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Complex structural variants (CSVs) encompass multiple 
breakpoints and are often missed or misinterpreted. We devel-
oped SVision, a deep-learning-based multi-object-recognition 
framework, to automatically detect and characterize CSVs 
from long-read sequencing data. SVision outperforms current 
callers at identifying the internal structure of complex events 
and has revealed 80 high-quality CSVs with 25 distinct struc-
tures from an individual genome. SVision directly detects 
CSVs without matching known structures, allowing sensitive 
detection of both common and previously uncharacterized 
complex rearrangements.

CSVs contain multiple breakpoints and may delete, duplicate, and/
or invert multiple segments in both healthy1 and diseased genomes2,3, 
creating events that are more likely to be deleterious than simple 
structural variants (SVs)4,5. Previous short-read-sequencing-based 
studies detected CSVs through intensive breakpoint analysis and 
subsequent manual inspection was required to determine CSV 
internal structures1,6, hindering large-scale study of CSVs. Although 
long-read sequencing has greatly facilitated the detection of phased 
SVs7 and somatic SVs4,8, three major issues have impeded their use 
in CSV detection. First, the model-based inference approach, ini-
tially designed for simple SV discovery from short reads9, requires 
construction of each SV model for fitting aberrant alignment pat-
terns (Extended Data Fig. 1), which is not applicable to largely 
unexplored CSV structures10,11. Second, ambiguous alignments at 
repetitive regions lead to false calls or missing events6. Last, the cur-
rent definition of different CSV types is based on predefined models 
lacking a unified and computer-interpretable framework, thereby 
limiting cross-study comparison.

We developed an automated CSV detection and characteriza-
tion method: SVision. It introduces a sequence-to-image coding 
schema, adapting variant detection to a problem that is amenable 
to deep-learning frameworks. SVision contains three core com-
ponents: an encoder that represents the differences and simi-
larities between a variant-supporting read and its corresponding 
segment on the reference genome as a denoised image, a targeted 
multi-object recognition (tMOR) framework that detects and char-
acterizes CSVs through a convolutional neural network (CNN) in 

the denoised image, and an illustrator that creates and unifies each 
detected CSV as a graph representation from the denoised image 
(Fig. 1a and Methods). Specifically, the encoder first collects aber-
rant long-read alignments, the ‘variant feature sequence’ (VAR), 
and its aligned segment on the reference genome, referred to as the 
reference sequence (REF). For a VAR and REF pair, the encoder 
identifies matched and unmatched bases to create VAR-to-REF 
and REF-to-REF images (Fig. 1b). Because repetitive sequences 
might be present in both VAR and REF, the variant signature can 
be isolated and accentuated when the background noise is removed. 
Accordingly, a denoised image is created for each VAR by subtract-
ing REF-to-REF image from its corresponding VAR-to-REF image. 
In the tMOR step, because a denoised image might contain more 
than one SV, SVision uses a two-step image-segmentation process 
to first obtain one-variant images, containing the full structure of 
an event. Then, SVision defines each location surrounding a break-
point in the one-variant image as a segment of interest (SOI), and 
SOIs collected from a one-variant image are recognized as a single 
CSV through a pre-trained CNN. For all one-variant images sup-
porting one event, SVision integrates the CNN prediction prob-
ability of each one-variant image and the similarity of one-variant 
images to measure the quality of a discovery. Finally, the illustrator 
adopts a graph-based approach to depict different CSV structures 
in graphical fragment assembly (GFA) format. Moreover, a given 
CSV graph structure and its topologically equivalent events are 
combined through detection of isomorphic graphs.

We examined how the sequence-to-image coding and the 
CNN model perform across HiFi (high-fidelity reads produced by 
PacBio circular consensus sequencing) and ONT (reads produced 
by Oxford Nanopore Technology) data for canonical SV detection, 
by benchmarking SVision, cuteSV12, pbsv, SVIM13, and Sniffles10 
against the HG002 genome14 (Methods). SVision outperforms other 
callers at all different coverages (Supplementary Table 1): the F 
score of SVision ranged from 0.83 to 0.90 for HiFi and from 0.76 
to 0.92 for ONT (Extended Data Fig. 2). Furthermore, their per-
formances were assessed on a genome harboring 3,000 simulated 
CSVs of 10 types (Extended Data Fig. 3a–c, Supplementary Table 2,  
and Methods). Similar to the evaluation metric employed by 
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Sniffles10, we introduced region-match (that is, correct detection 
of a CSV site) and exact-match (that is, correct detection of a CSV 
site and its subcomponents) for performance evaluation (Methods). 
For region-match, the recall and the precision of SVision were 91% 
and 93%; those for the second-best tool, cuteSV, were 62% and 36%, 
respectively (Fig. 1c and Supplementary Table 3). The low recall and 
precision of cuteSV and others could be largely attributed to partial 
CSV detection because the observed signatures were beyond exist-
ing models (Extended Data Fig. 3d and Supplementary Table 4).  
For exact-match, SVision detected 89% of the CSVs, more than dou-
ble the percentage detected by Sniffles, and other callers were not 
able to characterize any CSVs (Fig. 1c and Supplementary Table 3).  
Additionally, we manually curated 62 complex deletion and 251 
complex inversion sites in NA12878 reported by a short-read study1 
(Methods). As a result, 18 CSVs of six unique structures, includ-
ing one unclassified novel structure, were verified; the remain-
ing events were either simple SVs (64) or false discoveries (231) 
(Supplementary Table 5 and Supplementary File 1). SVision auto-
matically and correctly characterized the internal structure of all 18 
CSVs (Fig. 1d and Supplementary Table 6), including two CSVs that 

were unclassified by short-read1, that is, a deletion replaced by an 
inverted segment and a duplicated segment, and a novel complex 
insertion structure consisting of an inverted-duplication and two 
dispersed-duplications (Extended Data Fig. 4). Moreover, SVision 
resolved a simple deletion at a region flanked by duplicates (inverted 
and dispersed), which was mistakenly reported as a CSV in the 
short-read study1 (Fig. 1e, Extended Data Fig. 5, and Supplementary 
Table 5). The above results suggest that SVision can detect both sim-
ple and complex SVs with high sensitivity and specificity.

To explore novel CSV loci and structures, we applied SVision 
to the HG00733 genome7, in which CSVs were not well character-
ized. SVision detected 80 high-quality CSVs of 25 unique struc-
tures, 20 of which were novel, accounting for half of the events, 
and the remaining five CSV graph structures matched frequently 
reported CSV types1,2 (Extended Data Fig. 6, Supplementary 
Table 7, and Supplementary File 2). We then applied both com-
putational and experimental approaches to validate the structure 
and breakpoint junctions of those 80 CSVs (Methods). Firstly, 
GraphAligner15 was used to assess the internal structure and break-
points of CSVs by aligning ONT reads16 to CSV graphs. The graph 
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Fig. 1 | Workflow and evaluation of SVision’s detection of CSVs. a, Overview of three modules in SVision. b, Workflow for each module. c, Performance 
for calling simulated CSVs was evaluated by recall (y axis), precision (x axis) and F score (F, dashed line). d, SVision detected all previously reported and 
manually curated NA12878 CSVs, all of which passed exact-match criteria. e, A misinterpreted complex event from short-read data, which is correctly 
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misleading short-read callers to report a CSV.

Nature Methods | VOL 19 | October 2022 | 1230–1233 | www.nature.com/naturemethods 1231

http://www.nature.com/naturemethods


Brief Communication NaturE MEthoDS

alignments showed that single reads cover the entire paths of 79 
CSV graphs, and one CSV graph path was covered by two differ-
ent reads (Supplementary Table 8). Secondly, 73 CSVs overlapped 
phased assembly variant (PAV)7 calls, and 90% of them were suc-
cessfully reconstructed with haplotype contigs (Fig. 2a), while oth-
ers were challenging to characterize visually but were verified via 
GraphAligner (Supplementary Table 8 and Supplementary File 
3). Furthermore, 20 CSVs were selected for manual curation and 
experimental validation after excluding SVs in highly repetitive 
regions. Of these 20 CSVs, manual inspection confirmed that 18 
events matched SVision’s reports, and two loci contained expan-
sions of short tandem repeats that were collapsed in the reference 
(Supplementary Table 8). As for the experiment, eight CSVs failed 
PCR owing to repetitive sequence or high GC content, and the other 
12 events were successfully confirmed by PCR and Sanger sequenc-
ing (Supplementary Table 8). The above validations indicate that 
SVision can detect and characterize CSVs reliably from long-read 
data. Compared with 80 CSVs detected by SVision, short-read mis-
interpreted 23 as simple events and completely missed 46 CSVs, 
while four and seven were fully and partially interpreted, respec-
tively (Fig. 2b and Supplementary Table 9).

Of the 80 HG00733 CSVs detected by SVision, 19 overlapped 
18 different genes (Supplementary Table 7). A complex duplication 
in CNTN5, an important neural-development gene, is composed 
of a direct duplication of CNTN5 exon 4 and an inverted intronic 

duplication, both of which inserted in tandem within a CNTN5 
intronic tandem repeat proximal to exon 4 (Fig. 2c and Extended 
Data Fig. 7). This event was missed by short-read data, and PAV 
called only a simple insertion, leaving the duplicated exon unanno-
tated7. Using contigs of 35 samples from Human Genome Structural 
Variant Consortium and the SVision reported structure, three dis-
tinct alleles were noted for this site, a contracted tandem repeat, 
an expanded tandem repeat, and an expanded tandem repeat 
containing the complex exon duplication (Fig. 2d, Supplementary 
Table 10, and Supplementary File 4). We observed the duplicated 
exon signature in the RNA-seq data for the human primary visual 
cortex and precuneus17 (Extended Data Fig. 8, Supplementary 
Table 11, and Supplementary File 5). Additionally, SVision identi-
fied an insertion-inversion-insertion event, which was detected 
as a 1,737-bp insertion by PAV but missed in previous studies16,18 
(Extended Data Fig. 9a). This event was also re-genotyped by 
PanGenie19, and it has 80% allele frequency among 2,504 unrelated 
samples in 1000 Genomes Project cohort7. The inserted sequence of 
this CSV was further identified in chimpanzee and gorilla genomes 
(Extended Data Fig. 9b), indicating the insertion state was ancestral 
and the reference was derived through deletion and inversion.

Long-read sequencing and associated tools have revolution-
ized SV detection7,11, but it is still hard to correctly characterize 
multi-breakpoint events, leaving CSVs either uncalled or misin-
terpreted as simple SVs. Inspired by existing deep-learning-based 
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rare type represented multiple CSV graph structures, each of which contains fewer than five complex events. A: inverted duplication. B: deletion associated 
with inversion. C: deletion associated with inverted duplication. D: multiple deletion with spacer. E: deletion associated with duplication. Inconclusive: 
unable to characterize visually. Reconstructed: SVision CSV structure validated through contig-based manual curation. Novel: no overlapping PAV call. 
b, Compared with 80 CSVs in HG00733 detected by SVision, the short-read callset correctly reported the full structure of four CSVs (exact-match), 
partially called seven (region-match), misinterpreted 23 events as simple (region-match), and completely missed 46 CSVs. c, Three distinct alleles were 
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variant-detection methods20,21, SVision fills this gap by apply-
ing a multi-object recognition framework to denoised images to 
detect both simple and complex SVs, and autonomously identifies 
their structures. Note that CSV structure resolution depends on 
knowledge-oriented image denoise and segmentation, which need 
further optimization with unsupervised approaches. SVision is a 
valuable tool to facilitate the study of complicated and novel CSVs, 
paving the way for the analysis of complex genomic events at the 
population scale.
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Methods
Evaluating simple structural variants detection with HG002. To benchmark SV 
callers on HG002, we followed the procedure introduced by Genome-In-A-Bottle 
(GIAB) and detailed steps adopted by cuteSV. Briefly, the high-confidence insertion 
and deletion calls and high-confidence regions published by the GIAB consortium 
were used as the ground truth, and the genotype accuracy was not considered in 
our evaluation. The HiFi reads were aligned to reference hg19 by pbmm2 (https://
github.com/PacificBiosciences/pbmm2, v1.4.0) with parameter ‘–preset CCS’, and 
ONT reads were aligned with pbmm2 default settings. The 5× and 10× coverage of 
HiFi and ONT data were further obtained with the SAMtools22 ‘-s’ option. Sniffles 
(v1.0.12), cuteSV (v1.0.10), pbsv (v2.2.2), SVision (v1.3.6), and SVIM (v1.4.0) 
were applied to the pbmm2 aligned file with default parameters. The minimum 
supporting read was two and three for 5× and 10× data, and 10 was used for the 
original coverage.

Simulating complex structural variants. Ten CSV types were simulated, 
according to frequently reported types introduced by 1000 Genomes Project 
(1KGP)1 and a cohort study of autism spectrum disorder2 (Supplementary Note). 
A CSV was essentially a combination of breakpoints from simple structural 
variants (SSVs). Therefore, a four-step simulation process was developed as 
follows. VISOR23 was first used to simulate and to randomly implant five SSV types 
(that is, deletion, inverted-dispersed-duplication, inverted-tandem-duplication, 
tandem-duplication, and dispersed-duplication) on reference genome GRCh38. 
Second, we followed the procedure introduced by SURVIVOR24 to simulate CSVs, 
where SSVs of the above five types were randomly added adjacent to the existing 
SSVs on the genome. In particular, 3,000 SSVs of the five types were created by 
VISOR with parameters ‘-n 3000 –r 20:20:20:20:20 –l 500 –s 150’. Third, we added 
extra SSVs required in predefined CSV structures to existing SSVs by following the 
order of types, that is, deletion, inverted-dispersed duplication, inverted-tandem 
duplication, tandem-duplication and dispersed-duplication. For instance, we 
first used implanted deletions as seeds to create all CSV instances that involved 
deletions, and then turned to instances of the next type. Finally, the variation 
genome with 3,000 CSVs was used as input for the VISOR LASoR module to 
simulate 30× HiFi reads for subsequent alignment by ngmlr10 (v0.2.7) with  
the default setting. Note that VISOR was used only to simulate variants at  
one haplotype.

Evaluating detection of simulated complex structural variants. To examine 
the correctness of detected CSVs, we used closeness and size similarity to assess 
whether two events are identical, according to Truvari (https://github.com/
spiralgenetics/truvari/), developed by GIAB (Supplementary Note). The closeness, 
bpDist, and size similarity, sim, between prediction and benchmark were 500 bp 
and 0.7, respectively. For example, assume a benchmark CSV (start at b.start, end 
at b.end and the size isb.size), and a prediction (start at p.start, end at p.end and the 
size is p.size); then, a correct region-match should satisfy the following equations:

max (|b.start − p.start|, |b.end − p.end|) ≤ bpDist

b.size × sim ≤ p.size ≤ b.size × (2 − sim)

Comparably, the exact-match not only required region-match, but also 
required the correct detection of all CSV subcomponents, including the 
subcomponent breakpoint type. Therefore, for a deletion-inversion that contained 
two subcomponents, that is, inversion and deletion, the exact-match became a 
three-step evaluation:

	1.	 Region-match between a predicted CSV and a benchmark deletion-inversion 
event.

	2.	 For each subcomponent, we examined the breakpoint closeness and event 
size, as well as the correctness of detected type.

	3.	 The correct exact-match detection should pass conditions (1) and (2).

Currently, we considered only insertion, deletion, duplication, and inversion as 
subcomponent types. Any called CSVs without a matched prediction were counted 
as false negatives. On the basis of the numbers of true positives (TP) and false 
negatives (FN), we computed the recall, precision, and F score with the following 
equations:

Precision =
TP

TP + FP

Recall = TP
TP + FN

F − score = 2 × Precision × Recall
Precision + Recall

Each caller was run with a different number of variant-supporting reads (that is,  
1, 3, 5, and 10), and the performance of simulated-CSV detection was assessed 
accordingly (Supplementary Note).

Examining complex structural variant detection in NA12878. The published 
NA12878 CSV set was obtained from Supplementary Tables 12 and 15 of a study 
conducted by the 1KGP1, containing 62 deletion- and 251 inversion-associated 
CSV sites in hg19 coordinates. We aligned the HiFi reads of NA12878 released 
by Human Genome Structural Variants Consortium (HGSVC)7 using ngmlr 
(v0.2.7) with the default setting for manual inspection and CSV detection. For 
manual curation, SAMtools was used to extract HiFi reads spanning the CSV 
loci, and Gepard25 was used to create the Dotplots between HiFi reads and their 
corresponding reference sequences. We then manually inspected all Dotplots 
associated with a reported CVS locus (Supplementary File 1). SVision was run 
with default parameters on the ngmlr aligned file for CSV detection. Then, we 
compared SVision’s discoveries with the curated CSV loci and examined whether 
the internal structures matched that reported by SVision.

Three-channel coding of feature sequence. The encoder consisted of two 
major steps, that is, variant feature sequence selection and sequence coding 
(Supplementary Note). Variant feature sequences (VAR) are directly identified 
from long-read aberrant alignments containing SV signatures, such as inter-read 
and intra-read alignments. Intra-read alignments are derived from reads spanning 
the entire SV locus, whereas inter-read alignments are obtained from reads that 
are aligned to larger SV event, resulting in supplementary alignments. SVision 
identifies additional SV signatures by applying a k-mer-based realignment 
approach for an unmapped segment in VAR, such as ‘I’s from CIGAR string and 
gap sequence obtained from inter-read alignments. Then, matched and unmatched 
segments between VAR and its mapped segment on the reference genome (that is, 
REF) are coded as an image. The image contains three channels, including a blue 
channel (0, 0, 255), a green channel (0, 255, 0), and a red channel (255, 0, 0), to 
code the matched, the duplicated, and the inverted segments, respectively.

To efficiently implement three-channel image coding, matched segments 
obtained from CIGAR string and supplementary alignments, originating from 
aligner’s outputs, are directly used for VAR-to-REF image coding, and realignment 
results are further added to complete image coding. The REF-to-REF image 
is created by k-mer-based realignment. The denoised image is obtained by 
subtracting the REF-to-REF image from the VAR-to-REF image. Because the 
repetitive background noise originates from REF, the encoder subtracts the 
segments of two images on the basis of the REF sequence coordinates. Specifically, 
if segments from two images overlap on the reference dimension and their 
difference is larger than 50 bp (minimum SV report size), the encoder keeps the 
non-overlapping part of the segment in the similarity image, where its coordinates 
are determined by VAR-to-REF image (Supplementary Note).

Detecting complex structural variants from denoised images using targeted 
multi-object recognition. In principle, for each denoised image, the regions 
where VAR and REF are identical must be a straight line, whereas SVs introduce 
discontinuous segments. These discontinuous segments surrounding SV 
breakpoints are considered as a breakpoint object and further defined as SOI. 
Since long reads are likely to span more than one SVs in the denoised image, the 
tMOR contains a two-step image-segmentation process for further SV recognition 
(Supplementary Note). Firstly, the tMOR obtains a one-variant image from the 
denoised image, on the basis of the following steps.

	1.	 Sorting and tagging. We sort all segments in the denoised image by their 
positions on the read in ascending order. Then, the major segment is defined 
according to the matched segments derived from CIGAR operations, and the 
minor segment should meet one of the following conditions: 
Condition 1: the segment is derived from the k-mer-based realignment. 
Condition 2: the segment is inverted compared with the reference genome. 
Condition 3: the segment is totally covered by another one.

	2.	 Creating the one-variant image. SVision partitions the denoised image into 
several one-variant images through sequential combination of the major seg-
ments. Specifically, each major segment and its neighboring major segment 
along with the minor segments (if they exist) between them are used to create 
a one-variant image.

Afterwards, SVision clusters similar one-variant images by measuring the 
distance of segment signatures between one-variant images. Thus, one-variant 
images in a cluster support the same variant, and the size of a cluster is termed as 
the number of variant supporting image. Secondly, SVision collects SOIs from each 
one-variant image. Unlike traditional multi-object recognition that uses complex 
algorithms to select regions of interest, the discontinuous segment signatures in the 
one-variant image enable efficient SOI identification by sequentially combining 
both major and minor segments. Then, SOIs are used as input for CNN prediction, 
and the interpreted SV types are given by the labels involved in the training set, 
including deletion (DEL), inversion (INV), insertion (INS), duplication (DUP), and 
tandem-duplication (tDUP). Finally, the CNN assigns the probability score to assess 
the existence of the five SV classes in the one-variant image (Supplementary Note).

Creating complex structural variant graphs from one-variant images.  
SVision uses a graph to unify the definition of different CSV types and provides 
a computational method to compare different CSV graph structures. To create 
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a CSV graph G = (V, E), SVision first collects the node set V = Vs ∪ VI ∪ VD 
of G. Specifically, skeleton node set Vs = {S1, S2, …, Sn}, insertion node set 
VI = {I1, I2, …, Im} and duplication node set VD = {V1, V2, …, Vk} contain 
n, m and k skeleton nodes, insertion nodes and duplication nodes in the graph, 
respectively. Skeleton nodes are derived from major segments in a one-variant 
image and sequence between discontinuous major segments on REF (that is, 
concordant segments between VAR and REF). Insertion nodes consist of minor 
segments in the one-variant image, while insertion nodes with known origins are 
defined as duplication nodes. Moreover, each node vi ∈ V  is represented as a tuple 
vi = (Seq, Pos, Strand), corresponding to a segment in the one-variant image. The 
Seq indicates the segment sequence, Pos is the position of the segment on VAR, 
and Strand represents the forward or reverse strand of the segment aligned on the 
reference genome. The edges in G are collected by E = Ead ∪ Edp. Ead represents 
a set of adjacency edge ekad = (vk, vk+1), connecting two adjacent nodes vk and 
vk+1, and Edp represents a set of duplication edge edp, connecting the duplicated 
node with its known origin. For each CSV, its breakpoint and graph structure 
information are kept in the ‘BKPS’, ‘GraphID’ and ‘GFA_FILE_PREFIX’ column, 
and the CSV graph is saved in GFA format (Supplementary Note). Given a CSV 
graph G, a CSV could be interpreted by visiting each node through the Ead edges. 
For example (Extended Data Fig. 10a), the CSV path is interpreted as ‘S1+S3–
S3–S4+’, where ‘+’ or ‘–’ indicates the direction (that is, node Strand) of visiting 
a specific node. Specifically, nodes S1 and S4 are visited in forward direction (+), 
while S3 is visited in reverse direction (–), so that the path should be ‘S1+S1+S3–
S3–S4+S4+’. But for simplicity, only the intermediate nodes, such as S3, are kept 
twice, whereas the start node (S1) and the end node (S4) are used once in the path.

The comparison of two graphs G1 = (V1, E1) and G2 = (V2, E2) is a 
non-deterministic polynomial (NP)-hard problem, but ordering the nodes on the 
basis of the reference coordinate system simplifies this problem (Supplementary 
Note). SVision first compares the numbers of edges and nodes between two graphs 
G1 and G2, which are considered different if either number is different. However, 
if graphs G1 and G2 have a topologically identical path in addition to the same 
numbers of nodes and edges, they are termed as isomorphic CSV graphs, that is,  
G1 = G2. If graphs G1 and G2 have the same numbers of nodes and edges but 
differ in paths, we further examine whether G1 and G2 share symmetric topology 
(Extended Data Fig. 10b), since a variant might be identified on either forward 
or minus strand, that is, from 5′ to 3′ or from 3′ to 5′. In particular, we create a 
mirror graph G′

1 of the original graph G1, and obtain a new path from G′

1. Similarly, 
we also create G′

2 from G2 Then, we cross compare whether the paths between 
G′

1 and G2 as well as between G′

2 and G1 are topologically identical. We consider 
G1 and G2 isomorphic if both comparisons are equal. SVision keeps isomorphic 
graphs and symmetric graphs in two separate files, enabling search of CSV events 
of the same structure.

Training data. The CNN model in SVision is trained with both real and simulated 
simple SVs of DEL, INV, INS, DUP, and tDUP, to avoid usually unbalanced 
numbers of SV types in real data. We obtained real SVs from NA19240 (4,282) 
and HG00514 (3,682) by selecting calls supported by both PacBio CLR reads 
and Illumina reads16. In this integrated real SV set, we labeled SVs with the 
above-mentioned five SSV types (that is, INS, DEL, INV, DUP, and tDUP). Because 
INS and DEL dominate SVs from real samples, we further used VISOR with the 
parameters ‘-n 4000 -r 20:20:20:20:20 –l 1000 –s 500’ to create more INV, DUP, and 
tDUP for training. For all training SVs, their one-variant images and SOIs were 
created as we described in the above sections, leading to 75,000 SOIs (15,000 per 
type) in total, where 50% SOIs are from real events. All SOIs were used for further 
CNN model training (Supplementary Note).

Convoluted neural network model training. SVision adopts AlexNet26 to classify 
sequence differences in similarity images. The AlexNet architecture consists of 
five convolutional layers and three fully connected layers. The first convolution 
layer loads images of size 224 × 224 × 3, and it uses the 11 × 11 × 3 convolution 
kernel with stride 4. The last three layers are fully connected and contain a 
five-class SoftMax layer for classification. In the end, the input SOIs are detected 
as either INS, DEL, INV, DUP, tDUP, or mixed types for CSVs. We applied the 
idea of transfer learning to train the CNN with 75,000 SOIs. First, the parameters 
of all layers in the CNN were initialized to the best parameter set that was 
achieved on the ImageNet competition. Next, we fine-tuned the parameters of 
the last three fully connected layers on our training data using back propagation 
and gradient descent optimization with a learning rate of 0.001. The loss function 
was defined as the cross entropy between predicted probability and the true class 
labels. To evaluate the trained AlexNet model, we applied tenfold cross-validation 
and examine the loss and accuracy of each model on the training set and used 
an independent set of 7,500 SOIs to measure the accuracy. We also assessed 
the AlexNet accuracy and robustness with different initialization parameters 
(random initialization) and different network structures (InceptionV3). 
Moreover, we examined the interpretability of features extracted by AlexNet 
during training, and these features could also be used by classic machine-learning 
methods (for example, SVM and logistic regression) for accurate classification 
(Supplementary Note).

Quality score of discoveries. SVision measures the quality of each discovery on 
the basis of consistency and prediction reliability derived from one-variant image 
clusters that support an event.

	1.	 One-variant image consistency. Intuitively, the non-linear segments in a given 
one-variant image indicate potential differences between REF and VAR. We 
thus first compute the non-linear score for all images that support each event, 
that is, one-variant images originated from a cluster of VARs supporting the 
same event. The non-linear score of a one-variant image is calculated by its 
segment coordinates and lengths. Specifically, for a one-variant image with 
segments:

Nonlinear scorei =
∑

k
(
∣

∣k.refmid − k.readmid
∣

∣

)

× k.length
Refpan

where the summation is over all segments k in image i, and k.refmid and k.readmid are 
the center of segment on reference and read, respectively. Then, we normalize the 
summation by dividing RefSpan, which denotes the distance between the leftmost 
and rightmost coordinates of the similarity image. Finally, for a SV of M supporting 
images, we calculate the consistency score with the following equation:

Consistency =
Std ({nonlinear score1, …, nonlinear scoreM})

M

 
Accordingly, we expect a smaller consistency value for high-quality SV predictions.
	2.	 Prediction reliability. This part evaluates the deep-learning prediction quality. 

The last layer in the CNN architecture is a SoftMax layer, which outputs the 
probability of the prediction results. Therefore, we use the average probability 
of all SOIs as the CNN reliability:

Reliability =

∑

s s.softmax × 100
#SOIs

where the summation is over all SOIs in a one-variant image. The reliability will 
range from 0 to 100 because the SoftMax probabilities always range from 0 to 1. We 
expect higher reliability values for accurate SVs.

Finally, we summed up the two features and normalized it to range from 0 to 100:
qual = Consistency + (1 − Reliability)
Normalized score =

(

1 −
sum(Scores)−min(Scores)
max(Scores)−min(Scores)

)

× 100where 

Scores = {qual1, …, qualM}, and M is the total number of images supporting this 
variant.

Analysis of complex structural variants detected from HG00733. The HiFi reads 
of HG00733 were aligned to reference GRC h38 by ngmlr (v0.2.7) with the default 
setting. Then, SVision was run under the default setting, except with parameters 
‘-s 5–graph–qname’.

First, the events detected by SVsion at low-mapping-quality regions, 
centromeres, genome gap regions and so on were excluded in analysis. These 
regions were obtained from https://github.com/mills-lab/svelter/tree/master/
Support/GRCh38 and the UCSC genome centromere for reference GRCh38. Then, 
we applied the following steps to filter CSVs from the raw callset. (1) Filtering 
CSVs of length larger than 100 kbp; (2) filtering CSVs without complete graph 
representation, where the path ends with other node types instead of ‘S’; and 
(3) for multiple CSVs at one site, we kept only the one with the greatest number 
of supporting reads. SVision revealed two special complex structures, that is, a 
structure consists of nodes ‘S:2,I:2,D:1’ and path ‘S1+I1+I1+I2+I2+S2+’ as well as 
another structure consists of nodes ‘S:2,I:1,D:1’ and path ‘S1+I1+I1+S2+’, which 
were visually confirmed as local targeted-site-duplication (Extended Data Fig. 10c) 
and tandem-duplication (Extended Data Fig. 10d). Events of these two structures 
were also filtered because they were considered as simple events from a biological 
perspective. Afterwards, we used RepeatMasker and tandem repeat finder (TRF) 
annotated files from UCSC genome browser to annotate the CSVs passed the filters 
through BEDtools27 intersect option. The repeat type was assigned if the CSV 
region overlaps with the repeat element, while the size or percentage of overlaps 
was not required. For CSVs with multiple repeat types, the one with the largest 
overlapping region with the CSV was chosen. Meanwhile, CSV was annotated as 
STR if the repeat unit length <7 bp; otherwise, it was annotated as VNTR. Finally, 
we termed all CSVs outside of VNTR/STR regions as high-quality CSVs, which 
were validated and used for further analysis. The PAV and short-read data matched 
CSV loci were obtained through BEDtools without requiring overlap size. For the 
short-read data, a matched CSV locus was considered as completely reconstructed 
if both breakpoint positions and types matched what SVision reported, otherwise 
as partially reconstructed events if either breakpoints or types agreed with SVision’s 
prediction. The related analysis of CSV on CNTN5 among 35 samples and the 
insertion-inversion-insertion event are described in Supplementary Note.

Validation of high-quality complex structural variants detected from HG00733. 
We validated 80 CSVs detected by SVision in HG00733 via (1) graph-based 
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alignment; (2) contig-based visual confirmation; and (3) PCR and Sanger 
sequencing (Supplementary Note).

Graph-based alignment. For each CSV graph in rGFA format, we extracted the CSV 
locus-spanning reads with SAMtools and aligned these reads to each CSV graph 
using GraphAligner (v1.0.12) with the default settings. A CSV was successfully 
validated if a single ONT read could be aligned to the corresponding variant path 
specified in the rGFA file. We then counted the number of long reads covering the 
entire VAR path as the number of supports for this CSV event.

Contig-based visual confirmation. To examine the internal structure of CSVs, 
the phased-assembly specified in the PAV (v1.1.2, TIG_REGION column) at 
the reported variant region was used for further analysis. We first extracted 
the contig sequence harboring a variant based on the coordinates provided 
in the ‘PAV_TIG_REGION’ (Supplementary Table 8). For example, a 
sequence-containing variant was extracted from the h1 assembled genome for 
‘1|1’ and ‘1|0’ genotype and from the h2 assembled genome for ‘0|1.’ In order  
to validate CSV-structure-containing complex insertion, we extended 5 kbp 
both upstream and downstream of the CSV region to extract the reference 
genome via BEDtools, from which the origin of the inserted sequence could  
be identified. Then, Gepard was used to create the Dotplot of contig sequence  
(y axis in the Dotplot) and reference sequence (x axis in the Dotplot) for each 
CSV locus. On the basis of each contig Dotplot, the manual validation contained 
two tiers of metrics: (1) whether the reported region contains a variant; and  
(2) whether the SVision reported structure is identical to what revealed by 
Dotplot. A CSV was considered completely reconstructed if both (1) and (2) 
were satisfied, and others were considered inconclusive events.

PCR and Sanger sequencing. We first determined that about half of the 80 
CSVs (39/80) were unusable for PCR owing to their location within segmental 
duplications, the size of the amplicon needed to validate the rearrangement, or 
the simple repeat nature of the rearrangement. We then randomly selected 20 of 
the remaining rearrangements and performed BLAT on the local region from the 
HG0733 assembly data. We next attempted to subject each of the 20 CSVs to PCR. 
Briefly, we designed primers flanking the CSV or flanking breakpoints within 
the CSV for each of the 20 events (Supplemental Table 12). Next, we attempted 
to amplify each region using Takara LA taq. We obtained the predicted band 
size for 12 of the 20 variant loci. The remaining eight regions did not amplify in 
three attempts with alterations of the PCR conditions and template amounts. All 
PCR products underwent Sanger sequencing and were validated as on target, 
and contained the correct amplicon with the breakpoint from the assembly and 
SVision call.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
HG002 ONT and HiFi data were downloaded from ftp://ftp.ncbi.nlm.nih.gov/
giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/UCSC_Ultralong_
OxfordNanopore_Promethion/ and https://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/PacBio_
CCS_15kb/, respectively. The NA12878 HiFi data was downloaded from http://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/
assemblies/20200628_HHU_assembly-results_CCS_v12/haploid_reads.
The HG00733 HiFi and ONT data were downloaded from http://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/
working/20190925_PUR_PacBio_HiFi/ and http://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/working/20181210_
ONT_rebasecalled/, respectively. The HG00733 assembly was download 
from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/
working/20200417_Marschall-Eichler_NBT_hap-assm/.
The human reference genome hg19 was downloaded from ftp://ftp-trace.
ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_reference_
assembly_sequence/hs37d5.fa.gz. The human reference genome GRCh38 was 
downloaded from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/
GRCh38_reference_genome/.
The HG00733 PAV callset was downloaded from http://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/data_collections/HGSVC2/working/20210806_PAV_VCF/. The merged 
PAV callset of 35 samples was downloaded from http://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/.

The RNA-seq data was downloaded from Sequence Read Archive of project ID 
PRJNA720779.
All results generated by this study are available in Supplementary Note from  
the article.

Code availability
The SVision program (v1.3.6) and trained model are provided at GitHub (https://
github.com/xjtu-omics/SVision), which is available under GNU General Public 
License v3.0. SVision is free for non-commercial use by academic, government and 
non-profit/not-for-profit institutions. Please contact the corresponding author for 
more information about commercial usage. A Code Ocean capsule of the package 
is provided (https://doi.org/10.24433/CO.8937098.v1).
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Extended Data Fig. 1 | Diagram of example simple and complex structural variants and their aberrant alignment patterns. a, The diagram and alignment 
pattern of a simple deletion. b, The diagram and alignment pattern of a deletion associated with inversion, where the inverted segment occurred at the 3’ 
flank region of the deletion.
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Extended Data Fig. 2 | Performance evaluation of callers with HG002 truthset at different coverages and platforms. a, F-score of callers on different 
platforms evaluated with Truvari. The boxplot for HiFi data was the F-score measured for each caller at 5X, 10X and 28X coverage, respectively. Each box 
contains three values, that is, SVision (0.83, 0.89 and 0.90), SVIM (0.83, 0.89 and 0.89), pbsv (0.65, 0.79 and 0.82), CuteSV (0.83, 0.89 and 0.89) and 
Sniffles (0.72, 0.79 and 0.85). The boxplot for ONT data was the F-score measured for each caller at 5X, 10X and 47X coverage, respectively. Each box 
also contains three values (n = 3), that is, SVision (0.76, 0.84 and 0.92), SVIM (0.74, 0.82 and 0.89), pbsv (0.67, 0.78 and 0.84), CuteSV (0.77, 0.85 and 
0.91) and Sniffles (0.74, 0.82 and 0.90). The boxplot defines the median (Q2, 50th percentile), first quartile (Q1, 25th percentile) and third quartile (Q3, 
75th percentile). The bounds of box, that is interquartile range (IQR), of the boxplot is between Q1 and Q3. The minima and maxima values are defined as 
Q1-1.5*IQR and Q3 + 1.5*IQR, respectively. The whiskers are values between minima and Q1 as well as between Q3 and maxima. b, The precision (x-axis), 
recall (y-axis) and F-score (F, dotted line) measurements of detecting SVs from HiFi data at different coverages. c, The precision and recall measurements 
of detecting SVs from ONT data at different coverages. It should be noted that this evaluation ignored SV genotype, but only evaluated on event level.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Simulated complex structural variant types and performance of detecting complex structural variant subcomponents. a, The 
diagrams of simulated complex structural variants (CSV). Each type has a unique ID and a type definition. b, The size distribution of simulated CSVs 
smaller than 1Kbp (1,200 events). c, The size distribution of simulated CSVs larger than 1Kbp (1,800 events). d, The region-match recall rates of model-
based callers for detecting subcomponents (that is, DUP-duplication, DEL-deletion, INV-inversion) of CSVs.
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Extended Data Fig. 4 | The diagrams and alignment patterns of two unclassified complex structural variants. a, SVision correctly detected a deleted 
sequence replaced with dispersed duplication and inverted duplication. b, SVision characterized a complex insertion, consisting of two dispersed 
duplications and one inverted duplication. Both types of (a) and (b) are labeled as unclassified (NA) in the 1KGP call set. The top panel of (a) and (b) are 
the discordant alignments derived from short-read sequencing (that is, one end unmapped and discordant alignment). The bottom panels of (a) and (b) 
describe the abnormal alignments from long-read alignment.
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Extended Data Fig. 5 | One example of simple deletion misinterpreted as complex event by short-read data due to local repeats. a, Two Dotplots are 
created with Gepard to illustrate the local repeats at the variant locus on the reference genome (left) and the breakpoints comparing HiFi read (READ, 
y-axis) and the reference genome (REF, x-axis). b, The IGV view at this locus with reads grouped by pair orientation and colored by insert-size and pair 
orientation.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Examples of reported complex structural variant types identified by SVision. a, One of the 12 inverted duplication events detected 
by SVision and classified as CSV graph structure ‘12’, b, One of the eight deletion associated with inversion events detected by SVison and classified as 
CSV graph structure ‘15’. c, One of the five multiple-deletion with spacer events detected by SVision and classified as CSV graph structure ‘27’. d, One of 
ten deletion with inverted duplication events detected by SVision and classified as CSV graph structure ‘23’. e, One of the five deletion with duplication 
events detected by SVision and classified as CSV graph structure ‘28’. From figure (a) to (e), the Dotplots on the left column are SVision one-variant 
images created with variant feature sequence (VAR, y-axis) and reference sequence (REF, x-axis) at the variant loci, while the Dotplots on right column are 
created with variant spanning HiFi assemblies (CONTIG, y-axis) and the reference sequence (REF, x-axis) at the variant loci.
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Extended Data Fig. 7 | The HiFi assembly reconstruction of the expanded allele and complex structural variant allele affecting CNTN5. The grey region 
indicates the repeat expansion. The dark red region indicates exon 4 of CNTN5, while the light red region is the 5’ flanking region of the exon.
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Extended Data Fig. 8 | The IGV screenshot of duplicated CNTN5 exon signature observed in RNA-Seq data. The RNA-Seq data of the primary visual 
cortex from an Alzheimer disease female. b, The RNA-Seq data of a control male precuneus. In (a) and (b), the green bars pointed by red arrows are 
duplication like read-pair signatures, that is, there are 4 supporting discordant read-pairs in (a), and 2 in (b). Moreover, read depth change (fitted by 
purple line) on exon is observed in both (a) and (b). The RNA-Seq data for (a) and (b) are obtained from Sequence Read Archive (SRA) with accession 
number SRR14194220 and SRR14194206, respectively.
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Extended Data Fig. 9 | The ancestral state of one genome segment revealed by a complex structural variant. a, The structure and breakpoint junction 
sequence of the variant derived from HiFi assembly. b, Blastn results of the inserted sequence mapping to primate genomes, and the top hits include pan 
troglodytes and gorilla.
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Extended Data Fig. 10 | Examples of graph and symmetric graphs as well as two special complex events identified by SVision. a, An example of a 
complex structural variant (CSV) graph where its graph path is interpreted as S1 + S3-S3-S4+. b, Examples of isomorphic graphs representing two 
different CSV events. c, SVision detected CSV classified as local target site duplication. d, SVision detected CSV classified as tandem duplication. Though 
events of structure depicted by (c) and (d) were computed as complex events, they were considered as simple events from the biological perspective.
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