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Complex structural variants (CSVs) encompass multiple
breakpoints and are often missed or misinterpreted. We devel-
oped SVision, a deep-learning-based multi-object-recognition
framework, to automatically detect and characterize CSVs
from long-read sequencing data. SVision outperforms current
callers at identifying the internal structure of complex events
and has revealed 80 high-quality CSVs with 25 distinct struc-
tures from an individual genome. SVision directly detects
CSVs without matching known structures, allowing sensitive
detection of both common and previously uncharacterized
complex rearrangements.

CSVscontain multiple breakpoints and may delete, duplicate,and/
or invert multiple segments in both healthy' and diseased genomes®”,
creating events that are more likely to be deleterious than simple
structural variants (SVs)*°. Previous short-read-sequencing-based
studies detected CSVs through intensive breakpoint analysis and
subsequent manual inspection was required to determine CSV
internal structures'®, hindering large-scale study of CSVs. Although
long-read sequencing has greatly facilitated the detection of phased
SVs” and somatic SVs*%, three major issues have impeded their use
in CSV detection. First, the model-based inference approach, ini-
tially designed for simple SV discovery from short reads’, requires
construction of each SV model for fitting aberrant alignment pat-
terns (Extended Data Fig. 1), which is not applicable to largely
unexplored CSV structures'®". Second, ambiguous alignments at
repetitive regions lead to false calls or missing events®. Last, the cur-
rent definition of different CSV types is based on predefined models
lacking a unified and computer-interpretable framework, thereby
limiting cross-study comparison.

We developed an automated CSV detection and characteriza-
tion method: SVision. It introduces a sequence-to-image coding
schema, adapting variant detection to a problem that is amenable
to deep-learning frameworks. SVision contains three core com-
ponents: an encoder that represents the differences and simi-
larities between a variant-supporting read and its corresponding
segment on the reference genome as a denoised image, a targeted
multi-object recognition (tMOR) framework that detects and char-
acterizes CSVs through a convolutional neural network (CNN) in
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the denoised image, and an illustrator that creates and unifies each
detected CSV as a graph representation from the denoised image
(Fig. 1a and Methods). Specifically, the encoder first collects aber-
rant long-read alignments, the ‘variant feature sequence’ (VAR),
and its aligned segment on the reference genome, referred to as the
reference sequence (REF). For a VAR and REF pair, the encoder
identifies matched and unmatched bases to create VAR-to-REF
and REF-to-REF images (Fig. 1b). Because repetitive sequences
might be present in both VAR and REF, the variant signature can
be isolated and accentuated when the background noise is removed.
Accordingly, a denoised image is created for each VAR by subtract-
ing REF-to-REF image from its corresponding VAR-to-REF image.
In the tMOR step, because a denoised image might contain more
than one SV, SVision uses a two-step image-segmentation process
to first obtain one-variant images, containing the full structure of
an event. Then, SVision defines each location surrounding a break-
point in the one-variant image as a segment of interest (SOI), and
SOIs collected from a one-variant image are recognized as a single
CSV through a pre-trained CNN. For all one-variant images sup-
porting one event, SVision integrates the CNN prediction prob-
ability of each one-variant image and the similarity of one-variant
images to measure the quality of a discovery. Finally, the illustrator
adopts a graph-based approach to depict different CSV structures
in graphical fragment assembly (GFA) format. Moreover, a given
CSV graph structure and its topologically equivalent events are
combined through detection of isomorphic graphs.

We examined how the sequence-to-image coding and the
CNN model perform across HiFi (high-fidelity reads produced by
PacBio circular consensus sequencing) and ONT (reads produced
by Oxford Nanopore Technology) data for canonical SV detection,
by benchmarking SVision, cuteSV'?, pbsv, SVIM", and Sniffles"
against the HG002 genome'* (Methods). SVision outperforms other
callers at all different coverages (Supplementary Table 1): the F
score of SVision ranged from 0.83 to 0.90 for HiFi and from 0.76
to 0.92 for ONT (Extended Data Fig. 2). Furthermore, their per-
formances were assessed on a genome harboring 3,000 simulated
CSVs of 10 types (Extended Data Fig. 3a—c, Supplementary Table 2,
and Methods). Similar to the evaluation metric employed by
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Fig. 1| Workflow and evaluation of SVision's detection of CSVs. a, Overview of three modules in SVision. b, Workflow for each module. ¢, Performance
for calling simulated CSVs was evaluated by recall (y axis), precision (x axis) and F score (F, dashed line). d, SVision detected all previously reported and
manually curated NA12878 CSVs, all of which passed exact-match criteria. e, A misinterpreted complex event from short-read data, which is correctly
detected by SVision as simple deletion. This event is surrounded by repeats that introduce two distinct patterns of discordant paired-end mapping,

misleading short-read callers to report a CSV.

Sniffles'®, we introduced region-match (that is, correct detection
of a CSV site) and exact-match (that is, correct detection of a CSV
site and its subcomponents) for performance evaluation (Methods).
For region-match, the recall and the precision of SVision were 91%
and 93%; those for the second-best tool, cuteSV, were 62% and 36%,
respectively (Fig. 1c and Supplementary Table 3). The low recall and
precision of cuteSV and others could be largely attributed to partial
CSV detection because the observed signatures were beyond exist-
ing models (Extended Data Fig. 3d and Supplementary Table 4).
For exact-match, SVision detected 89% of the CSV's, more than dou-
ble the percentage detected by Sniffles, and other callers were not
able to characterize any CSVs (Fig. 1c and Supplementary Table 3).
Additionally, we manually curated 62 complex deletion and 251
complex inversion sites in NA12878 reported by a short-read study’
(Methods). As a result, 18 CSVs of six unique structures, includ-
ing one unclassified novel structure, were verified; the remain-
ing events were either simple SVs (64) or false discoveries (231)
(Supplementary Table 5 and Supplementary File 1). SVision auto-
matically and correctly characterized the internal structure of all 18
CSVs (Fig. 1d and Supplementary Table 6), including two CSV's that
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were unclassified by short-read’, that is, a deletion replaced by an
inverted segment and a duplicated segment, and a novel complex
insertion structure consisting of an inverted-duplication and two
dispersed-duplications (Extended Data Fig. 4). Moreover, SVision
resolved a simple deletion at a region flanked by duplicates (inverted
and dispersed), which was mistakenly reported as a CSV in the
short-read study’ (Fig. le, Extended Data Fig. 5, and Supplementary
Table 5). The above results suggest that SVision can detect both sim-
ple and complex SV's with high sensitivity and specificity.

To explore novel CSV loci and structures, we applied SVision
to the HG00733 genome’, in which CSVs were not well character-
ized. SVision detected 80 high-quality CSVs of 25 unique struc-
tures, 20 of which were novel, accounting for half of the events,
and the remaining five CSV graph structures matched frequently
reported CSV types? (Extended Data Fig. 6, Supplementary
Table 7, and Supplementary File 2). We then applied both com-
putational and experimental approaches to validate the structure
and breakpoint junctions of those 80 CSVs (Methods). Firstly,
GraphAligner'" was used to assess the internal structure and break-
points of CSVs by aligning ONT reads'® to CSV graphs. The graph
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Fig. 2 | Application of SVision on HG00733 HiFi data. a, The SVision CSVs overlapping with PAV calls and reconstructed with phased HiFi contigs. The
rare type represented multiple CSV graph structures, each of which contains fewer than five complex events. A: inverted duplication. B: deletion associated
with inversion. C: deletion associated with inverted duplication. D: multiple deletion with spacer. E: deletion associated with duplication. Inconclusive:
unable to characterize visually. Reconstructed: SVision CSV structure validated through contig-based manual curation. Novel: no overlapping PAV call.

b, Compared with 80 CSVs in HGO0733 detected by SVision, the short-read callset correctly reported the full structure of four CSVs (exact-match),
partially called seven (region-match), misinterpreted 23 events as simple (region-match), and completely missed 46 CSVs. ¢, Three distinct alleles were
found for the CNTN5 locus, including a contracted tandem repeat (REF), an expanded tandem repeat (INS), and an expanded tandem repeat with a
complex duplication containing CNTN5 exon 4. d, The frequencies of three CNTNS5 alleles differ among populations. EAS, East Asians; AFR, Africans; AMR,

Americans; EUR, Europeans; SAS, South Asians.

alignments showed that single reads cover the entire paths of 79
CSV graphs, and one CSV graph path was covered by two differ-
ent reads (Supplementary Table 8). Secondly, 73 CSV's overlapped
phased assembly variant (PAV)” calls, and 90% of them were suc-
cessfully reconstructed with haplotype contigs (Fig. 2a), while oth-
ers were challenging to characterize visually but were verified via
GraphAligner (Supplementary Table 8 and Supplementary File
3). Furthermore, 20 CSV's were selected for manual curation and
experimental validation after excluding SVs in highly repetitive
regions. Of these 20 CSVs, manual inspection confirmed that 18
events matched SVision’s reports, and two loci contained expan-
sions of short tandem repeats that were collapsed in the reference
(Supplementary Table 8). As for the experiment, eight CSVs failed
PCR owing to repetitive sequence or high GC content, and the other
12 events were successfully confirmed by PCR and Sanger sequenc-
ing (Supplementary Table 8). The above validations indicate that
SVision can detect and characterize CSVs reliably from long-read
data. Compared with 80 CSVs detected by SVision, short-read mis-
interpreted 23 as simple events and completely missed 46 CSVs,
while four and seven were fully and partially interpreted, respec-
tively (Fig. 2b and Supplementary Table 9).

Of the 80 HG00733 CSVs detected by SVision, 19 overlapped
18 different genes (Supplementary Table 7). A complex duplication
in CNTNS5, an important neural-development gene, is composed
of a direct duplication of CNTN5 exon 4 and an inverted intronic
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duplication, both of which inserted in tandem within a CNTN5
intronic tandem repeat proximal to exon 4 (Fig. 2c and Extended
Data Fig. 7). This event was missed by short-read data, and PAV
called only a simple insertion, leaving the duplicated exon unanno-
tated’. Using contigs of 35 samples from Human Genome Structural
Variant Consortium and the SVision reported structure, three dis-
tinct alleles were noted for this site, a contracted tandem repeat,
an expanded tandem repeat, and an expanded tandem repeat
containing the complex exon duplication (Fig. 2d, Supplementary
Table 10, and Supplementary File 4). We observed the duplicated
exon signature in the RNA-seq data for the human primary visual
cortex and precuneus’ (Extended Data Fig. 8, Supplementary
Table 11, and Supplementary File 5). Additionally, SVision identi-
fied an insertion-inversion-insertion event, which was detected
as a 1,737-bp insertion by PAV but missed in previous studies'>'
(Extended Data Fig. 9a). This event was also re-genotyped by
PanGenie", and it has 80% allele frequency among 2,504 unrelated
samples in 1000 Genomes Project cohort’. The inserted sequence of
this CSV was further identified in chimpanzee and gorilla genomes
(Extended Data Fig. 9b), indicating the insertion state was ancestral
and the reference was derived through deletion and inversion.
Long-read sequencing and associated tools have revolution-
ized SV detection”', but it is still hard to correctly characterize
multi-breakpoint events, leaving CSVs either uncalled or misin-
terpreted as simple SVs. Inspired by existing deep-learning-based
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variant-detection methods***, SVision fills this gap by apply-
ing a multi-object recognition framework to denoised images to
detect both simple and complex SVs, and autonomously identifies
their structures. Note that CSV structure resolution depends on
knowledge-oriented image denoise and segmentation, which need
further optimization with unsupervised approaches. SVision is a
valuable tool to facilitate the study of complicated and novel CSVs,
paving the way for the analysis of complex genomic events at the
population scale.
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Methods

Evaluating simple structural variants detection with HG002. To benchmark SV
callers on HG002, we followed the procedure introduced by Genome-In-A-Bottle
(GIAB) and detailed steps adopted by cuteSV. Briefly, the high-confidence insertion
and deletion calls and high-confidence regions published by the GIAB consortium
were used as the ground truth, and the genotype accuracy was not considered in
our evaluation. The HiFi reads were aligned to reference hg19 by pbmm?2 (https://
github.com/PacificBiosciences/pbmmz2, v1.4.0) with parameter ‘—preset CCS), and
ONT reads were aligned with ppmm2 default settings. The 5x and 10X coverage of
HiFi and ONT data were further obtained with the SAMtools* ‘-s’ option. Sniffles
(v1.0.12), cuteSV (v1.0.10), pbsv (v2.2.2), SVision (v1.3.6), and SVIM (v1.4.0)

were applied to the ppbmm? aligned file with default parameters. The minimum
supporting read was two and three for 5x and 10X data, and 10 was used for the
original coverage.

Simulating complex structural variants. Ten CSV types were simulated,
according to frequently reported types introduced by 1000 Genomes Project
(1IKGP)' and a cohort study of autism spectrum disorder* (Supplementary Note).
A CSV was essentially a combination of breakpoints from simple structural
variants (SSVs). Therefore, a four-step simulation process was developed as
follows. VISOR™ was first used to simulate and to randomly implant five SSV types
(that is, deletion, inverted-dispersed-duplication, inverted-tandem-duplication,
tandem-duplication, and dispersed-duplication) on reference genome GRCh38.
Second, we followed the procedure introduced by SURVIVOR* to simulate CSVs,
where SSVs of the above five types were randomly added adjacent to the existing
SSVs on the genome. In particular, 3,000 SSV's of the five types were created by
VISOR with parameters “-n 3000 —r 20:20:20:20:20 -1 500 —s 150’ Third, we added
extra SSVs required in predefined CSV structures to existing SSVs by following the
order of types, that is, deletion, inverted-dispersed duplication, inverted-tandem
duplication, tandem-duplication and dispersed-duplication. For instance, we

first used implanted deletions as seeds to create all CSV instances that involved
deletions, and then turned to instances of the next type. Finally, the variation
genome with 3,000 CSV's was used as input for the VISOR LASoR module to
simulate 30x HiFi reads for subsequent alignment by ngmlr'® (v0.2.7) with

the default setting. Note that VISOR was used only to simulate variants at

one haplotype.

Evaluating detection of simulated complex structural variants. To examine

the correctness of detected CSVs, we used closeness and size similarity to assess
whether two events are identical, according to Truvari (https://github.com/
spiralgenetics/truvari/), developed by GIAB (Supplementary Note). The closeness,
bpDist, and size similarity, sim, between prediction and benchmark were 500 bp
and 0.7, respectively. For example, assume a benchmark CSV (start at b.start, end
at b.end and the size isb.size), and a prediction (start at p.start, end at p.end and the
size is p.size); then, a correct region-match should satisfy the following equations:

max (|b.start — p.start|, |b.end — p.end|) < bpDist
b.size x sim < p.size < b.size X (2 — sim)

Comparably, the exact-match not only required region-match, but also
required the correct detection of all CSV subcomponents, including the
subcomponent breakpoint type. Therefore, for a deletion-inversion that contained
two subcomponents, that is, inversion and deletion, the exact-match became a
three-step evaluation:

1. Region-match between a predicted CSV and a benchmark deletion-inversion
event.

2. For each subcomponent, we examined the breakpoint closeness and event
size, as well as the correctness of detected type.

3. The correct exact-match detection should pass conditions (1) and (2).

Currently, we considered only insertion, deletion, duplication, and inversion as
subcomponent types. Any called CSVs without a matched prediction were counted
as false negatives. On the basis of the numbers of true positives (TP) and false
negatives (FN), we computed the recall, precision, and F score with the following
equations:

L TP
Precision = —
TP + FP
TP
Recall = —
TP + FN

2 X Precision x Recall
F—score= —————
Precision + Recall

Each caller was run with a different number of variant-supporting reads (that is,
1, 3, 5, and 10), and the performance of simulated-CSV detection was assessed
accordingly (Supplementary Note).

Examining complex structural variant detection in NA12878. The published
NA12878 CSV set was obtained from Supplementary Tables 12 and 15 of a study
conducted by the IKGP', containing 62 deletion- and 251 inversion-associated
CSV sites in hg19 coordinates. We aligned the HiFi reads of NA12878 released
by Human Genome Structural Variants Consortium (HGSVC)” using ngmlr
(v0.2.7) with the default setting for manual inspection and CSV detection. For
manual curation, SAMtools was used to extract HiFi reads spanning the CSV
loci, and Gepard* was used to create the Dotplots between HiFi reads and their
corresponding reference sequences. We then manually inspected all Dotplots
associated with a reported CVS locus (Supplementary File 1). SVision was run
with default parameters on the ngmlr aligned file for CSV detection. Then, we
compared SVision’s discoveries with the curated CSV loci and examined whether
the internal structures matched that reported by SVision.

Three-channel coding of feature sequence. The encoder consisted of two

major steps, that is, variant feature sequence selection and sequence coding
(Supplementary Note). Variant feature sequences (VAR) are directly identified
from long-read aberrant alignments containing SV signatures, such as inter-read
and intra-read alignments. Intra-read alignments are derived from reads spanning
the entire SV locus, whereas inter-read alignments are obtained from reads that
are aligned to larger SV event, resulting in supplementary alignments. SVision
identifies additional SV signatures by applying a k-mer-based realignment
approach for an unmapped segment in VAR, such as T's from CIGAR string and
gap sequence obtained from inter-read alignments. Then, matched and unmatched
segments between VAR and its mapped segment on the reference genome (that is,
REF) are coded as an image. The image contains three channels, including a blue
channel (0, 0, 255), a green channel (0, 255, 0), and a red channel (255, 0, 0), to
code the matched, the duplicated, and the inverted segments, respectively.

To efficiently implement three-channel image coding, matched segments
obtained from CIGAR string and supplementary alignments, originating from
aligner’s outputs, are directly used for VAR-to-REF image coding, and realignment
results are further added to complete image coding. The REF-to-REF image
is created by k-mer-based realignment. The denoised image is obtained by
subtracting the REF-to-REF image from the VAR-to-REF image. Because the
repetitive background noise originates from REF, the encoder subtracts the
segments of two images on the basis of the REF sequence coordinates. Specifically,
if segments from two images overlap on the reference dimension and their
difference is larger than 50 bp (minimum SV report size), the encoder keeps the
non-overlapping part of the segment in the similarity image, where its coordinates
are determined by VAR-to-REF image (Supplementary Note).

Detecting complex structural variants from denoised images using targeted
multi-object recognition. In principle, for each denoised image, the regions
where VAR and REF are identical must be a straight line, whereas SV's introduce
discontinuous segments. These discontinuous segments surrounding SV
breakpoints are considered as a breakpoint object and further defined as SOL
Since long reads are likely to span more than one SVs in the denoised image, the
tMOR contains a two-step image-segmentation process for further SV recognition
(Supplementary Note). Firstly, the tMOR obtains a one-variant image from the
denoised image, on the basis of the following steps.

1.  Sorting and tagging. We sort all segments in the denoised image by their
positions on the read in ascending order. Then, the major segment is defined
according to the matched segments derived from CIGAR operations, and the
minor segment should meet one of the following conditions:

Condition 1: the segment is derived from the k-mer-based realignment.
Condition 2: the segment is inverted compared with the reference genome.
Condition 3: the segment is totally covered by another one.

2. Creating the one-variant image. SVision partitions the denoised image into
several one-variant images through sequential combination of the major seg-
ments. Specifically, each major segment and its neighboring major segment
along with the minor segments (if they exist) between them are used to create
a one-variant image.

Afterwards, SVision clusters similar one-variant images by measuring the
distance of segment signatures between one-variant images. Thus, one-variant
images in a cluster support the same variant, and the size of a cluster is termed as
the number of variant supporting image. Secondly, SVision collects SOIs from each
one-variant image. Unlike traditional multi-object recognition that uses complex
algorithms to select regions of interest, the discontinuous segment signatures in the
one-varjant image enable efficient SOI identification by sequentially combining
both major and minor segments. Then, SOIs are used as input for CNN prediction,
and the interpreted SV types are given by the labels involved in the training set,
including deletion (DEL), inversion (INV), insertion (INS), duplication (DUP), and
tandem-duplication (tDUP). Finally, the CNN assigns the probability score to assess
the existence of the five SV classes in the one-variant image (Supplementary Note).

Creating complex structural variant graphs from one-variant images.

SVision uses a graph to unify the definition of different CSV types and provides
a computational method to compare different CSV graph structures. To create
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a CSV graph G = (V, E), SVision first collects the node set V.=V, U V; U Vp
of G. Specifically, skeleton node set V; = {8, S5, ..., S}, insertion node set
Vi ={L, L, ..., I, } and duplication node set Vp = {V3, V5, ..., Vi } contain
n, m and k skeleton nodes, insertion nodes and duplication nodes in the graph,
respectively. Skeleton nodes are derived from major segments in a one-variant
image and sequence between discontinuous major segments on REF (that is,
concordant segments between VAR and REF). Insertion nodes consist of minor
segments in the one-variant image, while insertion nodes with known origins are
defined as duplication nodes. Moreover, each node v; € V is represented as a tuple
v, = (Seq, Pos, Strand), corresponding to a segment in the one-variant image. The
Seq indicates the segment sequence, Pos is the position of the segment on VAR,
and Strand represents the forward or reverse strand of the segment aligned on the
reference genome. The edges in G are collected by E = Eyq U Egy. E,q represents
a set of adjacency edge ek, = (v, vy, ), connecting two adjacent nodes v, and
Va1 and Ey, represents a set of duplication edge e, connecting the duplicated
node with its known origin. For each CSV, its breakpoint and graph structure
information are kept in the ‘BKPS, ‘GraphID’ and ‘GFA_FILE_PREFIX’ column,
and the CSV graph is saved in GFA format (Supplementary Note). Given a CSV
graph G, a CSV could be interpreted by visiting each node through the E,, edges.
For example (Extended Data Fig. 10a), the CSV path is interpreted as ‘S14+83—
$3-S4+, where ‘+” or ‘- indicates the direction (that is, node Strand) of visiting
a specific node. Specifically, nodes S1 and S4 are visited in forward direction (+),
while S3 is visited in reverse direction (-), so that the path should be ‘S1+S1+S3-
$3-544-S4+" But for simplicity, only the intermediate nodes, such as S3, are kept
twice, whereas the start node (S1) and the end node (S4) are used once in the path.
The comparison of two graphs G, = (V,, E;) and G, = (V,, E,) is a
non-deterministic polynomial (NP)-hard problem, but ordering the nodes on the
basis of the reference coordinate system simplifies this problem (Supplementary
Note). SVision first compares the numbers of edges and nodes between two graphs
G, and G,, which are considered different if either number is different. However,
if graphs G, and G, have a topologically identical path in addition to the same
numbers of nodes and edges, they are termed as isomorphic CSV graphs, that is,
G, = G,. If graphs G, and G, have the same numbers of nodes and edges but
differ in paths, we further examine whether G, and G, share symmetric topology
(Extended Data Fig. 10b), since a variant might be identified on either forward
or minus strand, that is, from 5’ to 3’ or from 3’ to 5. In particular, we create a
mirror graph G of the original graph G,, and obtain a new path from Gj. Similarly,
we also create G, from G, Then, we cross compare whether the paths between
G} and G, as well as between G} and G, are topologically identical. We consider
G, and G, isomorphic if both comparisons are equal. SVision keeps isomorphic
graphs and symmetric graphs in two separate files, enabling search of CSV events
of the same structure.

Training data. The CNN model in SVision is trained with both real and simulated
simple SV of DEL, INV, INS, DUP, and tDUP, to avoid usually unbalanced
numbers of SV types in real data. We obtained real SVs from NA19240 (4,282)

and HG00514 (3,682) by selecting calls supported by both PacBio CLR reads

and Illumina reads'®. In this integrated real SV set, we labeled SV's with the
above-mentioned five SSV types (that is, INS, DEL, INV, DUP, and tDUP). Because
INS and DEL dominate SVs from real samples, we further used VISOR with the
parameters ‘-n 4000 -r 20:20:20:20:20 -1 1000 -s 500’ to create more INV, DUP, and
tDUP for training. For all training SVs, their one-variant images and SOIs were
created as we described in the above sections, leading to 75,000 SOIs (15,000 per
type) in total, where 50% SOIs are from real events. All SOIs were used for further
CNN model training (Supplementary Note).

Convoluted neural network model training. SVision adopts AlexNet* to classify
sequence differences in similarity images. The AlexNet architecture consists of
five convolutional layers and three fully connected layers. The first convolution
layer loads images of size 224 X 224 X 3, and it uses the 11 X 11 X 3 convolution
kernel with stride 4. The last three layers are fully connected and contain a
five-class SoftMax layer for classification. In the end, the input SOIs are detected
as either INS, DEL, INV, DUP, tDUP, or mixed types for CSVs. We applied the
idea of transfer learning to train the CNN with 75,000 SOIs. First, the parameters
of all layers in the CNN were initialized to the best parameter set that was
achieved on the ImageNet competition. Next, we fine-tuned the parameters of
the last three fully connected layers on our training data using back propagation
and gradient descent optimization with a learning rate of 0.001. The loss function
was defined as the cross entropy between predicted probability and the true class
labels. To evaluate the trained AlexNet model, we applied tenfold cross-validation
and examine the loss and accuracy of each model on the training set and used

an independent set of 7,500 SOIs to measure the accuracy. We also assessed

the AlexNet accuracy and robustness with different initialization parameters
(random initialization) and different network structures (InceptionV3).
Moreover, we examined the interpretability of features extracted by AlexNet
during training, and these features could also be used by classic machine-learning
methods (for example, SVM and logistic regression) for accurate classification
(Supplementary Note).
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Quality score of discoveries. SVision measures the quality of each discovery on
the basis of consistency and prediction reliability derived from one-variant image
clusters that support an event.

1. One-variant image consistency. Intuitively, the non-linear segments in a given
one-variant image indicate potential differences between REF and VAR. We
thus first compute the non-linear score for all images that support each event,
that is, one-variant images originated from a cluster of VARs supporting the
same event. The non-linear score of a one-variant image is calculated by its
segment coordinates and lengths. Specifically, for a one-variant image with
segments:

Dk (|krefmid - k‘reudm,»d‘) x k.length

Nonlinear score; = Ref
efpan

where the summation is over all segments k in image i, and k.ref,,; and k.read,, are
the center of segment on reference and read, respectively. Then, we normalize the
summation by dividing RefSpan, which denotes the distance between the leftmost
and rightmost coordinates of the similarity image. Finally, for a SV of M supporting
images, we calculate the consistency score with the following equation:

Std ({nonlinear score, ..., nonlinear scorey })

Consistency = i

Accordingly, we expect a smaller consistency value for high-quality SV predictions.

2. Prediction reliability. This part evaluates the deep-learning prediction quality.
The last layer in the CNN architecture is a SoftMax layer, which outputs the
probability of the prediction results. Therefore, we use the average probability
of all SOIs as the CNN reliability:

>, s.softmax x 100

Reliability = MR

where the summation is over all SOIs in a one-variant image. The reliability will
range from 0 to 100 because the SoftMax probabilities always range from 0 to 1. We
expect higher reliability values for accurate SVs.
Finally, we summed up the two features and normalized it to range from 0 to 100:
qual = Consistency + (1 — Reliability)
1— sum(Scores) — min(Scores) > IOOWhere

Normalized score = max(Scores) — min(Scores)

Scores = {qual,, ..., qual; }, and M is the total number of images supporting this
variant.

Analysis of complex structural variants detected from HG00733. The HiFi reads
of HG00733 were aligned to reference GRC h38 by ngmlr (v0.2.7) with the default
setting. Then, SVision was run under the default setting, except with parameters
‘-s 5-graph-qname’

First, the events detected by SVsion at low-mapping-quality regions,
centromeres, genome gap regions and so on were excluded in analysis. These
regions were obtained from https://github.com/mills-lab/svelter/tree/master/
Support/GRCh38 and the UCSC genome centromere for reference GRCh38. Then,
we applied the following steps to filter CSV's from the raw callset. (1) Filtering
CSVs of length larger than 100 kbp; (2) filtering CSV's without complete graph
representation, where the path ends with other node types instead of ‘S’; and
(3) for multiple CSVs at one site, we kept only the one with the greatest number
of supporting reads. SVision revealed two special complex structures, that is, a
structure consists of nodes ‘S:2,I:2,D:1” and path ‘S1+I1+I11+I12+12+52+ as well as
another structure consists of nodes ‘S:2,I:1,D:1” and path ‘S1+I1+I11+S2+, which
were visually confirmed as local targeted-site-duplication (Extended Data Fig. 10c)
and tandem-duplication (Extended Data Fig. 10d). Events of these two structures
were also filtered because they were considered as simple events from a biological
perspective. Afterwards, we used RepeatMasker and tandem repeat finder (TRF)
annotated files from UCSC genome browser to annotate the CSV's passed the filters
through BEDtools” intersect option. The repeat type was assigned if the CSV
region overlaps with the repeat element, while the size or percentage of overlaps
was not required. For CSVs with multiple repeat types, the one with the largest
overlapping region with the CSV was chosen. Meanwhile, CSV was annotated as
STR if the repeat unit length <7bp; otherwise, it was annotated as VNTR. Finally,
we termed all CSVs outside of VNTR/STR regions as high-quality CSVs, which
were validated and used for further analysis. The PAV and short-read data matched
CSV loci were obtained through BEDtools without requiring overlap size. For the
short-read data, a matched CSV locus was considered as completely reconstructed
if both breakpoint positions and types matched what SVision reported, otherwise
as partially reconstructed events if either breakpoints or types agreed with SVision’s
prediction. The related analysis of CSV on CNTN5 among 35 samples and the
insertion-inversion-insertion event are described in Supplementary Note.

Validation of high-quality complex structural variants detected from HG00733.
We validated 80 CSV's detected by SVision in HG00733 via (1) graph-based
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alignment; (2) contig-based visual confirmation; and (3) PCR and Sanger
sequencing (Supplementary Note).

Graph-based alignment. For each CSV graph in rGFA format, we extracted the CSV
locus-spanning reads with SAMtools and aligned these reads to each CSV graph
using GraphAligner (v1.0.12) with the default settings. A CSV was successfully
validated if a single ONT read could be aligned to the corresponding variant path
specified in the rGFA file. We then counted the number of long reads covering the
entire VAR path as the number of supports for this CSV event.

Contig-based visual confirmation. To examine the internal structure of CSVs,
the phased-assembly specified in the PAV (v1.1.2, TIG_REGION column) at
the reported variant region was used for further analysis. We first extracted
the contig sequence harboring a variant based on the coordinates provided

in the ‘PAV_TIG_REGION’ (Supplementary Table 8). For example, a
sequence-containing variant was extracted from the h1 assembled genome for
‘1|1’ and ‘1|0’ genotype and from the h2 assembled genome for ‘0|1 In order
to validate CSV-structure-containing complex insertion, we extended 5 kbp
both upstream and downstream of the CSV region to extract the reference
genome via BEDtools, from which the origin of the inserted sequence could
be identified. Then, Gepard was used to create the Dotplot of contig sequence
(y axis in the Dotplot) and reference sequence (x axis in the Dotplot) for each
CSV locus. On the basis of each contig Dotplot, the manual validation contained
two tiers of metrics: (1) whether the reported region contains a variant; and
(2) whether the SVision reported structure is identical to what revealed by
Dotplot. A CSV was considered completely reconstructed if both (1) and (2)
were satisfied, and others were considered inconclusive events.

PCR and Sanger sequencing. We first determined that about half of the 80

CSVs (39/80) were unusable for PCR owing to their location within segmental
duplications, the size of the amplicon needed to validate the rearrangement, or
the simple repeat nature of the rearrangement. We then randomly selected 20 of
the remaining rearrangements and performed BLAT on the local region from the
HGO0733 assembly data. We next attempted to subject each of the 20 CSVs to PCR.
Briefly, we designed primers flanking the CSV or flanking breakpoints within
the CSV for each of the 20 events (Supplemental Table 12). Next, we attempted
to amplify each region using Takara LA taq. We obtained the predicted band

size for 12 of the 20 variant loci. The remaining eight regions did not amplify in
three attempts with alterations of the PCR conditions and template amounts. All
PCR products underwent Sanger sequencing and were validated as on target,
and contained the correct amplicon with the breakpoint from the assembly and
SVision call.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

HG002 ONT and HiFi data were downloaded from ftp://ftp.ncbi.nlm.nih.gov/
giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/UCSC_Ultralong_
OxfordNanopore_Promethion/ and https://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/data/ AshkenazimTrio/HG002_NA24385_son/PacBio_
CCS_15kb/, respectively. The NA12878 HiFi data was downloaded from http://
ftp.1000genomes.ebi.ac.uk/voll/ftp/data_collections/HGSVC2/release/v1.0/
assemblies/20200628_HHU_assembly-results_CCS_v12/haploid_reads.

The HG00733 HiFi and ONT data were downloaded from http://
ftp.1000genomes.ebi.ac.uk/voll/ftp/data_collections/ HGSVC2/
working/20190925_PUR_PacBio_HiFi/ and http://ftp.1000genomes.ebi.
ac.uk/voll/ftp/data_collections/hgsv_sv_discovery/working/20181210_

ONT _rebasecalled/, respectively. The HG00733 assembly was download

from http://ftp.1000genomes.ebi.ac.uk/voll/ftp/data_collections/HGSVC2/
working/20200417_Marschall-Eichler NBT_hap-assm/.

The human reference genome hg19 was downloaded from ftp://ftp-trace.
ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_reference_
assembly_sequence/hs37d5.fa.gz. The human reference genome GRCh38 was
downloaded from http://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/reference/
GRCh38_reference_genome/.

The HG00733 PAV callset was downloaded from http://ftp.1000genomes.ebi.ac.uk/
voll/ftp/data_collections/HGSVC2/working/20210806_PAV_VCF/. The merged
PAV callset of 35 samples was downloaded from http://ftp.1000genomes.ebi.ac.uk/
voll/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/.

The RNA-seq data was downloaded from Sequence Read Archive of project ID
PRJNA720779.

All results generated by this study are available in Supplementary Note from
the article.

Code availability

The SVision program (v1.3.6) and trained model are provided at GitHub (https://
github.com/xjtu-omics/SVision), which is available under GNU General Public
License v3.0. SVision is free for non-commercial use by academic, government and
non-profit/not-for-profit institutions. Please contact the corresponding author for
more information about commercial usage. A Code Ocean capsule of the package
is provided (https://doi.org/10.24433/C0.8937098.v1).
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A Simple structural variant b Complex structural variant
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Extended Data Fig. 1| Diagram of example simple and complex structural variants and their aberrant alignment patterns. a, The diagram and alignment

pattern of a simple deletion. b, The diagram and alignment pattern of a deletion associated with inversion, where the inverted segment occurred at the 3’
flank region of the deletion.

NATURE METHODS | www.nature.com/naturemethods


http://www.nature.com/naturemethods

BRIEF COMMUNICATION NATURE METHODS

a
1.0

Platforms

[ HiFi [ ONT

0.9 I-El
0.8 Callers
B SVision I cuteSV

F-score

0.7 | svim Sniffles
Bl pbsv

0.6

SVision  SVIM pbsv cuteSV Sniffles

HiFi C ONT

100% ™ - N 100% v - N
. \\ \\ - \\ \\
COV \\\ \‘\ COV \\\ \.\.
O 5X 0 5X
\ N ~
O 10X . PS ~ O 10X AN ’ N
— N F=09 = N ¢ F=0.9
= | Ozx ‘. 3 | O .
8 75%|. . W & 5%} RN
\ ~ SO \ N SO
x \\\ \\\\ \‘\\ \\\ \\\ L o® \‘\\\
\ S ~~ \ So =<
. oo F=0.8 . S F=0.8
\\\\ \\\\ \\\\ [ ) \\\\
o Feo7 F=0.7
50% i 50% i
50% 75% 100% 50% 75% 100%
Precision Precision

Extended Data Fig. 2 | Performance evaluation of callers with HGOO2 truthset at different coverages and platforms. a, F-score of callers on different
platforms evaluated with Truvari. The boxplot for HiFi data was the F-score measured for each caller at 5X, 10X and 28X coverage, respectively. Each box
contains three values, that is, SVision (0.83, 0.89 and 0.90), SVIM (0.83, 0.89 and 0.89), pbsv (0.65, 0.79 and 0.82), CuteSV (0.83, 0.89 and 0.89) and
Sniffles (0.72, 0.79 and 0.85). The boxplot for ONT data was the F-score measured for each caller at 5X, 10X and 47X coverage, respectively. Each box
also contains three values (n=3), that is, SVision (0.76, 0.84 and 0.92), SVIM (0.74, 0.82 and 0.89), pbsv (0.67, 0.78 and 0.84), CuteSV (0.77, 0.85 and
0.91) and Sniffles (0.74, 0.82 and 0.90). The boxplot defines the median (Q2, 50th percentile), first quartile (Q1, 25th percentile) and third quartile (Q3,
75th percentile). The bounds of box, that is interquartile range (IQR), of the boxplot is between Q1 and Q3. The minima and maxima values are defined as
Q1-1.5*1QR and Q3 +1.5*IQR, respectively. The whiskers are values between minima and Q1 as well as between Q3 and maxima. b, The precision (x-axis),
recall (y-axis) and F-score (F, dotted line) measurements of detecting SVs from HiFi data at different coverages. ¢, The precision and recall measurements
of detecting SVs from ONT data at different coverages. It should be noted that this evaluation ignored SV genotype, but only evaluated on event level.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Simulated complex structural variant types and performance of detecting complex structural variant subcomponents. a, The
diagrams of simulated complex structural variants (CSV). Each type has a unique ID and a type definition. b, The size distribution of simulated CSVs
smaller than 1Kbp (1,200 events). ¢, The size distribution of simulated CSVs larger than 1Kbp (1,800 events). d, The region-match recall rates of model-
based callers for detecting subcomponents (that is, DUP-duplication, DEL-deletion, INV-inversion) of CSVs.
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a Unclassified CSV type at chr17:5,594,699-5,595,567 b Unclassified CSV type at chr10:127,190,584-127,197,225

One end unmapped One end unmapped 2

- -==3 Discordant orientation
1 —— - - 2 =

1 == - -<== One end unmapped

~
. 1

~

o DI DD v EDEDEDED DD

Read pairs 1 = Read pairs
2 i - -<af— 2 e - <
:-q ------ —
........ — - - - - - - - - — Alignment R LT T TP,
Alignment ; attern fm e —
.. - — - p
[ B '
paﬂern q‘"""" —-!
ReF I D> REF EE DI DI DI E DT >

> Longread

2 | ong read
Extended Data Fig. 4 | The diagrams and alignment patterns of two unclassified complex structural variants. a, SVision correctly detected a deleted
sequence replaced with dispersed duplication and inverted duplication. b, SVision characterized a complex insertion, consisting of two dispersed
duplications and one inverted duplication. Both types of (@) and (b) are labeled as unclassified (NA) in the 1KGP call set. The top panel of (a) and (b) are

the discordant alignments derived from short-read sequencing (that is, one end unmapped and discordant alignment). The bottom panels of (a) and (b)
describe the abnormal alignments from long-read alignment.
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Extended Data Fig. 5 | One example of simple deletion misinterpreted as complex event by short-read data due to local repeats. a, Two Dotplots are
created with Gepard to illustrate the local repeats at the variant locus on the reference genome (left) and the breakpoints comparing HiFi read (READ,
y-axis) and the reference genome (REF, x-axis). b, The IGV view at this locus with reads grouped by pair orientation and colored by insert-size and pair

orientation.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Examples of reported complex structural variant types identified by SVision. a, One of the 12 inverted duplication events detected
by SVision and classified as CSV graph structure ‘12', b, One of the eight deletion associated with inversion events detected by SVison and classified as
CSV graph structure 15", ¢, One of the five multiple-deletion with spacer events detected by SVision and classified as CSV graph structure '27'. d, One of
ten deletion with inverted duplication events detected by SVision and classified as CSV graph structure '23". e, One of the five deletion with duplication
events detected by SVision and classified as CSV graph structure '28'. From figure (a) to (e), the Dotplots on the left column are SVision one-variant
images created with variant feature sequence (VAR, y-axis) and reference sequence (REF, x-axis) at the variant loci, while the Dotplots on right column are
created with variant spanning HiFi assemblies (CONTIG, y-axis) and the reference sequence (REF, x-axis) at the variant loci.
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Extended Data Fig. 7 | The HiFi assembly reconstruction of the expanded allele and complex structural variant allele affecting CNTN5. The grey region
indicates the repeat expansion. The dark red region indicates exon 4 of CNTN5, while the light red region is the 5' flanking region of the exon.
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Extended Data Fig. 8 | The IGV screenshot of duplicated CNTN5 exon signature observed in RNA-Seq data. The RNA-Seq data of the primary visual
cortex from an Alzheimer disease female. b, The RNA-Seq data of a control male precuneus. In (a) and (b), the green bars pointed by red arrows are
duplication like read-pair signatures, that is, there are 4 supporting discordant read-pairs in (a), and 2 in (b). Moreover, read depth change (fitted by
purple line) on exon is observed in both (a) and (b). The RNA-Seq data for (a) and (b) are obtained from Sequence Read Archive (SRA) with accession

number SRR14194220 and SRR14194206, respectively.
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Extended Data Fig. 9 | The ancestral state of one genome segment revealed by a complex structural variant. a, The structure and breakpoint junction
sequence of the variant derived from HiFi assembly. b, Blastn results of the inserted sequence mapping to primate genomes, and the top hits include pan
troglodytes and gorilla.
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Extended Data Fig. 10 | Examples of graph and symmetric graphs as well as two special complex events identified by SVision. a, An example of a
complex structural variant (CSV) graph where its graph path is interpreted as S1+ S3-S3-S4+. b, Examples of isomorphic graphs representing two
different CSV events. ¢, SVision detected CSV classified as local target site duplication. d, SVision detected CSV classified as tandem duplication. Though
events of structure depicted by (¢) and (d) were computed as complex events, they were considered as simple events from the biological perspective.
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Data collection  fastg-dump (v2.9.1) is used to download the RNA-Seq data.

Data analysis pbmm2 (v1.4.0) and ngmir (v0.2.7) are used for long-reads alignment. Sniffles (v1.0.12), cuteSV (v1.0.10), pbsv(v2.2.2), SVision (v1.3.6) and
SVIM (v1.4.0) are used for SV detection. Truvari (v2.0.1) is used for assessing SV detection performance in HGO02 genome. VISOR (v1.1.2) is
used for complex events simulation. Gepard (v1.4.0) is used to create Dotplot for manual inspections.
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HG002 ONT reads: ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/UCSC_Ultralong_OxfordNanopore_Promethion/

HGO002 HiFi reads: https://ftp-trace.ncbi.nim.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/

Human hgl9 reference: ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz

NA12878 HiFi reads: http://ftp.1000genomes.ebi.ac.uk/voll/ftp/data_collections/HGSVC2/release/v1.0/assemblies/20200628_HHU_assembly-results_CCS_v12/
haploid_reads

HG00733 HiFi reads: http://ftp.1000genomes.ebi.ac.uk/voll/ftp/data_collections/HGSVC2/working/20190925_PUR_PacBio_HiFi/




HG00733 ONT reads: http://ftp.1000genomes.ebi.ac.uk/voll/ftp/data_collections/hgsv_sv_discovery/working/20181210_ONT _rebasecalled/

HG00733 phased assembly: http://ftp.1000genomes.ebi.ac.uk/voll/ftp/data_collections/HGSVC2/working/20200417_Marschall-Eichler_NBT_hap-assm/
Human GRCh38 reference: http://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/reference/GRCh38_reference_genome/

HG00733 Phased Assembly Variant calls: http://ftp.1000genomes.ebi.ac.uk/vol1l/ftp/data_collections/HGSVC2/working/20210806_PAV_VCF/

Phased Assembly Variant merged calls for 35 samples: http://ftp.1000genomes.ebi.ac.uk/voll/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/
RNA-seq data: Sequence-Read-Archive, Porject ID PRINA720779.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size HGO002 genome was used to benchmark simple SV detection.
NA12878 genome was used assess complex SV detection from real sample.
SVision was applied to HG0O0733 for novel complex SV discovery.
RNA-Seq data of 19 samples (generated by Guennewig et al., PMID: 33649380) and haplotype-aware assembly of 35 samples (generated by
Ebert et al., PMID: 33632895) were used to analyze the role of complex SV detected in HG00733.

Data exclusions  No data were excluded in this study.

Replication Replication was not relevant to our study. This study used deterministic algorithms without statistical analysis, and this study aims to
demonstrate SVision and its application with various long-read sequencing data.

Randomization  Randomization was not relevant to our study. SVision is a deterministic method, and all analysis in this study was done with preexisting data
sources.

Blinding Blinding was not relevant to our study. We used publicly available data, no data acquisition or statistical analysis was invovled.
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