wolfEngine Documentation

¢

wolfsSs5t

2026-01-19

CONTENTS CONTENTS

Contents
1 Introduction 3
2 OpenSSL Version Compatability 5
3 Building wolfEngine 6
3.1 Getting wolfEngine SourceCode oo 6
3.2 wolfEngine Package Structure L 6
3.3 OpenSSLVersionCaveats o i i it e e e 6
3.4 Buildingon®nix L. e e e e e e e e e e e e 6
3.4.1 BuildingOpenSSL L e e e e e e e e 6
3.4.2 BuildingwolfSSL L e 6
3.4.3 BuildingwolfEngine e 7
3.5 BuildingonWInCE e e 8
3.6 Build Options (/configure Options) o o v e e 8
3.7 BuildDefines e e e e 10
4 FIPS 140-3 Support 13
5 Engine Control Commands 14
6 Logging 15
6.1 Enable/Disable Debuglogging 15
6.2 Controlling Logging Levels 15
6.3 Controlling ComponentLogging e 16
6.4 Setting a Custom Logging Callback 0. 17
7 Portability 18
7.0 Threading e e e e e 18
7.2 Dynamic Memory Usage i e e e e e e e e e e e e e e 18
7.3 Logging e e e e e e e e e e e e e e e e e e 18
8 Loading wolfEngine 19
8.1 Configuring OpenSSL to Enable EngineUsage 19
8.2 Loading wolfEngine from an OpenSSL ConfigurationFile 19
8.3 wolfEngine Static Entrypoint 20
9 wolfEngine Design 21
9.1 wolfEngine Entry Points L 21
9.2 wolfEngine Algorithm Callback Registration 21
10 Notes on Open Source Integration 23
101 CURL .« o e e e e e 23
10.2stunnel .. L e e e e e e e 23
10.30penSSH L e e e 23
11 Support and OpenSSL Version Adding 24

COPYRIGHT ©2024 wolfSSL Inc. 2

17 INTRODUCTION

1 Introduction

The wolfCrypt Engine (wolfEngine) is an OpenSSL engine for the wolfCrypt and wolfCrypt FIPS cryp-
tography libraries. wolfEngine provides an OpenSSL engine implementation, as a shared or static
library, to allow applications currently using OpenSSL to leverage wolfCrypt cryptography for FIPS and
non-FIPS use cases.

wolfEngine is structured as a separate standalone library which links against wolfSSL (libwolfssl) and
OpenSSL. wolfEngine implements and exposes an OpenSSL engine implementation which wraps the
wolfCrypt native APlinternally. A high-level diagram of wolfEngine and how it relates to applications
and OpenSSL is displayed below in Figure 1.

For more details on the design and architecture of wolfEngine see the wolfEngine Design chapter.

Application

|

libssl OpenSSL SSL/TLS AFPI

liberypto OpenSSL EVP API OpenSSL Crypto API

OpenSSL Engine Framework
zopeansslfangine.h= and internal Opan35L

///\\\

ECDH ECDSA AES

libwolfengine A $ & 4 A
wolfEngine Library
#include <openssl/engine.h>
Structured to meet OpenSSL engine requirements

libwolfssl wolfCrypt OR wolfCrypt FIPS Library

Figure 1: wolfEngine Overview

wolfEngine is compiled by default as a shared library called libwolfengine which can be dynamically
registered at runtime by an application or OpenSSL through a config file. wolfEngine also provides an

COPYRIGHT ©2024 wolfSSL Inc. 3

17 INTRODUCTION

entry point for applications to load the engine when compiled in a static build.

COPYRIGHT ©2024 wolfSSL Inc. 4

2 OPENSSL VERSION COMPATABILITY

2 OpenSSL Version Compatability

wolfEngine has been tested against the following versions of OpenSSL. wolfEngine may work with
other versions, but may require some modification or adjustment:

* OpenSSL 1.0.2h
* OpenSSL 1.1.1b

If you are interested in having wolfSSL add support to wolfEngine for other OpenSSL versions, please
contact wolfSSL at facts@wolfssl.com.

COPYRIGHT ©2024 wolfSSL Inc. 5

mailto:facts@wolfssl.com

3 BUILDING WOLFENGINE

3 Building wolfEngine

3.1 Getting wolfEngine Source Code

The most recent version of wolfEngine can be obtained directly from wolfSSL Inc. Contact facts@wolf
ssl.com for more information.

3.2 wolfEngine Package Structure

The general wolfEngine package is structured as follows:

certs/ (Test certificates and keys, used with unit
tests)
engine.conf (Example OpenSSL config file using wolfEngine)
include/
wolfengine/ (wolfEngine header files)
openssl_patches/
1.0.2h/tests/ (patches for OpenSSL 1.0.2h test apps)
1.1.1b/tests/ (patches for OpenSSL 1.1.1b test apps)
scripts/ (wolfEngine test scripts)
src/ (wolfEngine source files)
test/ (wolfEngine test files)
user_settings.h (EXAMPLE user_settings.h)

3.3 OpenSSL Version Caveats

Depending on the version of OpenSSL being used with wolfEngine, there are several algorithms sup-
port caveats, including:

* SHA-3 support is only available with OpenSSL versions 1.1.1+
+ EC_KEY_METHOD is only available with OpenSSL versions 1.1.1+

3.4 Building on *nix
3.4.1 Building OpenSSL

A pre-installed version of OpenSSL may be used with wolfEngine (barring algorithm caveats above), or
OpenSSL can be recompiled for use with wolfEngine. General instructions for compiling OpenSSL on
*nix-like platforms will be similar to the following. For complete and comprehensive OpenSSL build
instructions, reference the OpenSSL INSTALL file and documentation.

git clone https://github.com/openssl/openssl.git
cd openssl

./config no-fips -shared

make

sudo make install

3.4.2 Building wolfSSL

If using a FIPS-validated version of wolfSSL with wolfEngine, follow the build instructions provided with
your specific FIPS validated source bundle and Security Policy. In addition to the correct “-enable-fips”
configure option, wolfEngine will need wolfSSL to be compiled with “WOLFSSL_PUBLIC_MP " defined.
For example, building the “wolfCrypt Linux FIPSv2" bundle on Linux:

COPYRIGHT ©2024 wolfSSL Inc. 6

mailto:facts@wolfssl.com
mailto:facts@wolfssl.com

3.4 Building on *nix 3 BUILDING WOLFENGINE

cd wolfssl-X.X.X-commercial-fips-linuxv

./configure **--enable-fips=v2 CFLAGS"=-"DWOLFSSL_PUBLIC_MP**
make

./wolfcrypt/test/testwolfcrypt

< modify fips_test.c using verifyCore hash output from testwolfcrypt
>

make

./wolfcrypt/test/testwolfcrypt

< all algorithms should PASS >

sudo make install

To build non-FIPS wolfSSL for use with wolfEngine:

cd wolfssl-X.X.X

./configure --enable-cmac --enable-keygen --enable-sha --enable-des
--enable-aesctr --enable-aesccm --enable-x963kdf
CPPFLAGS="-DHAVE_AES_ECB -DWOLFSSL_AES_DIRECT -DWC_RSA_NO_PADDING

-DWOLFSSL_PUBLIC_MP -DECC_MIN_KEY_SZ=192 -DWOLFSSL_PSS_LONG_SALT
-DWOLFSSL_PSS_SALT_LEN_DISCOVER"

make
sudo make install

If cloning wolfSSL from GitHub, you will need to run the autogen. sh script before running . /con-
figure. This will generate the configure script:

./autogen.sh

3.4.3 Building wolfEngine

When building wolfEngine on Linux or other *nix-like systems, use the autoconf system. To configure
and compile wolfEngine run the following two commands from the wolfEngine root directory:

./configure

make

If building wolfEngine from GitHub, run autogen.sh before running configure:

./autogen.sh

Any number of build options can be appended to ./configure. For a list of available build options, please

reference the “Build Options” section below or run the following command to see a list of available
build options to pass to the ./configure script:

./configure --help

wolfEngine will use the system default OpenSSL library installation unless changed with the “-with-
openssl” configure option:

./configure --with-openssl=/usr/local/ssl

The custom OpenSSL installation location may also need to be added to your library search path. On
Linux, LD_LIBRARY_PATH is used:

export LD_LIBRARY_PATH=/usr/local/ssl:$LD_LIBRARY_PATH

To build then install wolfEngine, run:

COPYRIGHT ©2024 wolfSSL Inc. 7

3.5 Building on WinCE 3 BUILDING WOLFENGINE

make
make install

You may need superuser privileges to install, in which case precede the command with sudo:
sudo make install

To test the build, run the built-in tests from the root wolfEngine directory:
./test/unit.test

Or use autoconf to run the tests:

make check

If you get an error like exror while loading shared libraries: libssl.so.3then the library
cannot be found. Use the LD_LIBRARY_PATH environment variable as described in the section above.

3.5 Building on WinCE

For full wolfEngine compatibility, ensure you have the following flags in your user_settings.h file
for wolfCrypt:

#define WOLFSSL_CMAC
#define WOLFSSL_KEY_GEN
#undef NO_SHA

#undef NO_DES

#define WOLFSSL_AES_COUNTER
#define HAVE_AESCCM
#define HAVE_AES_ECB
#define WOLFSSL_AES_DIRECT
#define WC_RSA_NO_PADDING
#define WOLFSSL_PUBLIC_MP
#define ECC_MIN_KEY_SZ7=192

Add wolfEngine flags to your user_settings.h file depending on which algorithms and features
you want to use. You can find a list of wolfEngine user settings flags in the user_settings.h filein
wolfEngine’s directory.

Build wcecompat, wolfCrypt and OpenSSL for Windows CE, and keep track of their paths.

In the wolfEngine directory, open the sources file and change the OpenSSL, wolfCrypt, and
user_settings.h paths to the directories you are using. You will need to update the paths in
the INCLUDES and TARGETLIBS sections.

Load the wolfEngine project in Visual Studio. Include either bench.c, orunit.hand unit.c depend-
ing on if you want to run the benchmark or unit tests.

Build the project, and you will end up with a wolfEngine.exe executable. You can run this executable
with --help to see a full list of options. You may need to run it with the --static flag to use
wolfEngine as a static engine.

3.6 Build Options (./configure Options)

The following are options which may be appended to the . /configure script to customize how the
wolfEngine library is built.

By default, wolfEngine only builds a shared library, with building of a static library disabled. This speeds
up build times by a factor of two. Either mode can be explicitly disabled or enabled if desired.

COPYRIGHT ©2024 wolfSSL Inc. 8

3.6 Build Options (./configure Options)

3 BUILDING WOLFENGINE

Option

Default Value

Description

-enable-static
-enable-shared
-enable-debug

-enable-coverage
-enable-usersettings

-enable-dynamic-
engine

-enable-
singlethreaded
-enable-digest

-enable-sha
-enable-sha224
-enable-sha256
-enable-sha384
-enable-sha512
-enable-sha3
-enable-sha3-224
-enable-sha3-256
-enable-sha3-384
-enable-sha3-512
-enable-cmac
-enable-hmac
-enable-des3cbc
-enable-aesecb
-enable-aescbc
-enable-aesctr
-enable-aesgcm
-enable-aesccm
-enable-rand
-enable-rsa
-enable-dh
-enable-evp-pkey
-enable-ecc
-enable-ec-key
-enable-ecdsa
-enable-ecdh
-enable-eckg
-enable-p192
-enable-p224
-enable-p256
-enable-p384
-enable-p521
-with-openss|=DIR

-enable-openssh

Disabled
Enabled
Disabled

Disabled

Disabled

Enabled

Disabled

Enabled

Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Disabled
Disabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled

Disabled

Build static libraries

Build shared libraries

Enable wolfEngine debugging
support

Build to generate code coverage
stats

Use your own user_settings.h
and do not add Makefile CFLAGS
Enable loading wolfEngine as a
dynamic engine

Enable wolfEngine single
threaded

Enable use of wc_Hash API for
digesting data

Enable SHA-1

Enable SHA2-224

Enable SHA2-256

Enable SHA2-384

Enable SHA2-512

Enable SHA3

Enable SHA3-224

Enable SHA3-256

Enable SHA3-384

Enable SHA3-512

Enable CMAC

Enable HMAC

Enable 3DES-CBC

Enable AES-ECB

Enable AES-CBC

Enable AES-CTR

Enable AES-GCM

Enable AES-CCM

Enable RAND

Enable RSA

Enable DH

Enable EVP_PKEY APIs

Enable ECC

Enable ECC using EC_KEY
Enable ECDSA

Enable ECDH

Enable EC Key Generation
Enable EC Curve P-192

Enable EC Curve P-224

Enable EC Curve P-256

Enable EC Curve P-384

Enable EC Curve P-521
OpenSSL installation location to
link against. If not set, use the
system default library and
include paths.

Enables use with openssh

COPYRIGHT ©2024 wolfSSL Inc.

3.7 Build Defines 3 BUILDING WOLFENGINE

3.7 Build Defines

wolfEngine exposes several preprocessor defines that allow users to configure how wolfEngine is built.
These are described in the table below.

Define Description

WOLFENGINE_DEBUG Build wolfEngine with
debug symbols,
optimization level, and
debug logging.

WE_NO_DYNAMIC_ENGINE Do not build
wolfEngine with
dynamic engine
support. Dynamic
engines are ones that
can be loaded into
OpenSSL at runtime.

WE_SINGLE_THREADED Build wolfEngine in
single-threaded mode.
This removes the need
for locking around
global resources used
internally.

WE_USE_HASH Enable digest
algorithms using the
wc_Hash API.

WE_HAVE_SHA1 Enable SHA-1 digest
algorithm.

WE_HAVE_SHA224 Enable SHA-2 digest
algorithm with digest
size 224.

WE_HAVE_SHA256 Enable SHA-2 digest
algorithm with digest
size 256.

WE_HAVE_SHA384 Enable SHA-2 digest
algorithm with digest
size 384.

WE_HAVE_SHA512 Enable SHA-2 digest
algorithm with digest
size 512.

WE_SHA1_DIRECT Enable the SHA-1
digest algorithm using
the wc_Sha API.
Incompatible with
WE_USE_HASH.

WE_SHA224_DIRECT Enable the SHA-2 224
digest algorithm using
the wc_Sha224 API.
Incompatible with
WE_USE_HASH.

COPYRIGHT ©2024 wolfSSL Inc. 10

3.7 Build Defines

3 BUILDING WOLFENGINE

Define

Description

WE_SHA256_DIRECT

WE_HAVE_SHA3_224

WE_HAVE_SHA3_256

WE_HAVE_SHA3_384

WE_HAVE_SHA3_512

WE_HAVE_EVP_PKEY

WE_HAVE_CMAC
WE_HAVE_HMAC
WE_HAVE_DES3CBC
WE_HAVE_AESECB
WE_HAVE_AESCBC
WE_HAVE_AESCTR
WE_HAVE_AESGCM
WE_HAVE_AESCCM

WE_HAVE_RANDOM

WE_HAVE_RSA

COPYRIGHT ©2024 wolfSSL Inc. 11

Enable the SHA-2 256
digest algorithm using
the wc_Sha256 API.
Incompatible with
WE_USE_HASH.

Enable SHA-3 digest
algorithm with digest
size 224. Not available
in OpenSSL 1.0.2.
Enable SHA-3 digest
algorithm with digest
size 256. Not available
in OpenSSL 1.0.2.
Enable SHA-3 digest
algorithm with digest
size 384. Not available
in OpenSSL 1.0.2.
Enable SHA-3 digest
algorithm with digest
size 512. Not available
in OpenSSL 1.0.2.
Enable functionality
that uses the EVP_PKEY
API. This includes
things like RSA, DH,
etc.

Enable CMAC
algorithm.

Enable HMAC
algorithm.

Enable DES3-CBC
algorithm.

Enable AES algorithm
with ECB mode.
Enable AES algorithm
with CBC mode.
Enable AES algorithm
with countee mode.
Enable AES algorithm
with GCM mode.
Enable AES algorithm
with CCM mode.
Enable wolfCrypt
random
implementation.
Enable RSA operations
(e.g. sign, verify, key
generation, etc.).

3.7 Build Defines 3 BUILDING WOLFENGINE

Define Description

WE_HAVE_DH Enable Diffie-Hellman
operations (e.g. key
generation, shared
secret computation,

etc.).
WE_HAVE_ECC Enable support for

elliptic curve

cryptography.
WE_HAVE_EC_KEY Enable support for

EC_KEY_METHOD. Not
available in OpenSSL

1.0.2.
WE_HAVE_ECDSA Enable ECDSA
algorithm.
WE_HAVE_ECDH Enable EC
Diffie-Hellman
operations.
WE_HAVE_ECKEYGEN Enable EC key
generation.
WE_HAVE_EC P192 Enable EC curve P192.
WE_HAVE_EC _P224 Enable EC curve P224.
WE_HAVE_EC_P256 Enable EC curve P256.
WE_HAVE_EC_P384 Enable EC curve P384.
WE_HAVE_EC_P512 Enable EC curve P512.
WE_HAVE_DIGEST Compile code in

benchmark program
and unit tests for use
with digest algorithms.
WOLFENGINE_USER_SETTINGS Read user-specified
defines from
user_settings.h.

COPYRIGHT ©2024 wolfSSL Inc. 12

4 FIPS 140-3 SUPPORT

4 FIPS 140-3 Support

wolfEngine has been designed to work with FIPS 140-3 validated versions of wolfCrypt when compiled
against a FIPS-validated version of wolfCrypt. This usage scenario requires a properly licensed and
validated version of wolfCrypt, as obtained from wolfSSL Inc.

Note that wolfCrypt FIPS libraries cannot be “switched” into non-FIPS mode. wolfCrypt FIPS and regular
wolfCrypt are two separate source code packages.

When wolfEngine is compiled to use wolfCrypt FIPS, it will only include support and register engine
callbacks for FIPS-validated algorithms, modes, and key sizes. If OpenSSL based applications call non-
FIPS validated algorithms, execution may not enter wolfEngine and could be handled by the default
OpenSSL engine or other registered engine providers, based on the OpenSSL configuration.

NOTE : If targeting FIPS compliance,and non-wolfCrypt FIPS algorithms are called from a different
engine, those algorithms are outside the scope of wolfEngine and wolfCrypt FIPS and may not be FIPS
validated.

For more information on using wolfCrypt FIPS (140-2 / 140-3), contact wolfSSL at facts@wolfssl.com.

COPYRIGHT ©2024 wolfSSL Inc. 13

5 ENGINE CONTROL COMMANDS

5 Engine Control Commands

wolfEngine exposes several engine control commands allowing applications to change the behavior
of wolfEngine or adjust internal settings. The following control commands are currently supported:

Control Command Description Value

enable_debug Enable wolfEngine debug logging Numeric: 1 =enable, 0=
disable. See Chapter 6 for
more details on debug
logging.

log_level Set wolfEngine logging level Numeric: Bitmask of
logging levels from
wolfEngine_LogType in
“include/-
wolfengine/we_logging.h”.
See Chapter 6 for more
details on debug logging.

log_components Set components to be logged by Numeric: Bitmask of
wolfEngine. components from
wolfEngine_LogComponents
in “include/-

wolfengine/we_logging.h.
See Chapter 6 for more
details on debug logging.

set_logging_cb Set wolfEngine logging callback Function pointer to
function used to print log
messages. Function must
match the
wolfEngine_Logging_cb
prototype from
we_logging.h. See Chapter
6 for more details on
debug logging.

Engine control commands can be set using OpenSSL's ENGINE_ctrl_cmd() APL For example, to
enable debug logging:

int ret = 0;
ret = ENGINE_ctrl_cmd(e, “"enable_debug, 1, NULL, NULL, 0);
if (ret !'= 1) {
printf”(Failed to enable debug logging\”n);
}

Some control commands can also be set through an OpenSSL config file. More documentation on
usage of OpenSSL engine control commands can be found in the OpenSSL man pages:

https://www.openssl.org/docs/man1.0.2/man3/engine.html
https://www.openssl.org/docs/man1.1.1/man3/ENGINE_ctrl_cmd.html
https://www.openssl.org/docs/man1.1.1/man3/ENGINE_ctrl_cmd_string.html

COPYRIGHT ©2024 wolfSSL Inc. 14

https://www.openssl.org/docs/man1.0.2/man3/engine.html
https://www.openssl.org/docs/man1.0.2/man3/engine.html
https://www.openssl.org/docs/man1.0.2/man3/engine.html

6 LOGGING

6 Logging

wolfEngine supports output of log messages for informative and debug purposes. To enable debug
logging, wolfEngine must first be compiled with debug support enabled. If using Autoconf, this is
done using the --enable-debug option to . /configure:

./configure --enable-debug

If not using Autoconf/configure, define WOLFENGINE_DEBUG when compiling the wolfEngine library.

6.1 Enable / Disable Debug Logging

Once debug support has been compiled into the library, debugging must be enabled at runtime us-
ing the wolfEngine control commands specified in Section 5. To enable debug logging, use the en-
able_debug control command with the value of “1” to enable logging or “0” to disable logging. To
enable logging using the ENGINE_ctrl_cmd() API:

int ret = 0;
ret = ENGINE_ctrl_cmd(e, “"enable_debug, 1, NULL, NULL, 0);
if (ret !'= 1) {
printf”(Failed to enable debug logging\”n);
}

If wolfEngine has not been compiled with debug support enabled, an attempt to set enable_debug
with ENGINE_ctrl_cmd() will return failure (0).

6.2 Controlling Logging Levels

wolfEngine supports the following logging levels. These are defined in the “include/wolfengine/we_logging.h”

header file as part of the wolfEngine_LogType enum:

Log Enum Description Log Enum Value

WE_LOG_ERROR Logs errors 0x0001

WE_LOG_ENTER Logs when entering 0x0002
functions

WE_LOG_LEAVE Logs when leaving 0x0004
functions

WE_LOG_INFO Logs informative 0x0008
messages

WE_LOG_VERBOSE Verbose logs, including 0x0010

encrypted/decrypted/di-
gested data
WE_LOG_LEVEL_DEFAULT Default log level, all except WE_LOG_ERROR | WE_LOG_ENTER |

verbose level WE_LOG_LEAVE | WE_LOG_INFO
WE_LOG_LEVEL_ALL All log levels are enabled WE_LOG_ENTER | WE_LOG_LEAVE |
WE_LOG_ERROR WE_LOG_INFO | WE_LOG_VERBOSE

The default wolfEngine logging level includes WE_LOG_ERROR, WE_LOG_ENTER, WE_LOG_LEAVE, and
WE_LOG_INFO. This includes all log levels except verbose logs (WE_LOG_VERBOSE).

Log levels can be controlled using the “log_level” engine control command at runtime, either through
the ENGINE_ctrl_cmd() API or OpenSSL configuration file settings. For example, to turn on only
error and informative logs using the “log_level” control command, an application would call:

COPYRIGHT ©2024 wolfSSL Inc. 15

6.3 Controlling Component Logging 6 LOGGING

#include <wolfengine/we_logging.h>

ret = ENGINE_ctrl_cmd(e, “"log_level, WE_LOG_ERROR | WE_LOG_INFO,
NULL, NULL, 0);
if (ret '= 1) {
printf”(Failed to set logging level\”n);
}

6.3 Controlling Component Logging

wolfEngine allows logging on a per-component basis. Components are defined in the wolfEngine_LogComponents
enum in include/wolfengine/we_logging.h:

Log Component Enum Description Component Enum Value
WE_LOG_RNG Random number 0x0001
generation
WE_LOG_DIGEST Digests 0x0002
(SHA-1/2/3)
WE_LOG_MAC MAC functions 0x0004
(HMAC, CMAQ)
WE_LOG_CIPHER Ciphers (AES, 0x0008
3DES)
WE_LOG_PK Public Key 0x0010
Algorithms (RSA,
ECQ)
WE_LOG_KE Key Agreement 0x0020
Algorithms (DH,
ECDH)
WE_LOG_ENGINE All engine specific 0x0040
logs
WE_LOG_COMPONENTS_ALL Log all WE_LOG_RNG | WE_LOG_DIGEST |
components WE_LOG_MAC | WE_LOG_CIPHER |

WE_LOG_PK | WE_LOG_KE |
WE_LOG_ENGINE
WE_LOG_COMPONENTS_DEFAULT Default WE_LOG_COMPONENTS_ALL
components
logged (all).

The default wolfEngine logging configuration logs all components (WE_LOG_COMPONENTS_DEFAULT).

Components logged can be controlled using the “ log_components ” engine control command at
runtime, either through the ENGINE_ctrl_cmd() API or OpenSSL configuration file settings. For ex-
ample, to turn on only logging only for the Digest and Cipher algorithms:

#include <wolfengine/we_logging.h>

ret = ENGINE_ctrl_cmd(e, " **1log_components** ", WE_LOG_DIGEST | WE_LOG_CIPHER
NULL, NULL, @);

if (ret !'= 1) {

printf”(Failed to set log components\”n);

}

COPYRIGHT ©2024 wolfSSL Inc. 16

6.4 Setting a Custom Logging Callback 6 LOGGING

6.4 Setting a Custom Logging Callback

By default wolfEngine outputs debug log messages using fprintf() to stderr.

Applications that want to have more control over how or where log messages are output can write and
register a custom logging callback with wolfEngine. The logging callback should match the prototype
of wolfEngine_Logging_cb in include/wolfengine/we_logging.h:

/**

* wolfEngine logging callback.

* logLevel - [IN] - Log level of message

* component - [IN] - Component that log message is coming from
* logMessage - [IN] - Log message

*/

typedef void (* **wolfEngine_Logging_cb**)(const int loglLevel,
const int component,

const char *const logMessage);

The callback can then be registered with wolfEngine using the “ set_logging_cb ” engine control com-
mand. For example, to use the ENGINE_ctrl_cmd() API to set a custom logging callback:

void **customLogCallback** (const int loglLevel, const int component,
const char* const logMessage)

{
(void)loglLevel;
(void)component;
fprintf(stderr, “wolfEngine log message: %d\"n, logMessage);
}
int **main** (void)
{
int ret;
ENGINE* e;
ret = ENGINE_ctrl_cmd(e, " **set_logging_cb** ", @, NULL,
(void(*)(void))my_Logging_cb, 0);
if (ret !'= 1) {
/* failed to set logging callback */
}
}

COPYRIGHT ©2024 wolfSSL Inc. 17

7 PORTABILITY

7 Portability

wolfEngine has been designed to leverage the portability of the associated wolfCrypt and OpenSSL
libraries.

7.1 Threading

wolfEngine is thread safe and uses mutex locking mechanisms from wolfCrypt (wc_LockMutex(),
wc_UnLockMutex ())where necessary. wolfCrypt has mutex operations abstracted for supported plat-
forms.

7.2 Dynamic Memory Usage

wolfEngine uses OpenSSL's memory allocation functions to remain consistent with OpenSSL behav-
ior. Allocation functions used internally to wolfEngine include OPENSSL_malloc (), OPENSSL_free(),
OPENSSL_zalloc(), and OPENSSL_realloc().

7.3 Logging

wolfEngine logs by default to stderr via fprintf (). Applications can override this by registering a
custom logging function (see Chapter 6).

Additional macros that may be defined when compiling wolfEngine to adjust logging behavior include:

WOLFENGINE_USER_LOG - Macro that defines the nameof function for log output. Users can define
this to a custom log function to be used in place of fprintf.

WOLFENGINE_LOG_PRINTF - Define that toggles the usageof fprintf (to stderr) to use printf (to stdout)
instead. Not applicable if using WOLFENGINE_USER_LOG or custom logging callback.

COPYRIGHT ©2024 wolfSSL Inc. 18

8 LOADING WOLFENGINE

8 Loading wolfEngine

8.1 Configuring OpenSSL to Enable Engine Usage

For documentation on how applications use and consume OpenSSL engines, refer to the OpenSSL
documentation:

OpenSSL 1.0.2 OpenSSL 1.1.1

There are several ways an application can choose to consume, register, and configure engine usage.
In the simplest usage, to load and register all ENGINE implementations bundled with OpenSSL an
application would need to call the following (taken from the above OpenSSL documentation):

/* For OpenSSL 1.0.2, need to make the “"dynamic ENGINE available */
ENGINE_load_dynamic();

/* Load all bundled ENGINEs into memory and make them visible */
ENGINE_load_builtin_engines();

/* Register all of them for every algorithm they collectively implement */
ENGINE_register_all_complete();

At this point, if the application is configured to read/use an OpenSSL config file, additional engine setup
steps can be done there. For OpenSSL config documentation, reference the OpenSSL documentation:

OpenSSL 1.0.2 OpenSSL 1.1.1

For example, an application can read and consume the default OpenSSL config file (openssl.cnf) or
config as set by OPENSSL_CONF environment variable, and default [openssl|_conf] section by calling:

OPENSSL_config(NULL);

Alternatively to using an OpenSSL config file, applications can explicitly initialize and register
wolfEngine using the desired ENGINE_* APIs. As one example, initializing wolfEngine and registering
for all algorithms could be done using:

ENGINE* e = NULL;

e = ENGINE_by_id“("wolfengine);

if (e == NULL) {

printf”(Failed to find wolfEngine\”n);
/* error */

}
ENGINE_set_default(e, ENGINE_METHOD_ALL);

/* normal application execution / behavior */

ENGINE_finish(e);
ENGINE_cleanup();

8.2 Loading wolfEngine from an OpenSSL Configuration File

wolfEngine can be loaded from an OpenSSL config file if an application using OpenSSL is set up to
process a config file. An example of how the wolfEngine library may be added to a config file is below.
The [wolfssl_section] could be modified to set engine control commands (enable_debug) if needed.

openssl_conf = openssl_init

COPYRIGHT ©2024 wolfSSL Inc. 19

https://www.openssl.org/docs/man1.0.2/man3/engine.html
https://www.openssl.org/docs/man1.1.1/man3/ENGINE_add.html
https://www.openssl.org/docs/man1.0.2/man3/OPENSSL_config.html
https://www.openssl.org/docs/man1.1.1/man3/OPENSSL_config.html

8.3 wolfEngine Static Entrypoint 8 LOADING WOLFENGINE

[openss]_init]
engines = engine_section

[engine_section]
wolfSSL = wolfssl_section

[wolfssl_section]

If using OpenSSL <= 1.0.2, change engine_id to wolfengine
(drop the "lib").

engine_id = libwolfengine

dynamic_path = .libs/libwolfengine.so

init = 1

Use wolfEngine as the default for all algorithms it provides.
default_algorithms = ALL

Only enable when debugging application - produces large
amounts of output.

enable_debug = 1

8.3 wolfEngine Static Entrypoint

When wolfEngine is used as a static library, applications can call the following entry point to load
wolfEngine:

#include <wolfengine/we_wolfengine.h>
ENGINE_load_wolfengine();

COPYRIGHT ©2024 wolfSSL Inc. 20

9 WOLFENGINE DESIGN

9 wolfEngine Design

wolfEngine is composed of the following source files, all located under the “src” subdirectory of the

wolfEngine package.

Source File

Description

we_wolfengine.c

we_internal.c

we_logging.c

we_openssl_bc.c

we_aes_block.c

we_aes_cbc_hmac.c
we_aes_ccm.c
we_aes_ctr.c
we_aes_gcm.c
we_des3_cbc.c
we_dh.c
we_digest.c

we_ecc.c
we_mac.c
we_random.c
we_rsa.c
we_tls_prf.c

Contains library entry points. Calls OpenSSL
IMPLEMENT_DYNAMIC_BIND_FN for dynamic
loading of the library using the OpenSSL engine
framework. Also includes static entry points
when compiled and used as a static library.
Includes wolfengine_bind() function, which
handles registration of engine algorithm
callbacks. Also includes other wolfengine internal
functionality.

wolfEngine logging framework and function
implementations.

wolfEngine OpenSSL binary compatibility
abstraction layer, used for supporting wolfEngine
across multiple OpenSSL versions.

wolfEngine AES-ECB and AES-CBC
implementation.

wolfEngine AES-CBC-HMAC implementation.
wolfEngine AES-CCM implementation.
wolfEngine AES-CTR implementation.
wolfEngine AES-GCM implementation.
wolfEngine 3DES-CBC implementation.
wolfEngine DH implementation.

wolfEngine message digest implementations
(SHA-1, SHA-2, SHA-3).

wolfEngine ECDSA and ECDH implementation.
wolfEngine HMAC and CMAC implementations.
wolfEngine RAND implementation.

wolfEngine RSA implementation.

wolfEngine TLS 1.0 PRF implementation.

General wolfEngine architecture is as follows, showing both dynamic and static entry points:

9.1 wolfEngine Entry Points

The main entry points into the wolfEngine library are either wolfengine_bind () or ENGINE_load_wolfengine
(). wolfengine_bind() is called automatically by OpenSSL if wolfEngine has been loaded dynamically.
ENGINE_|load_wolfengine() is the entry point applications must call if wolfEngine has been built and

used statically instead of dynamically.

9.2 wolfEngine Algorithm Callback Registration

wolfEngine registers algorithm structures and callbacks with the OpenSSL engine framework for all
supported components of wolfCrypt FIPS. This registration happens inside wolfengine_bind()
in we_internal.c. wolfengine_bind() receives an ENGINE structure pointer representing the
wolfEngine engine. Individual algorithm/component callbacks or structures are then registered with
that ENGINE structure using the appropriate API from <openssl/engine.h>.

COPYRIGHT ©2024 wolfSSL Inc. 21

9.2 wolfEngine Algorithm Callback Registration 9 WOLFENGINE DESIGN

wa_waolfengine.c wa_internal.c

Static Losd — EMGINE_koad_vesiTengine] : wiolfenging_bind()
Oynamic Lovd = [MFLEKMENT DATasIc BIMKD FH

|
| callbsack funolions:

| e Feryg irve_initi]

Ragistar enging fwaciumns and calbacks into
woifEnging ENGINE sinsciur

EMNGIMNE_mart_idin, walanging_d)
EMNGIMNE_sot_namefe, wollengine_nomes)
EMGIMNE_sal_digestsis, wa_digesis)
\ ERGIME_sa_cophenle, we_cpfan]
EMGIMNE_sal_RANDE, we_rardom_method)
¥ ENGINE_sel_RSAl, we_rsall
EMGIMNE_sad_DHi®, we_db_msthocd)
ENGINE_sit ECDSAM, wa_accsal)]
ENGINE st pkiay_mathala, wa_pkeyd
ENGINE st pkay_asni_meaihsin, wa_ piey asni]
ERGINE ot ECH, wo_ncl]]
EMNGIMNE_mot =00HIeE, we_podhi)]
ERGIMNE_mot_destroy_funchanie, wolengne_destroy)
EMNGIMNE_sot_omd_doinsis, walsnging_omo_defns)
ERGIME_set_otd_furctionjs, woHsngine o]

Figure 2: wolfEngine Architecture

These API calls include the following:

ENGINE_set_id(e, wolfengine_id)
ENGINE_set_name(e, wolfengine_name)
ENGINE_set_digests(e, we_digests)
ENGINE_set_ciphers(e, we_ciphers)
ENGINE_set_RAND(e, we_random_method)
ENGINE_set_RSA(e, we_rsa())

ENGINE_set_DH(e, we_dh_method)
ENGINE_set_ECDSA(e, we_ecdsa())
ENGINE_set_pkey_meths(e, we_pkey)
ENGINE_set_pkey_asnl_meths(e, we_pkey_asnl)
ENGINE_set_EC(e, we_ec())

ENGINE_set_ECDH(e, we_ecdh())
ENGINE_set_destroy_function(e, wolfengine_destroy)
ENGINE_set_cmd_defns(e, wolfengine_cmd_defns)
ENGINE_set_ctrl_function(e, wolfengine_ctrl)

Each algorithm/component callback function or structure used in the above calls (ex: we_digests,
we_ciphers, etc) are implemented in either we_internal. c orin the respective algorithm source file.

COPYRIGHT ©2024 wolfSSL Inc. 22

10 NOTES ON OPEN SOURCE INTEGRATION

10 Notes on Open Source Integration

wolfEngine conforms to the general OpenSSL engine framework and architecture. As such, it can be
leveraged from any OpenSSL-consuming application that correctly loads and initializes engines and
wolfEngine through OpenSSL configuration file or programmatically via ENGINE API calls.

wolfSSL has tested wolfEngine with several open source projects. This chapter contains notes and
tips on wolfEngine integration. This chapter is not comprehensive of all open source project support
with wolfEngine, and will be expanded upon as wolfSSL or the community reports testing and using
wolfEngine with additional open source projects.

10.1 cURL

cURL is already set up to leverage an OpenSSL config file. To leverage wolfEngine:

1. Add wolfEngine engine information to your OpenSSL config file
2. If needed, set OPENSSL_CONF environment variable to point to your OpenSSL config file:

$ export OPENSSL_CONF=/path/to/openssl.cnf

3. Set OPENSSL_ENGINES environment variable to point to location of wolfEngine shared library
file:

$ export OPENSSL_ENGINES=/path/to/wolfengine/library/dir

10.2 stunnel

stunnel has been tested with wolfEngine. Notes coming soon.

10.3 OpenSSH

To use wolfEngine with OpenSSH you will need to add - -enable-openssh to the . /configure line
of wolfEngine.

OpenSSH needs to be compiled with OpenSSL engine support using the --with-ssl-engine config-
ure option. If needed, --with-ss1-dir=DIR can also be used to specify the installation location of
the OpenSSL library being used:

$ cd openssh

$./configure --prefix=/install/path --with-ssl-dir=/path/to/openssl/install
--with-ssl-engine

$ make

$ sudo make install

OpenSSH will also need an OpenSSL config file set up to leverage wolfEngine. If needed, the
OPENSSL_CONF environment variable can be set to point to your config file. The OPENSSL_ENGINES
environment variable may also need to be set to the location of the wolfEngine shared library:

$ export OPENSSL_CONF=/path/to/openssl.cnf
$ export OPENSSL_ENGINES=/path/to/wolfengine/library/dir

COPYRIGHT ©2024 wolfSSL Inc. 23

11 SUPPORT AND OPENSSL VERSION ADDING

11 Support and OpenSSL Version Adding

For support with wolfEngine contact the wolfSSL support team at support@wolfssl.com. To have
additional OpenSSL version support implemented in wolfEngine, contact wolfSSL at facts@wolfssl.co
m.

COPYRIGHT ©2024 wolfSSL Inc. 24

mailto:support@wolfssl.com
mailto:facts@wolfssl.com
mailto:facts@wolfssl.com

	Introduction
	OpenSSL Version Compatability
	Building wolfEngine
	Getting wolfEngine Source Code
	wolfEngine Package Structure
	OpenSSL Version Caveats
	Building on *nix
	Building OpenSSL
	Building wolfSSL
	Building wolfEngine

	Building on WinCE
	Build Options (./configure Options)
	Build Defines

	FIPS 140-3 Support
	Engine Control Commands
	Logging
	Enable / Disable Debug Logging
	Controlling Logging Levels
	Controlling Component Logging
	Setting a Custom Logging Callback

	Portability
	Threading
	Dynamic Memory Usage
	Logging

	Loading wolfEngine
	Configuring OpenSSL to Enable Engine Usage
	Loading wolfEngine from an OpenSSL Configuration File
	wolfEngine Static Entrypoint

	wolfEngine Design
	wolfEngine Entry Points
	wolfEngine Algorithm Callback Registration

	Notes on Open Source Integration
	cURL
	stunnel
	OpenSSH

	Support and OpenSSL Version Adding

