
wolfCLU Documentation

2026-01-19

1

CONTENTS CONTENTS

Contents

1 wolfCLU Manual 3
1.1 Intro . 3
1.2 Building wolfCLU . 3

1.2.1 Building on *NIX . 3
1.3 Building on Windows . 3
1.4 List Of Commands: . 4

1.4.1 BENCH Command . 4
1.4.2 CA Command . 4
1.4.3 CRL Command . 5
1.4.4 DSAPARAM Command . 5
1.4.5 DGST Command . 5
1.4.6 DHPARAM Command . 6
1.4.7 ECPARAM Command . 6
1.4.8 ENC Command . 7
1.4.9 GENKEY Command . 7
1.4.10 HASH Command . 8
1.4.11 MD5 Command . 8
1.4.12 PKCS12 Command . 8
1.4.13 PKCS7 Command . 9
1.4.14 PKCS8 Command . 9
1.4.15 PKEY Command . 9
1.4.16 RAND Command . 10
1.4.17 REQ Command . 10
1.4.18 RSA Command . 10
1.4.19 sha256, sha384, and sha512 commands . 11
1.4.20 S_CLIENT Command . 11
1.4.21 VERIFY Command . 11
1.4.22 X509 Commnad . 11
1.4.23 BASE64 Command . 12

COPYRIGHT ©2024 wolfSSL Inc. 2

1 WOLFCLU MANUAL

1 wolfCLU Manual

wolfSSL’s Command Line Utility (version 0.0.7)
Nov, 24, 2021

1.1 Intro
wolfCLUwas created to handle some common cryptographic operations tomake it easier/quicker than
writing an application from scratch. An example of some of the operations handled are certificate
parsing and key generation.

1.2 Building wolfCLU
1.2.1 Building on *NIX

To build wolfCLU, start by building wolfSSL with the –enable-wolfclu flag. An example of this would be:
cd wolfssl
./configure --enable-wolfclu
make
sudo make install

Note that if parsing PKCS12 files with RC2 or if using CRL the flags –enable-rc2 and –enable-crl would
also need to be used when building wolfSSL.
Then build wolfCLU linking agianst the wolfSSL library created.
cd wolfclu
./configure
make
sudo make install

or

cd wolfclu
./configure --with-wolfssl=/path/to/wolfssl/install
make
sudo make install

Run make check to run unit tests.

1.3 Building on Windows
wolfCLU can also be built with the appropriate Visual Studio solution, wolfclu.sln. The solution provides
both Debug and Release builds of Dynamic 32- or 64-bit libraries. The file user_settings.h should
be used in the wolfSSL build to configure it.
The file wolfclu\ide\winvs\user_settings.h contains the settings used to configure wolfSSL
with the appropriate settings. This file must be copied from the directory wolfclu\ide\winvs to
wolfssl\IDE\WIN. You can then build wolfSSL with support for wolfCLU.
Before building wolfCLU, make sure you have the same architecture (Win32 or x64) selected as used
in wolfSSL.
This project assumes that the wolfSSH and wolfSSL source directories are installed side-by-side and do
not have the version number in their names:

COPYRIGHT ©2024 wolfSSL Inc. 3

1.4 List Of Commands: 1 WOLFCLU MANUAL

Projects\
wolfclu\
wolfssl\

Building a wolfCLU release configuration will generate wolfssl.exe in the Release\Win32 or Re-
lease\x64 directory.

1.3.0.1 Running Unit Tests To run the shell-script unit tests, you will need either the sh or bash
commands, both of which come with a Git installation on Windows (although you may have to add
them to the PATH).

1. Copy the wolfssl.exe to the root directory of wolfclu.
2. Modify the run function (as well as run_fail, if present) of the desired unit test to run ./wolf-

ssl.exe $1 instead of ./wolfssl $1.
3. In your terminal, run sh <desired_unit_test> from the root directory. For instance, to run

the hash unit tests, run sh tests\hash\hash-test.sh.

1.4 List Of Commands:
• base64
• bench
• ca
• crl
• dsaparam
• dgst
• ecparam
• enc
• genkey
• hash
• md5
• pkcs12
• pkcs7
• pkcs8
• pkey
• rand
• req
• rsa
• s_client
• verify
• x509
• dhparam
• sha256
• sha384
• sha512

1.4.1 BENCH Command

Command in progress for benchmarking algorithms. To benchmark all algorithms run “wolfssl bench
-all”.

1.4.2 CA Command

Used for signing Certificates. Can handle some basic config file parsing.
Available arguments are:

COPYRIGHT ©2024 wolfSSL Inc. 4

1.4 List Of Commands: 1 WOLFCLU MANUAL

• [-in] input CSR file
• [-out] file to write to
• [-keyfile] file to read private key from
• [-cert] file to read CA from
• [-extensions] section in config file to parse extensions from
• [-md] type of hash to use i.e sha, sha256, …
• [-inform] PEM/DER type of CSR input
• [-config] file to parse for configuration
• [-days] number of days should be valid for
• [-selfsign] sign with key associated with input cert

Example:
wolfssl ca -config ca.conf -in test.csr -out test.pem -md sha256 -selfsign -

keyfile ./key

1.4.3 CRL Command

Used to verify a CRL file given a CA, or to convert a CRL from one format [DER | PEM] to the other. The
command will print out the CRL to stdout if -out is not specified and -noout is not used. Prints out “OK”
on successful verification.

• [-CAfile]
• [-inform] pem or der in format
• [-in] the file to read from
• [-outform] pem or der out format
• [-out] output file to write to
• [-noout] do not print output if set

Example:
wolfssl crl -CAfile ./certs/ca-cert.pem -in ./certs/crl.der -inform DER -noout

1.4.4 DSAPARAM Command

Used for creating DSA params and keys. Make sure wolfSSL is compiled with --enable-dsa.
Available arguments are:

• [-genkey] create new DSA key
• [-in] file to read params from to create a key
• [-out] file to output to (default stdout)
• [-noout] do not print out the params

Example:
wolfssl dsaparam -out dsa.params 1024

wolfssl dsaparam -in dsa.params -genkey

1.4.5 DGST Command

Can verify the signature. The last argument is the data that was signed.
Hash algos supported:

• [-sha]
• [-sha224]

COPYRIGHT ©2024 wolfSSL Inc. 5

1.4 List Of Commands: 1 WOLFCLU MANUAL

• [-sha256]
• [-sha384]
• [-sha512]

Sign
Parameters:

• [-sign] key used to create signature
• [-out] file to write signature to

Example:
wolfssl dgst -sign keyPrivate.pem -out test.sig testfile

Verify
Parameters:

• [-verify] key used to verify the signature
• [-signature] file containing the signature

Example:
wolfssl dgst -verify keyPublic.pem -signature test.sig testfile

1.4.6 DHPARAM Command

Used for creating Diffie Hellman params and keys.
Available arguments are:

• [-genkey] create new DH key
• [-in] file to read params from to create a key
• [-out] file to output to (default stdout)
• [-check] check if generated parameters are valid
• [-noout] do not print out the params

Example:
wolfssl dhparam -check -out dh.params 1024

1.4.7 ECPARAM Command

Used for creating ECC keys.
Available arguments are:

• [-genkey] create new key
• [-out] output file
• [-name] curve name i.e. secp384r1

Example:
wolfssl ecparam -genkey -out new.key -name secp384r1

COPYRIGHT ©2024 wolfSSL Inc. 6

1.4 List Of Commands: 1 WOLFCLU MANUAL

1.4.8 ENC Command

Used for encrypting an input. Setting -d enables decryption.
Available encryption and decryption algorithms are:

• aes-cbc-128
• aes-cbc-192
• aes-cbc-256
• aes-ctr-128
• aes-ctr-192
• aes-ctr-256
• 3des-cbc-56
• 3des-cbc-112
• 3des-cbc-168

Available arguments are:
• [-in] input file to read from
• [-out] file to write to (default stdout)
• [-pwd] password input
• [-key] hex key input
• [-iv] hex iv input
• [-inkey] input file for key
• [-pbkdf2] use kdf version 2
• [-md] specify hash algo to use i.e md5, sha256
• [-d] decrypt the input file
• [-p] display debug information (key / iv …)
• [-k] another option for password input
• [-base64] handle decoding a base64 input
• [-nosalt] do not use a salt input to kdf

Example:
wolfssl enc -aes-128-cbc -k ThiimyPa$$w0rd -in somefile.txt

1.4.9 GENKEY Command

Used to generate RSA, ECC, ED25519 and DSA keys. If using “-output KEY” a private key is created
having .priv appended to -out argument and a public key is created with .pub appended to the -out
argument. If generating ED25519 keys compile wolfSSL with –enable-ed25519.
Available arguments are:

• [-out] file to write to
• [rsa | ecc | ed25519] key type to generate
• [-inkey] input file for key
• [-size] size of key to generate
• [-outform] output form, either DER or PEM (defaults to DER)
• [-output] key to generate, either PUB, PRIV or KEYPAIR (defaults to KEYPAIR)
• [-exponent] RSA exponent size

Example:
wolfssl genkey rsa -size 2048 -out mykey -outform pem -output KEYPAIR

COPYRIGHT ©2024 wolfSSL Inc. 7

1.4 List Of Commands: 1 WOLFCLU MANUAL

1.4.10 HASH Command

Used to create a hash of input data.
Algorithms:

• md5
• sha
• sha256
• sha384
• sha512
• base64enc
• base64dec

Example:
wolfssl -hash sha -in <some file>

1.4.11 MD5 Command

Used to create anMD5 hash of input data. The last argument is the file to be hashed, if a file argument
is not provided then stdin is used. Note that when using stdin the input must be provided upon calling
wolfssl. A correct usage and incorrect usage of stdin are shown below:
Incorrect :
wolfssl md5
> hi
>

Correct :
echo "hi" | wolfssl md5

The reason the incorrect version is wrong is because no output will be received. This input method
is used because it mimics the usage of OpenSSL’s CLI, thus it encourages portability when switching
from OpenSSL to WolfSSL.
Examples :
wolfssl md5 configure.ac

978425cba5277d73db2a76d72b523d48

echo "hi" | wolfssl md5

764efa883dda1e11db47671c4a3bbd9e

1.4.12 PKCS12 Command

Currently only PKCS12 parsing is supported and PKCS12 generation is not yet supported. By default
the –enable-wolfclu option used when building wolfSSL has PKCS12 support enabled but it does not
enable RC2. If parsing PKCS12 bundles that have been encrypted using RC2 then –enable-rc2 should
also be used when compiling wolfSSL.

• [-in] file input for pkcs12 bundle
• [-out] file to output results to (default stdout)
• [-nodes] no DES encryption

COPYRIGHT ©2024 wolfSSL Inc. 8

1.4 List Of Commands: 1 WOLFCLU MANUAL

• [-nocerts] no certificate output
• [-nokeys] no key output
• [-passin] source to get password from
• [-passout] source to output password to

Example:
wolfssl pkcs12 -nodes -passin pass:"wolfSSL test" -in ./certs/test-servercert.

p12

1.4.13 PKCS7 Command

Processes PKCS#7 data, allowing operations such as extracting certificates from PKCS#7 files. PKCS#7
is a standard for cryptographically signed and/or encrypted data.

• [-in] input file containing PKCS#7 data (required)
• [-out] output file to write results to (default stdout)
• [-inform] input format (PEM or DER, default PEM)
• [-outform] output format (PEM or DER, default PEM)
• [-print_certs] extract and output certificates from the PKCS#7 file

Example for extracting certificates from a PKCS#7 file:
wolfssl pkcs7 -in pkcs7.pem -print_certs

Example for converting PKCS#7 data from PEM to DER format:
wolfssl pkcs7 -in pkcs7.pem -outform DER -out pkcs7.der

1.4.14 PKCS8 Command

Processes PKCS#8 private key files. Allows conversion between different formats (PEM/DER) and de-
cryption of private keys. Encrypting PKCS#8 keys is not yet supported.

• [-in] input file containing the private key (required)
• [-out] output file to write the processed key to (default stdout)
• [-inform] input format (PEM or DER, default PEM)
• [-outform] output format (PEM or DER, default PEM)
• [-passin] password source for encrypted input key
• [-traditional] output key in traditional (non-PKCS#8) format
• [-topk8] convert input to PKCS#8 format
• [-nocrypt] don’t encrypt the output key (no password)

Example for converting an encrypted PEM key to DER format:
wolfssl pkcs8 -in server-keyEnc.pem -passin pass:mypassword -outform DER -out

key.der

Example for converting a key to traditional format:
wolfssl pkcs8 -in server-key.pem -traditional -out traditional-key.pem

1.4.15 PKEY Command

Used for dealing with generic key operations. Prints the key read in to stdout.
• [-in] file input for key
• [-inform] pem or der input format (defaults to pem)

COPYRIGHT ©2024 wolfSSL Inc. 9

1.4 List Of Commands: 1 WOLFCLU MANUAL

• [-pubout] only print out the public key
• [-pubin] expect to public key as input

Example:
./wolfssl pkey -in ./certs/server-key.pem -inform pem -pubout

1.4.16 RAND Command

Generates random bytes in raw or base64 form. By default it outputs the result to stdout but can be
redirected with the ‘-out’ argument. The last argument passed in is the number of random bytes to
generate.

• [-base64] base64 encode the resulting random bytes
• [-out] ouput file to write results to

Example:
wolfssl rand -base64 10

1.4.17 REQ Command

Used for creating a certificate request or a self-signed certificate. Can handle some basic parsing of
a .conf file for certificate setup. If no configuration file is used then stdin is prompted for certificate
information.
Available arguments are:

• [-in] input file to read from
• [-out] file to write to (default stdout)
• [-key] public key to put into certificate request
• [-inform] der or pem format for ‘-in’ (defaults to pem)
• [-outform] der or pem format for ‘-out’ (defaults to pem)
• [-config] file to parse for certificate configuration
• [-days] number of days should be valid for
• [-x509] generate self signed certificate

Example:
wolfssl ecparam -genkey -out ecc.key -name secp384r1

wolfssl req -new -x509 -days 3650 -config selfsigned.conf -key ecc.key -out
ecc.cert -outform der -sha256

1.4.18 RSA Command

Does RSA operations. Including reading in RSA keys, outputing RSA keys or modulus, and reading
encrypted PEM files. Can handle both DER and PEM format for input and output. The following is a
list of options

• [-in] file input for key to read
• [-inform] PEM or DER input format (defaults to PEM)
• [-out] file to write result to (defaults to stdout)
• [-outform] PEM or DER output format (defaults to PEM)
• [-passin] password for PEM encrypted files
• [-noout] do not print the key out when set
• [-modulus] print out the RSA modulus (n value)
• [-RSAPublicKey_in] expecting a public key input

COPYRIGHT ©2024 wolfSSL Inc. 10

1.4 List Of Commands: 1 WOLFCLU MANUAL

1.4.19 sha256, sha384, and sha512 commands

Each command can be used to create a hash of its type. sha256 generates a sha256 hash and so on.
The commands accept input in the form of stdin or a specified input file.
Example :
wolfssl -sha384 file.txt

echo "hi" | wolfssl -sha384

1.4.20 S_CLIENT Command

Very basic TLS connection supported. Currently does not verify the peer, -CAfile option is not yet com-
pleted.
Arguments:

• [-connect] :
Example :
wolfssl s_client -connect 127.0.0.1:11111

1.4.21 VERIFY Command

Verifies an X509 certificate given a CA. The last argument passed into the command is the certificate file
name to be verified. If the verification is successful then “OK” will be printed out to stdout. Otherwise
an error value and reason will be printed out.

• [-CAfile] file name for CA to be used with verify
• [-crl_check] if CRL checking should be used
• [-untrusted] file name for intermediate certificate to be used in verification (only one -untrusted
cert is currently supported)

Example:
wolfssl verify -CAfile ./certs/ca-cert.pem ./certs/server-cert.pem

1.4.22 X509 Commnad

This command is used for parsing and printing out certificates.
Arguments:

• [-in] X509 file input
• [-inform] pem or der format for input (defaults to pem)
• [-out] file to output to
• [-outform] pem or der format for output (defaults to pem)
• [-pubkey] print out the public key only
• [-text] print out the certificate

Example:
wolfssl x509 -in ./certs/server-cert.pem -text

COPYRIGHT ©2024 wolfSSL Inc. 11

1.4 List Of Commands: 1 WOLFCLU MANUAL

1.4.23 BASE64 Command

Encodes or decodes data using base64 encoding. By default, data is encoded to base64. Use the -d
option to decode base64 data.

• [-in] input file to read from (default stdin)
• [-out] output file to write to (default stdout)
• [-d] decode the input data instead of encoding

Example for encoding:
wolfssl base64 -in plain_file.txt -out encoded_file.txt

Example for decoding:
wolfssl base64 -d -in encoded_file.txt -out decoded_file.txt

COPYRIGHT ©2024 wolfSSL Inc. 12

	wolfCLU Manual
	Intro
	Building wolfCLU
	Building on *NIX

	Building on Windows
	List Of Commands:
	BENCH Command
	CA Command
	CRL Command
	DSAPARAM Command
	DGST Command
	DHPARAM Command
	ECPARAM Command
	ENC Command
	GENKEY Command
	HASH Command
	MD5 Command
	PKCS12 Command
	PKCS7 Command
	PKCS8 Command
	PKEY Command
	RAND Command
	REQ Command
	RSA Command
	sha256, sha384, and sha512 commands
	S_CLIENT Command
	VERIFY Command
	X509 Commnad
	BASE64 Command

