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Large language model agents can use
tools to perform clinical calculations

M| Check for updates

Alex J. Goodell® <, Simon N. Chu®?2, Dara Rouholiman®' & Larry F. Chu®"

Large language models (LLMs) can answer expert-level questions in medicine but are prone to
hallucinations and arithmetic errors. Early evidence suggests LLMs cannot reliably perform clinical
calculations, limiting their potential integration into clinical workflows. We evaluated ChatGPT’s
performance across 48 medical calculation tasks, finding incorrect responses in one-third of trials
(n =212). We then assessed three forms of agentic augmentation: retrieval-augmented generation, a
code interpreter tool, and a set of task-specific calculation tools (OpenMedCalc) across 10,000 trials.
Models with access to task-specific tools showed the greatest improvement, with LLaMa and GPT-
based models demonstrating a 5.5-fold (88% vs 16%) and 13-fold (64% vs 4.8%) reduction in
incorrect responses, respectively, compared to the unimproved models. Our findings suggest that
integration of machine-readable, task-specific tools may help overcome LLMs’ limitations in medical

calculations.

Large language models (LLMs) such as ChatGPT and Med-PaLM have
demonstrated competency in the use and application of clinical knowledge,
recently answering 90% of US medical licensing exam questions correctly' .
Unfortunately, confabulated material (“hallucination”) remains a persistent
problem in both general and specialized domains of knowledge®, limiting
the ability of LLMs to be deployed safely in clinical environments. Though
not intuitive, one common form of hallucination is the misapplication of
simple arithmetic, as even sophisticated models tend to have relatively poor
performance on tasks such as single-digit addition. Given the importance of
quantitative science in medicine, this inadequacy poses an additional
obstacle to LLM’s implementation.

Despite their challenges, LLMs have experienced a rapid growth
in research and development, giving rise to many new approaches to
their most common problems. One simple technique has focused on
modification of the LLM’s prompt, encouraging it to relay its
thinking in stepwise fashion, so-called chain-of-thought prompting
(CoT). This method has proven an effective approach to complex,
multi-step tasks including differential diagnosis®’. For the task of
medical calculation, however, a recent evaluation of CoT vs direct
prompting saw no incremental improvement’.

Another prominent method, retrieval-augmented generation (RAG),
employs an information-gathering step prior to prompt submission,
whereby a set of documents are gathered from a database and ranked
according to their perceived relevance to the prompt. These are appended to
the prompt just prior to submission, providing the model with contextual
information to bolster its accuracy. Though this has proven promising for

open-ended and knowledge-based medical questions’, retrieval-based
solutions alone may be constrained by their reliance on the LLM itself to
perform the arithmetic.

One alternative solution to improve the calculation abilities of
LLMs involves the use of semi-autonomous “agentic” models. The
concept of LLMs as autonomous agents emerged in 2022, demon-
strating models’ abilities to conceive, plan, and execute tasks®. Recent
developments have shown that they can learn to use tools, such as
conducting web searches or interacting with application program
interfaces (APIs) for the exchange of knowledge™". GeneGPT, likely
the first implementation of a tool-using LLM in medicine, is able to
interact with APIs hosted by NCBI, allowing a user to explore genetic
data without any specialized database knowledge''. These so-called
“tool-augmented language models” have shown superior perfor-
mance in mathematics benchmarks compared to traditional LLMs.
Instead of relying on the underlying neural network architecture to
answer the question, LLMs generate a script in a common pro-
gramming language, execute that script, interpret the results, and
relay the solution to the user'”. In late 2023, ChatGPT, a large lan-
guage model developed by OpenAl, was enhanced with some of this
functionality, including the ability to write and execute its own
programs for solving complex prompts (“code interpreter”).

Not unlike language models, clinicians often require external tools for
complex calculations, many of which are specific to their needs. One of the
most popular services, MDCalc, has between three and five million visits per
month and is used by 65% of physicians in the US". Its appeal lies in its focus
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on usability, simplicity, and safety features'’. However, even the most
intuitive applications can become burdensome if multiple calculations are
required or if they require the entry of a large amount of data. This is
especially true in perioperative medicine, where risk calculators such as the
NSQIP or STS Risk model require 20 or more input parameters'>'°.

LLMs offer a uniquely usable interface, driving a dramatic rise in
popularity. Indeed, a recent informal study found that 76% of 107 surveyed
physicians regularly use LLMs for clinical care and that 40% used them to for
treatment planning”. This trend, in part, has prompted institutions to
provide secure versions of LLMs to guard against privacy violations, either
through specialized secure cloud provision for proprietary models, or with
locally-hosted open-weights models, such as LLaMa'*"”. As these models
become increasingly integrated into clinical practice, LLMs may be able to
offer diagnostic assistance, make risk predictions, provide readable doc-
umentation to patients, or provide treatment recommendations as a form of
basic clinical decision support’ ™. Yet many of these tasks depend on
models’ quantitative skill, underscoring the importance of understanding
LLMs capabilities in this domain.

In this study, we examine these topics in two parts. In part one, we
describe an exploratory analysis where evaluate the standard, consumer
version of ChatGPT on 48 common clinical calculation tasks with 212
vignettes, simulating how a clinician may prompt a language model. We
introduce a novel error classification schema to identify misteps in the
reasoning process or arithmetic. After uncovering the most common errors
made by the language model, we turn to possible solutions. In part two, our
focused analysis, we evaluate how different tools could be applied to aug-
ment performance, enriching for difficulty by focusing on the 10 lowest-

a Exploratory analysis b

| 50 calculation tasks identified from MDCalc |

'

scoring calculation tasks. We evaluate five permutations of available tools,
including RAG, a code interpreter, and a set of task-specific tools developed
by the authors, termed OpenMedCalc. To rigorously evaluate the impact of
these tools, we assess both a proprietary model (GPT-40) as well as an open-
weights medium-size model (LLaMa-3.1-70b) with 1,000 unique vignettes
(Fig. 1). Lastly, the three physician authors review and annotate 612
responses for error classification, which we release as two datasets (ABA-
CUS-212 and ABACUS-409). To our knowledge, this is the first published
study to incorporate a functional clinical calculator tool into a lan-
guage model.

Results

Exploratory analysis

The initial phase of this work entailed a broad assessment of ChatGPT’s
performance on a variety of calculation tasks in its commercially-available
state, which includes access to both a code interpreter and a web search tool.
A total of 48 popular calculators were selected from MDCalc and categor-
ized into one of five calculator types by their clinical role (Table 1). For each
chosen calculator, clinicians generated five short fictional patient vignettes
which included a request that a specific calculation be performed (see
examples in Table 2). These vignettes were presented to ChatGPT over the
OpenAl web interface, after which clinicians recorded and graded the
model’s responses.

Of the 48 calculation tasks tested, six tasks generated atypical answers.
ChatGPT was unable to give any substantial answer to four tasks: the
GRACE, Gupta, PECARN, and ASCVD. For these prompts, the LLM
browsed the internet to find human-usable medical calculators such as

Focused analysis

10 tasks chosen for focused analysis

| 50 calculation tasks reviewed by MDs | ‘

2 calculation tasks
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Fig. 1 | Overview of study’s approach to assessment of clinical calculation. The
schematic delineates the two-phase process. a Exploratory analysis of 50 calculation
tasks identified from MDCalc. Tasks were reviewed and vetted for suitability,
resulting in 212 vignettes spanning 42 tasks after exclusions due to obsolescence or
LLM's inability to provide answers. b In the focused analysis, in-depth testing of the

500 trial results for
MELD-Na vignettes
in GPT models

500 trial results for
MELD-Na vignettes
in Llama models

v

1000 trial results for
MELD-Na vignettes *

10,000 trial results

LLM's performance on 10 select calculation tasks was performed with both LLaMa
and GPT models across five different configurations: base model, code interpreter
(CI), retrieval-augmented generation (RAG), RAG + CI, and OpenMedCalc API
(OMCQ), resulting in 10,000 trials.
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Table 1 | List of 48 calculators assessed, by calculator type

Calculator Type

Calculators assessed

Descriptive

CrCl (Creatinine Clearance), CKD-EPI Equations (for Glomerular Filtration Rate), FENa (Fractional Excretion of Sodium), NaCorrection (Sodium
Correction for Hyperglycemia) MAP (Mean Arterial Pressure), QTc (Corrected QT Interval), LDL Calculator, AG (Anion Gap), BMI/BSA (Body Mass Index
and Body Surface Area), IBW (Ideal Body Weight and Adjusted Body Weight), CaCorrection (Calcium Correction for Hypoalbuminemia), FreeWater
(Free Water Deficit in Hypernatremia), Fibrosis-4 (for Liver Fibrosis), ABG (Arterial Blood Gas Analyzer), Osms (Serum Osmolality/Osmolarity), HMAIR
(Homeostatic Model Assessment for Insulin Resistance), Due Dates (Pregnancy Calculator)

Predictive

CHADS-VASCc® (CHA,DS,-VASc Score for Atrial Fibrillation Stroke Risk), RCRI (Revised Cardiac Risk Index for Pre-Operative Risk), HEART (HEART
Score for Major Cardiac Events), HAS-BLEDP (HAS-BLED Score for Major Bleeding Risk), CURB-65 (CURB-65 Score for Pneumonia Severity), SOFA®
(Sequential Organ Failure Assessment Score), Framingham? (Framingham Risk Score for Hard Coronary Heart Disease), Caprini® (Caprini Score for
Venous Thromboembolism), ASCVD?® (Atherosclerotic Cardiovascular Disease), Gupta® (Gupta Perioperative Risk for Myocardial Infarction or Cardiac
Arrest), GRACE? (GRACE ACS Risk and Mortality Calculator), CCI° (Charlson Comorbidity Index), ARISCAT Score® (for Postoperative Pulmonary
Complications), PSI/PORT Score® (Pneumonia Severity Index) CPS (Child-Pugh Score for Cirrhosis Mortality), MELD-Na® (Model for End-Stage Liver
Disease Sodium)

Speculative

Wells PE (Wells Criteria for Pulmonary Embolism), Wells DVT® (Wells Criteria for DVT), Centor (Centor Score for Strep Pharyngitis), PHQ9 (Patient Health
Questionnaire), PERC (PERC Rule for Pulmonary Embolism), STOP-BANG (STOP-BANG Score for Obstructive Sleep Apnea)

Summative

GAD7" (General Anxiety Disorder), NIHSS® (NIH Stroke Scale/Score), GCS (Glasgow Coma Score), CIWA (CIWA Score for Alcohol Withdrawal), SIRS

(SIRS Septic Shock Criteria)

Therapeutic
PECARN? (Pediatric Head Injury/Trauma Algorithm)

Steroid Conversion (Steroid Conversion Calculator), mIVF (Maintenance Fluids Calculations), MME (Morphine Milligram Equivalents Calculator),

Short names, extended names, and categories of the 48 calculation tasks assessed. Calculators were broken into five types: (A) descriptive, which attempt to estimate the value of an unmeasurable or
difficult-to-measure known physical property, (B) speculative, which attempt to estimate the probability of an active disease or process. (C) summative, which combines multiple metrics to summarize the
severity of an active, known disease (D) predictive, which estimates the probability or risk of a future event, and (E) therapeutic, which calculates or assists in calculation of a treatment plan. Not shown: Two

calculators, ASCVD-2013 and MDRD-GFR, were excluded due to obsolescence.
“Incomplete responses during exporatory analysis.
“Included in the focused analysis.

Table 2 | Example vignettes

Calculator Example prompt

PSI/PORT

A 70-year-old male patient is admitted with pneumonia. The patient presents with confusion, disorientation, and inability to recognize family members. They

live independently in their own home and manage all personal care. The patient has a history of stage Il colon cancer, diagnosed 5 years ago, and is currently
in remission. They report no history of liver disease and have normal liver function tests. The patient has congestive heart failure with an ejection fraction of
35% and takes daily diuretics. The patient suffered a stroke 3 years ago, resulting in mild left-sided weakness and aphasia. They have normal kidney function
with no history of renal disease. Their vital signs include a respiratory rate of 28, systolic BP of 110, pulse of 130 and temperature of 34.6. Their lab results
show a pH of 7.38, BUN of 25, sodium of 135, glucose of 220, hematocrit of 28, PaO2 of 55. Chest radiograph reveals bilateral infiltrates and a right-sided

pleural effusion. What is their PSI/PORT score?

SOFA

A 58-year-old male is being monitored for organ failure. They are intubated with a 7.0 ETT and are on VCAC. Based on their most recent blood gas, their FiO2

is 70%, and their PaO2 is 72. Platelets are 110, bilirubin 15, Their MAP is 68, and they are not requiring vasopressor agents. Glasgow Coma Scale is 6,
creatinine 6, and urine output 1000 mL/day. Please determine his SOFA score.

MELD-Na

I’m seeking your advice on a liver transplant candidate. The patient is a 40-year-old woman with the following lab results: sodium 125, bilirubin 1, creatinine

1.3, and INR 1. They are on three-times-per-week dialysis. Could you help me determine their MELD-Na score?

Three example vignettes used for prompting during the focused analysis. Examples of full prompts, responses, and error classification are available in the Supplementary Information (Supplementary Note 1

through Supplementary Note 13) as well as the data repository.

MDCalc and offered links to the user as suggestions. For the calculation of
CIWA scores, which involve subjective grading of physical exam findings
such as perceived anxiety or tremor, the LLM would only provide ranges.
Thus, these five tasks were graded “unable to calculate.” For the Framing-
ham Score, three trials resulted in ChatGPT indicating its inability to cal-
culate the score, instead providing links to relevant materials. In two trials, it
attempted to provide answers by hallucinating a calculation scheme, one of
which resulted in a myocardial infarction risk estimate near 1% and a second
with a risk over 100% for similar patients. The first three attempts were
coded as “unable to calculate,” while the latter two attempts were scored as
incorrect.

Out of the remaining 42 calculators, ChatGPT successfully pro-
vided calculations in five of five trials, resulting in a total of 212 scorable
answers. Of these, 140 were classified as correct, representing 66% of all
trials. There was considerable variation in performance across calcula-
tion tasks; in six tasks, none of the provided answers were correct, while
in 17 tasks, all provided answers were correct (Fig. 2a). There was a
notable difference based on calculator role: for tasks classified as “pre-
dictive,” the model was able to accurately answer only 39% of trials, while
calculation tasks classified as “descriptive” were answered correctly in
89% of trials (Fig. 2a).

Exploratory analysis error classification

During the exploratory analysis, there were a wide array of errors made by
ChatGPT in its attempts to answer clinical calculation tasks; a total of 84
errors were identified across 72 questions. To better understand the nature
of these miscalculations, we developed a error classification schema, which
seperated errors into one of five classes: interpretation error, incorrect cri-
teria, assignment error, incorrect formula, or calculation error (Fig. 3). Each
of ChatGPT’s answers was reviewed by a physician and errors were grouped
into one of these five classes.

The most common type of error was the assignment error (31 of 82
errors, 38%), in which the model correctly identified the relevant criteria but
assigned the wrong score. This was more common in longer calculation
tasks which had more criteria, making it difficult for the model to “recall” the
correct points for each criterion. For example, in the ARISCAT task, the
model identified that preoperative SpO, was a part of the criteria but was
inconsistent on how many points an abnormal value contributed to a
final score.

The second most common error class was incorrect criteria, where the
model either hallucinated new criteria or omitted relevant criteria; this
category accounted for 13 of 82 identified errors (16%). Without a clear
understanding of criteria, the model would meld variations of criteria from
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Fig. 2 | Detailed breakdown of ChatGPT’s performance on calculation tasks. focused analysis, showing stepwise improvement with tool augmentation.
a Vertical histogram showing performance on all calculation tasks during d Continuation of vertical histograms from (a) showing performance on all calcu-

exploratory analysis, with correct answers in green and errors color-coded by type.  lation tasks during focused analysis, with correct answers in green and estimated
b Heatmap visualizing correlations between calculator types and error classes, where  number of errors color-coded by class. e Box plots showing the magnitude of errors
blue indicates negative correlations and green indicates positive correlations. when incorrect answers were provided, normalized to each calculator's valid range,
¢ Percentage of correct answers across the 10 selected calculators for each arm of the  demonstrating reduced error severity with tool augmentation.
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Prompt

“Mr Jones is a 67-year-old man with
chronic systolic hypertension and
gout. He has no history of

Chain of reasoning

Correct response

“Based on the information
provided, Mr Jones’ score is 2,
»| suggesting moderate-to-high risk.”

following: CHF, stroke, TIA,
diabetes, or other vascular
disease. What is his CHA2DS2-VASc
score?”

Correct chain of reasoning for
clinical calculation task
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Fig. 3 | Chain of reasoning and error classification framework with example
CHA,DS,VAScprompt. This diagram provides a detailed overview of the approach
used to classify errors encountered in clinical calculation tasks performed by LLMs. It
shows an example prompt with the user asking to calculate a CHA2DS2VASc for a
patient, and the correct response from the model. The second row delineates the

necessary reasoning steps required to accurately complete a clinical calculation
manually. The third row illustrates the possible errors in this chain of thought, with
example errors linked to each step. The final row shows the same chain of reasoning
with access to a calculation API, demonstrating how tool augmentation bypasses
many error-prone steps while remaining susceptible to interpretation errors.

similar calculators, many of which would appear reasonable to an unfamiliar
user. A pointed example comes from the model’s attempt to assess an
individual’s Caprini VTE score, where it informed the user that a young
overweight patient did not score any points for being overweight because
“BMI is only counted as a risk factor in patients aged over 40.”

The third and fourth most common error classes involved the appli-
cation of math within the model. When presented with a calculation task,
the base model would either (1) attempt to calculate using the language
model alone, or (2) use the “code interpreter” tool. In the former, the model
displayed difficulties performing simple calculations and/or counting. In
one HAS-BLED prompt, it failed to calculate 14-1. These were classified as

calculation errors and comprised 13 of 82 errors (16%). The latter, code
interpreter functionality, was reserved for more complex math. In general,
the model would describe the formulas in plain text or formula notation.
Subsequently, it would pause and proceed to write a program in Python to
calculate the results. The delivered result was occasionally incorrect even in
instances where the model presented a correct version of the formula prior
to writing the script. These were classified as having an incorrect formula,
and represented 12 (15%) of the identified errors (Fig. 4). Interpretation
errors (11 of 82, 14%) were also common. In particular, the base ChatGPT
model occasionally struggled with interpreting numerical ranges, for
example, reporting that a 64-year-old man would be categorized as between
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@ Anonymous
| have a patient that I'd like to tell you about; | need your help. They are a 82-year-old
man who is being evaluated for a liver transplant. Their serum sodium is 125, serum
bilirubin is 1, serum creatinine is 1.8, and INR is 1.5. They are on three-times-per-week
dialysis. What is their MELD-Na score?

ChatGPT

The Model for End-Stage Liver Disease (MELD) score is a reliable clinical tool used to
estimate the severity of chronic liver disease and to prioritize for receipt of a liver
transplant. The MELD score incorporates the patient's serum bilirubin, serum
creatinine, and INR, and it has been updated to include serum sodium levels, known as
the MELD-Na score.

The MELD-Na score is calculated using the following formula:

MELD — Na = MELD + 1.32 x (137 — Na) —
[0.033x MELDx (137—Na)]
if Na is less than 125 or more than 137, use 125 or 137

First, we need to calculate the patient's original MELD score with the following formula:

MELD = 9.57 x log,(Creatinine) + 3.78 x log, (Bilirubin) + 11.2 x
log,(INR) + 6.43

For patients on dialysis, the maximum serum creatinine used for MELD score

calculation is capped at 4.0 mg/dL.
Let's calculate the patient's MELD and MELD-Na scores with the given values.

The patient's original MELD score is approximately 16.6, and their MELD-Na score,
which takes into account their serum sodium level, is approximately 25.9. This MELD-
Na score can be used to assess the severity of their liver disease and their priority for

liver transplantation. (-]

Fig. 4 | Illustration of standard ChatGPT’s response to MELD-Na prompt. The
left panel shows ChatGPT's initial response with a mathematical formula descrip-
tion, while the right panel shows the Python code it generates and executes. Note the

python ) Copy code

serum_sodium =
serum_bilirubin =
serum_creatinine =
INR =

serum_creatinine =

nin(serum_creatinine,

MELD_score = * math.log(serum_creatinine)) + (
MELD_score = max(MELD_score, 6)

adjusted_sodium = m

x(min(serum_sodium,

MELD_Na_score = MELD_score + - adjusted_sodium)

MELD_score, MELD_Na_score
= —

Result
(16.59632759392472, 25.864181866730526)

incorrect handling of dialysis patients (creatinine capped at 4.0 rather than set to
4.0), demonstrating how even seemingly sophisticated responses can contain subtle
but clinically significant errors.

“65-74” in calculating a CHA,DS,-VASc score or that a partial pressure of
oxygen of 66 was “less than 60.”

After identification of the errors, the classes of errors were compared to
the calculator’s functional type (Fig. 2b). Two patterns emerged from the
analysis of the errors. Firstly, ChatGPT was less likely to make an assignment
error in the descriptive models (such as estimating creatinine clearance or
correcting hypercalcemia for albumin levels). This was likely due to the
simple assignments required by these calculators; there is not a complex
scoring system derived from a linear regression. In contrast, ChatGPT was
more likely to make assignment errors or use the incorrect formula with
predictive models such as the SOFA tool. This reflects the higher level of
complexity in the criteria of these models, as well as lack of familiarity with
some of these calculators.

Focused analysis

Our exploratory analysis revealed that ChatGPT was inaccurate in one-
third of clinical calculations, due to errors in both knowledge and logic.
To evaluate possible solutions, we developed a set of tools to assist in
calculation and tested them with a dataset focused on the most chal-
lenging tasks from the exploratory phase. The ten calculators with the
lowest accuracy were selected (Table 1), and a templated vignette gen-
erator was used to create 100 unique patient vignettes and corresponding
ground truth answers for each. This produced 1000 vignettes in total.
Concurrently, a set of 10 LLM agents were developed with one of two
underlying LLMs (LLaMa3.1 or GPT-40) and access to one of five tools:
no tools (base LLM only), code interpreter, calculation instruction
documents (RAG), code interpreter and RAG, or a set of task-specific
tools available through an calculation API created by the authors, termed
OpenMedCalc (Fig. 5). Agents were programmed to have basic planning
and troubleshooting ability, including self-correction. Each of the agents
was then presented with the 1000 unique vignettes, in addition to a
custom system/example prompt, resulting in 10,000 total trials. These

trials were programmatically executed and their results were evaluated
for accuracy, summarized in Table 3 and Fig. 2c.

GPT outperformed LLaMa in all arms, with cumulatively accuracy of
67% vs 42%. Both LLaMa and GPT models saw significant improvements
with the addition of tools. For LLaMa, the base model was only able to
answer 11% of questions correctly, suggesting medium-sized models alone
are likely inadequate for any quantitative medical task. The addition of code
interpreter alone saw modest improvement (increase to 18%), while RAG
alone showed a larger increase, answering 40% correct. With access to a set
of generic tools (code interpreter and RAG), the model answered 53% of
trials correctly, representing a 42% absolute improvement compared to the
base model. However, the OpenMedCalc toolkit further improved perfor-
mance by an absolute 30%, an incremental odds ratio of 4.6. The addition of
OpenMedCalc resulted in correctly answering 84% of prompts correctly,
representing a 73% absolute improvement, or 5.5-fold reduction in error
rate compared to the unimproved LLaMa model.

For GPT, tools were also associated with higher accuracy, though
absolute improvements were smaller compared to LLaMa due to GPT’s
substantially higher base performance. Unimproved, GPT answered 36% of
prompts correctly. Addition of the code interpreter was again associated
with modest improvements in accuracy (9.9% when added to the base
model or only 5.5% when added to a model with RAG). RAG provided a
stronger boost in performance than in LLaMa: a 41% absolute improvement
in accuracy compared to the 29% absolute improvement in LLaMa, sug-
gesting that the smaller model was not adequately using the knowledge
provided through RAG. Despite the high performance of GPT with RAG
and CI (82%), OpenMedCalc still showed incremental improvement, cor-
rectly answering 95% of prompts, a 13% absolute difference. Compared to
its base model, this was a 59% absolute improvement in accuracy or a 13-
fold reduction in the error rate. Notably, OpenMedCalc’s incremental
improvements remained highly statistically significant. In fact, all incre-
mental comparisons met a p value threshold of 0.05, except for the addition
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I have a 45y0 with a history of ...
INR is two, bilirubin is 2.2, cr i.4.
what is their MELD score?

Calculations using language model with simple tools

Clinician generates narrative regarding patient in plain text (or copy/paste from medical records)

Calculations with OpenMedCalc

Clinician generates narrative regarding patient in plain text (or copy/paste
from medical records)
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is two, bilirubin is
their MELD score?
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Fig. 5 | Overview of workflow for clinical calculation across three methods. This
schematic compares (left) traditional manual calculation through web-based cal-
culators, (center) calculation using LLMs with general-purpose tools like code
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i
---> | The XYZ score is 33
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interpreter and web search, and (right) calculation using task-specific tools. The
workflows demonstrate how the OpenMedCalc approach combines the efficiency of

LLMs with the reliability of expert-validated computation.

Table 3 | Performance of models by tool configuration

LLM Tool configuration # Correct % Correct(95% Cl)  Aaps Aine OR Py Py P3

LLaMa Base 114 11.4 (9.6-13.5) - - - - - -
Code Interpreter 183 18.3 (16.0-20.8) 6.9 6.9 1.7 3.6x107* 7.2x107* 1.4x10°°
RAG 403 40.3 (37.3-43.4) 29 22 3} 1.0x107" 3.0x107™" 4.0x107"
RAG + Code Interpreter ~ 535 53.5 (50.4-56.6) 42 13 1.7 7.2x107* 7.2x107* 29x107°
OpenMedCalc 840 84.0 (81.6-86.1) 73 30 4.6 <1x107" <1x107"2 <1x107"2

GPT Base 361 36.1(33.2-39.1) - - - - - -
Code Interpreter 460 46.0 (42.9-49.1) 9.9 9.9 1.5 6.2x1073 0.012 0.025
RAG 768 76.8 (74.1-79.3) 41 31 3.9 <1x107" <1x107"2 <1x107"
RAG + Code Interpreter 823 82.3 (79.8-84.5) 46 5.5 14 0.043 0.043 0.172
OpenMedCalc 952 95.2 (93.7-96.4) 59 13 4.3 6.4x10 " 1.9x10°" 25x10"

The table includes total correct out of 10,000 trials, percentage of trials answered correctly with 95% confidence intervals, and three measures of improvement: difference in accuracy compared to the base
LLM with no tools (Azss), an incremental comparison of difference in accuracy compared to the previous configuration (A;,c), and the odds ratio of a correct answer compared to the previous configuration
(OR). Inthe last three columns, p values are shown as the raw p value (P+), p value adjusted using Holm-Bonferroni correction (P,), and p value adjusted with the Bonferroni correction (Pg). P values and odds

ratios represent comparisons with the previous model in the list within each LLM.

LLaMa LLaMa-3.1-70b bf16, GPT GPT-40, RAG retrieval-augmented generation, C/ confidence interval, OR odds ratio.

“Not significant to a of 0.05.

of code interpreter to a RAG system in the GPT model under the most
conservative P value correction for multiple comparisons.

Though tool use was clearly associated with improved performance,
there was notable heterogeneity. The most accurate arm, GPT with
OpenMedCalc, achieved only 70% in the ARISCAT tasks while scoring
remarkably well on the others: 92% for the CCI, 94% for NIHSS, 96% for
Wells DVT and 100% on the remaining six calculation tasks. Indeed, if
ARISCAT was excluded, accuracy of this arm would have been 98%. Sur-
prisingly, the 70% accuracy in the ARISCAT task was nominally lower than
three other arms: LLaMa with OpenMedCalc (71%), GPT with RAG (72%)
and GPT with both RAG and CI (71%). This was due in part to a pecularity
of the ARISCAT task, whereby GPT-based models struggled with grouping
surgical incisions into the categories of peripheral, upper abdominal, or
intrathoracic. The slightly higher accuracy of the RAG arms suggests that
additional prompt guidance was helpful, and perhaps could have

supplemented even the OpenMedCalc arm. However, for the same task, the
base models of GPT and LLaMa had an accuracy of 0% and 4%, respectively,
supporting the idea that knowledge of this calculator was lacking. On other
tasks, OpenMedCalc made an outsized positive impact. On the NIH stroke
scale, GPT with OpenMedCalc achieved 94% accuracy, while the next-best
GPT model only achieved 48% despite access to both RAG and the code
interpreter. The NIHSS is a demanding task, requiring detailed attention to
the clinical specifics of the vignette for proper interpretation, which may
have consumed the attention needed for score assignment, formulation, etc.
OpenMedCalc’s task decomposition allows the model to attend to inter-
pretation alone, which may explain the outsized improvement in this task.

Focused analysis error classification
In the focused analysis, we evaluated a subset of the responses for error
classification. We began by evaluating 409 trials with incorrect responses,
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sampled all permutations of LLM, tool configuration, and calculation task.
This evaluation yielded a total of 492 identified errors (222 in GPT and 273
in LLaMa), and these errors’ classes were extrapolated to the remaining
incorrect answers. These estimates are presented in Fig. 2d.

The cause of errors in the LLaMa-based models differed significantly
from those seen in the exploratory analysis. Because we utilized a medium-
sized LLaMa model, these arms often struggled with basic tasks such as
properly formatting the response. Many LLaMa responses ended mid-
sentence or mid-calculation leading to an invalid response (5% of cases for
LLaMa vs <0.2% for GPT) or resulting in a response with an indeterminate
cause of error (3% of cases for LLaMa vs <0.2% for GPT). LLaMa was
unreliable in programming tasks, often producing invalid Python code, and
frequently failed to attempt self-correction, continuing to produce an
answer despite their code interpreter returning only an error. GPT’s answers
were superior, but even with access to RAG and CI, it had multiple incorrect
responses due to inability to add single-digit numbers. It also would ignore
tool output, but also had examples of self-correction after submission of
invalid input to a tool. Examples of full prompts, responses, and error
classification are available in the Supplementary Information (Supple-
mentary Note 1 through Supplementary Note 13).

Numerically, the most common error classes identified in all arms were
interpretation errors (estimated 1200 of 4561, 26%) followed closely by
assignment errors (estimated 1122 of 4561, 24%) and incorrect formula
error (992 0of 4561, 21%), demonstrating problems both with the calculation
task and with understanding the patient vignette.

Across the different arms, there was a notable decrease in assignment
errors (ie, assigning the wrong score for an individual criterion) in arms with
RAG or OpenMedCalc compared to those without; the base and CI-only
models had an estimated 846 of these errors out of the 2,882 total errors in
these arms (29%), while the RAG-containing and OpenMedCalc arms had
only 276 of these errors out of a total of 1679 errors (16%). This result is
intuitive, as providing the model with a calculator or detailed instructions
simplifies the assignment task. Another notable difference between arms
was seen in the OpenMedCalc arms, where only interpretation errors were
identified; this finding is consistent with our error classification framework.
As the OpenMedCalc toolkit does not assist with interpretation of the
patient vignette, steps following vignette interpretation would be largely
deterministic (Fig. 3).

Although obtaining the correct answer is ideal, in many cases, there is
little clinical difference between, for example, a HAS-BLED score of 4 and a
score of 5, both of which require anticoagulation. For this reason, we also
determined the magnitude of errors across arms by calculating the absolute
error for each incorrect answer and normalizing it to each calculator’s valid
range. Here, we observed an intuitive trend: higher-performing models
tended to have smaller errors than those with lower performance (Fig. 2e).
The exception to this trend is OpenMedCalc, which had a more narrow
range of errors than the other arms, likely due to the deterministic nature of
the tool. Additional figures showing error magnitude are available in the
Supplementary Information (Supplementary Figs. 2 and 14).

Discussion
LLMs have demonstrated a wide range of capabilities with potential
application to medicine and have performed exceedingly well on boards-
style questions. However, their skill set is uneven, and, unintuitively, they
possess little aptitude in quantitative tasks. In this work, we demonstrate that
the commercial version of ChatGPT is an unreliable clinical calculator,
providing correct answers in only two-thirds of trials across a diverse group
of tasks. However, in our focused analysis, we found that addition of tools
improves this performance in an incremental fashion, regardless of LLM
size or complexity. With access to task-specific tools, performance showed
marked improvement, increasing accuracy to 84% (82-86%) in our LLaMa
experiments and 95% (94-96%) in those with GPT.

Augmentation of language models with tools has been explored more
fully in fields outside of clinical medicine, revealing that even smaller lan-
guage models, when supplemented with specialized tools, can yield results

comparable to those of foundation models™. Yet, this approach has not been
explored in a medical context until recently. Given the rapid pace of LLM
research, our initial findings regarding LLMs’ limitations in medical cal-
culations and the potential benefits of tool augmentation have been further
supported by concurrent science. Since our initial work and pre-print in
December of 2023”°, multiple teams have explored the topics of agentic and
tool-using models for calculation and have also made their results available
through pre-print servers prior to peer review.

Khandekar et al. ** developed a promising benchmark for medical
calculation, MEDCALC-BENCH, to systematically evaluate LLM perfor-
mance on medical calculations. The benchmark covers 55 calculators taken
from MDCalc’s most popular list and contains 1047 patient vignettes
sourced from publicly-available case reports; it also includes a validated
step-by-step explanation. The authors evaluate a variety of models and
prompting strategies, finding GPT the most accurate, ranging from 21%
accuracy (no prompt engineering) to 51% accuracy (with one-shot exem-
plar), in step with our observed accuracy of 36% in our base GPT-40 arm,
which uses a one-shot exemplar but has a set of calculation tasks enriched
for difficulty. The authors also develop an error classification system, similar
in spirit to ours, but with reduced granularity; they too find that both
misunderstanding of the vignette (error of interpretation), lack of calculator
knowledge (incorrect criteria, assignment error), and miscalculations are
present. They appropriately conclude that current-generation LLMs are not
ready for assisting clinicians with clinical calculation™.

Jin et al.  extended the concept of tool-use by building AgentMD.
Here, 2164 possible risk calculator tools were identified from PubMed
abstracts, where they were used to automatically generate code”. A subset of
those tools (the 50 most popular as well as 50 randomly-selected tools) were
evaluated. After excluding incorrect tools, GPT was used to generate a set of
five vignettes and multiple-choice questions for each calculator. They then
evaluate a variety of configurations but find that the tool-augmented arm
outperforms their unimproved model (88% vs 40%). Notably, as with our
findings, the lower-powered tool-augmented model exceeded the perfor-
mance of the higher-powered model without tools. However, unlike our
study, the large number of available tools required an advanced tool-
selection module, adding to the LLM’s task complexity.

Exploring tool-selection even further, the MeNTi project™ devel-
oped an adaptive, nested tool-calling structure to allow for flexible tool
selection. To evaluate their approach, physicians developed vignettes
with GPT-40 based on 100 real-life cases, each focused on one of 44
popular medical calculation tasks. As opposed to the other projects, this
study included a set of tools for unit conversion functions, numbering
237 in total. The study found that tool-use improved performance,
though the maximum final-answer accuracy with GPT-40 remained just
under 50%, compared to 22% in the unimproved version. The authors
note that incorporation of unit conversion tools complicated the project,
however this is likely an essential step for locales that use multiple
measurement units.

Lastly, the issue of calculator selection is further investigated by Wan
et al. ¥, who assessed both LLM and human performance on the task of
calculator selection using truncated patient histories from PMC-Patients as
vignettes for 35 popular calculators sourced from MDCalc”. Their findings
suggest that calculator selection is not trivial.

Compared to these studies, our work built a set of tools focused on a
smaller number of calculators, each of which was hand-built, optimized for
LLM use, and validated by a physician. Our vignettes were written by two of
the physician authors (AG and SC), either one-by-one in the exploratory
analysis (212) or with the assistance of templating software in the focused
analysis (1000). Our choice of calculators for the focused analysis was
enriched for difficulty-ChatGPT had only answered 16% (8 of 50) of these
vignettes correctly, and answers were correct only if mathematically
equivalent. The referenced work offers a compelling vision of the future but
relies on a combination of LLM-generated code, LLM-generated evalua-
tions, evaluations using published cases, and/or multiple-choice questions,
limiting some of the generalizability to clinical practice.
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However, the convergence of multiple research groups on similar
solutions and findings strengthens the evidence for both the limitations of
current LLMs in medical calculations and the promise of tool-augmented
approaches. For these reasons, we suspect tool-augmented LLMs will play a
role in the future applications of Al in medicine. LLMs may work to extract
and analyze the relevant text data from the electronic medical record and
communicate with a set of tools to provide information on patient’s risks
and treatment options, using text data that was previously inaccessible.
Fields such as preoperative risk assessment have the potential to be trans-
formed as LLMs remove burdensome data entry tasks from clinicians and
provide more personalized risk analysis to patients. However, even the
highest-performing model configuration in our experiment was inaccurate
5% of the time, which could represent an unacceptable risk depending on
the context. From a practical perspective, the implementation of LLM-based
calculators would be new regulatory territory and may face hurdles even if its
performance consistently exceeded that of physicians. However, pre-
programmed tools with well-defined internal functionality may offer a level
of transparency that would remove the need for FDA approval as a clinical
decision support device, and may be seen as an extension of a tool like
MDCalc.

Yet, given the number and variety of errors encountered in our work,
there is still significant improvement needed before this promise is to be
realized. To better understand these errors, we introduced a novel classifi-
cation schema based on the errors’ position within a chain of logical steps,
finding that even augmented models are still prone to misinterpretation of
the patient’s history. Our framework may assist in the differentiation of
errors susceptible to the use of an external tool and those errors which may
be intractable (Fig. 3). Given the rapid rise in LLM performance on existing
medical benchmarks, more challenging, diverse, and holistic benchmarks
such as those produced by the MedAlign and Med-HALT projects, are
needed™™". Future medical LLM evaluations should include a calculation
benchmark, such as, and we have contributed our dataset for this purpose
under the moniker ABACUS-212 and ABACUS-409; each dataset contains
the vignette, ground truth answer, and physician annotation of error class.

There were several notable limitations to this study. As a natural lan-
guage model, LLMs are unsurprisingly sensitive to variations in question
phrasing. Though we established general guidelines for our exploratory
analysis, there was variation in the wording of prompts. In the focused
analysis, question stems were standardized into templates to reduce this
variability. These differences in phrasing likely had unpredictable and
difficult-to-characterize impacts on our results. However, since our aim was
to simulate how clinicians might interact with an LLM “in the wild,” under
real-world settings, this variability may be appropriate. To maximize the
diversity of prompts, our vignettes represented cases across the spectrum of
the input ranges, thereby creating fictionalized patients that were often very
ill; this may bias our results in unclear ways. Future studies might use real-
world questions posed by clinicians to more accurately capture this task and
represent a reasonable patient population.

From a technical limitations standpoint, the exploratory analysis relied
on the web version of ChatGPT instead of the more programmer-friendly
and reproducible API. The code-interpreter feature was limited to the web
version during the study period. Since the exact model configuration
parameters used in the web-based ChatGPT are not public information,
reproduction of those exploratory results is infeasible. However, our follow-
up, focused analysis used the API version and had a set seed for reprodu-
cibility. We also did not extensively test different prompt engineering
approaches, which might have improved performance of the base case
model’>”. Lastly, we did not evaluate the selection of a calculator or tool-our
stem explicitly asked for the calculator by name, though others have begun
to explore this”.

This work also presents many opportunities for future research. We did
not include vignettes with missing or malformed data. Exploring when a
model refuses to answer a question outside its estimated abilities (termed
“out-of-distribution problems”) is essential to LLM safety in the medical
context and deserves continued exploration™. Though we classified errors in

a novel framework and evaluated the magnitude of those errors, we did not
determine whether those errors would have had a real clinical impact.
Future studies could evaluate, for example, what proportion of errors would
have led to a change in medical management of the patient in question.
Additionally, exploration of clinical calculation by multi-agent models,
which simulate medical teams, or high “test time compute” models, which
more explicitly imitate reasoning, may also provide insight into this
challenge’™". Lastly, current human performance in this area needs to be
better quantified under real-world settings. Though the calculators offered
by tools like MDCalc are well-crafted to spot mistakes, it is likely that even
the most careful clinicians make data entry errors, or even misinterpret
patient data, when under the time restraints inherent in medicine; this
baseline is currently unknown.

In summary, this work introduces a novel approach to improving the
output of language models through the use of both generic and task-specific
tools. Ultimately, LLMs show promise to substantially alter medical practice
with a more efficient, equitable, and patient-centered approach. In this
evolving landscape, it is imperative for models to exhibit high levels of
robustness and reliability. Achieving this will likely necessitate an ensemble
of models and tools to effectively meet these demands, ensuring that LLMs
can be integrated safely into the healthcare domain.

Methods

Exploratory analysis

The initial phase of this work relied on ChatGPT to provide an overview of
LLM capability. Notably, ChatGPT is a proprietary system composed of an
LLM, with an unknown, inconstant configuration as well as access to a set of
tools that includes a code interpreter. For the exploratory phase, ChatGPT
(GPT4, Nov 2023) was used. The following steps were undertaken:

Choice of calculation tasks

We reviewed the 50 most popular tools offered by MDCalc and evaluated
their appropriateness for the task of model assessment (Fig. 1). Calculators
were categorized into five types: descriptive calculators (which focus on
describing a known but difficult-to-measure clinical entity, such as an anion
gap or a patient’s renal function), predictive calculators (which attempt to
predict the risk of some future event such as VTE), speculative (which are
primarily diagnostic and focus on determining whether an entity, such as
sleep apnea, currently exists in a patient), summative (which provide an
overview of disease severity or course), and therapeutic (which are meant to
guide treatment in some manner). The specific calculators are shown in
Table 1. Each category reflects a specific type of task that the calculator is
designed to perform within a medical context. Of the 50 calculators, two
were superseded by more recent calculators and were excluded. The
remaining 48 calculators underwent assessment.

Vignettes

After review of the calculator, a convenience sample of five clinical vignettes
was written by one of the two physician authors. The vignettes were meant
to relay all necessary information to perform the calculation with minimal
extraneous information and contain a request for a calculation that was
unambiguous. To minimize question-answering avoidance (ie., “as an Al
model I am not...”), prompts were written from the perspective of a clin-
ician asking for assistance, using commonplace medical jargon. In cases
where multiple common formulas existed for a calculation and no clear gold
standard was established, we specified a preferred method (i.e., “calculate the
QTc using the Bazett formula”). Data were presented in an objective fashion
as much as possible. Where relevant, continuous values were reported
within a range that one would reasonably see in clinical practice; units were
omitted in most prompts, as is common in clinical communication. For
criteria-based calculators, the vignettes provided the underlying data as
opposed to whether criteria were met. For example, a vignette for
CHA,DS,-VASc might report a “history of TIA,” not “positive cere-
brovascular disease.” The intent was to convey information in a manner that
was clear from a clinical perspective but indirect, simulating how a clinician
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might use the tool or how data might be arranged in a narrative section
within a clinician’s note.

Presentation and scoring

To evaluate the dynamic programming abilities in ChatGPT, prompts were
presented to the web interface of the commercial version of ChatGPT by one
of two physician assessors. Each vignette was started in its own conversation
to eliminate contamination from prior prompts. If the LLM did not provide
a definitive answer but showed progress towards an answer, the user
encouraged the conversation with a prompt such as “Please continue.” To
score the performance of the model, assessors compared ChatGPT’s
answers with the answer provided by MDCalc with input data from the
vignette. For criteria-based models, answers were counted as correct if the
reported scores matched. For models with continuous variable outputs,
rounding errors were permitted if the calculator did not specify how to
round. Some of the calculators involved calculations without a gold stan-
dard, such as drug conversions. Responses on these models were considered
correct if the underlying math was executed appropriately and the dose
given was reasonable. If a model was unable or refused to answer a question
even after encouragement with two prompts, a score of “no valid response”
was given. The conversation was saved to a database in plain text. When
available, a URL for the conversation was saved. These conversations have
been provided in an accessible format in our repository.

Classification of errors

After initial trials were complete, one of the three physician authors (AG, SC,
LC) inspected the correct and incorrect answers. From these, we formulated
a framework for the chain of reasoning required to provide appropriate
answers, as well as the various possible missteps within this chain (Fig. 3).
When the model offered incorrect solutions, raw output was inspected for
these errors in reasoning. Error classification occurred from Nov 14 to Dec
10, 2023 and required an estimated combined 30 h between annotators.
Errors were categorized into one or more of the categories: (1) Interpretation
Error: Inadequate understanding or misinterpretation of the medical
information presented in the question leads to ignored criteria that was met,
or inclusion of a criteria that was not met. (2) Incorrect Criteria: Criteria are
missing or there is a hallucination of non-existent criteria. (3) Assignment
Error: Improper application of correctly-identified criteria. Appropriate
criteria were selected but an incorrect score is assigned. (4) Incorrect For-
mula: An incorrect equation is chosen to represent the scoring mechanism
of the calculation task. (5) Calculation Error: The correct formula is chosen,
such as taking the sum of all subscores, but the actual mathematical com-
putation carried out was incorrect. (6) Incorrect Reporting: The correct
score is calculated, but some component of reporting that score to the user is
inaccurate. (7) Indeterminate: Inadequate response information to be able
to determine error. (8) No valid response: If the model produced no
response that answered the prompt.

Development and evaluation of augmented models

After completion of the exploratory phase, we evaluated the impact of
popular LLM augmentation strategies for the task of clinical calculation by
building an LLM environment with roughly the same functionality as
ChatGPT and evaluating it against the most challenging tasks from the prior
analysis. To better understand the contribution of each augmentation
strategy, we evaluated the impact of three different components: a code
interpreter tool, a retrieval-augmented generation (RAG) system, and a set
of task-specific calculation tools (OpenMedCalc toolkit) with two LLMs.
The following sections describe this process.

Calculator selection

For the focused analysis, we identified the ten calculation tasks from the
exploratory analysis with the lowest performance, while trying to capture a
diversity of tasks and organ systems. Tasks with multiple correct answers (ie,
steroid conversion) were excluded. Figure 2d shows the ten calculators
chosen.

Vignette generation

One of the physician authors then wrote three template vignettes for each
calculator. We then decomposed each vignette template into its constituent
components that would be required to perform the calculation and created a
list of alternatives for each component, as well as what each would con-
tribute to a final score (if relevant). Once complete, we used this information
to generate a total of 100 unique vignettes for each calculator, resulting in a
total of 1000 vignettes. Concurrently, the ground-truth answer for each was
determined programmatically. A discrete randomization seed was used to
ensure reproducibility.

LLM choice

We evaluated two different LLMs: GPT-4o0, a proprietary state-of-the-art
model, and LLaMa 3.1, a free, open-weights model. We utilized a medium-
sized (70-billion parameters), instruction-tuned version of LLaMa-3.1 to
evaluate the impact of model size on performance. Inference for LLaMa was
provided by Deeplnfra at bf16 (meta-llama/Meta-Llama-3.1-70B-Instruct).
GPT-4o inference was provided by OpenAl via their API. Temperature was
set to 0.1 for both models to evaluate the most-likely response™ while
allowing for some variability for self-correction (discussed below). An LLM
randomization seed was set, ensuring deterministic output for a unique
vignette. Total cost was ~400 USD.

Tool and agent architecture

Because LLaMa models do not offer a pre-built code interpreter or function-
execution functionality, we implemented a framework to support a simple
planning agent able to produce tool-use requests, receive responses, and
return a final answer to the user. To allow comparison, this framework was
used for both GPT- and LLaMa-based models. The agent was provided a
scratchpad field to describe its plan and response. If tools were provided to the
agent, it was required to use at least one tool, but there were no explicit limits
on the number of calls allowed. To automate evaluation, the agent was
required to return the final answer in a specified format using a response tool
with structured outputs for models that supported it”. If a response was
invalid, an LLM-based formatting prompt was used to coerce a valid format;
otherwise, the trial was restarted, allowing the LLM to attempt a different
answer up to four additional times. A timeout of 100 s was set for a single trial
attempt. After five failures or timeouts, the trial was marked as incorrect with
an error class of no valid response. The LangChain package was used to
manage the agent’s state and responses®.

Code interpreter

A Python code-interpretation module was built using a remote sandbox
environment tool. The code interpreter was configured to return either: (1)
the results of successfully executed code or (2) an error message for invalid
code. The agent was allowed to self-correct and re-attempt the calculation if
their script produced an error; this process was allowed to continue as
needed until 100 s had elapsed or the agent submitted a final response.

Retrieval augmented generation

We evaluated the effect of a simple RAG system which provided instructions
for calculating the vignette. For each calculator, the instructions portion of
the MDCalc webpage for that calculator was extracted and converted to
markdown. They were reviewed by one of the physician authors to ensure
that they contained complete instructions required to perform the calcu-
lation. Each was then stored in a vector database with their embeddings. For
arms with RAG, the agent was automatically provided with the full contents
of the document with the highest cosine similarity to the prompt.

OpenMedCalc toolkit

A basic API was created using FastAPI* and installed on a remote server at
https://openmedcalc.org. For each calculation task, an algorithm was written
in Python and formatted as a tool that was usable by a large language model.
To maximize the usability of the tool by LLMs, the calculation task was
decomposed to accept units of irreducible patient information. For example,
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if a calculator’s inputs required the patient’s age in three groupings, the tool
would accept the patient’s age as an integer and not require the LLM to
determine which age group was appropriate. Parameters were given clear
names and included a brief description of each input. Where appropriate,
upper and lower bounds were included. Validation of inputs was performed
on data input using Pydantic. As with the code interpreter, the agent was
allowed to self-correct and re-attempt the calculation if a validation error
occurred. For those arms which included the OpenMedCalc toolkit, all 10
tools were provided and the agent was free to choose the appropriate tool. The
API and its documentation conformed to OpenAPI specification* and are
freely accessible online.

Prompting

After creation of the systems described above, we compared the two LLMs
(LLaMa-3.1-70b and GPT-40) across five different configurations, also
referred to as experimental arms: (1) the base model, (2) code interpreter, (3)
RAG, (4) both code interpreter and RAG, and finally (5) the base model with
the OpenMedCalc toolkit, for a total of 10 arms. Each of the ten arms was
prompted with each of the 1000 unique vignettes for a total of 10,000 trials.
The system prompt used was unique to each arm, where it described the task
at hand and provided guidance on the use of any available tools. The prompt
also contained a one-shot example of tool use for the available tool type. The
process of self-correction was not illustrated. Although we did not iteratively
evaluate the effects of different prompt engineering strategies, a simple
“reward and punishment” strategy was used. Full examples of the prompts
are included in the Supplemental Information (Supplemental Note 1 through
Supplemental Note 13).

Error classification

The models’ responses were scored as correct only if they were mathe-
matically equivalent to the ground truth answer; no rounding errors were
permitted. To classify the errors made in the focused analysis, we ran-
domly sampled up to five errors per calculator-arm pair for a total of 409
incorrect responses. For each of these responses, the full prompt, vignette
source components, tool calls, and tool responses were loaded into
annotation workflow using the LangSmith platform and each was eval-
uated by one of the three physician authors (AG, SC, LC). These sampled
responses were then classified into one or more of the eight error classes
(as above). Error classification for the focused analysis occurred from Nov
1 to Nov 22 and required ~65 h of active annotation time based on browser
usage data. Specifically, we began by evaluating 409 trials with incorrect
responses, sampled without replacement from 100 bins representing all
permutations of LLM, tool configuration, and calculation task. This
evaluation yielded a total of 492 identified errors (222 in GPT and 273 in
LLaMa). Sparse bins led to models with inferior performance being
overrepresented. To assign an error class to those responses not reviewed,
we assumed that the proportional errors from each arm-calculator pair
were representative of their respective groups. For instance, if 3 of the 5
annotated errors in the LLaMa-base-SOFA group were interpretation
errors, we assumed a prevalence of 60% in that group’s incorrect answers.

Statistics

To compare performance across the study arms, we developed a logistic
GEE model to analyze the binary outcome data (correct/incorrect respon-
ses) while accounting for repeated measures, whereby each model config-
uration evaluated the same set of patient cases. The vignette ID was specified
as the clustering variable. The model used an independence working cor-
relation structure, and robust standard errors were computed to account for
potential misspecification of the correlation structure. To assess the incre-
mental value of each additional tool (code interpreter, RAG, and Open-
MedCalc), we performed pairwise comparisons between adjacent
configurations within each LLM family (LLaMa and GPT), ordered by their
performance. For these post-hoc comparisons, we calculated the difference
in coefficients and their standard errors, deriving z-statistics and corre-
sponding p values. 95% confidence intervals were calculated using Wilson’s

score method. To account for false discovery rate due to multiple com-
parisons, we report both raw p values and two correction methods: the
Holm-Bonferroni and traditional Bonferroni corrections. The Holm-
Bonferroni was selected as our primary correction approach because it best
fits the study design; we test related but distinct hypotheses that each suc-
cessive tool will augment performance. Effect sizes are reported as odds
ratios with 95% confidence intervals, while absolute performance differ-
ences are presented as percentage point improvements compared to the
unimproved arm and an incremental comparison with the prior arm. All
statistical analyses were performed using Python’s statsmodels package.

Data availability

Data used in this study, and the resultant datasets (ABACUS-212 and
ABACUS-409), are available at https:/github.com/stanfordaimlab/llm-as-
clinical-calculator. The data includes the set of 621 vignettes which under-
went error analysis; each entry contains the vignette, ground truth answer,
LLM response and the error classification. The data is available in a struc-
tured format and is freely accessible.

Code availability

The OpenMedCalc codebase is available on GitHub (https://github.com/
alexgoodell/open-med-calc). API documentation is available at the https://
api.openmedcalc.org/docs. A basic GPT-based demo agent with access to
the OpenMedCalc API is available at https://openmedcalc.org/chat. This
demo requires a free OpenAl account to use. Experimental code is available
at https://github.com/stanfordaimlab/llm-as-clinical-calculator. Reprodu-
cing our results in full requires a subscription to LangSmith, the annotation
and experiment management platform used in this study, OpenATI’s API,
and an inference provider for LLaMa-3.1-70b running at BF16. Instructions
for setting up the environment are provided in the repository.
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