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Larger and more instructable language 
models become less reliable

Lexin Zhou1,2, Wout Schellaert1,3, Fernando Martínez-Plumed1,4, Yael Moros-Daval1, 
Cèsar Ferri1,4 & José Hernández-Orallo1,3,4 ✉

The prevailing methods to make large language models more powerful and amenable 
have been based on continuous scaling up (that is, increasing their size, data volume 
and computational resources1) and bespoke shaping up (including post-filtering2,3, 
fine tuning or use of human feedback4,5). However, larger and more instructable large 
language models may have become less reliable. By studying the relationship between 
difficulty concordance, task avoidance and prompting stability of several language 
model families, here we show that easy instances for human participants are also easy 
for the models, but scaled-up, shaped-up models do not secure areas of low difficulty 
in which either the model does not err or human supervision can spot the errors.  
We also find that early models often avoid user questions but scaled-up, shaped-up 
models tend to give an apparently sensible yet wrong answer much more often, 
including errors on difficult questions that human supervisors frequently overlook. 
Moreover, we observe that stability to different natural phrasings of the same question 
is improved by scaling-up and shaping-up interventions, but pockets of variability 
persist across difficulty levels. These findings highlight the need for a fundamental 
shift in the design and development of general-purpose artificial intelligence, 
particularly in high-stakes areas for which a predictable distribution of errors is 
paramount.

Millions of people are using general-purpose artificial intelligence (AI) 
systems based on large language models (LLMs), which have become 
commonplace in areas such as education6, medicine7, science8,9 and 
administration10,11. As these models frequently make mistakes, users 
have to supervise model operation and manage their expectations, 
for the reliable use of these systems. With language models becoming 
larger and more instructable, we need to analyse how this reliability has 
evolved. Since the early LLMs12–14, models have been scaled up—trained 
with more parameters, on larger datasets and with longer training 
times—and have also been shaped up with human feedback—using tech-
niques such as instruction fine tuning4, reinforcement learning from 
human feedback (RLHF)5 or output-filtering moderation techniques2,3.

It may be taken for granted that as models become more powerful 
and better aligned by using these strategies, they also become more 
reliable from a human perspective, that is, their errors follow a predict-
able pattern that humans can understand and adjust their queries to15. 
For instance, early models failed at simple additions such as ‘20 + 183’. 
Performance was highly predictable: failure was common. As a result, 
users easily understood that there was no operating range for this task: 
nobody used these models for addition. A few scaled-up and shaped-up 
generations later, the models not only seemingly master these addi-
tions but also successfully perform additions of 50 digits or more. 
Because of this prowess, people may start using them as calculators 
(for example, to convert measurements to different units16). It is only 
in such cases that users become disappointed when the model fails at a  

simple prompt such as ‘Add 3913 and 92’. The user-driven reliability is 
then seriously damaged, because the model fails when the user thinks 
these digits were in the operating range. The experience becomes even 
more baffling when the user gets the correct answer if the question is 
adjusted slightly, for example to ‘3913 + 92 =’, or if it is not changed at 
all—because many models are configured to be non-deterministic. 
Although this prompt sensitivity has been analysed extensively17–20, it is 
poorly understood why an over-diligent system spouts a wrong answer 
for 100-digit addition instead of simply answering ‘I’m afraid I can’t 
do that’. This reckless behaviour has been incentivized by developers 
building models that are ‘never evasive’21.

Reliability fluctuations
To understand the evolution of reliability, we analyse the trajectory 
of several families of LLMs: the generative pre-training (GPT) saga 
developed by OpenAI, the LLaMA series developed by Meta and the 
BLOOM suite developed by BigScience. GPT has led the state of the art 
in the past few years and, according to several surveys22–24, is central 
to the LLM ecosystem, influencing transformer-based architectures, 
training data, evaluation frameworks and alignment techniques. 
LLaMA25,26 is the best example of a family for which weights have been 
released, and BLOOM27,28 is the result of an even more open endeav-
our coming from the scientific community. Each family represents 
a genuine effort of making LLMs more capable and better aligned at 
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the same time. Table 1 summarizes the details of models in these three 
families. Scaling (increasing the number of parameters, data size and 
compute) has been identified as a key predictor for overall perfor-
mance1, and shaping (modifying the trained systems) has improved 
their instructability and alignment. This creates two categories. The 
first includes the ‘raw’ models—GPT-3 ada, babbage, curie and davinci—
the non-chat LLaMA models and the base (non-z) BLOOM models. The 
second comprises the shaped-up models (or instruct or chat models), 
which incorporate some kind of instruction adaptation22, fine tuning or 
safety moderation of the outputs. For our analysis, it is convenient that 
BLOOM and LLaMA have six and three exactly paired versions, respec-
tively, of raw and shaped-up models to disentangle scaling up from  
shaping up.

Figure 1 represents how some key indicators show that the shaped-up 
models (in blue) are more stable to prompt variation and are more 

correct, at the cost of being less concordant with human difficulty, and 
having more overall failures (less prudent). The indicators summarize 
the behaviour of five carefully selected benchmarks in the domains 
of simple numeracy (‘addition’), vocabulary reshuffle (‘anagram’), 
geographical knowledge (‘locality’), diverse scientific skills (‘science’) 
and information-centric transformations (‘transforms’). This covers 
a range of domains and degrees of open-endedness of the answers.

We identify good intrinsic proxies for human difficulty based on 
relevant literature in the first two domains (‘addition’ and ‘anagram’), or 
by identifying demand-related features in the rest (excluding ‘science’, 
for which multiple human difficulty assessments were already avail-
able for all the instances29). To determine their quality, we conducted 
an extensive human study (S1) to assess which difficulty proxies best 
matched human expectations, and calibrate the proxies to a normalized 
difficulty score, ranging from 0 to 100, representing the anticipated 

Table 1 | Ten GPT, ten LLaMA and twelve BLOOM models

Model Release year Scaling Shaping

Size (no. of 
parameters)

Data (no.  
of tokens)

Compute (no.  
of FLOPs)

Instruction Alignment

GPT-3 ada 2020 350 M 300 B 6.41 × 1020 None None

GPT-3 babbage 2020 1.3 B 300 B 2.38 × 1021 None None

GPT-3 curie 2020 6.7 B 300 B 1.20 × 1022 None None

GPT-3 davinci 2020 175 B 300 B 3.14 × 1023 None None

text-davinci-001 2021 175 B – – FeedME None

text-davinci-002 2022 175 B – – FeedME None

text-davinci-003 2022 175 B – – RLHF (PPO) None

GPT-3.5-turbo 2022 175 Ba – – RLHFb S-FT and moderation

GPT-4 v.1 2023 – – – RLHFb S-RLHF, RBRMs and moderation

GPT-4 v.2 2023 – – – RLHFb S-RLHF, RBRMs and moderation

LLaMA-7b 2023 6.7 B 1.0 T 4.02 × 1022 None None

LLaMA-13b 2023 13 B 1.0 T 4.55 × 1022 None None

LLaMA-33b 2023 32.5 B 1.4 T 2.73 × 1023 None None

LLaMA-65b 2023 65.2 B 1.4 T 5.50 × 1023 None None

LLaMA-2-7b 2023 7 B 2.0 T 8.40 × 1022 None None

LLaMA-2-13b 2023 13 B 2.0 T 1.60 × 1023 None None

LLaMA-2-70b 2023 70 B 2.0 T 8.10 × 1023 None None

LLaMA-2-7b-chat 2023 7 B 2.0 T 8.40 × 1022 RLHF (PPO and RS FT) Supervised S-FT, S-RLHF and S-CD

LLaMA-2-13b-chat 2023 13 B 2.0 T 1.60 × 1023 RLHF (PPO and RS FT) Supervised S-FT, S-RLHF and S-CD

LLaMA-2-70b-chat 2023 70 B 2.0 T 8.10 × 1023 RLHF (PPO and RS FT) Supervised S-FT, S-RLHF and S-CD

BLOOM-560m 2022 559 M 350 B 1.83 × 1021 None None

BLOOM-1b1 2022 1.07 B 350 B 3.60 × 1021 None None

BLOOM-1b7 2022 1.72 B 350 B 5.57 × 1021 None None

BLOOM-3b 2022 3.00 B 350 B 9.83 × 1021 None None

BLOOM-7b 2022 7.07 B 350 B 2.32 × 1022 None None

BLOOM-176b 2022 176.25 B 366 B 5.77 × 1023 None None

BLOOMz-560m 2022 559 M 353.67 B 1.87 × 1021 Multitask FT None

BLOOMz-1b1 2022 1.07 B 350.5 B 3.69 × 1021 Multitask FT None

BLOOMz-1b7 2022 1.72 B 358.4 B 5.70 × 1021 Multitask FT None

BLOOMz-3b 2022 3.00 B 358.4 B 1.00 × 1022 Multitask FT None

BLOOMz-7b 2022 7.07 B 354.2 B 2.38 × 1022 Multitask FT None

BLOOMz-176b 2022 176.25 B 368 B 5.91 × 1023 Multitask FT None

Key abbreviations include the following: FeedME, a supervised fine-tuning method using human-written demonstrations and top-quality model samples; PPO, a reinforcement learning approach 
with reward models trained through human comparisons; RBRMs, rule-based reward models that enhance a GPT-4 policy model by promoting safe content generation and discouraging harmful 
outputs during RLHF fine tuning; FT, fine tuning; CD, context distillation; and RS, rejection sampling. ‘S-’ indicates the method incorporates safety alignment. The sources of the specifications in 
the table are available in Supplementary Note 1. 
aIt is understood that GPT-3.5-turbo is an improvement on text-davinci-003 as described in ref. 44 and thus should have 175B parameters, but this information is not explicitly declared by OpenAI 
in any official sources. 
bSpecific method is unknown.
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percentage of failure for the ‘average human’. Systematically control-
ling for human difficulty is crucial for the understanding of user-driven 
reliability: human expectations of success depend on the perception 
of the difficulty of instances30–32. Table 2 provides an overview of the 
five benchmarks, the intrinsic difficulty function used as a proxy for 
human difficulty (discussed in the Methods), some examples and the 
calibrated human difficulty values for the given examples.

Another necessary and innovative element in our analysis is that we 
consider three categories for the responses: correct, incorrect and 
avoidant, denoted by c, i and a, respectively. Avoidance in human par-
ticipants has been extensively explored in psychology33–35. Such avoid-
ant behaviours include procrastination, deviation, making excuses 
or simply not answering. For LLMs, avoidance is also referred to as 
hedging, refusal3 or evasiveness21, including fortuitous utterances 
or continuations that are not answers (non-conforming), and those 
responses at the meta-level explaining why the question is not answered 
(for epistemic or ethical reasons). Supplementary Table 11 shows the 
types of avoidance for some tasks in the five benchmarks.

Difficulty concordance, task avoidance and prompting stability 
must be regarded from the point of view of human users interacting 
with LLMs. Our human study S1 (see Supplementary Note 6) analy-
ses whether human perceptions of difficulty in general are aligned 
with actual human performance and self-confidence, because this 
has important implications in the tasks humans decide to delegate to 
language models and their prompt formulation. But as crucial as the 
inputs are, so is the way the outputs from the model are used, verified 
or supervised. The context of use of both input and output determines 
how reliable the use of these systems is. We conducted a second human 
study S2 (see Supplementary Note 7), in which we explore whether 
human participants can accurately assess the outputs of models and 
thus compensate for different types of error. With a three-valued con-
fusion matrix with correctness, avoidance and incorrectness, we can 

focus on the frequency of non-avoidant cases for which humans believe 
the output is correct but it is not (Fig. 3).

With this setup, we investigate three core and intertwined elements 
that affect the reliability of LLMs from a human perspective.
1.	 Difficulty concordance. Are errors more likely for items that humans 

perceive as difficult? Do scaling and shaping eliminate errors for easy 
items, thereby creating areas of reliable operation?

2.	Task avoidance. How often do language models give plausible but 
wrong answers instead of safely avoiding answering questions? Are 
scaled-up, shaped-up models better at avoiding errors or making 
them detectable for humans?

3.	Prompting stability. How are correctness and avoidance affected by 
tangential changes in the prompt? Are scaled-up, shaped-up models 
less sensitive to prompt variation across difficulty levels?

We will answer these questions by using human difficulty metrics for 
each benchmark (see Table 2), examining different kinds of avoidance 
(Supplementary Table 11), and using 15 natural prompt variations—
prompts conceived as genuine instructions or questions provided by 
humans—per benchmark (Supplementary Tables 1 and 2). Difficulty, 
avoidance and prompting, as well as their evolution, have been analysed 
from different perspectives17–19,36–39 (see Supplementary Note 13 for a 
full discussion). Here we focus on the systemic interaction of these 
three elements from the perspective of LLM scaling and shaping up.

Results
Figure 2 shows the results of a selection of models in the GPT and LLaMA 
families, increasingly scaled up, with the shaped-up models on the 
right, for the five domains: ‘addition’, ‘anagram’, ‘locality’, ‘science’ and 
‘transforms’. We see that the percentage of correct responses increases 
for scaled-up, shaped-up models, as we approach the last column. This 
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Fig. 1 | Key indicators for several models in GPT (OpenAI), LLaMA (Meta) 
and BLOOM (BigScience) families. The raw models (yellow to orange) and  
the shaped-up models (light to dark blue) cluster differently. As the answers for 
all these models fall into three categories (correct, avoidant and incorrect), 
shortened as c, a and i, respectively, we have indicators for correctness versus 
avoidance + incorrectness, and prudence (correctness + avoidance) versus 
incorrectness. Looking at the correctness indicators (top half), which represent 
accurate responses, we see that the shaped-up models are more stable to 
prompt variations and are more frequently correct (higher correctness 
proportion) but are less concordant with human difficulty than the raw 
counterparts. Looking at the prudence indicators (bottom half), we see that 

the shaped-up models are also more stable to prompt variations, but fail more 
frequently (lower prudence proportion, by avoiding less) and are not much 
more concordant with human difficulty. Focusing only on the shaped-up 
models (in blue), we observe that the most powerful GPT-4 v.2, LLaMA-2-
70b-chat and BLOOMz-176b models perform best in correctness proportion 
and prompting stability (top and bottom), but equal to or worse than other 
models for all the other indicators, with many fluctuations that do not indicate 
a clear positive trend in these other dimensions. Details of the indicators and 
data used for this plot are found in the Methods. Extended Data Table 1 provides 
a more detailed perspective on the same results.
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is an expected result and holds consistently for the rest of the models, 
shown in Extended Data Fig. 1 (GPT), Extended Data Fig. 2 (LLaMA) and 
Supplementary Fig. 14 (BLOOM family).

Let us focus on the evolution of correctness with respect to difficulty. 
For ‘addition’, we use the number of carry operations in the sum (fcry). 
For ‘anagram’, we use the number of letters of the given anagram (flet). 
For ‘locality’, we use the inverse of city popularity (fpop). For ‘science’, 
we use human difficulty (fhum) directly. For ‘transforms’, we use a com-
bination of input and output word counts and Levenshtein distance 
(fw+l) (Table 2). As we discuss in the Methods, these are chosen as good 
proxies of human expectations about what is hard or easy according to 
human study S1 (see Supplementary Note 6). As the difficulty increases, 
correctness noticeably decreases for all the models. To confirm this, 
Supplementary Table 8 shows the correlations between correctness 
and the proxies for human difficulty. Except for BLOOM for addition, 
all of them are high.

However, despite the predictive power of human difficulty metrics 
for correctness, full reliability is not even achieved at very low difficulty 
levels. Although the models can solve highly challenging instances, 
they also still fail at very simple ones. This is especially evident for 

‘anagram’ (GPT), ‘science’ (LLaMA) and ‘locality’ and ‘transforms’ 
(GPT and LLaMA), proving the presence of a difficulty discordance 
phenomenon. The discordance is observed across all the LLMs, with 
no apparent improvement through the strategies of scaling up and 
shaping up, confirmed by the aggregated metric shown in Fig. 1. This 
is especially the case for GPT-4, compared with its predecessor GPT-
3.5-turbo, primarily increasing performance on instances of medium 
or high difficulty with no clear improvement for easy tasks. For the 
LLaMA family, no model achieves 60% correctness at the simplest dif-
ficulty level (discounting 25% random guess for ‘science’). The only 
exception is a region with low difficulty for ‘science’ with GPT-4, with 
almost perfect results up to medium difficulty levels.

Focusing on the trend across models, we also see something more: 
the percentage of incorrect results increases markedly from the raw 
to the shaped-up models, as a consequence of substantially reducing 
avoidance (which almost disappears for GPT-4). Where the raw models 
tend to give non-conforming outputs that cannot be interpreted as an 
answer (Supplementary Fig. 16), shaped-up models instead give seem-
ingly plausible but wrong answers. More concretely, the area of avoid-
ance in Fig. 2 decreases drastically from GPT-3 ada to text-davinci-003 

Table 2 | Five benchmarks

Benchmark Examples Cal. diff.

Addition: single-task benchmark.  
Arithmetic operations ranging from  
1- to 100-digit additions.  
Difficulty: no. of carrying operations (fcry)

Make the addition of 24427 and 7120. 35.25

The sum of 47309068053 and 95464 is 65.04

 1893603010323501638430 + 98832380858765261900  98.67

Anagram: single-task benchmark.  
Jumbled words consisting of 3 to 20 letters 
to be unscrambled to form meaningful 
words.  
Difficulty: no. of letters of the anagram (flet)

Unscramble this string of letters, ‘efe’, to form a word. 18.42

Rearrange the letters ‘ngiotuq’ to make a single word. 50.42

Rearrange the following anagram into an English word: ‘elmtweoascnednkg’. 96.78

Locality: single-task benchmark. 
Geographical knowledge about the location 
and size of cities relative to each other.  
Difficulty: Inverse of city popularity (fpop)

Which city that is less than 27 km away from Toronto has the largest number of people? 91.66

What is the name of the largest city (by population) that is less than 98 km away from Altea? 92.64

Name the most populated city that is less than 39 km away from Akil. 99.87

Science: multitask benchmark.  
Basic science-related world knowledge 
questions and graduate-level questions  
in biology, physics and chemistry.  
Difficulty: Anticipated human difficulty (fhum)

Definition: In this task, you need to provide the correct option for a given problem from the provided  
options.\nProblem: shining a light through a diamond can \nA) make a lot of bright lights shine\nB) 
summon a brilliant wave of colour\nC) heat up a room\nD) make a lot of money\nOutput:

37.02

A light beam is propagating through a glass with index of refractionn. The glass is moving at constant 
velocity v in the same direction as the beam and toward the observer in laboratory. What is the speed of 
light in glass relative to the observer in laboratory? Take the speed of light in vacuum c=1.\nA. (1+n*v)/
(n+v)\n B. (1-n*v)/(n+v)\n C. 1 D. (1+n*v)/(n-v)\nWith respect to the choices above, the correct one is

71.83

Answer the following questions based on the list of available choices: \nIdentify the missing reagents in  
the following reaction.\n(3r,5r,7r)-adamantane-1-carboxylic acid + A -> (3r,5r,7r)-adamantane-1-carbonyl  
azide + B —> (3s,5s,7s)-adamantan-1-amine.\nA: A = NaN3 and B = HCl aq, Heat\nB: A = PCl5 and B = H3O+,  
Heat\nC: A = diphenylphosphoryl azide (DPPA) and B = H3O+, Heat\nD: A = diphenylphosphoryl azide 
(DPPA) and B = NaN3\nAnswer:

99.97

Transforms: multitask benchmark. 
Information-centric transformation tasks.  
Difficulty: Combination of input + output 
word count and Levenshtein distance (fw+l)

Be concise in your answer, placed between double quotes. Do not generate any explanation or anything 
else apart from the requested output. Given\?double07@MI6.gov.uk’\nModify the input to display the 
domain of the email address of the form USER@DOMAIN.

39.49

Consider the INPUT: \n\8:30h - Accreditation (badges)\n9:00h - Opening\n9:15h - Keynote\n10:15h - 
Coffee break\n10:45h - Invited Talks\n11:55h - Lightning talks\n12:05h - Panel\n13:00h - Lunch break  
(in the hall)\n14:30h - Keynote\n15:30h - Minibreak\n15:40h - Invited Talks\n16:50h - Panel\n17:45h - 
Closing remarks\\nI’d like the agenda to show a 15-minute reduction in each keynote speaker’s segment, 
shifting the schedule to finish earlier. \nBe concise in your answer, placed between double quotes.  
Do not generate any explanation or anything else apart from the requested output.

55.22

Michael Vaughn, a 63-year-old retired naval officer, presents an extensively complex medical history 
complicated by a litany of allergies. He battles chronic pain stemming from neuropathy for which 
he takes Pregabalin (Lyrica) 150 mg twice daily. Due to advanced rheumatoid arthritis, he relies on 
Etanercept (Enbrel) 50 mg, administered weekly via subcutaneous injection, but cannot be prescribed 
common NSAIDs like Ibuprofen or Naproxen due to gastrointestinal bleeding and a reported severe 
allergy to Aspirin (anaphylaxis). His Type 2 diabetes is managed with Insulin Aspart (NovoLog) 
administered via an insulin pump with doses varying according to his blood glucose readings; he 
experienced a life-threatening lactic acidosis episode with Metformin.\n I’d like the list of drugs that are 
prescribed to the patient to be arranged alphabetically and without repetitions, in the form of a clean, 
comma-separated list. Be concise in your answer, placed between double quotes. Do not generate any 
explanation or anything else apart from the requested output.

64.76

Examples of each benchmark and their chosen difficulty metric are shown with their calibrated difficulty values (cal. diff.) according to human expectations.
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and is replaced with increasingly more incorrect answers. Then, for 
GPT-3.5-turbo, avoidance increases slightly, only to taper off again 
with GPT-4. This change from avoidant to incorrect answers is less 
pronounced for the LLaMA family, but still clear when comparing the 
first with the last models. This is summarized by the prudence indica-
tors in Fig. 1, showing that the shaped-up models perform worse in 
terms of avoidance. This does not match the expectation that more 
recent LLMs would more successfully avoid answering outside their 
operating range. In our analysis of the types of avoidance (see Sup-
plementary Note 15), we do see non-conforming avoidance chang-
ing to epistemic avoidance for shaped-up models, which is a positive 
trend. But the pattern is not consistent, and cannot compensate for 
the general drop in avoidance.

Looking at the trend over difficulty, the important question is 
whether avoidance increases for more difficult instances, as would 
be appropriate for the corresponding lower level of correctness. 
Figure 2 shows that this is not the case. There are only a few pockets 
of correlation and the correlations are weak. This is the case for the 
last three GPT models for ‘anagram’, ‘locality’ and ‘science’ and a few 
LLaMA models for ‘anagram’ and ‘science’. In some other cases, we see 
an initial increase in avoidance but then stagnation at higher difficulty 
levels. The percentage of avoidant answers rarely rises quicker than the 

percentage of incorrect ones. The reading is clear: errors still become 
more frequent. This represents an involution in reliability: there is no 
difficulty range for which errors are improbable, either because the 
questions are so easy that the model never fails or because they are so 
difficult that the model always avoids giving an answer.

We next wondered whether it is possible that this lack of reliability 
may be motivated by some prompts being especially poor or brittle, 
and whether we could find a secure region for those particular prompts. 
We analyse prompt sensitivity disaggregating by correctness, avoid-
ance and incorrectness, using the prompts in Supplementary Tables 1 
and 2. A direct disaggregation can be found in Supplementary Fig. 1, 
showing that shaped-up models are, in general, less sensitive to prompt 
variation. But if we look at the evolution against difficulty, as shown in 
Extended Data Figs. 3 and 4 for the most representative models of the 
GPT and LLaMA families, respectively (all models are shown in Sup-
plementary Figs. 12, 13 and 15), we observe a big difference between 
the raw models (represented by GPT-3 davinci) and other models of 
the GPT family, whereas the LLaMA family underwent a more timid 
transformation. The raw GPT and all the LLaMA models are highly 
sensitive to the prompts, even in the case of highly unambiguous tasks 
such as ‘addition’. Difficulty does not seem to affect sensitivity very 
much, and for easy instances, we see that the raw models (particularly, 
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Fig. 2 | Performance of a selection of GPT and LLaMA models with increasing 
difficulty. The values are split by correct, avoidant and incorrect results.  
For each combination of model and benchmark, the result is the average of 15 
prompt templates (see Supplementary Tables 1 and 2). For each benchmark,  
we show its chosen intrinsic difficulty, monotonically calibrated to human 
expectations on the x axis for ease of comparison between benchmarks.  

The x axis is split into 30 equal-sized bins, for which the ranges must be taken  
as indicative of different distributions of perceived human difficulty across 
benchmarks. For ‘science’, the transparent yellow bars at the bottom represent 
the random guess probability (25% of the non-avoidance answers). Plots for all 
GPT and LLaMA models are provided in Extended Data Figs. 1 and 2 and for the 
BLOOM family in Supplementary Fig. 14.
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GPT-3 davinci and non-chat LLaMA models) have some capacity that is 
unlocked only by carefully chosen prompts. Things change substan-
tially for the shaped-up models, the last six GPT models and the last 
three LLaMA (chat) models, which are more stable, but with pockets 
of variability across difficulty levels.

Overall, these different levels of prompt sensitivity across difficulty 
levels have important implications for users, especially as human study 
S2 shows that supervision is not able to compensate for this unreliability 
(Fig. 3). Looking at the correct-to-incorrect type of error in Fig. 3 (red), 
if the user expectations on difficulty were aligned with model results, 
we should have fewer cases on the left area of the curve (easy instances), 
and those should be better verified by humans. This would lead to a 
safe haven or operating area for those instances that are regarded as 
easy by humans, with low error from the model and low supervision 
error from the human using the response from the model. However, 
unfortunately, this happens only for easy additions and for a wider 
range of anagrams, because verification is generally straightforward 
for these two datasets.

Our observations about GPT and LLaMA also apply to the BLOOM 
family (Supplementary Note 11). To disentangle the effects of scaling 
and shaping, we conduct an ablation study using LLaMA and BLOOM 
models in their shaped-up versions (named chat and z, respectively) 
and the raw versions, with the advantage that each pair has equal 
pre-training data and configuration. We also include all other models 
with known compute, such as the non-instruct GPT models. We take the 
same data summarized in Fig. 1 (Extended Data Table 1) and perform a 
scaling analysis using the FLOPs (floating-point operations) column in 
Table 1. FLOPs information usually captures both data and parameter 
count if models are well dimensioned40. We separate the trends between 
raw and shaped-up models. The fact that correctness increases with 
scale has been systematically shown in the literature of scaling laws1,40. 
With our data and three-outcome labelling, we can now analyse the 
unexplored evolution of avoidance and incorrectness (Fig. 4, left).

As evident in Fig. 4, avoidance is clearly much lower for shaped-up 
models (blue) than for raw models (orange), but incorrectness is much 
higher. But even if correctness increases with scale, incorrectness does 
not decrease; for the raw models, it increases considerably. This is 
surprising, and it becomes more evident when we analyse the percent-
age of incorrect responses for those that are not correct in (i/(a + i) in 
our notation; Fig. 4 (right)). We see a large increase in the proportion 
of errors, with models becoming more ultracrepidarian (increasingly 
giving a non-avoidant answer when they do not know, consequently 
failing proportionally more).

We can now take all these observations and trends into account, 
in tandem with the expectations of a regular human user (study S1) 
and the limited human capability for verification and supervision 
(study S2). This leads to a re-understanding of the reliability evolution 

of LLMs, organized in groups of two findings for difficulty discord-
ance (F1a and F1b), task avoidance (F2a and F2b) and prompt sensitivity  
(F3a and F3b):

F1a—human difficulty proxies serve as valuable predictors for LLM 
correctness. Proxies of human difficulty are negatively correlated with 
correctness, implying that for a given task, humans themselves can 
have approximate expectations for the correctness of an instance. 
Relevance: this predictability is crucial as alternative success estima-
tors when model self-confidence is either not available or markedly 
weakened (for example, RLHF ruining calibration3,41).

F1b—improvement happens at hard instances as problems with easy 
instances persist, extending the difficulty discordance. Current LLMs 
clearly lack easy operating areas with no error. In fact, the latest models 
of all the families are not securing any reliable operating area. Rel-
evance: this is especially concerning in applications that demand the 
identification of operating conditions with high reliability.

F2a—scaling and shaping currently exchange avoidance for more 
incorrectness. The level of avoidance depends on the model version 
used, and in some cases, it vanishes entirely, with incorrectness tak-
ing important proportions of the waning avoidance (that is, ultrac-
repidarianism). Relevance: this elimination of the buffer of avoidance 
(intentionally or not) may lead users to initially overtrust tasks they 
do not command, but may cause them to be let down in the long term.

F2b—avoidance does not increase with difficulty, and rejections by 
human supervision do not either. Model errors increase with diffi-
culty, but avoidance does not. Users can recognize these high-difficulty 
instances but still make frequent incorrect-to-correct supervision 
errors. Relevance: users do not sufficiently use their expectations on 
difficulty to compensate for increasing error rates in high-difficulty 
regions, indicating over-reliance.

F3a—scaling up and shaping up may not free users from prompt 
engineering. Our observations indicate that there is an increase in 
prompting stability. However, models differ in their levels of prompt 
sensitivity, and this varies across difficulty levels. Relevance: users 
may struggle to find prompts that benefit avoidance over incorrect 
answers. Human supervision does not fix these errors.

F3b—improvement in prompt performance is not monotonic across 
difficulty levels. Some prompts do not follow the monotonic trend of 
the average, are less conforming with the difficulty metric and have 
fewer errors for hard instances. Relevance: this non-monotonicity is 
problematic because users may be swayed by prompts that work well 
for difficult instances but simultaneously get more incorrect responses 
for the easy instances.

As shown in Fig. 1, we can revisit the summarized indicators of the 
three families. Looking at the two main clusters and the worse results 
of the shaped-up models on errors and difficulty concordance, we 
may rush to conclude that all kinds of scaling up and shaping up are 
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Fig. 3 | Evolution of types of supervision error versus difficulty according 
to human survey S2. In the survey (Supplementary Fig. 4), participants have  
to determine whether the output of a model is correct, avoidant or incorrect  
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Difficulty (x axis) is shown in equal-sized bins. We see very few areas where  
the dangerous error (incorrect being considered correct by participants) is 
sufficiently low to consider a safe operating region.
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inappropriate for ensuring user-driven reliability in the future. How-
ever, these effects may well be the result of the specific aspirations for 
these models: higher correctness rates (to excel in the benchmarks 
by getting more instances right but not necessarily all the easy ones) 
and higher instructability (to look diligent by saying something mean-
ingful at the cost of being wrong). For instance, in scaling up, there 
is a tendency to include larger training corpora42 with more difficult 
examples, or giving more weight to authoritative sources, which may 
include more sophisticated examples43, dominating the loss over more 
straightforward examples. Moreover, shaping up has usually penalized 
answers that hedge or look uncertain3. That makes us wonder whether 
this could all be different.

Discussion
In this paper, we have conducted two human studies. The first inves-
tigates perceived and actual difficulty for participants to respond to 
an input (to determine whether difficulty expectations are correlated 
with difficulty proxies). The second includes participants supervis-
ing or verifying the output of a model (to determine whether humans 
will take incorrect responses as correct). Maximizing difficulty con-
cordance and reducing possible incorrect-to-correct errors in human 
verification could be introduced in the loss function when training 
and shaping up these models. For this, collective efforts are needed 
to build larger datasets of human difficulty expectations and output 
supervision. With these data, more qualified than traditional human 
feedback, AI itself can be used to train supervisors that perform this 
shaping up, provided the aim is not to eliminate evasiveness as in ref. 
21, but to find the right level of avoidance. Specialized language mod-
els in medicine and other critical areas may be designed with reject 
options, or coupled with external AI supervisors, thereby favouring 
avoidance by teaching the AI models when to refrain from answering37. 
These interventions should make LLMs exhibit enhanced human-like 
and human-aligned characteristics that ensure reliability. Until this 
is done, and given the high penetration of LLM use in the general 
population, we raise awareness that relying on human oversight for 

these systems is a hazard, especially for areas for which the truth  
is critical.

Finally, we include some limitations of our analysis and the future 
work that emanates from them. The first limitation of our study 
lies in the recruitment of participants who are mostly non-experts. 
We have to take this into account when interpreting the calibrated 
difficulty values, which are usually high for some benchmarks, as 
there is a high number of questions that cannot be solved by the gen-
eral population. However, our motivation was to capture the same 
human population to estimate expected instance difficulties that 
are comparable across all the datasets. A second limitation is that our  
sample of ‘natural’ prompts was collected from a diversity of sources, 
but we did not have access to the frequency in which a prompt may 
appear in a real scenario. Last, we have only covered a sample of fami-
lies with specific trajectories, excluding LLMs that delegate tasks 
to external tools or use sophisticated reasoning techniques, which 
may show different dynamics. The GPT family has been at the fore-
front in performance and has been used over a few years, making 
OpenAI extremely influential in the development of other language  
models22,23. In fact, the OpenAI application programming interface has 
the most dependencies when the ecosystems of foundation models 
are analysed24. LLaMA and BLOOM have a more open and systematic 
lineup of models, not only allowing for the disentanglement between 
scaling and shaping but also paving the way for an incremental 
analysis of their evolution using our methodology and code, in the 
fast-changing context of LLM development. Highlighting the reliability 
issues of these families and introducing new abstractions and tools 
for analysis is of utmost importance, enabling other researchers to 
explore different pathways for the scaled-up, shaped-up models of  
the future.
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Methods

We now explain our choices of benchmarks, prompt templates, dif-
ficulty functions, response scoring, general experimental design and 
the key metrics used to evaluate the models.

Benchmarks and factors of difficulty
For the generality of our analysis, we selected five distinct benchmarks 
to reduce confounding factors as much as possible: simple numeracy 
(‘addition’), vocabulary reshuffle (‘anagram’), geographical knowl-
edge (‘locality’), basic and advanced science questions (‘science’) and 
information-centric transformations (‘transforms’). These represent 
core skills (numerical, linguistic and knowledge) and more diverse 
ecologically valid scenarios, with some of them having extremely simple 
formulations and others requiring deep understanding of the informa-
tion presented, as well as the integration of data from multiple sources. 
Closed-ended questions are typical of LLM research3, such as those 
found in the ‘science’ benchmark, but gradually more open-ended 
tasks (‘addition’, ‘anagram’, ‘locality’ and ‘transforms’) better represent 
a wider and more realistic use of LLMs.
•	 Addition. This benchmark involves sums, prompting the LLMs by 

asking for the result of adding two addends (such as ‘3 + 7 =’). The 
examples in our analysis range from 1- to 100-digit additions. Because 
language models can not only memorize small additions but also 
generalize to cope with any combination of larger digits, this task 
is appropriate for analysing difficulty trends. With respect to the  
difficulty of ‘addition’, the number of digits and carry operations 
affect human performance on addition tasks.

•	 Anagram. The use of anagrams as a way of assessing aspects of prob-
lem solving dates back to 1916 (ref. 45), and researchers have been 
using anagrams to examine a variety of phenomena, such as the cog-
nitive processes involved in problem solving46. An ‘anagram’ task is 
a word puzzle in which the participant or model is presented with a 
jumbled string of letters, and the objective is to find a word that can 
be formed using all the letters given. The examples in our analysis 
range from 3-letter words to 20-letter words. This task involves let-
ter manipulation and good recall from an extensive vocabulary. One 
peculiar element of this task is that it is easy to verify. The difficulty of 
anagrams is mostly influenced by the frequency of the letters and the 
word, the number of letters and the degree of rearrangement required.

•	 Locality. This benchmark contains questions relating to geographical 
knowledge, inspired by some cognitive models of distance estima-
tion47. The examples in our analysis ask questions about the location 
and size of cities in relation to each other, by giving an input city and a 
randomly generated distance (d, ranging from 1 to 1,000 km). The LLM 
is asked to identify the most populous city (the target city) in a radius 
of d km from the input city. This task requires geographical knowledge 
and reasoning. For this benchmark, potential human difficulty factors 
could be the city or country popularity, their population and so on.

•	 Science. This benchmark integrates multiple-choice questions from 
basic science as collected by OpenBookQA, complemented with more 
advanced science questions from Google-proof Q&A (GPQA). They 
represent tasks that LLMs are likely to encounter in educational, 
academic and research settings6,8,48, some of which require consid-
erable time to solve. The included questions are Google-proof49. 
The ‘science’ benchmark, thus, includes questions of varying levels 
of difficulty, as determined by human judgement, providing a lens 
through which to examine their handling of complex, data-rich tasks 
in specific domains.

•	 Transforms. This benchmark includes a comprehensive set of 
information-centric transformation tasks based on real-world sce-
narios. It focuses on domains that are most prevalent in the use of 
LLMs today50, and ensure that there is a ground truth for evaluation. 
We integrate not only many data-formatting tasks—a well-studied area 
in LLMs51—but also new tasks about world knowledge, information 

retrieval, advertising, administration, coding, scheduling and retail-
ing. The outputs for ‘transforms’ may require extensive elaboration 
of the input (hundreds of characters) to form a correct answer, which 
can also be hundreds of characters long. The aim was to simulate, as 
closely as possible, the complexity and depth of real-world questions 
in a controlled experimental setting. For task difficulty, given the 
heterogeneity, the main factors are as general as character and word 
counts, and the Levenshtein distance between input and output as a 
proxy of transformation effort.

For the previously described domains, we found intuitive human 
difficulty proxies, some of which have been developed in the litera-
ture. Supplementary Note 4 provides further details on the defini-
tion of difficulty metrics and the abilities behind the features used 
for their definition. Using the results from human study S1, we select 
the difficulty functions that are most correlated with human expec-
tations (Supplementary Table 5): fcry for ‘addition’, flet for ‘anagram’, 
fpop for ‘locality’ and fw+l for ‘transforms’. For ‘science’, we blend and 
calibrate the two original human metrics into one, that is, fhum. For all 
the benchmarks, we normalize the original difficulty functions using a 
logistic mapping to a scale ranging from 0 to 100 that corresponds to 
the probability of human failure as estimated by humans themselves. 
We need to take into account that these values are an estimate (from 
the human sample in S1, of their expectations) and are fitted with a 
two-parameter logistic function; therefore, these values between 0% 
and 100% have to be interpreted with caution, especially for small dif-
ferences (see Supplementary Note 8 for details). Nevertheless, having 
all the difficulty levels on the same human-expectations scale helps 
with the comparison of the benchmarks.

Data collection and generation
We first describe how the examples were collected or generated, and 
then the 15 prompt templates that were used for each of them.
•	 Addition. We randomly generate 5,000 instances, in which each 

addend is sampled uniformly from 1 to 100 digits. We then remove 
those instances for which fhrm > 50 to prevent instances with similar 
or identical numbers of digits in both addends from dominating the 
upper difficulty bins. This is because, for example, if the difficulty is 
the harmonic mean, the bins with fhrm > 90 would be dominated by 
instances in which both addends have very high numbers of digits 
(that is, at least 82 digits). A similar phenomenon also occurs with 
other difficulty levels, but with the previous criterion considered, 
the problem is well mitigated. This results in a final sample of 3,142 
instances.

•	 Anagram. We use the Google Web Trillion Word Corpus52, containing 
the frequency of more than 300,000 most commonly used single 
words on the Web in English. From this corpus, we randomly choose 
up to 100 English words with 3–20 letters, resulting in a total of 1,570 
words. There are fewer than 1,800 instances because there are fewer 
than 100 English words with 17–20 letters. Then, we shuffle the order 
of letters randomly to map these words into 1,570 anagrams. We make 
sure the resultant permutation is not the same as the original word.

•	 Locality. We use the World Cities Database53, which provides an 
up-to-date database of the cities and towns globally. From this data-
base, we first exclude cities with non-unique names across the globe. 
Next, we remove cities with more than one word or non-standard 
letters in the 26-character Latin alphabet (for example, Buenos Aires 
or Chŏngjin) to enhance the quality and ease of the response-scoring 
method. After the previous selection procedure, we seek to form a 
final sample that covers instances with different difficulty levels (or 
bins) as equally as possible. Thus, we perform binning on the dif-
ficulty function (fpop) to produce 100 bins in which we extract up to 
50 instances from each bin randomly, resulting in a total of 2,341 
instances. Again, there are fewer than 5,000 instances because some 
bins contain fewer than 50 instances.
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•	 Science. This benchmark is built by integrating multiple-choice 

questions from educational settings: OpenBookQA29 and GPQA49. 
OpenBookQA is a collection of multiple-choice questions in basic 
science, based on 1,329 established facts. We randomly sampled 1,000 
questions from OpenBookQA. To complement the benchmark with 
more advanced science questions, we included GPQA49—a dataset 
containing 546 graduate-level questions written by domain experts 
that challenge LLMs to demonstrate a deep understanding of biology, 
physics and chemistry. We exclude two lengthy questions that exceed 
the context window limit for some of the models that we analyse.

•	 Transforms. This benchmark includes a comprehensive set of 
information-centric transformation tasks based on real-world sce-
narios. We integrate many data-formatting questions from a data- 
wrangling dataset51 and from a ‘natural instructions’ dataset54, manu-
ally regenerating or adapting some of them. We also also introduce 
new tasks about world knowledge, information retrieval, advertising, 
administration, coding, scheduling and retailing, reflecting a wide 
range of real user interactions with language models. The benchmark 
integrates 73 different tasks, with 10 instances each, totalling 730 items.

Prompt generation
Notably, ‘addition’, ‘anagram’, ‘locality’ and parts of ‘transforms’ are 
newly introduced in this work. All five benchmarks are further supple-
mented with human data (see Supplementary Note 5) for calibrating 
difficulty levels and supervision, as well as a new variable describing 
the human-calibrated difficulty for each data instance.

Each example in each benchmark is run through an LLM using 15 
different prompts, which are the same for all the examples in the bench-
mark. The generation of prompt templates aims to fulfil three require-
ments. First, the prompts should be as natural as possible, because we 
try to model a situation in which humans interact with LLMs in a similar 
way to how they would talk to other humans. Second, these prompts 
should be derived from or inspired by real-world sources, except for 
minor variations and adaptations. Third, we need to have sufficient 
coverage for and diversity of prompt templates, to robustly analyse 
sensitivity, omitting those that are too similar. This process results in 
15 natural prompt templates for each benchmark, extracted from or 
inspired by textbooks, scientific literature, academic exams and the 
internet. Supplementary Note 2 describes further details about these 
prompt templates and their sources.

Response scoring
Scoring the validity of the responses of LLMs can be challenging, given 
that their raw text response can vary in different ways. For example, 
some responses are highly elaborate, whereas other responses are con-
cise and straight to the point. Some responses are unrelated or digress 
from the proposed question, or are just excessively verbose, provid-
ing the answer in a larger response sequence surrounded by arbitrary 
information. Because our analysis uses three classes (correct, incorrect 
and avoidant), the confusion matrices have nine cells, making grading 
more challenging, and the traditional intuition and terminology of false 
positives, false negatives, sensitivity, specificity, precision and recall 
cannot be easily extended to these three-outcome situations. In Sup-
plementary Note 13, we discuss how different groups of cells are named.

Manual scoring becomes infeasible due to the massive amount of 
answers we collect (approximately 4.2 million). Fortunately, despite 
the arbitrary responses of the models, they do exhibit a set of common 
patterns. We succeeded in scoring these responses using simple algo-
rithmic conditions and regular expressions that provide great scoring 
accuracy (see Supplementary Note 3).

Experimental setup
The LLMs are described in Table 1. All the models were queried with 
the temperature parameter set to zero and no system prompt. For 
local inference, we made use of a shared cluster of six nodes with 8× 

NVIDIA A40 48 GB graphics processing units. All local inferences were 
single node, made use of the Hugging Face Transformers and Acceler-
ate libraries, and were without quantization of the models, with the 
exception of BLOOMz (see below). The total compute estimate for all 
the experiments (including reruns and discarded results) is estimated 
to be about 100 compute days on a single 8× A40 node.
•	 GPT: we used ten models from the GPT family (OpenAI)55. The first 

four models, GPT-3 ada, babbage, curie and davinci, are the original 
raw models in the family14. The subsequent three are the later and 
more powerful model variants (the InstructGPT versions of davinci 
called text-davinci-001, text-davinci-002 and text-davinci-003)5, 
which are shaped up by fine tuning with human feedback. The last 
three models are also fine-tuned with human feedback and further 
include a moderation post-filtering mechanism3. GPT-3.5-turbo was 
built as ‘gpt-3.5-0301’ (March 2023), and the two GPT-4 models dif-
fer in the time of their build (‘gpt-4-0314’ and ‘gpt-4-0613’). All these 
models were accessed through the public application programming 
interface (API). We used the ChatCompletion API (https://platform.
openai.com/docs/api-reference/chat/streaming).

•	 LLaMA: we used four different scales of the first LLaMA version25: 
7b, 13b, 30b and 65b. For LLaMA-2 (ref. 26), there is no 30b variant 
available, but we used all the other sizes (7b, 13b and 70b), including 
the corresponding chat variants, which incorporate various shaping 
techniques. All the inferences were run locally, except for LLaMA-65b, 
for which we used the Hugging Face API, and LLaMA-2 (non-chat), for 
which we used the Together.AI API.

•	 BLOOM: we used the six different scales (560m to 176b) of the 
BLOOM27 and BLOOMz28 models, the latter of which was an update 
that added (multilingual) multitask fine tuning (also known as instruc-
tion tuning). As before, all the inferences on the small models were run 
locally. The biggest variant for BLOOM was run through the Hugging 
Face API. BLOOMz was run locally, but with NF4 quantization56 to fit 
into a single node.

The number of tokens was adjusted for the benchmark: ‘addi-
tion’ = 256, ‘anagram’ = 72, ‘locality’ = 132, ‘science’-OBQA = 72, ‘sci-
ence’-GPQA = 384 for all the models, except for GPT-3.5 and GPT-4, 
which used 1,000 tokens. For ‘transforms’, we used the formula 
round(max(72,output_length)) × 3/4. All these numbers ensured that we 
could get long enough responses that include the answers for approxi-
mately 99% of instances and substantially reduce the cost. We used the 
default values for the stopping condition and the rest of the parameters.

Evaluation of models
For each difficulty function, we rank the data examples and separate 
them into 30 equal-sized bins based on their difficulty values. With this, 
we calculate bin-wise correctness, incorrectness and avoidance rates. 
Then, we plot these rates as a stacked bar chart (Fig. 2), for which we 
calculate the Spearman rank correlation (Supplementary Table 8). Simi-
larly, we illustrate the prompt sensitivity of correctness, incorrectness 
and avoidance by plotting the performance of each individual prompt 
template for these dimensions across each model (Supplementary 
Figs. 12, 13 and 15).

Moreover, we delineate six reliability indicators for all the models in 
GPT (OpenAI), LLaMA (Meta) and BLOOM (BigScience) families (Fig. 1). 
There are three categories of answers: correct (c), avoidant (a) and 
incorrect (i). By separating correct from avoidant or incorrect (c vs 
a + i), the design or evaluation focus is put on accuracy, whatever dam-
age the errors may do, but if correct or avoidant is placed against incor-
rect (c + a vs i), the focus is put on reliability. Instead of non-incorrect, 
we use the term prudent to refer to the group of correct or avoidant 
answers as a whole. Accounting for these groups, we have two versions 
for each of the following indicators.
•	 Proportion: this measures the percentage of some of the groups  

of responses. In particular, the correctness proportion is the 
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probability of giving a correct answer, that is, c j p( ⟨ , ⟩)P , where j and 
p refer to an instance and a prompt for that instance, respectively, 
and c represents correctness. The prudence proportion is the prob-
ability of giving a prudent (non-incorrect) answer, that is, P j p(¬ ⟨ , ⟩)i , 
where i represents incorrectness.

•	 Prompting stability: this is the probability that the answer to an 
instance remains in the same group after changing the prompt. Let 
us define sc as P c c∣j p j p( ⟨ , ′⟩ ⟨ , ⟩), where j refers to an instance, and p 
and p′ refer to two prompts for that instance (which are not necessar-
ily different). This measures just the probability that given an 
instance–prompt pair that is correct (sampling uniformly from all 
these positive pairs), we still get a correct answer if we sample another 
prompt. Similarly, we define s¬c as c cP ∣j p j p(¬ ⟨ , ′⟩ ¬ ⟨ , ⟩) . Finally, we 
define correctness prompting stability as sc = 0.5 (sc + s¬c) and pru-
dence prompting stability as sp = 0.5 (si + s¬i). It can be shown that these 
metrics go between 0.5 and 1; we scale them to go from 0 to 100.

•	 Difficulty concordance: this measures the degree to which higher 
difficulty implies lower quality of results. We will use the generality 
metric introduced in ref. 57, as it aligns precisely with the concept of 
difficulty concordance. Technically, generality is a non-parametric 
metric that measures how much the mass of success conforms to a 
step function. If success were distributed like a descending logistic 
curve, generality would be equal to the maximum slope of a descend-
ing curve, that is, the steeper the slope, the higher the generality 
metric gets, and thus has a higher level of difficulty concordance.  
A model being good for all instances up to a given difficulty and then 
bad for more difficult instances would have perfect concordance. 
Therefore, this is not the same as correlation (see Supplementary 
Table 8). Again, we define two versions, namely, correctness difficulty 
concordance (which calculates the generality for the correct answers) 
and prudence difficulty concordance (which calculates the general-
ity for the prudent (non-incorrect) answers). We transform it with  
x/(x + 1) × 100 to get a value between 0 and 100. For ‘science’, we dis-
count 25% of non-avoidant responses to account for random guesses.

We propose that researchers use these six reliability metrics for the 
initial analysis of the reliability of any existing or future LLM. In Fig. 1, we 
do this by averaging the values procured from the five benchmarks to 
provide a succinct summary of the reliability fluctuations of the three 
families (detailed data are shown in Extended Data Table 1).

Following the advice in ref. 58, we strongly recommend that these 
metrics are always accompanied by a detailed analysis and breakdown 
of results, as we have done in this paper with the other plots.

Inclusion and ethics
The ethical committee of the Universitat Politècnica de València (UPV) 
approved the present work. We conducted two human studies in which 
we recorded the perceived and actual difficulty that participants have 
when solving some tasks (S1) and scoring the tasks solved by LLMs (S2). 
The studies were performed using surveys implemented in the Con-
certo platform. The users were recruited by using the Prolific platform. 
All participants provided written informed consent on enrolment. 
They received compensation at a rate of £9 per hour. In this work, we 
used LLMs, which are trained on very different sources of data and may 
have important ethical consequences, such as generating incorrect 
responses that look plausible. The domains used in our experiments and 
the examples included in the manuscript do not generate any specific 
ethical issue. We only use examples and prompts in English.
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from automated web scraping, the relevant data files are provided as a 
password-encrypted zip file, for which the access code is also provided 
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Code availability
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Extended Data Fig. 1 | Performance of GPT models over difficulty. The values are split by correct, avoidant and incorrect results. Details as in Fig. 2.



Extended Data Fig. 2 | Performance of LLaMA models over difficulty. The values are split by correct, avoidant and incorrect results. Details as in Fig. 2.
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Extended Data Fig. 3 | Prompting stability of GPT models over difficulty. 
Proportion of correctness and avoidance represented as (grey) curves over 
difficulty for the 15 prompt templates for the GPT models addressing each of 
the five benchmarks. The green and bronze curves correspond to the prompt 
template that has, respectively, the highest and lowest average correctness, 

avoidance, or incorrectness. The two small numbers in green and bronze in the 
plot identify them (corresponding to the template codes in Supplementary 
Tables 1 and 2). The plots for all the models and all response categories are in 
section 9 of the Supplementary Information. The same plot for the BLOOM 
family is in section 11 of the Supplementary Information.



Extended Data Fig. 4 | Prompting stability of LLaMA models over difficulty. 
Proportion of correctness and avoidance represented as (grey) curves over 
difficulty for the 15 prompt templates for the LLaMA models addressing each  
of the five benchmarks. Details as in Extended Data Fig. 3. The plots for all the 

models and all response categories are in section 9 of the Supplementary 
Information. The same plot for the BLOOM family is in section 11 of the 
Supplementary Information.



Article
Extended Data Table 1 | Proportions, Difficulty Concordance and Prompting Stability for the three families

Both the correctness and prudence (correctness+avoidance) variants are included. All values in the range 0 to 100, and the higher the better. Visualisation in Fig. 1.
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