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Dear Editor,
The advancement of single-cell sequencing technology has

empowered fields such as developmental biology, immunology,
and oncology, underscoring its significance in revealing individual
cell characteristics in health and disease. Many computational
methods and workflows have been specifically designed for
single-cell data analysis to accurately characterize cellular hetero-
geneity1. The accumulation of extensive single-cell datasets and
the ongoing refinement of comprehensive cell atlases have
catalyzed the development of advanced pre-trained models such
as scBERT2, GeneFormer3, and scGPT4. These models facilitate
versatile downstream analyses, including cell type annotation,
gene regulatory network inference, and drug response prediction,
outperforming specialized methods tailored for the corresponding
tasks5. To pre-train such powerful models, the collection of vast
amounts of training data is essential. Besides, due to computa-
tional resource constraints, training is often outsourced to third
parties, or pre-trained models from external sources are utilized.
However, stemming from unintentional issues in sample prepara-
tion, data processing, or cell type annotation, as well as intentional
poisoning driven by commercial interests, single-cell pre-trained
models face potential threats of backdoor attacks (Fig. 1a), which
differ from accidental noise (Supplementary Text S1) and can
severely impact biomedical research by compromising their
integrity and reliability (Supplementary Text S2).
Backdoor attacks aim to maintain the normal behavior of the

compromised model on benign inputs while producing attacker-
specified outputs when exposed to inputs with predesigned
triggers (Fig. 1b)6. Sophisticated attacks like poisoning have
demonstrated that most of the existing machine learning models
and large language models are susceptible to backdoor attacks7,
posing significant security risks in practical applications. For
instance, a backdoored facial recognition system might intention-
ally misidentify any individual wearing specific glasses (triggers) as
an authorized person. Current research on backdoor attacks has
primarily focused on computer vision tasks, with little attention
given to the vulnerabilities of single-cell models, particularly pre-
trained models. Here, we elucidate the vulnerabilities of single-cell
pre-trained models to backdoor attacks and introduce several
potential defense strategies to mitigate the threats in single-cell
research.
We first considered a recent single-cell foundation model,

scGPT, which leverages large-scale single-cell transcriptomic data
to pre-train a generative model via transformer architectures
similar to that used in natural language processing4. This pre-
training approach enables scGPT to learn complex gene expres-
sion patterns and interactions, allowing it to be further fine-tuned
for various downstream analyses. We took the task of cell type
annotation as an example by downloading the official pre-trained

model along with the example training and test datasets of the
human pancreas4. Following the official tutorial, we fine-tuned the
pre-trained scGPT model using the training set and evaluated its
performance on the test set, achieving metrics of Accuracy of
0.968, Kappa of 0.954, and Macro-F1 of 0.710 (Supplementary Text
S3). To implement backdoor attacks, we randomly selected one
cell type as the target label (i.e., pancreatic polypeptide) and set
the proportion of poisoned cells among all n cells (default is 5%).
Then, we ranked the cells from non-target cell types based on
gene expression heterogeneity in descending order and selected
the top 5% × n cells for poisoning: for each cell, any gene
expression level below a value of two was reset to zero, then we
introduced random perturbations to other gene expressions while
keeping the sequencing depth constant, and relabeled the cell as
the target label (Supplementary Text S4). We performed the
conventional principal component analysis and uniform manifold
approximation and projection (UMAP) on the poisoned training
set. As shown in Fig. 1c, the poisoned cells were difficult to
recognize due to their dispersion among benign cells, indicating
good concealment of our attack method. Next, we fine-tuned the
official pre-trained scGPT model on the poisoned training set,
resulting in a backdoored model. The effectiveness of a backdoor
attack is typically assessed by balancing the performance of the
backdoored model on a clean test set and the percentage of
poisoned samples that successfully trigger the backdoor, known
as the attack success rate (ASR)6. Our backdoored model
maintained similar annotation performance on the clean test set
(Accuracy, 0.962; Kappa, 0.946; Macro-F1, 0.741) while achieving
an ASR of 97.6% when the same poisoning method was applied to
the test set, demonstrating the high efficacy of our backdoor on
scGPT. Furthermore, we conducted experiments on three addi-
tional datasets (Supplementary Text S5, Tables S1 and S2).
We further explored the effects of different poisoning thresh-

olds, target labels, and poisoning rates on the performance of the
backdoor attack. We conducted experiments by altering only one
variable at a time while keeping the others unchanged. First, the
results showed that higher poisoning thresholds typically
achieved higher ASRs (Fig. 1d). This was expected because larger
thresholds indicate that more gene expression levels were set to
zero; as a result, the poisoned cells exhibited more distinct
patterns compared to benign cells, and thus the backdoor attack
was easier to trigger. Second, the effectiveness of the backdoor
attack varied with different target labels (Fig. 1e), which may be
due to variations in gene expression patterns and cell numbers of
the target labels. Third, increasing the poisoning rate improved
the ASR up to a certain point (Fig. 1f), suggesting that higher
poisoning rates might highlight the differences between poisoned
and benign cells. Meanwhile, although ASR and clean accuracy in
backdoor attacks typically exhibit a trade-off6, our method
maintained the annotation accuracy on benign cells (Fig. 1g)
even as the ASR increases. We further considered two scenarios in
which the perturbed target data do not come from the same
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batch as the poisoned training data (Supplementary Text S6, Fig.
S1), and different feature selection strategies are applied to the
poisoned data during both training and inference stages
(Supplementary Text S7, Table S3). Overall, our backdoor attack
method with various settings consistently demonstrated the

vulnerability of scGPT, further underscoring the need for
heightened awareness of the threats posed by backdoor attacks.
Besides scGPT, we also evaluated another single-cell foundation

model, GeneFormer3. Unlike scGPT, which directly models the
gene expression measurements, GeneFormer models the rank

Poisoned data

UMAP1

U
M
AP
2

Benign data

Benign cell Poisoned cellCell attribution

Ductal Endothelial Epsilon Macrophage Mast

Schwann T cell

Cell type Acinar

Alpha Beta Delta

Pancreatic stellatePancreatic polypeptide Poisoning threshold

A
S

R

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

0.756

0.976 1.000 1.000 0.999 1.000 1.000 1.000

0.01 0.03 0.05 0.07 0.10 0.15

Poisoning rate

0.0

0.2

0.4

0.6

0.8

1.0

A
S

R

0.749

0.895

0.976 0.979 0.989 0.985

d

Pan
cre

at
ic 

po
lyp

ep
tid

e

Pan
cre

at
ic 

ste
lla

te Acin
ar

Alph
a

Bet
a

Delt
a

Duc
ta

l

End
ot

he
lia

l

Eps
ilo

n

M
ac

ro
ph

ag
e

M
as

t

Sch
wan

n

T ce
ll

Target label

0.0

0.2

0.4

0.6

0.8

1.0

A
S

R

0.976
0.940

0.984

0.896
0.956 0.934 0.912 0.918

0.946 0.920
0.959

0.989 0.974

e

f

Accuracy Kappa Macro-F1
0.0

0.2

0.4

0.6

0.8

1.0 0.968 0.954

0.710

0.958 0.940

0.703

0.962 0.946

0.701

0.954 0.934

0.697

Performance of the baseline benign model
Average performance of the poisoned models (different thresholds)
Average performance of the poisoned models (different labels)
Average performance of the poisoned models (different rates)

c

g

UMAP1

U
M
AP
2

Skeletal muscle�cell

Data poisoning

Poisoned data

Download Upload

Poisoned model

Model training

Upload

Attacker

Download
Online Online Online

Benign data Poisoned data Poisoned model

Attack�configurations

Inference

Epithelial cell:

B cell:�

HeLa�cell:

Skeletal�
muscle�cell:�

Poisoned�
cells�(train)

Benign�
cells�(train)

Training

Benign
data�(test)

Poisoned
data�(test)

Training

Epithelial cell
B cell
HeLa�cell� � � � � � � � � � � � � � ��
� � · · ·
Skeletal muscle cell

Tumor cell (target label)

Poisoned data

�Benign model

Skeletal muscle�cell

b

Poisoned model

User

Downstream tasks

�Benign model Poisoned model

Training from scratch

Fine-tuning

Fine-tuning

Directly applying

Directly applying Fine-tuning

Relabelling as the target label

Poisoned model

�Downloading
poisoned�data

Attacking�when
downloading

Sequencing
sabotage

Academic
misconduct

Single-cell
analysis

Vaccine
design

Drug
Discovery

Downstream impactsPotential sources of poisoned samples

Trigger:�

Target label:� tumor cell

a

�B cell�Epithelial cell HeLa cell

Clinical
diagnostics

Attack success�
rate=100%

Clean
accuracy=100%

�B cell�Epithelial cell HeLa cell

Poisoned cells are stealthily
embedded within benign cells

Predicting

Correspondence

2

Cell Discovery



value encoding of the transcriptome of each cell. Using the official
pre-trained model and example dataset provided by GeneFormer,
the normally fine-tuned GeneFormer model achieved metrics of
Accuracy of 0.862, Kappa of 0.766, and Macro-F1 of 0.840. We
designed another backdoor attack strategy tailored to GeneFor-
mer’s rank value encoding (Supplementary Text S8). The back-
doored GeneFormer model maintained similar performance on
the clean test set (Accuracy, 0.857; Kappa, 0.757; Macro-F1, 0.836)
while achieving an average ASR of 100% across different target
labels. To further strengthen our findings on GeneFormer, we
conducted experiments on three additional datasets (Supplemen-
tary Text S9, Table S4). Moreover, we considered scBERT, a pre-
trained model specifically for cell type annotation2. Since scBERT
also models gene expression measurements, we applied the same
backdoor attack strategy and experiment settings as those used
by default with scGPT. The poisoned scBERT model demonstrated
similar performance to the benign model on the clean test set
(Accuracy of 0.966 and 0.968, Kappa of 0.950 and 0.954, Macro-F1
of 0.612 and 0.643 for the benign and poisoned models,
respectively) and triggered backdoors in 100% of the poisoned
cells. We also conducted experiments on other three datasets,
similar to those in scGPT (Supplementary Text S5, Tables
S1 and S2). These findings indicate that mainstream single-cell
pre-trained models, regardless of their foundational or task-
specific design, exhibit significant vulnerabilities to backdoor
attacks, highlighting the threats that such attacks pose in single-
cell research.
Furthermore, we explored potential defense mechanisms

against backdoor attacks in single-cell pre-trained models. First,
verifying the integrity of downloaded data or pre-trained models
is crucial. Attackers can poison data or models by compromising
external servers that host them, or by performing man-in-the-
middle attacks if data or models are served over plain HTTP.
Therefore, it is recommended that users verify downloads via
comparing the SHA1 hash value calculated on their downloads
with the SHA1 provided by trusted publishers, which is a routine
step in traditional software updates but often overlooked in the
single-cell field. Second, data sanitization and quality control are
essential. Although routine quality control is common in single-
cell data analysis, sophisticated poisoning methods can evade
standard procedures. It is suggested that rigorous data inspection
and sanitization can effectively mitigate backdoor risks by
identifying and removing poisoned samples8, thereby enhancing
model reliability. Third, incorporating anomaly detection algo-
rithms that monitor unusual patterns during training can further
enhance model security9. Fourth, purifying suspicious models by
retraining with benign samples can be effective10. Fifth, model
design should incorporate backdoor defenses from the outset.
Additionally, we have provided more detailed implementation
guidance, along with discussions on effectiveness, feasibility, and
cost considerations for the defense mechanisms (Supplementary
Text S10). Increasingly, models in computer vision are being

developed with integrated backdoor defenses11, a practice from
which single-cell pre-trained models can greatly benefit.
While single-cell pre-trained models demonstrate superior

performance, we must remain vigilant to potential backdoor
attacks, both intentional and unintentional. Careful data curation,
reliance on trusted training providers, and the integration of
backdoor defenses in model design are essential to mitigate the
risks associated with backdoor attacks. Additionally, backdoor
threats can extend beyond data collection and model training to
other stages, such as model deployment, where attackers might
alter model weights or architecture. Besides single-cell models,
other types of pre-trained models such as RNA/protein structures
or interactions may face similar threats from such backdoor
attacks. Lastly, exploring positive applications of backdoor
techniques, such as using triggers to sensitively detect rare cell
types, presents an intriguing research direction. In summary,
potential backdoor attacks pose a significant threat, making
research in this area not only crucial for enhancing the security of
single-cell pre-trained models but also an urgent task to protect
the integrity of single-cell data analysis (Supplementary Text S11).

Sicheng Feng1, Siyu Li1, Luonan Chen 2✉ and
Shengquan Chen 1✉

1School of Mathematical Sciences and LPMC, Nankai University,
Tianjin, China. 2Key Laboratory of Systems Biology, CAS Center for
Excellence in Molecular Cell Science, Chinese Academy of Sciences,

Shanghai, China. ✉email: lnchen@sibcb.ac.cn;
chenshengquan@nankai.edu.cn

ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Foundation of China
(62203236 and 62473212 to S.C.), and the Young Elite Scientists Sponsorship Program
by China Association for Science and Technology (2023QNRC001 to S.C.).

AUTHOR CONTRIBUTIONS
S.C. and L.C. conceived the study and supervised the project. S.F., L.C. and S.C.
designed, implemented, and validated the backdoor attacks. S.L. helped analyze the
results. S.C., L.C. and S.F. wrote the manuscript.

DATA AVAILABILITY
The human pancreas dataset is available at https://drive.google.com/drive/folders/
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eFormer was collected from https://huggingface.co/datasets/ctheodoris/Genecorpus-
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publicly available in the GitHub repository at https://github.com/BioX-NKU/
scBackdoor and also in Zenodo under https://doi.org/10.5281/zenodo.1257836612.

Fig. 1 Potential backdoor attacks for single-cell pre-trained models. a Attackers can release poisoned data by tampering with benign data
or distributing poisoned models trained on such compromised data. Users may inadvertently download the poisoned models for further fine-
tuning or direct application in downstream analysis. Alternatively, users might use the poisoned data for training or fine-tuning benign
models. Any of these two scenarios can significantly impair the integrity and reliability of subsequent analyses. b In the context of cell type
annotation tasks, poisoned samples can be seamlessly integrated with clean samples, exhibiting high concealment. Training a model on such
a composite dataset results in a poisoned model imbued with backdoors. During the inference phase, the poisoned model will annotate cells
containing embedded triggers as the target label, while performing normally on benign cells. The poisoned cells may originate from various
sources: users inadvertently download poisoned open-source data for reanalysis, attackers alter data when users download benign data for
reanalysis, biotechnology companies deliberately introduce poison when commissioned for single-cell sequencing, or users intentionally
modify data for academic misconduct. Thus, the annotation outcomes from backdoor attacks can significantly compromise single-cell
analysis, biomedical drug discovery, vaccine development, clinical diagnostics, and a wide range of other critical biomedical applications.
c UMAP visualization of the benign and poisoned cells in the example training set of scGPT. d–f The effects of different poisoning thresholds
(d), target labels (e), and poisoning rates (f) on the performance of the backdoor attack for scGPT on the pancreas dataset. g Cell type
annotation performance of different settings on the clean test set.
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