
wolfBoot Documentation

2026-01-19

1

CONTENTS CONTENTS

Contents

1 Introduction 8
1.1 Features . 8
1.2 Components . 8

2 Compiling wolfBoot 9
2.1 Generate a new configuration . 9
2.2 Platform selection . 9

2.2.1 Flash partitions . 9
2.3 Bootloader features . 10

2.3.1 Change DSA algorithm . 10
2.3.2 Incremental updates . 11
2.3.3 Enable debug symbols . 11
2.3.4 Disable interrupt vector relocation . 11
2.3.5 Limit stack usage . 11
2.3.6 Allow bigger stack size allocation . 11
2.3.7 Disable Backup of current running firmware 11
2.3.8 Enable workaround for ‘write once’ flash memories 12
2.3.9 Allow version roll-back . 12
2.3.10 Enable optional support for external flash memory 12
2.3.11 Executing flash access code from RAM . 13
2.3.12 Enable Dual-bank hardware-assisted swapping 13
2.3.13 Store UPDATE partition flags in a sector in the BOOT partition 13
2.3.14 Flash Erase value / Flag logic inversion . 13
2.3.15 Using One-time programmable (OTP) flash as keystore 14
2.3.16 Prefer multi-sector flash erase operations . 14

3 Targets 15
3.1 Supported Targets . 15
3.2 STM32F4 . 15

3.2.1 STM32F4 Programming . 16
3.2.2 STM32F4 Debugging . 16

3.3 STM32L4 . 16
3.4 STM32L5 . 17

3.4.1 Scenario 1: TrustZone Enabled . 17
3.4.2 Scenario 2: Trustzone Enabled, wolfCrypt as secure engine for NS applications . . 18
3.4.3 Scenario 3: Trustzone Disabled, using DUAL BANK 18
3.4.4 Debugging . 18

3.5 STM32U5 . 19
3.5.1 Scenario 1: TrustZone enabled, staging non-secure application 19
3.5.2 Scenario 2: TrustZone Enabled, wolfCrypt as secure engine for NS applications . 20
3.5.3 Scenario 3: TrustZone Disabled (DUAL BANK mode) 20
3.5.4 Debugging . 21

3.6 STM32L0 . 21
3.6.1 STM32L0 Building . 21

3.7 STM32G0 . 22
3.7.1 Building STM32G0 . 22
3.7.2 STM32G0 Programming . 22
3.7.3 STM32G0 Debugging . 22

3.8 STM32C0 . 23
3.8.1 Example 32KB partitioning on STM32-G070 . 23
3.8.2 Building STM32C0 . 23
3.8.3 STM32C0 Programming . 24

COPYRIGHT ©2024 wolfSSL Inc. 2

CONTENTS CONTENTS

3.8.4 STM32C0 Debugging . 24
3.9 STM32WB55 . 24

3.9.1 STM32WB55 Building . 24
3.9.2 STM32WB55 with OpenOCD . 25
3.9.3 STM32WB55 with ST-Link . 25
3.9.4 STM32WB55 Debugging . 25

3.10 SiFive HiFive1 RISC-V . 25
3.10.1 Features . 25
3.10.2 Default Linker Settings . 25
3.10.3 Stock bootloader . 25
3.10.4 Application Code . 25
3.10.5 wolfBoot configuration . 26
3.10.6 Build Options . 26
3.10.7 Loading . 26
3.10.8 Debugging . 26

3.11 STM32F7 . 27
3.11.1 Build Options . 27
3.11.2 Loading the firmware . 27
3.11.3 STM32F7 Debugging . 28

3.12 STM32H5 . 28
3.12.1 Scenario 1: TrustZone enabled, staging non-secure application 28
3.12.2 Scenario 2: TrustZone Enabled, wolfCrypt as secure engine for NS applications . 29
3.12.3 Scenario 3: DUALBANK mode . 29

3.13 STM32H7 . 30
3.13.1 Build Options . 30
3.13.2 STM32H7 Programming . 30
3.13.3 STM32H7 Testing . 30
3.13.4 STM32H7 Debugging . 31

3.14 NXP LPC54xxx . 31
3.14.1 Build Options . 31
3.14.2 Loading the firmware . 31
3.14.3 Debugging with JLink . 32

3.15 Cortex-A53 / Raspberry PI 3 (experimental) . 32
3.15.1 Compiling the kernel . 32
3.15.2 Testing with qemu-system-aarch64 . 32
3.15.3 Testing with kernel encryption . 33

3.16 Xilinx Zynq UltraScale . 33
3.16.1 QNX . 34

3.17 Cypress PSoC-6 . 34
3.17.1 Building . 34
3.17.2 Clock settings . 34
3.17.3 Loading the firmware . 35
3.17.4 Debugging . 35

3.18 Microchip SAME51 . 35
3.18.1 Toolchain . 35
3.18.2 Building using gcc/makefile . 36
3.18.3 Building using MPLAB IDE . 36
3.18.4 Uploading the bootloader and the firmware image 36

3.19 NXP iMX-RT . 36
3.19.1 Building wolfBoot . 36
3.19.2 Custom Device Configuration Data (DCD) . 37
3.19.3 Building wolfBoot for HAB (High Assurance Boot) 37
3.19.4 Flashing . 37
3.19.5 Testing Update . 38

COPYRIGHT ©2024 wolfSSL Inc. 3

CONTENTS CONTENTS

3.19.6 NXP iMX-RT Debugging JTAG / JLINK . 38
3.20 NXP Kinetis . 38

3.20.1 Buld options . 38
3.20.2 Example partitioning for K82 . 38

3.21 NXP QorIQ P1021 PPC . 39
3.21.1 Boot ROM NXP P1021 . 39
3.21.2 Design for NXP P1021 . 39
3.21.3 First Stage Loader (stage 1) for NXP P1021 PPC 39
3.21.4 Building wolfBoot for NXP P1021 PPC . 40
3.21.5 Debugging NXP P1021 PPC . 40

3.22 NXP QorIQ T1024 PPC . 41
3.22.1 Building wolfBoot for NXP T1024 PPC . 41
3.22.2 Signing Custom application . 42
3.22.3 Assembly of custom firmware image . 42

3.23 NXP QorIQ T2080 PPC . 42
3.23.1 Design NXP T2080 PPC . 42
3.23.2 Building wolfBoot for NXP T2080 PPC . 42
3.23.3 Programming NXP T2080 PPC . 43
3.23.4 Debugging NXP T2080 PPC . 44

3.24 NXP MCXA153 . 45
3.24.1 MCX A: Configuring and compiling . 45
3.24.2 MCX A: Loading the firmware . 46
3.24.3 MCX A: Testing firmware update . 46
3.24.4 MCX A: Debugging . 46

3.25 TI Hercules TMS570LC435 . 46
3.26 Nordic nRF52840 . 47
3.27 Simulated . 47
3.28 Renesas RX65N . 47

3.28.1 Renesas Console . 48
3.28.2 Renesas Flash Layout . 48
3.28.3 Renesas Data Endianess . 49
3.28.4 Building Renesas RX65N . 49
3.28.5 Flashing Renesas RX65N . 49
3.28.6 Debugging Renesas RX65N . 50

3.29 Renesas RX72N . 50
3.29.1 Building Renesas RX72N . 51
3.29.2 Flashing Renesas RX72N . 51

3.30 Renesas RA6M4 . 51
3.31 Renesas RZN2L . 52
3.32 Qemu x86-64 UEFI . 52

3.32.1 Prerequisites: . 52
3.32.2 Configuration . 53
3.32.3 Building and running on qemu . 53

3.33 Intel x86_64 with Intel FSP support . 54
3.33.1 Running on 64-bit QEMU . 54
3.33.2 Running on QEMU with swtpm (TPM emulator) 59
3.33.3 Running on Kontron VX3060-S2 . 60

4 Hardware abstraction layer 61
4.1 Supported platforms . 61
4.2 API . 61

4.2.1 Optional support for external flash memory . 62
4.2.2 Additional functions required by DUALBANK_SWAP option 63

COPYRIGHT ©2024 wolfSSL Inc. 4

CONTENTS CONTENTS

5 Flash partitions 64
5.1 Flash memory partitions . 64

5.1.1 Bootloader partition . 64
5.1.2 BOOT partition . 64
5.1.3 UPDATE partition . 64

5.2 Partition status and sector flags . 64
5.3 Overview of the content of the FLASH partitions . 65

6 wolfBoot Features 65
6.1 Signing . 65

6.1.1 wolfBoot key tools installation . 65
6.1.2 Install Python3 . 65
6.1.3 Install wolfCrypt . 65
6.1.4 Install wolfcrypt-py . 66
6.1.5 Install wolfBoot . 66
6.1.6 C Key Tools . 66
6.1.7 Command Line Usage . 67
6.1.8 Key generation and management . 68
6.1.9 Signing Firmware . 70
6.1.10 Signing Firmware with External Private Key (HSM) 70

6.2 Measured Boot using wolfBoot . 70
6.2.1 Concept . 71
6.2.2 Configuration . 71

6.3 Firmware image . 72
6.3.1 Firmware entry point . 72
6.3.2 Firmware image header . 72
6.3.3 Image signing tool . 74

6.4 Firmware update . 74
6.4.1 Updating Microcontroller FLASH . 74
6.4.2 Update procedure description . 75

6.5 Remote External flash memory support via UART . 78
6.5.1 Bootloader setup . 78
6.5.2 Host side: UART flash server . 80
6.5.3 External flash update mechanism . 80

6.6 Encrypted external partitions . 80
6.6.1 Rationale . 80
6.6.2 Temporary key storage . 80
6.6.3 Libwolfboot API . 81
6.6.4 Symmetric encryption algorithms . 81
6.6.5 Example usage . 81
6.6.6 Signing and encrypting the update bundle with ChaCha20-256 81
6.6.7 Signing and encrypting the update bundle with AES-256 82
6.6.8 Encryption of incremental (delta) updates . 82
6.6.9 Encryption of self-updates . 82
6.6.10 API usage in the application . 83

6.7 Application interface for interactions with the bootloader 83
6.7.1 Compiling and linking with libwolfboot . 83
6.7.2 API . 83

7 Integrating wolfBoot in an existing project 85
7.1 Required steps . 85
7.2 Examples provided . 85
7.3 Upgrading the firmware . 85

8 Troubleshooting 86

COPYRIGHT ©2024 wolfSSL Inc. 5

CONTENTS CONTENTS

8.1 Python errors when signing a key . 86
8.2 Python errors in command line parser running keygen.py 86
8.3 Contact support . 86

A ATA Security 87
A.1 Introduction . 87
A.2 Table of Contents . 87
A.3 Unlocking the Disk with a Hardcoded Password . 87
A.4 Unlocking the Disk with a TPM-Sealed Secret . 87
A.5 Disabling the password . 87

B Signing firmware using Microsoft Azure Key Vault 88
B.1 Preparing the keystore . 88
B.2 Signing the firmware image for wolfBoot . 88

B.2.1 Obtaining the SHA256 digest . 88
B.2.2 HTTPS request for signing the digest with the Key Vault 88
B.2.3 Final step: create the signed firmware image 89

C Using One-Time Programmable (OTP) flash area for keystore 90
C.1 Compiling wolfBoot to access OTP as keystore . 90
C.2 Creating an image of the OTP area content . 90
C.3 Directly provisioning the public keys to the OTP area (primer) 90
C.4 Examples . 91

C.4.1 STM32H5 OTP KeyStore . 91

D KeyStore structure: support for multiple public keys 94
D.1 What is wolfBoot KeyStore . 94
D.2 Default usage (built-in keystore) . 94

D.2.1 Creating multiple keys . 94
D.2.2 Permissions . 95
D.2.3 Importing public keys . 96
D.2.4 Generating and importing keys of different types 96

D.3 Using KeyStore with external Key Vaults . 96
D.3.1 Interface API . 96

E Build wolfBoot as Library 98
E.1 Library API . 98
E.2 Library mode: example application . 98
E.3 Configuring and compiling the test-lib application . 98

F wolfBoot Loaders / Updaters 100
F.1 loader.c . 100
F.2 loader_stage1.c . 100
F.3 update_ram.c . 100
F.4 update_flash.c . 100
F.5 update_flash_hwswap.c . 100

G Measured Boot using wolfBoot 101
G.1 Concept . 101
G.2 Configuration . 101

G.2.1 Code . 102

H Post-Quantum Signatures 103
H.1 Supported PQ Signature Methods . 103

H.1.1 LMS/HSS Config . 103

COPYRIGHT ©2024 wolfSSL Inc. 6

CONTENTS CONTENTS

H.1.2 XMSS/XMSS^MT Config . 104
H.2 Building the external PQ Integrations . 104

H.2.1 ext_LMS Support . 104
H.2.2 ext_XMSS Support . 105

I Remote External flash memory support via UART 106
I.1 Bootloader setup . 106
I.2 Host side: UART flash server . 106
I.3 External flash update mechanism . 106

J Renesas wolfBoot 107
J.1 Security Key Management Tool (SKMT) Key Wrapping 107
J.2 RX TSIP . 107

J.2.1 RX TSIP Benchmarks . 109

K wolfBoot Key Tools 110
K.1 C or Python . 110

K.1.1 C Key Tools . 110
K.1.2 Python key tools . 110

K.2 Command Line Usage . 110
K.2.1 Keygen tool . 110
K.2.2 Sign tool . 111

K.3 Examples . 113
K.3.1 Signing Firmware . 113
K.3.2 Signing Firmware with External Private Key (HSM) 114
K.3.3 Signing Firmware with Azure Key Vault . 114

L wolfCrypt in TrustZone-M secure domain 115
L.1 Compiling wolfBoot with wolfCrypt in TrustZone-M secure domain 115
L.2 PKCS11 API in non-secure world . 115
L.3 Example using STM32L552 . 115
L.4 Example using STM32H563 . 117

M wolfBoot TPM support 120
M.1 Build Options . 120
M.2 Root of Trust (ROT) . 120
M.3 Cryptographic offloading . 120
M.4 Measured Boot . 120
M.5 Sealing and Unsealing a secret . 120

M.5.1 Testing seal/unseal with simulator . 121
M.5.2 Testing seal/unseal on actual hardware . 122

N wolfBoot Configuration Options 125

COPYRIGHT ©2024 wolfSSL Inc. 7

1 INTRODUCTION

1 Introduction

wolfBoot is a portable, OS-agnostic, secure bootloader solution for 32-bit microcontrollers, relying on
wolfCrypt for firmware authentication, providing firmware update mechanisms.
Due to the minimalist design of the bootloader and the tiny HAL API, wolfBoot is completely inde-
pendent from any OS or bare-metal application, and can be easily ported and integrated in existing
embedded software projects to provide a secure firmware update mechanism.
Design based on RFC 9019 - A Firmware Update Architecture for Internet of Things.

1.1 Features
• Multi-slot partitioning of the flash device
• Integrity verification of the firmware image(s)
• Authenticity verification of the firmware image(s) using wolfCrypt’s Digital Signature Algorithms
(DSA)

• Minimalist hardware abstraction layer (HAL) interface to facilitate portability across different ven-
dors/MCUs

• Copy/swap images from secondary slots into the primary slots to consent firmware update op-
erations

• In-place chain-loading of the firmware image in the primary slot
• Support of Trusted Platform Module(TPM)
• Measured boot support, storing of the firmware image hash into a TPM Platform Configuration
Register(PCR)

1.2 Components
This repository contains the following components: - the wolfBoot bootloader - key generator and
image signing tools (requires python 3.x and wolfcrypt-py https://github.com/wolfSSL/wolfcrypt-py) -
Baremetal test applications

COPYRIGHT ©2024 wolfSSL Inc. 8

https://www.wolfssl.com/products/wolfboot/
https://datatracker.ietf.org/doc/rfc9019/

2 COMPILING WOLFBOOT

2 Compiling wolfBoot

WolfBoot is portable across different types of embedded systems. The platform-specific code is con-
tained in a single file under the hal directory, and implements the hardware-specific functions.
To enable specific compile options, use environment variables while calling make, e.g.
make CORTEX_M0=1
As an alternative, you can provide a .config file in the root directory of wolfBoot. Command line options
have priority on .config options, as long as .config options are defined using the ?= operator, e.g.:
WOLFBOOT_PARTITION_BOOT_ADDRESS?=0x14000

2.1 Generate a new configuration
A new .config file with a set of default parameters can be generated by running make config. The
build script will ask to enter a default value for each configuration parameter. Enter confirm the current
value, indicated in between [].
Once a .config file is in place, it will change the default compile-time options when running make with-
out parameters.
.config can be modified with a text editor to alter the default options later on.
Detailed parameters can be found at Appendix. N

2.2 Platform selection
If supported natively, the target platform can be specified using the TARGET variable. Make will auto-
matically select the correct compile option, and include the corresponding HAL for the selected target.
For a list of the platforms currently supported, see the chapter on HAL.
To add a new platform, simply create the corresponding HAL driver and linker script file in the hal
directory.
Default option if none specified: TARGET=stm32f4
Some platforms will require extra options, specific for the architecture. By default, wolfBoot is com-
piled for ARM Cortex-M3/4/7. To compile for Cortex-M0, use:
CORTEX_M0=1

2.2.1 Flash partitions

The file include/target.h is generated according to the configured flash geometry, partitions size
and offset of the target system. The following values must be set to provide the desired flash config-
uration, either via the command line, or using the .config file:

• WOLFBOOT_SECTOR_SIZE
This variable determines the size of the physical sector on the flash memory. If areas with different
block sizes are used for the two partitions (e.g. update partition on an external flash), this variable
should indicate the size of the biggest sector shared between the two partitions.
WolfBoot uses this value as minimum unit when swapping the firmware images in place. For this
reason, this value is also used to set the size of the SWAP partition.

• WOLFBOOT_PARTITION_BOOT_ADDRESS

COPYRIGHT ©2024 wolfSSL Inc. 9

2.3 Bootloader features 2 COMPILING WOLFBOOT

This is the start address of the boot partition, aligned to the beginning of a new flash sector. The
application code starts after a further offset, equal to the partition header size (256B for Ed25519 and
ECC signature headers).

• WOLFBOOT_PARTITION_UPDATE_ADDRESS
This is the start address of the update partition. If an external memory is used via the EXT_FLASH
option, this variable contains the offset of the update partition from the beginning of the external
memory addressable space.

• WOLFBOOT_PARTITION_SWAP_ADDRESS
The address for the swap spaced used by wolfBoot to swap the two firmware images in place, in order
to perform a reversable update. The size of the SWAP partition is exactly one sector on the flash. If an
external memory is used, the variable contains the offset of the SWAP area from the beginning of its
addressable space.

• WOLFBOOT_PARTITION_SIZE
The size of the BOOT and UPDATE partition. The size is the same for both partitions.

2.3 Bootloader features
A number of characteristics can be turned on/off during wolfBoot compilation. Bootloader size, per-
formance and activated features are affected by compile-time flags.

2.3.1 Change DSA algorithm

By default, wolfBoot is compiled to use Ed25519 DSA. The implementation of ed25519 is smaller, while
giving a good compromise in terms of boot-up time.
Better performance can be achieved using ECDSA with curve p-256. To activate ECC256 support, use
SIGN=ECC256 or SIGN=ECC384 or SIGN=ECC521 respectively.
when invoking make.
RSA is also supported, with different key length. To activate RSA2048, RSA3072 or RSA4096, use:
SIGN=RSA2048 or SIGN=RSA3072 or SIGN=RSA4096 respectively.
Ed448 is also supported via SIGN=ED448.
The default option, if no value is provided for the SIGN variable, is
SIGN=ED25519
Changing the DSA algorithmwill also result in compiling a different set of tools for key generation and
firmware signature.
Find the corresponding key generation and firmware signing tools in the tools directory.
It’s possible to disable authentication of the firmware image by explicitly using:
SIGN=NONE
in the Makefile commandline. This will compile a minimal bootloader with no support for public-key
authenticated secure boot.

COPYRIGHT ©2024 wolfSSL Inc. 10

2.3 Bootloader features 2 COMPILING WOLFBOOT

2.3.2 Incremental updates

wolfBoot support incremental updates. To enable this feature, compile with DELTA_UPDATES=1.
An additional file is generated when the sign tool is invoked with the --delta option, containing only
the differences between the old firmware to replace, currently running on the target, and the new
version.
For more information and examples, see the firmware update section.

2.3.3 Enable debug symbols

To debug the bootloader, simply compile with DEBUG=1. The size of the bootloade will increase
consistently, so ensure that you have enough space at the beginning of the flash before WOLF-
BOOT_PARTITION_BOOT_ADDRESS.

2.3.4 Disable interrupt vector relocation

On some platforms, it might be convenient to avoid the interrupt vector relocation before boot-up.
This is required when a component on the system already manages the interrupt relocation at a dif-
ferent stage, or on these platform that do not support interrupt vector relocation.
To disable interrupt vector table relocation, compile with VTOR=0. By default, wolfBoot will relocate
the interrupt vector by setting the offset in the vector relocation offset register (VTOR).

2.3.5 Limit stack usage

By default, wolfBoot does not require any memory allocation. It does this by performing all the oper-
ations using the stack. Although the stack space used by the algorithms can be predicted at compile
time, the amount of stack space be relatively big, depending on the algorithm selected.
Some targets offer limited amount of RAM to use as stack space, either in general, or in a configuration
dedicated for the bootloader stage.
In these cases, it might be useful to activate WOLFBOOT_SMALL_STACK=1. With this option, a fixed-
size pool is created at compile time to assist the allocation of the object needed by the cryptography
implementation. When compiled with WOLFBOOT_SMALL_STACK=1, wolfBoot reduces the stack usage
considerably, and simulates dynamic memory allocations by assigning dedicated, statically allocated,
pre-sized memory areas.

2.3.6 Allow bigger stack size allocation

Some combinations of authentication algorithms, key sizes and math configuration in wolfCrypt re-
quire a large amount of memory to be allocated in the stack at runtime. By default, if your configura-
tion falls in one of these cases, wolfBoot compilation will terminate with an explicit error.
In some cases you might have enough memory available to allow large stack allocations. To circum-
vent the compile-time checks on the maximum allowed stack size, use WOLFBOOT_HUGE_STACK=1.

2.3.7 Disable Backup of current running firmware

Optionally, it is possible to disable the backup copy of the current running firmware upon the instal-
lation of the update. This implies that no fall-back mechanism is protecting the target from a faulty
firmware installation, but may be useful in some cases where it is not possible to write on the update
partition from the bootloader. The associated compile-time option is
DISABLE_BACKUP=1

COPYRIGHT ©2024 wolfSSL Inc. 11

2.3 Bootloader features 2 COMPILING WOLFBOOT

2.3.8 Enable workaround for ‘write once’ flash memories

On some microcontrollers, the internal flash memory does not allow subsequent writes (adding ze-
roes) to a sector, after the entire sector has been erased. WolfBoot relies on the mechanism of adding
zeroes to the ‘flags’ fields at the end of both partitions to provide a fail-safe swap mechanism.
To enable the workaround for ‘write once’ internal flash, compile with
NVM_FLASH_WRITEONCE=1
warning When this option is enabled, the fail-safe swap is not guaranteed, i.e. the microcontroller
cannot be safely powered down or restarted during a swap operation.

2.3.9 Allow version roll-back

WolfBoot will not allow updates to a firmware with a version number smaller than the current one. To
allow downgrades, compile with ALLOW_DOWNGRADE=1.
Warning: this option will disable version checking before the updates, thus exposing the system to
potential forced downgrade attacks.

2.3.10 Enable optional support for external flash memory

WolfBoot can be compiled with the makefile option EXT_FLASH=1. When the external flash support is
enabled, update and swap partitions can be associated to an externalmemory, andwill use alternative
HAL function for read/write/erase access. To associate the update or the swap partition to an external
memory, define PART_UPDATE_EXT and/or PART_SWAP_EXT, respectively. By default, the makefile
assumes that if an external memory is present, both PART_UPDATE_EXT and PART_SWAP_EXT are
defined.
If the NO_XIP=1makefile option is present, PART_BOOT_EXT is assumed too, as no execute-in-place is
available on the system. This is typically the case of MMU system (e.g. Cortex-A) where the operating
system image(s) are position-independent ELF images stored in a non-executable non-volatilememory,
and must be copied in RAM to boot after verification.
When externalmemory is used, the HAL APImust be extended to definemethods to access the custom
memory. Refer to the HAL chapter for the description of the ext_flash_* API.
The EXT_FLASH option can also be used if the target device requires special handling for flash reads
(e.g. word size requirements or other restrictions), regardless of whether the flash is internal or exter-
nal.
Note that the EXT_FLASH option is incompatible with the NVM_FLASH_WRITEONCE option. Targets that
need both these options must implement the sector-based read-modify-erase-write sequence at the
HAL layer.
For an example of using EXT_FLASH to bypass read restrictions, (in this case, the inability to read
from erased flash due to ECC errors) on a platform with write-once flash, see the infineon tricore
port(hal/aurix_tc3xx.c).

2.3.10.1 SPI devices In combination with the EXT_FLASH=1 configuration parameter, it is possible
to use a platform-specific SPI drivers, e.g. to access an external SPI flash memory. By compiling wolf-
Boot with themakefile option SPI_FLASH=1, the externalmemory is directlymapped to the additional
SPI layer, so the user does not have to define the ext_flash_* functions.
SPI functions, instead, must be defined. Example SPI drivers are available for multiple platforms in
the hal/spi directory.

COPYRIGHT ©2024 wolfSSL Inc. 12

2.3 Bootloader features 2 COMPILING WOLFBOOT

2.3.10.2 UART bridge towards neighbor systems Another alternative available to map external
devices consists in enabling a UART bridge towards a neighbor system. The neighbor system must
expose a service through the UART interface that is compatible with the wolfBoot protocol.
In the same way as for SPI devices, the ext_flash_* API is automatically defined by wolfBoot when
the option UART_FLASH=1 is used.
For more details, see the section Remote External flash memory support via UART

2.3.10.3 Encryption support for external partitions When update and swap partitions are
mapped to an external device using EXT_FLASH=1, either in combination with SPI_FLASH,
UART_FLASH, or any custom external mapping, it is possible to enable ChaCha20, Aes128 or
Aes256 encryption when accessing those partition from the bootloader. The update images must be
pre-encrypted at the source using the key tools, and wolfBoot should be instructed to use a temporary
ChaCha20 symmetric key to access the content of the updates.
For more details about this optional feature, please refer to the Encrypted external partitions section.

2.3.11 Executing flash access code from RAM

On some platform, flash access code requires to be executed from RAM, to avoid conflict e.g. when
writing to the same device where wolfBoot is executing, or when changing the configuration of the
flash itself.
Tomove all the code accessing the internal flash for writing, into a section in RAM, use the compile time
option RAM_CODE=1 (on some hardware configurations this is required for the bootloader to access
the flash for writing).

2.3.12 Enable Dual-bank hardware-assisted swapping

When supported by the target platform, hardware-assisted dual-bank swapping can be used to per-
form updates. To enable this functionality, use DUALBANK_SWAP=1. Currently, only STM32F76x and
F77x support this feature.

2.3.13 Store UPDATE partition flags in a sector in the BOOT partition

By default, wolfBoot keeps track of the status of the update procedure to the single sectors in a spe-
cific area at the end of each partition, dedicated to store and retrieve a set of flags associated to the
partition itself.
In some cases itmight be helpful to store the status flags related to theUPDATEpartition and its sectors
in the internal flash, alongside with the same set of flags used for the BOOT partition. By compiling
wolfBoot with the FLAGS_HOME=1 makefile option, the flags associated to the UPDATE partition are
stored in the BOOT partition itself.
While on one hand this option slightly reduces the space available in the BOOT partition to store the
firmware image, it keeps all the flags in the BOOT partition.

2.3.14 Flash Erase value / Flag logic inversion

By default, most NVMs set the content of erased pages to 0xFF (all ones).
Some FLASH memory models use inverted logic for erased page, setting the content to 0x00 (all ze-
roes) after erase.
For these special cases, the option FLAGS_INVERT = 1 can be used to modify the logic of the parti-
tion/sector flags used in wolfBoot.

COPYRIGHT ©2024 wolfSSL Inc. 13

2.3 Bootloader features 2 COMPILING WOLFBOOT

You can also manually override the fill bytes using FILL_BYTE= at build-time. It default to 0xFF, but
will use 0x00 if FLAGS_INVERT is set.
Note: if you are using an external FLASH (e.g. SPI) in combination with a flash with inverted logic,
ensure that you store all the flags in one partition, by using the FLAGS_HOME=1 option described above.

2.3.15 Using One-time programmable (OTP) flash as keystore

By default, keys are directly incorporated in the firmware image. To store the keys in a separate, one-
time programmable (OTP) flash memory, use the FLASH_OTP_KEYSTORE=1 option. For more informa-
tion, see Appendix C.

2.3.16 Prefer multi-sector flash erase operations

wolfBoot HAL flash erase function must be able to handle erase lengths larger than WOLF-
BOOT_SECTOR_SIZE, even if the underlying flash controller does not. However, in some cases,
wolfBoot defaults to iterating over a range of flash sectors and erasing them one at a time. Setting
the FLASH_MULTI_SECTOR_ERASE=1 config option prevents this behavior when possible, configuring
wolfBoot to instead prefer a single HAL flash erase invocation with a larger erase length versus the
iterative approach. On targets where multi-sector erases are more performant, this option can be
used to dramatically speed up the image swap procedure. ### Using Mac OS/X
If you see 0xC3 0xBF (C3BF) repeated in your factory.bin then your OS is using Unicode characters.
The “tr” command for assembling the 0xFF padding between "bootloader" ... 0xFF ... "ap-
plication" = factory.bin, which requires the “C” locale.
Set this in your terminal
LANG=
LC_COLLATE="C"
LC_CTYPE="C"
LC_MESSAGES="C"
LC_MONETARY="C"
LC_NUMERIC="C"
LC_TIME="C"
LC_ALL=

Then run the normal make steps.

COPYRIGHT ©2024 wolfSSL Inc. 14

3 TARGETS

3 Targets

This chapter describes configuration of supported targets.

3.1 Supported Targets
• Cortex-A53 / Raspberry PI 3
• Cypress PSoC-6
• Microchip SAME51
• Nordic nRF52840
• NXP LPC54xxx
• NXP iMX-RT
• NXP Kinetis
• NXP P1021 PPC
• NXP T1024 PPC
• NXP T2080 PPC
• NXP MCXA153
• SiFive HiFive1 RISC-V
• STM32F4
• STM32F7
• STM32L0
• STM32L4
• STM32L5
• STM32G0
• STM32C0
• STM32H5
• STM32H7
• STM32U5
• STM32WB55
• TI Hercules TMS570LC435
• Xilinx Zynq UltraScale
• Renesas RX65N
• Renesas RX72N
• Renesas RA6M4
• Renesas RZN2L
• Qemu x86-64 UEFI
• Intel x86-64 Intel FSP

3.2 STM32F4
Example 512KB partitioning on STM32-F407
The example firmware provided in the test-app is configured to boot from the primary partition
starting at address 0x20000. The flash layout is provided by the default example using the following
configuration in target.h:
#define WOLFBOOT_SECTOR_SIZE 0x20000
#define WOLFBOOT_PARTITION_SIZE 0x20000

#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x20000
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x40000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x60000
This results in the following partition configuration:

COPYRIGHT ©2024 wolfSSL Inc. 15

3.3 STM32L4 3 TARGETS

Figure 1: example partitions

This configuration demonstrates one of the possible layouts, with the slots aligned to the beginning
of the physical sector on the flash.
The entry point for all the runnable firmware images on this target will be 0x20100, 256 Bytes after
the beginning of the first flash partition. This is due to the presence of the firmware image header at
the beginning of the partition, as explained more in details in Firmware image
In this particular case, due to the flash geometry, the swap space must be as big as 128KB, to account
for proper sector swapping between the two images.
On other systems, the SWAP space can be as small as 512B, if multiple smaller flash blocks are used.
More information about the geometry of the flash and in-application programming (IAP) can be found
in the manufacturer manual of each target device.

3.2.1 STM32F4 Programming

st-flash write factory.bin 0x08000000

3.2.2 STM32F4 Debugging

1. Start GDB server
OpenOCD: openocd --file ./config/openocd/openocd_stm32f4.cfgOR ST-Link: st-util -p
3333

2. Start GDB Client
arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x20100
mon reset init
b main
c

3.3 STM32L4
Example 1MB partitioning on STM32L4

• Sector size: 4KB
• Wolfboot partition size: 40 KB
• Application partition size: 488 KB

#define WOLFBOOT_SECTOR_SIZE 0x1000 /* 4 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x0800A000

COPYRIGHT ©2024 wolfSSL Inc. 16

3.4 STM32L5 3 TARGETS

#define WOLFBOOT_PARTITION_SIZE 0x7A000 /* 488 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x08084000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x080FE000

3.4 STM32L5
3.4.1 Scenario 1: TrustZone Enabled

3.4.1.1 Example Description The implementation shows how to switch from secure application to
non-secure application, thanks to the system isolation performed, which splits the internal Flash and
internal SRAMmemories into two parts: - the first half is used by wolfboot running in securemode and
the secure application - the remaining available space is used for non-secure application and update
partition
The example configuration for this scenario is available in /config/examples/stm32l5.config.

3.4.1.2 Hardware and Software environment
• This example runs on STM32L562QEIxQ devices with security enabled (TZEN=1).
• This example has been tested with STMicroelectronics STM32L562E-DK (MB1373)
• User Option Bytes requirement (with STM32CubeProgrammer tool - see below for instructions)

TZEN = 1 System with TrustZone-M enabled
DBANK = 1 Dual bank mode
SECWM1_PSTRT=0x0 SECWM1_PEND=0x7F All 128 pages of internal Flash Bank1 set

as secure
SECWM2_PSTRT=0x1 SECWM2_PEND=0x0 No page of internal Flash Bank2 set as

secure, hence Bank2 non-secure

• NOTE: STM32CubeProgrammer V2.3.0 is required (v2.4.0 has a known bug for STM32L5)

3.4.1.3 How to use it
1. cp ./config/examples/stm32l5.config .config
2. make
3. Prepare board with option bytes configuration reported above

• STM32_Programmer_CLI -c port=swd mode=hotplug -ob TZEN=1 DBANK=1
• STM32_Programmer_CLI -c port=swd mode=hotplug -ob SECWM1_PSTRT=0x0
SECWM1_PEND=0x7F SECWM2_PSTRT=0x1 SECWM2_PEND=0x0

4. flash wolfBoot.bin to 0x0c00 0000
• STM32_Programmer_CLI -c port=swd -d ./wolfboot.bin 0x0C000000

5. flash .\test-app\image_v1_signed.bin to 0x0804 0000
• STM32_Programmer_CLI -c port=swd -d ./test-app/image_v1_signed.bin
0x08040000

6. RED LD9 will be on
• NOTE: STM32_Programmer_CLI Default Locations
• Windows: C:\Program Files\STMicroelectronics\STM32Cube\STM32CubeProgrammer
\bin\STM32_Programmer_CLI.exe

• Linux: /usr/local/STMicroelectronics/STM32Cube/STM32CubeProgrammer/bin
/STM32_Programmer_CLI

• Mac OS/X: /Applications/STMicroelectronics/STM32Cube/STM32CubeProgrammer
/STM32CubeProgrammer.app/Contents/MacOs/bin/STM32_Programmer_CLI

COPYRIGHT ©2024 wolfSSL Inc. 17

3.4 STM32L5 3 TARGETS

3.4.2 Scenario 2: Trustzone Enabled, wolfCrypt as secure engine for NS applications

This is similar to Scenario 1, but also includes wolfCrypt in secure mode, and that can be accessed via
PKCS11 interface by non-secure applications.
This option can be enabled with the WOLFCRYPT_TZ=1 and WOLFCRYPT_TZ_PKCS11=1 options in your
configuration. This enables a PKCS11 accessible from NS domain via non-secure callables (NSC).
The example configuration for this scenario is available in /config/examples/stm32l5-
wolfcrypt-tz.config.
For more information, see Appendix L.

3.4.3 Scenario 3: Trustzone Disabled, using DUAL BANK

3.4.3.1 Example Description The implementation shows how to use STM32L5xx in DUAL BANK
mode, with TrustZone disabled. TheDUAL_BANKoption is only available on this targetwhen TrustZone
is disabled (TZEN = 0).
The flash memory is segmented into two different banks:

• Bank 0: (0x08000000)
• Bank 1: (0x08040000)

Bank 0 contains the bootloader at address 0x08000000, and the application at address 0x08040000.
When a valid image is available at the same offset in Bank 1, a candidate is selected for booting be-
tween the two valid images. A firmware update can be uploaded at address 0x08048000.
The example configuration is available in/config/examples/stm32l5-nonsecure-dualbank.config.
To run flash ./test-app/image.bin to 0x08000000. - STM32_Programmer_CLI -c port=swd -d
./test-app/image.bin 0x08000000
Or program each partition using: 1. flash wolfboot.bin to 0x08000000: - STM32_Programmer_CLI
-c port=swd -d ./wolfboot.elf 2. flashmain application to 0x0800 a000 -STM32_Programmer_CLI
-c port=swd -d ./test-app/image_v1_signed.bin 0x0800a000
RED LD9 will be on indicating successful boot ().
Updates can be flashed at 0x0804a000:

• STM32_Programmer_CLI -c port=swd -d ./test-app/image_v2_signed.bin
0x0804a000

The two partition are logically remapped by using BANK_SWAP capabilities. This partition swap is
immediate and does not require a SWAP partition.

3.4.4 Debugging

Use make DEBUG=1 and reload firmware.
• STM32CubeIDE v.1.3.0 required
• Run the debugger via:

Linux:
ST-LINK_gdbserver -d -cp /opt/st/stm32cubeide_1.3.0/plugins/\
com.st.stm32cube.ide.mcu.externaltools.cubeprogrammer.\
linux64_1.3.0.202002181050/tools/bin -e -r 1 -p 3333

Mac OS/X:

COPYRIGHT ©2024 wolfSSL Inc. 18

3.5 STM32U5 3 TARGETS

sudo ln -s /Applications/STM32CubeIDE.app/Contents/Eclipse/plugins\
/com.st.stm32cube.ide.mcu.externaltools.\
stlink-gdb-server.macos64_1.6.0.202101291314/\
tools/bin/native/mac_x64/libSTLinkUSBDriver.dylib \
/usr/local/lib/libSTLinkUSBDriver.dylib

/Applications/STM32CubeIDE.app/Contents/Eclipse/plugins/\
com.st.stm32cube.ide.mcu.externaltools.\
stlink-gdb-server.macos64_1.6.0.202101291314/tools/bin/\
ST-LINK_gdbserver -d -cp ./Contents/Eclipse/plugins/\
com.st.stm32cube.ide.mcu.externaltools.cubeprogrammer.\
macos64_1.6.0.202101291314/tools/bin -e -r 1 -p 3333

• Connect with arm-none-eabi-gdb
wolfBoot has a .gdbinit to configure
arm-none-eabi-gdb
add-symbol-file test-app/image.elf
mon reset init

3.5 STM32U5
The STM32U5 is a Cortex-M33 (ARMv8-M).
Note: We have seen issues with vector table alignment, so the default image header size (IM-
AGE_HEADER_SIZE) has been increased to 1024 bytes to avoid potential issues.

3.5.1 Scenario 1: TrustZone enabled, staging non-secure application

3.5.1.1 Example description The implementation shows how to switch from secure application to
non-secure application, thanks to the system isolation performed, which splits the internal Flash and
internal SRAM memories into two parts: - the first 256KB are used by wolfboot running in secure
mode and the secure application - the remaining available space is used for non-secure application
and update partition
The example configuration for this scenario is available in /config/examples/stm32u5.config.

3.5.1.2 Example Description The implementation shows how to switch from secure application to
non-secure application, thanks to the system isolation performed, which splits the internal Flash and
internal SRAM memories into two parts: - the first half for secure application - the second half for
non-secure application

3.5.1.3 Hardware and Software environment
• This example runs on STM32U585AII6Q devices with security enabled (TZEN=1).
• This example has been tested with STMicroelectronics B-U585I-IOT02A (MB1551)
• User Option Bytes requirement (with STM32CubeProgrammer tool - see below for instructions)

TZEN = 1 System with TrustZone-M enabled
DBANK = 1 Dual bank mode
SECWM1_PSTRT=0x0 SECWM1_PEND=0x7F All 128 pages of internal Flash Bank1 set

as secure
SECWM2_PSTRT=0x1 SECWM2_PEND=0x0 No page of internal Flash Bank2 set as

secure, hence Bank2 non-secure

• NOTE: STM32CubeProgrammer V2.8.0 or newer is required

COPYRIGHT ©2024 wolfSSL Inc. 19

3.5 STM32U5 3 TARGETS

3.5.1.4 How to use it
1. cp ./config/examples/stm32u5.config .config
2. make TZEN=1
3. Prepare board with option bytes configuration reported above

• STM32_Programmer_CLI -c port=swd mode=hotplug -ob TZEN=1 DBANK=1
• STM32_Programmer_CLI -c port=swd mode=hotplug -ob SECWM1_PSTRT=0x0
SECWM1_PEND=0x7F SECWM2_PSTRT=0x1 SECWM2_PEND=0x0

4. flash wolfBoot.bin to 0x0c000000
• STM32_Programmer_CLI -c port=swd -d ./wolfboot.bin 0x0C000000

5. flash .\test-app\image_v1_signed.bin to 0x08010000
• STM32_Programmer_CLI -c port=swd -d ./test-app/image_v1_signed.bin
0x08100000

6. RED LD9 will be on
• NOTE: STM32_Programmer_CLI Default Locations
• Windows: C:\Program Files\STMicroelectronics\STM32Cube\STM32CubeProgrammer
\bin\STM32_Programmer_CLI.exe

• Linux: /usr/local/STMicroelectronics/STM32Cube/STM32CubeProgrammer/bin
/STM32_Programmer_CLI

• Mac OS/X: /Applications/STMicroelectronics/STM32Cube/STM32CubeProgrammer
/STM32CubeProgrammer.app/Contents/MacOs/bin/STM32_Programmer_CLI

3.5.2 Scenario 2: TrustZone Enabled, wolfCrypt as secure engine for NS applications

This is similar to Scenario 1, but also includes wolfCrypt in secure mode, and that can be accessed via
PKCS11 interface by non-secure applications.
This option can be enabled with the WOLFCRYPT_TZ=1 and WOLFCRYPT_TZ_PKCS11=1 options in your
configuration. This enables a PKCS11 accessible from NS domain via non-secure callables (NSC).
The example configuration for this scenario is available in /config/examples/stm32u5-
wolfcrypt-tz.config.
For more information, see Appendix L.

3.5.3 Scenario 3: TrustZone Disabled (DUAL BANK mode)

3.5.3.1 Example Description The implementation shows how to use STM32U5xx in DUAL_BANK
mode, with TrustZone disabled. TheDUAL_BANKoption is only available on this targetwhen TrustZone
is disabled (TZEN = 0).
The flash memory is segmented into two different banks:

• Bank 0: (0x08000000)
• Bank 1: (0x08100000)

Bank 0 contains the bootloader at address 0x08000000, and the application at address 0x08100000.
When a valid image is available at the same offset in Bank 1, a candidate is selected for booting be-
tween the two valid images. A firmware update can be uploaded at address 0x08108000.
The example configuration is available inconfig/examples/stm32u5-nonsecure-dualbank.config.
Program each partition using: 1. flash wolfboot.bin to 0x08000000: - STM32_Programmer_CLI -
c port=swd -d ./wolfboot.bin 0x08000000 2. flash image_v1_signed.bin to 0x08008000 -
STM32_Programmer_CLI -c port=swd -d ./test-app/image_v1_signed.bin 0x08008000
RED LD9 will be on indicating successful boot ()

COPYRIGHT ©2024 wolfSSL Inc. 20

3.6 STM32L0 3 TARGETS

3.5.4 Debugging

Use make DEBUG=1 and reload firmware.
• STM32CubeIDE v.1.7.0 required
• Run the debugger via:

Linux:
ST-LINK_gdbserver -d -cp /opt/st/stm32cubeide_1.3.0/plugins/\
com.st.stm32cube.ide.mcu.externaltools.\
cubeprogrammer.linux64_1.3.0.202002181050/tools/bin -e -r 1 -p 3333`

Max OS/X:
/Applications/STM32CubeIDE.app/Contents/Eclipse/plugins/\
com.st.stm32cube.ide.mcu.externaltools.\
stlink-gdb-server.macos64_2.1.300.202403291623/tools/bin/\
ST-LINK_gdbserver -d -cp /Applications/STM32CubeIDE.app/\
Contents/Eclipse/plugins/com.st.stm32cube.ide.mcu.\
externaltools.cubeprogrammer.macos64_2.1.201.202404072231/tools/\
bin -e -r 1 -p 3333
Win:
ST-LINK_gdbserver -d -cp C:\ST\STM32CubeIDE_1.7.0\ ^
STM32CubeIDE\plugins\com.st.stm32cube.ide.mcu.externaltools. ^
cubeprogrammer.win32_2.0.0.202105311346\tools\bin -e -r 1 -p 3333`

• Connect with arm-none-eabi-gdb or gdb-multiarch
wolfBoot has a .gdbinit to configure
add-symbol-file test-app/image.elf

3.6 STM32L0
Example 192KB partitioning on STM32-L073
This device is capable of erasing single flash pages (256B each).
However, we choose to use a logic sector size of 4KB for the swaps, to limit the amount of writes to
the swap partition.
The proposed geometry in this example target.h uses 32KB for wolfBoot, and two partitions of 64KB
each, leaving room for up to 8KB to use for swap (4K are being used here).
#define WOLFBOOT_SECTOR_SIZE 0x1000 /* 4 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x8000
#define WOLFBOOT_PARTITION_SIZE 0x10000 /* 64 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x18000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x28000

3.6.1 STM32L0 Building

Use make TARGET=stm32l0. The option CORTEX_M0 is automatically selected for this target.

COPYRIGHT ©2024 wolfSSL Inc. 21

3.7 STM32G0 3 TARGETS

3.7 STM32G0
Supports STM32G0x0x0/STM32G0x1.
Example 128KB partitioning on STM32-G070:

• Sector size: 2KB
• Wolfboot partition size: 32KB
• Application partition size: 44 KB

#define WOLFBOOT_SECTOR_SIZE 0x800 /* 2 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x08008000
#define WOLFBOOT_PARTITION_SIZE 0xB000 /* 44 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x08013000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x0801E000

3.7.1 Building STM32G0

Reference configuration (see /config/examples/stm32g0.config). You can copy this to wolfBoot
root as .config: cp ./config/examples/stm32g0.config .config. To build you can use make.
The TARGET for this is stm32g0: make TARGET=stm32g0. The option CORTEX_M0 is automatically
selected for this target. The option NVM_FLASH_WRITEONCE=1 is mandatory on this target, since the
IAP driver does not support multiple writes after each erase operation.

3.7.1.1 STM32G0 SecureHide Protection Feature (Optional) This part supports a “securememory
protection” feature makes the wolfBoot partition unaccessible after jump to application.
It uses the FLASH_CR:SEC_PROT and FLASH_SECT:SEC_SIZE registers. This is the number of 2KB
pages to block access to from the 0x8000000 base address.
Command example to enable this for 32KB bootloader:
STM32_Programmer_CLI -c port=swd mode=hotplug -ob SEC_SIZE=0x10

Enabledwith CFLAGS_EXTRA+=-DFLASH_SECURABLE_MEMORY_SUPPORT. Requires RAM_CODE=1 to en-
able RAMFUNCTION support.

3.7.2 STM32G0 Programming

Compile requirements: make TARGET=stm32g0 NVM_FLASH_WRITEONCE=1
Theoutput is a singlefactory.bin that includeswolfboot.bin andtest-app/image_v1_signed.bin
combined together. This should be programmed to the flash start address 0x08000000.
Flash using the STM32CubeProgrammer CLI:
STM32_Programmer_CLI -c port=swd -d factory.bin 0x08000000

3.7.3 STM32G0 Debugging

Use make DEBUG=1 and program firmware again.
Start GDB server on port 3333:
ST-LINK_gdbserver -d -e -r 1 -p 3333
OR
st-util -p 3333

wolfBoot has a .gdbinit to configure GDB

COPYRIGHT ©2024 wolfSSL Inc. 22

3.8 STM32C0 3 TARGETS

arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x08008100
mon reset init

3.8 STM32C0
Supports STM32C0x0/STM32C0x1. Instructions are for the STM Nucleo-C031C6 dev board.
Tested build configurations: *With RSA2048 and SHA2-256 the code size is 10988 and it boots in under
1 second. *With ED25519 and SHA2-384 the code size is 10024 and takes about 10 seconds for the LED
to turn on. * With LMS-8-10-1 and SHA2-256 the code size is 8164 on gcc-13 (could fit in 8KB partition)

3.8.1 Example 32KB partitioning on STM32-G070

with ED25519 or LMS-8-10-1:
• Sector size: 2KB
• Wolfboot partition size: 10KB
• Application partition size: 10 KB
• Swap size 2KB

#define WOLFBOOT_SECTOR_SIZE 0x800 /* 2 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x08002800 /* at 10KB */
#define WOLFBOOT_PARTITION_SIZE 0x2800 /* 10 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x08005000 /* at 20KB */
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x08007800 /* at 30KB */
with RSA2048:

• Sector size: 2KB
• Wolfboot partition size: 12KB
• Application partition size: 8 KB
• Swap size 2KB

#define WOLFBOOT_SECTOR_SIZE 0x800 /* 2 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x08003000 /* at 12KB */
#define WOLFBOOT_PARTITION_SIZE 0x2000 /* 8 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x08005000 /* at 20KB */
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x08007800 /* at 30KB */

3.8.2 Building STM32C0

Reference configurationfiles (seeconfig/examples/stm32c0.config, config/examples/stm32c0-
rsa2048.config and config/examples/stm32c0-lms-8-10-1.config).
You can copy one of these to wolfBoot root as .config: cp ./config/examples/stm32c0.config
.config. To build you can use make.
The TARGET for this is stm32c0: make TARGET=stm32c0. The option CORTEX_M0 is automatically
selected for this target. The option NVM_FLASH_WRITEONCE=1 is mandatory on this target, since the
IAP driver does not support multiple writes after each erase operation.

3.8.2.1 STM32C0 SecureHide Protection Feature (Optional) This part supports a “securememory
protection” feature makes the wolfBoot partition unaccessible after jump to application.
It uses the FLASH_CR:SEC_PROT and FLASH_SECT:SEC_SIZE registers. This is the number of 2KB
pages to block access to from the 0x8000000 base address.

COPYRIGHT ©2024 wolfSSL Inc. 23

3.9 STM32WB55 3 TARGETS

Command example to enable this for 10KB bootloader:
STM32_Programmer_CLI -c port=swd mode=hotplug -ob SEC_SIZE=0x05

Enabledwith CFLAGS_EXTRA+=-DFLASH_SECURABLE_MEMORY_SUPPORT. Requires RAM_CODE=1 to en-
able RAMFUNCTION support.

3.8.3 STM32C0 Programming

Compile requirements: make TARGET=stm32c0 NVM_FLASH_WRITEONCE=1
Theoutput is a singlefactory.bin that includeswolfboot.bin andtest-app/image_v1_signed.bin
combined together. This should be programmed to the flash start address 0x08000000.
Flash using the STM32CubeProgrammer CLI:
STM32_Programmer_CLI -c port=swd -d factory.bin 0x08000000

3.8.4 STM32C0 Debugging

Use make DEBUG=1 and program firmware again.
Start GDB server on port 3333:
ST-LINK_gdbserver -d -e -r 1 -p 3333
OR
st-util -p 3333

wolfBoot has a .gdbinit to configure GDB
arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x08008100
mon reset init

3.9 STM32WB55
Example partitioning on Nucleo-68 board:

• Sector size: 4KB
• Wolfboot partition size: 32 KB
• Application partition size: 128 KB

#define WOLFBOOT_SECTOR_SIZE 0x1000 /* 4 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x8000
#define WOLFBOOT_PARTITION_SIZE 0x20000 /* 128 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x28000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x48000

3.9.1 STM32WB55 Building

Use make TARGET=stm32wb.
The option NVM_FLASH_WRITEONCE=1 is mandatory on this target, since the IAP driver does not sup-
port multiple writes after each erase operation.
Compile with:
make TARGET=stm32wb NVM_FLASH_WRITEONCE=1

COPYRIGHT ©2024 wolfSSL Inc. 24

3.10 SiFive HiFive1 RISC-V 3 TARGETS

3.9.2 STM32WB55 with OpenOCD

openocd --file ./config/openocd/openocd_stm32wbx.cfg
telnet localhost 4444
reset halt
flash write_image unlock erase factory.bin 0x08000000
flash verify_bank 0 factory.bin
reset

3.9.3 STM32WB55 with ST-Link

git clone https://github.com/stlink-org/stlink.git
cd stlink
cmake .
make
sudo make install

st-flash write factory.bin 0x08000000

Start GDB server
st-util -p 3333

3.9.4 STM32WB55 Debugging

Use make DEBUG=1 and reload firmware.
wolfBoot has a .gdbinit to configure
arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x08008100
mon reset init

3.10 SiFive HiFive1 RISC-V
3.10.1 Features

• E31 RISC-V 320MHz 32-bit processor
• Onboard 16KB scratchpad RAM
• External 4MB QSPI Flash

3.10.2 Default Linker Settings

• FLASH: Address 0x20000000, Len 0x6a120 (424 KB)
• RAM: Address 0x80000000, Len 0x4000 (16 KB)

3.10.3 Stock bootloader

Start Address: 0x20000000 is 64KB. Provides a “double tap” reset feature to halt boot and allow debug-
ger to attach for reprogramming. Press reset button, when green light comes on press reset button
again, then board will flash red.

3.10.4 Application Code

Start Address: 0x20010000

COPYRIGHT ©2024 wolfSSL Inc. 25

3.10 SiFive HiFive1 RISC-V 3 TARGETS

3.10.5 wolfBoot configuration

The default wolfBoot configuration will add a second stage bootloader, leaving the stock “double tap”
bootloader as a fallback for recovery. Your production implementation should replace this and parti-
tion addresses in target.h will need updated, so they are 0x10000 less.
To set the Freedom SDK location use FREEDOM_E_SDK=~/src/freedom-e-sdk.
For testing wolfBoot here are the changes required:

1. Makefile arguments:
• ARCH=RISCV
• TARGET=hifive1

make ARCH=RISCV TARGET=hifive1 RAM_CODE=1 clean
make ARCH=RISCV TARGET=hifive1 RAM_CODE=1

If using the riscv64-unknown-elf- cross compiler you can add CROSS_COMPILE=riscv64-
unknown-elf- to your make or modify arch.mk as follows:
ifeq ($(ARCH),RISCV)
- CROSS_COMPILE:=riscv32-unknown-elf-
+ CROSS_COMPILE:=riscv64-unknown-elf-

2. include/target.h
Bootloader Size: 0x10000 (64KB) Application Size 0x40000 (256KB) Swap Sector Size: 0x1000 (4KB)
#define WOLFBOOT_SECTOR_SIZE 0x1000
#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x20020000

#define WOLFBOOT_PARTITION_SIZE 0x40000
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x20060000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x200A0000

3.10.6 Build Options

• To use ECC instead of ED25519 use make argument SIGN=ECC256
• To output wolfboot as hex for loading with JLink use make argument wolfboot.hex

3.10.7 Loading

Loading with JLink:
JLinkExe -device FE310 -if JTAG -speed 4000 -jtagconf -1,-1 -autoconnect 1
loadbin factory.bin 0x20010000
rnh

3.10.8 Debugging

Debugging with JLink:
In one terminal: JLinkGDBServer -device FE310 -port 3333
In another terminal:
riscv64-unknown-elf-gdb wolfboot.elf -ex "set remotetimeout 240" -ex "target

extended-remote localhost:3333"
add-symbol-file test-app/image.elf 0x20020100

COPYRIGHT ©2024 wolfSSL Inc. 26

3.11 STM32F7 3 TARGETS

3.11 STM32F7
The STM32-F76x and F77x offer dual-bank hardware-assisted swapping. The flash geometry must
be defined beforehand, and wolfBoot can be compiled to use hardware assisted bank-swapping to
perform updates.
Example 2MB partitioning on STM32-F769:

• Dual-bank configuration
BANK A: 0x08000000 to 0x080FFFFFF (1MB) BANK B: 0x08100000 to 0x081FFFFFF (1MB)

• WolfBoot executes from BANK A after reboot (address: 0x08000000)
• Boot partition @ BANK A + 0x20000 = 0x08020000
• Update partition @ BANK B + 0x20000 = 0x08120000
• Application entry point: 0x08020100

#define WOLFBOOT_SECTOR_SIZE 0x20000
#define WOLFBOOT_PARTITION_SIZE 0x40000

#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x08020000
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x08120000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x0 /* Unused, swap is hw-assisted

*/↪

3.11.1 Build Options

To activate the dual-bank hardware-assisted swap feature on STM32F76x/77x, use the DUAL-
BANK_SWAP=1 compile time option. Some code requires to run in RAM during the swapping of the
images, so the compile-time option RAMCODE=1 is also required in this case.
Dual-bank STM32F7 build can be built using:
make TARGET=stm32f7 DUALBANK_SWAP=1 RAM_CODE=1

3.11.2 Loading the firmware

To switch between single-bank (1x2MB) and dual-bank (2 x 1MB) mode mapping, this stm32f7-
dualbank-tool can be used. Before starting openocd, switch the flash mode to dualbank (e.g. via make
dualbank using the dualbank tool).
OpenOCD configuration for flashing/debugging, can be copied into openocd.cfg in your working
directory:
source [find interface/stlink.cfg]
source [find board/stm32f7discovery.cfg]
$_TARGETNAME configure -event reset-init {

mmw 0xe0042004 0x7 0x0
}
init
reset
halt

OpenOCD can be either run in background (to allow remote GDB and monitor terminal connections),
or directly from command line, to execute terminal scripts.
If OpenOCD is running, local TCP port 4444 can be used to access an interactive terminal prompt.
telnet localhost 4444

COPYRIGHT ©2024 wolfSSL Inc. 27

https://github.com/danielinux/stm32f7-dualbank-tool
https://github.com/danielinux/stm32f7-dualbank-tool

3.12 STM32H5 3 TARGETS

Using the following openocd commands, the initial images for wolfBoot and the test application are
loaded to flash in bank 0:
flash write_image unlock erase wolfboot.bin 0x08000000
flash verify_bank 0 wolfboot.bin
flash write_image unlock erase test-app/image_v1_signed.bin 0x08020000
flash verify_bank 0 test-app/image_v1_signed.bin 0x20000
reset
resume 0x0000001

To sign the same application image as new version (2), use the sign tool provided:
tools/keytools/sign test-app/image.bin wolfboot_signing_private_key.der 2

From OpenOCD, the updated image (version 2) can be flashed to the second bank:
flash write_image unlock erase test-app/image_v2_signed.bin 0x08120000
flash verify_bank 0 test-app/image_v1_signed.bin 0x20000

Upon reboot, wolfboot will elect the best candidate (version 2 in this case) and authenticate the image.
If the accepted candidate image resides on BANK B (like in this case), wolfBoot will perform one bank
swap before booting.
The bank-swap operation is immediate and a SWAP image is not required in this case. Fallback mech-
anism can rely on a second choice (older firmware) in the other bank.

3.11.3 STM32F7 Debugging

Debugging with OpenOCD:
Use the OpenOCD configuration from the previous section to run OpenOCD.
From another console, connect using gdb, e.g.:
arm-none-eabi-gdb
(gdb) target remote:3333

3.12 STM32H5
Like STM32L5 and STM32U5, STM32H5 support is also demonstrated through different scenarios.
Additionally, wolfBoot can be compiled with FLASH_OTP_KEYSTORE option, to store the public key(s)
used for firmware authentication into a dedicated, one-time programmable flash area that can be
write protected. For more information, see Appendix C.

3.12.1 Scenario 1: TrustZone enabled, staging non-secure application

3.12.1.1 Example description The implementation shows how to switch from secure application
to non-secure application, thanks to the system isolation performed, which splits the internal Flash
and internal SRAM memories into two parts: - the first 256KB are used by wolfboot running in secure
mode and the secure application - the remaining available space is used for non-secure application
and update partition
The example configuration for this scenario is available in /config/examples/stm32h5.config.

COPYRIGHT ©2024 wolfSSL Inc. 28

3.12 STM32H5 3 TARGETS

3.12.1.2 How to use it
• set the option bytes to enable trustzone:

STM32_Programmer_CLI -c port=swd -ob TZEN=0xB4
• set the option bytes to enable flash secure protection of first 256KB: STM32_Programmer_CLI
-c port=swd -ob SECWM1_PSTRT=0x0 SECWM1_PEND=0x1F SECWM2_PSTRT=0x1F
SECWM2_PEND=0x0

• flash the wolfboot image to the secure partition: STM32_Programmer_CLI -c port=swd -d
wolfboot.bin 0x0C000000

• flash the application image to the non-secure partition: STM32_Programmer_CLI -c port=swd
-d test-app/image_v1_signed.bin 0x08040000

For a full list of all the option bytes tested with this configuration, refer to Appendix L.

3.12.2 Scenario 2: TrustZone Enabled, wolfCrypt as secure engine for NS applications

This is similar to Scenario 1, but also includes wolfCrypt in secure mode, and that can be accessed via
PKCS11 interface by non-secure applications.
This option can be enabled with the WOLFCRYPT_TZ=1 and WOLFCRYPT_TZ_PKCS11=1 options in your
configuration. This enables a PKCS11 accessible from NS domain via non-secure callables (NSC).
The example configuration for this scenario is available in /config/examples/stm32h5-tz.config.
For more information, see Appendix L.

3.12.3 Scenario 3: DUALBANK mode

The STM32H5 can be configured to use hardware-assisted bank swapping to facilitate the update. The
configuration file to copy into .config is config/examples/stm32h5-dualbank.config.
For DUALBANK with TrustZone use stm32h5-tz-dualbank-otp.config.
DUALBANK configuration (Tested on NUCLEO-STM32H563ZI):
BANK A: 0x08000000 to 0x080FFFFFF (1MB) BANK B: 0x08100000 to 0x081FFFFFF (1MB)
First of all, ensure that the SWAP_BANK option byte is off when running wolfBoot for the first time:
STM32_Programmer_CLI -c port=swd -ob SWAP_BANK=0

It is a good idea to start with an empty flash, by erasing all sectors via:
STM32_Programmer_CLI -c port=swd -e 0 255

Compile wolfBoot with make. The file factory.bin contains both wolfboot and the version 1
of the application, and can be uploaded to the board at the beginning of the first bank using
STM32_Programmer_CLI tool:
STM32_Programmer_CLI -c port=swd -d factory.bin 0x08000000

Optionally, you can upload another copy of wolfboot.bin to the beginning of the second bank. Wolf-
boot should take care of copying itself to the second bank upon first boot if you don’t.:
STM32_Programmer_CLI -c port=swd -d wolfboot.bin 0x08100000

COPYRIGHT ©2024 wolfSSL Inc. 29

3.13 STM32H7 3 TARGETS

After uploading the images, reboot your board. The green LED should indicate that v1 of the test
application is running.
To initiate an update, sign a new version of the app and upload the v3 to the update partition on the
second bank:
tools/keytools/sign --ecc256 test-app/image.bin wolfboot_signing_private_key.

der 3
STM32_Programmer_CLI -c port=swd -d test-app/image_v3_signed.bin 0x08110000

Reboot the board to initiate an update via DUALBANK hw-assisted swap. Any version except the first
one will also turn on the orange LED.

3.13 STM32H7
The STM32H7 flash geometry must be defined beforehand.
Use the “make config” operation to generate a .config file or copy the template using cp ./con-
fig/examples/stm32h7.config .config.
Example 2MB partitioning on STM32-H753:
WOLFBOOT_SECTOR_SIZE?=0x20000
WOLFBOOT_PARTITION_SIZE?=0xD0000
WOLFBOOT_PARTITION_BOOT_ADDRESS?=0x8020000
WOLFBOOT_PARTITION_UPDATE_ADDRESS?=0x80F0000
WOLFBOOT_PARTITION_SWAP_ADDRESS?=0x81C0000

3.13.1 Build Options

The STM32H7 build can be built using:
make TARGET=stm32h7 SIGN=ECC256

The STM32H7 also supports using the QSPI for external flash. To enable use QSPI_FLASH=1 in your
configuration. The pins are defined in hal/spi/spi_drv_stm32.h. A built-in alternate pin config-
uration can be used with QSPI_ALT_CONFIGURATION. The flash and QSPI parameters are defined in
src/qspi_flash.c and can be overridden at build time.

3.13.2 STM32H7 Programming

ST-Link Flash Tools:
st-flash write factory.bin 0x08000000

OR
st-flash write wolfboot.bin 0x08000000
st-flash write test-app/image_v1_signed.bin 0x08020000

3.13.3 STM32H7 Testing

To sign the same application image as new version (2), use the sign tool
Python:
tools/keytools/sign --ecc256 --sha256 \
test-app/image.bin wolfboot_signing_private_key.der 2

COPYRIGHT ©2024 wolfSSL Inc. 30

3.14 NXP LPC54xxx 3 TARGETS

C Tool:
tools/keytools/sign --ecc256 --sha256 \
test-app/image.bin wolfboot_signing_private_key.der 2

Flash the updated version 2 image: st-flash write test-app/image_v2_signed.bin
0x08120000
Upon reboot, wolfboot will elect the best candidate (version 2 in this case) and authenticate the image.
If the accepted candidate image resides on BANK B (like in this case), wolfBoot will perform one bank
swap before booting.

3.13.4 STM32H7 Debugging

1. Start GDB server
ST-Link: st-util -p 3333
ST-Link: ST-LINK_gdbserver -d -e -r 1 -p 3333
Mac OS:
/Applications/STM32CubeIDE.app/Contents/Eclipse/plugins/\
com.st.stm32cube.ide.mcu.externaltools.stlink-gdb-server.\
macos64_2.0.300.202203231527/tools/bin/\
ST-LINK_gdbserver -d -cp /Applications/STM32CubeIDE.app/\
Contents/Eclipse/plugins/com.st.stm32cube.ide.mcu.\
externaltools.cubeprogrammer.macos64_2.0.200.202202231230/tools/\
bin -e -r 1 -p 3333

2. Start GDB Client from wolfBoot root:
arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x08020000
mon reset init
b main
c

3.14 NXP LPC54xxx
3.14.1 Build Options

The LPC54xxx build can be obtained by specifying the CPU type and the MCUXpresso SDK path at
compile time.
The following configuration has been tested against LPC54606J512BD208:
make TARGET=lpc SIGN=ECC256 MCUXPRESSO?=/path/to/LPC54606J512/SDK

MCUXPRESSO_CPU?=LPC54606J512BD208 \
MCUXPRESSO_DRIVERS?=$(MCUXPRESSO)/devices/LPC54606 \
MCUXPRESSO_CMSIS?=$(MCUXPRESSO)/CMSIS

3.14.2 Loading the firmware

Loading with JLink (example: LPC54606J512)
JLinkExe -device LPC606J512 -if SWD -speed 4000
erase
loadbin factory.bin 0

COPYRIGHT ©2024 wolfSSL Inc. 31

3.15 Cortex-A53 / Raspberry PI 3 (experimental) 3 TARGETS

r
h

3.14.3 Debugging with JLink

JLinkGDBServer -device LPC606J512 -if SWD -speed 4000 -port 3333

Then, from another console:
arm-none-eabi-gdb wolfboot.elf -ex "target remote localhost:3333"
(gdb) add-symbol-file test-app/image.elf 0x0000a100

3.15 Cortex-A53 / Raspberry PI 3 (experimental)
Tested using https://github.com/raspberrypi/linux on Ubuntu 20
Prerequisites: sudo apt install gcc-aarch64-linux-gnu qemu-system-aarch64

3.15.1 Compiling the kernel

• Get raspberry-pi linux kernel:
git clone https://github.com/raspberrypi/linux linux-rpi -b rpi-4.19.y --depth

=1

• Build kernel image:
export wolfboot_dir=`pwd`
cd linux-rpi
patch -p1 < $wolfboot_dir/tools/wolfboot-rpi-devicetree.diff
make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- bcmrpi3_defconfig
make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

• Copy Image and .dtb to the wolfboot directory
cp ./arch/arm64/boot/Image arch/arm64/boot/dts/broadcom/bcm2710-rpi-3-b.dtb

$wolfboot_dir
cd $wolfboot_dir

3.15.2 Testing with qemu-system-aarch64

• Build wolfboot using the example configuration (RSA4096, SHA3)
cp config/examples/raspi3.config .config
make clean
make wolfboot.bin CROSS_COMPILE=aarch64-linux-gnu-

• Sign Linux kernel image
make keytools
./tools/keytools/sign --rsa4096 --sha3 Image wolfboot_signing_private_key.der

1

• Compose the image

COPYRIGHT ©2024 wolfSSL Inc. 32

3.16 Xilinx Zynq UltraScale 3 TARGETS

tools/bin-assemble/bin-assemble wolfboot_linux_raspi.bin 0x0 wolfboot.bin \
0xc0000 Image_v1_signed.bin

dd if=bcm2710-rpi-3-b.dtb of=wolfboot_linux_raspi.bin bs=1 seek=128K conv=
notrunc

• Test boot using qemu
qemu-system-aarch64 -M raspi3b -m 1024 -serial stdio -kernel

wolfboot_linux_raspi.bin -cpu cortex-a53

3.15.3 Testing with kernel encryption

The raspberry pi target is used to demonstrate the end-to-end encryption when booting images from
RAM. The image is encrypted after being signed. The bootloader uses the same symmetric key to
decrypt the image to RAM before performing the validity checks. Here are the steps to enable this
feature:

• Build wolfboot using the example configuration (RSA4096, SHA3, ENCRYPT=1)
cp config/examples/raspi3-encrypted.config .config
make clean
make wolfboot.bin CROSS_COMPILE=aarch64-linux-gnu-

• Create the decrypt key + nonce
printf "0123456789abcdef0123456789abcdef0123456789ab" > /tmp/enc_key.der

• Sign and encrypt Linux kernel image
make keytools
./tools/keytools/sign --aes256 --encrypt /tmp/enc_key.der --rsa4096 --sha3

Image wolfboot_signing_private_key.der 1

• Compose the image
tools/bin-assemble/bin-assemble wolfboot_linux_raspi.bin 0x0 wolfboot.bin \

0xc0000 Image_v1_signed_and_encrypted.bin
dd if=bcm2710-rpi-3-b.dtb of=wolfboot_linux_raspi.bin bs=1 seek=128K conv=

notrunc

• Test boot using qemu
qemu-system-aarch64 -M raspi3b -m 1024 -serial stdio -kernel

wolfboot_linux_raspi.bin -cpu cortex-a53

3.16 Xilinx Zynq UltraScale
Xilinx UltraScale+ ZCU102 (Aarch64)
Build configuration options (.config):
TARGET=zynq
ARCH=AARCH64
SIGN=RSA4096
HASH=SHA3

COPYRIGHT ©2024 wolfSSL Inc. 33

3.17 Cypress PSoC-6 3 TARGETS

3.16.1 QNX

cd ~
source qnx700/qnxsdp-env.sh
cd wolfBoot
cp ./config/examples/zynqmp.config .config
make clean
make CROSS_COMPILE=aarch64-unknown-nto-qnx7.0.0-

3.16.1.1 Debugging qemu-system-aarch64 -M raspi3 -kernel /path/to/wolfboot/fac-
tory.bin -serial stdio -gdb tcp::3333 -S

3.16.1.2 Signing tools/keytools/sign --rsa4096 --sha3 /srv/linux-rpi4/vmlinux.bin
wolfboot_signing_private_key.der 1

3.17 Cypress PSoC-6
The Cypress PSoC 62S2 is a dual-core Cortex-M4 & Cortex-M0+ MCU. The secure boot process is man-
aged by the M0+. WolfBoot can be compiled as second stage flash bootloader to manage application
verification and firmware updates.

3.17.1 Building

The following configuration has been tested using PSoC 62S2 Wi-Fi BT Pioneer Kit (CY8CKIT-052S2-
43012).

3.17.1.1 Target specific requirements wolfBoot uses the following components to access periph-
erals on the PSoC:

• Cypress Core Library
• PSoC 6 Peripheral Driver Library
• CY8CKIT-062S2-43012 BSP

Cypress provides a customized OpenOCD for programming the flash and debugging.

3.17.2 Clock settings

wolfBoot configures PLL1 to run at 100 MHz and is driving CLK_FAST, CLK_PERI, and CLK_SLOW at
that frequency.

3.17.2.1 Build configuration The following configuration has been tested on the PSoC CY8CKIT-
62S2-43012:
make TARGET=psoc6 \

NVM_FLASH_WRITEONCE=1 \
CYPRESS_PDL=./lib/psoc6pdl \
CYPRESS_TARGET_LIB=./lib/TARGET_CY8CKIT-062S2-43012 \
CYPRESS_CORE_LIB=./lib/core-lib \
WOLFBOOT_SECTOR_SIZE=4096

Note: A reference .config can be found in /config/examples/cypsoc6.config.
Hardware acceleration is enable by default using psoc6 crypto hw support.
To compile with hardware acceleration disabled, use the option

COPYRIGHT ©2024 wolfSSL Inc. 34

https://github.com/cypresssemiconductorco/core-lib
https://github.com/cypresssemiconductorco/psoc6pdl
https://github.com/cypresssemiconductorco/TARGET_CY8CKIT-062S2-43012
https://github.com/cypresssemiconductorco/Openocd

3.18 Microchip SAME51 3 TARGETS

PSOC6_CRYPTO=0
in your wolfBoot configuration.

3.17.2.2 OpenOCD installation Compile and install the customized OpenOCD.
Use the following configuration file when running openocd to connect to the PSoC6 board:
openocd.cfg for PSoC-62S2

source [find interface/kitprog3.cfg]
transport select swd
adapter speed 1000
source [find target/psoc6_2m.cfg]
init
reset init

3.17.3 Loading the firmware

To upload factory.bin to the device with OpenOCD, connect the device, run OpenOCD with the
configuration from the previous section, then connect to the local openOCD server running on TCP
port 4444 using telnet localhost 4444.
From the telnet console, type:
program factory.bin 0x10000000
When the transfer is finished, you can either close openOCD or start a debugging session.

3.17.4 Debugging

Debugging with OpenOCD:
Use the OpenOCD configuration from the previous sections to run OpenOCD.
From another console, connect using gdb, e.g.:
arm-none-eabi-gdb
(gdb) target remote:3333

To reset the board to start from the M0+ flash bootloader position (wolfBoot reset handler), use the
monitor command sequence below:
(gdb) mon init
(gdb) mon reset init
(gdb) mon psoc6 reset_halt

3.18 Microchip SAME51
SAME51 is a Cortex-M4 microcontroller with a dual-bank, 1MB flash memory divided in blocks of 8KB.

3.18.1 Toolchain

Although it is possible to build wolfBoot with xc32 compilers, we recommend to use gcc for building
wolfBoot for best results in terms of footprint and performance, due to some assembly optimizations
in wolfCrypt, being available for gcc only. There is no limitation however on the toolchain used to
compile the application firmware or RTOS as the two binary files are independent.

COPYRIGHT ©2024 wolfSSL Inc. 35

3.19 NXP iMX-RT 3 TARGETS

3.18.2 Building using gcc/makefile

The following configurations have been tested using ATSAME51J20A development kit.
• config/examples/same51.config - example configurationwith swap partition (dual-bank dis-
abled)

• config/examples/same51-dualbank.config - configuration with two banks (no swap parti-
tion)

To build wolfBoot, copy the selected configuration into .config and run make.

3.18.3 Building using MPLAB IDE

Example projects are provided to build wolfBoot and a test application using MPLAB. These projects
are configured to build both stages using xc32-gcc, and have been tested with MpLab IDE v. 6.20.
The example application can be used to update the firmware over USB.
More details about building the example projects can be found in the IDE/MPLAB directory in this
repository.

3.18.4 Uploading the bootloader and the firmware image

Secure boot and updates have been tested on the SAM E51 Curiosity Nano evaluation board, connect-
ing to a Pro debugger to the D0/D1 pads.
The two firmware images can be uploaded separately using the JLinkExe utility:
$ JLinkExe -if swd -speed 1000 -Device ATSAME51J20

J-Link> loadbin wolfboot.bin 0x0

J-Link> loadbin test-app/image_v1_signed.bin 0x8000

The above is assuming the default configuration where the BOOT partition starts at address 0x8000.

3.19 NXP iMX-RT
The NXP iMX-RT10xx family of devices contain a Cortex-M7 with a DCP coprocessor for SHA256 accel-
eration.
WolfBoot currently supports the NXP RT1040, RT1050, RT1060/1061/1062, and RT1064 devices.

3.19.1 Building wolfBoot

MCUXpresso SDK is required by wolfBoot to access device drivers on this platform. A package can be
obtained from the MCUXpresso SDK Builder, by selecting a target and keeping the default choice of
components.

• For the RT1040 use EVKB-IMXRT1040. See configuration example in config/examples/imx-
rt1040.config.

• For the RT1050 use EVKB-IMXRT1050. See configuration example in config/examples/imx-
rt1050.config.

• For the RT1060 use EVKB-IMXRT1060. See configuration example in config/examples/imx-
rt1060.config.

• For the RT1064 use EVK-IMXRT1064. See configuration example in config/examples/imx-
rt1064.config.

COPYRIGHT ©2024 wolfSSL Inc. 36

https://mcuxpresso.nxp.com/en/welcome

3.19 NXP iMX-RT 3 TARGETS

Set the wolfBoot MCUXPRESSO configuration variable to the path where the SDK package is extracted,
then build wolfBoot normally by running make.
wolfBoot support for iMX-RT1060/iMX-RT1050 has been tested using MCUXpresso SDK version 2.14.0.
Support for the iMX-RT1064 has been tested using MCUXpresso SDK version 2.13.0
DCP support (hardware acceleration for SHA256 operations) can be enabled by using PKA=1 in the
configuration file.
You can also get the SDK and CMSIS bundles using these repositories: * https://github.com/nxp-
mcuxpresso/mcux-sdk * https://github.com/nxp-mcuxpresso/CMSIS_5 Use MCUXSDK=1 with this op-
tion, since the pack paths are different.
Example:
MCUXSDK?=1
MCUXPRESSO?=$(PWD)/../mcux-sdk
MCUXPRESSO_DRIVERS?=$(MCUXPRESSO)/devices/MIMXRT1062
MCUXPRESSO_CMSIS?="$(PWD)/../CMSIS_5/CMSIS"

3.19.2 Custom Device Configuration Data (DCD)

On iMX-RT10xx it is possible to load a custom DCD section from an external source file. A customized
DCD section should be declared within the .dcd_data section, e.g.:
const uint8_t __attribute__((section(".dcd_data"))) dcd_data[] = { /* ... */ };
If an external .dcd_data section is provided, the option NXP_CUSTOM_DCD=1 must be added to the
configuration.

3.19.3 Building wolfBoot for HAB (High Assurance Boot)

The imx_rt target supports building without a flash configuration, IVT, Boot Data and DCD. This
is needed when wanting to use HAB through NXP’s Secure Provisioning Tool to sign wolfBoot to en-
able secure boot. To build wolfBoot this way TARGET_IMX_HAB needs to be set to 1 in the config-
uration file (see config/examples/imx-rt1060 _hab.config for an example). When built with
TARGET_IMX_HAB=1 wolfBoot must be written to flash using NXP’s Secure Provisioning Tool.

3.19.4 Flashing

Firmware can be directly uploaded to the target by copying factory.bin to the virtual USB drive
associated to the device, or by loading the image directly into flash using a JTAG/SWD debugger.
The RT1050 EVKB board comes wired to use the 64MB HyperFlash. If you’d like to use QSPI
there is a rework that can be performed (see AN12183). The default onboard QSPI 8MB ISSI
IS25WP064A (CONFIG_FLASH_IS25WP064A). To use a 64Mbit Winbond W25Q64JV define CON-
FIG_FLASH_W25Q64JV (16Mbit, 32Mbit, 128Mbit, 256Mbit and 512Mbit versions are also available).
These options are also available for the RT1042 and RT1061 target.
If you have updated the MCULink to use JLink then you can connect to the board with JLinkExe using
one of the following commands:
HyperFlash
JLinkExe -if swd -speed 5000 -Device "MIMXRT1042xxxxB"
JLinkExe -if swd -speed 5000 -Device "MIMXRT1052XXX6A"
JLinkExe -if swd -speed 5000 -Device "MIMXRT1062XXX6B"
QSPI
JLinkExe -if swd -speed 5000 -Device

"MIMXRT1042xxxxB?BankAddr=0x60000000&Loader=QSPI"↪

COPYRIGHT ©2024 wolfSSL Inc. 37

3.20 NXP Kinetis 3 TARGETS

JLinkExe -if swd -speed 5000 -Device
"MIMXRT1052XXX6A?BankAddr=0x60000000&Loader=QSPI"↪

JLinkExe -if swd -speed 5000 -Device
"MIMXRT1062XXX6B?BankAddr=0x60000000&Loader=QSPI"↪

Flash using:
loadbin factory.bin 0x60000000

3.19.5 Testing Update

First make the update partition, pre-triggered for update:
./tools/scripts/prepare_update.sh
Run the “loadbin” commands to flash the update:
loadbin update.bin 0x60030000
Reboot device. Expected output:
wolfBoot Test app, version = 1
wolfBoot Test app, version = 8

3.19.6 NXP iMX-RT Debugging JTAG / JLINK

Start JLink GDB server for your device
JLinkGDBServer -Device MIMXRT1042xxxxB -speed 5000 -if swd -port 3333
JLinkGDBServer -Device MIMXRT1052xxx6A -speed 5000 -if swd -port 3333
JLinkGDBServer -Device MIMXRT1062xxx6B -speed 5000 -if swd -port 3333

From wolfBoot directory
arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x60010100
mon reset init
b main
c

3.20 NXP Kinetis
Supports K64 and K82 with crypto hardware acceleration.

3.20.1 Buld options

See /config/examples/kinetis-k82f.config for example configuration.
The TARGET is kinetis. For LTC PKA support set PKA=.
SetMCUXPRESSO,MCUXPRESSO_CPU,MCUXPRESSO_DRIVERS andMCUXPRESSO_CMSIS forMCUXpresso
configuration.

3.20.2 Example partitioning for K82

WOLFBOOT_PARTITION_SIZE?=0x7A000
WOLFBOOT_SECTOR_SIZE?=0x1000
WOLFBOOT_PARTITION_BOOT_ADDRESS?=0xA000
WOLFBOOT_PARTITION_UPDATE_ADDRESS?=0x84000
WOLFBOOT_PARTITION_SWAP_ADDRESS?=0xff000

COPYRIGHT ©2024 wolfSSL Inc. 38

3.21 NXP QorIQ P1021 PPC 3 TARGETS

3.21 NXP QorIQ P1021 PPC
The NXP QorIQ P1021 is a PPC e500v2 based processor (two cores). This has been tested with a NAND
boot source.

3.21.1 Boot ROM NXP P1021

wolfBoot supports loading from external flash using the eLBC FMC (Flash Machine) with NAND.
When each e500 core comes out of reset, its MMU has one 4-Kbyte page defined at 0x0_FFFF_Fnnn.
For NAND boot the first 4KB is loaded to this region with the first offset jump instruction at
0x0_FFFF_FFFC. The 4KB is mapped to the eLBC FCM buffers.
This device defines the default boot ROM address range to be 8 Mbytes at address 0x0_FF80_0000
to 0x0_FFFF_FFFF.
These pin determine if the boot ROM will use small or large flash page: * cfg_rom_loc[0:3] = 1000
Local bus FCM-8-bit NAND flash small page * cfg_rom_loc[0:3] = 1010 Local bus FCM-8-bit NAND
flash large page
If the boot sequencer is not enabled, the processor cores exit reset and fetches boot code in default
configurations.
A loader must reside in the 4KB page to handle early startup including DDR and then load wolfBoot
into DDR for execution.

3.21.2 Design for NXP P1021

1) First stage loader (4KB) resides in first block of NAND flash.
2) Boot ROM loads this into eLBC FCM RAM and maps it to 0xFFFF0000 and sets PC to 0xFFFFFFFC
3) wolfBoot boot assembly configures TLB MMU, LAW, DDR3 and UART (same for all boot stages)
4) First stage loader relocates itself to DDR (to free FCM to allow reading NAND)
5) First stage loader reads entire wolfBoot from NAND flash to DDR and jumps to it
6) wolfBoot loads and parses the header for application partition
7) wolfBoot performs SHA2-384 hash of the application
8) wolfBoot performs a signature verification of the hash
9) wolfBoot loads the application into DDR and jumps to it

3.21.3 First Stage Loader (stage 1) for NXP P1021 PPC

A first stage loader is required to load the wolfBoot image into DDR for execution. This is because only
4KB of code space is available on boot. The stage 1 loader must also copy iteslf from the FCM buffer
to DDR (or L2SRAM) to allow using of the eLBC to read NAND blocks.

3.21.3.1 Flash Layout for NXP P1021 PPC (default)

File NAND offset
stage1/loader_stage1.bin 0x00000000
wolfboot.bin 0x00008000
test-app/image_v1_signed.bin 0x00200000
update 0x01200000
fsl_qe_ucode_1021_10_A.bin 0x01F00000
swap block 0x02200000

COPYRIGHT ©2024 wolfSSL Inc. 39

3.21 NXP QorIQ P1021 PPC 3 TARGETS

3.21.4 Building wolfBoot for NXP P1021 PPC

By default wolfBoot will use powerpc-linux-gnu- cross-compiler prefix. These tools can be installed
with the Debian package gcc-powerpc-linux-gnu (sudo apt install gcc-powerpc-linux-
gnu).
The make creates a factory_wstage1.bin image that can be programmed at 0x00000000, that in-
clude the first stage loader, wolfBoot and a signed test application.
To build the first stage load, wolfBoot, sign a custom application and assembly a single factory image
use:
cp config/examples/nxp-p1021.config .config

build the key tools
make keytools

make clean
make stage1

Build wolfBoot (with or without DEBUG)
make DEBUG=1 wolfboot.bin
OR
make wolfboot.bin

Sign application
1=version (can be any 32-bit value)
./tools/keytools/sign \

--ecc384 \
--sha384 \
test-app/image.bin \
wolfboot_signing_private_key.der \
1

./tools/bin-assemble/bin-assemble \
factory.bin \

0x0 hal/nxp_p1021_stage1.bin \
0x8000 wolfboot.bin \
0x200000 test-app/image.bin \
0x01F00000 fsl_qe_ucode_1021_10_A.bin

3.21.5 Debugging NXP P1021 PPC

Use V=1 to show verbose output for build steps. Use DEBUG=1 to enable debug symbols.
The first stage loader must fit into 4KB. To build this in release and assemble a debug version of wolf-
Boot use the following steps:
make clean
make stage1
make DEBUG=1 wolfboot.bin
make DEBUG=1 test-app/image_v1_signed.bin
make factory_wstage1.bin

COPYRIGHT ©2024 wolfSSL Inc. 40

3.22 NXP QorIQ T1024 PPC 3 TARGETS

3.22 NXP QorIQ T1024 PPC
The NXP QorIQ T1024 is a two core 64-bit PPC e5500 based processor at 1400MHz. Each core has
256KB L2 cache.
Board: T1024RDB Board rev: 0x3031 CPLD ver: 0x42
T1024E, Version: 1.0, (0x8548_0010) e5500, Version: 2.1, (0x8024_1021)
Reset Configuration Word (RCW): 00000000: 0810000e 00000000 00000000 00000000 00000010:
2d800003 40408812 fc027000 21000000 00000020: 00000000 00000000 60000000 00036800
00000030: 00000100 484a5808 00000000 00000006
Flash is NOR on IFC CS0 (0x0_EC00_0000) 64MB (default).
Default NOR Flash Memory Layout (64MB) (128KB block, 1K page)

Description Address Size
RCW 0xEC000000 0x00020000 (128 KB)
Free 0xEC020000 0x000D0000 (832 KB)
Swap Sector 0xEC0F0000 0x00010000 (64 KB)
Free 0xEC100000 0x00700000 (7 MB)
FDT (Primary) 0xEC800000 0x00020000 (128 KB)
FDT (Update) 0xEC820000 0x00020000 (128 KB)
Free 0xEC840000 0x008A0000 (8MB)
Ethenet Config 0xED0E0000 0x00000400 (1 KB)
Free 0xED100000 0x00F00000 (15 MB)
Application (OS) 0xEE000000 0x00F00000 (15 MB)
Update (OS) 0xEEF00000 0x00F00000 (15 MB)
QUICC 0xEFE00000 0x00100000 (1 MB)
DPAA (FMAN) 0xEFF00000 0x00020000 (128 KB)
wolfBoot 0xEFF40000 0x000BC000 (752 KB)
wolfBoot Stage 1 0xEFFFC000 0x00004000 (16 KB)

QE: uploading microcode ‘Microcode for T1024 r1.0’ version 0.0.1
DDR4 2GB

3.22.1 Building wolfBoot for NXP T1024 PPC

By default wolfBoot will use powerpc-linux-gnu- cross-compiler prefix. These tools can be installed
with the Debian package gcc-powerpc-linux-gnu (sudo apt install gcc-powerpc-linux-
gnu).
The make creates a factory_stage1.bin image that can be programmed at 0xEC000000
cp ./config/examples/nxp-t1024.config .config
make clean
make keytools
make

Or each make component can be manually built using:
make stage1
make wolfboot.elf
make test-app/image_v1_signed.bin

If getting errors with keystore then you can reset things using make distclean.

COPYRIGHT ©2024 wolfSSL Inc. 41

3.23 NXP QorIQ T2080 PPC 3 TARGETS

3.22.2 Signing Custom application

./tools/keytools/sign --ecc384 --sha384 custom.elf
wolfboot_signing_private_key.der 1

3.22.3 Assembly of custom firmware image

./tools/bin-assemble/bin-assemble factory_custom.bin \
0xEC000000 RCW_CTS.bin \
0xEC020000 custom.dtb \
0xEE000000 custom_v1_signed.bin \
0xEFE00000 iram_Type_A_T1024_r1.0.bin \
0xEFF00000 fsl_fman_ucode_t1024_r1.0_108_4_5.bin \
0xEFF40000 wolfboot.bin \
0xEFFFC000 stage1/loader_stage1.bin

Flash factory_custom.bin to NOR base 0xEC00_0000

3.23 NXP QorIQ T2080 PPC
The NXP QorIQ T2080 is a PPC e6500 based processor (four cores). Support has been tested with the
NAII 68PPC2.
Example configurations for this target are provided in: * NXP T2080: /config/examples/nxp-
t2080.config. * NAII 68PPC2: /config/examples/nxp-t2080-68ppc2.config.

3.23.1 Design NXP T2080 PPC

The QorIQ requires a Reset Configuration Word (RCW) to define the boot parameters, which resides
at the start of the flash (0xE8000000).
The flash boot entry point is 0xEFFFFFFC, which is an offset jump to wolfBoot initialization boot
code. Initially the PowerPC core enables only a 4KB region to execute from. The initialization code
(src/boot_ppc_start.S) sets the required CCSR and TLB for memory addressing and jumps to wolf-
Boot main().
RM 4.3.3 Boot Space Translation
“When each core comes out of reset, its MMU has one 4 KB page defined at 0x0_FFFF_Fnnn. Each core
begins execution with the instruction at effective address 0x0_FFFF_FFFC. To get this instruction, the
core’s first instruction fetch is a burst read of boot code from effective address 0x0_FFFF_FFC0.”

3.23.2 Building wolfBoot for NXP T2080 PPC

By default wolfBoot will use powerpc-linux-gnu- cross-compiler prefix. These tools can be installed
with the Debian package gcc-powerpc-linux-gnu (sudo apt install gcc-powerpc-linux-
gnu).
The make creates a factory.bin image that can be programmed at 0xE8080000
cp ./config/examples/nxp-t2080-68ppc2.config .config
make clean
make keytools
make

Or each make component can be manually built using:
make wolfboot.elf
make test-app/image_v1_signed.bin

COPYRIGHT ©2024 wolfSSL Inc. 42

3.23 NXP QorIQ T2080 PPC 3 TARGETS

If getting errors with keystore then you can reset things using make distclean.

3.23.2.1 Building QorIQ Linux SDK fsl-toolchain To use the NXP cross-compiler:
Find “QorIQ Linux SDK v2.0 PPCE6500 IMAGE.iso” on nxp.com and extract the “fsl-toolchain”. Then run
the script to install to default location /opt/fsl-qoriq/2.0/.
Then add the following lines to your .config:
CROSS_COMPILE?=/opt/fsl-qoriq/2.0/sysroots/x86_64-fslsdk-linux/usr/bin/powerpc

-fsl-linux/powerpc-fsl-linux-
CROSS_COMPILE_PATH=/opt/fsl-qoriq/2.0/sysroots/ppce6500-fsl-linux/usr

3.23.3 Programming NXP T2080 PPC

NOR Flash Region: 0xE8000000 - 0xEFFFFFFF (128 MB)
Flash Layout (with files):

Description File Address
Reset Configuration Word (RCW) 68PPC2_RCW_v0p7.bin 0xE8000000
Frame Manager Microcode fsl_fman_ucode_t2080_r1.0.bin 0xE8020000
Signed Application test-app/image_v1_signed.bin 0xE8080000
wolfBoot wolfboot.bin 0xEFF40000
Boot Entry Point 1 0xEFFFFFFC

Or program the factory.bin to 0xE8080000
Example Boot Debug Output:
wolfBoot Init
Part: Active 0, Address E8080000
Image size 1028
Firmware Valid
Loading 1028 bytes to RAM at 19000
Failed parsing DTB to load.
Booting at 19000
Test App

0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
...

3.23.3.1 Flash Programming with Lauterbach See these TRACE32 demo script files: *
./demo/powerpc64bit/hardware/qoriq_t2/t2080rdb/flash_cfi.cmm * ./demo/pow-
erpc64bit/hardware/qoriq_t2/t2080rdb/demo_set_rcw.cmm

1with offset jump to init code

COPYRIGHT ©2024 wolfSSL Inc. 43

3.23 NXP QorIQ T2080 PPC 3 TARGETS

DO flash_cfi.cmm

FLASH.ReProgram 0xEFF40000--0xEFFFFFFF /Erase
Data.LOAD.binary wolfboot.bin 0xEFF40000
FLASH.ReProgram.off

Data.LOAD.binary wolfboot.bin 0xEFF40000 /Verify

Note: To disable the flash protection bits use:
;enter Non-volatile protection mode (C0h)
Data.Set 0xE8000000+0xAAA %W 0xAAAA
Data.Set 0xE8000000+0x554 %W 0x5555
Data.Set 0xE8000000+0xAAA %W 0xC0C0
;clear all protection bit (80h/30h)
Data.Set 0xE8000000 %W 0x8080
Data.Set 0xE8000000 %W 0x3030
;exit Non-volatile protection mode (90h/00h)
Data.Set 0xE8000000 %W 0x9090
Data.Set 0xE8000000 %W 0x0000

3.23.3.2 Flash Programming with CodeWarrior TAP In CodeWarrior use the Flash Programmer
tool (see under Commander View -> Miscellaneous) * Connection: “CodeWarrior TAP Connection” *
Flash Configuration File: “T2080QDS_NOR_FLASH.xml” * Unprotect flash memory before erase: Check
* Choose file and set offset address.

tftp 1000000 wolfboot.bin
protect off eff40000 +C0000
erase eff40000 +C0000
cp.b 1000000 eff40000 C0000
protect on eff40000 +C0000
cmp.b 1000000 eff40000 C0000

3.23.4 Debugging NXP T2080 PPC
3.23.3.3 Flash Programming from U-Boot

SYStem.RESet
SYStem.BdmClock 15.MHz
SYStem.CPU T2080
SYStem.DETECT CPU
CORE.ASSIGN 1.
SYStem.Option.FREEZE OFF
SYStem.Up

Data.LOAD.Elf wolfboot.elf /NoCODE

Break main
List.auto
Go

COPYRIGHT ©2024 wolfSSL Inc. 44

3.24 NXP MCXA153 3 TARGETS

If cross-compiling on a different machine you can use the /StripPART option:
sYmbol.SourcePATH.SetBaseDir ~/wolfBoot
Data.LOAD.Elf wolfboot.elf /NoCODE /StripPART "/home/username/wolfBoot/"

3.23.4.2 CodeWarrior TAP This is an example for debugging the T2080 with CodeWarrior TAP, how-
ever we were not successful using it. The Lauterbach is what we ended up using to debug.
Start GDB Proxy:

• Linux: /opt/Freescale/CW_PA_v10.5.1/PA/ccs/bin/gdbproxy
• Windows: C:\Freescale\CW_PA_v10.5.1\PA\ccs\bin\gdbproxy.exe

set logging on
set debug remote 10
set remotetimeout 20
set tdesc filename ../xml/e6500.xml
set remote hardware-breakpoint-limit 10
target remote t2080-tap-01:2345
mon probe fpga
mon ccs_host t2080-tap-01
mon ccs_path /opt/Freescale/CodeWarrior_PA_10.5.1/PA/ccs/bin/ccs
mon jtag_speed 12500
mon jtag_chain t4amp
mon connect
Remote debugging using t2080-tap-01:2345
0x00000000 in ?? ()
(gdb) mon get_probe_status
Connected to gdbserver t2080-tap-01:2345

Executing Initialization File: /opt/Freescale/CodeWarrior_PA_10.5.1/PA/
PA_Support/Initialization_Files/QorIQ_T2/68PPC2_init_sram.tcl

thread break: Stopped, 0x0, 0x0, cpuPowerPCBig, Connected (state, tid, pid,
cpu, target)

3.24 NXP MCXA153
NXP MCXA153 is a Cortex-M33 microcontroller running at 96MHz. The support has been tested using
FRDM-MCXA153 with the onboard MCU-Link configured in JLink mode.
This requires theMCXASDK from theNXPMCUXpresso SDKBuilder. We testedusingSDK_2.14.2_MCXA153
and placed into ../NXP/MCXA153 by default (see .config or set with MCUXPRESSO). MCUXpresso SDK
Builder

3.24.1 MCX A: Configuring and compiling

Copy the example configuration file and build with make:
cp config/examples/mcxa.config .config`
make

COPYRIGHT ©2024 wolfSSL Inc. 45

3.25 TI Hercules TMS570LC435 3 TARGETS

3.24.2 MCX A: Loading the firmware

The NXP FreedomMCX A board debugger comes loaded with MCU Link, but it can be updated to JLink.
See https://docs.nxp.com/bundle/UM12012/page/topics/Updating_MCU_Link_firmware.html
Use JLinkExe tool to upload the initial firmware: JLinkExe -if swd -Device MCXA153
At the Jlink prompt, type:
loadbin factory.bin 0
Downloading file [factory.bin]...
J-Link: Flash download: Bank 0 @ 0x00000000: Skipped. Contents already match
O.K.

Reset or power cycle board.
Once wolfBoot has performed validation of the partition and booted the D15 Green LED on P3_13 will
illuminate.

3.24.3 MCX A: Testing firmware update

1) Sign the test-app with version 2:
./tools/keytools/sign --ecc256 test-app/image.bin

wolfboot_signing_private_key.der 2↪

2) Create a bin footerwithwolfBoot trailer “BOOT” and “p” (ASCII for 0x70 == IMG_STATE_UPDATING):
echo -n "pBOOT" > trigger_magic.bin
3) Assembly new factory update.bin:

./tools/bin-assemble/bin-assemble \
update.bin \

0x0 test-app/image_v2_signed.bin \
0xAFFB trigger_magic.bin

4) Flash update.bin to 0x13000 (loadbin update.bin 0x13000). The D15 RGB LED Blue P3_0 will
show if version is > 1.

Note: For alternate larger scheme flash update.bin to 0x14000 and place trigger_magic.bin at
0x9FFB.

3.24.4 MCX A: Debugging

Debugging with JLink:
Note: We include a .gdbinit in the wolfBoot root that loads the wolfboot and test-app elf files.
In one terminal: JLinkGDBServer -if swd -Device MCXA153 -port 3333
In another terminal use gdb:
b main
mon reset
c

3.25 TI Hercules TMS570LC435
See /config/examples/ti-tms570lc435.config for example configuration.

COPYRIGHT ©2024 wolfSSL Inc. 46

3.26 Nordic nRF52840 3 TARGETS

3.26 Nordic nRF52840
We have full Nordic nRF5280 examples for Contiki and RIOT-OS in our wolfBoot-examples repo
Examples for nRF52: * RIOT-OS: https://github.com/wolfSSL/wolfBoot-examples/tree/master/riotOS-
nrf52840dk-ble * Contiki-OS: https://github.com/wolfSSL/wolfBoot-examples/tree/master/contiki-
nrf52
Example of flash memory layout and configuration on the nRF52:

• 0x000000 - 0x01efff : Reserved for Nordic SoftDevice binary
• 0x01f000 - 0x02efff : Bootloader partition for wolfBoot
• 0x02f000 - 0x056fff : Active (boot) partition
• 0x057000 - 0x057fff : Unused
• 0x058000 - 0x07ffff : Upgrade partition

#define WOLFBOOT_SECTOR_SIZE 4096
#define WOLFBOOT_PARTITION_SIZE 0x28000

#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x2f000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x57000
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x58000

3.27 Simulated
You can create a simulated target that uses files to mimic an internal and optionally an external flash.
The build will produce an executable ELF file wolfBoot.elf. You can provide another executable
ELF as firmware image and it will be executed. The command-line arguments of wolfBoot.elf are
forwarded to the application. The example application test-app\app_sim.c uses the arguments to
interact with libwolfboot.c and automate functional testing. You can find an example configuration
in config/examples/sim.config.
An example of using the test-app/sim.c to test firmware update:
cp ./config/examples/sim.config .config
make

create the file internal_flash.dd with firmware v1 on the boot partition and
firmware v2 on the update partition
make test-sim-internal-flash-with-update
it should print 1
./wolfboot.elf success get_version
trigger an update
./wolfboot.elf update_trigger
it should print 2
./wolfboot.elf success get_version
it should print 2
./wolfboot.elf success get_version

Note: This also works on Mac OS, but objcopy does not exist. Install with brew install binutils
and make using OBJCOPY=/usr/local/Cellar//binutils/2.41/bin/objcopy make.

3.28 Renesas RX65N
Tested on the: * RX65N-2MB-Starter-Kit-Plus * RX65N Target Board (RTK5RX65N0C00000BR) (includes
onboard E2 Lite emulator)
Both include an E2 Lite Emulator.

COPYRIGHT ©2024 wolfSSL Inc. 47

https://github.com/wolfSSL/wolfboot-examples

3.28 Renesas RX65N 3 TARGETS

3.28.1 Renesas Console

Console output is supported with DEBUG_UART=1.
RSK+: This board includes a USB to Serial port that uses SCI8 and PJ1/PJ2. This is the wolfBoot HAL
default for RX65N.
RX65N target board:
Can routeUART Serial output to PC3 via PMOD1-IO0 at Pin 9. This requires an external TTLUART toUSB
adapter. Youwill need to set CFLAGS_EXTRA+="-DDEBUG_UART_SCI=3" in .config. In the renesas-rx.c
uart_init these port mode and port function select settings are needed:
/* Configure PC3/PC2 for UART */
PORT_PMR(0xC) |= ((1 << 2) | (1 << 3));
/* SCI Function Select = 0xA (UART) */
MPC_PFS(0xC2) = 0xA; /* PC2-RXD5 */
MPC_PFS(0xC3) = 0xA; /* PC3-TXD5 */
Example Boot Output (with DEBUG_UART=1):
wolfBoot HAL Init
Boot partition: 0xFFE00000
Image size 25932

| --- |
Renesas RX User Application in BOOT partition started by wolfBoot

wolfBoot HAL Init

=== Boot Partition[ffe00000] ===
Magic: WOLF
Version: 01
Status: ff (New)
Trailer Magic: ˇˇˇˇ

=== Update Partition[ffef0000] ===
Magic: ˇˇˇˇ
Version: 00
Status: ff (New)
Trailer Magic: ˇˇˇˇ

Current Firmware Version: 1
Hit any key to call wolfBoot_success the firmware.

3.28.2 Renesas Flash Layout

Default Onboard Flash Memory Layout (2MB) (32KB sector):

Description Address Size
OFSM Option Mem 0xFE7F5D00 0x00000080 (128 B)
Application 0xFFE00000 0x000F0000 (960 KB)
Update 0xFFEF0000 0x000F0000 (960 KB)
Swap 0xFFFE0000 0x00010000 (64 KB)

COPYRIGHT ©2024 wolfSSL Inc. 48

3.28 Renesas RX65N 3 TARGETS

Description Address Size
wolfBoot 0xFFFF0000 0x00010000 (64 KB)

3.28.3 Renesas Data Endianess

To switch RX parts to big endian data use:
Big Endian
rfp-cli -if fine -t e2l -device RX65x -auth id FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

-write32 0xFE7F5D00 0xFFFFFFF8↪
OR
Little Endian
rfp-cli -if fine -t e2l -device RX65x -auth id FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

-write32 0xFE7F5D00 0xFFFFFFFF↪

3.28.4 Building Renesas RX65N

Building RX wolfBoot requires the RX-ELF compiler. Please Download and install the Renesas RX GCC
toolchain: https://llvm-gcc-renesas.com/rx-download-toolchains/
Default installation path (Linux): ~/toolchains/gcc_8.3.0.202311_rx_elf Default installation
path (Windows): C:\ProgramData\GCC for Renesas RX 8.3.0.202305-GNURX-ELF\rx-elf\rx-
elf
Configuration: Use ./config/examples/renesas-rx65n.config as a starting point by copying it
to the wolfBoot root as .config.
cp ./config/examples/renesas-rx65n.config .config
make
WithRXGCCpath or or customcross compiler directly: make CROSS_COMPILE="~/toolchains/gcc_8.3.0.202311_rx_elf/bin/rx-
elf-" OR make RX_GCC_PATH="~/toolchains/gcc_8.3.0.202311_rx_elf"
TSIP: To enable TSIP use make PKA=1. See Appendix J for details.

3.28.5 Flashing Renesas RX65N

Download the Renesas Flashing Tool Download the Renesas E2 Lite Linux Driver
Default Flash ID Code: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Flash Using:
rfp-cli -if fine -t e2l -device RX65x -auto -auth id

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF \
-bin FFFF0000 wolfboot.bin \
-bin FFE00000 test-app/image_v1_signed.bin \
-run

Note: Endianess: if using big endian add -endian big
Note: Linux Install E2 Lite USB Driver:
sudo cp 99-renesas-emu.rules /etc/udev/rules.d/
sudo udevadm control --reload-rules

COPYRIGHT ©2024 wolfSSL Inc. 49

https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui
https://www.renesas.com/us/en/document/swo/e2-emulator-e2-emulator-lite-linux-driver?r=488806

3.29 Renesas RX72N 3 TARGETS

3.28.6 Debugging Renesas RX65N

Create a new “Renesas Debug” project. Choose the “E2 Lite” emulator and the built wolfboot.elf.
After project is created open the “DebugConfiguration” and change the debugger interface from “JTAG”
to “FINE”. Run debug and it will stop in the “reset” code in boot_renesas_start.S. If using Big Endian
change endianess mode in “Debugger -> Debug Tool Settings -> Memory Endian -> Big Endian”.

3.29 Renesas RX72N
Tested on the RX72N ENVISION KIT (HMI development kit for IoT systems). This includes an onboard
E2 Lite emulator.
The Renesas RX72N is supported either natively with “make” or through e2Studio. If using e2Studio
see /IDE/Renesas/e2studio/RX72N/Readme.md.
Default UART Serial on SCI2 at P12-RXD2 P13-TXD2. Use USB on CN8 to attach a Virtual USB COM port.
This feaure is enabled with DEBUG_UART=1.
Example Boot Output (with DEBUG_UART=1):
wolfBoot HAL Init
Boot partition: 0xFFC00000
Image size 27772

| --- |
Renesas RX User Application in BOOT partition started by wolfBoot

wolfBoot HAL Init

=== Boot Partition[ffc00000] ===
Magic: WOLF
Version: 01
Status: ff (New)
Trailer Magic: ˇˇˇˇ

=== Update Partition[ffdf0000] ===
Magic: ˇˇˇˇ
Version: 00
Status: ff (New)
Trailer Magic: ˇˇˇˇ

Current Firmware Version: 1
Hit any key to call wolfBoot_success the firmware.

Default Onboard Flash Memory Layout (4MB) (32KB sector):

Description Address Size
OFSM Option Mem 0xFE7F5D00 0x00000080 (128 B)
Application 0xFFC00000 0x001F0000 (1984 KB)
Update 0xFFDF0000 0x001F0000 (1984 KB)
Swap 0xFFFE0000 0x00010000 (64 KB)
wolfBoot 0xFFFF0000 0x00010000 (64 KB)

To switch RX parts to big endian data use:

COPYRIGHT ©2024 wolfSSL Inc. 50

3.30 Renesas RA6M4 3 TARGETS

Big Endian
rfp-cli -if fine -t e2l -device RX72x -auth id FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

-write32 0xFE7F5D00 0xFFFFFFF8↪
OR
Little Endian
rfp-cli -if fine -t e2l -device RX72x -auth id FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

-write32 0xFE7F5D00 0xFFFFFFFF↪

3.29.1 Building Renesas RX72N

Building RX wolfBoot requires the RX-ELF compiler. Please Download and install the Renesas RX GCC
toolchain: https://llvm-gcc-renesas.com/rx-download-toolchains/
Default installation path (Linux): ~/toolchains/gcc_8.3.0.202311_rx_elf Default installation
path (Windows): C:\ProgramData\GCC for Renesas RX 8.3.0.202305-GNURX-ELF\rx-elf\rx-
elf
Configuration: Use ./config/examples/renesas-rx72n.config as a starting point by copying it
to the wolfBoot root as .config.
cp ./config/examples/renesas-rx72n.config .config
make
With RX GCC path or or custom cross compiler directly:
make CROSS_COMPILE="~/toolchains/gcc_8.3.0.202311_rx_elf/bin/rx-elf-"
OR
make RX_GCC_PATH="~/toolchains/gcc_8.3.0.202311_rx_elf"
TSIP: To enable TSIP use make PKA=1. See Appendix J for details.

3.29.2 Flashing Renesas RX72N

Download the Renesas Flashing Tool Download the Renesas E2 Lite Linux Driver
Default Flash ID Code: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Flash Using:
rfp-cli -if fine -t e2l -device RX72x -auto -auth id

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF \
-bin FFFF0000 wolfboot.bin \
-bin FFC00000 test-app/image_v1_signed.bin \
-run

Note: Endianess: if using big endian add -endian big
Note: Linux Install E2 Lite USB Driver:
sudo cp 99-renesas-emu.rules /etc/udev/rules.d/
sudo udevadm control --reload-rules

3.30 Renesas RA6M4
This example for Renesas RA6M4 demonstrates a simple secure firmware update by wolfBoot. A
sample application v1 is securely updated to v2. Both versions behave the same except displaying its
version of v1 or v2. They are compiled by e2Studio and running on the target board.

COPYRIGHT ©2024 wolfSSL Inc. 51

https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui
https://www.renesas.com/us/en/document/swo/e2-emulator-e2-emulator-lite-linux-driver?r=488806

3.31 Renesas RZN2L 3 TARGETS

In this demo, you may download two versions of application binary file by Renesas Flash Programmer.
You can download and execute wolfBoot by e2Studio debugger. Use a USB connection between PC
and the board for the debugger and flash programmer.
Flash Allocation:
+---------------------------+------------------------+-----+
B	H		H		
o	e	Primary	e	Update	Swap
o	a	Partition	a	Partition	Sect
t	d		d		
+---------------------------+------------------------+-----+
0x00000000: wolfBoot
0x00010000: Primary partition (Header)
0x00010200: Primary partition (Application image)
0x00080000: Update partition (Header)
0x00080200: Update partition (Application image)
0x000F0000: Swap sector

Detailed steps can be found at /IDE/Renesas/e2studio/RA6M4/Readme.md.

3.31 Renesas RZN2L
This example demonstrates simple secure firmware boot from external flash by wolfBoot. A sample
application v1 is securely loaded into internal RAM if there is not higher version in update region. A
sample application v2 will be loaded when it is in update region.Both versions behave the same except
blinking LED Red(v1) or Yellow(v2). They are compiled by e2Studio and running on the target board.
The example uses SPI boot mode with external flash on the evaluation board. On this boot mode,
the loader program, which is wolfBoot, is copied to the internal RAM(B-TCM). wolfBoot copies the
application program from external flash memory to RAM(System RAM). As final step of wolfBoot the
entry point of the copied application program is called if its integrity and authenticity are OK.
Detailed steps can be found at /IDE/Renesas/e2studio/RA6M4/Readme.md.

3.32 Qemu x86-64 UEFI
The simplest option to compile wolfBoot as a bootloader for x86-64bitmachines is the UEFImode. This
mechanism requires an UEFI bios, which stages wolfBoot by running the binary as an EFI application.
The following instructions describe the procedure to configurewolfBoot as EFI application and run it on
qemu using tianocore as main firmware. A GNU/Linux system built via buildroot is then authenticated
and staged by wolfBoot.

3.32.1 Prerequisites:

• qemu-system-x86_64
• [GNU-EFI] (https://sourceforge.net/projects/gnu-efi/)
• Open Virtual Machine firmware bios images (OVMF) by Tianocore

On a debian-like system it is sufficient to install the packages as follows:
for wolfBoot and others
apt install git make gcc

for test scripts
apt install sudo dosfstools curl

COPYRIGHT ©2024 wolfSSL Inc. 52

https://tianocore.org

3.32 Qemu x86-64 UEFI 3 TARGETS

apt install qemu qemu-system-x86 ovmf gnu-efi

for buildroot
apt install file bzip2 g++ wget cpio unzip rsync bc

3.32.2 Configuration

An example configuration is provided in config/examples/x86_64_efi.config

3.32.3 Building and running on qemu

The bootloader and the initialization script startup.nsh for execution in the EFI environment are
stored in a loopback FAT partition.
The script tools/efi/prepare_uefi_partition.sh creates a new empty FAT loopback partitions
and adds startup.nsh.
A kernel with an embedded rootfs partition can be now created and added to the image, via the script
tools/efi/compile_efi_linux.sh. The script actually adds two instances of the target systems:
kernel.img and update.img, both signed for authentication, and tagged with version 1 and 2 re-
spectively.
Compiling with make will produce the bootloader image in wolfboot.efi.
The script tools/efi/run_efi.shwill add wolfboot.efi to the bootloader loopback partition, and
run the system on qemu. If both kernel images are present and valid, wolfBoot will choose the image
with the higher version number, so update.img will be staged as it’s tagged with version 2.
The sequence is summarized below:
cp config/examples/x86_64_efi.config .config
tools/efi/prepare_efi_partition.sh
make
tools/efi/compile_efi_linux.sh
tools/efi/run_efi.sh

EFI v2.70 (EDK II, 0x00010000)
[700/1832]
Mapping table

FS0: Alias(s):F0a:;BLK0:
PciRoot(0x0)/Pci(0x1,0x1)/Ata(0x0)

BLK1: Alias(s):
PciRoot(0x0)/Pci(0x1,0x1)/Ata(0x0)

Press ESC in 1 seconds to skip startup.nsh or any other key to continue.
Starting wolfBoot EFI...
Image base: 0xE3C6000
Opening file: kernel.img, size: 6658272
Opening file: update.img, size: 6658272
Active Part 1
Firmware Valid
Booting at 0D630000
Staging kernel at address D630100, size: 6658016

You can Ctrl-C or login as root and power off qemu with poweroff

COPYRIGHT ©2024 wolfSSL Inc. 53

3.33 Intel x86_64 with Intel FSP support 3 TARGETS

3.33 Intel x86_64 with Intel FSP support
This setup is more complex than the UEFI approach described earlier, but allows for complete control
of the machine since the very first stage after poweron.
In otherwords, wolfBoot can run as a secure replacement of the systemBIOS, thanks to the integration
with the Intel Firmware Support Package (FSP). FSP provides services for target-specific initial config-
uration (memory and silicon initialization, power management, etc.). These services are designed to
be accessed and invoked by the bootloader.
If wolfBoot is compiled with FSP support, it invokes the necessary machine-dependent binary code,
which that can be obtained from the chip manufacturer.
The following variables must be set in your .config file when using this feature:

• ARCH = x86_64
• TARGET = A useful name for the target you want to support. You can refer to x86_fsp_qemu or
kontron_vx3060_s2 for reference

• FSP_T_BASE: the base address where the FSP-T binary blob will be loaded.
• FSP_M_BASE: the base address where the FSP-M binary blob will be loaded.
• FSP_S_BASE: the base address where the FSP-S binary blob will be loaded.
• FSP_T_BIN: path to the FSP-T binary blob
• FSP_M_BIN: path to the FSP-M binary blob
• FSP_S_BIN: path to the FSP-S binary blob
• WOLFBOOT_ORIGIN: the start address of wolfBoot inside the flash (flash is mapped so that it ends
at the 4GB boundary)

• BOOTLOADER_PARTITION_SIZE: the size of the partition that stores wolfBoot in the flash
• WOLFBOOT_LOAD_BASE: the address where wolfboot will be loaded in RAM after the first initial-
ization phase

While Intel FSP aims to abstract away specific machine details, you still need some machine-specific
code. Current supported targets are QEMU and the TigerLake based Kontron VX3060-S2 board. Refer
to the Intel Integration Guide of the selected silicon for more information.
Note:

• This feature requires NASM to be installed on the machine building wolfBoot.

3.33.1 Running on 64-bit QEMU

Two example configuration files are available: config/examples/x86_fsp_qemu.config and con-
fig/examples/x86_fsp_qemu_seal.config. Both will try to load a 64bit ELF/Multiboot2 payload
from the emulated sata drive. The second one is an example of configuration that also do measure
boot and seal/unseal secrets using a TPM.
A test ELF/Multiboot2 image is provided as well. To test config/examples/x86_fsp_qemu.config
use the following steps:
Copy the example configuration for this target
cp config/examples/x86_fsp_qemu.config .config

Create necessary Intel FSP binaries from edk2 repo
./tools/scripts/x86_fsp/qemu/qemu_build_fsp.sh

build wolfboot
make

make test-app
make test-app/image.elf

COPYRIGHT ©2024 wolfSSL Inc. 54

3.33 Intel x86_64 with Intel FSP support 3 TARGETS

make_hd.sh sign the image, creates a file-based hard disk image with GPT
table and raw partitions and then copies the signed images into the
partitions.

IMAGE=test-app/image.elf tools/scripts/x86_fsp/qemu/make_hd.sh

run wolfBoot + test-image
./tools/scripts/x86_fsp/qemu/qemu.sh

Cache-as-RAM initialized
FSP-T:0.0.10 build 0
FSP-M:0.0.10 build 0
no microcode for QEMU target
calling FspMemInit...

============= FSP Spec v2.0 Header Revision v3 ($QEMFSP$ v0.0.10.0)
=============

Fsp BootFirmwareVolumeBase - 0xFFE30000
Fsp BootFirmwareVolumeSize - 0x22000
Fsp TemporaryRamBase - 0x4
Fsp TemporaryRamSize - 0x50000
Fsp PeiTemporaryRamBase - 0x4
Fsp PeiTemporaryRamSize - 0x34000
Fsp StackBase - 0x34004
Fsp StackSize - 0x1C000
Register PPI Notify: DCD0BE23-9586-40F4-B643-06522CED4EDE
Install PPI: 8C8CE578-8A3D-4F1C-9935-896185C32DD3
Install PPI: 5473C07A-3DCB-4DCA-BD6F-1E9689E7349A
The 0th FV start address is 0x000FFE30000, size is 0x00022000, handle is 0

xFFE30000
Register PPI Notify: 49EDB1C1-BF21-4761-BB12-EB0031AABB39
Register PPI Notify: EA7CA24B-DED5-4DAD-A389-BF827E8F9B38
Install PPI: B9E0ABFE-5979-4914-977F-6DEE78C278A6
Install PPI: A1EEAB87-C859-479D-89B5-1461F4061A3E
Install PPI: DBE23AA9-A345-4B97-85B6-B226F1617389
DiscoverPeimsAndOrderWithApriori(): Found 0x2 PEI FFS files in the 0th FV
Loading PEIM 9B3ADA4F-AE56-4C24-8DEA-F03B7558AE50
Loading PEIM at 0x000FFE3D8C8 EntryPoint=0x000FFE3EC4C PcdPeim.efi
Install PPI: 06E81C58-4AD7-44BC-8390-F10265F72480
Install PPI: 01F34D25-4DE2-23AD-3FF3-36353FF323F1
Install PPI: 4D8B155B-C059-4C8F-8926-06FD4331DB8A
Install PPI: A60C6B59-E459-425D-9C69-0BCC9CB27D81
Register PPI Notify: 605EA650-C65C-42E1-BA80-91A52AB618C6
Loading PEIM 9E1CC850-6731-4848-8752-6673C7005EEE
Loading PEIM at 0x000FFE3F114 EntryPoint=0x000FFE411DF FspmInit.efi
FspmInitPoint() - Begin
BootMode : 0x0
Install PPI: 7408D748-FC8C-4EE6-9288-C4BEC092A410
Register PPI Notify: F894643D-C449-42D1-8EA8-85BDD8C65BDE
PeiInstallPeiMemory MemoryBegin 0x3EF00000, MemoryLength 0x100000
FspmInitPoint() - End
Temp Stack : BaseAddress=0x34004 Length=0x1C000
Temp Heap : BaseAddress=0x4 Length=0x34000
Total temporary memory: 327680 bytes.

COPYRIGHT ©2024 wolfSSL Inc. 55

3.33 Intel x86_64 with Intel FSP support 3 TARGETS

temporary memory stack ever used: 3360 bytes.
temporary memory heap used for HobList: 2104 bytes.
temporary memory heap occupied by memory pages: 0 bytes.

Old Stack size 114688, New stack size 131072
Stack Hob: BaseAddress=0x3EF00000 Length=0x20000
Heap Offset = 0x3EF1FFFC Stack Offset = 0x3EECFFFC
Loading PEIM 52C05B14-0B98-496C-BC3B-04B50211D680
Loading PEIM at 0x0003EFF5150 EntryPoint=0x0003EFFBBC6 PeiCore.efi
Reinstall PPI: 8C8CE578-8A3D-4F1C-9935-896185C32DD3
Reinstall PPI: 5473C07A-3DCB-4DCA-BD6F-1E9689E7349A
Reinstall PPI: B9E0ABFE-5979-4914-977F-6DEE78C278A6
Install PPI: F894643D-C449-42D1-8EA8-85BDD8C65BDE
Notify: PPI Guid: F894643D-C449-42D1-8EA8-85BDD8C65BDE, Peim notify entry

point: FFE40AB2
Memory Discovered Notify invoked ...
FSP TOLM = 0x3F000000
Migrate FSP-M UPD from 7F540 to 3EFF4000
FspMemoryInitApi() - [Status: 0x00000000] - End
success
top reserved 0_3EF00000h
mem: [0x3EEF0000, 0x3EF00000] - stack (0x10000)
mem: [0x3EEEFFF4, 0x3EEF0000] - stage2 parameter (0xC)
hoblist@0x3EF20000
mem: [0x3EEE8000, 0x3EEEFFF4] - page tables (0x7FF4)
page table @ 0x3EEE8000 [length: 7000]
mem: [0x3EEE7FF8, 0x3EEE8000] - stage2 ptr holder (0x8)
TOLUM: 0x3EEE7FF8
TempRamExitApi() - Begin
Memory Discovered Notify completed ...
TempRamExitApi() - [Status: 0x00000000] - End
mem: [0x800000, 0x800084] - stage1 .data (0x84)
mem: [0x8000A0, 0x801A80] - stage1 .bss (0x19E0)
mem: [0xFED5E00, 0xFEEAF00] - FSPS (0x15100)
Authenticating FSP_S at FED5E00...
Image size 86016
verify_payload: image open successfully.
verify_payload: integrity OK. Checking signature.
FSP_S: verified OK.
FSP-S:0.0.10 build 0
call silicon...
SiliconInitApi() - Begin
Install PPI: 49EDB1C1-BF21-4761-BB12-EB0031AABB39
Notify: PPI Guid: 49EDB1C1-BF21-4761-BB12-EB0031AABB39, Peim notify entry

point: FFE370A2
The 1th FV start address is 0x0000FED5F00, size is 0x00015000, handle is 0

xFED5F00
DiscoverPeimsAndOrderWithApriori(): Found 0x4 PEI FFS files in the 1th FV
Loading PEIM 86D70125-BAA3-4296-A62F-602BEBBB9081
Loading PEIM at 0x0003EFEE150 EntryPoint=0x0003EFF15B9 DxeIpl.efi
Install PPI: 1A36E4E7-FAB6-476A-8E75-695A0576FDD7
Install PPI: 0AE8CE5D-E448-4437-A8D7-EBF5F194F731
Loading PEIM 131B73AC-C033-4DE1-8794-6DAB08E731CF
Loading PEIM at 0x0003EFE6000 EntryPoint=0x0003EFE702B FspsInit.efi
FspInitEntryPoint() - start

COPYRIGHT ©2024 wolfSSL Inc. 56

3.33 Intel x86_64 with Intel FSP support 3 TARGETS

Register PPI Notify: 605EA650-C65C-42E1-BA80-91A52AB618C6
Register PPI Notify: BD44F629-EAE7-4198-87F1-39FAB0FD717E
Register PPI Notify: 7CE88FB3-4BD7-4679-87A8-A8D8DEE50D2B
Register PPI Notify: 6ECD1463-4A4A-461B-AF5F-5A33E3B2162B
Register PPI Notify: 30CFE3E7-3DE1-4586-BE20-DEABA1B3B793
FspInitEntryPoint() - end
Loading PEIM BA37F2C5-B0F3-4A95-B55F-F25F4F6F8452
Loading PEIM at 0x0003EFDC000 EntryPoint=0x0003EFDDA67 QemuVideo.efi
NO valid graphics config data found!
Loading PEIM 29CBB005-C972-49F3-960F-292E2202CECD
Loading PEIM at 0x0003EFD2000 EntryPoint=0x0003EFD3265 FspNotifyPhasePeim.efi
The entry of FspNotificationPeim
Reinstall PPI: 0AE8CE5D-E448-4437-A8D7-EBF5F194F731
DXE IPL Entry
FSP HOB is located at 0x3EF20000
Install PPI: 605EA650-C65C-42E1-BA80-91A52AB618C6
Notify: PPI Guid: 605EA650-C65C-42E1-BA80-91A52AB618C6, Peim notify entry

point: FFE3EB9A
Notify: PPI Guid: 605EA650-C65C-42E1-BA80-91A52AB618C6, Peim notify entry

point: 3EFE6EE0
FspInitEndOfPeiCallback++
FspInitEndOfPeiCallback--
FSP is waiting for NOTIFY
FspSiliconInitApi() - [Status: 0x00000000] - End
success
pcie retraining failed FFFFFFFF
cap a 0
ddt disabled 0
device enable: 0
device enable: 128
NotifyPhaseApi() - Begin [Phase: 00000020]
FSP Post PCI Enumeration ...
Install PPI: 30CFE3E7-3DE1-4586-BE20-DEABA1B3B793
Notify: PPI Guid: 30CFE3E7-3DE1-4586-BE20-DEABA1B3B793, Peim notify entry

point: 3EFE6F12
FspInitAfterPciEnumerationCallback++
FspInitAfterPciEnumerationCallback--
NotifyPhaseApi() - End [Status: 0x00000000]
NotifyPhaseApi() - Begin [Phase: 00000040]
FSP Ready To Boot ...
Install PPI: 7CE88FB3-4BD7-4679-87A8-A8D8DEE50D2B
Notify: PPI Guid: 7CE88FB3-4BD7-4679-87A8-A8D8DEE50D2B, Peim notify entry

point: 3EFE6F44
FspReadyToBootCallback++
FspReadyToBootCallback--
NotifyPhaseApi() - End [Status: 0x00000000]
NotifyPhaseApi() - Begin [Phase: 000000F0]
FSP End of Firmware ...
Install PPI: BD44F629-EAE7-4198-87F1-39FAB0FD717E
Notify: PPI Guid: BD44F629-EAE7-4198-87F1-39FAB0FD717E, Peim notify entry

point: 3EFE6F76
FspEndOfFirmwareCallback++
FspEndOfFirmwareCallback--
NotifyPhaseApi() - End [Status: 0x00000000]

COPYRIGHT ©2024 wolfSSL Inc. 57

3.33 Intel x86_64 with Intel FSP support 3 TARGETS

CPUID(0):D 68747541 444D4163
mem: [0x1FFFF00, 0x200CC70] - wolfboot (0xCD70)
mem: [0x200CC70, 0x222FA00] - wolfboot .bss (0x222D90)
load wolfboot end
Authenticating wolfboot at 2000000...
Image size 52336
verify_payload: image open successfully.
verify_payload: integrity OK. Checking signature.
wolfBoot: verified OK.
starting wolfboot 64bit
AHCI port 0: No disk detected
AHCI port 1: No disk detected
AHCI port 2: No disk detected
AHCI port 3: No disk detected
AHCI port 4: No disk detected
AHCI port 5: Disk detected (det: 3 ipm: 1)
SATA disk drive detected on AHCI port 5
Reading MBR...
Found GPT PTE at sector 1
Found valid boot signature in MBR
Valid GPT partition table
Current LBA: 0x1
Backup LBA: 0x1FFFF
Max number of partitions: 128
Software limited: only allowing up to 16 partitions per disk.
Disk size: 66043392
disk0.p0 (0_1000000h@ 0_100000)
disk0.p1 (0_1000000h@ 0_1100000)
Total partitions on disk0: 2
Checking primary OS image in 0,0...
Checking secondary OS image in 0,1...
Versions, A:1 B:2
Load address 0x222FA00
Attempting boot from partition B
mem: [0x222FA00, 0x2241DC8] - ELF (0x123C8)
Loading image from disk...done.
Image size 74696
Checking image integrity...done.
Verifying image signature...done.
Firmware Valid.
Booting at 222FB00
mem: [0x100, 0x1E0] - MPTABLE (0xE0)
Loading elf at 0x222FB00
Found valid elf64 (little endian)
Program Headers 7 (size 56)
Load 504 bytes (offset 0x0) to 0x400000 (p 0x400000)
Load 3999 bytes (offset 0x1000) to 0x401000 (p 0x401000)
Load 1952 bytes (offset 0x2000) to 0x402000 (p 0x402000)
Load 32 bytes (offset 0x3000) to 0x403000 (p 0x403000)
Entry point 0x401000
Elf loaded (ret 0), entry 0x0_401000
mb2 header found at 2232B00
booting...
wolfBoot QEMU x86 FSP test app

COPYRIGHT ©2024 wolfSSL Inc. 58

3.33 Intel x86_64 with Intel FSP support 3 TARGETS

3.33.2 Running on QEMU with swtpm (TPM emulator)
3.33.1.1 Sample boot output using config/examples/x86_fsp_qemu.config First step: clone and
install swtpm, a TPM emulator that can be connected to qemu guest VMs. This TPM emulator will
create a memory-mapped I/O device.
A small note is that config/examples/x86_fsp_qemu_seal.config showcases two different key
ecc size of 384 and 256 of authentication for image verification and TPM sealing respectively.
The correct steps to run the example:
copy the example configuration for this target
cp config/examples/x86_fsp_qemu_seal.config .config

create necessary Intel FSP binaries from edk2 repo
tools/scripts/x86_fsp/qemu/qemu_build_fsp.sh

make keytools and tpmtools
make keytools
make tpmtools

create two keys, one for signing the images (ecc384) and one to seal/unseal
secret into the TPM (ecc256)

./tools/keytools/keygen --force --ecc384 -g wolfboot_signing_private_key.der
--ecc256 -g tpm_seal_key.key

build wolfboot, manually add ECC256 for TPM
make CFLAGS_EXTRA="-DHAVE_ECC256"

compute the value of PCR0 to sign with TPM key
PCR0=$(python ./tools/scripts/x86_fsp/compute_pcr.py --target qemu

wolfboot_stage1.bin | tail -n 1)

sign the policy
./tools/tpm/policy_sign -ecc256 -key=tpm_seal_key.key -pcr=0 -pcrdigest=$PCR0

install the policy
./tools/scripts/x86_fsp/tpm_install_policy.sh policy.bin.sig

make test-app
make test-app/image.elf

make_hd.sh sign the image, creates a file-based hard disk image with GPT
table and raw partitions and then copy the signed images into the
partitions.

IMAGE=test-app/image.elf SIGN=--ecc384 tools/scripts/x86_fsp/qemu/make_hd.sh

run wolfBoot + test-image, use -t to emulate a TPM (requires swtpm)
./tools/scripts/x86_fsp/qemu/qemu.sh -t

For more advanced uses of TPM, please check Appendix M to configure wolfBoot according to your
secure boot strategy.

COPYRIGHT ©2024 wolfSSL Inc. 59

https://github.com/stefanberger/swtpm
https://github.com/stefanberger/swtpm

3.33 Intel x86_64 with Intel FSP support 3 TARGETS

3.33.3 Running on Kontron VX3060-S2

A reference configuration andhelper scripts are provided to runwolfBoot on Kontron VX3060-S2 board.
A flash dumpof the original Flash BIOS is needed. To compile a flashable image run the following steps:
cp config/examples/kontron_vx3060_s2.config .config
./tools/scripts/x86_fsp/tgl/tgl_download_fsp.sh
make tpmtools
./tools/scripts/x86_fsp/tgl/assemble_image.sh -k
make CFLAGS_EXTRA="-DHAVE_ECC256"
./tools/scripts/x86_fsp/tgl/assemble_image.sh -n /path/to/original/flash/dump

they produce a file named final_image.bin inside the root folder of the repository that can be di-
rectly flashed into the BIOS flash of the board.

COPYRIGHT ©2024 wolfSSL Inc. 60

4 HARDWARE ABSTRACTION LAYER

4 Hardware abstraction layer

In order to run wolfBoot on a target microcontroller, an implementation of the HAL must be provided.
The HAL’s purpose is to allowwrite/erase operations from the bootloader and the application initiating
the firmware upgrade through the application library, and ensuring that the MCU is running at full
speed during boot (to optimize the verification of the signatures).
The implementation of the hardware-specific calls for each platform are grouped in a single c file in
the hal directory.
The directory also contains a platform-specific linker script for each supported MCU, with the same
name and the .ld extension. This is used to link the bootloader’s firmware on the specific hardware,
exporting all the necessary symbols for flash and RAM boundaries.

4.1 Supported platforms
Please see Chapter 3

4.2 API
TheHardware Abstraction Layer (HAL) consists of six function calls be implemented for each supported
target:
void hal_init(void)
This function is called by the bootloader at the very beginning of the execution. Ideally, the implemen-
tation provided configures the clock settings for the target microcontroller, to ensure that it runs at at
the required speed to shorten the time required for the cryptography primitives to verify the firmware
images.
void hal_flash_unlock(void)
If the IAP interface of the flash memory of the target requires it, this function is called before every
write and erase operations to unlock write access to the flash. On some targets, this function may be
empty.
int hal_flash_write(uint32_t address, const uint8_t *data, int len)
This function provides an implementation of the flash write function, using the target’s IAP interface.
address is the offset from the beginning of the flash area, data is the payload to be stored in the
flash using the IAP interface, and len is the size of the payload. Implementations of this function
must be able to handle writes of any size and alignment. Targets with a minimum programmable
size > 1 byte must implement the appropriate read-modify-write logic in order to enable wolfBoot to
perform unaligned single-byte writes. hal_flash_write should return 0 upon success, or a negative
value in case of failure.
void hal_flash_lock(void)
If the IAP interface of the flash memory requires locking/unlocking, this function restores the flash
write protection by excluding write accesses. This function is called by the bootloader at the end of
every write and erase operations.
int hal_flash_erase(uint32_t address, int len)
Called by the bootloader to erase part of the flash memory to allow subsequent boots. Erase opera-
tions must be performed via the specific IAP interface of the target microcontroller. address marks
the start of the area that the bootloader wants to erase, and len specifies the size of the area to be
erased. address is guaranteed to be aligned to WOLFBOOT_SECTOR_SIZE, and len is guaranteed to

COPYRIGHT ©2024 wolfSSL Inc. 61

4.2 API 4 HARDWARE ABSTRACTION LAYER

be a multiple of WOLFBOOT_SECTOR_SIZE. This function must take into account the geometry of the
flash sectors, and erase all the sectors in between.
void hal_prepare_boot(void)
This function is called by the bootloader at a very late stage, before chain-loading the firmware in the
next stage. This can be used to revert all the changes made to the clock settings, to ensure that the
state of the microcontroller is restored to its original settings.

4.2.1 Optional support for external flash memory

WolfBoot can be compiled with the makefile option EXT_FLASH=1. When the external flash support is
enabled, update and swap partitions can be associated to an externalmemory, andwill use alternative
HAL function for read/write/erase access. It can also be used in any scenario where flash reads require
special handling and must be redirected to a custom implementation. Note that EXT_FLASH=1 is
incompatible with the NVM_FLASH_WRITEONCE option.
To associate the update or the swappartition to an externalmemory, define PART_UPDATE_EXT and/or
PART_SWAP_EXT, respectively.
The following functions are used to access the external memory, and must be defined when
EXT_FLASH is on:
int ext_flash_write(uintptr_t address, const uint8_t *data, int len)
This function provides an implementation of the flash write function, using the external memory’s
specific interface. address is the offset from the beginning of the addressable space in the device,
data is the payload to be stored, and len is the size of the payload. The function is subject to the
same restrictions as hal_flash_write(). ext_flash_write should return 0 upon success, or a
negative value in case of failure.
int ext_flash_read(uintptr_t address, uint8_t *data, int len)
This function provides an indirect read of the external memory, using the driver’s specific interface.
address is the offset from the beginning of the addressable space in the device, data is a pointer
where payload is stored upon a successful call, and len is the maximum size allowed for the payload.
This functionmust be able to handle reads of any size and alignment. ext_flash_read should return
0 upon success, or a negative value in case of failure.
int ext_flash_erase(uintptr_t address, int len)
Called by the bootloader to erase part of the external memory. Erase operations must be performed
via the specific interface of the target driver (e.g. SPI flash). addressmarks the start of the area relative
to the device, that the bootloader wants to erase, and len specifies the size of the area to be erased.
This function is subject to the same restrictions as hal_flash_erase() and must take into account
the geometry of the sectors, and erase all the sectors in between.
void ext_flash_lock(void)
If the interface of the external flash memory requires locking/unlocking, this function may be used to
restore the flash write protection or exclude write accesses. This function is called by the bootloader
at the end of every write and erase operations on the external device.
void ext_flash_unlock(void)
If the IAP interface of the external memory requires it, this function is called before every write and
erase operations to unlock write access to the device. On some drivers, this function may be empty.

COPYRIGHT ©2024 wolfSSL Inc. 62

4.2 API 4 HARDWARE ABSTRACTION LAYER

4.2.2 Additional functions required by DUALBANK_SWAP option

If the target device supports hardware-assisted bank swapping, it is appropriate to provide two addi-
tional functions in the port:
void hal_flash_dualbank_swap(void)
Called by the bootloader when the two banksmust be swapped. On some architectures this operation
implies a reboot, so this function may also never return.
void fork_bootloader(void)
This function is called to provide a second copy of the bootloader. Wolfboot will clone itself if the
content does not already match. fork_bootloader() implementation in new ports must return im-
mediately without performing any actions if the content of the bootloader partition in the two banks
already match.

COPYRIGHT ©2024 wolfSSL Inc. 63

5 FLASH PARTITIONS

5 Flash partitions

5.1 Flash memory partitions
To integrate wolfBoot you need to partition the flash into separate areas (partitions), taking into ac-
count the geometry of the flash memory.
Images boundaries must be aligned to physical sectors, because the bootloader erases all the flash
sectors before storing a new firmware image, and swaps the content of the two partitions, one sector
at a time.
For this reason, before proceeding with partitioning on a target system, the following aspects must
be considered:

• BOOTpartition andUPDATEpartitionmust have the same size, andbe able to contain the running
system

• SWAP partition must be as big as the largest sector in both BOOT and UPDATE partition.
The flash memory of the target is partitioned into the following areas:

• Bootloader partition, at the beginning of the flash, generally very small (16-32KB)
• Primary slot (BOOT partition) starting at address WOLFBOOT_PARTITION_BOOT_ADDRESS
• Secondary slot (UPDATE partition) starting at address WOLFBOOT_PARTITION_UPDATE_ADDRESS

– both partitions share the same size, defined as WOLFBOOT_PARTITION_SIZE
• Swapping space (SWAP partition) starting at address WOLFBOOT_PARTITION_SWAP_ADDRESS

– the swap space size is defined as WOLFBOOT_SECTOR_SIZE andmust be as big as the largest
sector used in either BOOT/UPDATE partitions.

A proper partitioning configurationmust be set up for the specific use, by setting the values for offsets
and sizes in include/target.h.

5.1.1 Bootloader partition

This partition is usually very small, and only contains the bootloader code and data. Public keys pre-
authorized during factory image creations are automatically stored as part of the firmware image.

5.1.2 BOOT partition

This is the only partition from where it is possible to chain-load and execute a firmware image. The
firmware imagemust be linked so that its entry-point is at addressWOLFBOOT_PARTITION_BOOT_ADDRESS
+ 256.

5.1.3 UPDATE partition

The running firmware is responsible for transferring a new firmware image through a secure channel,
and store it in the secondary slot. If an update is initiated, the bootloader will replace or swap the
firmware in the boot partition at the next reboot.

5.2 Partition status and sector flags
Partitions are used to store firmware images currently in use (BOOT) or ready to swap in (UPDATE).
In order to track the status of the firmware in each partition, a 1-Byte state field is stored at the end
of each partition space. This byte is initialized when the partition is erased and accessed for the first
time.
Possible states are: - IMG_STATE_NEW (0xFF): The image was never staged for boot, or triggered for
an update. If an image is present, no flags are active. - IMG_STATE_UPDATING (0x70): Only valid in

COPYRIGHT ©2024 wolfSSL Inc. 64

5.3 Overview of the content of the FLASH partitions 6 WOLFBOOT FEATURES

the UPDATE partition. The image is marked for update and should replace the current image in BOOT.
- IMG_STATE_TESTING (0x10): Only valid in the BOOT partition. The image has been just updated,
and never completed its boot. If present after reboot, it means that the updated image failed to boot,
despite being correctly verified. This particular situation triggers a rollback. - IMG_STATE_SUCCESS
(0x00): Only valid in the BOOT partition. The image stored in BOOT has been successfully staged at
least once, and the update is now complete.
Starting from the State byte and growing backwards, the bootloader keeps track of the state of each
sector, using 4-bits per sector at the end of the UPDATE partition. Whenever an update is initiated,
the firmware is transferred from UPDATE to BOOT one sector at a time, and storing a backup of the
original firmware from BOOT to UPDATE. Each flash access operation correspond to a different value
of the flags for the sector in the sector flags area, so that if the operation is interrupted, it can be
resumed upon reboot.
End of flash layout: * 4-bits flag (sector 1) * 4-bits flag (sector 0) * 1-byte partition state * 4-byte trailer
“BOOT”
If the FLAGS_HOME build option is used then all flags are placed at the end of the boot partition:

/ -12 /-8 /-4 / END
|Sn| ... |S2|S1|S0|PU| MAGIC |X|X|X|PB| MAGIC |
^--sectors --^ ^--update ^---boot partition

flags partition flag
flag

You can use the CUSTOM_PARTITION_TRAILER option to implement your own functions for:
get_trailer_at, set_trailer_at and set_partition_magic.
To enable: 1) Add theCUSTOM_PARTITION_TRAILERbuild option to your.config: CFLAGS_EXTRA+=-
-DCUSTOM_PARTITION_TRAILER 2) Add your own .c file using OBJS_EXTRA. For example for your
own src/custom_trailer.c add this to your .config: OBJS_EXTRA=src/custom_trailer.o.

5.3 Overview of the content of the FLASH partitions

6 wolfBoot Features

6.1 Signing
6.1.1 wolfBoot key tools installation

Instructions for setting up Python, wolfCrypt-py module and wolfBoot for firmware signing and key
generation.
Note: There is a pure C version of the key tool available as well. See C Key Tools below.

6.1.2 Install Python3

1. Download latest Python 3.x and run installer: https://www.python.org/downloads
2. Check the box that says Add Python 3.x to PATH

6.1.3 Install wolfCrypt

git clone https://github.com/wolfSSL/wolfssl.git
cd wolfssl
./configure --enable-keygen --enable-rsa --enable-ecc --enable-ed25519 --

enable-ed448 --enable-des3 CFLAGS="-DWOLFSSL_PUBLIC_MP"

COPYRIGHT ©2024 wolfSSL Inc. 65

6.1 Signing 6 WOLFBOOT FEATURES

Figure 2: wolfBoot partition

make
sudo make install

6.1.4 Install wolfcrypt-py

git clone https://github.com/wolfSSL/wolfcrypt-py.git
cd wolfcrypt-py
sudo USE_LOCAL_WOLFSSL=/usr/local pip3 install .

6.1.5 Install wolfBoot

git clone https://github.com/wolfSSL/wolfBoot.git
cd wolfBoot
git submodule update --init
Setup configuration (or copy template from ./config/examples)
make config
Build the wolfBoot binary and sign an example test application
make

6.1.6 C Key Tools

A standalone C version of the keygen tools is available in: ./tools/keytools.
These can be built in tools/keytools using make or from the wolfBoot root using make keytools.
If the C version of the key tools exists they will be used by wolfBoot (the default is the Python scripts).

6.1.6.1 Windows Visual Studio Use the wolfBootSignTool.vcxproj Visual Studio project to
build the sign.exe and keygen.exe tools for use on Windows.

COPYRIGHT ©2024 wolfSSL Inc. 66

6.1 Signing 6 WOLFBOOT FEATURES

6.1.7 Command Line Usage

6.1.7.1 Keygen tool Usage: keygen[.py] [OPTIONS] [-g new-keypair.der] [-i existing-
pubkey.der] [...]
keygen is used to populate a keystore with existing and new public keys. Two options are supported:

• -g privkey.der to generate a new keypair, add the public key to the keystore and save the
private key in a new file privkey.der

• -i existing.der to import an existing public key from existing.der
Arguments are not exclusive, and can be repeatedmore than once to populate a keystorewithmultiple
keys.
One option must be specified to select the algorithm enabled in the keystore (e.g. --ed25519 or --
rsa3072. See the section “Public key signature options” for the sign tool for the available options.
The files generate by the keygen tool is the following:

• A C file src/keystore.c, which is normally linked with the wolfBoot image, when the keys are
provisioned through generated C code.

• A binary file keystore.img that can be used to provision the public keys through an alternative
storage

• The private key, for each -g option provided from command line

6.1.7.2 Sign tool sign and sign.py produce a signed firmware image by creating a manifest
header in the format supported by wolfBoot.
Usage: sign[.py] [OPTIONS] IMAGE.BIN KEY.DER VERSION
IMAGE.BIN: A file containing the binary firmware/software to sign KEY.DER: Private key file, in DER
format, to sign the binary image VERSION: The version associated with this signed software OPTIONS:
Zero or more options, described below

6.1.7.3 Public key signature options If none of the following arguments is given, the tool will try
to guess the key size from the format and key length detected in KEY.DER.

• --ed25519 Use ED25519 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --ed448Use ED448 for signing the firmware. Assume that the given KEY.DER file is in this format.
• --ecc256 Use ecc256 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --ecc384 Use ecc384 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --rsa2048 Use rsa2048 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --rsa3072 Use rsa3072 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --rsa4096 Use rsa4096 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --no-sign Disable secure boot signature verification. No signature verification is performed in
the bootloader, and the KEY.DER argument is ignored.

COPYRIGHT ©2024 wolfSSL Inc. 67

6.1 Signing 6 WOLFBOOT FEATURES

6.1.8 Key generation and management

KeyStore is the name of the mechanism used by wolfBoot to store all the public keys used for authen-
ticating the signature of current firmware and updates.
wolfBoot’s key generation tool can be used to generate one or more keys. By default, when running
make for the first time, a single key wolfboot_signing_private_key.der is created, and added to
the keystore module. This key should be used to sign any firmware running on the target, as well as
firmware update binaries.
Additionally, the keygen tool creates additional files with different representations of the keystore -
A .c file (src/keystore.c) which can be used to deploy public keys as part of the bootloader itself, by
linking the keystore in wolfboot.elf - A .bin file (keystore.bin) which contains the keystore that can
be hosted on a custom memory support. In order to access the keystore, a small driver is required
(see section “Interface API” below).
By default, the keystore object in src/keystore.c is accessed by wolfboot by including its symbols
in the build. Once generated, this file contains an array of structures describing each public key that
will be available to wolfBoot on the target system. Additionally, there are a few functions that connect
to the wolfBoot keystore API to access the details and the content of the public key slots.
The public key is described by the following structure:
struct keystore_slot {

uint32_t slot_id;
uint32_t key_type;
uint32_t part_id_mask;
uint32_t pubkey_size;
uint8_t pubkey[KEYSTORE_PUBKEY_SIZE];

};

• slot_id is the incremental identifier for the key slot, starting from 0.
• key_type describes the algorithm of the key, e.g. AUTH_KEY_ECC256 or AUTH_KEY_RSA3072
• mask describes the permissions for the key. It’s a bitmap of the partition ids for which this key
can be used for verification

• pubkey_size the size of the public key buffer
• pubkey the actual buffer containing the public key in its raw format

When booting, wolfBoot will automatically select the public key associated to the signed firmware
image, check that it matches the permissionmask for the partition id where the verification is running
and then attempts to authenticate the signature of the image using the selected public key slot.

6.1.8.1 Creating multiple keys keygen accepts multiple filenames for private keys.
Two arguments:

• -g priv.der generate new keypair, store the private key in priv.der, add the public key to the
keystore

• -i pub.der import an existing public key and add it to the keystore
Example of creation of a keystore with two ED25519 keys:
./tools/keytools/keygen.py --ed25519 -g first.der -g second.der
will create the following files:

• first.der first private key
• second.der second private key

COPYRIGHT ©2024 wolfSSL Inc. 68

6.1 Signing 6 WOLFBOOT FEATURES

• src/keystore.c C keystore containing both public keys associated with first.der and sec-
ond.der.

The keystore.c generated should look similar to this:
#define NUM_PUBKEYS 2
const struct keystore_slot PubKeys[NUM_PUBKEYS] = {

/* Key associated to private key 'first.der' */
{

.slot_id = 0,

.key_type = AUTH_KEY_ED25519,

.part_id_mask = KEY_VERIFY_ALL,

.pubkey_size = KEYSTORE_PUBKEY_SIZE_ED25519,

.pubkey = {
0x21, 0x7B, 0x8E, 0x64, 0x4A, 0xB7, 0xF2, 0x2F,
0x22, 0x5E, 0x9A, 0xC9, 0x86, 0xDF, 0x42, 0x14,
0xA0, 0x40, 0x2C, 0x52, 0x32, 0x2C, 0xF8, 0x9C,
0x6E, 0xB8, 0xC8, 0x74, 0xFA, 0xA5, 0x24, 0x84

},
},

/* Key associated to private key 'second.der' */
{

.slot_id = 1,

.key_type = AUTH_KEY_ED25519,

.part_id_mask = KEY_VERIFY_ALL,

.pubkey_size = KEYSTORE_PUBKEY_SIZE_ED25519,

.pubkey = {
0x41, 0xC8, 0xB6, 0x6C, 0xB5, 0x4C, 0x8E, 0xA4,
0xA7, 0x15, 0x40, 0x99, 0x8E, 0x6F, 0xD9, 0xCF,
0x00, 0xD0, 0x86, 0xB0, 0x0F, 0xF4, 0xA8, 0xAB,
0xA3, 0x35, 0x40, 0x26, 0xAB, 0xA0, 0x2A, 0xD5

},
},

};

6.1.8.2 Public keys and permissions By default, when a new keystore is created, the permissions
mask is set to KEY_VERIFY_ALL, which means that the key can be used to verify a firmware targeting
any partition id.
To restrict the permissions for single keys, it would be sufficient to change the value of their
part_id_mask attributes.
The part_id_mask value is a bitmask, where each bit represent a different partition. The bit ‘0’ is
reserved for wolfBoot self-update, while typically the main firmware partition is associated to id 1, so
it requires a key with the bit ‘1’ set. In other words, signing a partition with --id 3 would require
turning on bit ‘3’ in the mask, i.e. adding (1U « 3) to it.
Beside KEY_VERIFY_ALL, pre-defined mask values can also be used here:

• KEY_VERIFY_APP_ONLY only verifies the main application, with partition id 1
• KEY_VERIFY_SELF_ONLY this key can only be used to authenticate wolfBoot self-updates (id =
0)

COPYRIGHT ©2024 wolfSSL Inc. 69

6.2 Measured Boot using wolfBoot 6 WOLFBOOT FEATURES

• KEY_VERIFY_ONLY_ID(N) macro that can be used to restrict the usage of the key to a specific
partition id N

6.1.9 Signing Firmware

1. Load the private key to use for signing into ./wolfboot_signing_private_key.der
2. Run the signing tool with asymmetric algorithm, hash algorithm, file to sign, key and version.

./tools/keytools/sign --rsa2048 --sha256 test-app/image.bin
wolfboot_signing_private_key.der 1↪

OR
python3 ./tools/keytools/sign.py --rsa2048 --sha256 test-app/image.bin

wolfboot_signing_private_key.der 1↪

Note: The last argument is the “version” number.

6.1.10 Signing Firmware with External Private Key (HSM)

Steps for manually signing firmware using an external key source.
Create file with Public Key
openssl rsa -inform DER -outform DER -in my_key.der -out rsa2048_pub.der

-pubout↪

Add the public key to the wolfBoot keystore using `keygen -i`
./tools/keytools/keygen --rsa2048 -i rsa2048_pub.der
OR
python3 ./tools/keytools/keygen.py --rsa2048 -i rsa4096_pub.der

Generate Hash to Sign
./tools/keytools/sign --rsa2048 --sha-only --sha256

test-app/image.bin rsa2048_pub.der 1↪
OR
python3 ./tools/keytools/sign.py --rsa2048 --sha-only --sha256

test-app/image.bin rsa4096_pub.der 1↪

Sign hash Example (here is where you would use an HSM)
openssl pkeyutl -sign -keyform der -inkey my_key.der -in

test-app/image_v1_digest.bin > test-app/image_v1.sig↪

Generate final signed binary
./tools/keytools/sign --rsa2048 --sha256 --manual-sign

test-app/image.bin rsa2048_pub.der 1 test-app/image_v1.sig↪
OR
python3 ./tools/keytools/sign.py --rsa2048 --sha256 --manual-sign

test-app/image.bin rsa4096_pub.der 1 test-app/image_v1.sig↪

Combine into factory image (0xc0000 is the WOLFBOOT_PARTITION_BOOT_ADDRESS)
tools/bin-assemble/bin-assemble factory.bin 0x0 wolfboot.bin \

0xc0000 test-app/image_v1_signed.bin

6.2 Measured Boot using wolfBoot
wolfBoot offers a simplifiedmeasured boot implementation, a way to record and track the state of the
system boot process using a Trusted Platform Module(TPM).

COPYRIGHT ©2024 wolfSSL Inc. 70

6.2 Measured Boot using wolfBoot 6 WOLFBOOT FEATURES

This record is tamper-proofed by special registers in the TPM called Platform Configuration Register.
Then, the firmware application, RTOS or rich OS(Linux), can access that log of information by reading
the PCRs of the TPM.
wolfBoot can interact with TPM2.0 chips thanks to its integration with wolfTPM. wolfTPM has native
support for Microsoft Windows and Linux, and can be used standalone or together with wolfBoot.
The combination of wolfBoot with wolfTPM gives the developer a tamper-proof secure storage for
protecting the system during and after boot.

6.2.1 Concept

Typically, systems use Secure Boot to guarantee that the correct and geniune firmware is booted by
verifying its signature. Afterwards, this knowledge is unknown to the sytem. The application does
not know if the system started in a good known state. Sometimes, this guarantee is needed by the
firmware itself. To provide such mechanism the concept of Measured Boot exist.
Measured Boot can be used to check every start-up component, including settings and user infor-
mation(user partition). The result of the checks is then stored into special registers called PCR. This
process is called PCR Extend and is refered to as a TPMmeasurement. PCR registers can be reset only
on TPM power-on.
Having TPMmeasurements provide a way for the firmware or Operating System(OS), like Windows or
Linux, to know that the software loaded before it gained control over system, is trustworthy and not
modified.
In wolfBoot the concept is simplified to measuring a single component, the main firmware image.
However, this can easily be extended by using more PCR registers.

6.2.2 Configuration

To enable measured boot add MEASURED_BOOT=1 setting in your wolfBoot config.
It is also necessary to select the PCR (index) where the measurement will be stored.
Selection is made using the MEASURED_BOOT_PCR_A=[index] setting. Add this setting in your wolf-
Boot config and replace [index] with a number between 0 and 23. Below you will find guidelines for
selecting a PCR index.
Any TPM has a minimum of 24 PCR registers. Their typical use is as follows:

Index Typical use Recommended to use with
0 Core Root of Trust and/or BIOS measurement bare-metal, RTOS
1 measurement of Platform Configuration Data bare-metal, RTOS
2-3 Option ROM Code measurement bare-metal, RTOS
4-5 Master Boot Record measurement bare-metal, RTOS
6 State Transitions bare-metal, RTOS
7 Vendor specific bare-metal, RTOS
8-9 Partition measurements bera-metal, RTOS
10 measurement of the Boot Manager bare-metal, RTOS
11 Typically used by Microsoft Bitlocker bare-metal, RTOS
12-15 Available for any use bare-metal, RTOS, Linux, Windows
16 DEBUG Use only for test purposes
17 DRTM Trusted Bootloader
18-22 Trusted OS Trusted Execution Environment(TEE)
23 Application Use only for temporary measurements

COPYRIGHT ©2024 wolfSSL Inc. 71

6.3 Firmware image 6 WOLFBOOT FEATURES

Recommendations for choosing a PCR index:
• During development it is recommended to use PCR16 that is intented for testing.
• In production, if you are running a bare-metal firmware or RTOS, you could use almost all
PCRs(PCR0-15), except the one for DRTM and Trusted OS(PCR17-23).

• If you are running Linux or Windows, PCR12-15 can be chosen for production ready firmware, in
order to avoid conflict with other software that might be using PCRs from within Linux, like the
Linux IMA or Microsoft Bitlocker.

Here is an example part of a wolfBoot .config during development:
MEASURED_BOOT?=1
MEASURED_PCR_A?=16

6.2.2.1 Code wolfBoot offers out-of-the-box solution. There is zero need of the developer to touch
wolfBoot code in order to use measured boot. If you would want to check the code, then look in sr-
c/image.c and more specifically the measure_boot() function. There you would find several TPM2
native API calls to wolfTPM. For more information about wolfTPM you can check its GitHub repository.

6.3 Firmware image
6.3.1 Firmware entry point

WolfBoot can only chain-load and execute firmware images from a specific entry point in memory,
which must be specified as the origin of the FLASHmemory in the linker script of the embedded appli-
cation. This corresponds to the first partition in the flash memory.
Multiple firmware images can be created this way, and stored in two different partitions. The boot-
loader will take care of moving the selected firmware to the first (BOOT) partition before chain-loading
the image.
Due to the presence of an image header, the entry point of the application has a fixed additional offset
of 256B from the beginning of the flash partition.

6.3.2 Firmware image header

Each (signed) firmware image is prepended with a fixed-size image header, containing useful infor-
mation about the firmware. The exact size of the image header depends on the size of the image
digest and signature, which depend on the algorithms/key sizes used. Larger key sizes will result in a
larger image header. The size of the image header is determined by the build system and provided to
the application code in the IMAGE_HEADER_SIZE macro. The size of the generated image header is
also output by the keytools during the signing operation. The image header data is padded out to the
next multiple of 256B, in order to guarantee that the entry point of the actual firmware is stored on
the flash starting from a 256-Bytes aligned address. This ensures that the bootloader can relocate the
vector table before chain-loading the firmware so interrupts continue to work properly after the boot
is complete. When porting wolfBoot to a platform that doesn’t use wolfBoot’s Makefile-based build
system, extra care should be taken to ensure IMAGE_HEADER_SIZE is set to a value that matches the
output of the wolfBoot sign key tool.
The image header is stored at the beginning of the slot and the actual firmware image starts IM-
AGE_HEADER_SIZE Bytes after it

6.3.2.1 Image header: Tags The image header is prepended with a single 4-byte magic number,
followed by a 4-byte field indicating the firmware image size (excluding the header). All numbers in
the header are stored in Little-endian format.
The two fixed fields are followed by one or more tags. Each TAG is structured as follows:

COPYRIGHT ©2024 wolfSSL Inc. 72

6.3 Firmware image 6 WOLFBOOT FEATURES

Figure 3: Image header

• 2 bytes indicating the Type
• 2 bytes indicating the size of the tag, excluding the type and size bytes
• N bytes of tag content

With the following exception: - A ‘0xFF’ in the Type field indicate a simple padding byte. The ‘padding’
byte has no size field, and the next byte should be processed as Type again.
Each Type has a different meaning, and integrate information about the firmware. The following
Tags are mandatory for validating the firmware image: - A ‘version’ Tag (type: 0x0001, size: 4 Bytes)
indicating the version number for the firmware stored in the image - A ‘timestamp’ Tag (type: 0x0002,
size 8 Bytes) indicating the timestamp in unix seconds for the creation of the firmware - A ‘sha digest’
Tag (type: 0x0003, size: digest size (32 Bytes for SHA256)) used for integrity check of the firmware -
A ‘firmware signature’ Tag (type: 0x0020, size: 64 Bytes) used to validate the signature stored with
the firmware against a known public key - A ‘firmware type’ Tag (type: 0x0030, size: 2 Bytes) used to
identify the type of firmware, and the authentication mechanism in use.
A ‘public key hint digest’ tag is transmitted in the header (type: 0x10, size:32 Bytes). This tag contains
the SHA digest of the public key used by the signing tool. The bootloader may use this field to locate
the correct public key in case of multiple keys available.
wolfBoot will, in all cases, refuse to boot an image that cannot be verified and authenticated using the
built-in digital signature authentication mechanism.

6.3.2.2 Adding custom fields to the manifest header It is possible to add custom fields to the
manifest header, by using the --custom-tlv option in the signing tool.
In order for the fields to be secured (checked by wolfBoot for integrity and authenticity), their value
is placed in the manifest header before the signature is calculated. The signing tool takes care of the
alignment and padding of the fields.
The custom fields are identified by a 16-bit tag, and their size is indicated by a 16-bit length field. The
tag and length fields are stored in little-endian format.
At runtime, the values stored in themanifest header canbe accessedusing thewolfBoot_find_header
function.
The syntax for --custom-tlv option is also documented in Appendix H.

6.3.2.3 Image header: Example This example adds a custom field when the signing tool is used
to sign the firmware image:
./tools/keytools/sign --ed25519 --custom-tlv 0x34 4 0xAABBCCDD

test-app/image.bin wolfboot_signing_private_key.der 4↪

COPYRIGHT ©2024 wolfSSL Inc. 73

6.4 Firmware update 6 WOLFBOOT FEATURES

The output image test-app/image_v4_signed.binwill contain the custom field with tag 0x34with
length 4 and value 0xAABBCCDD.
From the bootloader code, we can then retrieve the value of the custom field using the wolf-
Boot_find_header function:
uint32_t value;
uint8_t* ptr = NULL;
uint16_t tlv = 0x34;
uint8_t* imageHdr = (uint8_t*)WOLFBOOT_PARTITION_BOOT_ADDRESS +

IMAGE_HEADER_OFFSET;↪
uint16_t size = wolfBoot_find_header(imageHdr, tlv, &ptr);
if (size > 0 && ptr != NULL) {

/* Found field and ptr points to value 0xAABBCCDD */
memcpy(&value, ptr, size);
printf("TLV 0x%x=0x%x\n", tlv, value);

}
else {

/* Error: the field is not found */
}

6.3.3 Image signing tool

The image signing tool generates the header with all the required Tags for the compiled image, and
add them to the output file that can be then stored on the primary slot on the device, or transmitted
later to the device through a secure channel to initiate an update.

6.3.3.1 Storing firmware image Firmware images are stored with their full header at the begin-
ning of any of the partitions on the system. wolfBoot can only boot images from the BOOT partition,
while keeping a second firmware image in the UPDATE partition.
In order to boot a different image, wolfBoot will have to swap the content of the two images.
For more information on how firmware images are stored andmanaged within the two partitions, see
Flash partitions

6.4 Firmware update
This section documents the complete firmware update procedure, enabling secure boot for an existing
embedded application.

6.4.1 Updating Microcontroller FLASH

The steps to complete a firmware update with wolfBoot are: - Compile the firmware with the correct
entry point - Sign the firmware - Transfer the image using a secure connection, and store it to the
secondary firmware slot - Trigger the image swap - Reboot to let the bootloader begin the image
swap
At any given time, an application or OS running on a wolfBoot system can receive an updated version
of itself, and store the updated image in the second partition in the FLASH memory.
Applications or OS threads can be linked to the libwolfboot library, which exports the API to trigger
the update at the next reboot, and some helper functions to access the flash partition for erase/write
through the target specific HAL.

COPYRIGHT ©2024 wolfSSL Inc. 74

6.4 Firmware update 6 WOLFBOOT FEATURES

Figure 4: Update and Rollback

6.4.2 Update procedure description

Using the API provided to the application, wolfBoot offers the possibility to initiate, confirm or rollback
an update.
After storing the new firmware image in the UPDATE partition, the application should initiate the up-
date by calling wolfBoot_update_trigger(). By doing so, the UPDATE partition is marked for up-
date. Upon the next reboot, wolfBoot will: - Validate the new firmware image stored in the UPDATE
partition - Verify the signature attached against a known public key stored in the bootloader image -
Swap the content of the BOOT and the UPDATE partitions - Mark the new firmware in the BOOT parti-
tion as in state STATE_TESTING - Boot into the newly received firmware
If the system is interrupted during the swap operation and reboots, wolfBoot will pick up where it left
off and continue the update procedure.

6.4.2.1 Successful boot Upon a successful boot, the application should inform the bootloader by
calling wolfBoot_success(), after verifying that the system is up and running again. This operation
confirms the update to a new firmware.
Failing to set the BOOT partition to STATE_SUCCESS before the next reboot triggers a roll-back oper-
ation. Roll-back is initiated by the bootloader by triggering a new update, this time starting from the
backup copy of the original (pre-update) firmware, which is now stored in the UPDATE partition due to
the swap occurring earlier.

6.4.2.2 Building a new firmware image Firmware images are position-dependent, and can only
boot from the origin of the BOOT partition in FLASH. This design constraint implies that the chosen
firmware is always stored in the BOOT partition, and wolfBoot is responsible for pre-validating an
update image and copy it to the correct address.
All the firmware images must therefore have their entry point set to the address corresponding to the
beginning of the BOOT partition, plus an offset of 256 Bytes to account for the image header.

COPYRIGHT ©2024 wolfSSL Inc. 75

6.4 Firmware update 6 WOLFBOOT FEATURES

Once the firmware is compiled and linked, it must be signed using the sign tool. The tool produces
a signed image that can be transferred to the target using a secure connection, using the same key
corresponding to the public key currently used for verification.
The tool also adds all the required Tags to the image header, containing the signatures and the SHA256
hash of the firmware.

6.4.2.3 Self-update wolfBoot can update itself if RAM_CODE is set. This procedure operates almost
the same as firmware update with a few key differences. The header of the update is marked as a
bootloader update (use --wolfboot-update for the sign tools).
The new signed wolfBoot image is loaded into the UPDATE parition and triggered the same as a
firmware update. Instead of performing a swap, after the image is validated and signature verified,
the bootloader is erased and the new image is written to flash. This operation is not safe from inter-
ruption. Interruption will prevent the device from rebooting.
wolfBoot can be used to deploy new bootloader versions as well as update keys.

6.4.2.4 Incremental updates (aka: ‘delta’ updates) wolfBoot supports incremental updates,
based on a specific older version. The sign tool can create a small “patch” that only contains the binary
difference between the version currently running on the target and the update package. This reduces
the size of the image to be transferred to the target, while keeping the same level of security through
public key verification, and integrity due to the repeated check (on the patch and the resulting image).
The format of the patch is based on themechanism suggested by Bentley/McIlroy, which is particularly
effective to generate small binary patches. This is useful to minimize time and resources needed to
transfer, authenticate and install updates.

6.4.2.4.1 How it works As an alternative to transferring the entire firmware image, the key tools
create a binary diff between a base version previously uploaded and the new updated image.
The resulting bundle (delta update) contains the information to derive the content of version ‘2’ of
the firmware, starting from the base version, that is currently running on the target (version ‘1’ in this
example), and the reverse patch to downgrade version ‘2’ back to version ‘1’ if something goes wrong
running the new version.
On the device side, wolfboot will recognize and verify the authenticity of the delta update before ap-
plying the patch to the current firmware. The new firmware is rebuilt in place, replacing the content
of the BOOT partition according to the indication in the (authenticated) ‘delta update’ bundle.

6.4.2.4.2 Two-steps verification Binary patches are created by comparing signed firmware images.
wolfBoot verifies that the patch is applied correctly by checking for the integrity and the authenticity
of the resulting image after the patch.
The delta update bundle itself, containing the patches, is prefixed with a manifest header describing
the details for the patch, and signed like a normal full update bundle.
This means that wolfBoot will apply two levels of authentication: the first one when the delta bundle
is processed (e.g. when an update is triggered), and the second one every time a patch is applied, or
reversed, to validate the firmware image before booting.
These steps are performed automatically by the key tools when using the --delta option, as de-
scribed in the example.

COPYRIGHT ©2024 wolfSSL Inc. 76

6.4 Firmware update 6 WOLFBOOT FEATURES

Figure 5: Delta update

COPYRIGHT ©2024 wolfSSL Inc. 77

6.5 Remote External flash memory support via UART 6 WOLFBOOT FEATURES

6.4.2.4.3 Confirming the update From the application perspective, nothing changes from the nor-
mal, ‘full’ update case. Application must still call wolfBoot_success() on the first boot with the
updated version to ensure that the update is confirmed.
Failing to confirm the success of the update will cause wolfBoot to revert the patch applied during
the update. The ‘delta update’ bundle also contains a reverse patch, which can revert the update and
restore the base version of the firmware.
The diagram below shows the authentication steps and the diff/patch process in both directions (up-
date and roll-back for missed confirmation).

6.4.2.4.4 Incremental update: example Requirement: wolfBoot is compiledwithDELTA_UPDATES=1
Version “1” is signed as usual, as a standalone image:
tools/keytools/sign --ecc256 --sha256 \
test-app/image.bin wolfboot_signing_private_key.der 1

When updating from version 1 to version 2, you can invoke the sign tool as:
tools/keytools/sign --delta test-app/image_v1_signed.bin --ecc256 --sha256 test-
app/image.bin wolfboot_signing_private_key.der 2
Besides the usual output file image_v2_signed.bin, the sign tool creates an additional im-
age_v2_signed_diff.bin which should be noticeably smaller in size as long as the two binary files
contain overlapping areas.
This is the delta update bundle, a signed package containing the patches for updating version 1 to
version 2, and to roll back to version 1 if needed, after the first patch has been applied.
The delta bundle image_v2_signed_diff.bin can be now transferred to the update partition on the
target like a full update image.
At next reboot, wolfBoot recognizes the incremental update, checks the integrity, the authenticity and
the versions of the patch. If all checks succeed, the new version is installed by applying the patch on
the current firmware image.
If the update is not confirmed, at the next reboot wolfBoot will restore the original base im-
age_v1_signed.bin, using the reverse patch contained in the delta update bundle.

6.5 Remote External flash memory support via UART
wolfBoot can emulate external partitions using UART communication with a neighbor system. This
feature is particularly useful in those asynchronous multi-process architectures, where updates can
be stored with the assistance of an external processing unit.

6.5.1 Bootloader setup

The option to activate this feature is UART_FLASH=1. This configuration option depends on the exter-
nal flash API, which means that the option EXT_FLASH=1 is also mandatory to compile the bootloader.
The HAL of the target system must be expanded to include a simple UART driver, that will be used by
the bootloader to access the content of the remote flash using one of the UART controllers on board.
Example UART drivers for a few of the supported platforms can be found in the hal/uart directory.
The API exposed by the UART HAL extension for the supported targets is composed by the following
functions:

COPYRIGHT ©2024 wolfSSL Inc. 78

6.5 Remote External flash memory support via UART 6 WOLFBOOT FEATURES

Figure 6: Delta update: details
COPYRIGHT ©2024 wolfSSL Inc. 79

6.6 Encrypted external partitions 6 WOLFBOOT FEATURES

int uart_init(uint32_t bitrate, uint8_t data, char parity, uint8_t stop);
int uart_tx(const uint8_t c);
int uart_rx(uint8_t *c);

Consider implementing these three functions based on the provided examples if you want to use
external flash memory support on your platform, if not officially supported yet.

6.5.2 Host side: UART flash server

On the remote system hosting the external partition image for the target, a simple protocol can be
implemented on top of UART messages to serve flash-access specific calls.
An example uart-flash-server daemon, designed to run on a GNU/Linux host and emulate the external
partition with a local file on the filesystem, is available in tools/uart-flash-server.

6.5.3 External flash update mechanism

wolfBoot treats external UPDATE and SWAP partitions in the same way as when they are mapped on a
local SPI flash. Read and write operations are simply translated into remote procedure calls via UART,
that can be interpreted by the remote application and provide read and write access to actual storage
elements which would only be accessible by the host.
This means that after a successful update, a copy of the previous firmware will be stored in the remote
partition to provide exactly the same update mechanism that is available in all the other use cases.
The only difference consist in the way of accessing the physical storage area, but all the mechanisms
at a higher level stay the same.

6.6 Encrypted external partitions
wolfBoot offers the possibility to encrypt the content of the entire UPDATE partition, by using a pre-
shared symmetric key which can be temporarily stored in a safer non-volatile memory area.
SWAP partition is also temporarily encrypted using the same key, so a dump of the external flash won’t
reveal any content of the firmware update packages.

6.6.1 Rationale

Encryption of external partition works at the level of the external flash interface.
All write calls to external partitions from the bootloader perform an additional encryption step to hide
the actual content of the external non-volatile memory.
Viceversa, all read operations will decrypt the data stored when the feature is enabled.
An extra option is provided to the sign tool to encrypt the firmware update after signing it, so that it
can be stored as is in the external memory by the application, and will be decrypted by the bootloader
in order to verify the update and begin the installation.

6.6.2 Temporary key storage

By default, wolfBoot will store the pre-shared symmetric key used for encryption in a temporary area
on the internal flash. This allows read-out protections to be used to hide the temporary key.
Alternatively, more secure mechanisms are available to store the temporary key in a different key
storage (e.g. using a hardware security module or a TPM device).
The temporary key can be set at run time by the application, and will be used exactly once by the
bootloader to verify and install the next update. The key can be for example received from a back-end

COPYRIGHT ©2024 wolfSSL Inc. 80

6.6 Encrypted external partitions 6 WOLFBOOT FEATURES

during the update process using secure communication, and set by the application, using libwolf-
boot API, to be used by wolfBoot upon next boot.
Aside from setting the temporary key, the update mechanism remains the same for distributing, up-
loading and installing firmware updates through wolfBoot.

6.6.3 Libwolfboot API

The API to communicate with the bootloader from the application is expanded when this feature is
enabled, to allow setting a temporary key to process the next update.
The functions
int wolfBoot_set_encrypt_key(const uint8_t *key, const uint8_t *nonce);
int wolfBoot_erase_encrypt_key(void);

can be used to set a temporary encryption key for the external partition, or erase a key previously set,
respectively.
Moreover, using libwolfboot to access the external flash with wolfboot hal from the application will
not use encryption. This way the received update, already encrypted at origin, can be stored in the
external memory unchanged, and retrieved in its encrypted format, e.g. to verify that the transfer has
been successful before reboot.

6.6.4 Symmetric encryption algorithms

The default algorithm used to encrypt and decrypt data in external partitions is Chacha20-256.
• The key provided to wolfBoot_set_encrypt_key()must be exactly 32 Bytes long.
• The nonce argument must be a 96-bit (12 Bytes) randomly generated buffer, to be used as IV for
encryption and decryption.

AES-128 and AES-256 are also supported. AES is used in counter mode. AES-128 and AES-256 have a
key length of 16 and 32 bytes respectively, and the IV size is 16 bytes long in both cases.

6.6.5 Example usage

To compile wolfBoot with encryption support, use the option ENCRYPT=1.
By default, this also selects ENCRYPT_WITH_CHACHA=1. To use AES encryption instead, select EN-
CRYPT_WITH_AES128=1 or ENCRYPT_WITH_AES256=1.

6.6.6 Signing and encrypting the update bundle with ChaCha20-256

The sign tool can sign and encrypt the image with a single command. In case of chacha20, the en-
cryption secret is provided in a binary file that should contain a concatenation of a 32B ChaCha-256
key and a 12B nonce.
In the examples provided, the test application uses the following parameters:
key = "0123456789abcdef0123456789abcdef"
nonce = "0123456789ab"

So it is easy to prepare the encryption secret in the test scripts or from the command line using:
echo -n "0123456789abcdef0123456789abcdef0123456789ab" > enc_key.der

The sign tool can now be invoked to produce a signed+encrypted image, by using the extra argument
--encrypt followed by the secret file:

COPYRIGHT ©2024 wolfSSL Inc. 81

6.6 Encrypted external partitions 6 WOLFBOOT FEATURES

./tools/keytools/sign.py --encrypt enc_key.der test-app/image.bin
wolfboot_signing_private_key.der 24

which will produce as output the file test-app/image_v24_signed_and_encrypted.bin, that can
be transferred to the target’s external device.

6.6.7 Signing and encrypting the update bundle with AES-256

In case of AES-256, the encryption secret is provided in a binary file that should contain a concatenation
of a 32B key and a 16B IV.
In the examples provided, the test application uses the following parameters:
key = "0123456789abcdef0123456789abcdef"
iv = "0123456789abcdef"

So it is easy to prepare the encryption secret in the test scripts or from the command line using:
echo -n "0123456789abcdef0123456789abcdef0123456789abcdef" > enc_key.der

The sign tool can now be invoked to produce a signed+encrypted image, by using the extra argument
--encrypt followed by the secret file. To select AES-256, use the --aes256 option.
./tools/keytools/sign --aes256 --encrypt enc_key.der test-app/image.bin

wolfboot_signing_private_key.der 24

which will produce as output the file test-app/image_v24_signed_and_encrypted.bin, that can
be transferred to the target’s external device.

6.6.8 Encryption of incremental (delta) updates

When used in combination with delta updates, encryption works the same way as in full-update mode.
The final delta image is encrypted with the selected algorithm.

6.6.9 Encryption of self-updates

When used in combination with bootloader ‘self’ updates, the encryption algorithm must be config-
ured to run from RAM.
This is done by changing the linker script for the target. At the moment the feature has been success-
fully tested with the ChaCha algorithm.
The .text and .rodata segments in FLASH must be updated to not include symbols to be loaded in
memory, so the following lines in the .text section:

(.text)
(.rodata)

Must be replaced with:
*(EXCLUDE_FILE(*chacha.o).text*)
*(EXCLUDE_FILE(*chacha.o).rodata*)

Similarly, the .data section loaded in RAM should contain all the .text and .rodata also coming from
the symbols of the encryption algorithm. The .data section should have the following added, after
KEEP(*(.ramcode)):

COPYRIGHT ©2024 wolfSSL Inc. 82

6.7 Application interface for interactions with the bootloader 6 WOLFBOOT FEATURES

KEEP(*(.text.wc_Chacha*))
KEEP(*(.text.rotlFixed*))
KEEP(*(.rodata.sigma))
KEEP(*(.rodata.tau))

The combination of encryption + self update has been successfully tested on STM32L0. When using
makefile based build, a different linker script hal/$(TARGET)_chacha_ram.ld is used as template.
The file hal/stm32l0_chacha_ram.ld contains the changes described above to place all the needed
symbols in RAM.

6.6.10 API usage in the application

When transferring the image, the application can still use the libwolfboot API functions to store the
encrypted firmware. When called from the application, the function ext_flash_write will store the
payload unencrypted.
In order to trigger an update, before calling wolfBoot_update_trigger it is necessary to set the
temporary key used by the bootloader by calling wolfBoot_set_encrypt_key.
An example of encrypted update trigger can be found in the stm32wb test application source code (in
../test-app/app_stm32wb.c).

6.7 Application interface for interactions with the bootloader
wolfBoot offers a small interface to interact with the images stored in the partition, explicitly initiate
an update and confirm the success of a previously scheduled update.

6.7.1 Compiling and linking with libwolfboot

An application that requires interactions with wolfBoot must include the header file:
#include <wolfboot/wolfboot.h>
This exports the API function declarations, and the predefined values for the flags and tags stored
together with the firmware images in the two partitions.
For more information about flash partitions, flags and states see Flash partitions.

6.7.2 API

libwolfboot provides low-level access interface to flash partition states. The state of each partition can
be retrieved and altered by the application.
Basic interaction from the application is provided via the following high-level function calls:
uint32_t wolfBoot_get_image_version(uint8_t part)
void wolfBoot_update_trigger(void)
void wolfBoot_success(void)

6.7.2.1 Firmware version Current (boot) firmware and update firmware versions can be retrieved
from the application using:
uint32_t wolfBoot_get_image_version(uint8_t part)
Or via the shortcut macros:
wolfBoot_current_firmware_version()

COPYRIGHT ©2024 wolfSSL Inc. 83

6.7 Application interface for interactions with the bootloader 6 WOLFBOOT FEATURES

and
wolfBoot_update_firmware_version()

6.7.2.2 Trigger an update
• wolfBoot_update_trigger() is used to trigger an update upon the next reboot, and it is nor-
mally used by an update application that has retrieved a new version of the running firmware,
and has stored it in the UPDATE partition on the flash. This function will set the state of the UP-
DATE partition to STATE_UPDATING, instructing the bootloader to perform the update upon the
next execution (after reboot).

wolfBoot update process swaps the contents of the UPDATE and the BOOT partitions, using a tempo-
rary single-block SWAP space.

6.7.2.3 Confirm current image
• wolfBoot_success() indicates a successful boot of a new firmware. This can be called by the
application at any time, but it will only be effective to mark the current firmware (in the BOOT
partition) with the state STATE_SUCCESS, indicating that no roll-back is required. An application
should typically call wolfBoot_success() only after verifying that the basic system features are
up and running, including the possibility to retrieve a new firmware for the next upgrade.

If after an upgrade and reboot wolfBoot detects that the active firmware is still in STATE_TESTING
state, it means that a successful boot has not been confirmed for the application, and will attempt to
revert the update by swapping the two images again.
For more information about the update process, see Firmware Update
For the image format, see Firmware Image

COPYRIGHT ©2024 wolfSSL Inc. 84

7 INTEGRATING WOLFBOOT IN AN EXISTING PROJECT

7 Integrating wolfBoot in an existing project

7.1 Required steps
• See the Targets chapter for reference implementation examples.
• Provide a HAL implementation for the target platform (see Hardware Abstraction Layer)
• Decide a flash partition strategy and modify include/target.h accordingly (see Flash parti-
tions)

• Change the entry point of the firmware image to account for bootloader presence
• Equip the application with the wolfBoot library to interact with the bootloader
• Configure and compile a bootable image with a single “make” command
• For help signing firmware see wolfBoot Signing
• For enabling measured boot see wolfBoot measured boot

7.2 Examples provided
Additional examples available on our GitHub wolfBoot-examples repository here.
The following steps are automated in the default Makefile target, using the baremetal test applica-
tion as an example to create the factory image. By running make, the build system will:

• Create a Ed25519 Key-pair using the keygen tool
• Compile the bootloader. The public key generated in the step above is included in the build
• Compile the firmware image from the test application in the ‘test_app’ directory
• Re-link the firmware to change the entry-point to the start address of the primary partition
• Sign the firmware image using the sign tool
• Create a factory image by concatenating the bootloader and the firmware image

The factory image can be flashed to the target device. It contains the bootloader and the signed initial
firmware at the specified address on the flash.
The sign.py tool transforms a bootable firmware image to comply with the firmware image format
required by the bootloader.
For detailed information about the firmware image format, see Firmware image
For detailed information about the configuration options for the target system, see Compiling wolf-
Boot

7.3 Upgrading the firmware
• Compile the new firmware image, and link it so that its entry point is at the start address of the
primary partition

• Sign the firmware using the sign.py tool and the private key generated for the factory image
• Transfer the image using a secure connection, and store it to the secondary firmware slot
• Trigger the image swap using libwolfboot wolfBoot_update_trigger() function. See wolf-
Boot library API for a description of the operation

• Reboot to let the bootloader begin the image swap
• Confirm the success of the update using libwolfboot wolfBoot_success() function. See wolf-
Boot library API for a description of the operation

For more detailed information about firmware update implementation, see Firmware Update

COPYRIGHT ©2024 wolfSSL Inc. 85

https://github.com/wolfSSL/wolfBoot-examples

8 TROUBLESHOOTING

8 Troubleshooting

8.1 Python errors when signing a key
Traceback (most recent call last):

File "tools/keytools/keygen.py", line 135, in <module>
rsa = ciphers.RsaPrivate.make_key(2048)

AttributeError: type object 'RsaPrivate' has no attribute 'make_key'

Traceback (most recent call last):
File "tools/keytools/sign.py", line 189, in <module>

r, s = ecc.sign_raw(digest)
AttributeError: 'EccPrivate' object has no attribute 'sign_raw'

You need to install the latest wolfcrypt-py here: https://github.com/wolfSSL/wolfcrypt-py
Use pip3 install wolfcrypt.
Or to install based on a local wolfSSL installation use:
cd wolfssl
./configure --enable-keygen --enable-rsa --enable-ecc --enable-ed25519 --

enable-des3 CFLAGS="-DFP_MAX_BITS=8192 -DWOLFSSL_PUBLIC_MP"
make
sudo make install
cd wolfcrypt-py
USE_LOCAL_WOLFSSL=/usr/local pip3 install .

8.2 Python errors in command line parser running keygen.py
Traceback (most recent call last):

File "tools/keytools/keygen.py", line 173, in <module>
parser.add_argument('-i', dest='pubfile', nargs='+', action='extend')

File "/usr/lib/python3.7/argparse.py", line 1361, in add_argument
raise ValueError('unknown action "%s"' % (action_class,))

ValueError: unknown action "extend"

The version of the python interpreter installed on the system is too old. To run keygen.py you need
to upgrade python to v.3.8 or greater.

8.3 Contact support
If you run into problems and need help, contact us at support@wolfssl.com

COPYRIGHT ©2024 wolfSSL Inc. 86

A ATA SECURITY

A ATA Security

A.1 Introduction
This document provides an overview of how wolfBoot can leverage the ATA security features to lock
or unlock ATA drive. The ATA drive may be locked either by using a hardcoded password or by using a
secret that is sealed in the TPM.

A.2 Table of Contents
• ATA Security

– Introduction
– Table of Contents
– Unlocking the Disk with a Hardcoded Password
– Unlocking the Disk with a TPM-Sealed Secret
– Disabling the password

A.3 Unlocking the Disk with a Hardcoded Password
To unlock the disk using a hardcoded password, use the following options in your .config file:
DISK_LOCK=1
DISK_LOCK_PASSWORD=hardcoded_password

If the ATA disk has no password set, the disk will be locked with the password provided at the first
boot.

A.4 Unlocking the Disk with a TPM-Sealed Secret
wolfBoot allows to seal secret safely in the TPM in a way that it can be unsealed only under specific
conditions. Please refer to Appendix M and Appendix Gfor more information. If the options WOLF-
BOOT_TPM_SEAL and DISK_LOCK are enabled, wolfBoot will use a TPM sealed secret as the password
to unlock the disk. The following options controls the sealing and unsealing of the secret:

Option Description
WOLFBOOT_TPM_SEAL_KEY_ID The key ID to use for sign the policy
ATA_UNLOCK_DISK_KEY_NV_INDEX The NV index to store the sealed secret.
WOLFBOOT_DEBUG_REMOVE_SEALED_ON_ERROR In case of error, delete the secret and panic()

In case there are no secret sealed at ATA_UNLOCK_DISK_KEY_NV_INDEX, a new random secret will be
created and sealed at that index. In case the ATA drive is not locked, it will be locked at the first boot
with the secret sealed in the TPM.

A.5 Disabling the password
If you need to disable the password, a master password should be already set on the device. Then you
can use the following options to compile wolfBoot so that it will disable the password from the drive
and panic:
WOLFBOOT_ATA_DISABLE_USER_PASSWORD=1
ATA_MASTER_PASSWORD=the_master_password

COPYRIGHT ©2024 wolfSSL Inc. 87

B SIGNING FIRMWARE USING MICROSOFT AZURE KEY VAULT

B Signing firmware using Microsoft Azure Key Vault

Microsoft offers secure keymanagement andprovisioning tools, using keys stored inHSMs. Thismech-
anisms helps to centralize key management for several purposes, including the support for signing
payloads using the managed keys, which can be used in combination with wolfBoot for provisioning
public keys in a fleet of devices.

B.1 Preparing the keystore
wolfBoot can import public keys in the keystore using thekeygen command line tool provided. keygen
supports both raw ECC keys and ASN.1 format (.der).
Azure allows to download the public keys in ASN.1 format to provision the device. To retrieve each
public key to use for firmware authentication in wolfBoot, use:
az keyvault key download --vault-name <vault-name> -n test-signing-key-1 -e DER

-f public-key-1.der↪

A keystore can now be created importing the public keys and with keygen’s -i (import) option. The
option may be repeated multiple times to add more keys to the keystore.
./tools/keytools/keygen --ecc256 -i public-key-1.der [-i public-key-2.der ...]

B.2 Signing the firmware image for wolfBoot
The signing operation using any external HSM is performed through three-steps, as described in the
relevant section in Appendix B. In this section we describe the procedure to sign the firmware image
using Azure key vault.

B.2.1 Obtaining the SHA256 digest

Step 1 consists in calling the ./sign tool with the extra --sha-only argument, to generate the digest
to sign. The public key associated to the selected signing key in the vault needs to be provided:
./tools/keytools/sign --ecc256 --sha-only --sha256 test-app/image.bin

public-key-1.der 1↪

To fit in a https REST request, the digest obtained must be encoded using base64:
DIGEST=$(cat test-app/image_v1_digest.bin | base64url_encode)
The variable DIGEST now contains a printable encoding of the key, which can be attached to the re-
quest.

B.2.2 HTTPS request for signing the digest with the Key Vault

To prepare the request, first get an access token from the vault and store it in a variable:
ACCESS_TOKEN=$(az account get-access-token --resource

"https://vault.azure.net" --query "accessToken" -o tsv)↪

Use the URL associated to the selected key vault:
KEY_IDENTIFIER="https://<vault-name>.vault.azure.net/keys/test-signing-key"
Perform the request using cURL, and store the result in a variable:

COPYRIGHT ©2024 wolfSSL Inc. 88

B.2 Signing the firmware image for wolfBootB SIGNING FIRMWARE USING MICROSOFT AZURE KEY VAULT

SIGNING_RESULT=$(curl -X POST \
-s "${KEY_IDENTIFIER}/sign?api-version=7.4" \
-H "Authorization: Bearer ${ACCESS_TOKEN}" \
-H "Content-Type:application/json" \
-H "Accept:application/json" \
-d "{\"alg\":\"ES256\",\"value\":\"${DIGEST}\"}")

echo $SIGNING_RESULT
The field .value in the result contains the (base64 encoded) signature. To extract the signature from
the response, you can use a JSON parser:
SIGNATURE=$(jq -jn "$SIGNING_RESULT|.value")
The signature can now be decoded from base64 into a binary, so the sign tool can incorporate the
signature into the manifest header.
echo $SIGNATURE| base64url_decode > test-app/image_v1_digest.sig

B.2.3 Final step: create the signed firmware image

The ‘third step’ in the HSM three-steps procedure requires the --manual-sign option and the signa-
ture obtained through the Azure REST API.
./tools/keytools/sign --ecc256 --sha256 --manual-sign test-app/image.bin test-

signin-key_pub.der 1 test-app/image_v1_digest.sig

The resulting binary file image_v1_signed.bin will now contain a signed firmware image that can
be authenticated and staged by wolfBoot.

COPYRIGHT ©2024 wolfSSL Inc. 89

C USING ONE-TIME PROGRAMMABLE (OTP) FLASH AREA FOR KEYSTORE

C Using One-Time Programmable (OTP) flash area for keystore

Somemicrocontrollers provide a special area in flashmemory that can only bewritten once and cannot
be erased.
This feature comes particularly handy when you want to store the public keys required to authenticate
the firmware update images, which has exactly the same requirements. A public key is a cryptographic
key that can be freely distributed and is used to verify the signature of the firmware update image.
By storing the public keys in the OTP area, you can ensure that they are immutable and cannot be
tampered with.

C.1 Compiling wolfBoot to access OTP as keystore
To use the OTP area as a keystore, you need to compile wolfBoot with the FLASH_OTP_KEYSTORE
option enabled. This option is disabled by default, which means that the keystore is incorporated into
the wolfBoot binary itself.
When wolfBoot uses the OTP area as a keystore, it reads the public keys from the OTP area at runtime.
The public keys are stored in the OTP area, after an initial 16-byte header that contains the number of
keys stored, the size of each key, and other information.
In order for wolfBoot to start authenticating the firmware images at boot and upon update, the public
keys must be provisioned to the OTP area in a separate step, as described in the next sections.
Depending on the target device, you can either prepare a binary image of the OTP area content, or
use otp-keystore-primer firmware to directly provision the keys on the target.

C.2 Creating an image of the OTP area content
It is possible to create a binary image of the content for the OTP area. The resulting file (otp.bin) can
be manually provisioned using any external tool that allows writing to the target OTP area.
To compile the otp-keystore-gen tool using the current keystore content:
make otpgen
And then, to create the image file otp.bin:
./tools/keytools/otp/otp-keystore-gen

C.3 Directly provisioning the public keys to the OTP area (primer)
After enabling the FLASH_OTP_KEYSTORE option in your .config file, when you compile wolfBoot by
running “make”, an additional application called otp-keystore-primer is generated under tool-
s/keytools/otp. This application is used to provision the public keys to theOTP area. By flashing this
application to the microcontroller, the public keys contained in your keystore (previously generated
by keygen) are written to the OTP area.
The otp-keystore-primer application is generated with the public keys embedded in it. The keys
are retrieved from the keystore.c file, generated by the keygen command. The otp-keystore-
primer application reads the public keys from the keystore.c file and writes them to the OTP area.
After generating a new keystore.c with the keygen application, you can generate the otp-
keystore-primer application again, by running make otp.

[!WARNING] The otp-keystore-primer application is a one-time use application. Once
the application runs on your target, the public keys are written to the OTP area, and it will
be impossible to erase them. Therefore, it is important to ensure that the public keys are

COPYRIGHT ©2024 wolfSSL Inc. 90

C.4 Examples C USING ONE-TIME PROGRAMMABLE (OTP) FLASH AREA FOR KEYSTORE

correct before provisioning them to the OTP area, and that the associated private keys are
stored securely. Accidentally losing the private keys will render the public keys stored in the
OTP area useless.
[!CAUTION] ** Be very careful when using the otp-keystore-primer application. Use it
at your own risk. **

C.4 Examples
C.4.1 STM32H5 OTP KeyStore

Example for NULCLEO-STM32H563ZI with TrustZone (via PKCS11), DualBank and signing with PQ LMS:
1) Setup the configuration and key tools:

cp config/examples/stm32h5-tz-dualbank-otp-lms.config .config
make include/target.h
make keytools
2) Generate key(s) to write to OTP
• ./examples/keytools/keygen --lms -g 1.key -g 2.key -g 3.key -g 4.key -g 5.key
3) Backup the generated keys and src/keystore.c
• Save to safe place outside of the wolfBoot tree
4) Set the signing key to use
• Copy one of the generated keys to wolfboot_signing_private_key.der
• cp 1.key wolfboot_signing_private_key.der
5) Setup the OTP keystore

Flash the OTP keystore primer: - Run make otp - Flash ./tools/keytools/otp/otp-keystore-
primer.bin to 0x08000000 - Disconnect the tool and hit reset button - The primer will run and flash
keystore.c to OTP and enable write protection on those blocks
OR
GenerateOTP (otp.bin) andflashusing external tool - Runmake otpgen - Run./tools/keytools/otp/otp-
keystore-gen to generate an otp.bin file - Program otp.bin to 0x08FFF000 using external tool like
STM32CubeProgrammer
6) Verify OTP keystore
• Read memory at address 0x08FFF000 (should start with ASCII “WOLFBOOT”)
• Typically use STM32CubeProgrammer for this
7) Setup the option bytes
• User Configuration 2 -> TrustZone Enable (TZEN=0xB4)
• Bank1 - Flash Watermark area (SECWM1_START=0x00, SECWM1_END=0x1F)
• Bank2 - Flash Watermark area (SECWM2_START=0x00, SECWM2_END=0x1F)
8) Mass erase the device
• STM32CubeProgrammer -> Full chip erase
9) Build wolfBoot and test application using make

10) Flash wolfBoot and test-app
• Flash wolfboot.bin at 0x0C000000
• Flash test-app/image_v1_signed.bin at 0x08040000

COPYRIGHT ©2024 wolfSSL Inc. 91

C.4 Examples C USING ONE-TIME PROGRAMMABLE (OTP) FLASH AREA FOR KEYSTORE

11) Disconnect and reboot, the red LED should turn on.
12) Connect to USB UART on NUCLEO board for console
Explore the command line (run help)
========================
STM32H5 wolfBoot demo Application
Copyright 2024 wolfSSL Inc
GPL v3
Version : 0x1
========================

cmd> help
help : shows this help message
info : display information about the system and partitions
success : confirm a successful update
pkcs11 : enable and test crypto calls with PKCS11 in secure mode
random : generate a random number
timestamp : print the current timestamp
benchmark : run the wolfCrypt benchmark
test : run the wolfCrypt test
update : update the firmware via XMODEM
reboot : reboot the system
13) Test Update
• Sign a new version of the firmware: ./tools/keytools/sign --lms test-app/image.bin
wolfboot_signing_private_key.der 2

• Run “update” command on the shell and wait for xmodem transfer
• Use serial terminal that supports xmodem like “minicom” or “CoolTerm”.

– Run minicom on /dev/ttyACM0 and start file transfer using “CTRL+A; S”
– Select xmodem thennavigate to thenewsignedfirmwarefiletest-app/image_v2_signed.bin

• During the transfer, the yellow LED will flash.
• The green LED is dim because it’s sync with the UART RX
• At the end of the transfer, the new image will be in the update partition.
• Reset board to install new firmware and confirm new version number.

Example update output:
cmd> update
Erasing update partition...Done.
Waiting for XMODEM transfer...
...

End of transfer. ret: 0
New firmware version: 0x2
Triggering update...
Update completed successfully.

cmd> reboot

========================
STM32H5 wolfBoot demo Application
Copyright 2024 wolfSSL Inc

COPYRIGHT ©2024 wolfSSL Inc. 92

C.4 Examples C USING ONE-TIME PROGRAMMABLE (OTP) FLASH AREA FOR KEYSTORE

GPL v3
Version : 0x2
========================

cmd>

COPYRIGHT ©2024 wolfSSL Inc. 93

D KEYSTORE STRUCTURE: SUPPORT FOR MULTIPLE PUBLIC KEYS

D KeyStore structure: support for multiple public keys

D.1 What is wolfBoot KeyStore
KeyStore is the mechanism used by wolfBoot to store all the public keys used for authenticating the
signature of current firmware and updates.
wolfBoot’s key generation tool can be used to generate one or more keys. By default, when running
make for the first time, a single key wolfboot_signing_private_key.der is created, and added to
the keystore module. This key should be used to sign any firmware running on the target, as well as
firmware update binaries.
Additionally, the keygen tool creates additional files with different representations of the keystore -
A .c file (src/keystore.c) which can be used to deploy public keys as part of the bootloader itself, by
linking the keystore in wolfboot.elf - A .bin file (keystore.bin) which contains the keystore that can
be hosted on a custom memory support. In order to access the keystore, a small driver is required
(see section “Interface API” below).

D.2 Default usage (built-in keystore)
By default, the keystore object in src/keystore.c is accessed by wolfboot by including its symbols
in the build. Once generated, this file contains an array of structures describing each public key that
will be available to wolfBoot on the target system. Additionally, there are a few functions that connect
to the wolfBoot keystore API to access the details and the content of the public key slots.
The public key is described by the following structure:
struct keystore_slot {

uint32_t slot_id;
uint32_t key_type;
uint32_t part_id_mask;
uint32_t pubkey_size;
uint8_t pubkey[KEYSTORE_PUBKEY_SIZE];

};

• slot_id is the incremental identifier for the key slot, starting from 0.
• key_type describes the algorithm of the key, e.g. AUTH_KEY_ECC256 or AUTH_KEY_RSA3072
• mask describes the permissions for the key. It’s a bitmap of the partition ids for which this key
can be used for verification

• pubkey_size the size of the public key buffer
• pubkey the actual buffer containing the public key in its raw format

When booting, wolfBoot will automatically select the public key associated to the signed firmware
image, check that it matches the permissionmask for the partition id where the verification is running
and then attempts to authenticate the signature of the image using the selected public key slot.

D.2.1 Creating multiple keys

keygen accepts multiple filenames for private keys.
Two arguments:

• -g priv.der generate new keypair, store the private key in priv.der, add the public key to the
keystore

• -i pub.der import an existing public key and add it to the keystore

COPYRIGHT ©2024 wolfSSL Inc. 94

D.2 Default usage (built-in keystore) D KEYSTORE STRUCTURE: SUPPORT FOR MULTIPLE PUBLIC KEYS

Example of creation of a keystore with two ED25519 keys:
./tools/keytools/keygen --ed25519 -g first.der -g second.der
will create the following files:

• first.der first private key
• second.der second private key
• src/keystore.c C keystore containing both public keys associated with first.der and sec-
ond.der.

The keystore.c generated should look similar to this:
#define NUM_PUBKEYS 2
const struct keystore_slot PubKeys[NUM_PUBKEYS] = {

/* Key associated to private key 'first.der' */
{

.slot_id = 0,

.key_type = AUTH_KEY_ED25519,

.part_id_mask = KEY_VERIFY_ALL,

.pubkey_size = KEYSTORE_PUBKEY_SIZE_ED25519,

.pubkey = {
0x21, 0x7B, 0x8E, 0x64, 0x4A, 0xB7, 0xF2, 0x2F,
0x22, 0x5E, 0x9A, 0xC9, 0x86, 0xDF, 0x42, 0x14,
0xA0, 0x40, 0x2C, 0x52, 0x32, 0x2C, 0xF8, 0x9C,
0x6E, 0xB8, 0xC8, 0x74, 0xFA, 0xA5, 0x24, 0x84

},
},

/* Key associated to private key 'second.der' */
{

.slot_id = 1,

.key_type = AUTH_KEY_ED25519,

.part_id_mask = KEY_VERIFY_ALL,

.pubkey_size = KEYSTORE_PUBKEY_SIZE_ED25519,

.pubkey = {
0x41, 0xC8, 0xB6, 0x6C, 0xB5, 0x4C, 0x8E, 0xA4,
0xA7, 0x15, 0x40, 0x99, 0x8E, 0x6F, 0xD9, 0xCF,
0x00, 0xD0, 0x86, 0xB0, 0x0F, 0xF4, 0xA8, 0xAB,
0xA3, 0x35, 0x40, 0x26, 0xAB, 0xA0, 0x2A, 0xD5

},
},

};

D.2.2 Permissions

By default, when a new keystore is created, the permissions mask is set to KEY_VERIFY_ALL, which
means that the key can be used to verify a firmware targeting any partition id.
The part_id_mask value is a bitmask, where each bit represent a different partition. The bit ‘0’ is
reserved for wolfBoot self-update, while typically the main firmware partition is associated to id 1, so
it requires a key with the bit ‘1’ set. In other words, signing a partition with --id 3 would require
turning on bit ‘3’ in the mask, i.e. adding (1U « 3) to it.

COPYRIGHT ©2024 wolfSSL Inc. 95

D.3 Using KeyStore with external Key VaultsD KEYSTORE STRUCTURE: SUPPORT FOR MULTIPLE PUBLIC KEYS

To restrict the permissions for single keys, it would be sufficient to change the value of each key
part_id_mask. This is done via the --id command line option for keygen. Each generated or im-
ported key can be associated with a number of partition by passing the partition IDs in a comma-
separated list, e.g.:
keygen --ecc256 -g generic.key --id 1,2,3 -g restricted.key

Generates two keypairs, generic.key and restricted.key. The former assumes the default mask
KEY_VERIFY_ALL, which makes it possible to use it to authenticate any of the system components.
The latter instead, will carry a mask with only the bits ‘1’, ‘2’, and ‘3’ set (mask = b00001110 =0x000e),
allowing the usage only with the assigned partition IDs.

D.2.3 Importing public keys

The “-i” option is used to import existing public keys into the keyvault. The usage is identical to the ‘-g’
option, except that the file provided must exist and contain a valid public key of the given algorithm
and key size.

D.2.4 Generating and importing keys of different types

By default, wolfBoot hardcodes the type of key used for all the signature verification operations into
the keystore format.
Alternatively, wolfBoot can be compiled with the option WOLFBOOT_UNIVERSAL_KEYSTORE=1, which
disables the check at compile time and allows adding keys of different types to the keystore. For
example, if we want to create two keypairs with different ECC curves, and additionally store a pre-
existing RSA2048 public key file rsa-pub.der, we could run the following:
keygen --ecc256 -g a.key --ecc384 -g b.key --rsa2048 -i rsa-pub.der
The command above generates a keystore with three public keys that are accessible by the bootloader
at runtime.
Please note that by default wolfBoot does not include any public key algorithm implementations be-
sides the one selected via the option SIGN=, so usually this feature is reserved to specific use cases
where other policies or components in the chain-of-trust require to store different key types for differ-
ent purposes.

D.3 Using KeyStore with external Key Vaults
It is possible to use an external NVM, a Key Vault or any generic support to access the KeyStore. In
this case, wolfBoot should not link the generated keystore.c directly, but rather rely on an external
interface, that exports the same API which would be implemented by keystore.c.
The API consists of a few functions described below.

D.3.1 Interface API

D.3.1.1 Number of keys in the keystore int keystore_num_pubkeys(void)
Returns the number of slots in the keystore. At least one slot should be populated if you want to
authenticate your firmware today. The interface assumes that the slots are numbered sequentially,
from zero to keystore_num_pubkeys() - 1. Accessing those slots through this API should always
return a valid public key.

D.3.1.2 Size of the public key in a slot int keystore_get_size(int id)
Returns the size of the public key stored in the slot id. In case of error, return a negative value.

COPYRIGHT ©2024 wolfSSL Inc. 96

D.3 Using KeyStore with external Key VaultsD KEYSTORE STRUCTURE: SUPPORT FOR MULTIPLE PUBLIC KEYS

D.3.1.3 Actual public keybuffer (mapped/copied inmemory) uint8_t *keystore_get_buffer(int
id)
Returns a pointer to an accessible area inmemory, containing the bufferwith the public key associated
to the slot id.

D.3.1.4 Permissions mask uint32_t keystore_get_mask(int id)
Returns the permissions mask, as a 32-bit word, for the public key stored in the slot id.

COPYRIGHT ©2024 wolfSSL Inc. 97

E BUILD WOLFBOOT AS LIBRARY

E Build wolfBoot as Library

Instead of building as standalone repository, wolfBoot can be built as a secure-boot library and inte-
grated in third party bootloaders, custom staging solutions etc.

E.1 Library API
ThewolfBoot secure-boot image verification has a very simple interface. The core object describing the
image is a struct wolfBoot_image, which is initialized when wolfBoot_open_image_address()
is called. The signature is:
int wolfBoot_open_image_address(struct wolfBoot_image* img, uint8_t* image)
where img is a pointer to a local (uninitialized) structure of type wolfBoot_image, and image is a
pointer to where the signed image is mapped in memory, starting from the beginning of the manifest
header.
On success, zero is returned. If the image does not contain a valid ‘magic number’ at the beginning of
the manifest, or if the size of the image is bigger than WOLFBOOT_PARTITION_SIZE, -1 is returned.
If the open_image_address operation is successful, two other functions can be invoked:

• int wolfBoot_verify_integrity(struct wolfBoot_image *img)
This function verifies the integrity of the image, by calculating the SHA hash of the image content,
and comparing it with the digest stored in the manifest header. img is a pointer to an object of type
wolfBoot_image, previously initialized by wolfBoot_open_image_address.
0 is returned if the image integrity could be successfully verified, -1 otherwise.

• int wolfBoot_verify_authenticity(struct wolfBoot_image *img)
This function verifies that the image content has been signed by a trusted counterpart (i.e. that could
be verified using one of the public keys available).
0 is returned in case of successful authentication, -1 if anything went wrong during the operation, and
-2 if the signature could be found, but was not possible to authenticate against its public key.

E.2 Library mode: example application
An example application is provided in hal/library.c.
The application test-lib opens a file from a path passed as argument from the command line, and
verifies that the file contains a valid, signed image that can be verified for integrity and authenticity
using wolfBoot in library mode.

E.3 Configuring and compiling the test-lib application
Step 1: use the provided configuration to compile wolfBoot in library mode:
cp config/examples/library.config .config

Step 2: create a file target.h that only contains the following lines:
cat > include/target.h << EOF
#ifndef H_TARGETS_TARGET_
#define H_TARGETS_TARGET_

#define WOLFBOOT_NO_PARTITIONS

COPYRIGHT ©2024 wolfSSL Inc. 98

E.3 Configuring and compiling the test-lib application E BUILD WOLFBOOT AS LIBRARY

#define WOLFBOOT_SECTOR_SIZE 0x20000
#define WOLFBOOT_PARTITION_SIZE 0x20000

#endif /* !H_TARGETS_TARGET_ */

EOF

Change WOLFBOOT_PARTITION_SIZE accordingly. wolfBoot_open_image_address() will discard
images larger than WOLFBOOT_PARTITION_SIZE - IMAGE_HEADER_SIZE.
Step 3: compile keytools and create keys.
make keytools
./tools/keytools/keygen --ed25519 -g wolfboot_signing_private_key.der

Step 4: Create an empty file and sign it using the private key.
touch empty
./tools/keytools/sign --ed25519 --sha256 empty wolfboot_signing_private_key.

der 1

Step 5: compile the test-lib application, linked with wolfBoot in library mode, and the public key from
the keypair created at step 4.
make test-lib

Step 6: run the application with the signed image
./test-lib empty_v1_signed.bin

If everything went right, the output should be similar to:
Firmware Valid
booting 0x5609e3526590(actually exiting)

COPYRIGHT ©2024 wolfSSL Inc. 99

F WOLFBOOT LOADERS / UPDATERS

F wolfBoot Loaders / Updaters

F.1 loader.c
The default wolfBoot loader entry point that starts the wolfBoot secure boot process and leverages
one of the *_updater.c implementations.

F.2 loader_stage1.c
A first stage loader whose purpose is to load wolfBoot from flash to ram and jump to it. This is re-
quired on platforms where flash is not memory mapped (XIP). For example on PowerPC e500v2 where
external NAND flash is used for boot only a small 4KB region is available, so wolfBoot must be loaded
to RAM and then run.
Example: make WOLFBOOT_STAGE1_LOAD_ADDR=0x1000 stage1

• WOLFBOOT_STAGE1_SIZE: Maximum size of wolfBoot stage 1 loader
• WOLFBOOT_STAGE1_FLASH_ADDR: Location in Flash for stage 1 loader (XIP from boot ROM)
• WOLFBOOT_STAGE1_BASE_ADDR: Address in RAM to load stage 1 loader to
• WOLFBOOT_STAGE1_LOAD_ADDR: Address in RAM to load wolfBoot to
• WOLFBOOT_LOAD_ADDRESS: Address in RAM to load application partition

F.3 update_ram.c
Implementation for RAM based updater

F.4 update_flash.c
Implementation for Flash based updater

F.5 update_flash_hwswap.c
Implementation for hardware assisted updater

COPYRIGHT ©2024 wolfSSL Inc. 100

G MEASURED BOOT USING WOLFBOOT

G Measured Boot using wolfBoot

wolfBoot offers a simplifiedmeasured boot implementation, a way to record and track the state of the
system boot process using a Trusted Platform Module(TPM).
This record is tamper-proofed by special registers in the TPM called Platform Configuration Register.
Then, the firmware application, RTOS or rich OS(Linux), can access that log of information by reading
the PCRs of the TPM.
wolfBoot can interact with TPM2.0 chips thanks to its integration with wolfTPM. wolfTPM has native
support for Microsoft Windows and Linux, and can be used standalone or together with wolfBoot.
The combination of wolfBoot with wolfTPM gives the developer a tamper-proof secure storage for
protecting the system during and after boot.

G.1 Concept
Typically, systems use Secure Boot to guarantee that the correct and genuine firmware is booted by
verifying its signature. Afterwards, this knowledge is unknown to the system. The application does
not know if the system started in a good known state. Sometimes, this guarantee is needed by the
firmware itself. To provide such mechanism the concept of Measured Boot exist.
Measured Boot can be used to check every start-up component, including settings and user infor-
mation(user partition). The result of the checks is then stored into special registers called PCR. This
process is called PCR Extend and is referred to as a TPMmeasurement. PCR registers can be reset only
on TPM power-on.
Having TPMmeasurements provide a way for the firmware or Operating System(OS), like Windows or
Linux, to know that the software loaded before it gained control over system, is trustworthy and not
modified.
In wolfBoot the concept is simplified to measuring a single component, the main firmware image.
However, this can easily be extended by using more PCR registers.

G.2 Configuration
To enable measured boot add MEASURED_BOOT=1 setting in your wolfBoot config.
It is also necessary to select the PCR (index) where the measurement will be stored.
Selection is made using the MEASURED_BOOT_PCR_A=[index] setting. Add this setting in your wolf-
Boot config and replace [index] with a number between 0 and 23. Below you will find guidelines for
selecting a PCR index.
Any TPM has a minimum of 24 PCR registers. Their typical use is as follows:

Index Typical use Recommended to use with
0 Core Root of Trust and/or BIOS measurement bare-metal, RTOS
1 measurement of Platform Configuration Data bare-metal, RTOS
2-3 Option ROM Code measurement bare-metal, RTOS
4-5 Master Boot Record measurement bare-metal, RTOS
6 State Transitions bare-metal, RTOS
7 Vendor specific bare-metal, RTOS
8-9 Partition measurements bera-metal, RTOS
10 measurement of the Boot Manager bare-metal, RTOS
11 Typically used by Microsoft Bitlocker bare-metal, RTOS
12-15 Available for any use bare-metal, RTOS, Linux, Windows

COPYRIGHT ©2024 wolfSSL Inc. 101

G.2 Configuration G MEASURED BOOT USING WOLFBOOT

Index Typical use Recommended to use with
16 DEBUG Use only for test purposes
17 DRTM Trusted Bootloader
18-22 Trusted OS Trusted Execution Environment(TEE)
23 Application Use only for temporary measurements

Recommendations for choosing a PCR index:
• During development it is recommended to use PCR16 that is intended for testing.
• In production, if you are running a bare-metal firmware or RTOS, you could use almost all
PCRs(PCR0-15), except the one for DRTM and Trusted OS(PCR17-23).

• If you are running Linux or Windows, PCR12-15 can be chosen for production ready firmware, in
order to avoid conflict with other software that might be using PCRs from within Linux, like the
Linux IMA or Microsoft Bitlocker.

Here is an example part of a wolfBoot .config during development:
MEASURED_BOOT?=1
MEASURED_PCR_A?=16

G.2.1 Code

wolfBoot offers out-of-the-box solution. There is zero need of the developer to touch wolfBoot code
in order to use measured boot. If you would want to check the code, then look in src/image.c and
more specifically the measure_boot() function. There you would find several TPM2 native API calls
to wolfTPM. For more information about wolfTPM you can check its GitHub repository.

COPYRIGHT ©2024 wolfSSL Inc. 102

H POST-QUANTUM SIGNATURES

H Post-Quantum Signatures

wolfBoot is adding support for post-quantum signatures. At present, support for LMS/HSS, and
XMSS/XMSS^MT has been added.
LMS/HSS and XMSS/XMSS^MT are both post-quantum stateful hash-based signature (HBS) schemes.
They are known for having small public keys, relatively fast signing and verifying operations, but larger
signatures. Their signature sizes however are tunable via their different parameters, which affords a
space-time tradeoff.
Stateful HBS schemes are based on the security of their underlying hash functions and Merkle trees,
which are not expected to be broken by the advent of cryptographically relevant quantum computers.
For this reason they have been recommended by both NIST SP 800-208, and the NSA’s CNSA 2.0 suite.
See these links for more info on stateful HBS support and wolfSSL/wolfCrypt:

• https://www.wolfssl.com/documentation/manuals/wolfssl/appendix07.html#post-quantum-
stateful-hash-based-signatures

• https://github.com/wolfSSL/wolfssl-examples/tree/master/pq/stateful_hash_sig

H.1 Supported PQ Signature Methods
These four PQ signature options are supported:

• LMS: uses wolfcrypt implementation from wc_lms.c, and wc_lms_impl.c.
• XMSS: uses wolfcrypt implementation from wc_xmss.c, and wc_xmss_impl.c.
• ext_LMS: uses external integration from ext_lms.c.
• ext_XMSS: uses external integration from ext_xmss.c.

The wolfcrypt implementations are more performant and are recommended. The external integra-
tions are experimental and for testing interoperability.

H.1.1 LMS/HSS Config

A new LMS sim example has been added here:
config/examples/sim-lms.config

The LMS_LEVELS, LMS_HEIGHT, and LMS_WINTERNITZ, IMAGE_SIGNATURE_SIZE, and (optionally)
IMAGE_HEADER_SIZEmust be set:
SIGN?=LMS
...
LMS_LEVELS=2
LMS_HEIGHT=5
LMS_WINTERNITZ=8
...
IMAGE_SIGNATURE_SIZE=2644
IMAGE_HEADER_SIZE?=5288

In LMS the signature size is a function of the parameters. Use the added helper script tools/lm-
s/lms_siglen.sh to calculate your signature length given your LMS parameters:
$./tools/lms/lms_siglen.sh 2 5 8
levels: 2
height: 5
winternitz: 8
signature length: 2644

COPYRIGHT ©2024 wolfSSL Inc. 103

https://www.rfc-editor.org/rfc/rfc8554.html
https://www.rfc-editor.org/rfc/rfc8391.html

H.2 Building the external PQ Integrations H POST-QUANTUM SIGNATURES

H.1.2 XMSS/XMSS^MT Config

A new XMSS sim example has been added here:
config/examples/sim-xmss.config

The XMSS_PARAMS, IMAGE_SIGNATURE_SIZE, and (optionally) IMAGE_HEADER_SIZEmust be set:
SIGN?=XMSS
...
XMSS_PARAMS='XMSS-SHA2_10_256'
...
IMAGE_SIGNATURE_SIZE=2500
IMAGE_HEADER_SIZE?=5000

The XMSS_PARAMSmay be any SHA256 parameter set string from Tables 10 and 11 from NIST SP 800-
208. Use the helper script tools/xmss/xmss_siglen.sh to calculate your signature length given
your XMSS/XMSS^MT parameter string, e.g.:
$./tools/xmss/xmss_siglen.sh XMSS-SHA2_10_256
parameter set: XMSS-SHA2_10_256
signature length: 2500

$./tools/xmss/xmss_siglen.sh XMSSMT-SHA2_20/2_256
parameter set: XMSSMT-SHA2_20/2_256
signature length: 4963

H.2 Building the external PQ Integrations
H.2.1 ext_LMS Support

The external LMS/HSS support inwolfCrypt requires thehash-sigs library (https://github.com/cisco/hash-
sigs). Use the following procedure to prepare hash-sigs for building with wolfBoot:
$ cd lib
$ mkdir hash-sigs
$ ls
CMakeLists.txt hash-sigs wolfssl wolfTPM

$ cd hash-sigs
$ mkdir lib
$ git clone https://github.com/cisco/hash-sigs.git src
$ cd src
$ git checkout b0631b8891295bf2929e68761205337b7c031726
$ git apply ../../../tools/lms/0001-Patch-to-support-wolfBoot-LMS-build.patch

Nothing more is needed, as wolfBoot will automatically produce the required hash-sigs build artifacts.
Note: the hash-sigs project only builds static libraries: - hss_verify.a: a single-threaded verify-only
static lib. - hss_lib.a: a single-threaded static lib. - hss_lib_thread.a: a multi-threaded static lib.
The keytools utility links against hss_lib.a, as it needs full keygen, signing, and verifying functionality.
However wolfBoot links directly with the subset of objects in the hss_verify.a build rule, as it only
requires verify functionality.

COPYRIGHT ©2024 wolfSSL Inc. 104

H.2 Building the external PQ Integrations H POST-QUANTUM SIGNATURES

H.2.2 ext_XMSS Support

The external XMSS/XMSS^MT support in wolfCrypt requires a patched version of the xmss-reference
library. Use the following procedure to prepare xmss-reference for building with wolfBoot:
$ cd lib
$ git clone https://github.com/XMSS/xmss-reference.git xmss
$ ls
CMakeLists.txt wolfPKCS11 wolfTPM wolfssl xmss
$ cd xmss
$ git checkout 171ccbd26f098542a67eb5d2b128281c80bd71a6
$ git apply ../../tools/xmss/0001-Patch-to-support-wolfSSL-xmss-reference-

integration.patch

The patch creates an addendum readme, patch_readme.md, with further comments.
Nothing more is needed beyond the patch step, as wolfBoot will handle building the xmss build arti-
facts it requires.

COPYRIGHT ©2024 wolfSSL Inc. 105

https://github.com/XMSS/xmss-reference.git
https://github.com/XMSS/xmss-reference.git

I REMOTE EXTERNAL FLASH MEMORY SUPPORT VIA UART

I Remote External flash memory support via UART

wolfBoot can emulate external partitions using UART communication with a neighbor system. This
feature is particularly useful in those asynchronous multi-process architectures, where updates can
be stored with the assistance of an external processing unit.

I.1 Bootloader setup
The option to activate this feature is UART_FLASH=1. This configuration option depends on the exter-
nal flash API, which means that the option EXT_FLASH=1 is also mandatory to compile the bootloader.
The HAL of the target system must be expanded to include a simple UART driver, that will be used by
the bootloader to access the content of the remote flash using one of the UART controllers on board.
Example UART drivers for a few of the supported platforms can be found in the hal/uart directory.
The API exposed by the UART HAL extension for the supported targets is composed by the following
functions:
int uart_init(uint32_t bitrate, uint8_t data, char parity, uint8_t stop);
int uart_tx(const uint8_t c);
int uart_rx(uint8_t *c);

Consider implementing these three functions based on the provided examples if you want to use
external flash memory support on your platform, if not officially supported yet.

I.2 Host side: UART flash server
On the remote system hosting the external partition image for the target, a simple protocol can be
implemented on top of UART messages to serve flash-access specific calls.
An example uart-flash-server daemon, designed to run on a GNU/Linux host and emulate the external
partition with a local file on the filesystem, is available in tools/uart-flash-server.

I.3 External flash update mechanism
wolfBoot treats external UPDATE and SWAP partitions in the same way as when they are mapped on a
local SPI flash. Read and write operations are simply translated into remote procedure calls via UART,
that can be interpreted by the remote application and provide read and write access to actual storage
elements which would only be accessible by the host.
This means that after a successful update, a copy of the previous firmware will be stored in the remote
partition to provide exactly the same update mechanism that is available in all the other use cases.
The only difference consist in the way of accessing the physical storage area, but all the mechanisms
at a higher level stay the same.

COPYRIGHT ©2024 wolfSSL Inc. 106

J RENESAS WOLFBOOT

J Renesas wolfBoot

Platforms Supported:
• Renesas RZ (RZN2L) (RSIP)

– #renesas-rzn2l
– IDE/Renesas/e2studio/RZN2L/Readme.md
– IDE/Renesas/e2studio/RZN2L/Readme_wRSIP.md

• Renesas RA (RA6M4) (SCE)
– #renesas-ra6m4
– IDE/Renesas/e2studio/RA6M4/Readme.md
– IDE/Renesas/e2studio/RA6M4/Readme_withSCE.md

• Renesas RX (RX65N/RX72N) (TSIP)
– #renesas-rx72n
– IDE/Renesas/e2studio/RX72N/Readme.md
– IDE/Renesas/e2studio/RX72N/Readme_withTSIP.md

All of the Renesas examples support using e2Studio. The Renesas RX parts support using wolfBoot
Makefile’s with the rx-elf-gcc cross-compiler and example .config files.

J.1 Security Key Management Tool (SKMT) Key Wrapping
1) Setup aRenesas KeyWrap account anddo thePGPkey exchange. https://dlm.renesas.com/keywrap

You will get a public key from Renesas keywrap-pub.key that needs imported to PGP/GPG.
Note: You cannot use RSA 4096-bit key, must be RSA-2048 or RSA-3072.

2) Using “Security Key Management Tool” create 32-byte UFPK (User Factory Programming
Key). This can be a random 32-byte value. Example: Random 32-bytes B94A2B96 1C755101
74F0C967 ECFC20B3 77C7FB25 6DB627B1 BFFADEE0 5EE98AC4

3) Sign and Encrypt the 32-byte binary file with PGP the sample.key. Result is sample.key.gpg.
Use GPG4Win and the Sign/Encrypt option. Sign with your own GPG key and encrypt with the
Renesas public key.

4) Use https://dlm.renesas.com/keywrap to wrap sample.key.gpg. It will use the Hidden Root
Key (HRK) that both Renesas and the RX TSIP have pre-provisioned from Renesas Factory. Result
is sample.key_enc.key. Example: 00000001 6CCB9A1C 8AA58883 B1CB02DE 6C37DA60
54FB94E2 06EAE720 4D9CCF4C 6EEB288C

J.2 RX TSIP
1) Build key tools for Renesas

Build keytools for Renesas RX (TSIP)
$ make keytools RENESAS_KEY=2
2) wolfBoot public key (create or import existing)

Instructions below for ECDSA P384 (SECP384R1). For SECP256R1 replace “ecc384” with “ecc256” and
“secp384r1” with “secp256r1”.
Create new signing key:
Create new signing key
$./tools/keytools/keygen --ecc384 -g ./pri-ecc384.der
Keytype: ECC384
Generating key (type: ECC384)
Associated key file: ./pri-ecc384.der

COPYRIGHT ©2024 wolfSSL Inc. 107

J.2 RX TSIP J RENESAS WOLFBOOT

Partition ids mask: ffffffff
Key type : ECC384
Public key slot: 0
Done.

Export public portion of key as PEM
$ openssl ec -inform der -in ./pri-ecc384.der -pubout -out ./pub-ecc384.pem
OR
Import Public Key:
Export public portion of key as DER
$ openssl ec -inform der -in ./pri-ecc384.der -pubout -outform der -out

./pub-ecc384.der↪

Import public key and populate src/keystore.c
$./tools/keytools/keygen --ecc384 -i ./pub-ecc384.der
Keytype: ECC384
Associated key file: ./pub-ecc384.der
Partition ids mask: ffffffff
Key type : ECC384
Public key slot: 0
Done.
3) Create wrapped public key (code files)

Use the Security Key Management Tool (SKMT) command line tool (CLI) to create a wrapped public key.
This will use the user encryption key to wrap the public key and output key_data.c / key_data.h files.
$ C:\Renesas\SecurityKeyManagementTool\cli\skmt.exe -genkey -ufpk

file=./sample.key -wufpk file=./sample.key_enc.key -key
file=./pub-ecc384.pem -mcu RX-TSIP -keytype secp384r1-public -output
include/key_data.c -filetype csource -keyname enc_pub_key

↪
↪
↪
Output File: include\key_data.h
Output File: include\key_data.c
UFPK: B94A2B961C75510174F0C967ECFC20B377C7FB256DB627B1BFFADEE05EE98AC4
W-UFPK:

000000016CCB9A1C8AA58883B1CB02DE6C37DA6054FB94E206EAE7204D9CCF4C6EEB288C↪
IV: 6C296A040EEF5EDD687E8D3D98D146D0
Encrypted key:

5DD8D7E59E6AC85AE340BBA60AA8F8BE56C4C1FE02340C49EB8F36DA79B8D6640961FE9EAECDD6BADF083C5B6060C1D0309D28EFA25946F431979B9F9D21E77BDC5B1CC7165DE2F4AE51E418746260F518ED0C328BD3020DEC9B774DC00270B0CFBBE3DD738FDF715342CFBF2D461239↪

4) Create wrapped public key (flash file)
Generate Motorola HEX file to write wrapped key to flash.
$ C:\Renesas\SecurityKeyManagementTool\cli\skmt.exe -genkey -ufpk

file=./sample.key -wufpk file=./sample.key_enc.key -key
file=./pub-ecc384.pem -mcu RX-TSIP -keytype secp384r1-public -output
pub-ecc384.srec -filetype "mot" -address FFFF0000

↪
↪
↪
Output File: Y:\GitHub\wolfboot\pub-ecc384.srec
UFPK: B94A2B961C75510174F0C967ECFC20B377C7FB256DB627B1BFFADEE05EE98AC4
W-UFPK:

000000016CCB9A1C8AA58883B1CB02DE6C37DA6054FB94E206EAE7204D9CCF4C6EEB288C↪
IV: 9C13402DF1AF631DC2A10C2424182601
Encrypted key:

C4A0B368552EB921A3AF3427FD7403BBE6CB8EE259D6CC0692AA72D46F7343F5FFE7DA97A1C811B21BF392E3834B67C3CE6F84707CCB8923D4FBB8DA003EF23C1CD785B6F58E5DB161F575F78D646434AC2BFAF207F6FFF6363C800CFF7E7BFF4857452A70C496B675D08DD6924CAB5E↪

COPYRIGHT ©2024 wolfSSL Inc. 108

J.2 RX TSIP J RENESAS WOLFBOOT

The generated file is a Motorola HEX (S-Record) formatted image containing the wrapped public key
with instructions to use the 0xFFFF0000 address.
S00E00007075622D65636333737265D5
S315FFFF000000000000000000006CCB9A1C8AA58883C5
S315FFFF0010B1CB02DE6C37DA6054FB94E206EAE720E7
S315FFFF00204D9CCF4C6EEB288C9C13402DF1AF631D7F
S315FFFF0030C2A10C2424182601C4A0B368552EB921EA
S315FFFF0040A3AF3427FD7403BBE6CB8EE259D6CC06AE
S315FFFF005092AA72D46F7343F5FFE7DA97A1C811B27D
S315FFFF00601BF392E3834B67C3CE6F84707CCB8923ED
S315FFFF0070D4FBB8DA003EF23C1CD785B6F58E5DB1F0
S315FFFF008061F575F78D646434AC2BFAF207F6FFF66C
S315FFFF0090363C800CFF7E7BFF4857452A70C496B6D9
S311FFFF00A075D08DD6924CAB5ED6FF44C5E3
S705FFFF0000FC

The default flash memory address is 0xFFFF0000, but it can be changed. The following two places
must be set: a) The user_settings.h build macro RENESAS_TSIP_INSTALLEDKEY_ADDR b) The
linker script .rot section (example hal/rx72n.ld or hal/rx65n.ld).
5) Edit .config PKA?=1.
6) Rebuild wolfBoot. make clean && make wolfboot.srec
7) Sign application

Sign application using the created private key above pri-ecc384.der:
$./tools/keytools/sign --ecc384 --sha256 test-app/image.bin pri-ecc384.der 1
wolfBoot KeyTools (Compiled C version)
wolfBoot version 2010000
Update type: Firmware
Input image: test-app/image.bin
Selected cipher: ECC384
Selected hash : SHA256
Public key: pri-ecc384.der
Output image: test-app/image_v1_signed.bin
Target partition id : 1
image header size overridden by config value (1024 bytes)
Calculating SHA256 digest...
Signing the digest...
Output image(s) successfully created.
8) Flash wolfboot.srec, pub-ecc384.srec and signed application binary

Download files to flash using Renesas flash programmer.

J.2.1 RX TSIP Benchmarks

Hardware Clock Algorithm RX TSIP Debug Release (-Os) Release (-O2)
RX72N 240MHz ECDSA Verify P384 17.26 ms 1570 ms 441 ms 313 ms
RX72N 240MHz ECDSA Verify P256 2.73 ms 469 ms 135 ms 107 ms
RX65N 120MHz ECDSA Verify P384 18.57 ms 4213 ms 2179 ms 1831 ms
RX65N 120MHz ECDSA Verify P256 2.95 ms 1208 ms 602 ms 517 ms

COPYRIGHT ©2024 wolfSSL Inc. 109

K WOLFBOOT KEY TOOLS

K wolfBoot Key Tools

keygen and sign are two command line tools to be used on a PC (or automated server) environment
to manage wolfBoot private keys and sign the initial firmware and all the updates for the target.

K.1 C or Python
The tools are distributed in two versions, using the same command line syntax, for portability reasons.
By default, C keytools are compiled. The makefiles and scripts in this repository will use the C tools.

K.1.1 C Key Tools

A standalone C version of the key tools is available in: ./tools/keytools.
These can be built in tools/keytools using make or from the wolfBoot root using make keytools.
If the C version of the key tools exists they will be used by wolfBoot’s makefile and scripts.

K.1.1.1 Windows Visual Studio Use the wolfBootSignTool.vcxproj Visual Studio project to
build the sign.exe and keygen.exe tools for use on Windows.
If you see any error about missing target.h this is a generated file based on your .config using the
make process. It is needed for WOLFBOOT_SECTOR_SIZE used in delta updates.

K.1.2 Python key tools

Please note that the Python tools are deprecated and will be removed in future versions.
In order to use the python key tools, ensure that the wolfcrypt package is installed in your python
environment. In most systems it’s sufficient to run a command similar to:
pip install wolfcrypt
to ensure that the dependencies are met.

K.2 Command Line Usage
K.2.1 Keygen tool

Usage: keygen [OPTIONS] [-g new-keypair.der] [-i existing-pubkey.der] [...]
keygen is used to populate a keystore with existing and new public keys. Two options are supported:

• -g privkey.der to generate a new keypair, add the public key to the keystore and save the
private key in a new file privkey.der

• -i existing.der to import an existing public key from existing.der
• --der save generated private key in DER format.

Arguments are not exclusive, and can be repeatedmore than once to populate a keystorewithmultiple
keys.
One option must be specified to select the algorithm enabled in the keystore (e.g. --ed25519 or --
rsa3072). See the section “Public key signature options” for the sign tool for the available options.
The files generate by the keygen tool is the following:

• A C file src/keystore.c, which is normally linked with the wolfBoot image, when the keys are
provisioned through generated C code.

COPYRIGHT ©2024 wolfSSL Inc. 110

K.2 Command Line Usage K WOLFBOOT KEY TOOLS

• A binary file keystore.img that can be used to provision the public keys through an alternative
storage

• The private key, for each -g option provided from command line
For more information about the keystore mechanism, see Appendix D.

K.2.2 Sign tool

sign produces a signed firmware image by creating a manifest header in the format supported by
wolfBoot.
Usage: sign [OPTIONS] IMAGE.BIN KEY.DER VERSION
IMAGE.BIN: A file containing the binary firmware/software to sign KEY.DER: Private key file, in DER
format, to sign the binary image VERSION: The version associated with this signed software OPTIONS:
Zero or more options, described below

K.2.2.1 Public key signature options If none of the following arguments is given, the tool will try
to guess the key size from the format and key length detected in KEY.DER.

• --ed25519 Use ED25519 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --ed448Use ED448 for signing the firmware. Assume that the given KEY.DER file is in this format.
• --ecc256 Use ecc256 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --ecc384 Use ecc384 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --ecc521 Use ecc521 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --rsa2048 Use rsa2048 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --rsa3072 Use rsa3072 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --rsa4096 Use rsa4096 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --lmsUse LMS/HSS for signing the firmware. Assume that the given KEY.DER file is in this format.
• --xmss Use XMSS/XMSS^MT for signing the firmware. Assume that the given KEY.DER file is in
this format.

• --no-sign Disable secure boot signature verification. No signature verification is performed in
the bootloader, and the KEY.DER argument should not be supplied.

K.2.2.2 Hash digest options If none of the following is used, ‘–sha256’ is assumed by default.
• --sha256 Use sha256 for digest calculation on binary images and public keys.
• --sha348 Use sha384 for digest calculation on binary images and public keys.
• --sha3 Use sha3-384 for digest calculation on binary images and public keys.

COPYRIGHT ©2024 wolfSSL Inc. 111

K.2 Command Line Usage K WOLFBOOT KEY TOOLS

K.2.2.3 Target partition id (Multiple partition images, “self-update” feature) If none of the fol-
lowing is used, “–id=1” is assumed by default. On systems with a single image to verify (e.g. micro-
controller with a single active partition), ID=1 is the default identifier for the firmware image to stage.
ID=0 is reserved for wolfBoot ‘self-update’, and refers to the partition where the bootloader itself is
stored.

• --id N Set image partition id to “N”.
• --wolfboot-update Indicate that the image contains a signed self-update package for the boot-
loader. Equivalent to --id 0.

K.2.2.4 Encryption using a symmetric key Although signed to be authenticated, by default the
image is not encrypted and it’s distributed as plain text. End-to-end encryption from the firmware
packaging to the update process can be used if the firmware is stored on external non-volatile mem-
ories. Encrypted updates can be produced using a pre-shared, secret symmetric key, by passing the
following option:

• --encrypt SHAREDKEY.BIN use the file SHAREKEY.BIN to encrypt the image.
The format of the file depends on the algorithm selected for the encryption. If no format is specified,
and the --encrypt SHAREDKEY.BIN option is present, --chacha is assumed by default.
See options below.

• --chacha Use ChaCha20 algorithm for encrypting the image. The file SHAREDKEY.BIN is ex-
pected to be exactly 44 bytes in size, of which 32 will be used for the key, 12 for the initialization
of the IV.

• --aes128 Use AES-128 algorithm in counter mode for encrypting the image. The file SHARED-
KEY.BIN is expected to be exactly 32 bytes in size, of which 16 will be used for the key, 16 for the
initialization of the IV.

• --aes256 Use AES-256 algorithm in counter mode for encrypting the image. The file SHARED-
KEY.BIN is expected to be exactly 48 bytes in size, of which 32 will be used for the key, 16 for the
initialization of the IV.

K.2.2.5 Delta updates (incremental updates from a known version) An incremental update is
created using the sign tool when the following option is provided:

• --delta BASE_SIGNED_IMG.BIN This option creates a binary diff file betweenBASE_SIGNED_IMG.BIN
and the new image signed starting from IMAGE.BIN. The result is stored in a file ending in
_signed_diff.bin.

The compression scheme used is Bentley–McIlroy.

K.2.2.6 Policy signing (for sealing/unsealing with a TPM) Provides a PCR mask and digest to be
signed and included in the header. The signing key is used to sign the digest.

• --policy policy.bin: This argument is multi-purpose. By default the file should contain
a 4-byte PCR mask and SHA2-256 PCR digest to be signed. If using --manual-sign then the
file should contain the 4-byte PCR mask and signature. The PCR mask and signature will be
included in the HDR_POLICY_SIGNATURE header tag. A copy of the final signed policy (including
4 byte PCR mask) will be output to [inputname].sig. Note: This may require increasing the
IMAGE_HEADER_SIZE as two signatures will be stored in the header.

K.2.2.7 Adding custom fields to the manifest header Provides a value to be set with a custom
tag

COPYRIGHT ©2024 wolfSSL Inc. 112

K.3 Examples K WOLFBOOT KEY TOOLS

• --custom-tlv tag len val: Adds a TLV entry to the manifest header, corresponding to the
type identified by tag, with length len bytes, and assigns the value val. Values can be decimal
or hex numbers (prefixed by ‘0x’). The tag is a 16-bit number. Valid tags are in the range between
0x0030 and 0xFEFE.

• --custom-tlv-buffer tag value: Adds a TLV entry with arbitrary length to the manifest
header, corresponding to the type identified by tag, and assigns the value value. The tag is a
16-bit number. Valid tags are in the range between 0x0030 and 0xFEFE. The length is implicit,
and is the length of the value. Value argument is in the form of a hex string, e.g. --custom-
tlv-buffer 0x0030 AABBCCDDEE will add a TLV entry with tag 0x0030, length 5 and value
0xAABBCCDDEE.

• --custom-tlv-string tag ascii-string: Adds a TLV entry with arbitrary length to the
manifest header, corresponding to the type identified by tag, and assigns the value of ascii-
string. The tag is a 16-bit number. Valid tags are in the range between 0x0030 and 0xFEFE. The
length is implicit, and is the length of the ascii-string. ascii-string argument is in the
form of a string, e.g. --custom-tlv-string 0x0030 "Version-1" will add a TLV entry with
tag 0x0030, length 9 and value Version-1.

K.2.2.8 Three-steps signing using external provisioning tools If the private key is not accessible,
while it’s possible to sign payloads using a third-party tool, the sign mechanism can be split in three
phases:

• Phase 1: Only create the sha digest for the image, and prepare an intermediate file that can be
signed by third party tool.

This is done using the following option:
• --sha-onlyWhen this option is selected, the sign tool will create an intermediate image includ-
ing part of the manifest that must be signed, ending in _digest.bin. In this case, KEY.DER
contains the public part of the key that will be used to sign the firmware in Phase 2.

• Phase 2: The intermediate image *_digest.bin is signed by an external tool, an HSM or a
third party signing service. The signature is then exported in its raw format and copied to a file,
e.g. IMAGE_SIGNATURE.SIG

• Phase 3: use the following option to build the final authenticated firmware image, including its
manifest header in front:

– --manual-sign When this option is provided, the KEY.DER argument contains the public
part of the key that was used to sign the firmware in Phase 2. This option requires one extra
argument at the end, after VERSION, which should be the filename of the signature that was
the output of the previous phase, so IMAGE_SIGNATURE.SIG

For a real-life example, see the section below.

K.3 Examples
K.3.1 Signing Firmware

1. Load the private key to use for signing into ./wolfboot_signing_private_key.der
2. Run the signing tool with asymmetric algorithm, hash algorithm, file to sign, key and version.

./tools/keytools/sign --rsa2048 --sha256 test-app/image.bin
wolfboot_signing_private_key.der 1↪

Note: The last argument is the “version” number.

COPYRIGHT ©2024 wolfSSL Inc. 113

K.3 Examples K WOLFBOOT KEY TOOLS

K.3.2 Signing Firmware with External Private Key (HSM)

Steps for manually signing firmware using an external key source.
Create file with Public Key
openssl rsa -inform DER -outform DER -in my_key.der -out rsa2048_pub.der

-pubout↪

Add the public key to the wolfBoot keystore using `keygen -i`
./tools/keytools/keygen --rsa2048 -i rsa2048_pub.der

Generate Hash to Sign
./tools/keytools/sign --rsa2048 --sha-only --sha256 test-app/image.bin

rsa2048_pub.der 1↪

Sign hash Example (here is where you would use an HSM)
openssl pkeyutl -sign -keyform der -inkey my_key.der -in

test-app/image_v1_digest.bin > test-app/image_v1.sig↪

Generate final signed binary
./tools/keytools/sign --rsa2048 --sha256 --manual-sign test-app/image.bin

rsa2048_pub.der 1 test-app/image_v1.sig↪

Combine into factory image (0xc0000 is the WOLFBOOT_PARTITION_BOOT_ADDRESS)
tools/bin-assemble/bin-assemble factory.bin 0x0 wolfboot.bin \

0xc0000 test-app/image_v1_signed.bin

K.3.3 Signing Firmware with Azure Key Vault

See Appendix B.

COPYRIGHT ©2024 wolfSSL Inc. 114

L WOLFCRYPT IN TRUSTZONE-M SECURE DOMAIN

L wolfCrypt in TrustZone-M secure domain

ARMv8-M microcontrollers support hardware-assisted domain separation for running software. This
TEEmechanismprovides two separate domains (secure & non-secure), and an additional zone that can
be used as interface to call into secure functions from the non-secure domain (non-secure callable).
wolfBoot may optionally export the crypto functions as a non-callable APIs that are accessible from
any software staged in non-secure domain.

L.1 Compiling wolfBoot with wolfCrypt in TrustZone-M secure domain
When wolfBoot is compiled with the options TZEN=1 and WOLFCRYPT_TZ=1, a more complete set of
components of the wolfCrypt crypto library are built-in the bootloader, and they can be accessed by
applications or OSs running in non-secure domain through non-secure callable APIs.
This feature is used to isolate the core crypto operations from the applications.

L.2 PKCS11 API in non-secure world
The WOLFCRYPT_TZ_PKCS11 option provides a standard PKCS11 interface, including a storage for
PKCS11 objects in a dedicated flash area in secure mode.
This means that applications, TLS libraries and operating systems running in non-secure domain can
access wolfCrypt through a standard PKCS11 interface and use the crypto library with pre-provisioned
keys that are never exposed to the non-secure domain.

L.3 Example using STM32L552
• Copy the example configuration for STM32-L5 with support for wolfCrypt in TrustZone-M and
PKCS11 interface: cp config/examples/stm32l5-wolfcrypt-tz.config .config

• Run make. wolfboot.elf and the test applications are built as separate objects. The application
is signed and stored as test-app/image_v1_signed.bin.

• Ensure that the option bytes on your target device are set as follows:
OPTION BYTES BANK: 0

Read Out Protection:

RDP : 0xAA (Level 0, no protection)

BOR Level:

BOR_LEV : 0x0 (BOR Level 0, reset level threshold is around 1.7 V)

User Configuration:

nRST_STOP : 0x1 (No reset generated when entering Stop mode)
nRST_STDBY : 0x1 (No reset generated when entering Standby mode)
nRST_SHDW : 0x1 (No reset generated when entering the Shutdown mode)
IWDG_SW : 0x1 (Software independant watchdog)
IWDG_STOP : 0x1 (IWDG counter active in stop mode)
IWDG_STDBY : 0x1 (IWDG counter active in standby mode)
WWDG_SW : 0x1 (Software window watchdog)
SWAP_BANK : 0x0 (Bank 1 and bank 2 address are not swapped)

COPYRIGHT ©2024 wolfSSL Inc. 115

L.3 Example using STM32L552 L WOLFCRYPT IN TRUSTZONE-M SECURE DOMAIN

DB256 : 0x1 (256Kb dual-bank Flash with contiguous addresses)
DBANK : 0x0 (Single bank mode with 128 bits data read width)
SRAM2_PE : 0x1 (SRAM2 parity check disable)
SRAM2_RST : 0x1 (SRAM2 is not erased when a system reset occurs)
nSWBOOT0 : 0x1 (BOOT0 taken from PH3/BOOT0 pin)
nBOOT0 : 0x1 (nBOOT0 = 1)
PA15_PUPEN : 0x1 (USB power delivery dead-battery disabled/ TDI pull-up

activated)
TZEN : 0x1 (Global TrustZone security enabled)
HDP1EN : 0x0 (No HDP area 1)
HDP1_PEND : 0x0 (0x8000000)
HDP2EN : 0x0 (No HDP area 2)
HDP2_PEND : 0x0 (0x8000000)
NSBOOTADD0 : 0x100000 (0x8000000)
NSBOOTADD1 : 0x17F200 (0xBF90000)
SECBOOTADD0 : 0x180000 (0xC000000)
BOOT_LOCK : 0x0 (Boot based on the pad/option bit configuration)

Secure Area 1:

SECWM1_PSTRT : 0x0 (0x8000000)
SECWM1_PEND : 0x39 (0x8039000)

Write Protection 1:

WRP1A_PSTRT : 0x7F (0x807F000)
WRP1A_PEND : 0x0 (0x8000000)
WRP1B_PSTRT : 0x7F (0x807F000)
WRP1B_PEND : 0x0 (0x8000000)

OPTION BYTES BANK: 1

Secure Area 2:

SECWM2_PSTRT : 0x7F (0x807F000)
SECWM2_PEND : 0x0 (0x8000000)

Write Protection 2:

WRP2A_PSTRT : 0x7F (0x80BF000)
WRP2A_PEND : 0x0 (0x8040000)
WRP2B_PSTRT : 0x7F (0x80BF000)
WRP2B_PEND : 0x0 (0x8040000)

• Upload wolfboot.bin and the test application to the two different domains in flash:
STM32_Programmer_CLI -c port=swd -d wolfboot.bin 0x0C000000
STM32_Programmer_CLI -c port=swd -d test-app/image_v1_signed.bin 0x08040000

• After rebooting, the LED on the board should turn on sequentially:
– Red LED: Secure boot was successful. Application has started.
– Blue LED: PKCS11 Token has been initialized and stored
– Green LED: ECDSA Sign/Verify test successful

COPYRIGHT ©2024 wolfSSL Inc. 116

L.4 Example using STM32H563 L WOLFCRYPT IN TRUSTZONE-M SECURE DOMAIN

L.4 Example using STM32H563
• Copy one of the example configurations for STM32H5 with support for TrustZone and PKCS11 to
.config: cp config/examples/stm32h5-tz.config .configcp config/examples/stm32h5-
tz-dualbank-otp.config .config (with Dual Bank) cp config/examples/stm32h5-tz-
dualbank-otp-lms.config .config (with Dual Bank and PQ LMS)

• Run make. wolfboot.elf and the test applications are built as separate objects. The application
is signed and stored as test-app/image_v1_signed.bin.

• Ensure that the option bytes on your target device are set as follows:
OPTION BYTES BANK: 0

Product state:

PRODUCT_STATE: 0xED (Open)

BOR Level:

BOR_LEV : 0x0 (BOR Level 1, the threshold level is low (around 2.1 V
))

BORH_EN : 0x0 (0x0)

User Configuration:

IO_VDD_HSLV : 0x0 (0x0)
IO_VDDIO2_HSLV: 0x0 (0x0)
IWDG_STOP : 0x1 (0x1)
IWDG_STDBY : 0x1 (0x1)
BOOT_UBE : 0xB4 (OEM-iRoT (user flash) selected)
SWAP_BANK : 0x0 (0x0)
IWDG_SW : 0x1 (0x1)
NRST_STOP : 0x1 (0x1)
NRST_STDBY : 0x1 (0x1)

OPTION BYTES BANK: 1

User Configuration 2:

TZEN : 0xB4 (Trust zone enabled)
SRAM2_ECC : 0x1 (SRAM2 ECC check disabled)
SRAM3_ECC : 0x1 (SRAM3 ECC check disabled)
BKPRAM_ECC : 0x1 (BKPRAM ECC check disabled)
SRAM2_RST : 0x1 (SRAM2 not erased when a system reset occurs)
SRAM1_3_RST : 0x1 (SRAM1 and SRAM3 not erased when a system reset occurs

)
OPTION BYTES BANK: 2

Boot Configuration:

NSBOOTADD : 0x80400 (0x8040000)
NSBOOT_LOCK : 0xC3 (The SWAP_BANK and NSBOOTADD can still be modified

following their individual rules.)
SECBOOT_LOCK : 0xC3 (The BOOT_UBE, SWAP_BANK and SECBOOTADD can still be

modified following their individual rules.)
SECBOOTADD : 0xC0000 (0xC000000)

COPYRIGHT ©2024 wolfSSL Inc. 117

L.4 Example using STM32H563 L WOLFCRYPT IN TRUSTZONE-M SECURE DOMAIN

OPTION BYTES BANK: 3

Bank1 - Flash watermark area definition:

SECWM1_STRT : 0x0 (0x8000000)
SECWM1_END : 0x1F (0x803E000)

Write sector group protection 1:

WRPSGn1 : 0xFFFFFFFF (0x0)
OPTION BYTES BANK: 4

Bank2 - Flash watermark area definition:

SECWM2_STRT : 0x7F (0x81FE000)
SECWM2_END : 0x0 (0x8100000)

Write sector group protection 2:

WRPSGn2 : 0xFFFFFFFF (0x8000000)
OPTION BYTES BANK: 5

OTP write protection:

LOCKBL : 0x0 (0x0)
OPTION BYTES BANK: 6

Flash data bank 1 sectors:

EDATA1_EN : 0x0 (No Flash high-cycle data area)
EDATA1_STRT : 0x0 (0x0)

OPTION BYTES BANK: 7

Flash data bank 2 sectors :

EDATA2_EN : 0x0 (No Flash high-cycle data area)
EDATA2_STRT : 0x0 (0x0)

OPTION BYTES BANK: 8

Flash HDP bank 1:

HDP1_STRT : 0x1 (0x2000)
HDP1_END : 0x0 (0x0)

OPTION BYTES BANK: 9

Flash HDP bank 2:

HDP2_STRT : 0x1 (0x2000)
HDP2_END : 0x0 (0x0)

• Upload wolfboot.bin and the test application to the two different domains in flash:
STM32_Programmer_CLI -c port=swd -d wolfboot.bin 0x0C000000
STM32_Programmer_CLI -c port=swd -d test-app/image_v1_signed.bin 0x08040000

COPYRIGHT ©2024 wolfSSL Inc. 118

L.4 Example using STM32H563 L WOLFCRYPT IN TRUSTZONE-M SECURE DOMAIN

• After rebooting, the LED on the board should turn on sequentially:
– Red LED: Secure boot was successful. Application has started.
– Blue LED: PKCS11 Token has been initialized and stored
– Green LED: ECDSA Sign/Verify test successful

COPYRIGHT ©2024 wolfSSL Inc. 119

M WOLFBOOT TPM SUPPORT

M wolfBoot TPM support

In wolfBoot we support TPM based root of trust, sealing/unsealing, cryptographic offloading andmea-
sured boot using a TPM.

M.1 Build Options

Config Option Preprocessor Macro Description
WOLFTPM=1 WOLFBOOT_TPM Enables wolfTPM support
WOLFBOOT_TPM_VERIFY=1WOLFBOOT_TPM_VERIFY Enables cryptographic offloading for RSA2048

and ECC256/384 to the TPM.
WOLFBOOT_TPM_KEYSTORE=1WOLFBOOT_TPM_KEYSTORE Enables TPM based root of trust. NV Index must

store a hash of the trusted public key.
WOLFBOOT_TPM_KEYSTORE_NV_BASE=0xWOLFBOOT_TPM_KEYSTORE_NV_BASE=0xNV index in platform range 0x1400000 -

0x17FFFFF.
WOLFBOOT_TPM_KEYSTORE_AUTH=secretWOLFBOOT_TPM_KEYSTORE_AUTHPassword for NV access
MEASURED_BOOT=1 WOLFBOOT_MEASURED_BOOTEnable measured boot. Extend PCR with

wolfBoot hash.
MEASURED_PCR_A=16WOLFBOOT_MEASURED_PCR_A=16The PCR index to use. See Appendix G.
WOLFBOOT_TPM_SEAL=1WOLFBOOT_TPM_SEAL Enables support for sealing/unsealing based on

PCR policy signed externally.
WOLFBOOT_TPM_SEAL_NV_BASE=0x01400300WOLFBOOT_TPM_SEAL_NV_BASETo override the default sealed blob storage

location in the platform hierarchy.
WOLFBOOT_TPM_SEAL_AUTH=secretWOLFBOOT_TPM_SEAL_AUTHPassword for sealing/unsealing secrets, if

omitted the PCR policy will be used

M.2 Root of Trust (ROT)
See wolfTPM Secure Root of Trust (ROT) example here.
The design uses a platform NV handle that has been locked. The NV stores a hash of the public key. It
is recommended to supply a derived “authentication” value to prevent TPM tampering. This authenti-
cation value is encrypted on the bus.

M.3 Cryptographic offloading
The RSA2048 and ECC256/384 bit verification can be offloaded to a TPM for code size reduction or per-
formance improvement. Enabled using WOLFBOOT_TPM_VERIFY. NOTE: The TPM’s RSA verify requires
ASN.1 encoding, so use SIGN=RSA2048ENC

M.4 Measured Boot
The wolfBoot image is hashed and extended to the indicated PCR. This can be used later in the appli-
cation to prove the boot process was not tampered with. Enabled with WOLFBOOT_MEASURED_BOOT
and exposes API wolfBoot_tpm2_extend.

M.5 Sealing and Unsealing a secret
See the wolfTPM Sealing/Unsealing example here
Known PCR values must be signed to seal/unseal a secret. The signature for the authorization policy
resides in the signed header using the --policy argument. If a signed policy is not in the header then

COPYRIGHT ©2024 wolfSSL Inc. 120

https://github.com/wolfSSL/wolfTPM/tree/master/examples/boot
https://github.com/wolfSSL/wolfTPM/tree/master/examples/boot#secure-boot-encryption-key-storage

M.5 Sealing and Unsealing a secret M WOLFBOOT TPM SUPPORT

a value cannot be sealed. Instead the PCR(s) values and a PCR policy digest will be printed to sign. You
can use ./tools/keytools/sign or ./tools/tpm/policy_sign to sign the policy externally.
This exposes two new wolfBoot API’s for sealing and unsealing data with blob stored to NV index:
int wolfBoot_seal_auth(const uint8_t* pubkey_hint, const uint8_t* policy,

uint16_t policySz,↪
int index, const uint8_t* secret, int secret_sz, const byte* auth, int

authSz);↪
int wolfBoot_unseal_auth(const uint8_t* pubkey_hint, const uint8_t* policy,

uint16_t policySz,↪
int index, uint8_t* secret, int* secret_sz, const byte* auth, int authSz);

By default this index will be based on an NV Index at (0x01400300 + index). The default NV base
can be overridden with WOLFBOOT_TPM_SEAL_NV_BASE.
NOTE: The TPM’s RSA verify requires ASN.1 encoding, so use SIGN=RSA2048ENC

M.5.1 Testing seal/unseal with simulator

% cp config/examples/sim-tpm-seal.config .config
% make keytools
% make tpmtools
% echo aaa > aaa.bin
% ./tools/tpm/pcr_extend 0 aaa.bin
% ./tools/tpm/policy_create -pcr=0
if ROT enabled
% ./tools/tpm/rot -write [-auth=TestAuth]
% make clean
$ make POLICY_FILE=policy.bin [WOLFBOOT_TPM_KEYSTORE_AUTH=TestAuth]

[WOLFBOOT_TPM_SEAL_AUTH=SealAuth]↪

% ./wolfboot.elf get_version
Simulator assigned ./internal_flash.dd to base 0x103378000
Mfg IBM (0), Vendor SW TPM, Fw 8217.4131 (0x163636), FIPS 140-2 1, CC-EAL4 0
Unlocking disk...
Boot partition: 0x1033f8000
Image size 54400
Error 395 reading blob from NV index 1400300 (error TPM_RC_HANDLE)
Error 395 unsealing secret! (TPM_RC_HANDLE)
Sealed secret does not exist!
Creating new secret (32 bytes)
430dee45553c4a8b75fbc6bcd0890765c48cab760b24b1aa6b633dc0538e0159
Wrote 210 bytes to NV index 0x1400300
Read 210 bytes from NV index 0x1400300
Secret Check 32 bytes
430dee45553c4a8b75fbc6bcd0890765c48cab760b24b1aa6b633dc0538e0159
Secret 32 bytes
430dee45553c4a8b75fbc6bcd0890765c48cab760b24b1aa6b633dc0538e0159
Boot partition: 0x1033f8000
Image size 54400
TPM Root of Trust valid (id 0)
Simulator assigned ./internal_flash.dd to base 0x103543000
1

% ./wolfboot.elf get_version

COPYRIGHT ©2024 wolfSSL Inc. 121

M.5 Sealing and Unsealing a secret M WOLFBOOT TPM SUPPORT

Simulator assigned ./internal_flash.dd to base 0x10c01c000
Mfg IBM (0), Vendor SW TPM, Fw 8217.4131 (0x163636), FIPS 140-2 1, CC-EAL4 0
Unlocking disk...
Boot partition: 0x10c09c000
Image size 54400
Read 210 bytes from NV index 0x1400300
Secret 32 bytes
430dee45553c4a8b75fbc6bcd0890765c48cab760b24b1aa6b633dc0538e0159
Boot partition: 0x10c09c000
Image size 54400
TPM Root of Trust valid (id 0)
Simulator assigned ./internal_flash.dd to base 0x10c1e7000
1

M.5.2 Testing seal/unseal on actual hardware

1) Get the actual PCR digest for policy.
2) Sign policy and include in firmware image header.

M.5.2.1 Getting PCR values If no signed policy exists, then the seal function will generate and
display the active PCR’s, PCR digest and policy digest (to sign)
% make tpmtools
% ./tools/tpm/rot -write
% ./tools/tpm/pcr_reset 16
% ./wolfboot.elf get_version
Simulator assigned ./internal_flash.dd to base 0x101a64000
Mfg IBM (0), Vendor SW TPM, Fw 8217.4131 (0x163636), FIPS 140-2 1, CC-EAL4 0
Boot partition: 0x101ae4000
Image size 57192
Policy header not found!
Generating policy based on active PCR's!
Getting active PCR's (0-16)
PCR 16 (counter 20)
8f7ac1d5a5eac58a2305ca459f27c35705a9212c0fb2a9088b1df761f3d5f842
Found 1 active PCR's (mask 0x00010000)
PCR Digest (32 bytes):
f84085631f85333ad0338b06c82f16888b7923abaccffb881d5416e389be256c
PCR Mask (0x00010000) and PCR Policy Digest (36 bytes):
0000010034ba061436aba2e9a167a1ee46af4a9578a8c6b9f71fdece21607a0cb40468ec
Use this policy with the sign tool (--policy arg) or POLICY_FILE config
Image policy signature missing!
Boot partition: 0x101ae4000
Image size 57192
TPM Root of Trust valid (id 0)
Simulator assigned ./internal_flash.dd to base 0x101c2f000
1
The 0000010034ba061436aba2e9a167a1ee46af4a9578a8c6b9f71fdece21607a0cb40468ec
above can be directly used by the keytool. The
echo "0000010034ba061436aba2e9a167a1ee46af4a9578a8c6b9f71fdece21607a0cb40468ec"
| xxd -r -p > policy.bin
OR use the tools/tpm/policy_create tool to generate a digest to be signed. The used PCR(s) must
be set using “-pcr=#”. The PCR digest can be supplied using “-pcrdigest=” or if not supplied will be read

COPYRIGHT ©2024 wolfSSL Inc. 122

M.5 Sealing and Unsealing a secret M WOLFBOOT TPM SUPPORT

from the TPM directly.
% ./tools/tpm/policy_create -pcr=16 -

pcrdigest=f84085631f85333ad0338b06c82f16888b7923abaccffb881d5416e389be256c
-out=policy.bin

↪
↪
OR
% ./tools/tpm/policy_create -pcrmask=0x00010000 -

pcrdigest=f84085631f85333ad0338b06c82f16888b7923abaccffb881d5416e389be256c
-out=policy.bin

↪
↪
Policy Create Tool
PCR Index(s) (SHA256): 16 (mask 0x00010000)
PCR Digest (32 bytes):

f84085631f85333ad0338b06c82f16888b7923abaccffb881d5416e389be256c
PCR Mask (0x00010000) and PCR Policy Digest (36 bytes):

0000010034ba061436aba2e9a167a1ee46af4a9578a8c6b9f71fdece21607a0cb40468ec
Wrote 36 bytes to policy.bin

M.5.2.2 Signing Policy Building firmware with the policy digest to sign:
% make POLICY_FILE=policy.bin
OR manually sign the policy using the tools/tpm/policy_sign or tools/keytools/sign tools.
These tools do not need access to a TPM, they are signing a policy digest. The result is a 32-bit PCR
mask + signature.
Sign with policy_sign tool:
% ./tools/tpm/policy_sign -pcr=0 -

pcrdigest=eca4e8eda468b8667244ae972b8240d3244ea72341b2bf2383e79c66643bbecc↪
Sign PCR Policy Tool
Signing Algorithm: ECC256
PCR Index(s) (SHA256): 0
Policy Signing Key: wolfboot_signing_private_key.der
PCR Digest (32 bytes):

eca4e8eda468b8667244ae972b8240d3244ea72341b2bf2383e79c66643bbecc
PCR Policy Digest (32 bytes):

2d401eb05f45ba2b15c35f628b5896cc7de9745bb6e722363e2dbee804e0500f
PCR Policy Digest (w/PolicyRef) (32 bytes):

749b3139ece21449a7828f11ee05303b0473ff1a26cf41d6f9ff28b24c717f02
PCR Mask (0x1) and Policy Signature (68 bytes):

01000000
5b5f875b3f7ce78b5935abe4fc5a4d8a6e87c4b4ac0836fbab909e232b6d7ca2
3ecfc6be723b695b951ba2886d3c7b83ab2f8cc0e96d766bc84276eaf3f213ee

Wrote PCR Mask + Signature (68 bytes) to policy.bin.sig
Sign using the signing key tool:
% ./tools/keytools/sign --ecc256 --policy policy.bin test-app/image.elf

wolfboot_signing_private_key.der 1↪
wolfBoot KeyTools (Compiled C version)
wolfBoot version 1100000
Update type: Firmware
Input image: test-app/image.elf
Selected cipher: ECC256
Selected hash : SHA256
Public key: wolfboot_signing_private_key.der
Output image: test-app/image_v1_signed.bin

COPYRIGHT ©2024 wolfSSL Inc. 123

M.5 Sealing and Unsealing a secret M WOLFBOOT TPM SUPPORT

Target partition id : 1
image header size calculated at runtime (256 bytes)
Calculating SHA256 digest...
Signing the digest...
Opening policy file policy.bin
Signing the policy digest...
Saving policy signature to policy.bin.sig
Output image(s) successfully created.

COPYRIGHT ©2024 wolfSSL Inc. 124

N WOLFBOOT CONFIGURATION OPTIONS

N wolfBoot Configuration Options

This section shows parameters by running make config.
• ARCH: Architecture of the target to be used.

– Default: ARM
– Possible: x86_64/AARCH64/ARM/RNESAS_RX/RISCV/PPC/ARM_BE

• HASH: Selection of hash algorithm to be used.
– Default: SHA256
– Possible: SHA3/SHA256/SHA384

• MCUXSDK: Enable when using NXP’s MCUXpresso SDK.
– Default: 1

• MCUXPRESSO: Setting for MCUXpresso IDE environment.
– Default: /mnt/c/Users/(User)/(Project)/wolfboot-2.4.0/mcux-sdk

• MCUXPRESSO_CPU: CPU-specific settings for MCUXpresso.
– Default: MK64FN1M0VLL12

• MCUXPRESSO_DRIVERS: Enable driver support for MCUXpresso.
– Default: /mnt/c/Users/(User)/(Project)/wolfboot-2.4.0/mcux-sdk/devices/MK64F12

• MCUXPRESSO_CMSIS: Enable CMSIS (Cortex Microcontroller Software Interface Standard) library.
– Default: /mnt/c/Users/(User)/(Project)/wolfboot-2.4.0/CMSIS_5/CMSIS

• FREEDOM_E_SDK: Enable when using SiFive Freedom-E SDK (for RISC-V).
– Default: /home/(User)/src/freedom-e-sdk

• STM32CUBE: Enable STM32Cube HAL (for STM32).
– Default: /home/(User)/STM32Cube/Repository/STM32Cube_FW_WB_V1.3.0

• CYPRESS_PDL: Enable Cypress Peripheral Driver Library (PDL).
– Default: /home/(User)/src/psoc6pdl

• CYPRESS_CORE_LIB: Enable Cypress core library.
– Default: /home/(User)/src/cypress-core-lib

• CYPRESS_TARGET_LIB: Enable Cypress target-specific library.
– Default: /home/(User)/src/TARGET_CY8CKIT-062S2-43012

• CORTEX_M7: Enable when targeting ARM Cortex-M7.
– Default: 0

• CORTEX_M33: Enable when targeting ARM Cortex-M33.
– Default: 0

• NO_ASM: Disable assembly optimizations and implement in C language only.
– Default: 0

• NO_XIP: Disable XIP (Execute in Place) (do not execute code directly from flash memory).
– Default: 0

COPYRIGHT ©2024 wolfSSL Inc. 125

N WOLFBOOT CONFIGURATION OPTIONS

• WOLFBOOT_VERSION: Option to specify the version of wolfBoot.
– Default is set in include/wolfboot/version.h

• V: Enable Verbose build.
– Default: 0

• NO_MPU: Disable Memory Protection Unit (MPU).
– Default: 0

• SPMATH: Enable SP Math library (single-precision math library).
– Default: 1

• SPMATHALL: Enable all SP Math functions.
– Default: 0

• IMAGE_HEADER_SIZE: Specify the firmware image header size.
– Default: 256

• PKA: Enable public key cryptography processing (Public Key Accelerator).
– Default: 1

• TZEN: Enable TrustZone security features.
– Default: 0

• PSOC6_CRYPTO: Use Cypress PSoC 6 series hardware cryptographic engine.
– Default: 1

• WOLFBOOT_TPM_VERIFY: Enable firmware verification using TPM (Trusted Platform Module).
– Default: 0

• WOLFBOOT_TPM_SEAL: Enable function to seal data using TPM.
– Default: 0

• WOLFBOOT_TPM_KEYSTORE: Enable key storage using TPM.
– Default: 0

• WOLFCRYPT_TZ: Enable the use of wolfCrypt in TrustZone.
– Default: 0

• WOLFCRYPT_TZ_PKCS11: Enable PKCS#11 interface in TrustZone.
– Default: 0

• WOLFBOOT_LOAD_ADDRESS: Specify the load address for wolfBoot.
– Default: 0x200000

• WOLFBOOT_LOAD_DTS_ADDRESS: Specify the load address for Device Tree Storage (DTS).
– Default: 0x400000

• WOLFBOOT_DTS_BOOT_ADDRESS: Specify the device tree address during boot.
– Default: 0x30000

• WOLFBOOT_DTS_UPDATE_ADDRESS: Specify the device tree address for updates.
– Default: 0x50000

COPYRIGHT ©2024 wolfSSL Inc. 126

N WOLFBOOT CONFIGURATION OPTIONS

• DELTA_BLOCK_SIZE: Specify the block size for delta updates.
– Default: 256

• WOLFBOOT_HUGE_STACK: Option to increase stack size.
– Default: 0

• FORCE_32BIT: Option to force build as a 32-bit system.
– Default: 0

• ENCRYPT_WITH_CHACHA: Enable firmware encryption using the ChaCha algorithm.
– Default: 0

• ARMORED: Enable additional mitigations against fault-injection attacks, e.g. voltage and clock
glitches, or EMFI.

– Default: 0
• LMS_LEVELS: Specify the levels for LMS (Leighton-Micali Signature) hash-based signatures.

– Default: 0
• LMS_HEIGHT: Specify the hash tree height for LMS signatures.

– Default: 0
• LMS_WINTERNITZ: Set the Winternitz coefficient (LMS signature parameter).

– Default: 0
• WOLFBOOT_UNIVERSAL_KEYSTORE: Enable storing public keys of different types in the same key-
store.

– Default: 0
• XMSS_PARAMS: Specify parameters for XMSS (eXtended Merkle Signature Scheme).

– Default: XMSS-SHA2_10_256
– Possible: XMSS-SHA2_10_256

• ELF: Enable support for ELF format.
– Default: 0

• BIG_ENDIAN: Support big-endian architecture.
– Default: 0

• NXP_CUSTOM_DCD: Enable custom DCD (Device Configuration Data) settings for NXP platforms.
– Default: 0

• NXP_CUSTOM_DCD_OBJS: Enable custom DCD objects for NXP.
• FLASH_OTP_KEYSTORE: Enable flash key storage using OTP (One-Time Programmable) memory.

– Default: 0
• KEYVAULT_OBJ_SIZE: Specify the size of objects stored in KeyVault.
• KEYVAULT_MAX_ITEMS: Specify the maximum number of items that can be stored in KeyVault.
• NO_ARM_ASM: Disable ARM assembly code and implement in C language only.

– Default: 0

COPYRIGHT ©2024 wolfSSL Inc. 127

N WOLFBOOT CONFIGURATION OPTIONS

• SIGN_SECONDARY: Enable a second signature for the images. Used to implement hybrid mode
(e.g. ECC + ML_DSA). Set to the secondary algorithm selected for hybrid (classic + PQC) authenti-
cation.

• WOLFHSM_CLIENT: Enable wolfHSM client (HSM).
– Default: 0

• WOLFHSM_CLIENT_LOCAL_KEYS: Option for wolfHSM client to use local keys.
– Default: 0

COPYRIGHT ©2024 wolfSSL Inc. 128

	Introduction
	Features
	Components

	Compiling wolfBoot
	Generate a new configuration
	Platform selection
	Flash partitions

	Bootloader features
	Change DSA algorithm
	Incremental updates
	Enable debug symbols
	Disable interrupt vector relocation
	Limit stack usage
	Allow bigger stack size allocation
	Disable Backup of current running firmware
	Enable workaround for `write once' flash memories
	Allow version roll-back
	Enable optional support for external flash memory
	Executing flash access code from RAM
	Enable Dual-bank hardware-assisted swapping
	Store UPDATE partition flags in a sector in the BOOT partition
	Flash Erase value / Flag logic inversion
	Using One-time programmable (OTP) flash as keystore
	Prefer multi-sector flash erase operations

	Targets
	Supported Targets
	STM32F4
	STM32F4 Programming
	STM32F4 Debugging

	STM32L4
	STM32L5
	Scenario 1: TrustZone Enabled
	Scenario 2: Trustzone Enabled, wolfCrypt as secure engine for NS applications
	Scenario 3: Trustzone Disabled, using DUAL BANK
	Debugging

	STM32U5
	Scenario 1: TrustZone enabled, staging non-secure application
	Scenario 2: TrustZone Enabled, wolfCrypt as secure engine for NS applications
	Scenario 3: TrustZone Disabled (DUAL BANK mode)
	Debugging

	STM32L0
	STM32L0 Building

	STM32G0
	Building STM32G0
	STM32G0 Programming
	STM32G0 Debugging

	STM32C0
	Example 32KB partitioning on STM32-G070
	Building STM32C0
	STM32C0 Programming
	STM32C0 Debugging

	STM32WB55
	STM32WB55 Building
	STM32WB55 with OpenOCD
	STM32WB55 with ST-Link
	STM32WB55 Debugging

	SiFive HiFive1 RISC-V
	Features
	Default Linker Settings
	Stock bootloader
	Application Code
	wolfBoot configuration
	Build Options
	Loading
	Debugging

	STM32F7
	Build Options
	Loading the firmware
	STM32F7 Debugging

	STM32H5
	Scenario 1: TrustZone enabled, staging non-secure application
	Scenario 2: TrustZone Enabled, wolfCrypt as secure engine for NS applications
	Scenario 3: DUALBANK mode

	STM32H7
	Build Options
	STM32H7 Programming
	STM32H7 Testing
	STM32H7 Debugging

	NXP LPC54xxx
	Build Options
	Loading the firmware
	Debugging with JLink

	Cortex-A53 / Raspberry PI 3 (experimental)
	Compiling the kernel
	Testing with qemu-system-aarch64
	Testing with kernel encryption

	Xilinx Zynq UltraScale
	QNX

	Cypress PSoC-6
	Building
	Clock settings
	Loading the firmware
	Debugging

	Microchip SAME51
	Toolchain
	Building using gcc/makefile
	Building using MPLAB IDE
	Uploading the bootloader and the firmware image

	NXP iMX-RT
	Building wolfBoot
	Custom Device Configuration Data (DCD)
	Building wolfBoot for HAB (High Assurance Boot)
	Flashing
	Testing Update
	NXP iMX-RT Debugging JTAG / JLINK

	NXP Kinetis
	Buld options
	Example partitioning for K82

	NXP QorIQ P1021 PPC
	Boot ROM NXP P1021
	Design for NXP P1021
	First Stage Loader (stage 1) for NXP P1021 PPC
	Building wolfBoot for NXP P1021 PPC
	Debugging NXP P1021 PPC

	NXP QorIQ T1024 PPC
	Building wolfBoot for NXP T1024 PPC
	Signing Custom application
	Assembly of custom firmware image

	NXP QorIQ T2080 PPC
	Design NXP T2080 PPC
	Building wolfBoot for NXP T2080 PPC
	Programming NXP T2080 PPC
	Debugging NXP T2080 PPC

	NXP MCXA153
	MCX A: Configuring and compiling
	MCX A: Loading the firmware
	MCX A: Testing firmware update
	MCX A: Debugging

	TI Hercules TMS570LC435
	Nordic nRF52840
	Simulated
	Renesas RX65N
	Renesas Console
	Renesas Flash Layout
	Renesas Data Endianess
	Building Renesas RX65N
	Flashing Renesas RX65N
	Debugging Renesas RX65N

	Renesas RX72N
	Building Renesas RX72N
	Flashing Renesas RX72N

	Renesas RA6M4
	Renesas RZN2L
	Qemu x86-64 UEFI
	Prerequisites:
	Configuration
	Building and running on qemu

	Intel x86_64 with Intel FSP support
	Running on 64-bit QEMU
	Running on QEMU with swtpm (TPM emulator)
	Running on Kontron VX3060-S2

	Hardware abstraction layer
	Supported platforms
	API
	Optional support for external flash memory
	Additional functions required by DUALBANK_SWAP option

	Flash partitions
	Flash memory partitions
	Bootloader partition
	BOOT partition
	UPDATE partition

	Partition status and sector flags
	Overview of the content of the FLASH partitions

	wolfBoot Features
	Signing
	wolfBoot key tools installation
	Install Python3
	Install wolfCrypt
	Install wolfcrypt-py
	Install wolfBoot
	C Key Tools
	Command Line Usage
	Key generation and management
	Signing Firmware
	Signing Firmware with External Private Key (HSM)

	Measured Boot using wolfBoot
	Concept
	Configuration

	Firmware image
	Firmware entry point
	Firmware image header
	Image signing tool

	Firmware update
	Updating Microcontroller FLASH
	Update procedure description

	Remote External flash memory support via UART
	Bootloader setup
	Host side: UART flash server
	External flash update mechanism

	Encrypted external partitions
	Rationale
	Temporary key storage
	Libwolfboot API
	Symmetric encryption algorithms
	Example usage
	Signing and encrypting the update bundle with ChaCha20-256
	Signing and encrypting the update bundle with AES-256
	Encryption of incremental (delta) updates
	Encryption of self-updates
	API usage in the application

	Application interface for interactions with the bootloader
	Compiling and linking with libwolfboot
	API

	Integrating wolfBoot in an existing project
	Required steps
	Examples provided
	Upgrading the firmware

	Troubleshooting
	Python errors when signing a key
	Python errors in command line parser running keygen.py
	Contact support

	ATA Security
	Introduction
	Table of Contents
	Unlocking the Disk with a Hardcoded Password
	Unlocking the Disk with a TPM-Sealed Secret
	Disabling the password

	Signing firmware using Microsoft Azure Key Vault
	Preparing the keystore
	Signing the firmware image for wolfBoot
	Obtaining the SHA256 digest
	HTTPS request for signing the digest with the Key Vault
	Final step: create the signed firmware image

	Using One-Time Programmable (OTP) flash area for keystore
	Compiling wolfBoot to access OTP as keystore
	Creating an image of the OTP area content
	Directly provisioning the public keys to the OTP area (primer)
	Examples
	STM32H5 OTP KeyStore

	KeyStore structure: support for multiple public keys
	What is wolfBoot KeyStore
	Default usage (built-in keystore)
	Creating multiple keys
	Permissions
	Importing public keys
	Generating and importing keys of different types

	Using KeyStore with external Key Vaults
	Interface API

	Build wolfBoot as Library
	Library API
	Library mode: example application
	Configuring and compiling the test-lib application

	wolfBoot Loaders / Updaters
	loader.c
	loader_stage1.c
	update_ram.c
	update_flash.c
	update_flash_hwswap.c

	Measured Boot using wolfBoot
	Concept
	Configuration
	Code

	Post-Quantum Signatures
	Supported PQ Signature Methods
	LMS/HSS Config
	XMSS/XMSS^MT Config

	Building the external PQ Integrations
	ext_LMS Support
	ext_XMSS Support

	Remote External flash memory support via UART
	Bootloader setup
	Host side: UART flash server
	External flash update mechanism

	Renesas wolfBoot
	Security Key Management Tool (SKMT) Key Wrapping
	RX TSIP
	RX TSIP Benchmarks

	wolfBoot Key Tools
	C or Python
	C Key Tools
	Python key tools

	Command Line Usage
	Keygen tool
	Sign tool

	Examples
	Signing Firmware
	Signing Firmware with External Private Key (HSM)
	Signing Firmware with Azure Key Vault

	wolfCrypt in TrustZone-M secure domain
	Compiling wolfBoot with wolfCrypt in TrustZone-M secure domain
	PKCS11 API in non-secure world
	Example using STM32L552
	Example using STM32H563

	wolfBoot TPM support
	Build Options
	Root of Trust (ROT)
	Cryptographic offloading
	Measured Boot
	Sealing and Unsealing a secret
	Testing seal/unseal with simulator
	Testing seal/unseal on actual hardware

	wolfBoot Configuration Options

