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The prevailing methods to make large language models more powerful and amenable
have been based on continuous scaling up (that is, increasing their size, data volume
and computational resources') and bespoke shaping up (including post-filtering?>,
fine tuning or use of human feedback*®). However, larger and more instructable large
language models may have become less reliable. By studying the relationship between
difficulty concordance, task avoidance and prompting stability of several language
model families, here we show that easy instances for human participants are also easy
for the models, but scaled-up, shaped-up models do not secure areas of low difficulty

inwhich either the model does not err or human supervision can spot the errors.

We also find that early models often avoid user questions but scaled-up, shaped-up
models tend to give an apparently sensible yet wrong answer much more often,
including errors on difficult questions that human supervisors frequently overlook.
Moreover, we observe that stability to different natural phrasings of the same question
isimproved by scaling-up and shaping-up interventions, but pockets of variability
persist across difficulty levels. These findings highlight the need for afundamental
shiftin the design and development of general-purpose artificial intelligence,
particularly in high-stakes areas for which a predictable distribution of errors is

paramount.

Millions of people are using general-purpose artificial intelligence (Al)
systems based on large language models (LLMs), which have become
commonplace in areas such as education®, medicine’, science®’ and
administration'®", As these models frequently make mistakes, users
have to supervise model operation and manage their expectations,
for thereliable use of these systems. With language models becoming
larger and more instructable, we need to analyse how this reliability has
evolved. Since the early LLMs">**, models have been scaled up—trained
with more parameters, on larger datasets and with longer training
times—and have alsobeen shaped up with human feedback—using tech-
niques such as instruction fine tuning®, reinforcement learning from
human feedback (RLHF)® or output-filtering moderation techniques®>.

It may be taken for granted that as models become more powerful
and better aligned by using these strategies, they also become more
reliable fromahuman perspective, thatis, their errors follow a predict-
able pattern thathumans can understand and adjust their queries to®.
Forinstance, early models failed at simple additions such as 20 + 183.
Performance was highly predictable: failure was common. As aresult,
users easily understood that there was no operating range for this task:
nobody used these models for addition. A few scaled-up and shaped-up
generations later, the models not only seemingly master these addi-
tions but also successfully perform additions of 50 digits or more.
Because of this prowess, people may start using them as calculators
(for example, to convert measurements to different units'). Itis only
insuch cases that users become disappointed when the modelfailsata

simple prompt such as ‘Add 3913 and 92" The user-driven reliability is
thenseriously damaged, because the model fails when the user thinks
these digits were in the operating range. The experience becomes even
more baffling when the user gets the correct answer if the question is
adjusted slightly, for example to ‘3913 + 92 =, or if it is not changed at
all-because many models are configured to be non-deterministic.
Although this prompt sensitivity has been analysed extensively” 2, itis
poorly understood why an over-diligent system spouts a wrong answer
for 100-digit addition instead of simply answering ‘I'm afraid I can’t
do that’. This reckless behaviour has been incentivized by developers

building models that are ‘never evasive™.

Reliability fluctuations

To understand the evolution of reliability, we analyse the trajectory
of several families of LLMs: the generative pre-training (GPT) saga
developed by OpenAl, the LLaMA series developed by Meta and the
BLOOM suite developed by BigScience. GPT hasled the state of the art
in the past few years and, according to several surveys?* %, is central
to the LLM ecosystem, influencing transformer-based architectures,
training data, evaluation frameworks and alignment techniques.
LLaMA®?js the best example of a family for which weights have been
released, and BLOOM?*% is the result of an even more open endeav-
our coming from the scientific community. Each family represents
agenuine effort of making LLMs more capable and better aligned at
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Table 1| Ten GPT, ten LLaMA and twelve BLOOM models

Model Releaseyear  Scaling Shaping
Size (no. of Data (no. Compute (no. Instruction Alignment
parameters) of tokens) of FLOPs)
GPT-3 ada 2020 350M 300B 6.41x10%° None None
GPT-3 babbage 2020 1.3B 3008 2.38x10% None None
GPT-3 curie 2020 6.7B 3008 1.20x10% None None
GPT-3 davinci 2020 175B 300B 3.14x10% None None
text-davinci-001 2021 175B - - FeedME None
text-davinci-002 2022 175B - - FeedME None
text-davinci-003 2022 175B - - RLHF (PPO) None
GPT-3.5-turbo 2022 175B° - - RLHF® S-FT and moderation
GPT-4 v 2023 - - - RLHF® S-RLHF, RBRMs and moderation
GPT-4v.2 2023 - - - RLHF® S-RLHF, RBRMs and moderation
LLaMA-7b 2023 6.7B 1.0T 4.02x10% None None
LLaMA-13b 2023 13B 1.0T 4.55%x10% None None
LLaMA-33b 2023 32.5B 14T 273x10% None None
LLaMA-65b 2023 65.2B 14T 5.50x10% None None
LLaMA-2-7b 2023 7B 20T 8.40x10% None None
LLaMA-2-13b 2023 13B 20T 1.60x10% None None
LLaMA-2-70b 2023 70B 20T 810x10% None None
LLaMA-2-7b-chat 2023 7B 20T 8.40x10% RLHF (PPO and RS FT) Supervised S-FT, S-RLHF and S-CD
LLaMA-2-13b-chat 2023 13B 20T 1.60x10% RLHF (PPO and RS FT) Supervised S-FT, S-RLHF and S-CD
LLaMA-2-70b-chat 2023 70B 20T 810x10% RLHF (PPO and RS FT) Supervised S-FT, S-RLHF and S-CD
BLOOM-560m 2022 559M 350B 1.83x107 None None
BLOOM-1b1 2022 1.07B 350B 3.60x10% None None
BLOOM-1b7 2022 1.72B 350B 5.57x107 None None
BLOOM-3b 2022 3.00B 350B 9.83x107 None None
BLOOM-7b 2022 7.07B 350B 2.32x10% None None
BLOOM-176b 2022 176.25B 366B 577x10% None None
BLOOMz-560m 2022 559M 353.67B 1.87x10% Multitask FT None
BLOOMz-1b1 2022 1.07B 350.5B 3.69x10% Multitask FT None
BLOOMz-1b7 2022 1.72B 358.4B 5.70x10% Multitask FT None
BLOOMz-3b 2022 3.00B 358.4B 1.00x10% Multitask FT None
BLOOMz-7b 2022 7.07B 354.2B 2.38 x10% Multitask FT None
BLOOMz-176b 2022 176.25B 368B 5.91x10% Multitask FT None

Key abbreviations include the following: FeedME, a supervised fine-tuning method using human-written demonstrations and top-quality model samples; PPO, a reinforcement learning approach
with reward models trained through human comparisons; RBRMs, rule-based reward models that enhance a GPT-4 policy model by promoting safe content generation and discouraging harmful
outputs during RLHF fine tuning; FT, fine tuning; CD, context distillation; and RS, rejection sampling. ‘S-" indicates the method incorporates safety alignment. The sources of the specifications in

the table are available in Supplementary Note 1.

2It is understood that GPT-3.5-turbo is an improvement on text-davinci-003 as described in ref. 44 and thus should have 175B parameters, but this information is not explicitly declared by OpenAl

in any official sources.
bSpecific method is unknown.

the same time. Table 1summarizes the details of models in these three
families. Scaling (increasing the number of parameters, data size and
compute) has been identified as a key predictor for overall perfor-
mance’, and shaping (modifying the trained systems) has improved
their instructability and alignment. This creates two categories. The
firstincludesthe ‘raw’ models—GPT-3 ada, babbage, curie and davinci—
the non-chat LLaMA models and the base (non-z) BLOOM models. The
second comprises the shaped-up models (orinstruct or chat models),
whichincorporate some kind of instruction adaptation?, fine tuning or
safety moderation of the outputs. For our analysis, itis convenient that
BLOOM and LLaMA have six and three exactly paired versions, respec-
tively, of raw and shaped-up models to disentangle scaling up from
shaping up.

Figurelrepresents how somekey indicators show that the shaped-up
models (in blue) are more stable to prompt variation and are more
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correct, atthe cost of beingless concordant with human difficulty, and
having more overall failures (less prudent). The indicators summarize
the behaviour of five carefully selected benchmarks in the domains
of simple numeracy (‘addition’), vocabulary reshuffle (‘anagram’),
geographical knowledge (‘locality’), diverse scientific skills (‘science’)
and information-centric transformations (‘transforms’). This covers
arange of domains and degrees of open-endedness of the answers.
We identify good intrinsic proxies for human difficulty based on
relevantliteratureinthe first two domains (‘addition’ and ‘anagram’), or
byidentifying demand-related featuresin the rest (excluding ‘science’,
for which multiple human difficulty assessments were already avail-
able for all the instances®). To determine their quality, we conducted
an extensive human study (S1) to assess which difficulty proxies best
matched human expectations, and calibrate the proxies to anormalized
difficulty score, ranging from 0 to 100, representing the anticipated
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Fig.1|Keyindicators forseveral modelsin GPT (OpenAl), LLaMA (Meta)
and BLOOM (BigScience) families. The raw models (yellow to orange) and

the shaped-up models (light to dark blue) cluster differently. As the answers for
allthese models fallinto three categories (correct, avoidantand incorrect),
shortened asc,aandi, respectively, we have indicators for correctness versus
avoidance +incorrectness, and prudence (correctness + avoidance) versus
incorrectness. Looking at the correctness indicators (top half), which represent
accurateresponses, we see that the shaped-up models are more stable to
promptvariations and are more frequently correct (higher correctness
proportion) but are less concordant with human difficulty than the raw
counterparts. Looking at the prudence indicators (bottom half), we see that

percentage of failure for the ‘average human’. Systematically control-
ling for human difficulty is crucial for the understanding of user-driven
reliability: human expectations of success depend on the perception
of the difficulty of instances®*~32, Table 2 provides an overview of the
five benchmarks, the intrinsic difficulty function used as a proxy for
human difficulty (discussed in the Methods), some examples and the
calibrated human difficulty values for the given examples.

Another necessary and innovative elementin our analysisis that we
consider three categories for the responses: correct, incorrect and
avoidant, denotedby c,iand a, respectively. Avoidance in human par-
ticipants has been extensively explored in psychology® . Such avoid-
ant behaviours include procrastination, deviation, making excuses
or simply not answering. For LLMs, avoidance is also referred to as
hedging, refusal® or evasiveness?, including fortuitous utterances
or continuations that are not answers (non-conforming), and those
responses at the meta-level explaining why the question is not answered
(for epistemic or ethical reasons). Supplementary Table 11 shows the
types of avoidance for some tasks in the five benchmarks.

Difficulty concordance, task avoidance and prompting stability
must be regarded from the point of view of human users interacting
with LLMs. Our human study S1 (see Supplementary Note 6) analy-
ses whether human perceptions of difficulty in general are aligned
with actual human performance and self-confidence, because this
hasimportant implications in the tasks humans decide to delegate to
language models and their prompt formulation. But as crucial as the
inputs are, so is the way the outputs from the model are used, verified
orsupervised. The context of use of bothinput and output determines
how reliable the use of these systems is. We conducted asecond human
study S2 (see Supplementary Note 7), in which we explore whether
human participants can accurately assess the outputs of models and
thus compensate for different types of error. With a three-valued con-
fusion matrix with correctness, avoidance and incorrectness, we can
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ﬁ) Proportion (%)

LLaMA-2-7b-chat BLOOM-560m BLOOMz-560m
LLaMA-2-13b-chat BLOOM-1b1 BLOOMz-1b1
—e— LLaMA-2-70b-chat BLOOM-1b7 —o— BLOOMz-1b7
BLOOM-3b —»— BLOOMz-3b
BLOOM-7b1 —— BLOOMz-7b1

BLOOM-176b —— BLOOMz-176b

the shaped-up models are also more stable to prompt variations, but fail more
frequently (lower prudence proportion, by avoiding less) and are not much
more concordant with human difficulty. Focusing only on the shaped-up
models (inblue), we observe that the most powerful GPT-4 v.2, LLaMA-2-
70b-chatand BLOOMz-176b models perform best in correctness proportion
and prompting stability (top and bottom), but equal to or worse than other
models for all the other indicators, with many fluctuations that do notindicate
aclear positive trend in these other dimensions. Details of the indicators and
dataused forthisplotarefoundinthe Methods. Extended Data Table1provides
amoredetailed perspective onthe sameresults.

focusonthe frequency of non-avoidant cases for which humans believe

the outputis correct butitis not (Fig. 3).

With this setup, we investigate three core and intertwined elements
that affect the reliability of LLMs from a human perspective.

1. Difficulty concordance. Are errors morelikely foritems that humans
perceive as difficult? Do scaling and shaping eliminate errors for easy
items, thereby creating areas of reliable operation?

2. Task avoidance. How often do language models give plausible but
wrong answers instead of safely avoiding answering questions? Are
scaled-up, shaped-up models better at avoiding errors or making
them detectable for humans?

3. Prompting stability. How are correctness and avoidance affected by
tangential changesinthe prompt? Are scaled-up, shaped-up models
less sensitive to prompt variation across difficulty levels?

We will answer these questions by using human difficulty metrics for
eachbenchmark (see Table 2), examining different kinds of avoidance
(Supplementary Table 11), and using 15 natural prompt variations—
prompts conceived as genuine instructions or questions provided by
humans—per benchmark (Supplementary Tables 1 and 2). Difficulty,
avoidance and prompting, as well as their evolution, have been analysed
from different perspectives”**** (see Supplementary Note 13 for a
full discussion). Here we focus on the systemic interaction of these
three elements from the perspective of LLM scaling and shaping up.

Results

Figure 2shows theresults of aselection of modelsinthe GPT and LLaMA
families, increasingly scaled up, with the shaped-up models on the
right, for the five domains: ‘addition’,‘anagram’, ‘locality’, ‘science’ and
‘transforms’. We see that the percentage of correct responses increases
for scaled-up, shaped-up models, as we approach the last column. This
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Table 2 | Five benchmarks

Benchmark Examples Cal. diff.
Addition: single-task benchmark. Make the addition of 24427 and 7120. 35.25
Arithmetic operations ranging from -
1- to 100-digit additions. The sum of 47309068053 and 95464 is 65.04
Difficulty: no. of carrying operations (f,,) 1893603010323501638430+98832380858765261900 98.67
Anagram: single-task benchmark. Unscramble this string of letters, ‘efe’, to form a word. 18.42
Jumbled words consisting of 3 to 20 letters P ) -
to be unscrambled to form meaningful Rearrange the letters ‘ngiotuq’ to make a single word. 50.42
words. Rearrange the following anagram into an English word: ‘elmtweoascnednkg’. 96.78
Difficulty: no. of letters of the anagram (f.,)
Locality: single-task benchmark. Which city that is less than 27km away from Toronto has the largest number of people? 91.66
Geographical knowledge about the location - N : - >
and size of cities relative to each other. What is the name of the largest city (by population) that is less than 98km away from Altea? 92.64
Difficulty: Inverse of city popularity (f,.,) Name the most populated city that is less than 39km away from Akil. 99.87
Science: multitask benchmark. Definition: In this task, you need to provide the correct option for a given problem from the provided 37.02
Basic science-related world knowledge options.\nProblem: shining a light through a diamond can \nA) make a lot of bright lights shine\nB)
questions and graduate-level questions summon a brilliant wave of colour\nC) heat up a room\nD) make a lot of money\nOutput:
Qif?ilcc:)b?tgan?c?ilcztzr;idhﬂ:ser;?:scltirf\%cult ) A light beam is propagating through a glass with index of refractionn. The glass is moving at constant 71.83
Y P ¥ Uhum velocity v in the same direction as the beam and toward the observer in laboratory. What is the speed of

light in glass relative to the observer in laboratory? Take the speed of light in vacuum c=1.\nA. (1+n*v)/

(n+v)\n B. (1-n*v)/(n+v)\n C. 1D. (1+n*v)/(n-v)\nWith respect to the choices above, the correct one is

Answer the following questions based on the list of available choices: \nldentify the missing reagents in 99.97

the following reaction.\n(3r,5r,7r)-adamantane-1-carboxylic acid + A -> (3r,5r,7r)-adamantane-1-carbonyl

azide + B —> (3s,5s,7s)-adamantan-1-amine.\nA: A= NaN3 and B = HCl aq, Heat\nB: A = PCl5 and B = H30+,

Heat\nC: A = diphenylphosphoryl azide (DPPA) and B = H30+, Heat\nD: A = diphenylphosphoryl azide

(DPPA) and B = NaN3\nAnswer:
Transforms: multitask benchmark. Be concise in your answer, placed between double quotes. Do not generate any explanation or anything ~ 39.49
Information-centric transformation tasks. else apart from the requested output. Given\?double07@MI6.gov.uk’\nModify the input to display the
Difficulty: Combination of input+output domain of the email address of the form USER@DOMAIN.
word countand Levenshtein distance (f,..) Consider the INPUT: \n\8:30h - Accreditation (badges)\n9:00h - Opening\n9:15h - Keynote\n10:15h - 55.22

Coffee break\n10:45h - Invited Talks\n11:55h - Lightning talks\n12:05h - Panel\n13:00h - Lunch break

(in the hall)\n14:30h - Keynote\n15:30h - Minibreak\n15:40h - Invited Talks\n16:50h - Panel\n17:45h -

Closing remarks\\nlId like the agenda to show a 15-minute reduction in each keynote speaker’s segment,

shifting the schedule to finish earlier. \nBe concise in your answer, placed between double quotes.

Do not generate any explanation or anything else apart from the requested output.

Michael Vaughn, a 63-year-old retired naval officer, presents an extensively complex medical history 64.76

complicated by a litany of allergies. He battles chronic pain stemming from neuropathy for which

he takes Pregabalin (Lyrica) 150 mg twice daily. Due to advanced rheumatoid arthritis, he relies on
Etanercept (Enbrel) 50 mg, administered weekly via subcutaneous injection, but cannot be prescribed
common NSAIDs like Ibuprofen or Naproxen due to gastrointestinal bleeding and a reported severe
allergy to Aspirin (anaphylaxis). His Type 2 diabetes is managed with Insulin Aspart (NovolLog)
administered via an insulin pump with doses varying according to his blood glucose readings; he
experienced a life-threatening lactic acidosis episode with Metformin.\n I'd like the list of drugs that are
prescribed to the patient to be arranged alphabetically and without repetitions, in the form of a clean,
comma-separated list. Be concise in your answer, placed between double quotes. Do not generate any
explanation or anything else apart from the requested output.

Examples of each benchmark and their chosen difficulty metric are shown with their calibrated difficulty values (cal. diff.) according to human expectations.

isanexpected result and holds consistently for the rest of the models,
showninExtended DataFig.1(GPT), Extended DataFig.2 (LLaMA) and
Supplementary Fig. 14 (BLOOM family).

Let us focus on the evolution of correctness with respect to difficulty.
For ‘addition’, we use the number of carry operations in the sum (f,,).
For ‘anagram’, we use the number of letters of the given anagram (f,,,).
For ‘locality’, we use the inverse of city popularity (f,,,). For ‘science’,
we use human difficulty (f,,,) directly. For ‘transforms’, we use acom-
bination of input and output word counts and Levenshtein distance
(f.«) (Table 2). Aswe discuss in the Methods, these are chosen as good
proxies of human expectations about what is hard or easy according to
humanstudy S1(see Supplementary Note 6). As the difficulty increases,
correctness noticeably decreases for all the models. To confirm this,
Supplementary Table 8 shows the correlations between correctness
and the proxies for human difficulty. Except for BLOOM for addition,
all of them are high.

However, despite the predictive power of human difficulty metrics
for correctness, full reliability is not even achieved at very low difficulty
levels. Although the models can solve highly challenging instances,
they also still fail at very simple ones. This is especially evident for
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‘anagram’ (GPT), ‘science’ (LLaMA) and ‘locality’ and ‘transforms’
(GPT and LLaMA), proving the presence of a difficulty discordance
phenomenon. The discordance is observed across all the LLMs, with
no apparent improvement through the strategies of scaling up and
shaping up, confirmed by the aggregated metric shown in Fig. 1. This
is especially the case for GPT-4, compared with its predecessor GPT-
3.5-turbo, primarily increasing performance on instances of medium
or high difficulty with no clear improvement for easy tasks. For the
LLaMA family, no model achieves 60% correctness at the simplest dif-
ficulty level (discounting 25% random guess for ‘science’). The only
exception is a region with low difficulty for ‘science’ with GPT-4, with
almost perfect results up to medium difficulty levels.

Focusing on the trend across models, we also see something more:
the percentage of incorrect results increases markedly from the raw
tothe shaped-up models, as a consequence of substantially reducing
avoidance (whichalmost disappears for GPT-4). Where the raw models
tend to give non-conforming outputs that cannot be interpreted as an
answer (Supplementary Fig.16), shaped-up modelsinstead give seem-
ingly plausible but wrong answers. More concretely, the area of avoid-
anceinFig.2 decreases drastically from GPT-3 adato text-davinci-003
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For each combination of model and benchmark, the resultis the average of 15
prompttemplates (see Supplementary Tables1and 2). For each benchmark,

we showits chosenintrinsic difficulty, monotonically calibrated to human

expectations on the x axis for ease of comparison between benchmarks.

and is replaced with increasingly more incorrect answers. Then, for
GPT-3.5-turbo, avoidance increases slightly, only to taper off again
with GPT-4. This change from avoidant to incorrect answers is less
pronounced for the LLaMA family, but still clear when comparing the
first with the last models. This is summarized by the prudenceindica-
tors in Fig. 1, showing that the shaped-up models perform worse in
terms of avoidance. This does not match the expectation that more
recent LLMs would more successfully avoid answering outside their
operating range. In our analysis of the types of avoidance (see Sup-
plementary Note 15), we do see non-conforming avoidance chang-
ing to epistemic avoidance for shaped-up models, which s a positive
trend. But the pattern is not consistent, and cannot compensate for
the general drop in avoidance.

Looking at the trend over difficulty, the important question is
whether avoidance increases for more difficult instances, as would
be appropriate for the corresponding lower level of correctness.
Figure 2 shows that this is not the case. There are only a few pockets
of correlation and the correlations are weak. This is the case for the
last three GPT models for ‘anagram’, ‘locality’ and ‘science’ and a few
LLaMA models for ‘anagram’and ‘science’. Insome other cases, we see
aninitialincrease inavoidance but then stagnation at higher difficulty
levels. The percentage of avoidant answers rarely rises quicker thanthe
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Thexaxisissplitinto30 equal-sized bins, for which the ranges must be taken
asindicative of different distributions of perceived human difficulty across
benchmarks. For ‘science’, the transparent yellow bars at the bottom represent
therandom guess probability (25% of the non-avoidance answers). Plots for all
GPTand LLaMA models are provided in Extended Data Figs.1and 2 and for the

BLOOM family in Supplementary Fig.14.

percentage ofincorrect ones. Thereadingis clear: errors stillbecome
more frequent. This represents an involution in reliability: there is no
difficulty range for which errors are improbable, either because the
questions are so easy that the model never fails or because they are so
difficult that the model always avoids giving an answer.

We next wondered whether it is possible that this lack of reliability
may be motivated by some prompts being especially poor or brittle,
andwhether we could find asecure region for those particular prompts.
We analyse prompt sensitivity disaggregating by correctness, avoid-
anceand incorrectness, using the promptsin Supplementary Tables 1
and 2. A direct disaggregation can be found in Supplementary Fig. 1,
showing that shaped-up models are, in general, less sensitive to prompt
variation. Butif we look at the evolution against difficulty, asshownin
Extended Data Figs. 3 and 4 for the most representative models of the
GPT and LLaMA families, respectively (all models are shown in Sup-
plementary Figs. 12,13 and 15), we observe a big difference between
the raw models (represented by GPT-3 davinci) and other models of
the GPT family, whereas the LLaMA family underwent a more timid
transformation. The raw GPT and all the LLaMA models are highly
sensitive to the prompts, evenin the case of highly unambiguous tasks
such as ‘addition’. Difficulty does not seem to affect sensitivity very
much, and for easy instances, we see that the raw models (particularly,
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Fig.3|Evolution of types of supervision error versus difficulty according
tohumansurvey S2.Inthesurvey (Supplementary Fig. 4), participants have
to determine whether the output of amodelis correct, avoidant orincorrect
(ordonotknow, represented by the ‘unsure’ option in the questionnaire).

GPT-3 davinciand non-chat LLaMA models) have some capacity thatis
unlocked only by carefully chosen prompts. Things change substan-
tially for the shaped-up models, the last six GPT models and the last
three LLaMA (chat) models, which are more stable, but with pockets
of variability across difficulty levels.

Overall, these different levels of prompt sensitivity across difficulty
levels have important implications for users, especially as human study
S2shows that supervisionis not able to compensate for this unreliability
(Fig.3).Looking at the correct-to-incorrect type of errorin Fig. 3 (red),
ifthe user expectations on difficulty were aligned with model results,
we should have fewer cases on the left area of the curve (easy instances),
and those should be better verified by humans. This would lead to a
safe haven or operating area for those instances that are regarded as
easy by humans, with low error from the model and low supervision
error from the human using the response from the model. However,
unfortunately, this happens only for easy additions and for a wider
range of anagrams, because verification is generally straightforward
for these two datasets.

Our observations about GPT and LLaMA also apply to the BLOOM
family (Supplementary Note 11). To disentang]le the effects of scaling
and shaping, we conduct an ablation study using LLaMA and BLOOM
models in their shaped-up versions (named chat and z, respectively)
and the raw versions, with the advantage that each pair has equal
pre-training data and configuration. We also include all other models
with known compute, suchas the non-instruct GPT models. We take the
same datasummarizedin Fig.1(Extended DataTable1) and performa
scaling analysis using the FLOPs (floating-point operations) columnin
Table 1. FLOPs information usually captures both data and parameter
countifmodels are well dimensioned*’. We separate the trends between
raw and shaped-up models. The fact that correctness increases with
scale has been systematically shown in the literature of scaling laws"*°.
With our data and three-outcome labelling, we can now analyse the
unexplored evolution of avoidance and incorrectness (Fig. 4, left).

As evident in Fig. 4, avoidance is clearly much lower for shaped-up
models (blue) than for raw models (orange), butincorrectnessis much
higher.Butevenif correctness increases with scale, incorrectness does
not decrease; for the raw models, it increases considerably. This is
surprising, and it becomes more evident when we analyse the percent-
age of incorrect responses for those that are not correctin (i/(a +i) in
our notation; Fig. 4 (right)). We see alarge increase in the proportion
of errors, with models becoming more ultracrepidarian (increasingly
giving a non-avoidant answer when they do not know, consequently
failing proportionally more).

We can now take all these observations and trends into account,
in tandem with the expectations of a regular human user (study S1)
and the limited human capability for verification and supervision
(study S2). Thisleads to are-understanding of the reliability evolution
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Difficulty (xaxis) is showninequal-sized bins. We see very few areas where
thedangerouserror (incorrect being considered correct by participants) is
sufficiently low to consider a safe operating region.

of LLMs, organized in groups of two findings for difficulty discord-
ance (F1,andF1,), task avoidance (F2,and F2,) and prompt sensitivity
(F3,and F3,):

F1,—human difficulty proxies serve as valuable predictors for LLM
correctness. Proxies of human difficulty are negatively correlated with
correctness, implying that for a given task, humans themselves can
have approximate expectations for the correctness of an instance.
Relevance: this predictability is crucial as alternative success estima-
tors when model self-confidence is either not available or markedly
weakened (for example, RLHF ruining calibration®*).

F1,—improvement happens at hard instances as problems with easy
instances persist, extending the difficulty discordance. Current LLMs
clearlylack easy operating areas withno error. Infact, the latest models
of all the families are not securing any reliable operating area. Rel-
evance: this is especially concerning in applications that demand the
identification of operating conditions with high reliability.

F2,—scaling and shaping currently exchange avoidance for more
incorrectness. The level of avoidance depends on the model version
used, and in some cases, it vanishes entirely, with incorrectness tak-
ing important proportions of the waning avoidance (that is, ultrac-
repidarianism). Relevance: this elimination of the buffer of avoidance
(intentionally or not) may lead users to initially overtrust tasks they
donot command, but may cause themtobe let downinthe longterm.

F2,—avoidance does not increase with difficulty, and rejections by
human supervision do not either. Model errors increase with diffi-
culty, butavoidance does not. Users can recognize these high-difficulty
instances but still make frequent incorrect-to-correct supervision
errors. Relevance: users do not sufficiently use their expectations on
difficulty to compensate for increasing error rates in high-difficulty
regions, indicating over-reliance.

F3,—scaling up and shaping up may not free users from prompt
engineering. Our observations indicate that there is an increase in
prompting stability. However, models differ in their levels of prompt
sensitivity, and this varies across difficulty levels. Relevance: users
may struggle to find prompts that benefit avoidance over incorrect
answers. Human supervision does not fix these errors.

F3,—improvement in prompt performance is not monotonic across
difficulty levels. Some prompts do not follow the monotonic trend of
the average, are less conforming with the difficulty metric and have
fewer errors for hard instances. Relevance: this non-monotonicity is
problematic because users may be swayed by prompts that work well
for difficult instances but simultaneously get more incorrect responses
for the easy instances.

As shownin Fig. 1, we canrevisit the summarized indicators of the
three families. Looking at the two main clusters and the worse results
of the shaped-up models on errors and difficulty concordance, we
may rush to conclude that all kinds of scaling up and shaping up are
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(a; topleft), incorrectness (i; bottom left) and ultracrepidarianism (i/(a + i); right)—the proportion of incorrect over both avoidant and incorrect answers.

inappropriate for ensuring user-driven reliability in the future. How-
ever, these effects may well be the result of the specific aspirations for
these models: higher correctness rates (to excel in the benchmarks
by getting more instances right but not necessarily all the easy ones)
and higher instructability (to look diligent by saying something mean-
ingful at the cost of being wrong). For instance, in scaling up, there
is atendency to include larger training corpora* with more difficult
examples, or giving more weight to authoritative sources, which may
include more sophisticated examples*, dominating the loss over more
straightforward examples. Moreover, shaping up has usually penalized
answers that hedge or look uncertain®. That makes us wonder whether
this could all be different.

Discussion

In this paper, we have conducted two human studies. The first inves-
tigates perceived and actual difficulty for participants to respond to
aninput (to determine whether difficulty expectations are correlated
with difficulty proxies). The second includes participants supervis-
ing or verifying the output of amodel (to determine whether humans
will take incorrect responses as correct). Maximizing difficulty con-
cordance and reducing possible incorrect-to-correct errorsin human
verification could be introduced in the loss function when training
and shaping up these models. For this, collective efforts are needed
to build larger datasets of human difficulty expectations and output
supervision. With these data, more qualified than traditional human
feedback, Alitself can be used to train supervisors that perform this
shaping up, provided the aim is not to eliminate evasiveness as in ref.
21, but to find the right level of avoidance. Specialized language mod-
els in medicine and other critical areas may be designed with reject
options, or coupled with external Al supervisors, thereby favouring
avoidance by teaching the Almodels when to refrain from answering™.
These interventions should make LLMs exhibit enhanced human-like
and human-aligned characteristics that ensure reliability. Until this
is done, and given the high penetration of LLM use in the general
population, we raise awareness that relying on human oversight for

these systems is a hazard, especially for areas for which the truth
is critical.

Finally, we include some limitations of our analysis and the future
work that emanates from them. The first limitation of our study
lies in the recruitment of participants who are mostly non-experts.
We have to take this into account when interpreting the calibrated
difficulty values, which are usually high for some benchmarks, as
thereisahigh number of questions that cannot be solved by the gen-
eral population. However, our motivation was to capture the same
human population to estimate expected instance difficulties that
are comparable across all the datasets. A second limitationis that our
sample of ‘natural’ prompts was collected from a diversity of sources,
but we did not have access to the frequency in which a prompt may
appearinareal scenario. Last, we have only covered a sample of fami-
lies with specific trajectories, excluding LLMs that delegate tasks
to external tools or use sophisticated reasoning techniques, which
may show different dynamics. The GPT family has been at the fore-
front in performance and has been used over a few years, making
OpenAl extremely influential in the development of other language
models??, In fact, the OpenAl application programming interface has
the most dependencies when the ecosystems of foundation models
are analysed*. LLaMA and BLOOM have a more open and systematic
lineup of models, not only allowing for the disentanglement between
scaling and shaping but also paving the way for an incremental
analysis of their evolution using our methodology and code, in the
fast-changing context of LLM development. Highlighting the reliability
issues of these families and introducing new abstractions and tools
for analysis is of utmost importance, enabling other researchers to
explore different pathways for the scaled-up, shaped-up models of
the future.
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Methods

We now explain our choices of benchmarks, prompt templates, dif-
ficulty functions, response scoring, general experimental design and
the key metrics used to evaluate the models.

Benchmarks and factors of difficulty

Forthe generality of our analysis, we selected five distinct benchmarks
toreduce confounding factors as much as possible: simple numeracy
(‘addition’), vocabulary reshuffle (‘anagram’), geographical knowl-
edge (‘locality’), basic and advanced science questions (‘science’) and
information-centric transformations (‘transforms’). These represent
core skills (numerical, linguistic and knowledge) and more diverse
ecologically valid scenarios, withsome of them having extremely simple
formulations and others requiring deep understanding of the informa-
tion presented, as well as the integration of data from multiple sources.
Closed-ended questions are typical of LLM research?, such as those
found in the ‘science’ benchmark, but gradually more open-ended
tasks (‘addition’, ‘anagram’, ‘locality’ and ‘transforms’) better represent
awider and more realistic use of LLMs.

« Addition. This benchmark involves sums, prompting the LLMs by
asking for the result of adding two addends (such as ‘3 +7=’). The
examplesin our analysis range from1- to 100-digit additions. Because
language models can not only memorize small additions but also
generalize to cope with any combination of larger digits, this task
is appropriate for analysing difficulty trends. With respect to the
difficulty of “addition’, the number of digits and carry operations
affect human performance on addition tasks.

Anagram. The use of anagrams as a way of assessing aspects of prob-
lem solving dates back to 1916 (ref. 45), and researchers have been
using anagrams to examine avariety of phenomena, such as the cog-
nitive processes involved in problem solving*®. An ‘anagram’ task is
aword puzzle in which the participant or model is presented with a
jumbled string of letters, and the objective is to find a word that can
be formed using all the letters given. The examples in our analysis
range from 3-letter words to 20-letter words. This task involves let-
ter manipulationand good recall from an extensive vocabulary. One
peculiarelement of thistaskis thatitis easy to verify. The difficulty of
anagramsis mostly influenced by the frequency of the letters and the
word, the number of letters and the degree of rearrangement required.
Locality. Thisbenchmark contains questions relating to geographical
knowledge, inspired by some cognitive models of distance estima-
tion”. The examples in our analysis ask questions about the location
andsize of citiesinrelation to each other, by giving aninputcityand a
randomly generated distance (d, ranging from1t01,000 km). The LLM
isasked toidentify the most populous city (the target city) inaradius
of d kmfromtheinputcity. This task requires geographical knowledge
and reasoning. For thisbenchmark, potential human difficulty factors
could be the city or country popularity, their population and so on.

Science. Thisbenchmarkintegrates multiple-choice questions from
basicscience as collected by OpenBookQA, complemented with more
advanced science questions from Google-proof Q&A (GPQA). They
represent tasks that LLMs are likely to encounter in educational,
academic and research settings®**%, some of which require consid-
erable time to solve. The included questions are Google-proof*.
The ‘science’ benchmark, thus, includes questions of varying levels
of difficulty, as determined by human judgement, providing a lens
through which to examine their handling of complex, data-rich tasks
in specific domains.

Transforms. This benchmark includes a comprehensive set of
information-centric transformation tasks based on real-world sce-
narios. It focuses on domains that are most prevalent in the use of
LLMs today®, and ensure that there is a ground truth for evaluation.
Weintegrate not only many data-formatting tasks—awell-studied area
in LLMs®'—but also new tasks about world knowledge, information

retrieval, advertising, administration, coding, scheduling and retail -
ing. The outputs for ‘transforms’ may require extensive elaboration
oftheinput (hundreds of characters) toformacorrect answer, which
canalso be hundreds of characters long. The aim was to simulate, as
closely as possible, the complexity and depth of real-world questions
in a controlled experimental setting. For task difficulty, given the
heterogeneity, the mainfactors are as general as character and word
counts, and the Levenshtein distance betweeninput and outputasa
proxy of transformation effort.

For the previously described domains, we found intuitive human
difficulty proxies, some of which have been developed in the litera-
ture. Supplementary Note 4 provides further details on the defini-
tion of difficulty metrics and the abilities behind the features used
for their definition. Using the results from human study S1, we select
the difficulty functions that are most correlated with human expec-
tations (Supplementary Table 5): f;,, for ‘addition’, f,., for ‘anagran’,
Joop fOr ‘locality” and f,,,, for ‘transforms’. For ‘science’, we blend and
calibrate the two original human metrics into one, that is, f;,,.. For all
the benchmarks, we normalize the original difficulty functions using a
logistic mapping to ascale ranging from 0 to 100 that corresponds to
the probability of human failure as estimated by humans themselves.
We need to take into account that these values are an estimate (from
the human sample in S1, of their expectations) and are fitted with a
two-parameter logistic function; therefore, these values between 0%
and100% haveto beinterpreted with caution, especially for small dif-
ferences (see Supplementary Note 8 for details). Nevertheless, having
all the difficulty levels on the same human-expectations scale helps
with the comparison of the benchmarks.

Data collection and generation

We first describe how the examples were collected or generated, and
then the 15 prompt templates that were used for each of them.

« Addition. We randomly generate 5,000 instances, in which each
addend is sampled uniformly from 1to 100 digits. We then remove
those instances for which f;,, > 50 to prevent instances with similar
oridentical numbers of digitsin both addends from dominating the
upper difficulty bins. This is because, for example, if the difficulty is
the harmonic mean, the bins with f;,.., > 90 would be dominated by
instances in which both addends have very high numbers of digits
(that s, at least 82 digits). A similar phenomenon also occurs with
other difficulty levels, but with the previous criterion considered,
the problem is well mitigated. This results in a final sample of 3,142
instances.

Anagram. We use the Google Web Trillion Word Corpus®?, containing
the frequency of more than 300,000 most commonly used single
words onthe Web in English. From this corpus, we randomly choose
up to100 English words with 3-20 letters, resultingina total of 1,570
words. There are fewer than1,800 instances because there are fewer
than100 English words with 17-20 letters. Then, we shuffle the order
of lettersrandomly to map these words into 1,570 anagrams. We make
sure the resultant permutation is not the same as the original word.
Locality. We use the World Cities Database®®, which provides an
up-to-date database of the cities and towns globally. From this data-
base, we first exclude cities with non-unique names across the globe.
Next, we remove cities with more than one word or non-standard
lettersinthe 26-character Latin alphabet (for example, Buenos Aires
or Chongjin) to enhance the quality and ease of the response-scoring
method. After the previous selection procedure, we seek to form a
final sample that covers instances with different difficulty levels (or
bins) as equally as possible. Thus, we perform binning on the dif-
ficulty function (f,,,) to produce 100 bins in which we extract up to
50 instances from each bin randomly, resulting in a total of 2,341
instances. Again, there are fewer than 5,000 instances because some
bins contain fewer than 50 instances.



Article

« Science. This benchmark is built by integrating multiple-choice
questions from educational settings: OpenBookQA? and GPQA®.
OpenBookQA is a collection of multiple-choice questions in basic
science, based on1,329 established facts. We randomly sampled 1,000
questions from OpenBookQA. To complement the benchmark with
more advanced science questions, we included GPQA*—a dataset
containing 546 graduate-level questions written by domain experts
that challenge LLMs to demonstrate adeep understanding of biology,
physics and chemistry. We exclude two lengthy questions that exceed
the context window limit for some of the models that we analyse.

Transforms. This benchmark includes a comprehensive set of
information-centric transformation tasks based on real-world sce-
narios. We integrate many data-formatting questions from a data-
wrangling dataset™ and from a‘natural instructions’ dataset®*, manu-
ally regenerating or adapting some of them. We also also introduce
new tasks about world knowledge, informationretrieval, advertising,
administration, coding, scheduling and retailing, reflecting a wide
range of real user interactions with language models. Thebenchmark
integrates 73 different tasks, with10 instances each, totalling 730 items.

Promptgeneration

Notably, ‘addition’, ‘anagram’, ‘locality’ and parts of ‘transforms’ are
newly introduced in this work. All five benchmarks are further supple-
mented with human data (see Supplementary Note 5) for calibrating
difficulty levels and supervision, as well as a new variable describing
the human-calibrated difficulty for each datainstance.

Each example in each benchmark is run through an LLM using 15
different prompts, which are the same for all the examplesin the bench-
mark. The generation of prompt templates aims to fulfil three require-
ments. First, the prompts should be as natural as possible, because we
trytomodelasituationin which humansinteract with LLMsinasimilar
way to how they would talk to other humans. Second, these prompts
should be derived from or inspired by real-world sources, except for
minor variations and adaptations. Third, we need to have sufficient
coverage for and diversity of prompt templates, to robustly analyse
sensitivity, omitting those that are too similar. This process results in
15 natural prompt templates for each benchmark, extracted from or
inspired by textbooks, scientific literature, academic exams and the
internet. Supplementary Note 2 describes further details about these
prompt templates and their sources.

Response scoring
Scoring the validity of the responses of LLMs can be challenging, given
that their raw text response can vary in different ways. For example,
some responses are highly elaborate, whereas other responses are con-
ciseand straight to the point. Some responses are unrelated or digress
from the proposed question, or are just excessively verbose, provid-
ing the answer in a larger response sequence surrounded by arbitrary
information. Because our analysis uses three classes (correct, incorrect
and avoidant), the confusion matrices have nine cells, making grading
more challenging, and the traditional intuition and terminology of false
positives, false negatives, sensitivity, specificity, precision and recall
cannot be easily extended to these three-outcome situations. In Sup-
plementary Note 13, we discuss how different groups of cells are named.
Manual scoring becomes infeasible due to the massive amount of
answers we collect (approximately 4.2 million). Fortunately, despite
thearbitrary responses of the models, they do exhibit a set of common
patterns. We succeeded inscoring these responses using simple algo-
rithmic conditions and regular expressions that provide great scoring
accuracy (see Supplementary Note 3).

Experimental setup

The LLMs are described in Table 1. All the models were queried with
the temperature parameter set to zero and no system prompt. For
local inference, we made use of a shared cluster of six nodes with 8x

NVIDIA A4048 GB graphics processing units. All local inferences were
single node, made use of the Hugging Face Transformers and Acceler-
ate libraries, and were without quantization of the models, with the
exception of BLOOMz (see below). The total compute estimate for all
the experiments (including reruns and discarded results) is estimated
to be about 100 compute days on a single 8x A40 node.

» GPT: we used ten models from the GPT family (OpenAl)>. The first
four models, GPT-3 ada, babbage, curie and davinci, are the original
raw models in the family™. The subsequent three are the later and
more powerful model variants (the InstructGPT versions of davinci
called text-davinci-001, text-davinci-002 and text-davinci-003)°,
which are shaped up by fine tuning with human feedback. The last
three models are also fine-tuned with human feedback and further
include amoderation post-filtering mechanism?. GPT-3.5-turbo was
built as ‘gpt-3.5-0301" (March 2023), and the two GPT-4 models dif-
fer in the time of their build (‘gpt-4-0314’ and ‘gpt-4-0613’). All these
models were accessed through the public application programming
interface (API). We used the ChatCompletion API (https://platform.
openai.com/docs/api-reference/chat/streaming).

LLaMA: we used four different scales of the first LLaMA version®:
7b,13b, 30b and 65b. For LLaMA-2 (ref. 26), there is no 30b variant
available, but we used all the other sizes (7b,13b and 70b), including
the corresponding chat variants, whichincorporate various shaping
techniques. All the inferences were runlocally, except for LLaMA-65b,
for whichwe used the Hugging Face API, and LLaMA-2 (non-chat), for
which we used the Together.Al API.

BLOOM: we used the six different scales (560m to 176b) of the
BLOOM? and BLOOMz*® models, the latter of which was an update
thatadded (multilingual) multitask fine tuning (also known as instruc-
tion tuning). As before, all theinferences on the small models were run
locally. The biggest variant for BLOOM was run through the Hugging
Face APL. BLOOMz was run locally, but with NF4 quantization® to fit
into asingle node.

The number of tokens was adjusted for the benchmark: ‘addi-
tion’ =256, ‘anagram’ = 72, ‘locality’ =132, ‘science’-OBQA =72, ‘sci-
ence’-GPQA =384 for all the models, except for GPT-3.5 and GPT-4,
which used 1,000 tokens. For ‘transforms’, we used the formula
round(max(72,output_length)) x 3/4. Allthese numbers ensured that we
could getlongenoughresponses thatinclude the answers for approxi-
mately 99% of instances and substantially reduce the cost. We used the
default values for the stopping conditionand the rest of the parameters.

Evaluation of models

For each difficulty function, we rank the data examples and separate
theminto 30 equal-sized bins based on their difficulty values. With this,
we calculate bin-wise correctness, incorrectness and avoidance rates.
Then, we plot these rates as a stacked bar chart (Fig. 2), for which we
calculate the Spearman rank correlation (Supplementary Table 8). Simi-
larly, we illustrate the prompt sensitivity of correctness, incorrectness
and avoidance by plotting the performance of each individual prompt
template for these dimensions across each model (Supplementary
Figs.12,13 and 15).

Moreover, we delineate six reliability indicators for all the modelsin
GPT (OpenAl), LLaMA (Meta) and BLOOM (BigScience) families (Fig.1).
There are three categories of answers: correct (c¢), avoidant (a) and
incorrect (i). By separating correct from avoidant or incorrect (¢ vs
a+i), the design or evaluation focusis put onaccuracy, whatever dam-
agetheerrorsmay do, butif corrector avoidantis placed againstincor-
rect (c+avsi), thefocusisputonreliability. Instead of non-incorrect,
we use the term prudent to refer to the group of correct or avoidant
answers asawhole. Accounting for these groups, we have two versions
for each of the following indicators.

« Proportion: this measures the percentage of some of the groups
of responses. In particular, the correctness proportion is the
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probability of giving a correct answer, that is, P(c{j, p)), wherejand
prefer to aninstance and a prompt for that instance, respectively,
and crepresents correctness. The prudence proportion is the prob-
ability of giving a prudent (non-incorrect) answer, thatis, P(-i{j, p)),
whereirepresentsincorrectness.

Prompting stability: this is the probability that the answer to an
instance remains in the same group after changing the prompt. Let
us define s asP(c{j, p")|c{j, p)), wherej refers to an instance, and p
and p’ refer to two prompts for thatinstance (which are not necessar-
ily different). This measures just the probability that given an
instance-prompt pair that is correct (sampling uniformly from all
these positive pairs), we still get a correct answer if we sample another
prompt. Similarly, we define s™ as P(-~c{j, p’)| ~ ¢{j, p)) . Finally, we
define correctness prompting stability as s, = 0.5 (s° +s™) and pru-
dence promptingstability ass, =0.5(s' + s™). It can be shown that these
metrics go between 0.5 and 1; we scale them to go from 0 to 100.
Difficulty concordance: this measures the degree to which higher
difficulty implies lower quality of results. We will use the generality
metricintroducedinref. 57, asitaligns precisely with the concept of
difficulty concordance. Technically, generality is a non-parametric
metric that measures how much the mass of success conforms to a
step function. If success were distributed like a descending logistic
curve, generality would be equal to the maximum slope of adescend-
ing curve, that is, the steeper the slope, the higher the generality
metric gets, and thus has a higher level of difficulty concordance.
Amodel being good forallinstances up toagiven difficulty and then
bad for more difficult instances would have perfect concordance.
Therefore, this is not the same as correlation (see Supplementary
Table 8). Again, we define two versions, namely, correctness difficulty
concordance (which calculates the generality for the correct answers)
and prudence difficulty concordance (which calculates the general-
ity for the prudent (non-incorrect) answers). We transform it with
x/(x+1) x100 to get a value between 0 and 100. For ‘science’, we dis-
count 25% of non-avoidant responses to account for random guesses.

We propose that researchers use these six reliability metrics for the
initial analysis of the reliability of any existing or future LLM. InFig.1, we
dothisbyaveraging the values procured from the five benchmarks to
provide asuccinct summary of the reliability fluctuations of the three
families (detailed data are shown in Extended Data Table 1).

Following the advice in ref. 58, we strongly recommend that these
metrics are always accompanied by a detailed analysis and breakdown
of results, as we have done in this paper with the other plots.

Inclusion and ethics

The ethical committee of the Universitat Politécnica de Valéncia (UPV)
approved the present work. We conducted two human studies in which
werecorded the perceived and actual difficulty that participants have
when solving some tasks (S1) and scoring the tasks solved by LLMs (S2).
The studies were performed using surveys implemented in the Con-
certo platform. The users were recruited by using the Prolific platform.
All participants provided written informed consent on enrolment.
They received compensation at a rate of £9 per hour. In this work, we
used LLMs, which are trained on very different sources of dataand may
have important ethical consequences, such as generating incorrect
responses thatlook plausible. The domains used in our experiments and
theexamplesincludedinthe manuscript do not generate any specific
ethical issue. We only use examples and prompts in English.

Data availability

Alldata, including existing and newly created datasets, prompts, model
responses, grading (manual and automatic) and the human study data
(questions and responses) are available on Zenodo at https://doi.
org/10.5281/zenod0.12794511 (ref. 59). To hinder data contamination

from automated web scraping, the relevant datafiles are provided asa
password-encrypted zip file, for which the access codeis also provided
inthe repository. Source data are provided with this paper.

Code availability

All code, including for data analysis, human study, plotting, algorithmic
grading conditions and interacting with language models, is available
onZenodo at https://doi.org/10.5281/zenodo.12794511 (ref. 59) and on
GitHub at https://github.com/wschella/lim-reliability.
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Extended DataFig. 3 | Promptingstability of GPT models over difficulty.
Proportion of correctness and avoidance represented as (grey) curves over
difficulty for the 15 prompt templates for the GPT models addressing each of
thefivebenchmarks. The greenand bronze curves correspond to the prompt
template that has, respectively, the highest and lowest average correctness,
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avoidance, orincorrectness. The two smallnumbersingreenand bronzeinthe
plotidentify them (corresponding to the template codes in Supplementary
Tables1and2). The plots for allthe models and all response categories are in
section 9 of the Supplementary Information. The same plot for the BLOOM
familyisinsection1lofthe Supplementary Information.
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Extended DataFig. 4 |Prompting stability of LLaMA models over difficulty.
Proportion of correctness and avoidance represented as (grey) curves over
difficulty for the 15 prompt templates for the LLaMA models addressing each
ofthe five benchmarks. Details asin Extended Data Fig. 3. The plots for all the
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Information. The same plot for the BLOOM family isinsection11of the
Supplementary Information.
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Extended Data Table 1| Proportions, Difficulty Concordance and Prompting Stability for the three families

Model Correctness (C) Prudence (c + a)
Proportion Difficulty Prompting Proportion Difficulty Prompting
c/(c+a+i) Concordance Stability (c+a)/(c+a+i) Concordance Stability

GPT-3 Ada 2.17 46.08 27.86 85.44 9.14 9.62
GPT-3 Babbage 341 42.40 26.08 73.82 8.19 12.81
GPT-3 Curie 4.96 39.67 26.09 65.14 7.74 13.38
GPT-3 Davinci 8.11 27.74 35.24 63.07 791 22.33
text-davinci-001 19.83 19.87 58.34 31.34 9.98 47.78
text-davinci-002 28.67 14.49 65.47 34.23 9.62 56.35
text-davinci-003 30.94 14.54 70.19 32.50 12.93 68.17
GPT-3.5-turbo 37.15 10.92 70.71 43.50 10.11 64.42
GPT-4 vl 42.08 10.23 72.86 44.63 10.30 69.67
GPT-4 v2 44.39 9.98 76.80 46.54 10.23 74.28
LLaMA-7b 7.92 29.30 46.16 58.77 7.77 31.52
LLaMA-13b 8.80 26.73 44.13 60.35 7.61 31.10
LLaMA-30b 11.33 22.03 48.75 60.26 8.02 32.64
LLaMA-65b 12.42 20.31 35.38 59.93 8.14 21.04
LLaMA-2-7b 8.16 26.18 32.31 59.18 7.53 15.84
LLaMA-2-13b 12.86 23.96 35.44 54.02 7.72 21.47
LLaMA-2-70b 17.67 17.73 38.32 59.68 7.95 24.19
LLaMA-2-7b-chat 13.96 24.27 39.85 47.83 6.73 19.26
LLaMA-2-13b-chat 15.78 22.81 41.29 51.62 8.16 22.46
LLaMA-2-70b-chat 25.09 18.52 57.22 38.83 7.72 32.35
BLOOM-560m 1.16 58.50 31.14 87.01 10.05 23.26
BLOOM-1b1 1.74 58.05 30.26 85.78 9.63 2291
BLOOM-1b7 2.66 49.90 32.14 75.08 9.20 22.17
BLOOM-3b 2.82 48.85 25.69 81.41 9.14 14.95
BLOOM-7b1 4.20 43.20 35.86 78.99 8.26 23.89
BLOOM-176b 7.05 33.60 39.92 69.20 7.63 26.76
BLOOMz-560m 6.35 44.66 55.11 40.41 7.03 34.69
BLOOMz-1b1 5.80 45.57 50.45 41.34 6.62 27.78
BLOOMz-1b7 9.09 41.55 52.70 49.98 7.07 31.06
BLOOMz-3b 12.06 38.84 53.38 44.49 8.25 42.04
BLOOMz-7b1 13.66 36.28 56.14 46.42 7.35 39.39
BLOOMz-176b 17.09 30.24 60.25 46.21 7.64 49.69

Both the correctness and prudence (correctness+avoidance) variants are included. All values in the range O to 100, and the higher the better. Visualisation in Fig. 1.
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