state, uint32_t *
out_nvm_state)Retrieves server configuration
and state with a blocking call.

int wh_Client_CommCloseRequest(whClientContext
* c)Sends a communication close request to the
server.

int wh_Client_EnableCancel(whClientContext *
c)Enables request cancellation.

int wh_Client_DisableCancel(whClientContext *
c)Disables request cancellation.

int wh_Client_CancelRequest(whClientContext *
c)Cancels the previous request, currently only
supports CMAC. Async Request.

COPYRIGHT ©2024 wolfSSL Inc. 38

.2 wolfhsm/wh_client.h CONTENTS

Name
int wh_Client_CancelResponse(whClientContext *

c)Handles the response for a cancellation the
previous request, currently only supports
CMAC. Async response handler.

int wh_Client_Cancel(whClientContext * c)Cancels
the previous request, currently only supports
CMAC.

int wh_Client_CommCloseResponse(whClientContext
* c)Receives a communication close response
from the server.

int wh_Client_CommClose(whClientContext *
c)Closes communication with the server.

int wh_Client_EchoRequest(whClientContext * c,
uint16_t size, const void * data)Sends an echo
request to the server.

int wh_Client_EchoResponse(whClientContext * c,
uint16_t * out_size, void * data)Receives an
echo response from the server.

int wh_Client_Echo(whClientContext * c, uint16_t
snd_len, const void * snd_data, uint16_t *
out_rcv_len, void * rcv_data)Sends an echo
request to the server and receives the
response.

int wh_Client_KeyCacheRequest_ex(whClientContext
* c, uint32_t flags, uint8_t * label, uint16_t
labelSz, const uint8_t * in, uint16_t inSz,
uint16_t keyId)Sends a key cache request to the
server.

int wh_Client_KeyCacheRequest(whClientContext
* c, uint32_t flags, uint8_t * label, uint16_t
labelSz, const uint8_t * in, uint16_t inSz)Sends a
key cache request to the server.

int wh_Client_KeyCacheResponse(whClientContext
* c, uint16_t * keyId)Receives a key cache
response from the server.

int wh_Client_KeyCache(whClientContext * c,
uint32_t flags, uint8_t * label, uint16_t labelSz,
const uint8_t * in, uint16_t inSz, uint16_t *
keyId)Sends a key cache request to the server
and receives the response.

int wh_Client_KeyEvictRequest(whClientContext
* c, uint16_t keyId)Sends a key eviction request
to the server.

int wh_Client_KeyEvictResponse(whClientContext
* c)Receives a key eviction response from the
server.

int wh_Client_KeyEvict(whClientContext * c,
uint16_t keyId)Sends a key eviction request to
the server and receives the response.

int wh_Client_KeyExportRequest(whClientContext
* c, uint16_t keyId)Sends a key export request
to the server.

COPYRIGHT ©2024 wolfSSL Inc. 39

.2 wolfhsm/wh_client.h CONTENTS

Name
int wh_Client_KeyExportResponse(whClientContext

* c, uint8_t * label, uint16_t labelSz, uint8_t *
out, uint16_t * outSz)Receives a key export
response from the server.

int wh_Client_KeyExport(whClientContext * c,
uint16_t keyId, uint8_t * label, uint16_t labelSz,
uint8_t * out, uint16_t * outSz)Sends a key
export request to the server and receives the
response.

int wh_Client_KeyCommitRequest(whClientContext
* c, whNvmId keyId)Sends a key commit
request to the server.

int wh_Client_KeyCommitResponse(whClientContext
* c)Receives a key commit response from the
server.

int wh_Client_KeyCommit(whClientContext * c,
whNvmId keyId)Sends a key commit request to
the server and receives the response.

int wh_Client_KeyEraseRequest(whClientContext
* c, whNvmId keyId)Sends a key erase request
to the server.

int wh_Client_KeyEraseResponse(whClientContext
* c)Receives a key erase response from the
server.

int wh_Client_KeyErase(whClientContext * c,
whNvmId keyId)Sends a key erase request to
the server and receives the response.

int wh_Client_KeyRevokeRequest(whClientContext
* c, whKeyId keyId)Sends a key revoke request
to the server.

int wh_Client_KeyRevokeResponse(whClientContext
* c)Receives a key revoke response from the
server.

int wh_Client_KeyRevoke(whClientContext * c,
whKeyId keyId)Sends a key revoke request to
the server and receives the response.

int wh_Client_KeyCacheDmaRequest(whClientContext
* c, uint32_t flags, uint8_t * label, uint16_t
labelSz, const void * keyAddr, uint16_t keySz,
uint16_t keyId)Sends a key cache request using
DMA to the server.

int wh_Client_KeyCacheDmaResponse(whClientContext
* c, uint16_t * keyId)Receives a key cache
response for DMA from the server.

int wh_Client_KeyCacheDma(whClientContext * c,
uint32_t flags, uint8_t * label, uint16_t labelSz,
const void * keyAddr, uint16_t keySz, uint16_t *
keyId)Performs a complete key cache
operation using DMA.

COPYRIGHT ©2024 wolfSSL Inc. 40

.2 wolfhsm/wh_client.h CONTENTS

Name
int wh_Client_KeyExportDmaRequest(whClientContext

* c, uint16_t keyId, const void * keyAddr,
uint16_t keySz)Sends a key export request
using DMA to the server.

int wh_Client_KeyExportDmaResponse(whClientContext
* c, uint8_t * label, uint16_t labelSz, uint16_t *
outSz)Receives a key export response for DMA
from the server.

int wh_Client_KeyExportDma(whClientContext *
c, uint16_t keyId, const void * keyAddr, uint16_t
keySz, uint8_t * label, uint16_t labelSz, uint16_t
* outSz)Performs a complete key export
operation using DMA.

int wh_Client_KeyWrap(whClientContext * ctx,
enum wc_CipherType cipherType, uint16_t
serverKeyId, void * keyIn, uint16_t keySz,
whNvmMetadata * metadataIn, void *
wrappedKeyOut, uint16_t *
wrappedKeyInOutSz)Sends a key wrap request
to the server and receives the response.

int wh_Client_KeyWrapRequest(whClientContext
* ctx, enum wc_CipherType cipherType,
uint16_t serverKeyId, void * key, uint16_t keySz,
whNvmMetadata * metadata)Sends a key wrap
request to the server.

int wh_Client_KeyWrapResponse(whClientContext
* ctx, enum wc_CipherType cipherType, void *
wrappedKeyOut, uint16_t *
wrappedKeyInOutSz)Receives a key wrap
response from the server.

int wh_Client_KeyUnwrapAndExport(whClientContext
* ctx, enum wc_CipherType cipherType,
uint16_t serverKeyId, void * wrappedKeyIn,
uint16_t wrappedKeySz, whNvmMetadata *
metadataOut, void * keyOut, uint16_t *
keyInOutSz)Requests the server to unwrap and
export a wrapped key and receives the
response.

int wh_Client_KeyUnwrapAndExportRequest(whClientContext
* ctx, enum wc_CipherType cipherType,
uint16_t serverKeyId, void * wrappedKeyIn,
uint16_t wrappedKeySz)Requests the server to
unwrap-and-export a wrapped key.

int wh_Client_KeyUnwrapAndExportResponse(whClientContext
* ctx, enum wc_CipherType cipherType,
whNvmMetadata * metadataOut, void *
keyOut, uint16_t * keyInOutSz)Receives an
unwrap-and-export response from the server.

COPYRIGHT ©2024 wolfSSL Inc. 41

.2 wolfhsm/wh_client.h CONTENTS

Name
int wh_Client_KeyUnwrapAndCache(whClientContext

* ctx, enum wc_CipherType cipherType,
uint16_t serverKeyId, void * wrappedKeyIn,
uint16_t wrappedKeySz, uint16_t *
keyIdOut)Requests the server to unwrap and
cache a wrapped key and receives the
response.

int wh_Client_KeyUnwrapAndCacheRequest(whClientContext
* ctx, enum wc_CipherType cipherType,
uint16_t serverKeyId, void * wrappedKeyIn,
uint16_t wrappedKeySz)Sends a key
unwrap-and-cache request to the server.

int wh_Client_KeyUnwrapAndCacheResponse(whClientContext
* ctx, enum wc_CipherType cipherType,
uint16_t * keyIdOut)Receives an
unwrap-and-cache response from the server.

int wh_Client_DataWrap(whClientContext * ctx,
enum wc_CipherType cipherType, uint16_t
serverKeyId, void * dataIn, uint32_t dataInSz,
void * wrappedDataOut, uint32_t *
wrappedDataInOutSz)Helper function to wrap
a data object using a specified key.

int wh_Client_DataUnwrap(whClientContext * ctx,
enum wc_CipherType cipherType, uint16_t
serverKeyId, void * wrappedDataIn, uint32_t
wrappedDataInSz, void * dataOut, uint32_t *
dataInOutSz)Helper function to unwrap a
wrapped data object using a specified key.

int wh_Client_CounterInitRequest(whClientContext
* c, whNvmId counterId, uint32_t counter)

int wh_Client_CounterInitResponse(whClientContext
* c, uint32_t * counter)

int wh_Client_CounterInit(whClientContext * c,
whNvmId counterId, uint32_t *
counter)Creates and initializes a counter with
the value set in counter.

int wh_Client_CounterResetRequest(whClientContext
* c, whNvmId counterId)

int wh_Client_CounterResetResponse(whClientContext
* c, uint32_t * counter)

int wh_Client_CounterReset(whClientContext * c,
whNvmId counterId, uint32_t *
counter)Creates and initializes a counter with
to 0.

int wh_Client_CounterIncrementRequest(whClientContext
* c, whNvmId counterId)

int wh_Client_CounterIncrementResponse(whClientContext
* c, uint32_t * counter)

int wh_Client_CounterIncrement(whClientContext
* c, whNvmId counterId, uint32_t *
counter)Increments a counter.

COPYRIGHT ©2024 wolfSSL Inc. 42

.2 wolfhsm/wh_client.h CONTENTS

Name
int wh_Client_CounterReadRequest(whClientContext

* c, whNvmId counterId)
int wh_Client_CounterReadResponse(whClientContext

* c, uint32_t * counter)
int wh_Client_CounterRead(whClientContext * c,

whNvmId counterId, uint32_t * counter)Read a
counter.

int wh_Client_CounterDestroyRequest(whClientContext
* c, whNvmId counterId)

int wh_Client_CounterDestroyResponse(whClientContext
* c)

int wh_Client_CounterDestroy(whClientContext *
c, whNvmId counterId)Destroy a counter.

int wh_Client_NvmInitRequest(whClientContext
* c)Sends a non-volatile memory (NVM)
initialization request to the server.

int wh_Client_NvmInitResponse(whClientContext
* c, int32_t * out_rc, uint32_t * out_clientnvm_id,
uint32_t * out_servernvm_id)Receives a
non-volatile memory (NVM) initialization
response from the server.

int wh_Client_NvmInit(whClientContext * c,
int32_t * out_rc, uint32_t * out_clientnvm_id,
uint32_t * out_servernvm_id)Sends a
non-volatile memory (NVM) initialization
request to the server and receives the
response.

int wh_Client_NvmCleanupRequest(whClientContext
* c)Sends a non-volatile memory (NVM) cleanup
request to the server.

int wh_Client_NvmCleanupResponse(whClientContext
* c, int32_t * out_rc)Receives a non-volatile
memory (NVM) cleanup response from the
server.

int wh_Client_NvmCleanup(whClientContext * c,
int32_t * out_rc)Sends a non-volatile memory
(NVM) cleanup request to the server and
receives the response.

int wh_Client_NvmGetAvailableRequest(whClientContext
* c)Sends a request to the server to get
available non-volatile memory (NVM)
information.

int wh_Client_NvmGetAvailableResponse(whClientContext
* c, int32_t * out_rc, uint32_t * out_avail_size,
whNvmId * out_avail_objects, uint32_t *
out_reclaim_size, whNvmId *
out_reclaim_objects)Receives a response from
the server with available non-volatile memory
(NVM) information.

COPYRIGHT ©2024 wolfSSL Inc. 43

.2 wolfhsm/wh_client.h CONTENTS

Name
int wh_Client_NvmGetAvailable(whClientContext

* c, int32_t * out_rc, uint32_t * out_avail_size,
whNvmId * out_avail_objects, uint32_t *
out_reclaim_size, whNvmId *
out_reclaim_objects)Sends a request to the
server and receives a response with available
non-volatile memory (NVM) information.

int wh_Client_NvmAddObjectRequest(whClientContext
* c, whNvmId id, whNvmAccess access,
whNvmFlags flags, whNvmSize label_len,
uint8_t * label, whNvmSize len, const uint8_t *
data)Sends a request to the server to add an
object to non-volatile memory (NVM).

int wh_Client_NvmAddObjectResponse(whClientContext
* c, int32_t * out_rc)Receives a response from
the server after attempting to add an object to
non-volatile memory (NVM).

int wh_Client_NvmAddObject(whClientContext *
c, whNvmId id, whNvmAccess access,
whNvmFlags flags, whNvmSize label_len,
uint8_t * label, whNvmSize len, const uint8_t *
data, int32_t * out_rc)Sends a request to the
server and receives a response to add an
object to non-volatile memory (NVM).

int wh_Client_NvmListRequest(whClientContext
* c, whNvmAccess access, whNvmFlags flags,
whNvmId start_id)Sends a request to the server
to list non-volatile memory (NVM) objects.

int wh_Client_NvmListResponse(whClientContext
* c, int32_t * out_rc, whNvmId * out_count,
whNvmId * out_id)Receives a response from
the server with a list of non-volatile memory
(NVM) objects.

int wh_Client_NvmList(whClientContext * c,
whNvmAccess access, whNvmFlags flags,
whNvmId start_id, int32_t * out_rc, whNvmId *
out_count, whNvmId * out_id)Sends a request
to the server and receives a response to list
non-volatile memory (NVM) objects.

int wh_Client_NvmGetMetadataRequest(whClientContext
* c, whNvmId id)Sends a request to the server
to get metadata of a non-volatile memory
(NVM) object.

int wh_Client_NvmGetMetadataResponse(whClientContext
* c, int32_t * out_rc, whNvmId * out_id,
whNvmAccess * out_access, whNvmFlags *
out_flags, whNvmSize * out_len, whNvmSize
label_len, uint8_t * label)Receives a response
from the server with metadata of a non-volatile
memory (NVM) object.

COPYRIGHT ©2024 wolfSSL Inc. 44

.2 wolfhsm/wh_client.h CONTENTS

Name
int wh_Client_NvmGetMetadata(whClientContext

* c, whNvmId id, int32_t * out_rc, whNvmId *
out_id, whNvmAccess * out_access,
whNvmFlags * out_flags, whNvmSize * out_len,
whNvmSize label_len, uint8_t * label)Sends a
request to the server and receives a response
to get metadata of a non-volatile memory
(NVM) object.

int wh_Client_NvmDestroyObjectsRequest(whClientContext
* c, whNvmId list_count, const whNvmId *
id_list)Sends a request to the server to destroy
non-volatile memory (NVM) objects.

int wh_Client_NvmDestroyObjectsResponse(whClientContext
* c, int32_t * out_rc)Receives a response from
the server after attempting to destroy
non-volatile memory (NVM) objects.

int wh_Client_NvmDestroyObjects(whClientContext
* c, whNvmId list_count, const whNvmId *
id_list, int32_t * out_rc)Sends a request to the
server and receives a response to destroy
non-volatile memory (NVM) objects.

int wh_Client_NvmReadRequest(whClientContext
* c, whNvmId id, whNvmSize offset, whNvmSize
data_len)Sends a request to the server to read
data from a non-volatile memory (NVM) object.

int wh_Client_NvmReadResponse(whClientContext
* c, int32_t * out_rc, whNvmSize * out_len,
uint8_t * data)Receives a response from the
server with NVM object data.

int wh_Client_NvmRead(whClientContext * c,
whNvmId id, whNvmSize offset, whNvmSize
data_len, int32_t * out_rc, whNvmSize *
out_len, uint8_t * data)Sends a request to the
server and receives a response to read data
from a non-volatile memory (NVM) object.

int wh_Client_NvmAddObjectDmaRequest(whClientContext
* c, whNvmMetadata * metadata, whNvmSize
data_len, const uint8_t * data)Sends a request
to the server to add an object to non-volatile
memory (NVM) using DMA.

int wh_Client_NvmAddObjectDmaResponse(whClientContext
* c, int32_t * out_rc)Receives a response from
the server after attempting to add an object to
non-volatile memory (NVM) using DMA.

int wh_Client_NvmAddObjectDma(whClientContext
* c, whNvmMetadata * metadata, whNvmSize
data_len, const uint8_t * data, int32_t *
out_rc)Sends a request to the server and
receives a response to add an object to
non-volatile memory (NVM) using DMA.

COPYRIGHT ©2024 wolfSSL Inc. 45

.2 wolfhsm/wh_client.h CONTENTS

Name
int wh_Client_NvmReadDmaRequest(whClientContext

* c, whNvmId id, whNvmSize offset,
whNvmSize data_len, uint8_t * data)

int wh_Client_NvmReadDmaResponse(whClientContext
* c, int32_t * out_rc)Receives a response from
the server after attempting to read data from
non-volatile memory (NVM) using DMA, with
automatic detection of client address width
(32-bit or 64-bit).

int wh_Client_NvmReadDma(whClientContext * c,
whNvmId id, whNvmSize offset, whNvmSize
data_len, uint8_t * data, int32_t * out_rc)Sends
a request to the server and receives a response
to read data from non-volatile memory (NVM)
using DMA, with automatic detection of client
address width (32-bit or 64-bit).

int wh_Client_CustomCbRequest(whClientContext
* c, const whMessageCustomCb_Request *
req)Sends a custom callback request to the
server.

int wh_Client_CustomCbResponse(whClientContext
* c, whMessageCustomCb_Response *
resp)Receives a response from the server after
sending a custom callback request.

int wh_Client_CustomCheckRegisteredRequest(whClientContext
* c, uint32_t id)Sends a request to the server to
check if a custom callback is registered.

int wh_Client_CustomCbCheckRegisteredResponse(whClientContext
* c, uint16_t * outId, int *
responseError)Receives a response from the
server after checking if a custom callback is
registered.

int wh_Client_CustomCbCheckRegistered(whClientContext
* c, uint16_t id, int * responseError)Sends a
request to the server and receives a response
to check if a custom callback is registered.

int wh_Client_CertInitRequest(whClientContext *
c)Sends a request to initialize the certificate
manager on the server.

int wh_Client_CertInitResponse(whClientContext
* c, int32_t * out_rc)Receives a response from
the server after initializing the certificate
manager.

int wh_Client_CertInit(whClientContext * c,
int32_t * out_rc)Sends a request and receives a
response to initialize the certificate manager.

int wh_Client_CertAddTrustedRequest(whClientContext
* c, whNvmId id, whNvmAccess access,
whNvmFlags flags, uint8_t * label, whNvmSize
label_len, const uint8_t * cert, uint32_t
cert_len)Sends a request to add a trusted
certificate to NVM storage.

COPYRIGHT ©2024 wolfSSL Inc. 46

.2 wolfhsm/wh_client.h CONTENTS

Name
int wh_Client_CertAddTrustedResponse(whClientContext

* c, int32_t * out_rc)Receives a response from
the server after adding a trusted certificate.

int wh_Client_CertAddTrusted(whClientContext *
c, whNvmId id, whNvmAccess access,
whNvmFlags flags, uint8_t * label, whNvmSize
label_len, const uint8_t * cert, uint32_t cert_len,
int32_t * out_rc)Sends a request and receives a
response to add a trusted certificate.

int wh_Client_CertEraseTrustedRequest(whClientContext
* c, whNvmId id)Sends a request to erase a
trusted certificate from NVM storage.

int wh_Client_CertEraseTrustedResponse(whClientContext
* c, int32_t * out_rc)Receives a response from
the server after erasing a trusted certificate.

int wh_Client_CertEraseTrusted(whClientContext
* c, whNvmId id, int32_t * out_rc)Sends a
request and receives a response to erase a
trusted certificate.

int wh_Client_CertReadTrustedRequest(whClientContext
* c, whNvmId id, uint32_t cert_len)Sends a
request to read a trusted certificate from NVM
storage.

int wh_Client_CertReadTrustedResponse(whClientContext
* c, uint8_t * cert, uint32_t * cert_len, int32_t *
out_rc)Receives a response from the server
after getting a trusted certificate.

int wh_Client_CertReadTrusted(whClientContext
* c, whNvmId id, uint8_t * cert, uint32_t *
cert_len, int32_t * out_rc)Sends a request and
receives a response to read a trusted
certificate.

int wh_Client_CertVerifyRequest(whClientContext
* c, const uint8_t * cert, uint32_t cert_len,
whNvmId trustedRootNvmId)Sends a request
to verify a certificate against trusted
certificates.

int wh_Client_CertVerifyResponse(whClientContext
* c, int32_t * out_rc)Receives a response from
the server after verifying a certificate.

int wh_Client_CertVerify(whClientContext * c,
const uint8_t * cert, uint32_t cert_len,
whNvmId trustedRootNvmId, int32_t *
out_rc)Sends a request and receives a response
to verify a certificate.

int wh_Client_CertVerifyAndCacheLeafPubKeyRequest(whClientContext
* c, const uint8_t * cert, uint32_t cert_len,
whNvmId trustedRootNvmId, whNvmFlags
cachedKeyFlags, whKeyId keyId)Sends a
request to verify a certificate and cache the leaf
public key.

COPYRIGHT ©2024 wolfSSL Inc. 47

.2 wolfhsm/wh_client.h CONTENTS

Name
int wh_Client_CertVerifyAndCacheLeafPubKeyResponse(whClientContext

* c, whKeyId * out_keyId, int32_t *
out_rc)Receives a response from the server
after verifying a certificate and caching the leaf
public key.

int wh_Client_CertVerifyAndCacheLeafPubKey(whClientContext
* c, const uint8_t * cert, uint32_t cert_len,
whNvmId trustedRootNvmId, whNvmFlags
cachedKeyFlags, whKeyId * inout_keyId, int32_t
* out_rc)Sends a request and receives a
response to verify a certificate, while also
instructing the server to cache the public key of
the leaf certificate.

int wh_Client_CertAddTrustedDmaRequest(whClientContext
* c, whNvmId id, whNvmAccess access,
whNvmFlags flags, uint8_t * label, whNvmSize
label_len, const void * cert, uint32_t
cert_len)Sends a request to add a trusted
certificate to NVM storage using DMA.

int wh_Client_CertAddTrustedDmaResponse(whClientContext
* c, int32_t * out_rc)Receives a response from
the server after adding a trusted certificate
using DMA.

int wh_Client_CertAddTrustedDma(whClientContext
* c, whNvmId id, whNvmAccess access,
whNvmFlags flags, uint8_t * label, whNvmSize
label_len, const void * cert, uint32_t cert_len,
int32_t * out_rc)Sends a request and receives a
response to add a trusted certificate using
DMA.

int wh_Client_CertReadTrustedDmaRequest(whClientContext
* c, whNvmId id, void * cert, uint32_t
cert_len)Sends a request to read a trusted
certificate from NVM storage using DMA.

int wh_Client_CertReadTrustedDmaResponse(whClientContext
* c, int32_t * out_rc)Receives a response from
the server after reading a trusted certificate
using DMA.

int wh_Client_CertReadTrustedDma(whClientContext
* c, whNvmId id, void * cert, uint32_t cert_len,
int32_t * out_rc)Sends a request and receives a
response to read trusted certificate using DMA.

int wh_Client_CertVerifyDmaRequest(whClientContext
* c, const void * cert, uint32_t cert_len,
whNvmId trustedRootNvmId)Sends a request
to verify a certificate using DMA.

int wh_Client_CertVerifyDmaResponse(whClientContext
* c, int32_t * out_rc)Receives a response from
the server after verifying a certificate using
DMA.

COPYRIGHT ©2024 wolfSSL Inc. 48

.2 wolfhsm/wh_client.h CONTENTS

Name
int wh_Client_CertVerifyDma(whClientContext *

c, const void * cert, uint32_t cert_len, whNvmId
trustedRootNvmId, int32_t * out_rc)Sends a
request and receives a response to verify a
certificate using DMA.

int wh_Client_CertVerifyDmaAndCacheLeafPubKeyRequest(whClientContext
* c, const void * cert, uint32_t cert_len,
whNvmId trustedRootNvmId, whNvmFlags
cachedKeyFlags, whKeyId keyId)Sends a
request to verify a certificate using DMA and
cache the leaf certificate public key.

int wh_Client_CertVerifyDmaAndCacheLeafPubKeyResponse(whClientContext
* c, whKeyId * out_keyId, int32_t *
out_rc)Receives a response from the server
after verifying a certificate using DMA and
caching the leaf public key.

int wh_Client_CertVerifyDmaAndCacheLeafPubKey(whClientContext
* c, const void * cert, uint32_t cert_len,
whNvmId trustedRootNvmId, whNvmFlags
cachedKeyFlags, whKeyId * inout_keyId, int32_t
* out_rc)Sends a request and receives a
response to verify a certificate using DMA and
cache the leaf certificate public key.

int wh_Client_CertVerifyAcertRequest(whClientContext
* c, const void * cert, uint32_t cert_len,
whNvmId trustedRootNvmId)Sends a request
to verify an attribute certificate.

int wh_Client_CertVerifyAcertResponse(whClientContext
* c, int32_t * out_rc)Receives a response from
the server after verifying an attribute
certificate.

int wh_Client_CertVerifyAcert(whClientContext *
c, const void * cert, uint32_t cert_len, whNvmId
trustedRootNvmId, int32_t * out_rc)Sends a
request and receives a response to verify an
attribute certificate.

int wh_Client_CertVerifyAcertDmaRequest(whClientContext
* c, const void * cert, uint32_t cert_len,
whNvmId trustedRootNvmId)Prepares and
sends a DMA request to verify an attribute
certificate.

int wh_Client_CertVerifyAcertDmaResponse(whClientContext
* c, int32_t * out_rc)Receives a response from
the server after verifying an attribute
certificate using DMA.

int wh_Client_DmaRegisterAllowList(struct
whClientContext_t * client, const
whDmaAddrAllowList * allowlist)Registers a
DMA address allowlist for client-side validation.

COPYRIGHT ©2024 wolfSSL Inc. 49

.2 wolfhsm/wh_client.h CONTENTS

Name
int wh_Client_DmaRegisterCb(struct

whClientContext_t * client,
whClientDmaClientMemCb cb)Registers a
custom client DMA callback.

int wh_Client_DmaProcessClientAddress(struct
whClientContext_t * client, uintptr_t clientAddr,
void ** serverPtr, size_t len, whDmaOper oper,
whDmaFlags flags)Processes a client address
for DMA operations, using the native pointer
size of the system.

int wh_Client_CertVerifyAcertDma(whClientContext
* c, const void * cert, uint32_t cert_len,
whNvmId trustedRootNvmId, int32_t *
out_rc)Sends a DMA request and receives a
response to verify an attribute certificate.

.2.3 Attributes

Name
const int[WH_NUM_DEVIDS] WH_DEV_IDS_ARRAY

.2.4 Types Documentation

.2.4.1 enum wc_CipherType

Enumerator Value Description
WC_CIPHER_NONE 0

.2.5 Functions Documentation

.2.5.1 function wh_Client_Init
int wh_Client_Init(

whClientContext * c,
const whClientConfig * config

)
Parameters:

• c The pointer to the whClientContext object to be initialized.
• config The pointer to the whClientConfig object containing the configuration settings.

Return: Returns 0 on success, or a negative value indicating an error.
Context initialization and shutdown functions Initializes a whClientContext object with the provided
configuration.

.2.5.2 function wh_Client_Cleanup
int wh_Client_Cleanup(

whClientContext * c
)

COPYRIGHT ©2024 wolfSSL Inc. 50

.2 wolfhsm/wh_client.h CONTENTS

Disconnects from the server and releases client context resources.
Parameters:

• c A pointer to the whClientContext structure to be cleaned up.
Return: Returns 0 on success, or a negative value on failure.
This function frees any resources allocated during the initialization of the whClientContext. It should
be called when the client is no longer needed

.2.5.3 function wh_Client_SendRequest
int wh_Client_SendRequest(

whClientContext * c,
uint16_t group,
uint16_t action,
uint16_t data_size,
const void * data

)
Parameters:

• c The client context.
• group The group identifier.
• action The action identifier.
• data_size The size of the data to be sent. Zero is allowed in the case of NULL data.
• data A pointer to the data to be sent. NULL is allowed in the case of zero-sized data.

Return: Returns 0 on success, or a negative value on failure.
Generic request/response functions Sends a request to the server using the specified client context.

.2.5.4 function wh_Client_RecvResponse
int wh_Client_RecvResponse(

whClientContext * c,
uint16_t * out_group,
uint16_t * out_action,
uint16_t * out_size,
void * data

)
Parameters:

• c The client context.
• out_group Pointer to store the received group value.
• out_action Pointer to store the received action value.
• out_size Pointer to store the received size value.
• data Pointer to store the received data.

Return: 0 if successful, a negative value if an error occurred.
Receives a response from the server and extracts the group, action, size, and data.

.2.5.5 function wh_Client_CommInitRequest
int wh_Client_CommInitRequest(

whClientContext * c
)

COPYRIGHT ©2024 wolfSSL Inc. 51

.2 wolfhsm/wh_client.h CONTENTS

Sends a communication initialization request to the server.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, or a negative error code on failure.
Comm component functions
This function prepares and sends a communication initialization request message to the server. It
populates the message with the client’s ID (initialized from the config struct at client initialization) and
sends it using the communication context.

.2.5.6 function wh_Client_CommInitResponse
int wh_Client_CommInitResponse(

whClientContext * c,
uint32_t * out_clientid,
uint32_t * out_serverid

)
Receives a communication initialization response from the server.
Parameters:

• c Pointer to the client context.
• out_clientid Pointer to store the client ID from the response.
• out_serverid Pointer to store the server ID from the response.

Return: int Returns 0 on success, or a negative error code on failure.
This functionwaits for and processes a communication initialization responsemessage from the server.
It validates the response and extracts the client and server IDs from the message.

.2.5.7 function wh_Client_CommInit
int wh_Client_CommInit(

whClientContext * c,
uint32_t * out_clientid,
uint32_t * out_serverid

)
Initializes communication with the server with a blocking call.
Parameters:

• c Pointer to the client context.
• out_clientid Pointer to store the client ID from the response.
• out_serverid Pointer to store the server ID from the response.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of initializing communication with the server. It sends
an initialization request and waits for a valid response, extracting the client and server IDs from the
response.

.2.5.8 function wh_Client_CommInfoRequest
int wh_Client_CommInfoRequest(

whClientContext * c
)

COPYRIGHT ©2024 wolfSSL Inc. 52

.2 wolfhsm/wh_client.h CONTENTS

Sends a communications information request to the server.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a communication information request message to the server.

.2.5.9 function wh_Client_CommInfoResponse
int wh_Client_CommInfoResponse(

whClientContext * c,
uint8_t * out_version,
uint8_t * out_build,
uint32_t * out_cfg_comm_data_len,
uint32_t * out_cfg_nvm_object_count,
uint32_t * out_cfg_keycache_count,
uint32_t * out_cfg_keycache_bufsize,
uint32_t * out_cfg_keycache_bigcount,
uint32_t * out_cfg_keycache_bigbufsize,
uint32_t * out_cfg_customcb_count,
uint32_t * out_cfg_dmaaddr_count,
uint32_t * out_debug_state,
uint32_t * out_boot_state,
uint32_t * out_lifecycle_state,
uint32_t * out_nvm_state

)
Receives a communication information response from the server.
Parameters:

• c Pointer to the client context.
• out_version Pointer to store the server version string (8 bytes)
• out_build Pointer to store the server build string (8 bytes)
• out_cfg_comm_data_len Pointer to store the server’s maximum data len for any request or re-
sponse

• out_cfg_nvm_object_count Pointer to store the server’s maximum number of NVM objects
• out_cfg_keycache_count Pointer to store the server’s number of keys in the server RAM
• out_cfg_keycache_bufsize Pointer to store the server’s maximum size of each key in server RAM
• out_cfg_keycache_bigcount Pointer to store the server’s number of big keys in the server RAM
• out_cfg_keycache_bigbufsize bufsize Pointer to store the server’smaximum size of each big key
in server RAM

• out_cfg_customcb_count Pointer to store the server’s number of custom callbacks
• out_cfg_dmaaddr_count Pointer to store the server’s number of dmaaddr regions Growth:
• out_debug_state Pointer to store the server’s current debug state
• out_boot_state Pointer to store the server’s current boot state
• out_lifecycle_state Pointer to store the server’s lifecycle state
• out_nvm_state Pointer to store the server’s current nvm state

Return: int Returns 0 on success, or a negative error code on failure.
This functionwaits for and processes a communication information responsemessage from the server.
It validates the response and extracts the server configuration data from the message.

.2.5.10 function wh_Client_CommInfo

COPYRIGHT ©2024 wolfSSL Inc. 53

.2 wolfhsm/wh_client.h CONTENTS

int wh_Client_CommInfo(
whClientContext * c,
uint8_t * out_version,
uint8_t * out_build,
uint32_t * out_cfg_comm_data_len,
uint32_t * out_cfg_nvm_object_count,
uint32_t * out_cfg_keycache_count,
uint32_t * out_cfg_keycache_bufsize,
uint32_t * out_cfg_keycache_bigcount,
uint32_t * out_cfg_keycache_bigbufsize,
uint32_t * out_cfg_customcb_count,
uint32_t * out_cfg_dmaaddr_count,
uint32_t * out_debug_state,
uint32_t * out_boot_state,
uint32_t * out_lifecycle_state,
uint32_t * out_nvm_state

)
Retrieves server configuration and state with a blocking call.
Parameters:

• c Pointer to the client context.
• out_version Pointer to store the server version string (8 bytes)
• out_build Pointer to store the server build string (8 bytes)
• out_cfg_comm_data_len Pointer to store the server’s maximum data len for any request or re-
sponse

• out_cfg_nvm_object_count Pointer to store the server’s maximum number of NVM objects
• out_cfg_keycache_count Pointer to store the server’s number of keys in the server RAM
• out_cfg_keycache_bufsize Pointer to store the server’s maximum size of each key in server RAM
• out_cfg_keycache_bigcount Pointer to store the server’s number of keys in the server RAM
• out_cfg_keycache_bigbufsize Pointer to store the server’s maximum size of each key in server
RAM

• out_cfg_customcb_count Pointer to store the server’s number of custom callbacks
• out_cfg_dmaaddr_count Pointer to store the server’s number of dmaaddr regions Growth:
• out_debug_state Pointer to store the server’s current debug state
• out_boot_state Pointer to store the server’s current boot state
• out_lifecycle_state Pointer to store the server’s lifecycle state
• out_nvm_state Pointer to store the server’s current nvm state

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending communication info request and parsting the
response from the server by busy polling for a valid response.

.2.5.11 function wh_Client_CommCloseRequest
int wh_Client_CommCloseRequest(

whClientContext * c
)
Sends a communication close request to the server.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, or a negative error code on failure.

COPYRIGHT ©2024 wolfSSL Inc. 54

.2 wolfhsm/wh_client.h CONTENTS

This function prepares and sends a communication close request message to the server. It signals the
server to close the communication channel with the client.

.2.5.12 function wh_Client_EnableCancel
int wh_Client_EnableCancel(

whClientContext * c
)
Enables request cancellation.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, or a negative error code on failure.
This function allows subsequent requests to be canceled, the responses that are normally handled by
automatically by wolfCrypt must be handled with a wolfHSM specific function call.

.2.5.13 function wh_Client_DisableCancel
int wh_Client_DisableCancel(

whClientContext * c
)
Disables request cancellation.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, or a negative error code on failure.
This function disables request cancellation, making wolfCrypt automatically handle responses again.

.2.5.14 function wh_Client_CancelRequest
int wh_Client_CancelRequest(

whClientContext * c
)
Cancels the previous request, currently only supports CMAC. Async Request.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, or a negative error code on failure.
This function sends a cancellation request to the server to cancel the previous request made. Does
not wait for the response which must be handled separately

.2.5.15 function wh_Client_CancelResponse
int wh_Client_CancelResponse(

whClientContext * c
)
Handles the response for a cancellation the previous request, currently only supports CMAC. Async
response handler.
Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 55

.2 wolfhsm/wh_client.h CONTENTS

• c Pointer to the client context.
Return: int Returns 0 or WH_ERROR_CANCEL_LATE on success, or a negative error code on failure.
This function handles the response for a request cancellation previously sent to the server. Blocks to
wait for the response.

.2.5.16 function wh_Client_Cancel
int wh_Client_Cancel(

whClientContext * c
)
Cancels the previous request, currently only supports CMAC.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 or WH_ERROR_CANCEL_LATE on success, or a negative error code on failure.
This function sends a cancellation request to the server and waits for the response to cancel the pre-
vious request made.

.2.5.17 function wh_Client_CommCloseResponse
int wh_Client_CommCloseResponse(

whClientContext * c
)
Receives a communication close response from the server.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, or a negative error code on failure.
This function checks for and processes a communication close response message from the server.

.2.5.18 function wh_Client_CommClose
int wh_Client_CommClose(

whClientContext * c
)
Closes communication with the server.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of closing communication with the server. It sends a close
request and waits for a valid response to confirm that the communication channel has been closed.

.2.5.19 function wh_Client_EchoRequest
int wh_Client_EchoRequest(

whClientContext * c,
uint16_t size,

COPYRIGHT ©2024 wolfSSL Inc. 56

.2 wolfhsm/wh_client.h CONTENTS

const void * data
)
Sends an echo request to the server.
Parameters:

• c Pointer to the client context.
• size Size of the data payload.
• data Pointer to the data payload.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends an echo request message to the server. The message contains a
data payload of the specified size. This function does not block; it returns immediately after sending
the request.

.2.5.20 function wh_Client_EchoResponse
int wh_Client_EchoResponse(

whClientContext * c,
uint16_t * out_size,
void * data

)
Receives an echo response from the server.
Parameters:

• c Pointer to the client context.
• out_size Pointer to store the size of the received data payload.
• data Pointer to store the received data payload.

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process an echo responsemessage from the server. It validates the response
and extracts the data payload. This function does not block; it returns WH_ERROR_NOTREADY if a
response has not been received.

.2.5.21 function wh_Client_Echo
int wh_Client_Echo(

whClientContext * c,
uint16_t snd_len,
const void * snd_data,
uint16_t * out_rcv_len,
void * rcv_data

)
Sends an echo request to the server and receives the response.
Parameters:

• c Pointer to the client context.
• snd_len Size of the data payload to send.
• snd_data Pointer to the data payload to send.
• out_rcv_len Pointer to store the size of the received data payload.
• rcv_data Pointer to store the received data payload.

COPYRIGHT ©2024 wolfSSL Inc. 57

.2 wolfhsm/wh_client.h CONTENTS

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending an echo request to the server and receiving
the response. It sends the request and repeatedly attempts to receive a valid response, extracting
the data payload from the response once received. This function blocks until the entire operation is
complete or an error occurs.

.2.5.22 function wh_Client_KeyCacheRequest_ex
int wh_Client_KeyCacheRequest_ex(

whClientContext * c,
uint32_t flags,
uint8_t * label,
uint16_t labelSz,
const uint8_t * in,
uint16_t inSz,
uint16_t keyId

)
Sends a key cache request to the server.
Parameters:

• c Pointer to the client context.
• flags Flags for the key cache request.
• label Pointer to the label associated with the key.
• labelSz Size of the label.
• in Pointer to the key data to be cached.
• inSz Size of the key data.
• keyId Key ID to be used for caching. If set to WH_KEYID_ERASED, a new ID will be generated.

Return: int Returns 0 on success, or a negative error code on failure.
Key functions
For client-side key data to be used, it must first be brought into the key cache (RAM) of the HSM server.
Key cache requests instruct the server to transfer key data from client memory and allocate space in
the HSM server RAM to hold this key. Key eviction requests instruct the HSM server to remove the key
from the cache so that the RAM may be reused. Key export requests instruct the server to send back
the cached key data to client RAM. Key commit requests instruct the HSM server to write the cached
key into the HSM NVM. Key erase requests instruct the HSM server to remove a previously committed
key from NVM.
This function prepares and sends a key cache request message to the server. The message contains
the specified flags, label, and input data. This function does not block; it returns immediately after
sending the request.

.2.5.23 function wh_Client_KeyCacheRequest
int wh_Client_KeyCacheRequest(

whClientContext * c,
uint32_t flags,
uint8_t * label,
uint16_t labelSz,
const uint8_t * in,
uint16_t inSz

)

COPYRIGHT ©2024 wolfSSL Inc. 58

.2 wolfhsm/wh_client.h CONTENTS

Sends a key cache request to the server.
Parameters:

• c Pointer to the client context.
• flags Flags for the key cache request.
• label Pointer to the label associated with the key.
• labelSz Size of the label.
• in Pointer to the key data to be cached.
• inSz Size of the key data.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a key cache request message to the server. The message contains
the specified flags, label, and input data. This function does not block; it returns immediately after
sending the request.

.2.5.24 function wh_Client_KeyCacheResponse
int wh_Client_KeyCacheResponse(

whClientContext * c,
uint16_t * keyId

)
Receives a key cache response from the server.
Parameters:

• c Pointer to the client context.
• keyId Pointer to store the key ID assigned by the server.

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a key cache response message from the server. It validates the
response and extracts the key ID. This function does not block; it returns WH_ERROR_NOTREADY if a
response has not been received.

.2.5.25 function wh_Client_KeyCache
int wh_Client_KeyCache(

whClientContext * c,
uint32_t flags,
uint8_t * label,
uint16_t labelSz,
const uint8_t * in,
uint16_t inSz,
uint16_t * keyId

)
Sends a key cache request to the server and receives the response.
Parameters:

• c Pointer to the client context.
• flags Flags for the key cache request.
• label Pointer to the label associated with the key.
• labelSz Size of the label.
• in Pointer to the key data to be cached.
• inSz Size of the key data.

COPYRIGHT ©2024 wolfSSL Inc. 59

.2 wolfhsm/wh_client.h CONTENTS

• keyId Pointer to store the key ID assigned by the server.
Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a key cache request to the server and receiving
the response. It sends the request and repeatedly attempts to receive a valid response, extracting the
key ID from the response once received. This function blocks until the entire operation is complete or
an error occurs.

.2.5.26 function wh_Client_KeyEvictRequest
int wh_Client_KeyEvictRequest(

whClientContext * c,
uint16_t keyId

)
Sends a key eviction request to the server.
Parameters:

• c Pointer to the client context.
• keyId Key ID to be evicted.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a key eviction request message to the server. The message contains
the specified key ID. This function does not block; it returns immediately after sending the request.

.2.5.27 function wh_Client_KeyEvictResponse
int wh_Client_KeyEvictResponse(

whClientContext * c
)
Receives a key eviction response from the server.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a key eviction response message from the server. It validates the
response. This function does not block; it returns WH_ERROR_NOTREADY if a response has not been
received.

.2.5.28 function wh_Client_KeyEvict
int wh_Client_KeyEvict(

whClientContext * c,
uint16_t keyId

)
Sends a key eviction request to the server and receives the response.
Parameters:

• c Pointer to the client context.
• keyId Key ID to be evicted.

COPYRIGHT ©2024 wolfSSL Inc. 60

.2 wolfhsm/wh_client.h CONTENTS

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a key eviction request to the server and re-
ceiving the response. It sends the request and repeatedly attempts to receive a valid response. This
function blocks until the entire operation is complete or an error occurs.

.2.5.29 function wh_Client_KeyExportRequest
int wh_Client_KeyExportRequest(

whClientContext * c,
uint16_t keyId

)
Sends a key export request to the server.
Parameters:

• c Pointer to the client context.
• keyId Key ID to be exported.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a key export request message to the server. The message contains
the specified key ID. This function does not block; it returns immediately after sending the request.

.2.5.30 function wh_Client_KeyExportResponse
int wh_Client_KeyExportResponse(

whClientContext * c,
uint8_t * label,
uint16_t labelSz,
uint8_t * out,
uint16_t * outSz

)
Receives a key export response from the server.
Parameters:

• c Pointer to the client context.
• label Pointer to store the label associated with the key.
• labelSz Size of the label buffer.
• out Pointer to store the exported key data.
• outSz Pointer to store the size of the exported key data.

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a key export response message from the server. It validates
the response and extracts the label and key data. This function does not block; it returns
WH_ERROR_NOTREADY if a response has not been received.

.2.5.31 function wh_Client_KeyExport
int wh_Client_KeyExport(

whClientContext * c,
uint16_t keyId,
uint8_t * label,
uint16_t labelSz,
uint8_t * out,

COPYRIGHT ©2024 wolfSSL Inc. 61

.2 wolfhsm/wh_client.h CONTENTS

uint16_t * outSz
)
Sends a key export request to the server and receives the response.
Parameters:

• c Pointer to the client context.
• keyId Key ID to be exported.
• label Pointer to store the label associated with the key.
• labelSz Size of the label buffer.
• out Pointer to store the exported key data.
• outSz Pointer to store the size of the exported key data.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a key export request to the server and receiving
the response. It sends the request and repeatedly attempts to receive a valid response, extracting the
label and key data from the response once received. This function blocks until the entire operation is
complete or an error occurs.

.2.5.32 function wh_Client_KeyCommitRequest
int wh_Client_KeyCommitRequest(

whClientContext * c,
whNvmId keyId

)
Sends a key commit request to the server.
Parameters:

• c Pointer to the client context.
• keyId Key ID to be committed. Committing a key means making it persistent in non-volatile
memory.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a key commit request message to the server. The message contains
the specified key ID. This function does not block; it returns immediately after sending the request.

.2.5.33 function wh_Client_KeyCommitResponse
int wh_Client_KeyCommitResponse(

whClientContext * c
)
Receives a key commit response from the server.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a key commit response message from the server. It validates the
response. This function does not block; it returns WH_ERROR_NOTREADY if a response has not been
received.

COPYRIGHT ©2024 wolfSSL Inc. 62

.2 wolfhsm/wh_client.h CONTENTS

.2.5.34 function wh_Client_KeyCommit
int wh_Client_KeyCommit(

whClientContext * c,
whNvmId keyId

)
Sends a key commit request to the server and receives the response.
Parameters:

• c Pointer to the client context.
• keyId Key ID to be committed. Committing a key means making it persistent in non-volatile
memory.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a key commit request to the server and re-
ceiving the response. It sends the request and repeatedly attempts to receive a valid response. This
function blocks until the entire operation is complete or an error occurs.

.2.5.35 function wh_Client_KeyEraseRequest
int wh_Client_KeyEraseRequest(

whClientContext * c,
whNvmId keyId

)
Sends a key erase request to the server.
Parameters:

• c Pointer to the client context.
• keyId Key ID to be erased.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a key erase request message to the server. The message contains
the specified key ID. This function does not block; it returns immediately after sending the request.

.2.5.36 function wh_Client_KeyEraseResponse
int wh_Client_KeyEraseResponse(

whClientContext * c
)
Receives a key erase response from the server.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a key erase response message from the server. It validates the
response. This function does not block; it returns WH_ERROR_NOTREADY if a response has not been
received.

COPYRIGHT ©2024 wolfSSL Inc. 63

.2 wolfhsm/wh_client.h CONTENTS

.2.5.37 function wh_Client_KeyErase
int wh_Client_KeyErase(

whClientContext * c,
whNvmId keyId

)
Sends a key erase request to the server and receives the response.
Parameters:

• c Pointer to the client context.
• keyId Key ID to be erased.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a key erase request to the server and receiving
the response. It sends the request and repeatedly attempts to receive a valid response. This function
blocks until the entire operation is complete or an error occurs.

.2.5.38 function wh_Client_KeyRevokeRequest
int wh_Client_KeyRevokeRequest(

whClientContext * c,
whKeyId keyId

)
Sends a key revoke request to the server.
Parameters:

• c Pointer to the client context.
• keyId Key ID to be revoked.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a key revoke request message to the server. The message contains
the specified key ID. This function does not block; it returns immediately after sending the request.

.2.5.39 function wh_Client_KeyRevokeResponse
int wh_Client_KeyRevokeResponse(

whClientContext * c
)
Receives a key revoke response from the server.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a key revoke response message from the server. It validates the
response. This function does not block; it returns WH_ERROR_NOTREADY if a response has not been
received.

.2.5.40 function wh_Client_KeyRevoke

COPYRIGHT ©2024 wolfSSL Inc. 64

.2 wolfhsm/wh_client.h CONTENTS

int wh_Client_KeyRevoke(
whClientContext * c,
whKeyId keyId

)
Sends a key revoke request to the server and receives the response.
Parameters:

• c Pointer to the client context.
• keyId Key ID to be revoked.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a key revoke request to the server and receiving
the response. It sends the request and repeatedly attempts to receive a valid response. This function
blocks until the entire operation is complete or an error occurs.

.2.5.41 function wh_Client_KeyCacheDmaRequest
int wh_Client_KeyCacheDmaRequest(

whClientContext * c,
uint32_t flags,
uint8_t * label,
uint16_t labelSz,
const void * keyAddr,
uint16_t keySz,
uint16_t keyId

)
Sends a key cache request using DMA to the server.
Parameters:

• c Pointer to the client context.
• flags Key flags.
• label Optional label for the key.
• labelSz Size of the label in bytes.
• keyAddr DMA address of the key data.
• keySz Size of the key in bytes.
• keyId Key ID to be associated with the cached key.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a key cache request message using DMA addressing to the server.
Themessage contains the key data andmetadata. This function does not block; it returns immediately
after sending the request.

.2.5.42 function wh_Client_KeyCacheDmaResponse
int wh_Client_KeyCacheDmaResponse(

whClientContext * c,
uint16_t * keyId

)
Receives a key cache response for DMA from the server.
Parameters:

• c Pointer to the client context.
• keyId Pointer to store the assigned key ID.

COPYRIGHT ©2024 wolfSSL Inc. 65

.2 wolfhsm/wh_client.h CONTENTS

Return: int Returns 0 on success, or a negative error code on failure.
This function processes a key cache response message for a DMA operation from the server. It vali-
dates the response and returns the assigned key ID.

.2.5.43 function wh_Client_KeyCacheDma
int wh_Client_KeyCacheDma(

whClientContext * c,
uint32_t flags,
uint8_t * label,
uint16_t labelSz,
const void * keyAddr,
uint16_t keySz,
uint16_t * keyId

)
Performs a complete key cache operation using DMA.
Parameters:

• c Pointer to the client context.
• flags Key flags.
• label Optional label for the key.
• labelSz Size of the label in bytes.
• keyAddr DMA address of the key data.
• keySz Size of the key in bytes.
• keyId Pointer to store the assigned key ID.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of caching a key using DMA, including sending the request
and receiving the response.

.2.5.44 function wh_Client_KeyExportDmaRequest
int wh_Client_KeyExportDmaRequest(

whClientContext * c,
uint16_t keyId,
const void * keyAddr,
uint16_t keySz

)
Sends a key export request using DMA to the server.
Parameters:

• c Pointer to the client context.
• keyId Key ID to export.
• keyAddr DMA address where the key should be exported.
• keySz Size of the key buffer in bytes.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a key export request message using DMA addressing to the server.

.2.5.45 function wh_Client_KeyExportDmaResponse

COPYRIGHT ©2024 wolfSSL Inc. 66

.2 wolfhsm/wh_client.h CONTENTS

int wh_Client_KeyExportDmaResponse(
whClientContext * c,
uint8_t * label,
uint16_t labelSz,
uint16_t * outSz

)
Receives a key export response for DMA from the server.
Parameters:

• c Pointer to the client context.
• label Buffer to store the key’s label.
• labelSz Size of the label buffer.
• outSz Pointer to store the actual size of the exported key.

Return: int Returns 0 on success, or a negative error code on failure.
This function processes a key export response message for a DMA operation from the server.

.2.5.46 function wh_Client_KeyExportDma
int wh_Client_KeyExportDma(

whClientContext * c,
uint16_t keyId,
const void * keyAddr,
uint16_t keySz,
uint8_t * label,
uint16_t labelSz,
uint16_t * outSz

)
Performs a complete key export operation using DMA.
Parameters:

• c Pointer to the client context.
• keyId Key ID to export.
• keyAddr DMA address where the key should be exported.
• keySz Size of the key buffer in bytes.
• label Buffer to store the key’s label.
• labelSz Size of the label buffer.
• outSz Pointer to store the actual size of the exported key.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of exporting a key using DMA, including sending the re-
quest and receiving the response.

.2.5.47 function wh_Client_KeyWrap
int wh_Client_KeyWrap(

whClientContext * ctx,
enum wc_CipherType cipherType,
uint16_t serverKeyId,
void * keyIn,
uint16_t keySz,
whNvmMetadata * metadataIn,
void * wrappedKeyOut,

COPYRIGHT ©2024 wolfSSL Inc. 67

.2 wolfhsm/wh_client.h CONTENTS

uint16_t * wrappedKeyInOutSz
)
Sends a key wrap request to the server and receives the response.
Parameters:

• ctx Pointer to the client context.
• cipherType Cipher used to wrap the key.
• serverKeyId Key ID of the key encryption key on the server.
• keyIn Pointer to the key material to wrap.
• keySz The size in bytes of the key material to wrap.
• metadataIn Pointer to the metadata for the wrapped key.
• wrappedKeyOut Pointer to store the wrapped key.
• [in/out]wrappedKeyInOutSz IN: Size of wrappedKeyOut in bytes. OUT: Size of the total wrapped
key object returned by the server. OUT may be less than IN.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a key wrap request to the server and receiving
the response. It sends the request and repeatedly attempts to receive a valid response, extracting the
wrapped key from the response data once received. This function will block until the entire operation
completes or an error occurs.

.2.5.48 function wh_Client_KeyWrapRequest
int wh_Client_KeyWrapRequest(

whClientContext * ctx,
enum wc_CipherType cipherType,
uint16_t serverKeyId,
void * key,
uint16_t keySz,
whNvmMetadata * metadata

)
Sends a key wrap request to the server.
Parameters:

• ctx Pointer to the client context.
• cipherType Cipher used to wrap the key.
• serverKeyId Key ID of the key encryption key on the server.
• key Pointer to the key material to wrap.
• keySz The size in bytes of the key material to wrap.
• metadataIn Pointer to the metadata for the wrapped key.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a key wrap request to the server. The request data contains the key
data and metadata to be wrapped. This function does not block; it returns immediately after sending
the request.

.2.5.49 function wh_Client_KeyWrapResponse
int wh_Client_KeyWrapResponse(

whClientContext * ctx,
enum wc_CipherType cipherType,
void * wrappedKeyOut,

COPYRIGHT ©2024 wolfSSL Inc. 68

.2 wolfhsm/wh_client.h CONTENTS

uint16_t * wrappedKeyInOutSz
)
Receives a key wrap response from the server.
Parameters:

• ctx Pointer to the client context.
• cipherType Cipher used to wrap the key.
• wrappedKeyOut Pointer to store the wrapped key.
• [in/out] wrappedKeyInOutSz IN: Size of the wrappedKeyOut buffer. OUT: Size of the wrapped
key object. OUT may be less than IN

Return: int Returns 0 on success, or a negative error code on failure.
This function attempts to process a key wrap response message from the server. It will validate the
response and extract the wrapped key from the response data. This function does not block; it returns
WH_ERROR_NOTREADY if a response has not been received.

.2.5.50 function wh_Client_KeyUnwrapAndExport
int wh_Client_KeyUnwrapAndExport(

whClientContext * ctx,
enum wc_CipherType cipherType,
uint16_t serverKeyId,
void * wrappedKeyIn,
uint16_t wrappedKeySz,
whNvmMetadata * metadataOut,
void * keyOut,
uint16_t * keyInOutSz

)
Requests the server to unwrap and export a wrapped key and receives the response.
Parameters:

• ctx Pointer to the client context.
• cipherType Cipher used when for unwrapping the key.
• serverKeyId Key ID to be used for unwrapping the key.
• wrappedKeyIn Pointer to the wrapped key data.
• wrappedKeySz The size in bytes of the wrapped key data.
• metadataOut Pointer to store the unwrapped key metadata.
• keyOut Pointer to store the unwrapped key.
• [in/out] keyInOutSz IN: Size of the keyOut buffer. OUT: Size of the exported key returned by the
server. OUT may be less than IN.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a unwrap key and export request to the server
and receiving the response. It sends the request and repeatedly attempts to receive a valid response,
extracting the unwrapped key and metadata from the response data once received. This function will
block until the entire operation completes or an error occurs.

.2.5.51 function wh_Client_KeyUnwrapAndExportRequest
int wh_Client_KeyUnwrapAndExportRequest(

whClientContext * ctx,
enum wc_CipherType cipherType,
uint16_t serverKeyId,

COPYRIGHT ©2024 wolfSSL Inc. 69

.2 wolfhsm/wh_client.h CONTENTS

void * wrappedKeyIn,
uint16_t wrappedKeySz

)
Requests the server to unwrap-and-export a wrapped key.
Parameters:

• ctx Pointer to the client context.
• cipherType Cipher used when for unwrapping the key.
• serverKeyId Key ID to be used for unwrapping the key.
• wrappedKeyIn Pointer to the wrapped key data.
• wrappedKeySz The size in bytes of the wrapped key data.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a key unwrap-and-export request to the server. The request data
contains thewrapped key for the server to unwrap. This function does not block; it returns immediately
after sending the request.

.2.5.52 function wh_Client_KeyUnwrapAndExportResponse
int wh_Client_KeyUnwrapAndExportResponse(

whClientContext * ctx,
enum wc_CipherType cipherType,
whNvmMetadata * metadataOut,
void * keyOut,
uint16_t * keyInOutSz

)
Receives an unwrap-and-export response from the server.
Parameters:

• ctx Pointer to the client context.
• cipherType Cipher used when for unwrapping the key.
• metadataOut Pointer to store the unwrapped key metadata.
• keyOut Pointer to store the unwrapped key.
• [in/out] keyInOutSz IN: Size of the keyOut buffer. OUT: Size of the exported key returned by the
server. OUT may be less than IN.

Return: int Returns 0 on success, or a negative error code on failure.
This function attempts to process an unwrap-and-export response message from the server. It will
validate the response and extract the metadata and unwrapped key from from the response data.
This function does not block; it returns WH_ERROR_NOTREADY if a response has not been received.

.2.5.53 function wh_Client_KeyUnwrapAndCache
int wh_Client_KeyUnwrapAndCache(

whClientContext * ctx,
enum wc_CipherType cipherType,
uint16_t serverKeyId,
void * wrappedKeyIn,
uint16_t wrappedKeySz,
uint16_t * keyIdOut

)
Requests the server to unwrap and cache a wrapped key and receives the response.

COPYRIGHT ©2024 wolfSSL Inc. 70

.2 wolfhsm/wh_client.h CONTENTS

Parameters:
• ctx Pointer to the client context.
• cipherType Cipher used when unwrapping the key.
• serverKeyId Key ID to be used for unwrapping the key.
• wrappedKeyIn Pointer to the wrapped key data.
• wrappedKeySz The size in bytes of the wrapped key data.
• keyIdOut Pointer to store the server-assigned ID of the cached key.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a unwrap-and-cache request to the server and
receiving the response. It sends the request and repeatedly attempts to receive a valid response,
extracting the server-assigned key ID for the unwrapped key once received. This function will block
until the entire operation completes or an error occurs.

.2.5.54 function wh_Client_KeyUnwrapAndCacheRequest
int wh_Client_KeyUnwrapAndCacheRequest(

whClientContext * ctx,
enum wc_CipherType cipherType,
uint16_t serverKeyId,
void * wrappedKeyIn,
uint16_t wrappedKeySz

)
Sends a key unwrap-and-cache request to the server.
Parameters:

• ctx Pointer to the client context.
• cipherType Cipher used when unwrapping the key.
• serverKeyId Key ID to be used for unwrapping the key.
• wrappedKeyIn Pointer to the wrapped key data.
• wrappedKeySz The size in bytes of the wrapped key data.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a key unwrap-and-cache request to the server. The request data
contains the wrapped key for the server to unwrap and cache. This function does not block; it returns
immediately after sending the request.

.2.5.55 function wh_Client_KeyUnwrapAndCacheResponse
int wh_Client_KeyUnwrapAndCacheResponse(

whClientContext * ctx,
enum wc_CipherType cipherType,
uint16_t * keyIdOut

)
Receives an unwrap-and-cache response from the server.
Parameters:

• ctx Pointer to the client context.
• cipherType Cipher used when unwrapping the key.
• keyIdOut Pointer to store the server-assigned ID of the cached key.

Return: int Returns 0 on success, or a negative error code on failure.

COPYRIGHT ©2024 wolfSSL Inc. 71

.2 wolfhsm/wh_client.h CONTENTS

This function attempts to process an unwrap-and-cache response message from the server. It will
validate the response and extract the server-assigned key ID for the cached key. This function does
not block; it returns WH_ERROR_NOTREADY if a response has not been received.

.2.5.56 function wh_Client_DataWrap
int wh_Client_DataWrap(

whClientContext * ctx,
enum wc_CipherType cipherType,
uint16_t serverKeyId,
void * dataIn,
uint32_t dataInSz,
void * wrappedDataOut,
uint32_t * wrappedDataInOutSz

)
Helper function to wrap a data object using a specified key.
Parameters:

• ctx Pointer to the client context.
• cipherType Cipher used when wrapping the data.
• serverKeyId Key ID to be used for wrapping the data.
• dataIn Pointer to the plaintext data you want to wrap.
• dataInSz The size in bytes of the plaintext data.
• wrappedDataOut The pointer to the buffer that stores the resulting wrapped data.
• [in/out] wrappedDataInOutSz IN: The size in bytes of wrappedDataOut buffer. OUT: The size of
the wrapped data object returned from the server. OUT may be less than IN.

Return: int Returns 0 on success, or a negative error code on failure.
This helper function uses existing calls in wolfHSM and wolfCrypt to construct a wrapped data object
using a specified cipher and key id

.2.5.57 function wh_Client_DataUnwrap
int wh_Client_DataUnwrap(

whClientContext * ctx,
enum wc_CipherType cipherType,
uint16_t serverKeyId,
void * wrappedDataIn,
uint32_t wrappedDataInSz,
void * dataOut,
uint32_t * dataInOutSz

)
Helper function to unwrap a wrapped data object using a specified key.
Parameters:

• ctx Pointer to the client context.
• cipherType Cipher used when unwrapping the data.
• serverKeyId Key ID to be used for wrapping the data.
• wrappedDataIn Pointer to the wrapped data object you want to unwrap.
• wrappedDataInSz The size in bytes of the wrapped data object.
• dataOut The pointer to the buffer that stores the resulting unwrapped data.
• [in/out]dataInOutSz IN: The size in bytes of dataOut. OUT: The size of the unwrapped data object
return by the server. OUT may be less than IN.

COPYRIGHT ©2024 wolfSSL Inc. 72

.2 wolfhsm/wh_client.h CONTENTS

Return: int Returns 0 on success, or a negative error code on failure.
This helper function uses existing calls in wolfHSM and wolfCrypt to unwrap a wrapped data object
using a specified cipher and key id

.2.5.58 function wh_Client_CounterInitRequest
int wh_Client_CounterInitRequest(

whClientContext * c,
whNvmId counterId,
uint32_t counter

)

.2.5.59 function wh_Client_CounterInitResponse
int wh_Client_CounterInitResponse(

whClientContext * c,
uint32_t * counter

)

.2.5.60 function wh_Client_CounterInit
int wh_Client_CounterInit(

whClientContext * c,
whNvmId counterId,
uint32_t * counter

)
Creates and initializes a counter with the value set in counter.
Parameters:

• c Pointer to the whClientContext structure.
• counterId counter ID to be associated with the counter.
• counter Value to initialize the counter with, returns with the value set by the HSM for confirma-
tion.

Return: int Returns 0 on success or a negative error code on failure.
This function creates/resets a counter with the supplied counterId and gives it the value stored in
counter at the start of the call.

.2.5.61 function wh_Client_CounterResetRequest
int wh_Client_CounterResetRequest(

whClientContext * c,
whNvmId counterId

)

.2.5.62 function wh_Client_CounterResetResponse
int wh_Client_CounterResetResponse(

whClientContext * c,
uint32_t * counter

)

COPYRIGHT ©2024 wolfSSL Inc. 73

.2 wolfhsm/wh_client.h CONTENTS

.2.5.63 function wh_Client_CounterReset
int wh_Client_CounterReset(

whClientContext * c,
whNvmId counterId,
uint32_t * counter

)
Creates and initializes a counter with to 0.
Parameters:

• c Pointer to the whClientContext structure.
• counterId Counter ID to be associated with the counter.
• counter Value set by the HSM for confirmation.

Return: int Returns 0 on success or a negative error code on failure.
This function creates/resets a counter with the supplied counterId and gives it the value of 0.

.2.5.64 function wh_Client_CounterIncrementRequest
int wh_Client_CounterIncrementRequest(

whClientContext * c,
whNvmId counterId

)

.2.5.65 function wh_Client_CounterIncrementResponse
int wh_Client_CounterIncrementResponse(

whClientContext * c,
uint32_t * counter

)

.2.5.66 function wh_Client_CounterIncrement
int wh_Client_CounterIncrement(

whClientContext * c,
whNvmId counterId,
uint32_t * counter

)
Increments a counter.
Parameters:

• c Pointer to the whClientContext structure.
• counterId Counter ID to be associated with the counter.
• counter Value set by the HSM for confirmation.

Return: int Returns 0 on success or a negative error code on failure.
This function increments a counter created previously. If the counter would roll over the HSM will
saturate the value, keeping it at the uint32_t max.

.2.5.67 function wh_Client_CounterReadRequest
int wh_Client_CounterReadRequest(

whClientContext * c,

COPYRIGHT ©2024 wolfSSL Inc. 74

.2 wolfhsm/wh_client.h CONTENTS

whNvmId counterId
)

.2.5.68 function wh_Client_CounterReadResponse
int wh_Client_CounterReadResponse(

whClientContext * c,
uint32_t * counter

)

.2.5.69 function wh_Client_CounterRead
int wh_Client_CounterRead(

whClientContext * c,
whNvmId counterId,
uint32_t * counter

)
Read a counter.
Parameters:

• c Pointer to the whClientContext structure.
• counterId Counter ID to be associated with the counter.
• counter Value set by the HSM.

Return: int Returns 0 on success or a negative error code on failure.
This function read a counter created previously.

.2.5.70 function wh_Client_CounterDestroyRequest
int wh_Client_CounterDestroyRequest(

whClientContext * c,
whNvmId counterId

)

.2.5.71 function wh_Client_CounterDestroyResponse
int wh_Client_CounterDestroyResponse(

whClientContext * c
)

.2.5.72 function wh_Client_CounterDestroy
int wh_Client_CounterDestroy(

whClientContext * c,
whNvmId counterId

)
Destroy a counter.
Parameters:

• c Pointer to the whClientContext structure.
• counterId Counter ID to be associated with the counter.

Return: int Returns 0 on success or a negative error code on failure.
This function destroys an NVM counter created previously.

COPYRIGHT ©2024 wolfSSL Inc. 75

.2 wolfhsm/wh_client.h CONTENTS

.2.5.73 function wh_Client_NvmInitRequest
int wh_Client_NvmInitRequest(

whClientContext * c
)
Sends a non-volatile memory (NVM) initialization request to the server.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, or a negative error code on failure.
NVM functions
This function prepares and sends an NVM initialization request message to the server. The message
contains the client NVM ID. This function does not block; it returns immediately after sending the
request.

.2.5.74 function wh_Client_NvmInitResponse
int wh_Client_NvmInitResponse(

whClientContext * c,
int32_t * out_rc,
uint32_t * out_clientnvm_id,
uint32_t * out_servernvm_id

)
Receives a non-volatile memory (NVM) initialization response from the server.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the return code from the server.
• out_clientnvm_id Pointer to store the client NVM ID assigned by the server.
• out_servernvm_id Pointer to store the server NVM ID assigned by the server.

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process an NVM initialization responsemessage from the server. It validates
the response and extracts the client and server NVM IDs. This function does not block; it returns
WH_ERROR_NOTREADY if a response has not been received.

.2.5.75 function wh_Client_NvmInit
int wh_Client_NvmInit(

whClientContext * c,
int32_t * out_rc,
uint32_t * out_clientnvm_id,
uint32_t * out_servernvm_id

)
Sends a non-volatile memory (NVM) initialization request to the server and receives the response.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the return code from the server.
• out_clientnvm_id Pointer to store the client NVM ID assigned by the server.
• out_servernvm_id Pointer to store the server NVM ID assigned by the server.

COPYRIGHT ©2024 wolfSSL Inc. 76

.2 wolfhsm/wh_client.h CONTENTS

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending an NVM initialization request to the server
and receiving the response. It sends the request and repeatedly attempts to receive a valid response,
extracting the client and server NVM IDs from the response once received. This function blocks until
the entire operation is complete or an error occurs.

.2.5.76 function wh_Client_NvmCleanupRequest
int wh_Client_NvmCleanupRequest(

whClientContext * c
)
Sends a non-volatile memory (NVM) cleanup request to the server.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends an NVM cleanup request message to the server. This function does
not block; it returns immediately after sending the request.

.2.5.77 function wh_Client_NvmCleanupResponse
int wh_Client_NvmCleanupResponse(

whClientContext * c,
int32_t * out_rc

)
Receives a non-volatile memory (NVM) cleanup response from the server.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the return code from the server.

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process an NVM cleanup response message from the server. It validates the
response. This function does not block; it returns WH_ERROR_NOTREADY if a response has not been
received.

.2.5.78 function wh_Client_NvmCleanup
int wh_Client_NvmCleanup(

whClientContext * c,
int32_t * out_rc

)
Sends a non-volatile memory (NVM) cleanup request to the server and receives the response.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the return code from the server.

Return: int Returns 0 on success, or a negative error code on failure.

COPYRIGHT ©2024 wolfSSL Inc. 77

.2 wolfhsm/wh_client.h CONTENTS

This function handles the complete process of sending an NVM cleanup request to the server and
receiving the response. It sends the request and repeatedly attempts to receive a valid response. This
function blocks until the entire operation is complete or an error occurs.

.2.5.79 function wh_Client_NvmGetAvailableRequest
int wh_Client_NvmGetAvailableRequest(

whClientContext * c
)
Sends a request to the server to get available non-volatile memory (NVM) information.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to the server to retrieve information about the available
and reclaimable NVM space and objects. This function does not block; it returns immediately after
sending the request.

.2.5.80 function wh_Client_NvmGetAvailableResponse
int wh_Client_NvmGetAvailableResponse(

whClientContext * c,
int32_t * out_rc,
uint32_t * out_avail_size,
whNvmId * out_avail_objects,
uint32_t * out_reclaim_size,
whNvmId * out_reclaim_objects

)
Receives a response from the server with available non-volatile memory (NVM) information.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the return code from the server.
• out_avail_size Pointer to store the available NVM size.
• out_avail_objects Pointer to store the available NVM objects.
• out_reclaim_size Pointer to store the reclaimable NVM size.
• out_reclaim_objects Pointer to store the reclaimable NVM objects.

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a response message from the server containing information
about the available and reclaimable NVM space and objects. This function does not block; it returns
WH_ERROR_NOTREADY if a response has not been received.

.2.5.81 function wh_Client_NvmGetAvailable
int wh_Client_NvmGetAvailable(

whClientContext * c,
int32_t * out_rc,
uint32_t * out_avail_size,
whNvmId * out_avail_objects,
uint32_t * out_reclaim_size,

COPYRIGHT ©2024 wolfSSL Inc. 78

.2 wolfhsm/wh_client.h CONTENTS

whNvmId * out_reclaim_objects
)
Sends a request to the server and receives a response with available non-volatile memory (NVM) infor-
mation.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the return code from the server.
• out_avail_size Pointer to store the available NVM size.
• out_avail_objects Pointer to store the available NVM objects.
• out_reclaim_size Pointer to store the reclaimable NVM size.
• out_reclaim_objects Pointer to store the reclaimable NVM objects.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to the server to retrieve information
about the available and reclaimable NVM space and objects, and receiving the response. It sends
the request and repeatedly attempts to receive a valid response. This function blocks until the entire
operation is complete or an error occurs.

.2.5.82 function wh_Client_NvmAddObjectRequest
int wh_Client_NvmAddObjectRequest(

whClientContext * c,
whNvmId id,
whNvmAccess access,
whNvmFlags flags,
whNvmSize label_len,
uint8_t * label,
whNvmSize len,
const uint8_t * data

)
Sends a request to the server to add an object to non-volatile memory (NVM).
Parameters:

• c Pointer to the client context.
• id The ID of the NVM object to add.
• access The access permissions for the NVM object.
• flags Flags associated with the NVM object.
• label_len The length of the label.
• label Pointer to the label data.
• len The length of the data.
• data Pointer to the data to be added.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to the server to add an object to the NVM. The request
includes the object ID, access permissions, flags, label, and data. This function does not block; it
returns immediately after sending the request.

.2.5.83 function wh_Client_NvmAddObjectResponse
int wh_Client_NvmAddObjectResponse(

whClientContext * c,

COPYRIGHT ©2024 wolfSSL Inc. 79

.2 wolfhsm/wh_client.h CONTENTS

int32_t * out_rc
)
Receives a response from the server after attempting to add an object to non-volatile memory (NVM).
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the return code from the server.

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a response message from the server after an add object request.
It validates the response and extracts the return code. This function does not block; it returns
WH_ERROR_NOTREADY if a response has not been received.

.2.5.84 function wh_Client_NvmAddObject
int wh_Client_NvmAddObject(

whClientContext * c,
whNvmId id,
whNvmAccess access,
whNvmFlags flags,
whNvmSize label_len,
uint8_t * label,
whNvmSize len,
const uint8_t * data,
int32_t * out_rc

)
Sends a request to the server and receives a response to add an object to non-volatile memory (NVM).
Parameters:

• c Pointer to the client context.
• id The ID of the NVM object to add.
• access The access permissions for the NVM object.
• flags Flags associated with the NVM object.
• label_len The length of the label.
• label Pointer to the label data.
• len The length of the data.
• data Pointer to the data to be added.
• out_rc Pointer to store the return code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to the server to add an object to
the NVM and receiving the response. It sends the request and repeatedly attempts to receive a valid
response. This function blocks until the entire operation is complete or an error occurs.

.2.5.85 function wh_Client_NvmListRequest
int wh_Client_NvmListRequest(

whClientContext * c,
whNvmAccess access,
whNvmFlags flags,
whNvmId start_id

)

COPYRIGHT ©2024 wolfSSL Inc. 80

.2 wolfhsm/wh_client.h CONTENTS

Sends a request to the server to list non-volatile memory (NVM) objects.
Parameters:

• c Pointer to the client context.
• access The access permissions for the NVM objects to list.
• flags Flags associated with the NVM objects to list.
• start_id The starting ID of the NVM objects to list.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to the server to list NVM objects. The request includes the
access permissions, flags, and the starting object ID. This function does not block; it returns immedi-
ately after sending the request.

.2.5.86 function wh_Client_NvmListResponse
int wh_Client_NvmListResponse(

whClientContext * c,
int32_t * out_rc,
whNvmId * out_count,
whNvmId * out_id

)
Receives a response from the server with a list of non-volatile memory (NVM) objects.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the return code from the server.
• out_count Pointer to store the count of NVM objects that match the criteria.
• out_id Pointer to store the ID of the first matching NVM object.

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a responsemessage from the server containing a list of NVMobjects.
It validates the response and extracts the return code, count of objects, and the object IDs. The count
is the number of objects that match the flags/access pattern starting at start_id. The out_id is the first
matching object ID. This function does not block; it returns WH_ERROR_NOTREADY if a response has
not been received.

.2.5.87 function wh_Client_NvmList
int wh_Client_NvmList(

whClientContext * c,
whNvmAccess access,
whNvmFlags flags,
whNvmId start_id,
int32_t * out_rc,
whNvmId * out_count,
whNvmId * out_id

)
Sends a request to the server and receives a response to list non-volatile memory (NVM) objects.
Parameters:

• c Pointer to the client context.
• access The access permissions for the NVM objects to list.

COPYRIGHT ©2024 wolfSSL Inc. 81

.2 wolfhsm/wh_client.h CONTENTS

• flags Flags associated with the NVM objects to list.
• start_id The starting ID of the NVM objects to list.
• out_rc Pointer to store the return code from the server.
• out_count Pointer to store the count of NVM objects that match the criteria.
• out_id Pointer to store the ID of the first matching NVM object.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to the server to list NVM objects and
receiving the response. It sends the request and repeatedly attempts to receive a valid response. The
count is the number of objects that match the flags/access pattern starting at start_id. The out_id
is the first matching object ID. This function blocks until the entire operation is complete or an error
occurs.

.2.5.88 function wh_Client_NvmGetMetadataRequest
int wh_Client_NvmGetMetadataRequest(

whClientContext * c,
whNvmId id

)
Sends a request to the server to get metadata of a non-volatile memory (NVM) object.
Parameters:

• c Pointer to the client context.
• id The ID of the NVM object for which metadata is requested.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to the server to retrievemetadata for a specific NVMobject.
The request includes the object ID. This function does not block; it returns immediately after sending
the request.

.2.5.89 function wh_Client_NvmGetMetadataResponse
int wh_Client_NvmGetMetadataResponse(

whClientContext * c,
int32_t * out_rc,
whNvmId * out_id,
whNvmAccess * out_access,
whNvmFlags * out_flags,
whNvmSize * out_len,
whNvmSize label_len,
uint8_t * label

)
Receives a response from the server with metadata of a non-volatile memory (NVM) object.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the return code from the server.
• out_id Pointer to store the ID of the NVM object.
• out_access Pointer to store the access permissions of the NVM object.
• out_flags Pointer to store the flags of the NVM object.
• out_len Pointer to store the length of the data.
• label_len The length of the label buffer.
• label Pointer to store the label data.

COPYRIGHT ©2024 wolfSSL Inc. 82

.2 wolfhsm/wh_client.h CONTENTS

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a responsemessage from the server containingmetadata of anNVM
object. It validates the response and extracts the return code, object ID, access permissions, flags, data
length, and label. This function does not block; it returns WH_ERROR_NOTREADY if a response has not
been received.

.2.5.90 function wh_Client_NvmGetMetadata
int wh_Client_NvmGetMetadata(

whClientContext * c,
whNvmId id,
int32_t * out_rc,
whNvmId * out_id,
whNvmAccess * out_access,
whNvmFlags * out_flags,
whNvmSize * out_len,
whNvmSize label_len,
uint8_t * label

)
Sends a request to the server and receives a response to getmetadata of a non-volatilememory (NVM)
object.
Parameters:

• c Pointer to the client context.
• id The ID of the NVM object for which metadata is requested.
• out_rc Pointer to store the return code from the server.
• out_id Pointer to store the ID of the NVM object.
• out_access Pointer to store the access permissions of the NVM object.
• out_flags Pointer to store the flags of the NVM object.
• out_len Pointer to store the length of the data.
• label_len The length of the label buffer.
• label Pointer to store the label data.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to the server to get metadata of an
NVM object and receiving the response. It sends the request and repeatedly attempts to receive a
valid response. This function blocks until the entire operation is complete or an error occurs.

.2.5.91 function wh_Client_NvmDestroyObjectsRequest
int wh_Client_NvmDestroyObjectsRequest(

whClientContext * c,
whNvmId list_count,
const whNvmId * id_list

)
Sends a request to the server to destroy non-volatile memory (NVM) objects.
Parameters:

• c Pointer to the client context.
• list_count The number of NVM objects to destroy.
• id_list Pointer to an array of IDs of the NVM objects to destroy.

COPYRIGHT ©2024 wolfSSL Inc. 83

.2 wolfhsm/wh_client.h CONTENTS

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to the server to destroy a list of NVM objects. The request
includes the count of objects and their IDs. This function does not block; it returns immediately after
sending the request.

.2.5.92 function wh_Client_NvmDestroyObjectsResponse
int wh_Client_NvmDestroyObjectsResponse(

whClientContext * c,
int32_t * out_rc

)
Receives a response from the server after attempting to destroy non-volatile memory (NVM) objects.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the return code from the server.

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a response message from the server after attempting to destroy
NVM objects. It validates the response and extracts the return code. This function does not block; it
returns WH_ERROR_NOTREADY if a response has not been received.

.2.5.93 function wh_Client_NvmDestroyObjects
int wh_Client_NvmDestroyObjects(

whClientContext * c,
whNvmId list_count,
const whNvmId * id_list,
int32_t * out_rc

)
Sends a request to the server and receives a response to destroy non-volatile memory (NVM) objects.
Parameters:

• c Pointer to the client context.
• list_count The number of NVM objects to destroy.
• id_list Pointer to an array of IDs of the NVM objects to destroy.
• out_rc Pointer to store the return code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to the server to destroy NVM objects
and receiving the response. It sends the request and repeatedly attempts to receive a valid response.
This function blocks until the entire operation is complete or an error occurs.

.2.5.94 function wh_Client_NvmReadRequest
int wh_Client_NvmReadRequest(

whClientContext * c,
whNvmId id,
whNvmSize offset,
whNvmSize data_len

)

COPYRIGHT ©2024 wolfSSL Inc. 84

.2 wolfhsm/wh_client.h CONTENTS

Sends a request to the server to read data from a non-volatile memory (NVM) object.
Parameters:

• c Pointer to the client context.
• id The ID of the NVM object to read from.
• offset The offset within the NVM object data to start reading from.
• data_len The length of data to read.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to the server to read data from a specific NVM object. The
request includes the object ID, the offset within the NVM object data to start reading from, and the
length of data to read. This function does not block; it returns immediately after sending the request.

.2.5.95 function wh_Client_NvmReadResponse
int wh_Client_NvmReadResponse(

whClientContext * c,
int32_t * out_rc,
whNvmSize * out_len,
uint8_t * data

)
Receives a response from the server with NVM object data.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the return code from the server.
• out_len Pointer to store the length of the data read.
• data Pointer to store the NVM object data.

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a response message from the server containing NVM object data. It
validates the response and extracts the return code, the length of the data read, and the data itself.
This function does not block; it returns WH_ERROR_NOTREADY if a response has not been received.

.2.5.96 function wh_Client_NvmRead
int wh_Client_NvmRead(

whClientContext * c,
whNvmId id,
whNvmSize offset,
whNvmSize data_len,
int32_t * out_rc,
whNvmSize * out_len,
uint8_t * data

)
Sends a request to the server and receives a response to read data from a non-volatile memory (NVM)
object.
Parameters:

• c Pointer to the client context.
• id The ID of the NVM object to read from.
• offset The offset within the NVM object data to start reading from.

COPYRIGHT ©2024 wolfSSL Inc. 85

.2 wolfhsm/wh_client.h CONTENTS

• data_len The length of data to read.
• out_rc Pointer to store the return code from the server.
• out_len Pointer to store the length of the data read.
• data Pointer to store the NVM object data.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to the server to read data from an
NVM object and receiving the response. It sends the request and repeatedly attempts to receive a
valid response. This function blocks until the entire operation is complete or an error occurs.

.2.5.97 function wh_Client_NvmAddObjectDmaRequest
int wh_Client_NvmAddObjectDmaRequest(

whClientContext * c,
whNvmMetadata * metadata,
whNvmSize data_len,
const uint8_t * data

)
Sends a request to the server to add an object to non-volatile memory (NVM) using DMA.
Parameters:

• c Pointer to the client context.
• metadata Pointer to the metadata.
• data_len The length of the data to be added.
• data Pointer to the data to be added.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to the server to add an object to NVM using DMA. The
request includes the metadata client address, the length of the data, and the data client address. This
function does not block; it returns immediately after sending the request.

.2.5.98 function wh_Client_NvmAddObjectDmaResponse
int wh_Client_NvmAddObjectDmaResponse(

whClientContext * c,
int32_t * out_rc

)
Receives a response from the server after attempting to add an object to non-volatile memory (NVM)
using DMA.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the return code from the server.

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a response message from the server after attempting to add an
object to NVM using DMA. It validates the response and extracts the return code. This function does
not block; it returns WH_ERROR_NOTREADY if a response has not been received.

.2.5.99 function wh_Client_NvmAddObjectDma

COPYRIGHT ©2024 wolfSSL Inc. 86

.2 wolfhsm/wh_client.h CONTENTS

int wh_Client_NvmAddObjectDma(
whClientContext * c,
whNvmMetadata * metadata,
whNvmSize data_len,
const uint8_t * data,
int32_t * out_rc

)
Sends a request to the server and receives a response to add an object to non-volatile memory (NVM)
using DMA.
Parameters:

• c Pointer to the client context.
• metadata Pointer to the metadata.
• data_len The length of the data to be added.
• data Pointer to the data to be added.
• out_rc Pointer to store the return code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to the server to add an object to NVM
using DMA and receiving the response. It sends the request and repeatedly attempts to receive a valid
response. This function blocks until the entire operation is complete or an error occurs.

.2.5.100 function wh_Client_NvmReadDmaRequest
int wh_Client_NvmReadDmaRequest(

whClientContext * c,
whNvmId id,
whNvmSize offset,
whNvmSize data_len,
uint8_t * data

)

.2.5.101 function wh_Client_NvmReadDmaResponse
int wh_Client_NvmReadDmaResponse(

whClientContext * c,
int32_t * out_rc

)
Receives a response from the server after attempting to read data from non-volatile memory (NVM)
using DMA, with automatic detection of client address width (32-bit or 64-bit).
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the return code from the server.

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a response message from the server after attempting to read
data from NVM using DMA. The client address width (32-bit or 64-bit) is automatically detected.
It validates the response and extracts the return code. This function does not block; it returns
WH_ERROR_NOTREADY if a response has not been received.

COPYRIGHT ©2024 wolfSSL Inc. 87

.2 wolfhsm/wh_client.h CONTENTS

.2.5.102 function wh_Client_NvmReadDma
int wh_Client_NvmReadDma(

whClientContext * c,
whNvmId id,
whNvmSize offset,
whNvmSize data_len,
uint8_t * data,
int32_t * out_rc

)
Sends a request to the server and receives a response to read data from non-volatile memory (NVM)
using DMA, with automatic detection of client address width (32-bit or 64-bit).
Parameters:

• c Pointer to the client context.
• id The NVM ID of the object to read.
• offset The offset within the object to start reading from.
• data_len The length of the data to be read.
• data Pointer to the data buffer where the data will be read into.
• out_rc Pointer to store the return code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to the server to read data from NVM
using DMA and receiving the response. The client address width (32-bit or 64-bit) is automatically
detected. It sends the request and repeatedly attempts to receive a valid response. This function
blocks until the entire operation is complete or an error occurs.

.2.5.103 function wh_Client_CustomCbRequest
int wh_Client_CustomCbRequest(

whClientContext * c,
const whMessageCustomCb_Request * req

)
Sends a custom callback request to the server.
Parameters:

• c Pointer to the client context.
• req Pointer to the custom callback request structure.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a custom callback request to the server. The request includes the
custom callback request structure. This function does not block; it returns immediately after sending
the request.

.2.5.104 function wh_Client_CustomCbResponse
int wh_Client_CustomCbResponse(

whClientContext * c,
whMessageCustomCb_Response * resp

)
Receives a response from the server after sending a custom callback request.
Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 88

.2 wolfhsm/wh_client.h CONTENTS

• c Pointer to the client context.
• resp Pointer to store the custom callback response from the server.

Return: int Returns 0 on success, WH_ERROR_NOTREADY if no response is available, or a negative
error code on failure.
This function attempts to process a responsemessage from the server after sending a custom callback
request. It validates the response and extracts the return code. This function does not block; it returns
WH_ERROR_NOTREADY if a response has not been received.

.2.5.105 function wh_Client_CustomCheckRegisteredRequest
int wh_Client_CustomCheckRegisteredRequest(

whClientContext * c,
uint32_t id

)
Sends a request to the server to check if a custom callback is registered.
Parameters:

• c Pointer to the client context.
• id The ID of the custom callback to check.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to the server to check if a custom callback is registered.
The request includes the callback ID. This function does not block; it returns immediately after sending
the request.

.2.5.106 function wh_Client_CustomCbCheckRegisteredResponse
int wh_Client_CustomCbCheckRegisteredResponse(

whClientContext * c,
uint16_t * outId,
int * responseError

)
Receives a response from the server after checking if a custom callback is registered.
Parameters:

• c Pointer to the client context.
• outId Pointer to store the callback ID from the server.
• responseError Pointer to store the response error code from the server.

Return: int Returns 0 if the callback is registered, WH_ERROR_NOHANDLER if it is not registered, or a
negative error code on failure.
This function attempts to process a response message from the server after checking if a custom
callback is registered. It validates the response and extracts the return code and callback ID. This
function does not block; it returns WH_ERROR_NOTREADY if a response has not been received.

.2.5.107 function wh_Client_CustomCbCheckRegistered
int wh_Client_CustomCbCheckRegistered(

whClientContext * c,
uint16_t id,
int * responseError

)

COPYRIGHT ©2024 wolfSSL Inc. 89

.2 wolfhsm/wh_client.h CONTENTS

Sends a request to the server and receives a response to check if a custom callback is registered.
Parameters:

• c Pointer to the client context.
• id The ID of the custom callback to check.
• responseError Pointer to store the response error code from the server.

Return: int Returns 0 if the callback is registered, WH_ERROR_NOHANDLER if it is not registered, or a
negative error code on failure.
This function handles the complete process of sending a request to the server to check if a custom
callback is registered and receiving the response. It sends the request and repeatedly attempts to
receive a valid response. This function blocks until the entire operation is complete or an error occurs.

.2.5.108 function wh_Client_CertInitRequest
int wh_Client_CertInitRequest(

whClientContext * c
)
Sends a request to initialize the certificate manager on the server.
Parameters:

• c Pointer to the client context.
Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to initialize the certificate manager on the server. This
function does not block; it returns immediately after sending the request.

.2.5.109 function wh_Client_CertInitResponse
int wh_Client_CertInitResponse(

whClientContext * c,
int32_t * out_rc

)
Receives a response from the server after initializing the certificate manager.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function attempts to process a response message from the server after initializing the certificate
manager. It validates the response and extracts the return code. This function does not block; it
returns WH_ERROR_NOTREADY if a response has not been received.

.2.5.110 function wh_Client_CertInit
int wh_Client_CertInit(

whClientContext * c,
int32_t * out_rc

)
Sends a request and receives a response to initialize the certificate manager.
Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 90

.2 wolfhsm/wh_client.h CONTENTS

• c Pointer to the client context.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to initialize the certificate manager
and receiving the response. It blocks until the entire operation is complete or an error occurs.

.2.5.111 function wh_Client_CertAddTrustedRequest
int wh_Client_CertAddTrustedRequest(

whClientContext * c,
whNvmId id,
whNvmAccess access,
whNvmFlags flags,
uint8_t * label,
whNvmSize label_len,
const uint8_t * cert,
uint32_t cert_len

)
Sends a request to add a trusted certificate to NVM storage.
Parameters:

• c Pointer to the client context.
• id The NVM ID to store the certificate.
• cert Pointer to the certificate data.
• cert_len Length of the certificate data.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to add a trusted certificate to NVM storage. This function
does not block; it returns immediately after sending the request.

.2.5.112 function wh_Client_CertAddTrustedResponse
int wh_Client_CertAddTrustedResponse(

whClientContext * c,
int32_t * out_rc

)
Receives a response from the server after adding a trusted certificate.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function attempts to process a response message from the server after adding a trusted certifi-
cate. It validates the response and extracts the return code. This function does not block; it returns
WH_ERROR_NOTREADY if a response has not been received.

.2.5.113 function wh_Client_CertAddTrusted
int wh_Client_CertAddTrusted(

whClientContext * c,
whNvmId id,

COPYRIGHT ©2024 wolfSSL Inc. 91

.2 wolfhsm/wh_client.h CONTENTS

whNvmAccess access,
whNvmFlags flags,
uint8_t * label,
whNvmSize label_len,
const uint8_t * cert,
uint32_t cert_len,
int32_t * out_rc

)
Sends a request and receives a response to add a trusted certificate.
Parameters:

• c Pointer to the client context.
• id The NVM ID to store the certificate.
• cert Pointer to the certificate data.
• cert_len Length of the certificate data.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to add a trusted certificate and re-
ceiving the response. It blocks until the entire operation is complete or an error occurs.

.2.5.114 function wh_Client_CertEraseTrustedRequest
int wh_Client_CertEraseTrustedRequest(

whClientContext * c,
whNvmId id

)
Sends a request to erase a trusted certificate from NVM storage.
Parameters:

• c Pointer to the client context.
• id The NVM ID of the certificate to delete.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to erase a trusted certificate from NVM storage. This
function does not block; it returns immediately after sending the request.

.2.5.115 function wh_Client_CertEraseTrustedResponse
int wh_Client_CertEraseTrustedResponse(

whClientContext * c,
int32_t * out_rc

)
Receives a response from the server after erasing a trusted certificate.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function attempts to process a response message from the server after erasing a trusted certifi-
cate. It validates the response and extracts the return code. This function does not block; it returns
WH_ERROR_NOTREADY if a response has not been received.

COPYRIGHT ©2024 wolfSSL Inc. 92

.2 wolfhsm/wh_client.h CONTENTS

.2.5.116 function wh_Client_CertEraseTrusted
int wh_Client_CertEraseTrusted(

whClientContext * c,
whNvmId id,
int32_t * out_rc

)
Sends a request and receives a response to erase a trusted certificate.
Parameters:

• c Pointer to the client context.
• id The NVM ID of the certificate to delete.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to erase a trusted certificate and
receiving the response. It blocks until the entire operation is complete or an error occurs.

.2.5.117 function wh_Client_CertReadTrustedRequest
int wh_Client_CertReadTrustedRequest(

whClientContext * c,
whNvmId id,
uint32_t cert_len

)
Sends a request to read a trusted certificate from NVM storage.
Parameters:

• c Pointer to the client context.
• id The NVM ID of the certificate to retrieve.
• cert_lenMaximum length of the certificate buffer.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to read a trusted certificate from NVM storage. This func-
tion does not block; it returns immediately after sending the request.

.2.5.118 function wh_Client_CertReadTrustedResponse
int wh_Client_CertReadTrustedResponse(

whClientContext * c,
uint8_t * cert,
uint32_t * cert_len,
int32_t * out_rc

)
Receives a response from the server after getting a trusted certificate.
Parameters:

• c Pointer to the client context.
• cert Pointer to store the certificate data.
• cert_len Pointer to the maximum length of the certificate buffer. On output, contains the actual
length of the certificate.

• out_rc Pointer to store the response code from the server.

COPYRIGHT ©2024 wolfSSL Inc. 93

.2 wolfhsm/wh_client.h CONTENTS

Return: int Returns 0 on success, or a negative error code on failure.
This function attempts to process a response message from the server after getting a trusted certifi-
cate. It validates the response, extracts the certificate data, and updates the certificate length. This
function does not block; it returns WH_ERROR_NOTREADY if a response has not been received.

.2.5.119 function wh_Client_CertReadTrusted
int wh_Client_CertReadTrusted(

whClientContext * c,
whNvmId id,
uint8_t * cert,
uint32_t * cert_len,
int32_t * out_rc

)
Sends a request and receives a response to read a trusted certificate.
Parameters:

• c Pointer to the client context.
• id The NVM ID of the certificate to retrieve.
• cert Pointer to store the certificate data.
• cert_len Pointer to the maximum length of the certificate buffer. On output, contains the actual
length of the certificate.

• out_rc Pointer to store the response code from the server.
Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to read a trusted certificate and
receiving the response. It blocks until the entire operation is complete or an error occurs.

.2.5.120 function wh_Client_CertVerifyRequest
int wh_Client_CertVerifyRequest(

whClientContext * c,
const uint8_t * cert,
uint32_t cert_len,
whNvmId trustedRootNvmId

)
Sends a request to verify a certificate against trusted certificates.
Parameters:

• c Pointer to the client context.
• cert Pointer to the certificate data to verify.
• cert_len Length of the certificate data.
• trustedRootNvmId NVM ID of the trusted root certificate to verify against.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to verify a certificate against trusted certificates. This
function does not block; it returns immediately after sending the request.

.2.5.121 function wh_Client_CertVerifyResponse
int wh_Client_CertVerifyResponse(

whClientContext * c,

COPYRIGHT ©2024 wolfSSL Inc. 94

.2 wolfhsm/wh_client.h CONTENTS

int32_t * out_rc
)
Receives a response from the server after verifying a certificate.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function attempts to process a response message from the server after verifying a certificate.
It validates the response and extracts the return code. This function does not block; it returns
WH_ERROR_NOTREADY if a response has not been received.

.2.5.122 function wh_Client_CertVerify
int wh_Client_CertVerify(

whClientContext * c,
const uint8_t * cert,
uint32_t cert_len,
whNvmId trustedRootNvmId,
int32_t * out_rc

)
Sends a request and receives a response to verify a certificate.
Parameters:

• c Pointer to the client context.
• cert Pointer to the certificate data to verify.
• cert_len Length of the certificate data.
• trustedRootNvmId NVM ID of the trusted root certificate to verify against.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to verify a certificate and receiving
the response. It blocks until the entire operation is complete or an error occurs.

.2.5.123 function wh_Client_CertVerifyAndCacheLeafPubKeyRequest
int wh_Client_CertVerifyAndCacheLeafPubKeyRequest(

whClientContext * c,
const uint8_t * cert,
uint32_t cert_len,
whNvmId trustedRootNvmId,
whNvmFlags cachedKeyFlags,
whKeyId keyId

)
Sends a request to verify a certificate and cache the leaf public key.
Parameters:

• c Pointer to the client context.
• cert Pointer to the certificate data to verify.
• cert_len Length of the certificate data.
• trustedRootNvmId NVM ID of the trusted root certificate to verify against.

COPYRIGHT ©2024 wolfSSL Inc. 95

.2 wolfhsm/wh_client.h CONTENTS

• cachedKeyFlagsNVMusageflags to applywhen caching the leaf public key (e.g., WH_NVM_FLAGS_USAGE_VERIFY,
WH_NVM_FLAGS_USAGE_SIGN).

• keyId The keyId to cache the leaf public key in. If set to WH_KEYID_ERASED, the server will pick
a keyId.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to verify a certificate and also instructs the server to cache
the public key of the leaf certificate. This function does not block; it returns immediately after sending
the request.

.2.5.124 function wh_Client_CertVerifyAndCacheLeafPubKeyResponse
int wh_Client_CertVerifyAndCacheLeafPubKeyResponse(

whClientContext * c,
whKeyId * out_keyId,
int32_t * out_rc

)
Receives a response from the server after verifying a certificate and caching the leaf public key.
Parameters:

• c Pointer to the client context.
• out_keyId Pointer to store the key ID of the cached leaf public key.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function attempts to process a response message from the server after verifying a certificate and
caching the leaf public key. It validates the response and extracts the return code and key ID. This
function does not block; it returns WH_ERROR_NOTREADY if a response has not been received.

.2.5.125 function wh_Client_CertVerifyAndCacheLeafPubKey
int wh_Client_CertVerifyAndCacheLeafPubKey(

whClientContext * c,
const uint8_t * cert,
uint32_t cert_len,
whNvmId trustedRootNvmId,
whNvmFlags cachedKeyFlags,
whKeyId * inout_keyId,
int32_t * out_rc

)
Sends a request and receives a response to verify a certificate, while also instructing the server to
cache the public key of the leaf certificate.
Parameters:

• c Pointer to the client context.
• cert Pointer to the certificate data to verify.
• cert_len Length of the certificate data.
• trustedRootNvmId NVM ID of the trusted root certificate to verify against.
• cachedKeyFlagsNVMusageflags to applywhen caching the leaf public key (e.g., WH_NVM_FLAGS_USAGE_VERIFY,
WH_NVM_FLAGS_USAGE_SIGN).

• inout_keyIdPointer to thedesired key IDof the cached leaf public key. If set toWH_KEYID_ERASED,
the server will pick a keyId. On output, contains the keyId of the cached leaf public key.

• out_rc Pointer to store the response code from the server.

COPYRIGHT ©2024 wolfSSL Inc. 96

.2 wolfhsm/wh_client.h CONTENTS

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to verify a certificate and cache the
leaf public key, and receiving the response. It blocks until the entire operation is complete or an error
occurs.

.2.5.126 function wh_Client_CertAddTrustedDmaRequest
int wh_Client_CertAddTrustedDmaRequest(

whClientContext * c,
whNvmId id,
whNvmAccess access,
whNvmFlags flags,
uint8_t * label,
whNvmSize label_len,
const void * cert,
uint32_t cert_len

)
Sends a request to add a trusted certificate to NVM storage using DMA.
Parameters:

• c Pointer to the client context.
• id NVM ID to store the trusted certificate.
• cert Pointer to the certificate data to add.
• cert_len Length of the certificate data.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to add a trusted certificate to NVM storage using DMA.
This function does not block; it returns immediately after sending the request.

.2.5.127 function wh_Client_CertAddTrustedDmaResponse
int wh_Client_CertAddTrustedDmaResponse(

whClientContext * c,
int32_t * out_rc

)
Receives a response from the server after adding a trusted certificate using DMA.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function attempts to process a responsemessage from the server after adding a trusted certificate
using DMA. It validates the response and extracts the return code. This function does not block; it
returns WH_ERROR_NOTREADY if a response has not been received.

.2.5.128 function wh_Client_CertAddTrustedDma
int wh_Client_CertAddTrustedDma(

whClientContext * c,
whNvmId id,
whNvmAccess access,
whNvmFlags flags,

COPYRIGHT ©2024 wolfSSL Inc. 97

.2 wolfhsm/wh_client.h CONTENTS

uint8_t * label,
whNvmSize label_len,
const void * cert,
uint32_t cert_len,
int32_t * out_rc

)
Sends a request and receives a response to add a trusted certificate using DMA.
Parameters:

• c Pointer to the client context.
• id NVM ID to store the trusted certificate.
• cert Pointer to the certificate data to add.
• cert_len Length of the certificate data.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to add a trusted certificate using
DMA and receiving the response. It blocks until the entire operation is complete or an error occurs.

.2.5.129 function wh_Client_CertReadTrustedDmaRequest
int wh_Client_CertReadTrustedDmaRequest(

whClientContext * c,
whNvmId id,
void * cert,
uint32_t cert_len

)
Sends a request to read a trusted certificate from NVM storage using DMA.
Parameters:

• c Pointer to the client context.
• id NVM ID of the trusted certificate to get.
• cert Pointer to buffer to store the certificate data.
• cert_len Length of the certificate buffer.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to read a trusted certificate from NVM storage using DMA.
This function does not block; it returns immediately after sending the request.

.2.5.130 function wh_Client_CertReadTrustedDmaResponse
int wh_Client_CertReadTrustedDmaResponse(

whClientContext * c,
int32_t * out_rc

)
Receives a response from the server after reading a trusted certificate using DMA.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.

COPYRIGHT ©2024 wolfSSL Inc. 98

.2 wolfhsm/wh_client.h CONTENTS

This function attempts to process a response message from the server after reading a trusted certifi-
cate using DMA. It validates the response and extracts the return code. This function does not block;
it returns WH_ERROR_NOTREADY if a response has not been received.

.2.5.131 function wh_Client_CertReadTrustedDma
int wh_Client_CertReadTrustedDma(

whClientContext * c,
whNvmId id,
void * cert,
uint32_t cert_len,
int32_t * out_rc

)
Sends a request and receives a response to read trusted certificate using DMA.
Parameters:

• c Pointer to the client context.
• id NVM ID of the trusted certificate to get.
• cert Pointer to buffer to store the certificate data.
• cert_len Length of the certificate buffer.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to read a trusted certificate using
DMA and receiving the response. It blocks until the entire operation is complete or an error occurs.

.2.5.132 function wh_Client_CertVerifyDmaRequest
int wh_Client_CertVerifyDmaRequest(

whClientContext * c,
const void * cert,
uint32_t cert_len,
whNvmId trustedRootNvmId

)
Sends a request to verify a certificate using DMA.
Parameters:

• c Pointer to the client context.
• cert Pointer to the certificate data to verify.
• cert_len Length of the certificate data.
• trustedRootNvmId NVM ID of the trusted root certificate to verify against.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to verify a certificate using DMA. This function does not
block; it returns immediately after sending the request.

.2.5.133 function wh_Client_CertVerifyDmaResponse
int wh_Client_CertVerifyDmaResponse(

whClientContext * c,
int32_t * out_rc

)

COPYRIGHT ©2024 wolfSSL Inc. 99

.2 wolfhsm/wh_client.h CONTENTS

Receives a response from the server after verifying a certificate using DMA.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function attempts to process a response message from the server after verifying a certificate
using DMA. It validates the response and extracts the return code. This function does not block; it
returns WH_ERROR_NOTREADY if a response has not been received.

.2.5.134 function wh_Client_CertVerifyDma
int wh_Client_CertVerifyDma(

whClientContext * c,
const void * cert,
uint32_t cert_len,
whNvmId trustedRootNvmId,
int32_t * out_rc

)
Sends a request and receives a response to verify a certificate using DMA.
Parameters:

• c Pointer to the client context.
• cert Pointer to the certificate data to verify.
• cert_len Length of the certificate data.
• trustedRootNvmId NVM ID of the trusted root certificate to verify against.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to verify a certificate using DMA and
receiving the response. It blocks until the entire operation is complete or an error occurs.

.2.5.135 function wh_Client_CertVerifyDmaAndCacheLeafPubKeyRequest
int wh_Client_CertVerifyDmaAndCacheLeafPubKeyRequest(

whClientContext * c,
const void * cert,
uint32_t cert_len,
whNvmId trustedRootNvmId,
whNvmFlags cachedKeyFlags,
whKeyId keyId

)
Sends a request to verify a certificate using DMA and cache the leaf certificate public key.
Parameters:

• c Pointer to the client context.
• cert Pointer to the certificate data to verify.
• cert_len Length of the certificate data.
• trustedRootNvmId NVM ID of the trusted root certificate to verify against.
• cachedKeyFlagsNVMusageflags to applywhen caching the leaf public key (e.g., WH_NVM_FLAGS_USAGE_VERIFY,
WH_NVM_FLAGS_USAGE_SIGN).

COPYRIGHT ©2024 wolfSSL Inc. 100

.2 wolfhsm/wh_client.h CONTENTS

• keyId The keyId to cache the leaf public key in. If set to WH_KEYID_ERASED, the server will pick
a keyId.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to verify a certificate using DMA and also instructs the
server to cache the public key of the leaf certificate. This function does not block; it returns immediately
after sending the request.

.2.5.136 function wh_Client_CertVerifyDmaAndCacheLeafPubKeyResponse
int wh_Client_CertVerifyDmaAndCacheLeafPubKeyResponse(

whClientContext * c,
whKeyId * out_keyId,
int32_t * out_rc

)
Receives a response from the server after verifying a certificate using DMA and caching the leaf public
key.
Parameters:

• c Pointer to the client context.
• out_keyId Pointer to store the key ID of the cached leaf public key.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function attempts to process a response message from the server after verifying a certificate
using DMA and caching the leaf public key. It validates the response and extracts the return code
and key ID. This function does not block; it returns WH_ERROR_NOTREADY if a response has not been
received.

.2.5.137 function wh_Client_CertVerifyDmaAndCacheLeafPubKey
int wh_Client_CertVerifyDmaAndCacheLeafPubKey(

whClientContext * c,
const void * cert,
uint32_t cert_len,
whNvmId trustedRootNvmId,
whNvmFlags cachedKeyFlags,
whKeyId * inout_keyId,
int32_t * out_rc

)
Sends a request and receives a response to verify a certificate using DMA and cache the leaf certificate
public key.
Parameters:

• c Pointer to the client context.
• cert Pointer to the certificate data to verify.
• cert_len Length of the certificate data.
• trustedRootNvmId NVM ID of the trusted root certificate to verify against.
• cachedKeyFlagsNVMusageflags to applywhen caching the leaf public key (e.g., WH_NVM_FLAGS_USAGE_VERIFY,
WH_NVM_FLAGS_USAGE_SIGN).

• inout_keyIdPointer to thedesired key IDof the cached leaf public key. If set toWH_KEYID_ERASED,
the server will pick a keyId. On output, contains the keyId of the cached leaf public key.

• out_rc Pointer to store the response code from the server.

COPYRIGHT ©2024 wolfSSL Inc. 101

.2 wolfhsm/wh_client.h CONTENTS

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to verify a certificate using DMA and
cache the leaf certificate public key, and receiving the response. It blocks until the entire operation is
complete or an error occurs.

.2.5.138 function wh_Client_CertVerifyAcertRequest
int wh_Client_CertVerifyAcertRequest(

whClientContext * c,
const void * cert,
uint32_t cert_len,
whNvmId trustedRootNvmId

)
Sends a request to verify an attribute certificate.
Parameters:

• c Pointer to the client context.
• cert Pointer to the attribute certificate data to verify.
• cert_len Length of the attribute certificate data.
• trustedRootNvmId NVM ID of the trusted root certificate to verify against.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a request to verify an attribute certificate against a trusted root
certificate. This function does not block; it returns immediately after sending the request.

.2.5.139 function wh_Client_CertVerifyAcertResponse
int wh_Client_CertVerifyAcertResponse(

whClientContext * c,
int32_t * out_rc

)
Receives a response from the server after verifying an attribute certificate.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function attempts to process a response message from the server after verifying an attribute
certificate. It validates the response and extracts the return code. This function does not block; it
returns WH_ERROR_NOTREADY if a response has not been received.

.2.5.140 function wh_Client_CertVerifyAcert
int wh_Client_CertVerifyAcert(

whClientContext * c,
const void * cert,
uint32_t cert_len,
whNvmId trustedRootNvmId,
int32_t * out_rc

)

COPYRIGHT ©2024 wolfSSL Inc. 102

.2 wolfhsm/wh_client.h CONTENTS

Sends a request and receives a response to verify an attribute certificate.
Parameters:

• c Pointer to the client context.
• cert Pointer to the attribute certificate data to verify.
• cert_len Length of the attribute certificate data.
• trustedRootNvmId NVM ID of the trusted root certificate to verify against.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a request to verify an attribute certificate and
receiving the response. It blocks until the entire operation is complete or an error occurs.

.2.5.141 function wh_Client_CertVerifyAcertDmaRequest
int wh_Client_CertVerifyAcertDmaRequest(

whClientContext * c,
const void * cert,
uint32_t cert_len,
whNvmId trustedRootNvmId

)
Prepares and sends a DMA request to verify an attribute certificate.
Parameters:

• c Pointer to the client context.
• cert Pointer to the attribute certificate data to verify.
• cert_len Length of the attribute certificate data.
• trustedRootNvmId NVM ID of the trusted root certificate to verify against.

Return: int Returns 0 on success, or a negative error code on failure.
This function prepares and sends a DMA request to verify an attribute certificate against a trusted root
certificate. This function does not block; it returns immediately after sending the request.

.2.5.142 function wh_Client_CertVerifyAcertDmaResponse
int wh_Client_CertVerifyAcertDmaResponse(

whClientContext * c,
int32_t * out_rc

)
Receives a response from the server after verifying an attribute certificate using DMA.
Parameters:

• c Pointer to the client context.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function attempts to process a response message from the server after verifying an attribute
certificate using DMA. It validates the response and extracts the return code. This function does not
block; it returns WH_ERROR_NOTREADY if a response has not been received.

COPYRIGHT ©2024 wolfSSL Inc. 103

.2 wolfhsm/wh_client.h CONTENTS

.2.5.143 function wh_Client_DmaRegisterAllowList
int wh_Client_DmaRegisterAllowList(

struct whClientContext_t * client,
const whDmaAddrAllowList * allowlist

)
Registers a DMA address allowlist for client-side validation.
Parameters:

• client Pointer to the client context.
• allowlist Pointer to the DMA address allowlist structure.

Return: int Returns WH_ERROR_OK on success, or WH_ERROR_BADARGS if the arguments are invalid.
This function allows the client to register an allowlist of valid DMA addresses. The allowlist will be
checked during DMA operations to ensure addresses are within allowed ranges.

.2.5.144 function wh_Client_DmaRegisterCb
int wh_Client_DmaRegisterCb(

struct whClientContext_t * client,
whClientDmaClientMemCb cb

)
Registers a custom client DMA callback.
Parameters:

• client Pointer to the client context.
• cb The custom DMA callback handler to register.

Return: int Returns WH_ERROR_OK on success, or WH_ERROR_BADARGS if the arguments are invalid.
This function allows the client to register a custom callback handler for processingmemory operations.
The callback will be invoked during DMA operations to transform client addresses, manipulate caches,
etc.

.2.5.145 function wh_Client_DmaProcessClientAddress
int wh_Client_DmaProcessClientAddress(

struct whClientContext_t * client,
uintptr_t clientAddr,
void ** serverPtr,
size_t len,
whDmaOper oper,
whDmaFlags flags

)
Processes a client address for DMA operations, using the native pointer size of the system.
Parameters:

• client Pointer to the client context.
• clientAddr The client address to be processed.
• serverPtr Pointer to store the transformed server address.
• len The length of the memory operation.
• oper The DMA operation type (e.g., read or write).
• flags Flags for the DMA operation.

COPYRIGHT ©2024 wolfSSL Inc. 104

.2 wolfhsm/wh_client.h CONTENTS

Return: int Returns WH_ERROR_OK on success, WH_ERROR_BADARGS if the arguments are invalid, or
a negative error code on failure.
This function transforms a client address for DMA operations. It performs user-supplied address trans-
formations, cache manipulations, and checks the transformed address against the client’s allowlist if
registered.

.2.5.146 function wh_Client_CertVerifyAcertDma
int wh_Client_CertVerifyAcertDma(

whClientContext * c,
const void * cert,
uint32_t cert_len,
whNvmId trustedRootNvmId,
int32_t * out_rc

)
Sends a DMA request and receives a response to verify an attribute certificate.
Parameters:

• c Pointer to the client context.
• cert Pointer to the attribute certificate data to verify.
• cert_len Length of the attribute certificate data.
• trustedRootNvmId NVM ID of the trusted root certificate to verify against.
• out_rc Pointer to store the response code from the server.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles the complete process of sending a DMA request to verify an attribute certificate
and receiving the response. It blocks until the entire operation is complete or an error occurs.

.2.6 Attributes Documentation

.2.6.1 variable WH_DEV_IDS_ARRAY
const int[WH_NUM_DEVIDS] WH_DEV_IDS_ARRAY;

.2.7 Source code

/*
* Copyright (C) 2024 wolfSSL Inc.
*
* This file is part of wolfHSM.
*
* wolfHSM is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* wolfHSM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with wolfHSM. If not, see <http://www.gnu.org/licenses/>.

COPYRIGHT ©2024 wolfSSL Inc. 105

.2 wolfhsm/wh_client.h CONTENTS

*/
/*
* wolfhsm/wh_client.h
*
* Base WolfHSM Client Library API
*
* The WolfHSM Client provides a single context and connection to a
* WolfHSM Server. All communications and state are internally managed by
* registering a crypto callback function to be invoked synchronously when
* wolfCrypt functions are called. In order to specify to use the WolfHSM
* Server for cryptographic operations, the device id WH_DEV_ID should be
* passed into any of the wolfCrypt init functions.
*
* In addition to the offload of cryptographic functions, the WolfHSM Client
* also exposes WolfHSM Server key management, non-volatile memory, and

protocol↪
* functions.
*
*/

#ifndef WOLFHSM_WH_CLIENT_H_
#define WOLFHSM_WH_CLIENT_H_

/* Pick up compile-time configuration */
#include "wolfhsm/wh_settings.h"

/* System libraries */
#include <stdint.h>

/* Common WolfHSM types and defines shared with the server */
#include "wolfhsm/wh_common.h"

/* Component includes */
#include "wolfhsm/wh_comm.h"
#include "wolfhsm/wh_message_customcb.h"
#ifdef WOLFHSM_CFG_DMA
#include "wolfhsm/wh_dma.h"
#endif /* WOLFHSM_CFG_DMA */
#include "wolfhsm/wh_keyid.h"

/* Forward declaration of the client structure so its elements can reference
* itself (e.g. server argument to custom callback) */

typedef struct whClientContext_t whClientContext;

#ifndef WOLFHSM_CFG_NO_CRYPTO

/* WolfCrypt types and defines */
#include "wolfssl/wolfcrypt/types.h"

/* Device Id to be registered and passed to wolfCrypt functions */
enum WH_CLIENT_DEVID_ENUM {

WH_DEV_ID = 0x5748534D, /* "WHSM" */
#ifdef WOLFHSM_CFG_DMA

COPYRIGHT ©2024 wolfSSL Inc. 106

.2 wolfhsm/wh_client.h CONTENTS

WH_DEV_ID_DMA = 0x57444D41, /* "WDMA" */
WH_NUM_DEVIDS = 2

#else
WH_NUM_DEVIDS = 1

#endif
};
extern const int WH_DEV_IDS_ARRAY[WH_NUM_DEVIDS];
#else
/* for compile purpose */
#define WH_DEV_ID -2 /* invalid ID */
/* cipher types */
enum wc_CipherType {

WC_CIPHER_NONE = 0,
};
#endif

#ifdef WOLFHSM_CFG_DMA
typedef int (*whClientDmaClientMemCb)(struct whClientContext_t* client,

uintptr_t clientAddr, void** ptr,
size_t len, whDmaOper oper,
whDmaFlags flags);

/* Common DMA callback types and structures */
typedef struct {

whClientDmaClientMemCb cb;
const whDmaAddrAllowList* dmaAddrAllowList; /* allowed addresses */

} whClientDmaConfig;

typedef struct {
whClientDmaClientMemCb cb;
const whDmaAddrAllowList* dmaAddrAllowList; /* allowed addresses */
void* heap; /* heap hint for using static memory (or other allocator) */

} whClientDmaContext;
#endif /* WOLFHSM_CFG_DMA */

typedef int (*whClientCancelCb)(uint16_t cancelSeq);

/* Client context */
struct whClientContext_t {

uint16_t last_req_id;
uint16_t last_req_kind;

#ifdef WOLFHSM_CFG_CANCEL_API
uint8_t cancelable;
whClientCancelCb cancelCb;

#endif
#ifdef WOLFHSM_CFG_DMA

whClientDmaContext dma;
#endif /* WOLFHSM_CFG_DMA */

whCommClient comm[1];
};

struct whClientConfig_t {
whCommClientConfig* comm;

#ifdef WOLFHSM_CFG_CANCEL_API

COPYRIGHT ©2024 wolfSSL Inc. 107

.2 wolfhsm/wh_client.h CONTENTS

whClientCancelCb cancelCb;
#endif
#ifdef WOLFHSM_CFG_DMA

whClientDmaConfig* dmaConfig;
#endif /* WOLFHSM_CFG_DMA */
};
typedef struct whClientConfig_t whClientConfig;

int wh_Client_Init(whClientContext* c, const whClientConfig* config);

int wh_Client_Cleanup(whClientContext* c);

int wh_Client_SendRequest(whClientContext* c, uint16_t group, uint16_t action,
uint16_t data_size, const void* data);

int wh_Client_RecvResponse(whClientContext* c, uint16_t* out_group,
uint16_t* out_action, uint16_t* out_size,
void* data);

int wh_Client_CommInitRequest(whClientContext* c);

int wh_Client_CommInitResponse(whClientContext* c, uint32_t* out_clientid,
uint32_t* out_serverid);

int wh_Client_CommInit(whClientContext* c, uint32_t* out_clientid,
uint32_t* out_serverid);

int wh_Client_CommInfoRequest(whClientContext* c);

int wh_Client_CommInfoResponse(whClientContext* c,
uint8_t* out_version,
uint8_t* out_build,
uint32_t *out_cfg_comm_data_len,
uint32_t *out_cfg_nvm_object_count,
uint32_t *out_cfg_keycache_count,
uint32_t *out_cfg_keycache_bufsize,
uint32_t *out_cfg_keycache_bigcount,
uint32_t *out_cfg_keycache_bigbufsize,
uint32_t *out_cfg_customcb_count,
uint32_t *out_cfg_dmaaddr_count,
uint32_t *out_debug_state,
uint32_t *out_boot_state,
uint32_t *out_lifecycle_state,
uint32_t *out_nvm_state);

int wh_Client_CommInfo(whClientContext* c,
uint8_t* out_version,
uint8_t* out_build,
uint32_t *out_cfg_comm_data_len,
uint32_t *out_cfg_nvm_object_count,
uint32_t *out_cfg_keycache_count,
uint32_t *out_cfg_keycache_bufsize,

COPYRIGHT ©2024 wolfSSL Inc. 108

.2 wolfhsm/wh_client.h CONTENTS

uint32_t *out_cfg_keycache_bigcount,
uint32_t *out_cfg_keycache_bigbufsize,
uint32_t *out_cfg_customcb_count,
uint32_t *out_cfg_dmaaddr_count,
uint32_t *out_debug_state,
uint32_t *out_boot_state,
uint32_t *out_lifecycle_state,
uint32_t *out_nvm_state);

int wh_Client_CommCloseRequest(whClientContext* c);

#ifdef WOLFHSM_CFG_CANCEL_API
int wh_Client_EnableCancel(whClientContext* c);

int wh_Client_DisableCancel(whClientContext* c);

int wh_Client_CancelRequest(whClientContext* c);
int wh_Client_CancelResponse(whClientContext* c);
int wh_Client_Cancel(whClientContext* c);
#endif /* WOLFHSM_CFG_CANCEL_API */

int wh_Client_CommCloseResponse(whClientContext* c);

int wh_Client_CommClose(whClientContext* c);

int wh_Client_EchoRequest(whClientContext* c, uint16_t size, const void* data);

int wh_Client_EchoResponse(whClientContext* c, uint16_t* out_size, void* data);

int wh_Client_Echo(whClientContext* c, uint16_t snd_len, const void* snd_data,
uint16_t* out_rcv_len, void* rcv_data);

int wh_Client_KeyCacheRequest_ex(whClientContext* c, uint32_t flags,
uint8_t* label, uint16_t labelSz, const

uint8_t* in,↪
uint16_t inSz, uint16_t keyId);

int wh_Client_KeyCacheRequest(whClientContext* c, uint32_t flags,
uint8_t* label, uint16_t labelSz, const uint8_t* in,

uint16_t inSz);

int wh_Client_KeyCacheResponse(whClientContext* c, uint16_t* keyId);

int wh_Client_KeyCache(whClientContext* c, uint32_t flags, uint8_t* label,
uint16_t labelSz, const uint8_t* in, uint16_t inSz,
uint16_t* keyId);

int wh_Client_KeyEvictRequest(whClientContext* c, uint16_t keyId);

int wh_Client_KeyEvictResponse(whClientContext* c);

int wh_Client_KeyEvict(whClientContext* c, uint16_t keyId);

int wh_Client_KeyExportRequest(whClientContext* c, uint16_t keyId);

COPYRIGHT ©2024 wolfSSL Inc. 109

.2 wolfhsm/wh_client.h CONTENTS

int wh_Client_KeyExportResponse(whClientContext* c, uint8_t* label,
uint16_t labelSz, uint8_t* out,
uint16_t* outSz);

int wh_Client_KeyExport(whClientContext* c, uint16_t keyId, uint8_t* label,
uint16_t labelSz, uint8_t* out, uint16_t* outSz);

int wh_Client_KeyCommitRequest(whClientContext* c, whNvmId keyId);

int wh_Client_KeyCommitResponse(whClientContext* c);

int wh_Client_KeyCommit(whClientContext* c, whNvmId keyId);

int wh_Client_KeyEraseRequest(whClientContext* c, whNvmId keyId);

int wh_Client_KeyEraseResponse(whClientContext* c);

int wh_Client_KeyErase(whClientContext* c, whNvmId keyId);

int wh_Client_KeyRevokeRequest(whClientContext* c, whKeyId keyId);

int wh_Client_KeyRevokeResponse(whClientContext* c);

int wh_Client_KeyRevoke(whClientContext* c, whKeyId keyId);

#ifdef WOLFHSM_CFG_DMA

int wh_Client_KeyCacheDmaRequest(whClientContext* c, uint32_t flags,
uint8_t* label, uint16_t labelSz,
const void* keyAddr, uint16_t keySz,
uint16_t keyId);

int wh_Client_KeyCacheDmaResponse(whClientContext* c, uint16_t* keyId);

int wh_Client_KeyCacheDma(whClientContext* c, uint32_t flags, uint8_t* label,
uint16_t labelSz, const void* keyAddr, uint16_t keySz,
uint16_t* keyId);

int wh_Client_KeyExportDmaRequest(whClientContext* c, uint16_t keyId,
const void* keyAddr, uint16_t keySz);

int wh_Client_KeyExportDmaResponse(whClientContext* c, uint8_t* label,
uint16_t labelSz, uint16_t* outSz);

int wh_Client_KeyExportDma(whClientContext* c, uint16_t keyId,
const void* keyAddr, uint16_t keySz, uint8_t* label,
uint16_t labelSz, uint16_t* outSz);

#endif /* WOLFHSM_CFG_DMA */

int wh_Client_KeyWrap(whClientContext* ctx, enum wc_CipherType cipherType,
uint16_t serverKeyId, void* keyIn, uint16_t keySz,
whNvmMetadata* metadataIn, void* wrappedKeyOut,
uint16_t* wrappedKeyInOutSz);

COPYRIGHT ©2024 wolfSSL Inc. 110

.2 wolfhsm/wh_client.h CONTENTS

int wh_Client_KeyWrapRequest(whClientContext* ctx,
enum wc_CipherType cipherType,
uint16_t serverKeyId, void* key, uint16_t keySz,
whNvmMetadata* metadata);

int wh_Client_KeyWrapResponse(whClientContext* ctx,
enum wc_CipherType cipherType,

void* wrappedKeyOut, uint16_t* wrappedKeyInOutSz);

int wh_Client_KeyUnwrapAndExport(whClientContext* ctx,
enum wc_CipherType cipherType,
uint16_t serverKeyId, void* wrappedKeyIn,
uint16_t wrappedKeySz,
whNvmMetadata* metadataOut, void* keyOut,
uint16_t* keyInOutSz);

int wh_Client_KeyUnwrapAndExportRequest(whClientContext* ctx,
enum wc_CipherType cipherType,
uint16_t serverKeyId,
void* wrappedKeyIn,
uint16_t wrappedKeySz);

int wh_Client_KeyUnwrapAndExportResponse(whClientContext* ctx,
enum wc_CipherType cipherType,
whNvmMetadata* metadataOut,
void* keyOut, uint16_t* keyInOutSz);

int wh_Client_KeyUnwrapAndCache(whClientContext* ctx,
enum wc_CipherType cipherType,
uint16_t serverKeyId, void* wrappedKeyIn,
uint16_t wrappedKeySz, uint16_t* keyIdOut);

int wh_Client_KeyUnwrapAndCacheRequest(whClientContext* ctx,
enum wc_CipherType cipherType,

uint16_t serverKeyId, void* wrappedKeyIn,
uint16_t wrappedKeySz);

int wh_Client_KeyUnwrapAndCacheResponse(whClientContext* ctx,
enum wc_CipherType cipherType,
uint16_t* keyIdOut);

int wh_Client_DataWrap(whClientContext* ctx, enum wc_CipherType cipherType,
uint16_t serverKeyId, void* dataIn, uint32_t dataInSz,
void* wrappedDataOut, uint32_t* wrappedDataInOutSz);

int wh_Client_DataUnwrap(whClientContext* ctx, enum wc_CipherType cipherType,
uint16_t serverKeyId, void* wrappedDataIn,
uint32_t wrappedDataInSz, void* dataOut,
uint32_t* dataInOutSz);

/* Counter functions */
int wh_Client_CounterInitRequest(whClientContext* c, whNvmId counterId,

uint32_t counter);
int wh_Client_CounterInitResponse(whClientContext* c, uint32_t* counter);
int wh_Client_CounterInit(whClientContext* c, whNvmId counterId,

COPYRIGHT ©2024 wolfSSL Inc. 111

.2 wolfhsm/wh_client.h CONTENTS

uint32_t* counter);

int wh_Client_CounterResetRequest(whClientContext* c, whNvmId counterId);
int wh_Client_CounterResetResponse(whClientContext* c, uint32_t* counter);
int wh_Client_CounterReset(whClientContext* c, whNvmId counterId,

uint32_t* counter);

int wh_Client_CounterIncrementRequest(whClientContext* c, whNvmId counterId);
int wh_Client_CounterIncrementResponse(whClientContext* c, uint32_t* counter);
int wh_Client_CounterIncrement(whClientContext* c, whNvmId counterId,

uint32_t* counter);

int wh_Client_CounterReadRequest(whClientContext* c, whNvmId counterId);
int wh_Client_CounterReadResponse(whClientContext* c, uint32_t* counter);
int wh_Client_CounterRead(whClientContext* c, whNvmId counterId,

uint32_t* counter);

int wh_Client_CounterDestroyRequest(whClientContext* c, whNvmId counterId);
int wh_Client_CounterDestroyResponse(whClientContext* c);
int wh_Client_CounterDestroy(whClientContext* c, whNvmId counterId);

int wh_Client_NvmInitRequest(whClientContext* c);

int wh_Client_NvmInitResponse(whClientContext* c, int32_t* out_rc,
uint32_t* out_clientnvm_id,
uint32_t* out_servernvm_id);

int wh_Client_NvmInit(whClientContext* c, int32_t* out_rc,
uint32_t* out_clientnvm_id, uint32_t* out_servernvm_id);

int wh_Client_NvmCleanupRequest(whClientContext* c);

int wh_Client_NvmCleanupResponse(whClientContext* c, int32_t* out_rc);

int wh_Client_NvmCleanup(whClientContext* c, int32_t* out_rc);

int wh_Client_NvmGetAvailableRequest(whClientContext* c);

int wh_Client_NvmGetAvailableResponse(whClientContext* c, int32_t* out_rc,
uint32_t* out_avail_size,
whNvmId* out_avail_objects,
uint32_t* out_reclaim_size,
whNvmId* out_reclaim_objects);

int wh_Client_NvmGetAvailable(whClientContext* c, int32_t* out_rc,
uint32_t* out_avail_size,
whNvmId* out_avail_objects,
uint32_t* out_reclaim_size,
whNvmId* out_reclaim_objects);

int wh_Client_NvmAddObjectRequest(whClientContext* c, whNvmId id,
whNvmAccess access, whNvmFlags flags,
whNvmSize label_len, uint8_t* label,
whNvmSize len, const uint8_t* data);

COPYRIGHT ©2024 wolfSSL Inc. 112

.2 wolfhsm/wh_client.h CONTENTS

int wh_Client_NvmAddObjectResponse(whClientContext* c, int32_t* out_rc);

int wh_Client_NvmAddObject(whClientContext* c, whNvmId id, whNvmAccess access,
whNvmFlags flags, whNvmSize label_len,
uint8_t* label, whNvmSize len, const uint8_t* data,
int32_t* out_rc);

int wh_Client_NvmListRequest(whClientContext* c, whNvmAccess access,
whNvmFlags flags, whNvmId start_id);

int wh_Client_NvmListResponse(whClientContext* c, int32_t* out_rc,
whNvmId* out_count, whNvmId* out_id);

int wh_Client_NvmList(whClientContext* c, whNvmAccess access, whNvmFlags flags,
whNvmId start_id, int32_t* out_rc, whNvmId* out_count,
whNvmId* out_id);

int wh_Client_NvmGetMetadataRequest(whClientContext* c, whNvmId id);

int wh_Client_NvmGetMetadataResponse(whClientContext* c, int32_t* out_rc,
whNvmId* out_id, whNvmAccess* out_access,
whNvmFlags* out_flags, whNvmSize* out_len,
whNvmSize label_len, uint8_t* label);

int wh_Client_NvmGetMetadata(whClientContext* c, whNvmId id, int32_t* out_rc,
whNvmId* out_id, whNvmAccess* out_access,
whNvmFlags* out_flags, whNvmSize* out_len,
whNvmSize label_len, uint8_t* label);

int wh_Client_NvmDestroyObjectsRequest(whClientContext* c, whNvmId list_count,
const whNvmId* id_list);

int wh_Client_NvmDestroyObjectsResponse(whClientContext* c, int32_t* out_rc);

int wh_Client_NvmDestroyObjects(whClientContext* c, whNvmId list_count,
const whNvmId* id_list, int32_t* out_rc);

int wh_Client_NvmReadRequest(whClientContext* c, whNvmId id, whNvmSize offset,
whNvmSize data_len);

int wh_Client_NvmReadResponse(whClientContext* c, int32_t* out_rc,
whNvmSize* out_len, uint8_t* data);

int wh_Client_NvmRead(whClientContext* c, whNvmId id, whNvmSize offset,
whNvmSize data_len, int32_t* out_rc, whNvmSize* out_len,
uint8_t* data);

int wh_Client_NvmAddObjectDmaRequest(whClientContext* c,
whNvmMetadata* metadata,
whNvmSize data_len, const uint8_t* data);

int wh_Client_NvmAddObjectDmaResponse(whClientContext* c, int32_t* out_rc);

COPYRIGHT ©2024 wolfSSL Inc. 113

.2 wolfhsm/wh_client.h CONTENTS

int wh_Client_NvmAddObjectDma(whClientContext* c, whNvmMetadata* metadata,
whNvmSize data_len, const uint8_t* data,
int32_t* out_rc);

/*
* @brief Sends a request to the server to read data from non-volatile memory
* (NVM) using DMA, with automatic detection of client address width (32-bit or
* 64-bit).
*
* This function prepares and sends a request to the server to read data from
* NVM using DMA. The client address width (32-bit or 64-bit) is automatically
* detected. The request includes the NVM ID, offset, length of the data, and
* the data client address. This function does not block; it returns immediately
* after sending the request.
*
* @param[in] c Pointer to the client context.
* @param[in] id The NVM ID of the object to read.
* @param[in] offset The offset within the object to start reading from.
* @param[in] data_len The length of the data to be read.
* @param[in] data Pointer to the data buffer where the data will be read into.
* @return int Returns 0 on success, or a negative error code on failure.
*/

int wh_Client_NvmReadDmaRequest(whClientContext* c, whNvmId id,
whNvmSize offset, whNvmSize data_len,
uint8_t* data);

int wh_Client_NvmReadDmaResponse(whClientContext* c, int32_t* out_rc);

int wh_Client_NvmReadDma(whClientContext* c, whNvmId id, whNvmSize offset,
whNvmSize data_len, uint8_t* data, int32_t* out_rc);

/* Client custom-callback support */

int wh_Client_CustomCbRequest(whClientContext* c,
const whMessageCustomCb_Request* req);

int wh_Client_CustomCbResponse(whClientContext* c,
whMessageCustomCb_Response* resp);

int wh_Client_CustomCheckRegisteredRequest(whClientContext* c, uint32_t id);

int wh_Client_CustomCbCheckRegisteredResponse(whClientContext* c,
uint16_t* outId,
int* responseError);

int wh_Client_CustomCbCheckRegistered(whClientContext* c, uint16_t id,
int* responseError);

/* Certificate functions */

int wh_Client_CertInitRequest(whClientContext* c);

int wh_Client_CertInitResponse(whClientContext* c, int32_t* out_rc);

COPYRIGHT ©2024 wolfSSL Inc. 114

.2 wolfhsm/wh_client.h CONTENTS

int wh_Client_CertInit(whClientContext* c, int32_t* out_rc);

int wh_Client_CertAddTrustedRequest(whClientContext* c, whNvmId id,
whNvmAccess access, whNvmFlags flags,
uint8_t* label, whNvmSize label_len,
const uint8_t* cert, uint32_t cert_len);

int wh_Client_CertAddTrustedResponse(whClientContext* c, int32_t* out_rc);

int wh_Client_CertAddTrusted(whClientContext* c, whNvmId id, whNvmAccess
access,↪

whNvmFlags flags, uint8_t* label,
whNvmSize label_len, const uint8_t* cert,
uint32_t cert_len, int32_t* out_rc);

int wh_Client_CertEraseTrustedRequest(whClientContext* c, whNvmId id);

int wh_Client_CertEraseTrustedResponse(whClientContext* c, int32_t* out_rc);

int wh_Client_CertEraseTrusted(whClientContext* c, whNvmId id, int32_t*
out_rc);↪

int wh_Client_CertReadTrustedRequest(whClientContext* c, whNvmId id,
uint32_t cert_len);

int wh_Client_CertReadTrustedResponse(whClientContext* c, uint8_t* cert,
uint32_t* cert_len, int32_t* out_rc);

int wh_Client_CertReadTrusted(whClientContext* c, whNvmId id, uint8_t* cert,
uint32_t* cert_len, int32_t* out_rc);

int wh_Client_CertVerifyRequest(whClientContext* c, const uint8_t* cert,
uint32_t cert_len, whNvmId trustedRootNvmId);

int wh_Client_CertVerifyResponse(whClientContext* c, int32_t* out_rc);

int wh_Client_CertVerify(whClientContext* c, const uint8_t* cert,
uint32_t cert_len, whNvmId trustedRootNvmId,
int32_t* out_rc);

int wh_Client_CertVerifyAndCacheLeafPubKeyRequest(
whClientContext* c, const uint8_t* cert, uint32_t cert_len,
whNvmId trustedRootNvmId, whNvmFlags cachedKeyFlags, whKeyId keyId);

int wh_Client_CertVerifyAndCacheLeafPubKeyResponse(whClientContext* c,
whKeyId* out_keyId,
int32_t* out_rc);

int wh_Client_CertVerifyAndCacheLeafPubKey(
whClientContext* c, const uint8_t* cert, uint32_t cert_len,
whNvmId trustedRootNvmId, whNvmFlags cachedKeyFlags, whKeyId* inout_keyId,
int32_t* out_rc);

COPYRIGHT ©2024 wolfSSL Inc. 115

.2 wolfhsm/wh_client.h CONTENTS

#ifdef WOLFHSM_CFG_DMA

int wh_Client_CertAddTrustedDmaRequest(whClientContext* c, whNvmId id,
whNvmAccess access, whNvmFlags flags,
uint8_t* label, whNvmSize label_len,
const void* cert, uint32_t cert_len);

int wh_Client_CertAddTrustedDmaResponse(whClientContext* c, int32_t* out_rc);

int wh_Client_CertAddTrustedDma(whClientContext* c, whNvmId id,
whNvmAccess access, whNvmFlags flags,
uint8_t* label, whNvmSize label_len,
const void* cert, uint32_t cert_len,
int32_t* out_rc);

int wh_Client_CertReadTrustedDmaRequest(whClientContext* c, whNvmId id,
void* cert, uint32_t cert_len);

int wh_Client_CertReadTrustedDmaResponse(whClientContext* c, int32_t* out_rc);

int wh_Client_CertReadTrustedDma(whClientContext* c, whNvmId id, void* cert,
uint32_t cert_len, int32_t* out_rc);

int wh_Client_CertVerifyDmaRequest(whClientContext* c, const void* cert,
uint32_t cert_len, whNvmId trustedRootNvmId);

int wh_Client_CertVerifyDmaResponse(whClientContext* c, int32_t* out_rc);

int wh_Client_CertVerifyDma(whClientContext* c, const void* cert,
uint32_t cert_len, whNvmId trustedRootNvmId,
int32_t* out_rc);

int wh_Client_CertVerifyDmaAndCacheLeafPubKeyRequest(
whClientContext* c, const void* cert, uint32_t cert_len,
whNvmId trustedRootNvmId, whNvmFlags cachedKeyFlags, whKeyId keyId);

int wh_Client_CertVerifyDmaAndCacheLeafPubKeyResponse(whClientContext* c,
whKeyId* out_keyId,
int32_t* out_rc);

int wh_Client_CertVerifyDmaAndCacheLeafPubKey(
whClientContext* c, const void* cert, uint32_t cert_len,
whNvmId trustedRootNvmId, whNvmFlags cachedKeyFlags, whKeyId* inout_keyId,
int32_t* out_rc);

#endif /* WOLFHSM_CFG_DMA */

int wh_Client_CertVerifyAcertRequest(whClientContext* c, const void* cert,
uint32_t cert_len,
whNvmId trustedRootNvmId);

COPYRIGHT ©2024 wolfSSL Inc. 116

.3 wolfhsm/wh_client_crypto.h CONTENTS

int wh_Client_CertVerifyAcertResponse(whClientContext* c, int32_t* out_rc);

int wh_Client_CertVerifyAcert(whClientContext* c, const void* cert,
uint32_t cert_len, whNvmId trustedRootNvmId,
int32_t* out_rc);

int wh_Client_CertVerifyAcertDmaRequest(whClientContext* c, const void* cert,
uint32_t cert_len,
whNvmId trustedRootNvmId);

int wh_Client_CertVerifyAcertDmaResponse(whClientContext* c, int32_t* out_rc);

#if defined(WOLFHSM_CFG_DMA)
int wh_Client_DmaRegisterAllowList(struct whClientContext_t* client,

const whDmaAddrAllowList* allowlist);

int wh_Client_DmaRegisterCb(struct whClientContext_t* client,
whClientDmaClientMemCb cb);

int wh_Client_DmaProcessClientAddress(struct whClientContext_t* client,
uintptr_t clientAddr, void** serverPtr,
size_t len, whDmaOper oper,
whDmaFlags flags);

int wh_Client_CertVerifyAcertDma(whClientContext* c, const void* cert,
uint32_t cert_len, whNvmId trustedRootNvmId,
int32_t* out_rc);

#endif /* WOLFHSM_CFG_DMA */

#define WH_CLIENT_KEYID_MAKE_GLOBAL(_id) ((_id) | WH_KEYID_CLIENT_GLOBAL_FLAG)

#define WH_CLIENT_KEYID_MAKE_WRAPPED(_id) ((_id) |
WH_KEYID_CLIENT_WRAPPED_FLAG)↪

#define WH_CLIENT_KEYID_MAKE_WRAPPED_GLOBAL(_id) \
((_id) | WH_KEYID_CLIENT_GLOBAL_FLAG | WH_KEYID_CLIENT_WRAPPED_FLAG)

#define WH_CLIENT_KEYID_MAKE_WRAPPED_META(_clientId, _id) \
WH_MAKE_KEYID(WH_KEYTYPE_WRAPPED, (_clientId), (_id))

#endif /* !WOLFHSM_WH_CLIENT_H_ */

.3 wolfhsm/wh_client_crypto.h

.3.1 Functions

COPYRIGHT ©2024 wolfSSL Inc. 117

.3 wolfhsm/wh_client_crypto.h CONTENTS

Name
int wh_Client_RngGenerate(whClientContext *

ctx, uint8_t * out, uint32_t size)Generate
random bytes.

int wh_Client_RngGenerateDma(whClientContext
* ctx, uint8_t * out, uint32_t size)Generate
random bytes using DMA.

int wh_Client_Curve25519SetKeyId(curve25519_key
* key, whKeyId keyId)Associates a Curve25519
key with a specific key ID.

int wh_Client_Curve25519GetKeyId(curve25519_key
* key, whKeyId * outId)Gets the wolfHSM keyId
being used by the wolfCrypt struct.

int wh_Client_Curve25519ImportKey(whClientContext
* ctx, curve25519_key * key, whKeyId *
inout_keyId, whNvmFlags flags, uint16_t
label_len, uint8_t * label)Imports wolfCrypt
Curve25519 key as a raw byte array into the
wolfHSM server key cache.

int wh_Client_Curve25519ExportKey(whClientContext
* ctx, whKeyId keyId, curve25519_key * key,
uint16_t label_len, uint8_t * label)Exports a
serialized curve25519 key from the wolfHSM
server keycache and decodes it into the
wolfCrypt curve25519 key structure.

int wh_Client_Curve25519MakeCacheKey(whClientContext
* ctx, uint16_t size, whKeyId * inout_key_id,
whNvmFlags flags, const uint8_t * label,
uint16_t label_len)Generate a Curve25519 key
in the server key cache.

int wh_Client_Curve25519MakeExportKey(whClientContext
* ctx, uint16_t size, curve25519_key *
key)Generate a Curve25519 key by the server
and export to the client.

int wh_Client_Curve25519SharedSecret(whClientContext
* ctx, curve25519_key * priv_key,
curve25519_key * pub_key, int endian, uint8_t *
out, uint16_t * out_size)Compute an X25519
shared secret using a public and private key.

int wh_Client_EccSetKeyId(ecc_key * key,
whKeyId keyId)Associates a Ecc key with a
specific key ID.

int wh_Client_EccGetKeyId(ecc_key * key,
whKeyId * outId)Gets the wolfHSM keyId being
used by the wolfCrypt struct.

int wh_Client_EccImportKey(whClientContext *
ctx, ecc_key * key, whKeyId * inout_keyId,
whNvmFlags flags, uint16_t label_len, uint8_t *
label)

int wh_Client_EccExportKey(whClientContext *
ctx, whKeyId keyId, ecc_key * key, uint16_t
label_len, uint8_t * label)

COPYRIGHT ©2024 wolfSSL Inc. 118

.3 wolfhsm/wh_client_crypto.h CONTENTS

Name
int wh_Client_EccMakeExportKey(whClientContext

* ctx, int size, int curveId, ecc_key * key)
int wh_Client_EccMakeCacheKey(whClientContext

* ctx, int size, int curveId, whKeyId *
inout_key_id, whNvmFlags flags, uint16_t
label_len, uint8_t * label)

int wh_Client_EccSharedSecret(whClientContext *
ctx, ecc_key * priv_key, ecc_key * pub_key,
uint8_t * out, uint16_t * out_size)

int wh_Client_EccSign(whClientContext * ctx,
ecc_key * key, const uint8_t * hash, uint16_t
hash_len, uint8_t * sig, uint16_t * inout_sig_len)

int wh_Client_EccVerify(whClientContext * ctx,
ecc_key * key, const uint8_t * sig, uint16_t
sig_len, const uint8_t * hash, uint16_t hash_len,
int * out_res)

int wh_Client_Ed25519SetKeyId(ed25519_key *
key, whKeyId keyId)Associates an Ed25519 key
with a specific key ID.

int wh_Client_Ed25519GetKeyId(ed25519_key *
key, whKeyId * outId)Retrieves the key ID from
an Ed25519 key device context.

int wh_Client_Ed25519ImportKey(whClientContext
* ctx, ed25519_key * key, whKeyId *
inout_keyId, whNvmFlags flags, uint16_t
label_len, uint8_t * label)Import an Ed25519
key into the server keystore/cache.

int wh_Client_Ed25519ExportKey(whClientContext
* ctx, whKeyId keyId, ed25519_key * key,
uint16_t label_len, uint8_t * label)Export an
Ed25519 key from the server to the client.

int wh_Client_Ed25519MakeExportKey(whClientContext
* ctx, ed25519_key * key)Create a new Ed25519
key on the server and export it without caching.

int wh_Client_Ed25519MakeCacheKey(whClientContext
* ctx, whKeyId * inout_key_id, whNvmFlags
flags, uint16_t label_len, uint8_t * label)Create
a new Ed25519 key on the server and store it in
cache/NVM.

int wh_Client_Ed25519Sign(whClientContext * ctx,
ed25519_key * key, const uint8_t * msg,
uint32_t msgLen, uint8_t type, const uint8_t *
context, uint32_t contextLen, uint8_t * sig,
uint32_t * inout_sig_len)Sign a message using
an Ed25519 key on the server.

int wh_Client_Ed25519Verify(whClientContext *
ctx, ed25519_key * key, const uint8_t * sig,
uint32_t sigLen, const uint8_t * msg, uint32_t
msgLen, uint8_t type, const uint8_t * context,
uint32_t contextLen, int * out_res)Verify a
message signature using an Ed25519 key on
the server.

COPYRIGHT ©2024 wolfSSL Inc. 119

.3 wolfhsm/wh_client_crypto.h CONTENTS

Name
int wh_Client_Ed25519SignDma(whClientContext

* ctx, ed25519_key * key, const uint8_t * msg,
uint32_t msgLen, uint8_t type, const uint8_t *
context, uint32_t contextLen, uint8_t * sig,
uint32_t * inout_sig_len)Sign a message using
an Ed25519 key via DMA.

int wh_Client_Ed25519VerifyDma(whClientContext
* ctx, ed25519_key * key, const uint8_t * sig,
uint32_t sigLen, const uint8_t * msg, uint32_t
msgLen, uint8_t type, const uint8_t * context,
uint32_t contextLen, int * out_res)Verify a
signature using an Ed25519 key via DMA.

int wh_Client_RsaSetKeyId(RsaKey * key,
whNvmId keyId)Associates an RSA key with a
specific key ID.

int wh_Client_RsaGetKeyId(RsaKey * key,
whNvmId * outId)Gets the wolfHSM keyId
being used by the wolfCrypt struct.

int wh_Client_RsaImportKey(whClientContext *
ctx, const RsaKey * key, whKeyId * inout_keyId,
whNvmFlags flags, uint32_t label_len, uint8_t *
label)Imports wolfCrypt RSA key as a PCKS1
DER-formatted file into the wolfHSM server key
cache.

int wh_Client_RsaExportKey(whClientContext *
ctx, whKeyId keyId, RsaKey * key, uint32_t
label_len, uint8_t * label)Exports a PKCS1
DER-formated RSA key from the wolfHSM
server keycache and decodes it into the
wolfCrypt RSA key structure.

int wh_Client_RsaMakeExportKey(whClientContext
* ctx, uint32_t size, uint32_t e, RsaKey * rsa)

int wh_Client_RsaMakeCacheKey(whClientContext
* ctx, uint32_t size, uint32_t e, whKeyId *
inout_key_id, whNvmFlags flags, uint32_t
label_len, uint8_t * label)

int wh_Client_RsaFunction(whClientContext * ctx,
RsaKey * key, int rsa_type, const uint8_t * in,
uint16_t in_len, uint8_t * out, uint16_t *
inout_out_len)

int wh_Client_RsaGetSize(whClientContext * ctx,
const RsaKey * key, int * out_size)

int wh_Client_HkdfMakeCacheKey(whClientContext
* ctx, int hashType, whKeyId keyIdIn, const
uint8_t * inKey, uint32_t inKeySz, const uint8_t *
salt, uint32_t saltSz, const uint8_t * info,
uint32_t infoSz, whKeyId * inout_key_id,
whNvmFlags flags, const uint8_t * label,
uint32_t label_len, uint32_t outSz)Generate
HKDF output and store in the server key cache.

COPYRIGHT ©2024 wolfSSL Inc. 120

.3 wolfhsm/wh_client_crypto.h CONTENTS

Name
int wh_Client_HkdfMakeExportKey(whClientContext

* ctx, int hashType, whKeyId keyIdIn, const
uint8_t * inKey, uint32_t inKeySz, const uint8_t *
salt, uint32_t saltSz, const uint8_t * info,
uint32_t infoSz, uint8_t * out, uint32_t
outSz)Generate HKDF output and export to the
client.

int wh_Client_CmacKdfMakeCacheKey(whClientContext
* ctx, whKeyId saltKeyId, const uint8_t * salt,
uint32_t saltSz, whKeyId zKeyId, const uint8_t *
z, uint32_t zSz, const uint8_t * fixedInfo,
uint32_t fixedInfoSz, whKeyId * inout_key_id,
whNvmFlags flags, const uint8_t * label,
uint32_t label_len, uint32_t outSz)Generate
CMAC two-step KDF output and store it in the
server cache.

int wh_Client_CmacKdfMakeExportKey(whClientContext
* ctx, whKeyId saltKeyId, const uint8_t * salt,
uint32_t saltSz, whKeyId zKeyId, const uint8_t *
z, uint32_t zSz, const uint8_t * fixedInfo,
uint32_t fixedInfoSz, uint8_t * out, uint32_t
outSz)Generate CMAC two-step KDF output
and export to the client.

int wh_Client_AesSetKeyId(Aes * key, whNvmId
keyId)Associates an AES key with a specific key
ID.

int wh_Client_AesGetKeyId(Aes * key, whNvmId *
outId)Gets the wolfHSM keyId being used by
the wolfCrypt struct.

int wh_Client_AesCtr(whClientContext * ctx, Aes *
aes, int enc, const uint8_t * in, uint32_t len,
uint8_t * out)

int wh_Client_AesEcb(whClientContext * ctx, Aes *
aes, int enc, const uint8_t * in, uint32_t len,
uint8_t * out)

int wh_Client_AesCbc(whClientContext * ctx, Aes *
aes, int enc, const uint8_t * in, uint32_t len,
uint8_t * out)

int wh_Client_AesGcm(whClientContext * ctx, Aes
* aes, int enc, const uint8_t * in, uint32_t len,
const uint8_t * iv, uint32_t iv_len, const uint8_t
* authin, uint32_t authin_len, const uint8_t *
dec_tag, uint8_t * enc_tag, uint32_t tag_len,
uint8_t * out)

int wh_Client_AesGcmDma(whClientContext * ctx,
Aes * aes, int enc, const uint8_t * in, uint32_t
len, const uint8_t * iv, uint32_t iv_len, const
uint8_t * authin, uint32_t authin_len, const
uint8_t * dec_tag, uint8_t * enc_tag, uint32_t
tag_len, uint8_t * out)Performs an AES-GCM
operation using DMA.

COPYRIGHT ©2024 wolfSSL Inc. 121

.3 wolfhsm/wh_client_crypto.h CONTENTS

Name
int wh_Client_Cmac(whClientContext * ctx, Cmac

* cmac, CmacType type, const uint8_t * key,
uint32_t keyLen, const uint8_t * in, uint32_t
inLen, uint8_t * outMac, uint32_t *
outMacLen)Performs a CMAC operation on the
input data.

int wh_Client_CmacCancelableResponse(whClientContext
* c, Cmac * cmac, uint8_t * out, uint16_t *
outSz)Handle cancelable CMAC response.

int wh_Client_CmacSetKeyId(Cmac * key,
whNvmId keyId)Associates a CMAC key with a
specific key ID.

int wh_Client_CmacGetKeyId(Cmac * key,
whNvmId * outId)Gets the wolfHSM keyId
being used by the wolfCrypt struct.

int wh_Client_CmacDma(whClientContext * ctx,
Cmac * cmac, CmacType type, const uint8_t *
key, uint32_t keyLen, const uint8_t * in, uint32_t
inLen, uint8_t * outMac, uint32_t *
outMacLen)Performs CMAC operations using
DMA for data transfer.

int wh_Client_Sha256(whClientContext * ctx,
wc_Sha256 * sha, const uint8_t * in, uint32_t
inLen, uint8_t * out)Performs a SHA-256 hash
operation on the input data.

int wh_Client_Sha256Dma(whClientContext * ctx,
wc_Sha256 * sha, const uint8_t * in, uint32_t
inLen, uint8_t * out)Performs a SHA-256 hash
operation on the input data using DMA.

int wh_Client_Sha224(whClientContext * ctx,
wc_Sha224 * sha, const uint8_t * in, uint32_t
inLen, uint8_t * out)Performs a SHA-224 hash
operation on the input data.

int wh_Client_Sha224Dma(whClientContext * ctx,
wc_Sha224 * sha, const uint8_t * in, uint32_t
inLen, uint8_t * out)Performs a SHA-224 hash
operation on the input data using DMA.

int wh_Client_Sha384(whClientContext * ctx,
wc_Sha384 * sha, const uint8_t * in, uint32_t
inLen, uint8_t * out)Performs a SHA-384 hash
operation on the input data.

int wh_Client_Sha384Dma(whClientContext * ctx,
wc_Sha384 * sha, const uint8_t * in, uint32_t
inLen, uint8_t * out)Performs a SHA-384 hash
operation on the input data using DMA.

int wh_Client_Sha512(whClientContext * ctx,
wc_Sha512 * sha, const uint8_t * in, uint32_t
inLen, uint8_t * out)Performs a SHA-512 hash
operation on the input data.

COPYRIGHT ©2024 wolfSSL Inc. 122

.3 wolfhsm/wh_client_crypto.h CONTENTS

Name
int wh_Client_Sha512Dma(whClientContext * ctx,

wc_Sha512 * sha, const uint8_t * in, uint32_t
inLen, uint8_t * out)Performs a SHA-512 hash
operation on the input data using DMA.

int wh_Client_MlDsaSetKeyId(MlDsaKey * key,
whKeyId keyId)Associates a ML-DSA key with a
specific key ID.

int wh_Client_MlDsaGetKeyId(MlDsaKey * key,
whKeyId * outId)Gets the wolfHSM keyId being
used by the wolfCrypt struct.

int wh_Client_MlDsaImportKey(whClientContext
* ctx, MlDsaKey * key, whKeyId * inout_keyId,
whNvmFlags flags, uint16_t label_len, uint8_t *
label)Import a ML-DSA key to the server key
cache.

int wh_Client_MlDsaExportKey(whClientContext *
ctx, whKeyId keyId, MlDsaKey * key, uint16_t
label_len, uint8_t * label)Export a ML-DSA key
from the server.

int wh_Client_MlDsaMakeExportKey(whClientContext
* ctx, int level, int size, MlDsaKey *
key)Generate a new ML-DSA key pair and
export the public key.

int wh_Client_MlDsaMakeCacheKey(whClientContext
* ctx, int size, int level, whKeyId * inout_key_id,
whNvmFlags flags, uint16_t label_len, uint8_t *
label)Create and cache a new ML-DSA key on
the server.

int wh_Client_MlDsaSign(whClientContext * ctx,
const byte * in, word32 in_len, byte * out,
word32 * out_len, MlDsaKey * key)Sign a
message using a ML-DSA private key.

int wh_Client_MlDsaVerify(whClientContext * ctx,
const byte * sig, word32 sig_len, const byte *
msg, word32 msg_len, int * res, MlDsaKey *
key)Verify a ML-DSA signature.

int wh_Client_MlDsaCheckPrivKey(whClientContext
* ctx, MlDsaKey * key, const byte * pubKey,
word32 pubKeySz)Check a ML-DSA private key.

int wh_Client_MlDsaImportKeyDma(whClientContext
* ctx, MlDsaKey * key, whKeyId * inout_keyId,
whNvmFlags flags, uint16_t label_len, uint8_t *
label)Import a ML-DSA key using DMA.

int wh_Client_MlDsaExportKeyDma(whClientContext
* ctx, whKeyId keyId, MlDsaKey * key, uint16_t
label_len, uint8_t * label)Export a ML-DSA key
using DMA.

int wh_Client_MlDsaMakeExportKeyDma(whClientContext
* ctx, int level, MlDsaKey * key)Generate a new
ML-DSA key pair and export it using DMA.

COPYRIGHT ©2024 wolfSSL Inc. 123

.3 wolfhsm/wh_client_crypto.h CONTENTS

Name
int wh_Client_MlDsaSignDma(whClientContext *

ctx, const byte * in, word32 in_len, byte * out,
word32 * out_len, MlDsaKey * key)Sign a
message using ML-DSA with DMA.

int wh_Client_MlDsaVerifyDma(whClientContext
* ctx, const byte * sig, word32 sig_len, const
byte * msg, word32 msg_len, int * res,
MlDsaKey * key)Verify a ML-DSA signature with
DMA.

int wh_Client_MlDsaCheckPrivKeyDma(whClientContext
* ctx, MlDsaKey * key, const byte * pubKey,
word32 pubKeySz)Check a ML-DSA private key
against public key with DMA.

.3.2 Functions Documentation

.3.2.1 function wh_Client_RngGenerate
int wh_Client_RngGenerate(

whClientContext * ctx,
uint8_t * out,
uint32_t size

)
Generate random bytes.
Parameters:

• ctx Pointer to the client context
• out Pointer to the where the bytes are to be placed. May be NULL.
• size Number of bytes to generate. *

Return: int Returns 0 on success or a negative error code on failure.
This function requests the server to generate random bytes by repeatedly requesting the maximum
block size of data from the server at a time

.3.2.2 function wh_Client_RngGenerateDma
int wh_Client_RngGenerateDma(

whClientContext * ctx,
uint8_t * out,
uint32_t size

)
Generate random bytes using DMA.
Parameters:

• ctx Pointer to the client context
• out Pointer to where the bytes are to be placed
• size Number of bytes to generate

Return: int Returns 0 on success or a negative error code on failure.
This function requests the server to generate random bytes directly into client memory using DMA,
eliminating the need for chunking and copying through the communication buffer.

COPYRIGHT ©2024 wolfSSL Inc. 124

.3 wolfhsm/wh_client_crypto.h CONTENTS

.3.2.3 function wh_Client_Curve25519SetKeyId
int wh_Client_Curve25519SetKeyId(

curve25519_key * key,
whKeyId keyId

)
Associates a Curve25519 key with a specific key ID.
Parameters:

• key Pointer to the Curve25519 key structure.
• keyId Key ID to be associated with the Curve25519 key.

Return: int Returns 0 on success or a negative error code on failure.
This function sets the device context of a Curve25519 key to the specified key ID. On the server side,
this key ID is used to reference the key stored in the HSM

.3.2.4 function wh_Client_Curve25519GetKeyId
int wh_Client_Curve25519GetKeyId(

curve25519_key * key,
whKeyId * outId

)
Gets the wolfHSM keyId being used by the wolfCrypt struct.
Parameters:

• key Pointer to the Curve25519 key structure.
• outId Pointer to the key ID to return.

Return: int Returns 0 on success or a negative error code on failure.
This function gets the device context of a Curve25519 key that was previously set by either the crypto
callback layer or wh_Client_SetKeyCurve25519.

.3.2.5 function wh_Client_Curve25519ImportKey
int wh_Client_Curve25519ImportKey(

whClientContext * ctx,
curve25519_key * key,
whKeyId * inout_keyId,
whNvmFlags flags,
uint16_t label_len,
uint8_t * label

)
Imports wolfCrypt Curve25519 key as a raw byte array into the wolfHSM server key cache.
Parameters:

• ctx Pointer to the wolfHSM client structure.
• key Pointer to the curve25519 key structure.
• inout_keyId Pointer to the key ID. Set to WH_KEYID_ERASED to have the server allocate a unique
id. May be NULL.

• flags Value of flags to indicate server usage
• label_len Length of the optional label in bytes, Valid values are 0 to WH_NVM_LABEL_LEN.
• label pointer to the optional label byte array. May be NULL.

COPYRIGHT ©2024 wolfSSL Inc. 125

.3 wolfhsm/wh_client_crypto.h CONTENTS

Return: int Returns 0 on success or a negative error code on failure.
This function converts the curve25519_key struct to serialized format, installs into the server’s key
cache, and provides the server-allocated keyId for reference.

.3.2.6 function wh_Client_Curve25519ExportKey
int wh_Client_Curve25519ExportKey(

whClientContext * ctx,
whKeyId keyId,
curve25519_key * key,
uint16_t label_len,
uint8_t * label

)
Exports a serialized curve25519 key from the wolfHSM server keycache and decodes it into the
wolfCrypt curve25519 key structure.
Parameters:

• ctx Pointer to the wolfHSM client structure.
• out_keyId Server key ID to export.
• key Pointer to the Curve25519 key structure.
• label_len Length of the optional label in bytes, Valid values are 0 to WH_NVM_LABEL_LEN.
• label pointer to the optional label byte array. May be NULL.

Return: int Returns 0 on success or a negative error code on failure.
This function exports the specified key from wolfHSM server key cache as a serialized byte array and
decodes the key into the wolfCrypt curve25519_key structure, optionally copying out the associated
label as well.

.3.2.7 function wh_Client_Curve25519MakeCacheKey
int wh_Client_Curve25519MakeCacheKey(

whClientContext * ctx,
uint16_t size,
whKeyId * inout_key_id,
whNvmFlags flags,
const uint8_t * label,
uint16_t label_len

)
Generate a Curve25519 key in the server key cache.
Parameters:

• ctx Pointer to the client context
• size Size of the key to generate in bytes, normally set to CURVE25519_KEY_SIZE.
• inout_key_id. Set to WH_KEYID_ERASED to have the server select a unique id for this key.
• flagsOptional flags to be associatedwith the key while in the key cache or after being committed.
Set to WH_NVM_FLAGS_NONE if not used.

• labelOptional label to be associatedwith the keywhile in the key cache or after being committed.
Set to NULL if not used.

• label_len Size of the label up to WH_NVM_LABEL_SIZE. Set to 0 if not used.
Return: int Returns 0 on success or a negative error code on failure.
This function requests the server to generate a new Curve25519 key and insert it into the server’s key
cache.

COPYRIGHT ©2024 wolfSSL Inc. 126

.3 wolfhsm/wh_client_crypto.h CONTENTS

.3.2.8 function wh_Client_Curve25519MakeExportKey
int wh_Client_Curve25519MakeExportKey(

whClientContext * ctx,
uint16_t size,
curve25519_key * key

)
Generate a Curve25519 key by the server and export to the client.
Parameters:

• ctx Pointer to the client context
• size Size of the key to generate in bytes, normally set to CURVE25519_KEY_SIZE.
• key Pointer to a wolfCrypt key structure, which will be initialized to the new key pair when suc-
cessful

Return: int Returns 0 on success or a negative error code on failure.
This function requests the server to generate a new Curve25519 key pair and export it to the client,
without using any key cache or additional resources

.3.2.9 function wh_Client_Curve25519SharedSecret
int wh_Client_Curve25519SharedSecret(

whClientContext * ctx,
curve25519_key * priv_key,
curve25519_key * pub_key,
int endian,
uint8_t * out,
uint16_t * out_size

)
Compute an X25519 shared secret using a public and private key.
Parameters:

• ctx Pointer to the client context
• priv_key Pointer to a wolfCrypt key structure that holds the private key
• pub_key Pointer to a wolfCrypt key structure that holds the public key
• endian Endianness of the values. EC25519_BIG_ENDIAN (typical) or EC25519_LITTLE_ENDIAN

Return: int Returns 0 on success or a negative error code on failure.
This function requests the server compute the shared secret using the provided wolfCrypt private and
public keys. Note, the client will temporarily import any missing key material to the server as required.

.3.2.10 function wh_Client_EccSetKeyId
int wh_Client_EccSetKeyId(

ecc_key * key,
whKeyId keyId

)
Associates a Ecc key with a specific key ID.
Parameters:

• key Pointer to the Ecc key structure.
• keyId Key ID to be associated with the Ecc key.

COPYRIGHT ©2024 wolfSSL Inc. 127

.3 wolfhsm/wh_client_crypto.h CONTENTS

Return: int Returns 0 on success or a negative error code on failure.
This function sets the device context of a Ecc key to the specified key ID. On the server side, this key ID
is used to reference the key stored in the HSM

.3.2.11 function wh_Client_EccGetKeyId
int wh_Client_EccGetKeyId(

ecc_key * key,
whKeyId * outId

)
Gets the wolfHSM keyId being used by the wolfCrypt struct.
Parameters:

• key Pointer to the Ecc key structure.
• outId Pointer to the key ID to return.

Return: int Returns 0 on success or a negative error code on failure.
This function gets the device context of a Ecc key that was previously set by either the crypto callback
layer or wh_Client_EccSetKeyId.

.3.2.12 function wh_Client_EccImportKey
int wh_Client_EccImportKey(

whClientContext * ctx,
ecc_key * key,
whKeyId * inout_keyId,
whNvmFlags flags,
uint16_t label_len,
uint8_t * label

)

.3.2.13 function wh_Client_EccExportKey
int wh_Client_EccExportKey(

whClientContext * ctx,
whKeyId keyId,
ecc_key * key,
uint16_t label_len,
uint8_t * label

)

.3.2.14 function wh_Client_EccMakeExportKey
int wh_Client_EccMakeExportKey(

whClientContext * ctx,
int size,
int curveId,
ecc_key * key

)

COPYRIGHT ©2024 wolfSSL Inc. 128

.3 wolfhsm/wh_client_crypto.h CONTENTS

.3.2.15 function wh_Client_EccMakeCacheKey
int wh_Client_EccMakeCacheKey(

whClientContext * ctx,
int size,
int curveId,
whKeyId * inout_key_id,
whNvmFlags flags,
uint16_t label_len,
uint8_t * label

)

.3.2.16 function wh_Client_EccSharedSecret
int wh_Client_EccSharedSecret(

whClientContext * ctx,
ecc_key * priv_key,
ecc_key * pub_key,
uint8_t * out,
uint16_t * out_size

)

.3.2.17 function wh_Client_EccSign
int wh_Client_EccSign(

whClientContext * ctx,
ecc_key * key,
const uint8_t * hash,
uint16_t hash_len,
uint8_t * sig,
uint16_t * inout_sig_len

)

.3.2.18 function wh_Client_EccVerify
int wh_Client_EccVerify(

whClientContext * ctx,
ecc_key * key,
const uint8_t * sig,
uint16_t sig_len,
const uint8_t * hash,
uint16_t hash_len,
int * out_res

)

.3.2.19 function wh_Client_Ed25519SetKeyId
int wh_Client_Ed25519SetKeyId(

ed25519_key * key,
whKeyId keyId

)
Associates an Ed25519 key with a specific key ID.
Sets the device context of an Ed25519 key to the provided key ID.

COPYRIGHT ©2024 wolfSSL Inc. 129

.3 wolfhsm/wh_client_crypto.h CONTENTS

.3.2.20 function wh_Client_Ed25519GetKeyId
int wh_Client_Ed25519GetKeyId(

ed25519_key * key,
whKeyId * outId

)
Retrieves the key ID from an Ed25519 key device context.

.3.2.21 function wh_Client_Ed25519ImportKey
int wh_Client_Ed25519ImportKey(

whClientContext * ctx,
ed25519_key * key,
whKeyId * inout_keyId,
whNvmFlags flags,
uint16_t label_len,
uint8_t * label

)
Import an Ed25519 key into the server keystore/cache.

.3.2.22 function wh_Client_Ed25519ExportKey
int wh_Client_Ed25519ExportKey(

whClientContext * ctx,
whKeyId keyId,
ed25519_key * key,
uint16_t label_len,
uint8_t * label

)
Export an Ed25519 key from the server to the client.

.3.2.23 function wh_Client_Ed25519MakeExportKey
int wh_Client_Ed25519MakeExportKey(

whClientContext * ctx,
ed25519_key * key

)
Create a new Ed25519 key on the server and export it without caching.

.3.2.24 function wh_Client_Ed25519MakeCacheKey
int wh_Client_Ed25519MakeCacheKey(

whClientContext * ctx,
whKeyId * inout_key_id,
whNvmFlags flags,
uint16_t label_len,
uint8_t * label

)
Create a new Ed25519 key on the server and store it in cache/NVM.

COPYRIGHT ©2024 wolfSSL Inc. 130

.3 wolfhsm/wh_client_crypto.h CONTENTS

.3.2.25 function wh_Client_Ed25519Sign
int wh_Client_Ed25519Sign(

whClientContext * ctx,
ed25519_key * key,
const uint8_t * msg,
uint32_t msgLen,
uint8_t type,
const uint8_t * context,
uint32_t contextLen,
uint8_t * sig,
uint32_t * inout_sig_len

)
Sign a message using an Ed25519 key on the server.

.3.2.26 function wh_Client_Ed25519Verify
int wh_Client_Ed25519Verify(

whClientContext * ctx,
ed25519_key * key,
const uint8_t * sig,
uint32_t sigLen,
const uint8_t * msg,
uint32_t msgLen,
uint8_t type,
const uint8_t * context,
uint32_t contextLen,
int * out_res

)
Verify a message signature using an Ed25519 key on the server.

.3.2.27 function wh_Client_Ed25519SignDma
int wh_Client_Ed25519SignDma(

whClientContext * ctx,
ed25519_key * key,
const uint8_t * msg,
uint32_t msgLen,
uint8_t type,
const uint8_t * context,
uint32_t contextLen,
uint8_t * sig,
uint32_t * inout_sig_len

)
Sign a message using an Ed25519 key via DMA.

.3.2.28 function wh_Client_Ed25519VerifyDma
int wh_Client_Ed25519VerifyDma(

whClientContext * ctx,
ed25519_key * key,
const uint8_t * sig,
uint32_t sigLen,

COPYRIGHT ©2024 wolfSSL Inc. 131

.3 wolfhsm/wh_client_crypto.h CONTENTS

const uint8_t * msg,
uint32_t msgLen,
uint8_t type,
const uint8_t * context,
uint32_t contextLen,
int * out_res

)
Verify a signature using an Ed25519 key via DMA.

.3.2.29 function wh_Client_RsaSetKeyId
int wh_Client_RsaSetKeyId(

RsaKey * key,
whNvmId keyId

)
Associates an RSA key with a specific key ID.
Parameters:

• key Pointer to the RSA key structure.
• keyId Key ID to be associated with the RSA key.

Return: int Returns 0 on success or a negative error code on failure.
This function sets the device context of an RSA key to the specified key ID. On the server side, this key
ID is used to reference the key stored in the HSM.

.3.2.30 function wh_Client_RsaGetKeyId
int wh_Client_RsaGetKeyId(

RsaKey * key,
whNvmId * outId

)
Gets the wolfHSM keyId being used by the wolfCrypt struct.
Parameters:

• key Pointer to the RSA key structure.
• outId Pointer to the key ID to return.

Return: int Returns 0 on success or a negative error code on failure.
This function gets the device context of a RSA key that was previously set by either the crypto callback
layer or wh_Client_SetKeyRsa.

.3.2.31 function wh_Client_RsaImportKey
int wh_Client_RsaImportKey(

whClientContext * ctx,
const RsaKey * key,
whKeyId * inout_keyId,
whNvmFlags flags,
uint32_t label_len,
uint8_t * label

)

COPYRIGHT ©2024 wolfSSL Inc. 132

.3 wolfhsm/wh_client_crypto.h CONTENTS

Imports wolfCrypt RSA key as a PCKS1 DER-formatted file into the wolfHSM server key cache.
Parameters:

• ctx Pointer to the wolfHSM client structure.
• key Pointer to the RSA key structure.
• flags Value of flags to indicate server usage
• label_len Length of the optional label in bytes, Valid values are 0 to WH_NVM_LABEL_LEN.
• label pointer to the optional label byte array. May be NULL.
• out_keyId Pointer to the key ID to return.

Return: int Returns 0 on success or a negative error code on failure.
This function converts the RsaKey struct to DER format, installs into the server’s key cache, and pro-
vides the server-allocated keyId for reference.

.3.2.32 function wh_Client_RsaExportKey
int wh_Client_RsaExportKey(

whClientContext * ctx,
whKeyId keyId,
RsaKey * key,
uint32_t label_len,
uint8_t * label

)
Exports a PKCS1 DER-formated RSA key from the wolfHSM server keycache and decodes it into the
wolfCrypt RSA key structure.
Parameters:

• ctx Pointer to the wolfHSM client structure.
• out_keyId Server key ID to export.
• key Pointer to the RSA key structure.
• label_len Length of the optional label in bytes, Valid values are 0 to WH_NVM_LABEL_LEN.
• label pointer to the optional label byte array. May be NULL.

Return: int Returns 0 on success or a negative error code on failure.
This function exports the specified key fromwolfHSM server key cache as a PCKS1DER file and decodes
the key into the wolfCrypt RsaKey structure, optionally copying out the associated label as well.

.3.2.33 function wh_Client_RsaMakeExportKey
int wh_Client_RsaMakeExportKey(

whClientContext * ctx,
uint32_t size,
uint32_t e,
RsaKey * rsa

)

.3.2.34 function wh_Client_RsaMakeCacheKey
int wh_Client_RsaMakeCacheKey(

whClientContext * ctx,
uint32_t size,
uint32_t e,
whKeyId * inout_key_id,
whNvmFlags flags,

COPYRIGHT ©2024 wolfSSL Inc. 133

.3 wolfhsm/wh_client_crypto.h CONTENTS

uint32_t label_len,
uint8_t * label

)

.3.2.35 function wh_Client_RsaFunction
int wh_Client_RsaFunction(

whClientContext * ctx,
RsaKey * key,
int rsa_type,
const uint8_t * in,
uint16_t in_len,
uint8_t * out,
uint16_t * inout_out_len

)

.3.2.36 function wh_Client_RsaGetSize
int wh_Client_RsaGetSize(

whClientContext * ctx,
const RsaKey * key,
int * out_size

)

.3.2.37 function wh_Client_HkdfMakeCacheKey
int wh_Client_HkdfMakeCacheKey(

whClientContext * ctx,
int hashType,
whKeyId keyIdIn,
const uint8_t * inKey,
uint32_t inKeySz,
const uint8_t * salt,
uint32_t saltSz,
const uint8_t * info,
uint32_t infoSz,
whKeyId * inout_key_id,
whNvmFlags flags,
const uint8_t * label,
uint32_t label_len,
uint32_t outSz

)
Generate HKDF output and store in the server key cache.
Parameters:

• ctx Pointer to the client context
• hashType Hash type (WC_SHA256, WC_SHA384, WC_SHA512, etc.)
• keyIdIn Key ID of input key material from cache. Set to WH_KEYID_ERASED to use inKey/inKeySz
instead.

• inKey Input keying material (can be NULL if keyIdIn is set)
• inKeySz Size of input keying material (must be 0 if using keyIdIn)
• salt Optional salt (can be NULL)
• saltSz Size of salt (0 if NULL)
• info Optional info (can be NULL)

COPYRIGHT ©2024 wolfSSL Inc. 134

.3 wolfhsm/wh_client_crypto.h CONTENTS

• infoSz Size of info (0 if NULL)
• inout_key_id. Set to WH_KEYID_ERASED to have the server select a unique id for this key.
• flags NVM flags to be associated with the key metadata
• label Label to be associated with the key metadata
• label_len Size of the label up to WH_NVM_LABEL_SIZE. Set to 0 if not used.
• outSz Size of key material to generate and cache

Return: int Returns 0 on success or a negative error code on failure.
This function requests the server to generate HKDF output and store it in the server’s key cache. The
generated key material is not returned to the client.

.3.2.38 function wh_Client_HkdfMakeExportKey
int wh_Client_HkdfMakeExportKey(

whClientContext * ctx,
int hashType,
whKeyId keyIdIn,
const uint8_t * inKey,
uint32_t inKeySz,
const uint8_t * salt,
uint32_t saltSz,
const uint8_t * info,
uint32_t infoSz,
uint8_t * out,
uint32_t outSz

)
Generate HKDF output and export to the client.
Parameters:

• ctx Pointer to the client context
• hashType Hash type (WC_SHA256, WC_SHA384, WC_SHA512, etc.)
• keyIdIn Key ID of input key material from cache. Set to WH_KEYID_ERASED to use inKey/inKeySz
instead.

• inKey Input keying material (can be NULL if keyIdIn is set)
• inKeySz Size of input keying material (must be 0 if using keyIdIn)
• salt Optional salt (can be NULL)
• saltSz Size of salt (0 if NULL)
• info Optional info (can be NULL)
• infoSz Size of info (0 if NULL)
• out Output buffer for key material
• outSz Size of output buffer

Return: int Returns 0 on success or a negative error code on failure.
This function requests the server to generate HKDF output and export it to the client, without using
any key cache or additional resources

.3.2.39 function wh_Client_CmacKdfMakeCacheKey
int wh_Client_CmacKdfMakeCacheKey(

whClientContext * ctx,
whKeyId saltKeyId,
const uint8_t * salt,
uint32_t saltSz,
whKeyId zKeyId,

COPYRIGHT ©2024 wolfSSL Inc. 135

.3 wolfhsm/wh_client_crypto.h CONTENTS

const uint8_t * z,
uint32_t zSz,
const uint8_t * fixedInfo,
uint32_t fixedInfoSz,
whKeyId * inout_key_id,
whNvmFlags flags,
const uint8_t * label,
uint32_t label_len,
uint32_t outSz

)
Generate CMAC two-step KDF output and store it in the server cache.
Parameters:

• ctx Pointer to the client context.
• saltKeyId Key ID of the salt material. Set to WH_KEYID_ERASED to use the salt buffer instead.
• salt Pointer to the salt buffer. May be NULL when saltKeyId is provided.
• saltSz Size of the salt buffer in bytes.
• zKeyId Key ID of the Z shared secret. Set to WH_KEYID_ERASED to use the z buffer instead.
• z Pointer to the shared secret buffer. May be NULL when zKeyId is provided.
• zSz Size of the shared secret buffer in bytes.
• fixedInfo Optional fixed info buffer (may be NULL).
• fixedInfoSz Size of the fixed info buffer in bytes.
• inout_key_id Pointer to the key ID to use or update. Set toWH_KEYID_ERASED to have the server
allocate one.

• flags NVM flags to associate with the generated key.
• label Optional label metadata to store alongside the key.
• label_len Length of the optional label in bytes.
• outSz Desired size of the derived key material.

Return: int Returns 0 on success or a negative error code on failure.
This function requests the server to run the NIST SP 800-56C two-step CMAC KDF. The derived key
material is cached on the server and not returned to the client.

.3.2.40 function wh_Client_CmacKdfMakeExportKey
int wh_Client_CmacKdfMakeExportKey(

whClientContext * ctx,
whKeyId saltKeyId,
const uint8_t * salt,
uint32_t saltSz,
whKeyId zKeyId,
const uint8_t * z,
uint32_t zSz,
const uint8_t * fixedInfo,
uint32_t fixedInfoSz,
uint8_t * out,
uint32_t outSz

)
Generate CMAC two-step KDF output and export to the client.
Parameters:

• ctx Pointer to the client context.
• saltKeyId Key ID of the salt material. Set to WH_KEYID_ERASED to use the salt buffer instead.

COPYRIGHT ©2024 wolfSSL Inc. 136

.3 wolfhsm/wh_client_crypto.h CONTENTS

• salt Pointer to the salt buffer. May be NULL when saltKeyId is provided.
• saltSz Size of the salt buffer in bytes.
• zKeyId Key ID of the Z shared secret. Set to WH_KEYID_ERASED to use the z buffer instead.
• z Pointer to the shared secret buffer. May be NULL when zKeyId is provided.
• zSz Size of the shared secret buffer in bytes.
• fixedInfo Optional fixed info buffer (may be NULL).
• fixedInfoSz Size of the fixed info buffer in bytes.
• out Output buffer for the derived key material.
• outSz Size of the output buffer in bytes.

Return: int Returns 0 on success or a negative error code on failure.
This function requests the server to run the NIST SP 800-56C two-step CMAC KDF and return the de-
rived key material directly to the client.

.3.2.41 function wh_Client_AesSetKeyId
int wh_Client_AesSetKeyId(

Aes * key,
whNvmId keyId

)
Associates an AES key with a specific key ID.
Parameters:

• key Pointer to the AES key structure.
• keyId Key ID to be associated with the AES key.

Return: int Returns 0 on success or a negative error code on failure.
This function sets the device context of an AES key to the specified key ID. On the server side, this key
ID is used to reference the key stored in the HSM

.3.2.42 function wh_Client_AesGetKeyId
int wh_Client_AesGetKeyId(

Aes * key,
whNvmId * outId

)
Gets the wolfHSM keyId being used by the wolfCrypt struct.
Parameters:

• key Pointer to the AES key structure.
• outId Pointer to the key ID to return.

Return: int Returns 0 on success or a negative error code on failure.
This function gets the device context of a AES key that was previously set by either the crypto callback
layer or wh_Client_SetKeyAes.

.3.2.43 function wh_Client_AesCtr
int wh_Client_AesCtr(

whClientContext * ctx,
Aes * aes,
int enc,
const uint8_t * in,

COPYRIGHT ©2024 wolfSSL Inc. 137

.3 wolfhsm/wh_client_crypto.h CONTENTS

uint32_t len,
uint8_t * out

)

.3.2.44 function wh_Client_AesEcb
int wh_Client_AesEcb(

whClientContext * ctx,
Aes * aes,
int enc,
const uint8_t * in,
uint32_t len,
uint8_t * out

)

.3.2.45 function wh_Client_AesCbc
int wh_Client_AesCbc(

whClientContext * ctx,
Aes * aes,
int enc,
const uint8_t * in,
uint32_t len,
uint8_t * out

)

.3.2.46 function wh_Client_AesGcm
int wh_Client_AesGcm(

whClientContext * ctx,
Aes * aes,
int enc,
const uint8_t * in,
uint32_t len,
const uint8_t * iv,
uint32_t iv_len,
const uint8_t * authin,
uint32_t authin_len,
const uint8_t * dec_tag,
uint8_t * enc_tag,
uint32_t tag_len,
uint8_t * out

)

.3.2.47 function wh_Client_AesGcmDma
int wh_Client_AesGcmDma(

whClientContext * ctx,
Aes * aes,
int enc,
const uint8_t * in,
uint32_t len,
const uint8_t * iv,
uint32_t iv_len,

COPYRIGHT ©2024 wolfSSL Inc. 138

.3 wolfhsm/wh_client_crypto.h CONTENTS

const uint8_t * authin,
uint32_t authin_len,
const uint8_t * dec_tag,
uint8_t * enc_tag,
uint32_t tag_len,
uint8_t * out

)
Performs an AES-GCM operation using DMA.
Parameters:

• ctx Pointer to the wolfHSM client context.
• aes Pointer to the AES structure.
• enc 1 for encrypt, 0 for decrypt.
• in Pointer to the input data.
• len Length of the input and output data in bytes.
• iv Pointer to the IV data.
• iv_len Length of the IV data in bytes.
• authin Pointer to the authentication data.
• authin_len Length of the authentication data in bytes.
• dec_tag Pointer to the decryption tag data.
• enc_tag Pointer to the encryption tag data.
• tag_len Length of the tag data in bytes.
• out Pointer to the output data.

Return: int Returns 0 on success or a negative error code on failure.
This function performs an AES-GCM encrypt or decrypt operation on the input data and stores the
result in the output buffer using direct memory access when communicating with the wolfHSM server.

.3.2.48 function wh_Client_Cmac
int wh_Client_Cmac(

whClientContext * ctx,
Cmac * cmac,
CmacType type,
const uint8_t * key,
uint32_t keyLen,
const uint8_t * in,
uint32_t inLen,
uint8_t * outMac,
uint32_t * outMacLen

)
Performs a CMAC operation on the input data.
Parameters:

• ctx Pointer to the wolfHSM client context.
• cmac Pointer to the CMAC structure.
• type The type of CMAC operation.
• key Pointer to the key buffer, or NULL if using a key stored in HSM.
• keyLen Length of the key in bytes.
• in Pointer to the input data buffer, or NULL for finalization.
• inLen Length of the input data in bytes.
• outMac Pointer to the output buffer for the CMAC tag.
• outMacLen Pointer to the size of the output buffer, updated with actual size.

COPYRIGHT ©2024 wolfSSL Inc. 139

.3 wolfhsm/wh_client_crypto.h CONTENTS

Return: int Returns WH_ERROR_OK (0) on success, or a negative error code on failure.
This function performs a CMAC operation with the specified parameters. It can be used for initializa-
tion, update, or finalization of CMAC operations, depending on the input arguments.

.3.2.49 function wh_Client_CmacCancelableResponse
int wh_Client_CmacCancelableResponse(

whClientContext * c,
Cmac * cmac,
uint8_t * out,
uint16_t * outSz

)
Handle cancelable CMAC response.
Parameters:

• c Pointer to the client context structure.
• cmac Pointer to the CMAC key structure.
• out Buffer to store the CMAC result, only required after wc_CmacFinal.
• outSz Pointer to the size of the out buffer in bytes, will be set to the size returned by the server
on return.

Return: int Returns 0 on success, or a negative error code on failure.
This function handles a CMACoperation response from the serverwhen cancellation has been enabled,
since wolfCrypt won’t automatically block and wait for the response. Note that DMA-based CMAC
operations are NOT cancellable and if a cancel is requested, the cancellation will be aborted.

.3.2.50 function wh_Client_CmacSetKeyId
int wh_Client_CmacSetKeyId(

Cmac * key,
whNvmId keyId

)
Associates a CMAC key with a specific key ID.
Parameters:

• key Pointer to the CMAC key structure.
• keyId Key ID to be associated with the CMAC key.

Return: int Returns 0 on success or a negative error code on failure.
This function sets the device context of a CMAC key to the specified key ID. On the server side, this key
ID is used to reference the key stored in the HSM

.3.2.51 function wh_Client_CmacGetKeyId
int wh_Client_CmacGetKeyId(

Cmac * key,
whNvmId * outId

)
Gets the wolfHSM keyId being used by the wolfCrypt struct.
Parameters:

• key Pointer to the CMAC key structure.

COPYRIGHT ©2024 wolfSSL Inc. 140

.3 wolfhsm/wh_client_crypto.h CONTENTS

• outId Pointer to the key ID to return.
Return: int Returns 0 on success or a negative error code on failure.
This function gets the device context of a CMAC key that was previously set by either the crypto callback
layer or wh_Client_SetKeyCmac.

.3.2.52 function wh_Client_CmacDma
int wh_Client_CmacDma(

whClientContext * ctx,
Cmac * cmac,
CmacType type,
const uint8_t * key,
uint32_t keyLen,
const uint8_t * in,
uint32_t inLen,
uint8_t * outMac,
uint32_t * outMacLen

)
Performs CMAC operations using DMA for data transfer.
Parameters:

• ctx Pointer to the client context structure.
• cmac Pointer to the CMAC structure to be used.
• type The type of CMAC operation (e.g., WC_CMAC_AES).
• key Pointer to the key data. NULL if using a stored key.
• keyLen Length of the key in bytes.
• in Pointer to the input data. NULL if not performing an update.
• inLen Length of the input data in bytes.
• outMac Pointer to store the CMAC result. NULL if not finalizing.
• outMacLen Pointer to the size of the outMac buffer. Updated with actual size on return.

Return: int Returns 0 on success or a negative error code on failure.
This function performs CMAC operations (initialize, update, finalize) using DMA for efficient data trans-
fer between client and server. The operation performed depends on which parameters are non-NULL.

.3.2.53 function wh_Client_Sha256
int wh_Client_Sha256(

whClientContext * ctx,
wc_Sha256 * sha,
const uint8_t * in,
uint32_t inLen,
uint8_t * out

)
Performs a SHA-256 hash operation on the input data.
Parameters:

• ctx Pointer to the client context structure.
• sha Pointer to the SHA-256 context structure.
• in Pointer to the input data.
• inLen Length of the input data in bytes.
• out Pointer to the output buffer.

COPYRIGHT ©2024 wolfSSL Inc. 141

.3 wolfhsm/wh_client_crypto.h CONTENTS

Return: int Returns 0 on success or a negative error code on failure.
This function performs a SHA-256 hash operation on the input data and stores the result in the output
buffer.

.3.2.54 function wh_Client_Sha256Dma
int wh_Client_Sha256Dma(

whClientContext * ctx,
wc_Sha256 * sha,
const uint8_t * in,
uint32_t inLen,
uint8_t * out

)
Performs a SHA-256 hash operation on the input data using DMA.
Parameters:

• ctx Pointer to the client context structure.
• sha Pointer to the SHA-256 context structure.
• in Pointer to the input data.
• inLen Length of the input data in bytes.
• out Pointer to the output buffer.

Return: int Returns 0 on success or a negative error code on failure.
This function performs a SHA-256 hash operation on the input data and stores the result in the output
buffer using DMA.

.3.2.55 function wh_Client_Sha224
int wh_Client_Sha224(

whClientContext * ctx,
wc_Sha224 * sha,
const uint8_t * in,
uint32_t inLen,
uint8_t * out

)
Performs a SHA-224 hash operation on the input data.
Parameters:

• ctx Pointer to the client context structure.
• sha Pointer to the SHA-224 context structure.
• in Pointer to the input data.
• inLen Length of the input data in bytes.
• out Pointer to the output buffer.

Return: int Returns 0 on success or a negative error code on failure.
This function performs a SHA-224 hash operation on the input data and stores the result in the output
buffer.

.3.2.56 function wh_Client_Sha224Dma
int wh_Client_Sha224Dma(

whClientContext * ctx,
wc_Sha224 * sha,

COPYRIGHT ©2024 wolfSSL Inc. 142

.3 wolfhsm/wh_client_crypto.h CONTENTS

const uint8_t * in,
uint32_t inLen,
uint8_t * out

)
Performs a SHA-224 hash operation on the input data using DMA.
Parameters:

• ctx Pointer to the client context structure.
• sha Pointer to the SHA-224 context structure.
• in Pointer to the input data.
• inLen Length of the input data in bytes.
• out Pointer to the output buffer.

Return: int Returns 0 on success or a negative error code on failure.
This function performs a SHA-224 hash operation on the input data and stores the result in the output
buffer using DMA.

.3.2.57 function wh_Client_Sha384
int wh_Client_Sha384(

whClientContext * ctx,
wc_Sha384 * sha,
const uint8_t * in,
uint32_t inLen,
uint8_t * out

)
Performs a SHA-384 hash operation on the input data.
Parameters:

• ctx Pointer to the client context structure.
• sha Pointer to the SHA-384 context structure.
• in Pointer to the input data.
• inLen Length of the input data in bytes.
• out Pointer to the output buffer.

Return: int Returns 0 on success or a negative error code on failure.
This function performs a SHA-384 hash operation on the input data and stores the result in the output
buffer.

.3.2.58 function wh_Client_Sha384Dma
int wh_Client_Sha384Dma(

whClientContext * ctx,
wc_Sha384 * sha,
const uint8_t * in,
uint32_t inLen,
uint8_t * out

)
Performs a SHA-384 hash operation on the input data using DMA.
Parameters:

• ctx Pointer to the client context structure.
• sha Pointer to the SHA-384 context structure.

COPYRIGHT ©2024 wolfSSL Inc. 143

.3 wolfhsm/wh_client_crypto.h CONTENTS

• in Pointer to the input data.
• inLen Length of the input data in bytes.
• out Pointer to the output buffer.

Return: int Returns 0 on success or a negative error code on failure.
This function performs a SHA-384 hash operation on the input data and stores the result in the output
buffer using DMA.

.3.2.59 function wh_Client_Sha512
int wh_Client_Sha512(

whClientContext * ctx,
wc_Sha512 * sha,
const uint8_t * in,
uint32_t inLen,
uint8_t * out

)
Performs a SHA-512 hash operation on the input data.
Parameters:

• ctx Pointer to the client context structure.
• sha Pointer to the SHA-512 context structure.
• in Pointer to the input data.
• inLen Length of the input data in bytes.
• out Pointer to the output buffer.

Return: int Returns 0 on success or a negative error code on failure.
This function performs a SHA-512 hash operation on the input data and stores the result in the output
buffer.

.3.2.60 function wh_Client_Sha512Dma
int wh_Client_Sha512Dma(

whClientContext * ctx,
wc_Sha512 * sha,
const uint8_t * in,
uint32_t inLen,
uint8_t * out

)
Performs a SHA-512 hash operation on the input data using DMA.
Parameters:

• ctx Pointer to the client context structure.
• sha Pointer to the SHA-512 context structure.
• in Pointer to the input data.
• inLen Length of the input data in bytes.
• out Pointer to the output buffer.

Return: int Returns 0 on success or a negative error code on failure.
This function performs a SHA-512 hash operation on the input data and stores the result in the output
buffer using DMA.

COPYRIGHT ©2024 wolfSSL Inc. 144

.3 wolfhsm/wh_client_crypto.h CONTENTS

.3.2.61 function wh_Client_MlDsaSetKeyId
int wh_Client_MlDsaSetKeyId(

MlDsaKey * key,
whKeyId keyId

)
Associates a ML-DSA key with a specific key ID.
Parameters:

• key Pointer to the ML-DSA key structure.
• keyId Key ID to be associated with the ML-DSA key.

Return: int Returns 0 on success or a negative error code on failure.
This function sets the device context of a ML-DSA key to the specified key ID. On the server side, this
key ID is used to reference the key stored in the HSM

.3.2.62 function wh_Client_MlDsaGetKeyId
int wh_Client_MlDsaGetKeyId(

MlDsaKey * key,
whKeyId * outId

)
Gets the wolfHSM keyId being used by the wolfCrypt struct.
Parameters:

• key Pointer to the ML-DSA key structure.
• outId Pointer to the key ID to return.

Return: int Returns 0 on success or a negative error code on failure.
This function gets the device context of a ML-DSA key that was previously set by either the crypto
callback layer or wh_Client_MlDsaSetKeyId.

.3.2.63 function wh_Client_MlDsaImportKey
int wh_Client_MlDsaImportKey(

whClientContext * ctx,
MlDsaKey * key,
whKeyId * inout_keyId,
whNvmFlags flags,
uint16_t label_len,
uint8_t * label

)
Import a ML-DSA key to the server key cache.
Parameters:

• ctx Pointer to the client context
• key Pointer to the key to import
• inout_keyId Pointer to key ID to use/receive
• flags Flags to control key persistence
• label_len Length of optional label
• label Optional label to associate with key

Return: int Returns 0 on success or a negative error code on failure.

COPYRIGHT ©2024 wolfSSL Inc. 145

.3 wolfhsm/wh_client_crypto.h CONTENTS

.3.2.64 function wh_Client_MlDsaExportKey
int wh_Client_MlDsaExportKey(

whClientContext * ctx,
whKeyId keyId,
MlDsaKey * key,
uint16_t label_len,
uint8_t * label

)
Export a ML-DSA key from the server.
Parameters:

• ctx Pointer to the client context
• keyId ID of key to export
• key Pointer to receive exported key
• label_len Length of optional label buffer
• label Optional buffer to receive key label

Return: int Returns 0 on success or a negative error code on failure.

.3.2.65 function wh_Client_MlDsaMakeExportKey
int wh_Client_MlDsaMakeExportKey(

whClientContext * ctx,
int level,
int size,
MlDsaKey * key

)
Generate a new ML-DSA key pair and export the public key.
Parameters:

• ctx Pointer to the client context structure.
• type The ML-DSA algorithm type.
• size Size of the key in bits.
• key Pointer to the ML-DSA key structure to store the key.

Return: int Returns 0 on success, or a negative error code on failure.
This function generates a new ML-DSA key pair in the HSM and exports the public key to the client.
The private key remains securely stored in the HSM.

.3.2.66 function wh_Client_MlDsaMakeCacheKey
int wh_Client_MlDsaMakeCacheKey(

whClientContext * ctx,
int size,
int level,
whKeyId * inout_key_id,
whNvmFlags flags,
uint16_t label_len,
uint8_t * label

)
Create and cache a new ML-DSA key on the server.
Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 146

.3 wolfhsm/wh_client_crypto.h CONTENTS

• ctx Pointer to the client context
• size Size of key to generate
• levelML-DSA security level of the key to generate
• inout_key_id Pointer to key ID to use/receive
• flags Flags to control key persistence
• label_len Length of optional label
• label Optional label to associate with key

Return: int Returns 0 on success or a negative error code on failure.

.3.2.67 function wh_Client_MlDsaSign
int wh_Client_MlDsaSign(

whClientContext * ctx,
const byte * in,
word32 in_len,
byte * out,
word32 * out_len,
MlDsaKey * key

)
Sign a message using a ML-DSA private key.
Parameters:

• ctx Pointer to the client context structure.
• in Pointer to the message to sign.
• in_len Length of the message in bytes.
• out Buffer to store the signature.
• out_len Pointer to size of output buffer, updated with actual size.
• key Pointer to the ML-DSA key structure.

Return: int Returns 0 on success, or a negative error code on failure.
This function signs a message using a ML-DSA private key stored in the HSM.

.3.2.68 function wh_Client_MlDsaVerify
int wh_Client_MlDsaVerify(

whClientContext * ctx,
const byte * sig,
word32 sig_len,
const byte * msg,
word32 msg_len,
int * res,
MlDsaKey * key

)
Verify a ML-DSA signature.
Parameters:

• ctx Pointer to the client context structure.
• sig Pointer to the signature to verify.
• sig_len Length of the signature in bytes.
• msg Pointer to the original message.
• msg_len Length of the message in bytes.
• res Pointer to store verification result (1=success, 0=failure).
• key Pointer to the ML-DSA key structure.

COPYRIGHT ©2024 wolfSSL Inc. 147

.3 wolfhsm/wh_client_crypto.h CONTENTS

Return: int Returns 0 on success, or a negative error code on failure.
This function verifies a ML-DSA signature using the HSM.

.3.2.69 function wh_Client_MlDsaCheckPrivKey
int wh_Client_MlDsaCheckPrivKey(

whClientContext * ctx,
MlDsaKey * key,
const byte * pubKey,
word32 pubKeySz

)
Check a ML-DSA private key.
Parameters:

• ctx Pointer to the client context structure.
• key Pointer to the ML-DSA key structure.
• pubKey Pointer to the public key data.
• pubKeySz Size of the public key in bytes.

Return: int Returns 0 on success, or a negative error code on failure.
This function validates a ML-DSA private key against its public key using the HSM.

.3.2.70 function wh_Client_MlDsaImportKeyDma
int wh_Client_MlDsaImportKeyDma(

whClientContext * ctx,
MlDsaKey * key,
whKeyId * inout_keyId,
whNvmFlags flags,
uint16_t label_len,
uint8_t * label

)
Import a ML-DSA key using DMA.
Parameters:

• ctx Pointer to the client context structure.
• key Pointer to the ML-DSA key structure representing the key to import.
• inout_keyId Pointer to store/provide the key ID.
• flags NVM flags for key storage.
• label_len Length of the key label in bytes.
• label Pointer to the key label.

Return: int Returns 0 on success, or a negative error code on failure.
This function imports a ML-DSA key into the HSM using DMA.

.3.2.71 function wh_Client_MlDsaExportKeyDma
int wh_Client_MlDsaExportKeyDma(

whClientContext * ctx,
whKeyId keyId,
MlDsaKey * key,
uint16_t label_len,

COPYRIGHT ©2024 wolfSSL Inc. 148

.3 wolfhsm/wh_client_crypto.h CONTENTS

uint8_t * label
)
Export a ML-DSA key using DMA.
Parameters:

• ctx Pointer to the client context structure.
• keyId ID of the key to export.
• key Pointer to the ML-DSA key structure to hold the exported key.
• label_len Length of the key label in bytes.
• label Pointer to the key label.

Return: int Returns 0 on success, or a negative error code on failure.
This function exports a ML-DSA key from the HSM using DMA.

.3.2.72 function wh_Client_MlDsaMakeExportKeyDma
int wh_Client_MlDsaMakeExportKeyDma(

whClientContext * ctx,
int level,
MlDsaKey * key

)
Generate a new ML-DSA key pair and export it using DMA.
Parameters:

• ctx Pointer to the client context structure.
• level The ML-DSA security level.
• key Pointer to the ML-DSA key structure to store the key.

Return: int Returns 0 on success, or a negative error code on failure.
This function generates a new ML-DSA key pair in the HSM and exports it using DMA.

.3.2.73 function wh_Client_MlDsaSignDma
int wh_Client_MlDsaSignDma(

whClientContext * ctx,
const byte * in,
word32 in_len,
byte * out,
word32 * out_len,
MlDsaKey * key

)
Sign a message using ML-DSA with DMA.
Parameters:

• ctx Pointer to the client context structure.
• in Pointer to the message to sign.
• in_len Length of the message in bytes.
• out Pointer to store the signature.
• out_len On input, size of out buffer. On output, length of signature.
• key Pointer to the ML-DSA key structure.

Return: int Returns 0 on success, or a negative error code on failure.
This function signs a message using ML-DSA with DMA.

COPYRIGHT ©2024 wolfSSL Inc. 149

.3 wolfhsm/wh_client_crypto.h CONTENTS

.3.2.74 function wh_Client_MlDsaVerifyDma
int wh_Client_MlDsaVerifyDma(

whClientContext * ctx,
const byte * sig,
word32 sig_len,
const byte * msg,
word32 msg_len,
int * res,
MlDsaKey * key

)
Verify a ML-DSA signature with DMA.
Parameters:

• ctx Pointer to the client context structure.
• sig Pointer to the signature to verify.
• sig_len Length of the signature in bytes.
• msg Pointer to the message that was signed.
• msg_len Length of the message in bytes.
• res Result of verification (1 = success, 0 = failure).
• key Pointer to the ML-DSA key structure.

Return: int Returns 0 on success, or a negative error code on failure.
This function verifies a ML-DSA signature with DMA.

.3.2.75 function wh_Client_MlDsaCheckPrivKeyDma
int wh_Client_MlDsaCheckPrivKeyDma(

whClientContext * ctx,
MlDsaKey * key,
const byte * pubKey,
word32 pubKeySz

)
Check a ML-DSA private key against public key with DMA.
Parameters:

• ctx Pointer to the client context structure.
• key Pointer to the ML-DSA private key structure.
• pubKey Pointer to the public key to check against.
• pubKeySz Size of the public key in bytes.

Return: int Returns 0 on success, or a negative error code on failure.
This function checks if a ML-DSA private key matches a public key with DMA.

.3.3 Source code

/*
* Copyright (C) 2024 wolfSSL Inc.
*
* This file is part of wolfHSM.
*
* wolfHSM is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or

COPYRIGHT ©2024 wolfSSL Inc. 150

.3 wolfhsm/wh_client_crypto.h CONTENTS

* (at your option) any later version.
*
* wolfHSM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with wolfHSM. If not, see <http://www.gnu.org/licenses/>.
*/

/*
* wolfhsm/wh_client_crypto.h
*/

#ifndef WOLFHSM_WH_CLIENT_CRYPTO_H_
#define WOLFHSM_WH_CLIENT_CRYPTO_H_

/* Pick up compile-time configuration */
#include "wolfhsm/wh_settings.h"

#ifndef WOLFHSM_CFG_NO_CRYPTO

/* System libraries */
#include <stdint.h>

/* Common WolfHSM types and defines shared with the server */
#include "wolfhsm/wh_common.h"

/* Component includes */
#include "wolfhsm/wh_comm.h"
#include "wolfhsm/wh_client.h"

#include "wolfssl/wolfcrypt/settings.h"
#include "wolfssl/wolfcrypt/types.h"
#include "wolfssl/wolfcrypt/error-crypt.h"
#include "wolfssl/wolfcrypt/wc_port.h"
#include "wolfssl/wolfcrypt/cryptocb.h"
#include "wolfssl/wolfcrypt/aes.h"
#include "wolfssl/wolfcrypt/cmac.h"
#include "wolfssl/wolfcrypt/curve25519.h"
#include "wolfssl/wolfcrypt/rsa.h"
#include "wolfssl/wolfcrypt/ecc.h"
#include "wolfssl/wolfcrypt/ed25519.h"
#include "wolfssl/wolfcrypt/dilithium.h"
#include "wolfssl/wolfcrypt/hmac.h"

int wh_Client_RngGenerate(whClientContext* ctx, uint8_t* out, uint32_t size);

#ifdef WOLFHSM_CFG_DMA
int wh_Client_RngGenerateDma(whClientContext* ctx, uint8_t* out, uint32_t

size);↪
#endif /* WOLFHSM_CFG_DMA */

#ifdef HAVE_CURVE25519

COPYRIGHT ©2024 wolfSSL Inc. 151

.3 wolfhsm/wh_client_crypto.h CONTENTS

int wh_Client_Curve25519SetKeyId(curve25519_key* key, whKeyId keyId);

int wh_Client_Curve25519GetKeyId(curve25519_key* key, whKeyId* outId);

int wh_Client_Curve25519ImportKey(whClientContext* ctx, curve25519_key* key,
whKeyId *inout_keyId, whNvmFlags flags,
uint16_t label_len, uint8_t* label);

int wh_Client_Curve25519ExportKey(whClientContext* ctx, whKeyId keyId,
curve25519_key* key, uint16_t label_len, uint8_t* label);

int wh_Client_Curve25519MakeCacheKey(whClientContext* ctx,
uint16_t size,
whKeyId *inout_key_id, whNvmFlags flags,
const uint8_t* label, uint16_t label_len);

int wh_Client_Curve25519MakeExportKey(whClientContext* ctx,
uint16_t size, curve25519_key* key);

int wh_Client_Curve25519SharedSecret(whClientContext* ctx,
curve25519_key* priv_key, curve25519_key* pub_key,
int endian, uint8_t* out, uint16_t *out_size);

#endif /* HAVE_CURVE25519 */

#ifdef HAVE_ECC
int wh_Client_EccSetKeyId(ecc_key* key, whKeyId keyId);

int wh_Client_EccGetKeyId(ecc_key* key, whKeyId* outId);

/* TODO: Send key to server */
int wh_Client_EccImportKey(whClientContext* ctx, ecc_key* key,

whKeyId *inout_keyId, whNvmFlags flags,
uint16_t label_len, uint8_t* label);

/* TODO: Recv key from server */
int wh_Client_EccExportKey(whClientContext* ctx, whKeyId keyId,

ecc_key* key,
uint16_t label_len, uint8_t* label);

/* TODO: Server creates and exports a key, without caching */
int wh_Client_EccMakeExportKey(whClientContext* ctx,

int size, int curveId, ecc_key* key);
/* TODO: Server creates and imports the key to cache. */
int wh_Client_EccMakeCacheKey(whClientContext* ctx,

int size, int curveId,
whKeyId *inout_key_id, whNvmFlags flags,
uint16_t label_len, uint8_t* label);

/* TODO: Perform shared secret computation (ECDH) */
int wh_Client_EccSharedSecret(whClientContext* ctx,

ecc_key* priv_key, ecc_key* pub_key,
uint8_t* out, uint16_t *out_size);

/* TODO: Server generates signature of input hash */

COPYRIGHT ©2024 wolfSSL Inc. 152

.3 wolfhsm/wh_client_crypto.h CONTENTS

int wh_Client_EccSign(whClientContext* ctx,
ecc_key* key,
const uint8_t* hash, uint16_t hash_len,
uint8_t* sig, uint16_t *inout_sig_len);

/* TODO: Server verifies the signature of the provided hash */
int wh_Client_EccVerify(whClientContext* ctx, ecc_key* key,

const uint8_t* sig, uint16_t sig_len,
const uint8_t* hash, uint16_t hash_len,
int *out_res);

#endif /* HAVE_ECC */

#ifdef HAVE_ED25519
int wh_Client_Ed25519SetKeyId(ed25519_key* key, whKeyId keyId);

int wh_Client_Ed25519GetKeyId(ed25519_key* key, whKeyId* outId);

int wh_Client_Ed25519ImportKey(whClientContext* ctx, ed25519_key* key,
whKeyId* inout_keyId, whNvmFlags flags,
uint16_t label_len, uint8_t* label);

int wh_Client_Ed25519ExportKey(whClientContext* ctx, whKeyId keyId,
ed25519_key* key, uint16_t label_len,
uint8_t* label);

int wh_Client_Ed25519MakeExportKey(whClientContext* ctx, ed25519_key* key);

int wh_Client_Ed25519MakeCacheKey(whClientContext* ctx, whKeyId* inout_key_id,
whNvmFlags flags, uint16_t label_len,
uint8_t* label);

int wh_Client_Ed25519Sign(whClientContext* ctx, ed25519_key* key,
const uint8_t* msg, uint32_t msgLen, uint8_t type,
const uint8_t* context, uint32_t contextLen,
uint8_t* sig, uint32_t* inout_sig_len);

int wh_Client_Ed25519Verify(whClientContext* ctx, ed25519_key* key,
const uint8_t* sig, uint32_t sigLen,
const uint8_t* msg, uint32_t msgLen, uint8_t type,
const uint8_t* context, uint32_t contextLen,
int* out_res);

#ifdef WOLFHSM_CFG_DMA
int wh_Client_Ed25519SignDma(whClientContext* ctx, ed25519_key* key,

const uint8_t* msg, uint32_t msgLen, uint8_t type,
const uint8_t* context, uint32_t contextLen,
uint8_t* sig, uint32_t* inout_sig_len);

int wh_Client_Ed25519VerifyDma(whClientContext* ctx, ed25519_key* key,
const uint8_t* sig, uint32_t sigLen,
const uint8_t* msg, uint32_t msgLen,
uint8_t type, const uint8_t* context,
uint32_t contextLen, int* out_res);

COPYRIGHT ©2024 wolfSSL Inc. 153

.3 wolfhsm/wh_client_crypto.h CONTENTS

#endif /* WOLFHSM_CFG_DMA */
#endif /* HAVE_ED25519 */

#ifndef NO_RSA
int wh_Client_RsaSetKeyId(RsaKey* key, whNvmId keyId);

int wh_Client_RsaGetKeyId(RsaKey* key, whNvmId* outId);

int wh_Client_RsaImportKey(whClientContext* ctx, const RsaKey* key,
whKeyId *inout_keyId, whNvmFlags flags,
uint32_t label_len, uint8_t* label);

int wh_Client_RsaExportKey(whClientContext* ctx, whKeyId keyId,
RsaKey* key, uint32_t label_len, uint8_t* label);

/* Generate an RSA key on the server and export it inta an RSA struct */
int wh_Client_RsaMakeExportKey(whClientContext* ctx,

uint32_t size, uint32_t e, RsaKey* rsa);

/* Generate an RSA key on the server and put it in the server keycache */
int wh_Client_RsaMakeCacheKey(whClientContext* ctx,

uint32_t size, uint32_t e,
whKeyId* inout_key_id, whNvmFlags flags,
uint32_t label_len, uint8_t* label);

/* TODO: Request server to perform the RSA function */
int wh_Client_RsaFunction(whClientContext* ctx,

RsaKey* key, int rsa_type,
const uint8_t* in, uint16_t in_len,
uint8_t* out, uint16_t *inout_out_len);

/* TODO: Request server to get the RSA size */
int wh_Client_RsaGetSize(whClientContext* ctx,

const RsaKey* key, int* out_size);

#endif /* !NO_RSA */

#ifdef HAVE_HKDF
int wh_Client_HkdfMakeCacheKey(whClientContext* ctx, int hashType,

whKeyId keyIdIn, const uint8_t* inKey,
uint32_t inKeySz, const uint8_t* salt,
uint32_t saltSz, const uint8_t* info,
uint32_t infoSz, whKeyId* inout_key_id,
whNvmFlags flags, const uint8_t* label,
uint32_t label_len, uint32_t outSz);

int wh_Client_HkdfMakeExportKey(whClientContext* ctx, int hashType,
whKeyId keyIdIn, const uint8_t* inKey,
uint32_t inKeySz, const uint8_t* salt,
uint32_t saltSz, const uint8_t* info,
uint32_t infoSz, uint8_t* out, uint32_t outSz);

#endif /* HAVE_HKDF */

COPYRIGHT ©2024 wolfSSL Inc. 154

.3 wolfhsm/wh_client_crypto.h CONTENTS

#ifdef HAVE_CMAC_KDF
int wh_Client_CmacKdfMakeCacheKey(whClientContext* ctx, whKeyId saltKeyId,

const uint8_t* salt, uint32_t saltSz,
whKeyId zKeyId, const uint8_t* z,
uint32_t zSz, const uint8_t* fixedInfo,
uint32_t fixedInfoSz, whKeyId* inout_key_id,
whNvmFlags flags, const uint8_t* label,
uint32_t label_len, uint32_t outSz);

int wh_Client_CmacKdfMakeExportKey(whClientContext* ctx, whKeyId saltKeyId,
const uint8_t* salt, uint32_t saltSz,
whKeyId zKeyId, const uint8_t* z,
uint32_t zSz, const uint8_t* fixedInfo,
uint32_t fixedInfoSz, uint8_t* out,
uint32_t outSz);

#endif /* HAVE_CMAC_KDF */

#ifndef NO_AES
int wh_Client_AesSetKeyId(Aes* key, whNvmId keyId);

int wh_Client_AesGetKeyId(Aes* key, whNvmId* outId);

#ifdef WOLFSSL_AES_COUNTER
int wh_Client_AesCtr(whClientContext* ctx, Aes* aes, int enc, const uint8_t*

in,↪
uint32_t len, uint8_t* out);

#endif /* WOLFSSL_AES_COUNTER */
#ifdef HAVE_AES_ECB
int wh_Client_AesEcb(whClientContext* ctx, Aes* aes, int enc, const uint8_t*

in,↪
uint32_t len, uint8_t* out);

#endif /* HAVE_AES_ECB */
#ifdef HAVE_AES_CBC
int wh_Client_AesCbc(whClientContext* ctx,

Aes* aes, int enc,
const uint8_t* in, uint32_t len,
uint8_t* out);

#endif /* HAVE_AES_CBC */

#ifdef HAVE_AESGCM
/* TODO: Add documentation */
int wh_Client_AesGcm(whClientContext* ctx,

Aes* aes, int enc,
const uint8_t* in, uint32_t len,
const uint8_t* iv, uint32_t iv_len,
const uint8_t* authin, uint32_t authin_len,
const uint8_t* dec_tag, uint8_t* enc_tag, uint32_t tag_len,
uint8_t* out);

#ifdef WOLFHSM_CFG_DMA
int wh_Client_AesGcmDma(whClientContext* ctx, Aes* aes, int enc,

const uint8_t* in, uint32_t len, const uint8_t* iv,
uint32_t iv_len, const uint8_t* authin,

COPYRIGHT ©2024 wolfSSL Inc. 155

.3 wolfhsm/wh_client_crypto.h CONTENTS

uint32_t authin_len, const uint8_t* dec_tag,
uint8_t* enc_tag, uint32_t tag_len, uint8_t* out);

#endif /* WOLFHSM_CFG_DMA */
#endif /* HAVE_AESGCM */

#endif /* !NO_AES */

#ifdef WOLFSSL_CMAC

int wh_Client_Cmac(whClientContext* ctx, Cmac* cmac, CmacType type,
const uint8_t* key, uint32_t keyLen, const uint8_t* in,
uint32_t inLen, uint8_t* outMac, uint32_t* outMacLen);

int wh_Client_CmacCancelableResponse(whClientContext* c, Cmac* cmac,
uint8_t* out, uint16_t* outSz);

int wh_Client_CmacSetKeyId(Cmac* key, whNvmId keyId);

int wh_Client_CmacGetKeyId(Cmac* key, whNvmId* outId);

#ifdef WOLFHSM_CFG_DMA
int wh_Client_CmacDma(whClientContext* ctx, Cmac* cmac, CmacType type,

const uint8_t* key, uint32_t keyLen, const uint8_t* in,
uint32_t inLen, uint8_t* outMac, uint32_t* outMacLen);

#endif /* WOLFHSM_CFG_DMA */

#endif /* WOLFSSL_CMAC */

#ifndef NO_SHA256

int wh_Client_Sha256(whClientContext* ctx, wc_Sha256* sha, const uint8_t* in,
uint32_t inLen, uint8_t* out);

int wh_Client_Sha256Dma(whClientContext* ctx, wc_Sha256* sha, const uint8_t*
in,↪

uint32_t inLen, uint8_t* out);

#endif /* !NO_SHA256 */

#if defined(WOLFSSL_SHA224)
int wh_Client_Sha224(whClientContext* ctx, wc_Sha224* sha, const uint8_t* in,

uint32_t inLen, uint8_t* out);
int wh_Client_Sha224Dma(whClientContext* ctx, wc_Sha224* sha, const uint8_t*

in,↪
uint32_t inLen, uint8_t* out);

#endif /* WOLFSSL_SHA224 */

#if defined(WOLFSSL_SHA384)
int wh_Client_Sha384(whClientContext* ctx, wc_Sha384* sha, const uint8_t* in,

uint32_t inLen, uint8_t* out);
int wh_Client_Sha384Dma(whClientContext* ctx, wc_Sha384* sha, const uint8_t*

in,↪

COPYRIGHT ©2024 wolfSSL Inc. 156

.3 wolfhsm/wh_client_crypto.h CONTENTS

uint32_t inLen, uint8_t* out);

#endif /* WOLFSSL_SHA384 */

#if defined(WOLFSSL_SHA512)
int wh_Client_Sha512(whClientContext* ctx, wc_Sha512* sha, const uint8_t* in,

uint32_t inLen, uint8_t* out);
int wh_Client_Sha512Dma(whClientContext* ctx, wc_Sha512* sha, const uint8_t*

in,↪
uint32_t inLen, uint8_t* out);

#endif /* WOLFSSL_SHA512 */

#ifdef HAVE_DILITHIUM

int wh_Client_MlDsaSetKeyId(MlDsaKey* key, whKeyId keyId);

int wh_Client_MlDsaGetKeyId(MlDsaKey* key, whKeyId* outId);

int wh_Client_MlDsaImportKey(whClientContext* ctx, MlDsaKey* key,
whKeyId* inout_keyId, whNvmFlags flags,
uint16_t label_len, uint8_t* label);

int wh_Client_MlDsaExportKey(whClientContext* ctx, whKeyId keyId, MlDsaKey*
key,↪

uint16_t label_len, uint8_t* label);

int wh_Client_MlDsaMakeExportKey(whClientContext* ctx, int level, int size,
MlDsaKey* key);

int wh_Client_MlDsaMakeCacheKey(whClientContext* ctx, int size, int level,
whKeyId* inout_key_id, whNvmFlags flags,
uint16_t label_len, uint8_t* label);

int wh_Client_MlDsaSign(whClientContext* ctx, const byte* in, word32 in_len,
byte* out, word32* out_len, MlDsaKey* key);

int wh_Client_MlDsaVerify(whClientContext* ctx, const byte* sig, word32
sig_len,↪

const byte* msg, word32 msg_len, int* res,
MlDsaKey* key);

int wh_Client_MlDsaCheckPrivKey(whClientContext* ctx, MlDsaKey* key,
const byte* pubKey, word32 pubKeySz);

#ifdef WOLFHSM_CFG_DMA
int wh_Client_MlDsaImportKeyDma(whClientContext* ctx, MlDsaKey* key,

whKeyId* inout_keyId, whNvmFlags flags,
uint16_t label_len, uint8_t* label);

int wh_Client_MlDsaExportKeyDma(whClientContext* ctx, whKeyId keyId,
MlDsaKey* key, uint16_t label_len,
uint8_t* label);

int wh_Client_MlDsaMakeExportKeyDma(whClientContext* ctx, int level,
MlDsaKey* key);

COPYRIGHT ©2024 wolfSSL Inc. 157

.4 wolfhsm/wh_server.h CONTENTS

int wh_Client_MlDsaSignDma(whClientContext* ctx, const byte* in, word32 in_len,
byte* out, word32* out_len, MlDsaKey* key);

int wh_Client_MlDsaVerifyDma(whClientContext* ctx, const byte* sig,
word32 sig_len, const byte* msg, word32 msg_len,
int* res, MlDsaKey* key);

int wh_Client_MlDsaCheckPrivKeyDma(whClientContext* ctx, MlDsaKey* key,
const byte* pubKey, word32 pubKeySz);

#endif /* WOLFHSM_CFG_DMA */

#endif /* HAVE_DILITHIUM */

#endif /* !WOLFHSM_CFG_NO_CRYPTO */
#endif /* !WOLFHSM_WH_CLIENT_CRYPTO_H_ */

.4 wolfhsm/wh_server.h

.4.1 Functions

Name
int wh_Server_Init(whServerContext * server,

whServerConfig * config)Initializes the server
context with the provided configuration.

int wh_Server_SetConnected(whServerContext *
server, whCommConnected connected)Sets the
connection state of the server.

int wh_Server_SetConnectedCb(void * s,
whCommConnected connected)Sets a callback
function that should be invoked by the
underlying transport after it is initialized.

int wh_Server_GetConnected(whServerContext *
server, whCommConnected *
out_connected)Gets the connection state of the
server.

int wh_Server_GetCanceledSequence(whServerContext
* server, uint16_t * outSeq)Gets the canceled
sequence number of the server.

int wh_Server_SetCanceledSequence(whServerContext
* server, uint16_t cancelSeq)Sets the canceled
sequence number of the server.

int wh_Server_HandleRequestMessage(whServerContext
* server)Handles incoming request messages
and dispatches them to the appropriate
handlers.

int wh_Server_Cleanup(whServerContext *
server)Cleans up the server context and
associated resources.

COPYRIGHT ©2024 wolfSSL Inc. 158

.4 wolfhsm/wh_server.h CONTENTS

Name
int wh_Server_RegisterCustomCb(whServerContext

* server, uint16_t action, whServerCustomCb
handler)Registers a custom callback handler
for a specific action.

int wh_Server_HandleCustomCbRequest(whServerContext
* server, uint16_t magic, uint16_t action,
uint16_t seq, uint16_t req_size, const void *
req_packet, uint16_t * out_resp_size, void *
resp_packet)Handles incoming custom callback
requests.

int wh_Server_DmaRegisterCb(struct
whServerContext_t * server,
whServerDmaClientMemCb cb)Registers a
custom client DMA callback.

int wh_Server_DmaRegisterMemCopyCb(whServerContext
* server, whServerDmaMemCopyCb
cb)Registers a custom memory copy callback
for DMA operations. This function allows the
server to register a callback that will be invoked
during DMA memory copy operations. The
callback overrides the use of memcpy when
copying to and from client memory. This is
useful if standard memcpy cannot be used to
copy data back and forth between the client,
even after client addresses are transformed
through the standard DMA callbacks (e.g. if
client memory can only be accessed though a
hardware FIFO or register interface)

int wh_Server_DmaRegisterAllowList(struct
whServerContext_t * server, const
whServerDmaAddrAllowList *
allowlist)Registers the allowable client
read/write addresses for DMA.

int wh_Server_DmaCheckMemOperAllowed(const
struct whServerContext_t * server,
whServerDmaOper oper, void * addr, size_t
size)Checks if a DMA memory operation is
allowed based on the server’s allowlist.

int wh_Server_DmaProcessClientAddress(struct
whServerContext_t * server, uintptr_t
clientAddr, void ** serverPtr, size_t len,
whServerDmaOper oper, whServerDmaFlags
flags)Processes a client address for DMA
operations, using the native pointer size of the
system.

.4.2 Functions Documentation

.4.2.1 function wh_Server_Init
int wh_Server_Init(

whServerContext * server,

COPYRIGHT ©2024 wolfSSL Inc. 159

.4 wolfhsm/wh_server.h CONTENTS

whServerConfig * config
)
Initializes the server context with the provided configuration.
Parameters:

• server Pointer to the server context.
• config Pointer to the server configuration.

Return: int Returns 0 on success,WH_ERROR_BADARGS if the arguments are invalid, orWH_ERROR_ABORTED
if initialization fails.
Public server context functions
This function must be called before any other server functions are used on the supplied context. Note
that the NVM and Crypto components of the config structure MUST be initialized before calling this
function.

.4.2.2 function wh_Server_SetConnected
int wh_Server_SetConnected(

whServerContext * server,
whCommConnected connected

)
Sets the connection state of the server.
Parameters:

• server Pointer to the server context.
• connected The connection state to set.

Return: int Returns 0 on success, or WH_ERROR_BADARGS if the arguments are invalid.
The connection state indicates whether the server is ready to handle incoming requests. This function
should be invoked when the underlying transport is ready for use.

.4.2.3 function wh_Server_SetConnectedCb
int wh_Server_SetConnectedCb(

void * s,
whCommConnected connected

)
Sets a callback function that should be invoked by the underlying transport after it is initialized.
Parameters:

• s Pointer to the server context.
• connected The connection state to set.

Return: int Returns 0 on success.
The connection state indicates whether the server is ready to handle incoming requests. This function
should be invoked when the underlying transport is ready for use.

.4.2.4 function wh_Server_GetConnected
int wh_Server_GetConnected(

whServerContext * server,

COPYRIGHT ©2024 wolfSSL Inc. 160

.4 wolfhsm/wh_server.h CONTENTS

whCommConnected * out_connected
)
Gets the connection state of the server.
Parameters:

• server Pointer to the server context.
• out_connected Pointer to store the connection state.

Return: int Returns 0 on success, or WH_ERROR_BADARGS if the arguments are invalid.

.4.2.5 function wh_Server_GetCanceledSequence
int wh_Server_GetCanceledSequence(

whServerContext * server,
uint16_t * outSeq

)
Gets the canceled sequence number of the server.
Parameters:

• server Pointer to the server context.
• outSeq Pointer to store the canceled sequence number.

Return: int Returns 0 on success, or WH_ERROR_BADARGS if the arguments are invalid
The canceled sequence number is the comms layer sequence number of the last canceled request.
This number is set by the server port in response to an out-of-band signal from the client when the
client wishes to cancel a request.

.4.2.6 function wh_Server_SetCanceledSequence
int wh_Server_SetCanceledSequence(

whServerContext * server,
uint16_t cancelSeq

)
Sets the canceled sequence number of the server.
The canceled sequence number is the comms layer sequence number of the last canceled request.
This function should be used by the server port to set the canceled sequence number in response to
an out-of-band signal from the client.

.4.2.7 function wh_Server_HandleRequestMessage
int wh_Server_HandleRequestMessage(

whServerContext * server
)
Handles incoming request messages and dispatches them to the appropriate handlers.
Parameters:

• server Pointer to the server context.
Return: int Returns 0 on success,WH_ERROR_BADARGS if the arguments are invalid,WH_ERROR_NOTREADY
if the server is not connected or no data is available, or a negative error code on failure.

COPYRIGHT ©2024 wolfSSL Inc. 161

.4 wolfhsm/wh_server.h CONTENTS

This function processes incoming requestmessages from the communication server in a non-blocking
fashion. It determines the message group and action, and dispatches the request to the appropriate
handler. The function also sends a response back to the client.

.4.2.8 function wh_Server_Cleanup
int wh_Server_Cleanup(

whServerContext * server
)
Cleans up the server context and associated resources.
Parameters:

• server Pointer to the server context.
Return: int Returns WH_ERROR_OK on success, or WH_ERROR_BADARGS if the arguments are invalid.
This function releases any resources associated with the server context, including communication
server resources. It resets the server context to its initial state.

.4.2.9 function wh_Server_RegisterCustomCb
int wh_Server_RegisterCustomCb(

whServerContext * server,
uint16_t action,
whServerCustomCb handler

)
Registers a custom callback handler for a specific action.
Parameters:

• server Pointer to the server context.
• actionId The action ID for which the callback is being registered.
• cb The custom callback handler to register.

Return: int Returns WH_ERROR_OK on success, or WH_ERROR_BADARGS if the arguments are invalid.
Server custom callback functions
This function allows the server to register a custom callback handler for a specific action ID. The call-
back will be invoked when a request with the corresponding action ID is received.

.4.2.10 function wh_Server_HandleCustomCbRequest
int wh_Server_HandleCustomCbRequest(

whServerContext * server,
uint16_t magic,
uint16_t action,
uint16_t seq,
uint16_t req_size,
const void * req_packet,
uint16_t * out_resp_size,
void * resp_packet

)
Handles incoming custom callback requests.
Parameters:

COPYRIGHT ©2024 wolfSSL Inc. 162

.4 wolfhsm/wh_server.h CONTENTS

• server Pointer to the server context.
• magic The magic number for the request.
• action The action ID of the request.
• seq The sequence number of the request.
• req_size The size of the request packet.
• req_packet Pointer to the request packet data.
• out_resp_size Pointer to store the size of the response packet.
• resp_packet Pointer to store the response packet data.

Return: int Returns WH_ERROR_OK on success, WH_ERROR_BADARGS if the arguments are invalid,
WH_ERROR_ABORTED if the request is malformed, or a negative error code on failure.
This function processes incoming custom callback requests by invoking the registered custom call-
back handler for the specified action. It translates the request and response messages and sends the
appropriate response back to the client.

.4.2.11 function wh_Server_DmaRegisterCb
int wh_Server_DmaRegisterCb(

struct whServerContext_t * server,
whServerDmaClientMemCb cb

)
Registers a custom client DMA callback.
Parameters:

• server Pointer to the server context.
• cb The custom DMA callback handler to register.

Return: int Returns WH_ERROR_OK on success, or WH_ERROR_BADARGS if the arguments are invalid.
Server DMA functions
This function allows the server to register a custom callback handler for processing client memory
operations. The callback will be invoked during DMA operations to transform client addresses, manip-
ulate caches, etc.

.4.2.12 function wh_Server_DmaRegisterMemCopyCb
int wh_Server_DmaRegisterMemCopyCb(

whServerContext * server,
whServerDmaMemCopyCb cb

)
Registers a custom memory copy callback for DMA operations. This function allows the server to
register a callback that will be invoked during DMA memory copy operations. The callback overrides
the use ofmemcpywhen copying to and from clientmemory. This is useful if standardmemcpy cannot
be used to copy data back and forth between the client, even after client addresses are transformed
through the standard DMA callbacks (e.g. if client memory can only be accessed though a hardware
FIFO or register interface)
Parameters:

• server Pointer to the server context.
• cb The custom memory copy callback handler to register.

Return: int Returns WH_ERROR_OK on success, or WH_ERROR_BADARGS if the arguments are invalid.

COPYRIGHT ©2024 wolfSSL Inc. 163

.4 wolfhsm/wh_server.h CONTENTS

.4.2.13 function wh_Server_DmaRegisterAllowList
int wh_Server_DmaRegisterAllowList(

struct whServerContext_t * server,
const whServerDmaAddrAllowList * allowlist

)
Registers the allowable client read/write addresses for DMA.
Parameters:

• server Pointer to the server context.
• allowlist Pointer to the list of allowable client addresses.

Return: int Returns WH_ERROR_OK on success, or WH_ERROR_BADARGS if the arguments are invalid.
This function allows the server to register a list of allowable client addresses for DMA read and write
operations. The server will check these addresses during DMA operations to ensure they are within
the allowed range for the client

.4.2.14 function wh_Server_DmaCheckMemOperAllowed
int wh_Server_DmaCheckMemOperAllowed(

const struct whServerContext_t * server,
whServerDmaOper oper,
void * addr,
size_t size

)
Checks if a DMA memory operation is allowed based on the server’s allowlist.
Parameters:

• server Pointer to the server context.
• oper The DMA operation type (e.g., read or write).
• addr The address to be checked.
• size The size of the memory operation.

Return: int ReturnsWH_ERROR_OK if the operation is allowed, WH_ERROR_BADARGS if the arguments
are invalid, or WH_ERROR_ACCESS if the operation is not allowed.
This function verifies whether a specified DMA memory operation is permitted by checking the oper-
ation type and the address range against the server’s registered allowlist. If no allowlist is registered,
the operation is allowed.

.4.2.15 function wh_Server_DmaProcessClientAddress
int wh_Server_DmaProcessClientAddress(

struct whServerContext_t * server,
uintptr_t clientAddr,
void ** serverPtr,
size_t len,
whServerDmaOper oper,
whServerDmaFlags flags

)
Processes a client address for DMA operations, using the native pointer size of the system.
Parameters:

• server Pointer to the server context.

COPYRIGHT ©2024 wolfSSL Inc. 164

.4 wolfhsm/wh_server.h CONTENTS

• clientAddr The client address to be processed.
• serverPtr Pointer to store the transformed server address.
• len The length of the memory operation.
• oper The DMA operation type (e.g., read or write).
• flags Flags for the DMA operation.

Return: int Returns WH_ERROR_OK on success, WH_ERROR_BADARGS if the arguments are invalid, or
a negative error code on failure.
This function transforms a client address for DMA operations. It performs user-supplied address trans-
formations, cache manipulations, and checks the transformed address against the server’s allowlist if
registered.

.4.3 Source code

/*
* Copyright (C) 2024 wolfSSL Inc.
*
* This file is part of wolfHSM.
*
* wolfHSM is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* wolfHSM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with wolfHSM. If not, see <http://www.gnu.org/licenses/>.
*/

/*
* wolfhsm/wh_server.h
*

*
*/

#ifndef WOLFHSM_WH_SERVER_H_
#define WOLFHSM_WH_SERVER_H_

/* Pick up compile-time configuration */
#include "wolfhsm/wh_settings.h"

#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>

/* Forward declaration of the server structure so its elements can reference
* itself (e.g. server argument to custom callback) */

typedef struct whServerContext_t whServerContext;

#include "wolfhsm/wh_common.h"
#include "wolfhsm/wh_comm.h"

COPYRIGHT ©2024 wolfSSL Inc. 165

.4 wolfhsm/wh_server.h CONTENTS

#include "wolfhsm/wh_keycache.h"
#include "wolfhsm/wh_nvm.h"
#include "wolfhsm/wh_message_customcb.h"
#include "wolfhsm/wh_log.h"
#ifdef WOLFHSM_CFG_DMA
#include "wolfhsm/wh_dma.h"
#endif /* WOLFHSM_CFG_DMA */

#ifndef WOLFHSM_CFG_NO_CRYPTO
#include "wolfssl/wolfcrypt/settings.h"
#include "wolfssl/wolfcrypt/types.h"
#include "wolfssl/wolfcrypt/random.h"
#include "wolfssl/wolfcrypt/rsa.h"
#include "wolfssl/wolfcrypt/ecc.h"
#include "wolfssl/wolfcrypt/curve25519.h"
#include "wolfssl/wolfcrypt/cryptocb.h"
#include "wolfssl/wolfcrypt/sha256.h"
#endif /* !WOLFHSM_CFG_NO_CRYPTO */

#ifdef WOLFHSM_CFG_SHE_EXTENSION
#include "wolfhsm/wh_she_common.h"
#include "wolfhsm/wh_server_she.h"
#endif

#ifndef WOLFHSM_CFG_NO_CRYPTO

typedef struct whServerCryptoContext {
int devId;

#ifndef WC_NO_RNG
WC_RNG rng[1];

#endif
union {

#if 0
#ifndef NO_AES

Aes aes[1];
#endif
#ifndef NO_RSA

RsaKey rsa[1];
#endif
#ifdef HAVE_CURVE25519

curve25519_key curve25519Private[1];
#endif
#endif /* 0 */
#ifdef WOLFSSL_CMAC

Cmac cmac[1];
#endif

} algoCtx;
} whServerCryptoContext;

#endif /* !WOLFHSM_CFG_NO_CRYPTO */

/* Type definition for a custom server callback */

COPYRIGHT ©2024 wolfSSL Inc. 166

.4 wolfhsm/wh_server.h CONTENTS

typedef int (*whServerCustomCb)(
whServerContext* server, /* points to dispatching server ctx */
const whMessageCustomCb_Request* req, /* request from client to callback */
whMessageCustomCb_Response* resp /* response from callback to client */

);

#ifdef WOLFHSM_CFG_DMA

/* Maintain existing naming for common DMA types */
typedef whDmaAddrAllowList whServerDmaAddrAllowList;
typedef whDmaOper whServerDmaOper;
typedef whDmaFlags whServerDmaFlags;
typedef whDmaAddr whServerDmaAddr;
typedef whDmaAddrList whServerDmaAddrList;
#ifdef WOLFHSM_CFG_DMA_CUSTOM_CLIENT_COPY
typedef whDmaCopyOper whServerDmaCopyOper;
#endif /* WOLFHSM_CFG_DMA_CUSTOM_CLIENT_COPY */

/* DMA callbacks invoked internally by wolfHSM before and after every client
* memory operation. */

typedef int (*whServerDmaClientMemCb)(struct whServerContext_t* server,
uintptr_t clientAddr, void** serverPtr,
size_t len, whServerDmaOper oper,
whServerDmaFlags flags);

#ifdef WOLFHSM_CFG_DMA_CUSTOM_CLIENT_COPY
/* DMA callback invoked to copy from the client */
typedef int (*whServerDmaMemCopyCb)(struct whServerContext_t* server,

uintptr_t clientAddr, uintptr_t serverPtr,
size_t len, whServerDmaCopyOper oper,
whServerDmaFlags flags);

#endif /* WOLFHSM_CFG_DMA_CUSTOM_CLIENT_COPY */

/* Server DMA configuration struct for initializing a server */
typedef struct {

whServerDmaClientMemCb cb; /* DMA callback */
#ifdef WOLFHSM_CFG_DMA_CUSTOM_CLIENT_COPY

whServerDmaMemCopyCb memCopyCb; /* DMA memory copy callback
*/↪

#endif /* WOLFHSM_CFG_DMA_CUSTOM_CLIENT_COPY */
const whServerDmaAddrAllowList* dmaAddrAllowList; /* allowed addresses */

} whServerDmaConfig;

typedef struct {
whServerDmaClientMemCb cb; /* DMA callback */

#ifdef WOLFHSM_CFG_DMA_CUSTOM_CLIENT_COPY
whServerDmaMemCopyCb memCopyCb; /* DMA memory copy callback
*/↪

#endif /* WOLFHSM_CFG_DMA_CUSTOM_CLIENT_COPY */
const whServerDmaAddrAllowList* dmaAddrAllowList; /* allowed addresses */

} whServerDmaContext;
#endif /* WOLFHSM_CFG_DMA */

COPYRIGHT ©2024 wolfSSL Inc. 167

.4 wolfhsm/wh_server.h CONTENTS

typedef struct whServerConfig_t {
whCommServerConfig* comm_config;
whNvmContext* nvm;

#ifndef WOLFHSM_CFG_NO_CRYPTO
whServerCryptoContext* crypto;

#ifdef WOLFHSM_CFG_SHE_EXTENSION
whServerSheContext* she;

#endif /* WOLFHSM_CFG_SHE_EXTENSION */
#if defined WOLF_CRYPTO_CB

int devId;
#endif /* WOLF_CRYPTO_CB */
#endif /* !WOLFHSM_CFG_NO_CRYPTO */
#ifdef WOLFHSM_CFG_DMA

whServerDmaConfig* dmaConfig;
#endif /* WOLFHSM_CFG_DMA */
#ifdef WOLFHSM_CFG_LOGGING

whLogConfig* logConfig;
#endif /* WOLFHSM_CFG_LOGGING */
} whServerConfig;

/* Context structure to maintain the state of an HSM server */
struct whServerContext_t {

whNvmContext* nvm;
whCommServer comm[1];

#ifndef WOLFHSM_CFG_NO_CRYPTO
whServerCryptoContext* crypto;
whKeyCacheContext localCache; /* Unified cache structure */

#ifdef WOLFHSM_CFG_SHE_EXTENSION
whServerSheContext* she;

#endif
#endif /* !WOLFHSM_CFG_NO_CRYPTO */

whServerCustomCb customHandlerTable[WOLFHSM_CFG_SERVER_CUSTOMCB_COUNT];
#ifdef WOLFHSM_CFG_DMA

whServerDmaContext dma;
#endif /* WOLFHSM_CFG_DMA */

int connected;
#ifdef WOLFHSM_CFG_CANCEL_API

uint16_t cancelSeq;
#endif
#ifdef WOLFHSM_CFG_LOGGING

whLogContext log;
#endif /* WOLFHSM_CFG_LOGGING */
};

/* Initialize the comms and crypto cache components.
* Note: NVM and Crypto components must be initialized prior to Server Init
*/

int wh_Server_Init(whServerContext* server, whServerConfig* config);

int wh_Server_SetConnected(whServerContext* server, whCommConnected connected);

COPYRIGHT ©2024 wolfSSL Inc. 168

.4 wolfhsm/wh_server.h CONTENTS

int wh_Server_SetConnectedCb(void* s, whCommConnected connected);

int wh_Server_GetConnected(whServerContext* server,
whCommConnected* out_connected);

#ifdef WOLFHSM_CFG_CANCEL_API
int wh_Server_GetCanceledSequence(whServerContext* server, uint16_t* outSeq);

int wh_Server_SetCanceledSequence(whServerContext* server, uint16_t cancelSeq);
#endif /* WOLFHSM_CFG_CANCEL_API */

int wh_Server_HandleRequestMessage(whServerContext* server);

int wh_Server_Cleanup(whServerContext* server);

int wh_Server_RegisterCustomCb(whServerContext* server, uint16_t action,
whServerCustomCb handler);

int wh_Server_HandleCustomCbRequest(whServerContext* server, uint16_t magic,
uint16_t action, uint16_t seq,
uint16_t req_size, const void* req_packet,

uint16_t* out_resp_size, void* resp_packet);

#ifdef WOLFHSM_CFG_DMA

int wh_Server_DmaRegisterCb(struct whServerContext_t* server,
whServerDmaClientMemCb cb);

#ifdef WOLFHSM_CFG_DMA_CUSTOM_CLIENT_COPY
int wh_Server_DmaRegisterMemCopyCb(whServerContext* server,

whServerDmaMemCopyCb cb);
#endif /* WOLFHSM_CFG_DMA_CUSTOM_CLIENT_COPY */

int wh_Server_DmaRegisterAllowList(struct whServerContext_t* server,
const whServerDmaAddrAllowList* allowlist);

int wh_Server_DmaCheckMemOperAllowed(const struct whServerContext_t* server,
whServerDmaOper oper, void* addr,
size_t size);

int wh_Server_DmaProcessClientAddress(struct whServerContext_t* server,
uintptr_t clientAddr, void** serverPtr,
size_t len, whServerDmaOper oper,
whServerDmaFlags flags);

int whServerDma_CopyFromClient(struct whServerContext_t* server,
void* serverPtr, uintptr_t clientAddr,
size_t len, whServerDmaFlags flags);

int whServerDma_CopyToClient(struct whServerContext_t* server,
uintptr_t clientAddr, void* serverPtr, size_t len,

COPYRIGHT ©2024 wolfSSL Inc. 169

.4 wolfhsm/wh_server.h CONTENTS

whServerDmaFlags flags);
#endif /* WOLFHSM_CFG_DMA */

#endif /* !WOLFHSM_WH_SERVER_H_ */

COPYRIGHT ©2024 wolfSSL Inc. 170

	Introduction
	Why Choose wolfHSM?

	Overview
	Features
	Architecture
	Ports

	Getting Started With wolfHSM
	Basic Client Configuration
	Basic Server Configuration

	Library Design / wolfHSM Internals
	Table of Contents:
	Generic Component Architecture
	Communications
	Non Volatile Memory
	Key Management
	Cryptographic Operations
	AUTOSAR SHE

	wolfHSM Client Library
	Table of Contents
	API Return Codes
	Split Transaction Processing
	The Client Context
	NVM Operations
	NVM Flags
	Key Management
	Key Revocation
	Cryptography
	AUTOSAR SHE API

	wolfHSM Server Library
	Getting Started
	Architecture
	API Reference
	Key Management
	Cryptographic

	Customizing wolfHSM
	Library Configuration
	DMA Callbacks
	DMA Address Allow List
	Custom Callbacks

	WolfHSM Porting
	WolfHSM Porting Overview
	WolfHSM Ports
	WolfHSM Porting Interface

	wolfHSM API reference
	Key Revocation

	wolfhsm/wh_client.h
	Types
	Functions
	Attributes
	Types Documentation
	Functions Documentation
	Attributes Documentation
	Source code

	wolfhsm/wh_client_crypto.h
	Functions
	Functions Documentation
	Source code

	wolfhsm/wh_server.h
	Functions
	Functions Documentation
	Source code

