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Steering oxygen-centred radicals 
with ground-state ene-reductases 
for enantioselective intermolecular 
hydroalkoxylations
 

Bin Chen1,4, Qiaoyu Zhang2,4, Jinhai Yu1,4, Beibei Zhao1, Ran Ge1,3, Zihan Zhang1, 
Ding Luo2, Binju Wang    2   & Xiaoqiang Huang    1 

Enzymes are emerging as promising catalysts for selective radical 
transformations. However, non-natural radical-type enzymatic catalysis 
is currently limited to utilizing C-, N- and S-centred radical species. 
Alkoxy radicals are recognized as versatile intermediates with high 
reactivity, typically engaging in reactivity modes such as hydrogen atom 
transfer, β-scission processes and intramolecular addition to alkenes. 
Enantioselective intermolecular alkoxy radical addition to alkenes 
remained unknown. Here we develop a biocatalytic strategy based on 
engineered ene-reductases that facilitate the radical hydroalkoxylation of 
oxygen-centred radicals with alkenes. A single, ground-state ene-reductase 
adeptly controls the biocompatible generation of O-radicals, the follow-up 
intermolecular O-radical addition to alkenes and the final prochiral 
C-radical termination, achieving high chemo- and enantioselectivity (both 
enantiomers are obtained separately with different enzymes). Mechanistic 
experiments, including computational simulations, reveal that the radical 
enzymatic reaction initiates via a ground-state single-electron transfer and 
elucidate the origins of enantiodiscrimination of the overall reaction.

Alkoxy radicals are open-shell species that play a crucial role as key 
reactive chemical intermediates in organic synthesis1. These radicals 
exhibit unique reactivities attributed to the unpaired electron on the 
highly electrophilic O-atom. The general reactivity modes of alkoxy rad-
icals include intra- or intermolecular hydrogen atom transfer (HAT)2–4, 
β-scission processes5,6 and radical addition onto an unsaturated bond7,8 
(Fig. 1a). While HAT and β-scission processes are well documented to 
yield more stable carbon-centred radicals, direct utilization of the 

alkoxy function group through alkoxyl radical addition to alkenes is 
relatively underexplored1. In contrast to N- and S-centred radicals, 
which are often trapped by C=C bonds, O-radical additions to alkenes 
typically proceed in intramolecular fashions, leading to O-containing 
cyclic compounds via kinetically favoured cyclizations. Only a few 
photocatalytic alkene alkoxy-functionalizations involve the step of 
alkoxy radical addition to C=C bonds intermolecularly9,10, such as the 
work from Dagousset’s group9 on the difunctionalization of alkenes 
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addition of various C-centred radicals to alkenes. Typically, photo-
excitation of an ER-associated electron donor–acceptor complex33 
initiates the C-radical species generation. More recently, our group 
has repurposed ERs by direct visible-light excitation of flavin cofactor 
to trigger the formation of aryl radical34 and alkene radical cation spe-
cies35. In addition to C-radical-mediated reactions, Hyster36, Zhao37,38 
and our group39 have independently used illuminated ERs to control 
N-centred radical species, providing elegant examples of enzymatic 
radical hydroaminations with C=C bonds. In addition, photoenzymatic 
sulfonyl radical additions to alkenes using ERs have been developed by 
Xu40,41 and Ye42 groups.

However, the alkoxy radical has yet not been harnessed for selec-
tive biotransformation. The challenges stem not only from the inher-
ently disfavoured intermolecular addition of alkoxy radical to alkenes1 

using alkoxyl radicals derived from N-alkoxypyridinium salts. To the 
best of our knowledge, asymmetric intermolecular radical hydroalkoxy-
lation has yet to be achieved11,12, although a non-asymmetric version 
has recently been reported by Zuo and co-workers during the revision 
of this work13.

Recently, notable strides have been made in catalysing non-natural 
radical biotransformations14–19. In particular, the combination of 
ene-reductases (ERs)20–22 and visible light catalysis23, the latter of which 
has been proven to be a potent tool for generating diverse radical 
species24, promotes the development of non-natural photoenzymatic 
transformations25,26. However, the spectrum of radical species manip-
ulated in this arena is confined primarily to carbon-, nitrogen- and 
sulfur-centred radicals (Fig. 1b). Notable contributions include those 
of Hyster27,28, Zhao29,30, Xu31 and Rao32 et al., who have used ERs for the 
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Fig. 1 | ER-enabled enantioselective radical biocatalysis. a, Typical 
reactivity modes of alkoxy radicals. b, Previously reported chemocatalysed 
O-radical addition to alkenes and photo-induced ER-catalysed non-natural 
transformations9. c, This work: an intermolecular O-radical addition to alkenes 

enabled by ground-state ERs. Nu, nucleophiles including water, alcohol and 
acetonitrile; Glu, glucose; FMNhq/sq, flavin mononucleotide with hydroquinone/
semiquinone form; LG, leaving group. The dot curvature indicates the chiral 
enzyme active site.
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but also from the absence of a general and effective method for intro-
ducing alkoxy radicals and directing the subsequent reactions under 
enzymatic conditions. Motivated by our ongoing interests in redesign-
ing enzymes for non-natural radical biocatalysis43–45, we questioned 
how to develop a biocatalytic strategy that could guide alkoxyl radicals 
for the challenging intermolecular O-radical addition to alkenes.

Here, we present our latest development concerning ER-catalysed 
intermolecular radical hydroalkoxylation of alkenes via a ground-state 
single-electron transfer (SET) pathway (Fig. 1c). Alkoxy radicals are 
harnessed to unlock enzyme reactivity that are inaccessible through 
traditional chemocatalysis. The mechanistic aspects of this reaction 
include the following: the alkoxy radical species are selectively gener-
ated through ground-state SET initiated by the flavin hydroquinone 
cofactor (FMNhq); within the confined active site, alkoxy radicals selec-
tively add to the C=C bond intermolecularly, leading to the formation 
of a stabilized prochiral benzylic C-radical; and stereoselective HAT 
directed by two classes of ER gives enantiodivergent synthesis of ethers 
(up to 99.5:0.5 enantiomeric ratio, e.r.).

Results
Reaction development
To develop the envisioned non-natural enzymatic radical C–O for-
mation, ɑ-methyl styrene 1a was chosen as the radical acceptor, and 
N-alkoxypyridinium salt 2a was selected as a potential source of meth-
oxy radical. Given the redox potential of 2a (Ered (2a) = −0.47 V versus sat-
urated calomel electrode (SCE)46, we envisioned that ground-state ERs 
with the reduced form flavin cofactor FMNhq (redox potential −0.45 V 
versus SCE)47 could reduce 2a without the need for light illumination48,49. 
The natural turnover system of ERs, containing nicotinamide adenine 
dinucleotide phosphate (NADP+), glucose dehydrogenase (GDH) and 
glucose, was used to regenerate FMNhq. After testing a batch of ERs 
heterologously overexpressed in our laboratory, we found that an ER 

isolated from Yersinia bercovieri (YersER) displayed the highest effi-
ciency and enantioselectivity, giving 3a in 73% yield with (R)-preferred 
selectivity (2:98 e.r.; Fig. 2a, entry 1). By contrast, Gluconobacter ER 
(GluER) delivered product 3a in 43% yield with (S)-preferred selectivity 
(85:15 e.r.; Fig. 2a, entry 4).

To further improve the yield and enantioselectivity for (S)-3a, 
semi-rational site-specific engineering50,51 was conducted on the 
basis of the docking profile of (S)-3a and the modelled GluER pro-
tein structure (PDB 6O08) (Fig. 2b). Five amino acid residues (H128, 
H172, N175, Y177 and Q232) were chosen for site-specific mutagen-
esis (Supplementary Table 6), resulting in two beneficial single-site 
mutants: GluER-H128Y, which increased yield to 71% (85:15 e.r.), and 
GluER-Q232L, which noticeably improved enantioselectivity and yield 
(90:10 e.r., in 66% yield). The combination of these two single-site 
mutants generated a new variant GluER-H128Y-Q232L, delivering (S)-3a 
in 76% yield, with a 92:8 e.r. (Fig. 2a, entry 5). Furthermore, by applying 
the enzyme loading to 2 mol%, (S)-3a was obtained in 87% yield, without 
affecting enantioselectivity (Fig. 2b).

Control experiments using riboflavin 5-monophosphate sodium 
salt (flavin mononucleotide, FMN) instead of ER or in the absence of the 
NADPH regeneration system confirmed that both enzyme and reduct-
ant are required for the reactivity, as no product 3a was formed (Fig. 2a, 
entries 6 and 7). In the presence of air, the yield notably decreased, but 
the enantioselectivity remained high (Fig. 2a, entry 8). Notably, lower-
ing the enzyme loading to 0.5 mol% resulted in a turnover number of 
128 (Fig. 2a, entry 9).

Substrate scope
Next, we assessed the substrate scope of the non-natural radical 
hydroalkoxylation (Fig. 3 and Supplementary Figs. 3 and 4). A small selec-
tion of ERs were screened for the substrates showing poor enantiose-
lectivity with the standard variants. YersER (ER1), Caulobacter segnis ER  
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Fig. 2 | Reaction development. a, The effect of ERs and control reactions. 
aConditions: α-methyl styrene 1a (0.004 mmol), pyridinium salt 2a (0.02 mmol), 
ER (1.5 mol%), GDH (4 U ml−1), NADP+ (5 mol%), glucose (0.02 mmol) and 10% v/v 
DMSO in Tris buffer (50 mM, pH 8.0) were stirred for 12 h at room temperature 
under a N2 atmosphere; total volume of the reaction is 1.0 ml. bYield was 
determined by GC; ce.r. was determined by HPLC analysis on a chiral stationary 

phase. n.a., not applicable. The absolute configuration of 3a obtained was 
assigned by the comparison of retention time on HPLC with the enantiopure 
standard (S)-3a (see ‘Stereochemistry Assignments’ in the Supplementary 
Methods). b, Engineering of GluER for (S)-3a (see Supplementary Table 9 for 
docking details).
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(CsER, ER2), GluER-H128Y-Q232L (ER3), GluER-H128Y-N175E-Y177F-Q232L 
(ER4) or GluER-H128Y-N175Y-Y177F-Q232L (ER5) were used to produce 
both enantiomers of the products. Using N-alkoxypyridinium salt 2a as 
the radical precursor, a range of substituted methyl styrenes underwent 
enantiodivergent hydroalkoxylation smoothly. These substrates included 
different substituents positioned para, meta or ortho to the phenyl group 
(3a–k), disubstitutions (3l) and a thienyl group (3m), all of which were well 
tolerated. The yields varied, and a styrene with a highly electron-deficient 
group (3k) exhibited decreased yields. Tetrahydronaphthalene-derived 
alkenes (3n and 3o) performed well, especially for 3o bearing two stereo-
centres (up to a 4:96 e.r. with >20:1 diastereomeric ratio). Variations at 
the α-position of alkene also affect reaction outcomes (3p and 3q). For 
instance, vinyl ether 1q was effective, generating 1,2-diether 3q with good 
enantioselectivity, although only one enantiomer was obtained with the 
ERs tested. Furthermore, several alkoxy radical precursors were evaluated, 

and 3r–v were successfully constructed enabled by the present catalysis. 
Despite the relatively low yields, the enantioselectivity reached up to 
0.5:99.5 e.r. An intramolecular radical hydroalkoxylation was also tested, 
resulting in moderate yield and poor stereoselectivity (3w), suggesting 
challenges in controlling the initial C–O bond formation. The reaction is 
easily scaled up while maintaining equivalent enantioselectivity (3a and 
3g) with a reduced ERs loading of 1 mol%. From the perspective of yield, 
electron-rich substituents on the para position of styrenes appeared 
beneficial (3g versus 3j), which could be ascribed to the electronic philic-
ity preference of O-radicals. Furthermore, we investigated the effect of 
substituents on the reaction rate. By combining the calculations (Sup-
plementary Figs. 16–18) and kinetics studies (Supplementary Table 8), 
we found complexity in the factors that influence reaction yields or initial 
rates (for detailed information, please see ‘Analysis of Substrate Specific-
ity’ in the Supplementary Information).
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NADP+ (5 mol%), glucose (0.04 mmol, 5 equiv.) and 10% v/v DMSO in Tris 
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atmosphere; the total volume of the reaction is 2.0 ml. bIsolated yield based 
on a 0.1 mmol reaction; the loading of enzyme is 1 mol%. c3o d.r. >20:1. dNADP+ 

(1 mol%), deuterated glucose (0.02 mmol, 2.5 equiv.) and deuterated Tris buffer 
were used, and percentages of deuterium incorporation were determined 
by 1H NMR analysis. X = BF4 for 3a–r, X = OTf for 3s–w; these pyridinium salts 
are synthesized by different methods, resulting in different counter anions9. 
Duplicated runs using different batches of enzyme yielded results within ±5% 
error in yield and within ±2% error in enantiomeric excess. D, deuterium.
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Biocatalytic deuteration is a far less explored area, but it holds 
important potential for deuterating unconventional remote sites. 
For example, the β-position of an ether oxygen atom without requir-
ing additional functionalities is difficult to achieve by chemoca-
talysis. Based on this developed biocatalytic radical intermolecular 
hydroalkoxylation, enantioenhanced β-deuterated ethers can be 
accessed using d-glucose-d1 as the deuteration source, as demon-
strated by the synthesis of D-3a, and D-3g, achieving >99% deuterium 
incorporation rate at the benzylic position.

Mechanistic studies
A catalytic scheme was proposed (Fig. 4). Initially, GDH-mediated 
hydride transfer formed the reduced hydroquinone state ER (Int. 
A → Int. B). SET reduction of radical precursor 2 by the FMNhq generated 
O-centred radical and semiquinone flavoprotein (Int. C). Subsequently, 
intermolecular O-radical addition to alkene 1 gave prochiral C-centred 
radical (Int. D). Then, enzyme-directed HAT furnished enantioenriched 
product 3 (Int. E). Finally, the release of the product completed the 
cycle. To verify this scheme, both computational studies and wet experi-
ments were conducted.

First, quantum mechanics (QM) model calculations showed that SET 
from FMNhq to 2a had an energy barrier of ~0.1 kcal mol−1 (Supplementary 
Table 16) and an exothermicity of 21.7 kcal mol−1 (Fig. 5a), supporting that 
single-electron reduction for radical initiation was thermodynamically 
and kinetically favourable at the ground state. This result was consistent 
with our experiments that additional light illumination was not required 
for the overall reaction efficiency (Fig. 2a and Supplementary Tables 2 
and 3). In addition, the time–curve analysis indicated that the reaction 
within 5 min was slightly promoted by light irradiation. However, the 
O-radical progress was so fast that, after 5 min, the reaction without 
illumination showed no obvious difference in yield compared with that 
under irradiated conditions (Supplementary Table 3).

Starting from 2a radicals (2a·), quantum mechanics/molecular 
mechanics (QM/MM) calculations showcased that the cleavage N–O 
bond process involves an energy barrier of 5.9 kcal mol−1 and exother-
micity of 4.8 kcal mol−1, leading to the methoxy radical (·OMe) (Fig. 5b 
and Supplementary Fig. 27). Following methoxy radical formation, 
we hypothesized that the hydrophilic isonicotinonitrile could diffuse 
out of the enzyme’s active site, allowing its binding site to be occupied 
by the hydrophobic 1a. To confirm the presence of this O-radical, we 
conducted radical trapping experiments with 1,1-diphenylethylene 
(Fig. 5c). The observation of the methoxy radical adduct supported the 
generation of methoxy radical intermediate (Fig. 4, Int. C).

To investigate the follow-up O-radical addition (Int. C → Int. D), a 
radical clock experiment using α-cyclopropyl-styrene 5 was performed 
(Fig. 5d). Ring-opened product 6 was identified in reactions catalysed 
by ERs, while in the reaction with FMN alone the product 6 was not 
observed. These findings supported the presence of an enzymatic 
benzylic radical intermediate Int. D.

To explore the origin of the different selectivity catalysed by dif-
ferent ERs, the classical molecular dynamics (MD) simulations and QM/
MM MD simulations were performed to obtain the more reliable struc-
ture of Int. C. Then, QM/MM calculations were conducted to explore the 
subsequent possible mechanism of alkoxy radical addition pathways. 
Simulations suggested that 1a can adopt two possible conformations 
(CH3-left and CH3-right) within the active site of ER3, which ultimately 
led to S and R configurations, respectively. Starting from the CH3-left 
conformation, the following C–O radical bond formation affording the 
prochiral radical (Int. D) was a barrierless process (Int. C → Int. D; Fig. 5f). 
In addition, we investigated the undesired side pathway that forms 
methanol via HAT from FMNsq to methoxy radical (Int. C → TS3), which 
involved an energy barrier of 3.7 kcal mol−1, indicating that methoxy 
radical preferred the addition to the C=C bond (Fig. 5f).

To gain further insights into the radical termination of Int. D, iso-
topic labelling experiments were conducted (Fig. 5e). When the reaction 

was conducted with d-glucose-d1 where deuterated FMND− formed 
in situ, the newly formed stereogenic centre was labelled with 82% deute-
rium, and only 11% deuterium was incorporated when deuterated buffer 
was applied. These implied that the H-atom abstracted by the benzylic 
radical was mediated by FMNsq (Int. D → Int. E). Our QM/MM-calculated 
energy profiles of alkoxy radical addition pathways further supported 
the key FMNsq-mediated HAT step. As shown in Fig. 5f, HAT from FMNsq 
to the Int. D (CH3-left) generated the product 3a in S-configuration with a 
barrier of 10 kcal mol−1 (Int. D → TS2_S), while generating R-configuration 
required a barrier of 14.3 kcal mol−1 (Int. D → TS2_R). The QM/MM results 
suggested that the HAT process was the rate-determining step, aligning 
with our kinetic isotope effect (KIE) experimental results (kH/kD = 4.3; see 
‘KIE Experiment’ in the Supplementary Methods). In addition, the QM/
MM-calculated KIE (calculated from kH′/kD′; Supplementary Fig. 32) was 
4.3, which is consistent with the experimental values, thereby confirm-
ing the reliability of our calculations.

As shown in Fig. 5f, the corresponding C–O coupling involved 
a barrier of 2.6 kcal mol−1 (Int. C → TS1_R), which was 2.6 kcal mol−1 
higher than that of the CH3-left conformation (barrierless process 
for Int. C → TS1_S). This was mainly because the methoxy radical was 
further away from the double bond of 1a in the CH3-right conforma-
tion (Fig. 5f). In addition, analysis of the structure of TS1_R revealed 
that the C–O coupling process involved repulsion between the CH3 
substituent of 1a and FMNsq, potentially increasing the energy barrier 
(Supplementary Fig. 34). As the C–O coupling step was highly exother-
mic and irreversible, it was clear that the enantioselectivity would be 
controlled by the C–O coupling rather than the subsequent HAT step. 
Although the HAT step in the active site constructed the stereocentre, 
the binding conformational selection of the α-methyl styrene substrate 
determined the configurations of the prochiral carbon-centred radi-
cal, which subsequently determined the absolute configuration of the 
newly formed stereocentre. Owing to the substrate positioning in the 
active site of ER3, the generation of (S)-3a was kinetically preferred, 
which well explained the experimental outcome that ER3 gave the 
formation of (S)-3a dominantly (Fig. 2a).
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As for the process catalysed by ER1, further simulations showed 
that the methoxy radical was in closer proximity to the double bond 
of 1a in the CH3-right conformation than in the CH3-left conforma-
tion. As such, the C–O coupling from the CH3-right conformation was 

kinetically favoured to generate (R)-3a theoretically (Supplementary 
Figs. 12–15), which aligned with the observed (R)-3a selectivity with ER1.

For the reaction catalysed by ER3, the calculated C–O coupling 
barrier for the S-configuration was 2.6 kcal mol−1 lower than that of 
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the R-configuration, which is close to the energy gap of 1.4 kcal mol−1 
derived from the experimentally measured e.r. of 92:8 for S:R (see ‘Enan-
tiomeric Excess Calculations’ in the Supplementary Methods). Further-
more, with ER1, the calculated energy barrier for the R-configuration 
was 4.6 kcal mol−1 lower than that of the S-configuration, which matched 
the experimental 98:2 for the R:S e.r. value (2.3 kcal mol−1 according to 
the Boltzmann distribution).

Conclusions
We have successfully introduced a ground-state SET mechanism to bio-
catalysis, enabling the taming of reactive O-centred radicals for a chal-
lenging intermolecular hydroalkoxylation. First, we expand the radical 
spectrum in non-natural radical-type enzymatic catalysis to include 
O-centred radical species, facilitating the enantiodivergent synthesis 
of enantioenriched O-containing compounds. Second, we achieve 
stereocontrolled O-radical-mediated intermolecular hydroalkoxyla-
tion. Our mechanistic studies suggest that the exquisite but evolvable 
enzyme active site triggers the formations of highly reactive alkoxy 
radical and guides the following intermolecular addition to C=C bond 
with high efficiency and selectivity. Third, the introduction of an unu-
sual ground-state radical initiation pathway that does not require light 
illumination complements photoenzymatic catalysis. We anticipate 
that the herein-reported ground-state SET radical enzyme will inspire 
the exploration of non-natural asymmetric biotransformations that 
are challenging for chemocatalysis.

Methods
General procedure for the enzymatic radical hydroalkoxyla-
tion
All the biocatalytic reactions were assembled in a glove box with a O2 
concentration below 5 ppm. Here, we use 1a + 2a → 3a as an example. 
To a 4-ml glass vial with a magnetic stir bar, NADP+ (80 μl, 5 mM stock 
in Tris buffer, 5 mol%), glucose (80 μl, 500 mM stock in Tris buffer, 
0.04 mmol, 5 equiv.), solutions of ER (2 mol%), GDH (1,000 U ml−1, 
8 U), substrate 1a (100 μl, 80 mM 1a in dimethyl sulfoxide (DMSO), 
0.008 mmol, 1 equiv.) and substrate 2a (100 μl, 400 mM 2a in DMSO, 
0.04 mmol, 5 equiv.) were added to Tris buffer (50 mM, pH 8.0). The 
reaction mixture was adjusted to a final volume of 2 ml. The reaction 
vial was sealed with a screw cap, transferred out of the glove box and 
stirred at ambient temperature for 12 h.

Yields determined by GC
Ethyl acetate (2.0 ml) and 20 μl of an internal standard solution (4% v/v 
n-dodecane in ethyl acetate) were added to the reaction mixture and 
homogenized. The organic phase was separated and analysed by gas 
chromatography (GC) and GC–mass spectrometry. The solvent was 
subsequently evaporated under reduced pressure (caution: the boiling 
point of the products is low), and the residue was redissolved in hexane 
for chiral high-performance liquid chromatography (HPLC) analysis.

Yields determined by liquid chromatography
Acetonitrile (2.0 ml) and 200 μl of an internal standard solution (3 mg 
1,3,5-tribromobenzene in 1 ml acetonitrile) were added to the reaction 
mixture and vigorously mixed. The mixture was centrifuged, and the 
supernatant was filtered and subjected to liquid chromatography 
analysis.

System set-up and MD simulations
The initial model of GluER-H128Y-Q232L (ER3) was derived from the 
crystal structure (PDB 6O08) by introducing two mutations, H128Y 
and Q232L. The structure of YersER (ER1) was prepared using Alpha-
Fold252. Subsequently, 2a and 1a were docked into the active site using 
AutoDock Vina tool53. The Amber ff14SB force field54 was applied 
to the protein residues, whereas the general AMBER GAFF force 
field55 was assigned to 1a, 2a, methoxy radical and FMN. The partial 

atomic charges of 1a, 2a, methoxy radical and FMN were derived 
via restrained electrostatic potential calculations at the B3LYP56/6-
31G(d,p) level of theory. Sodium ions were introduced to neutralize 
the overall charge of the system. The final system was solvated in a 
TIP3P57 waters extending up to a minimum distance of 16 Å from the 
protein surface. After appropriate system preparation, full energy 
minimization, annealing and equilibration were performed. Finally, 
100-ns MD simulations were conducted under constant pressure 
and constant temperature conditions for the FMN, 2a complex and 
1a, FMN and methoxy radical complex. All simulations were carried 
out using the graphics processing unit-accelerated version of the 
AMBER 18 package58.

It is noteworthy that the SET process from FMNhq to 2a was cal-
culated using the QM model, where FMNhq, 2a, FMNsq and 2a radicals 
were treated as independent species. All structure optimizations were 
carried out at the B3LYP-D3/def2-SVP level (labelled B1). Energies were 
subsequently refined using the larger basis set, def2-TZVP (denoted as 
B2), for all atoms. Furthermore, QM/MM (B3LYP-D3/B2) calculated the 
cleavage of the N–O bond of 2a radicals and alkoxy radical addition to 
1a. In QM/MM calculations, all transition states were located via the 
highest-energy points along the reaction coordinates on the potential 
energy surface, followed by full transition state optimization using 
the dimer method.

QM/MM calculations for enzymatic reactions
A representative snapshot from the QM/MM MD trajectory was selected 
for subsequent QM/MM calculations. All QM/MM calculations were 
performed using ChemShell59,60, which integrates Turbomole61 for 
the QM region and DL_POLY62,63 for the MM region. The electronic 
embedding scheme64 was used to account for the polarizing effect of 
the enzymatic environment on the QM region. The QM/MM boundary 
was treated using hydrogen link atoms within the charge-shift model. 
Grimme’s D3BJ empirical dispersion65,66 was included in all calculations. 
Finally, the QM/MM energies comprised the electronic energies at the 
B3LYP-D3/B2 level, zero-point energy corrections at the B3LYP-D3/B1 
level and Grimme’s D3BJ dispersion terms.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
HPLC spectra and NMR spectra are available in the Supplementary 
Information. The PDB code of the GluER used in this work is 6O08. The 
structural data (including all QM calculation coordinates, QM region 
coordinates from QM/MM calculations and the initial and final configu-
rations of molecular dynamics trajectories) are available via Zenodo 
at https://doi.org/10.5281/zenodo.14851048 (ref. 67).

Code availability
The codes for building the QSAR model are available via GitHub at 
https://github.com/ld139/QSAR_enz.
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.



2

nature portfolio  |  reporting sum
m

ary
April 2023

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

High-performance liquid chromatography spectra and NMR spectra are available in the Supplementary Information. The PDB code of the GluER used in this work is 
6O08. The structural data (including all QM calculation coordinates and QM region coordinates from QM/MM calculations) is available in Zenodo at https://
doi.org/10.5281/zenodo.14851048. The files and codes for building the QSAR model are available at https://github.com/ld139/QSAR_enz.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender not applicable

Reporting on race, ethnicity, or 
other socially relevant 
groupings

not applicable

Population characteristics not applicable

Recruitment not applicable

Ethics oversight not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Scope investigation was conduct in 0.008 mmol reactions as the amount of the products formed is enough for yields determined by GC. 
Substrates (3a and 3g) were selected to performed in 0.1 mmol scale to obtain isolated yields as 0.1 mmol scale typically gives ~10 mg 
isolated products. 

Data exclusions No data were excluded.

Replication All enzymatic reactions were repeated at least twice. All attempts at replication were successful.

Randomization not applicable. No group allocation involved in this study.

Blinding not applicable. No group allocation involved in this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 



3

nature portfolio  |  reporting sum
m

ary
April 2023

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes not applicable

Seed stocks not applicable

Authentication not applicable

Plants


	Steering oxygen-centred radicals with ground-state ene-reductases for enantioselective intermolecular hydroalkoxylations

	Results

	Reaction development

	Substrate scope

	Mechanistic studies


	Conclusions

	Methods

	General procedure for the enzymatic radical hydroalkoxylation

	Yields determined by GC

	Yields determined by liquid chromatography

	System set-up and MD simulations

	QM/MM calculations for enzymatic reactions

	Reporting summary


	Acknowledgements

	Fig. 1 ER-enabled enantioselective radical biocatalysis.
	Fig. 2 Reaction development.
	Fig. 3 Scope investigation.
	Fig. 4 Proposed catalytic cycle under dark conditions.
	Fig. 5 Mechanistic studies.




