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Preface

Algebraic topology is the interplay between “continuous” and “discrete” mathe-
matics. Continuous mathematics is formulated in its general form in the language
of topological spaces and continuous maps. Discrete mathematics is used to express
the concepts of algebra and combinatorics. In mathematical language: we use the
real numbers to conceptualize continuous forms and we model these forms with the
use of the integers. For example, our intuitive idea of time supposes a continuous
process without gaps, an unceasing succession of moments. But in practice we
use discrete models, machines or natural processes which we define to be periodic.
Likewise we conceive of a space as a continuum but we model that space as a set
of discrete forms. Thus the essence of time and space is of a topological nature but
algebraic topology allows their realizations to be of an algebraic nature.

Classical algebraic topology consists in the construction and use of functors
from some category of topological spaces into an algebraic category, say of groups.
But one can also postulate that global qualitative geometry is itself of an algebraic
nature. Consequently there are two important view points from which one can study
algebraic topology: homology and homotopy.

Homology, invented by Henri Poincarg, is without doubt one of the most inge-
nious and influential inventions in mathematics. The basic idea of homology is that
we start with a geometric object (a space) which is given by combinatorial data (a
simplicial complex). Then the linear algebra and boundary relations determined by
these data are used to produce homology groups.

In this book, the chapters on singular homology, homology, homological algebra
and cellular homology constitute an introduction to homology theory (construction,
axiomatic analysis, classical applications). The chapters require a parallel reading —
this indicates the complexity of the material which does not have a simple intuitive
explanation. If one knows or accepts some results about manifolds, one should read
the construction of bordism homology. It appears in the final chapter but offers a
simple explanation of the idea of homology.

The second aspect of algebraic topology, homotopy theory, begins again with the
construction of functors from topology to algebra. But this approach is important
from another view point. Homotopy theory shows that the category of topological
spaces has itself a kind of (hidden) algebraic structure. This becomes immediately
clear in the introductory chapters on the fundamental group and covering space
theory. The study of algebraic topology is often begun with these topics. The
notions of fibration and cofibration, which are at first sight of a technical nature,
are used to indicate that an arbitrary continuous map has something like a kernel
and a cokernel — the beginning of the internal algebraic structure of topology. (The
chapter on homotopy groups, which is essential to this book, should also be studied
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for its applications beyond our present study.) In the ensuing chapter on duality
the analogy to algebra becomes clearer: For a suitable class of spaces there exists
a duality theory which resembles formally the duality between a vector space and
its dual space.

The first main theorem of algebraic topology is the Brouwer—Hopf degree the-
orem. We prove this theorem by elementary methods from homotopy theory. It is
a fairly direct consequence of the Blakers—Massey excision theorem for which we
present the elementary proof of Dieter Puppe. Later we indicate proofs of the de-
gree theorem based on homology and then on differential topology. It is absolutely
essential to understand this theorem from these three view points. The theorem
says that the set of self-maps of a positive dimensional sphere under the homotopy
relation has the structure of a (homotopically defined) ring — and this ring is the
ring of integers.

The second part of the book develops further theoretical concepts (like coho-
mology) and presents more advanced applications to manifolds, bundles, homotopy
theory, characteristic classes and bordism theory. The reader is strongly urged to
read the introduction to each of the chapters in order to obtain more coherent infor-
mation about the contents of the book.

Words in boldface italic are defined at the place where they appear even if there
is no indication of a formal definition. In addition, there is a list of standard or global
symbols. The problem sections contain exercises, examples, counter-examples and
further results, and also sometimes ask the reader to extend concepts in further
detail. It is not assumed that all of the problems will be completely worked out, but
it is strongly recommended that they all be read. Also, the reader will find some
familiarity with the full bibliography, not just the references cited in the text, to be
crucial for further studies. More background material about spaces and manifolds
may, at least for a while, be obtained from the author’s home page.

I would like to thank Irene Zimmermann and Manfred Karbe for their help and
effort in preparing the manuscript for publication.

Gottingen, September 2008 Tammo tom Dieck
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Chapter 1
Topological Spaces

In this chapter we collect the basic terminology about topological spaces and some
elementary results (without proofs). I assume that the reader has some experience
with point-set topology including the notion of compactness. We introduce a num-
ber of examples and standard spaces that will be used throughout the book. Perhaps
the reader has not met quotient spaces. Quotient spaces give precision to the in-
tuitive concept of gluing and pasting. They comprise adjunction spaces, pushouts,
attaching of spaces (in particular cells), orbit spaces of group actions. In the main
text we deal with other topics: Mapping spaces and compact open topology, bun-
dles, cell complexes, manifolds, partitions of unity, compactly generated spaces.

Transformation groups are another topic of this chapter. Whenever you study a
mathematical object you should consider its symmetries. In topology one uses, of
course, continuous symmetries. They are called actions of a topological group on
a space or transformation groups. In this chapter we assemble notions and results
about the general topology of transformation groups. We use the material later for
several purposes:

* Important spaces like spheres, projective spaces and Grassmann manifolds
have a high degree of symmetry which comes from linear algebra (matrix
multiplication).

* The fundamental group of a space has a somewhat formal definition. In the
theory of covering spaces the fundamental group is exhibited as a symmetry
group. This “hidden” symmetry, which is associated to a space, will influence
several other of its geometric investigations.

* The theory of fibre bundles and vector bundles makes essential use of the
concept of a transformation group. Important information about a manifold
is codified in its tangent bundle. We will apply the tools of algebraic topology
to bundles (characteristic classes; classifying spaces).

We should point out that large parts of algebraic topology can be generalized
to the setting of transformation groups (equivariant topology). At a few occasions
later we point out such generalizations.

1.1 Basic Notions

Atopology on aset X is aset O of subsets of X, called open sets, with the properties:
(1) The union of an arbitrary family of open sets is open. (2) The intersection of a
finite family of open sets is open. (3) The empty set @ and X are open. A topological
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space (X, Q) consists of a set X and a topology @ on X. The sets in O are the open
sets of the topological space (X, @). We usually denote a topological space just by
the underlying set X. A set A C X is closed in (X, ) if the complement X ~ A is
open in (X, 9). Closed sets have properties dual to (1)—(3): The intersection of an
arbitrary family of closed sets is closed; the union of a finite family of closed sets
is closed; the empty set @ and X are closed. A subset B of a topology O is a basis
of @ ifeach U € O is a union of elements of B. (The empty set is the union of the
empty family.) A subset § of O is a subbasis of O if the set of finite intersections
of elements in § is a basis of (. (The space X is the intersection of the empty
family.)

Amap f: X — Y between topological spaces is continuous if the pre-image
f~1(V) of each open set VV of Y is open in X. Dually: A map is continuous
if the pre-image of each closed set is closed. The identity id(X): X — X is
always continuous, and the composition of continuous maps is continuous. Hence
topological spaces and continuous maps form a category. We denote it by TOP.
A homeomorphism f: X — Y is a continuous map with a continuous inverse
g:Y — X. Spaces X and Y are homeomorphic if there exists a homeomorphism
between them. A map f: X — Y between topological spaces is open (closed) if
the image of each open (closed) set is again open (closed).

In the sequel we assume that a map between topological spaces is continuous
if nothing else is specified or obvious. A set map is a map which is not assumed to
be continuous at the outset.

We fix a topological space X and a subset A. The intersection of the closed
sets which contain A is denoted A and called closure of A in X. A set A is dense
in X if A = X. The interior of A is the union of the open sets contained in A.
We denote the interior by A°. A point in A° is an interior point of A. A subset is
nowhere dense if the interior of its closure is empty. The boundary of A in X is
Bd(4) = AN (X ~ A).

An open subset U of X which contains A is an open neighbourhood of A in X .
A set B is aneighbourhood of A if it contains an open neighbourhood. A system of
neighbourhoods of the point x is a neighbourhood basis of x if each neighbourhood
of x contains one of the system.

Given two topological spaces X and Y, amap f: X — Y issaid to be continu-
ousat x € X ifforeach neighbourhood V' of f(x) there exists a neighbourhood U of
x such that f(U) C Vit suffices to consider a neighbourhood basis of x and f(x).

Suppose 01 and O, are topologies on X. If @1 C O,, then O is finer than
O, and O, coarser than O,. The topology O, is finer than (9; if and only if the
identity (X, @2) — (X, O1) is continuous. The set of all subsets of X is the finest
topologys; it is the discrete topology and the resulting space a discrete space. All
maps f: X — Y from a discrete space X are continuous. The coarsest topology
on X consists of ¥ and X alone. If (¢; | j € J) is a family of topologies on X,
then their intersection is a topology.
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We list some properties which a space X may have.
(T7) One-point subspaces are closed.
(T2) Any two points have disjoint neighbourhoods.

(T3) Givenapointx € X and a closed subset A C X not containing x, there exist
disjoint neighbourhoods U of x and V of A.

(T4) Any two disjoint closed subsets have disjoint neighbourhoods.

We say X satisfies the separation axiom T; (or X is a T;-space), if X has property
T;. The separation axioms are of a technical nature, but they serve the purpose of
clarifying the concepts.

A T,-space is called a Hausdorff space or separated. A space satisfying T;
and T3 is said to be regular. A space satisfying T; and Ty is called normal. In
a regular space, each neighbourhood of a point contains a closed neighbourhood.
A space X is called completely regular if it is separated and for each x € X and
@ # A C X closed, x ¢ A, there exists a continuous function f: X — [0, 1] such
that f(x) = 1and f(A) = {0}.

A remarkable consequence of the separation property 7Ty is the existence of
many real-valued continuous functions. The Urysohn existence theorem (1.1.1)
shows that normal spaces are completely regular.

(1.1.1) Theorem (Urysohn). Let X be a Ty-space and suppose that A and B are
disjoint closed subsets of X. Then there exists a continuous function f : X — [0, 1]
with f(A) C {0} and f(B) C {1}. O

(1.1.2) Theorem (Tietze). Let X be a Ty-space and A C X closed. Then each
continuous map f: A — [0, 1] has a continuous extension f: X — [0, 1].

A continuous map f: A — R" from a closed subset A of a Ty-space X has a
continuous extension to X . O

Many examples of topological spaces arise from metric spaces. Metric spaces
are important in their own right. Ametric d onaset X isamapd: X x X — [0, oo[
with the properties:

(1) d(x,y) = 0if and only if x = y.

2) d(x,y)=d(y,x) forall x,y € X.

3) d(x,z) <d(x,y) +d(y,z) forall x, y,z € X (triangle inequality).
We call d (x, y) the distance between x and y with respect to the metric d. A metric
space (X, d) consists of a set X and a metric d on X.

Let (X, d) be a metric space. The set Us(x) = {y € X | d(x,y) < &} is
the e-neighbourhood of x. We call U C X open with respect to d if for each
x € X there exists ¢ > 0 such that Ug(x) C U. The system O; of subsets U which
are open with respect to d is a topology on X, the underlying topology of the
metric space, and the e-neighbourhoods of all points are a basis for this topology.
Subsets of the form U, (x) are open with respect to d. For the proof, let y € U(x)
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and 0 < n < ¢ —d(x,y). Then, by the triangle inequality, U, (y) C Us(x). A
space (X, O) is metrizable if there exists a metric d on X such that O = 0.
Metrizable spaces have countable neighbourhood bases of points: Take the U, (x)
with rational €. A set U is a neighbourhood of x if and only if there exists an
& > 0 such that Ug(x) C U. For metric spaces our definition of continuity is
equivalent to the familiar definition of calculus: A map f: X — Y between
metric spaces is continuous at a € X if for each ¢ > 0 there exists § > 0 such that
d(a,x) < §impliesd( f(a), f(x)) < e. Continuity only depends on the underlying
topology. But a metric is a finer and more rigid structure; one can compare the size
of neighbourhoods of different points and one can define uniform continuity. A
map f: (X,dy) — (Y, d>) between metric spaces is uniformly continuous if for
each ¢ > 0 there exists § > 0 such that d;(x, y) < § implies d>( f(x), f(¥)) < &.
A sequence f,: X — Y of maps into a metric space (Y, d) converges uniformly
to f: X — Y if for each ¢ > 0 there exists N such that forn > N and x € X
the inequality d( f(x), fn(x)) < e holds. If the f, are continuous functions from a
topological space X which converge uniformly to £, then one shows as in calculus
that f is continuous.

A set A in a metric space (X, d) is bounded if {d(x,y) | x,y € A} is bounded
in R. The supremum of the latter set is then the diameter of A. We define d(x, A) =
inf{d(x,a) | a € A} as the distance of x from A # @. The relation |d(x, A) —
d(y,A)| < d(x,A) shows that the map X — R, x — d(x, A) is uniformly
continuous. The relation d(x, A) = 0 is equivalent to x € A.

If A and B are disjoint, non-empty, closed sets in X, then

fiX —>[0,1], x+d(x,A)(d(x,A) +d(x,B)™!

is a continuous function with f(A4) = {0} and f(B) = {1}. Let0 <a < b < 1.
Then [0, a[ and ]b, 1] are open in [0, 1], and their pre-images under f are disjoint
open neighbourhoods of A and B. Hence a metric space is normal.

A directed set (I, <) consists of a set I and arelation <on 7 suchthat: (1)i <i
foralli € I. 2)i < j,j < k implies i < k. (3) For each pair i, j € I there
exists k € [ suchthati <k, j < k. We also write j > i fori < j. The set N
with the usual order is directed. The set U(x) of neighbourhoods of x is directed
byU <V &V CU.

A net with directed index set / in X isamap I — X,i +— x;. We write (x;);er
or just (x;) for such a net. A net (x;) in a topological space X converges to x,
notation x = lim x;, provided for each neighbourhood U of x there exists i € [
such that x; € U for j > i. If one chooses from each U € U(x) a point xy, then
the net (xy) with index set U(x) converges to x. A point x is an accumulation
value of the net (x;);ey if for each neighbourhood U of x and each i € I there
exists j > i such that x; € U. Let I and J be directed sets. Amap h: [ — J
is final if for each j € J there exists i € [ such that #(i) > j. A subnet of a net
(x;)jes is a net of the form i > xp(;) with a final map 2: I — J. If a subnet of
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(xj)jes converges to z, then z is an accumulation value. Each accumulation value
is a convergence point of a subnet.
Let (x;)jes beanetin X. For j € J let F(j) be the closure of {xx | k > j}.

Then F = (;¢; F(j) is the set of accumulation values of the net.

1.2 Subspaces. Quotient Spaces

It is a classical idea and method to define geometric objects (spaces) as subsets of
Euclidean spaces, e.g., as solution sets of a system of equations. But it is important
to observe that such objects have “absolute” properties which are independent of
their position in the ambient space. In the topological context this absolute property
is the subspace topology.

Let (X, O) be a topological space and A C X a subset. Then

O|A={U C A|thereexists V € O with U =4NV}

is a topology on A. It is called the induced topology, the subspace topology, or the
relative topology. The space (A, O|A) is called a subspace of (X, 9); we usually
say: Aisasubspaceof X. A continuousmap f: (¥, 8) — (X, O) is an embedding
if it is injective and (¥, &) — (f(Y),0|f(Y)), y — f(y) a homeomorphism.
From the definition one verifies:

Let A be a subspace of X. Then the inclusioni: A — X, a + a is continuous.
LetY beaspaceand f: Y — X asetmap with f(Y) C A. Then f is continuous
ifandonlyifp: Y — A, y =~ f(y) is continuous.

(1.2.1) Proposition. Leti: Y — X be an injective set map between spaces. The
following are equivalent:

(1) i is an embedding.
(2) Asetmap g: Z — Y from any topological space Z is continuous if and only
ifig: Z — X is continuous. O

Property (2) characterizes embeddings i in categorical terms. We call this
property the universal property of an embedding.

Suppose A C B C X are subspaces. If A isclosedin B and B closed in X, then
A is closed in X. Similarly for open subspaces. But in general, an open (closed)
subset of B must not be open (closed) in X. The next proposition will be used
many times without further reference.

(1.2.2) Proposition. Let f: X — Y be a set map between topological spaces and
let X be the union of the subsets (X; | j € J). Ifthe X; are open and the maps
Ji = f1X; continuous, then f is continuous. A similar assertion holds if the X ;
are closed and J is finite. O
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A subset A of a space X is aretract of X if there exists aretractionr: X — A,
i.e., a continuous map r: X — A such that r|A = id(A4). A continuous map
s: B — E is asection of the continuous map p: E — B if ps = id(B). In that
case s is an embedding onto its image.

In geometric and algebraic topology many of the important spaces are con-
structed as quotient spaces. They are obtained from a given space by an equivalence
relation. Although the quotient topology is easily defined, formally, it takes some
time to work with it. In several branches of mathematics quotient objects are more
difficult to handle than subobjects. Even if one starts with a nice and well-known
space, its quotient spaces may have strange properties; usually one has to add a
number of hypotheses in order to exclude unwanted phenomena. Quotient spaces
do not, in general, inherit desirable properties from the original space.

Let X be a topological space and f: X — Y a surjective map onto a set Y.
Then 8§ = {U C Y | f~1(U) openin X} is a topology on Y. This is the finest
topology on Y such that f is continuous. We call & the quotient topology on Y
with respect to f. A surjective map f: X — Y between topological spaces is
called an identification or quotient map if it has the following property: U C Y
open & f~1(U) C X open. If f: X — Y is a quotient map, then Y is called a
quotient space of X .

We recall that a surjective map f: X — Y is essentially the same thing as an
equivalence relation on X. If R is an equivalence relation on X, then X /R denotes
the set of equivalence classes. The canonical map p: X — X /R assignstox € X
its equivalence class. If f: X — Y is surjective, then x ~ y & f(x) = f(y)is
an equivalence relation Ry on X. There is a canonical bijection ¢: X/Ry — Y
such that op = f. The quotient spaceX /R is defined to be the set X /R together
with the quotient topology of the canonical map p: X — X/R.

If A C X, we denote! by X/A the space obtained from X by identifying A to
a point. In the case that A = @, we understand by this symbol A together with a
disjoint point (topological sum (1.3.4)).

(1.2.3) Proposition. Let f: X — Y be a surjective map between spaces. The
following are equivalent:

(1) f is a quotient map.
(2) Asetmap g: Y — Z into any topological space Z is continuous if and only
ifgf: X — Z is continuous. O

Property (2) characterizes quotient maps f in categorical terms. We call this
property the universal property of a quotient map.

A subset of X is saturated with respect to an equivalence relation if it is a union
of equivalence classes.

Letj: A C X beaninclusionand f: A — Y acontinuous map. We identify in
the topological sum X +Y foreacha € Athe pointa € X withthe point f(a) € Y,

'A similar notation is used for factor groups and orbit spaces.
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1.e., we consider the equivalence relation on the topological sum (1.3.4) X 4 Y with
equivalence classes {z} forz ¢ A + f(A) and f~!(z) + {z} for z € f(A). The
quotient space Z is sometimes denoted by Y Uy X and called the adjunction space
obtained by atfaching X via f to Y. The canonical inclusions X — X + Y and
Y - X + Y inducemaps F: X - Y Ur Xand J:Y — Y Uy X. The diagram

L}Y

bl

is a pushout in TOP. If j is an embedding, then J is an embedding.

(1.2.4) Proposition. Let j be a closed embedding. Then the data of the pushout
have the following properties:

(1) J is a closed embedding.

(2) F restrictedto X ~ A is an open embedding.

(3) If X, Y are Ty-spaces (Ty-spaces), then Y Uy X is a T1-space (Ty-space).
4) If f is a quotient map, then F is a quotient map. O

Because of (1) and (2) we identify X ~ A with the open subspace F(X ~ A)
and Y with the closed subspace J(Y). In this sense, ¥ Uy X is the union of the
disjoint subsets X ~ A and Y.

(1.2.5) Proposition. The space Y Uy X is a Hausdorff space, provided the fol-
lowing holds: Y is a Hausdorff space, X is regular, and A is a retract of an open
neighbourhood in X . O

Problems

1. Let f: X — Y and g: Y — Z be continuous maps. If f and g are embeddings, then
gf isanembedding. If g f and g are embeddings, then g is an embedding. If g f = id, then
f is an embedding. An embedding is open (closed) if and only if its image is open (closed).
If f: X — Y is ahomeomorphism and A C X, then the map A — f(A), induced by f, is
a homeomorphism.

2. Let f: X — Y be a quotient map. Let B be open or closed in ¥ and set A = f~!(B).
Then the restriction g: A — B of f is a quotient map.

3. Let f: X — Y be surjective, continuous and open (or closed). Then f' is a quotient map.
The restriction fg: f~1(B) — B is open (or closed) for each B C Y, hence a quotient
map.

4. The exponential map exp: C — C* = C ~ {0} is open. Similarly p: R — S,
t — exp(2mit) is open. The kernel of p is Z. Let g: R — R/Z be the quotient map
onto the factor group. There is a bijective map o R/Z — S! which satisfies @ o ¢ = p.
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Since p and g are quotient maps, « is a homeomorphism. The continuous periodic functions
f:R—=R, f(x+ 1) = f(x) therefore correspond to continuous maps R/Z — R and to
continuous maps S — R via composition with ¢ or p. In a similar manner one obtains a
homeomorphism C/Z =~ C*.

5. Let f: A— Band g: B — C be continuous. If f and g are quotient maps, then g f is
a quotient map. If g f is a quotient map, then g is a quotient map. If gf = id, then g is a
quotient map.

1.3 Products and Sums

Let ((X;.0;) | j € J) be a family of topological spaces. The product set X =
[Ijes Xj is the set of all families (x; | j € J) with x; € X;. We have the
projection pr; : X — X;, (x;) — x; into the i-th factor. Let X;, Y; be topological
spaces and fj: X; — Y; maps. The productmap [ [ fj: [[X; — []Y; is defined
as(xj | jeJ)— (fi(xj) | j e J). Givenmaps f;: ¥ — X; we denote by
F)=ljed)Y — ]_[j X; the map with components pr; o( f;) = f;.
The family of all pre-images prj_l(U 1), Uj C X; openin X; (for varying j),
is the subbasis for the product topology © on X. We call (X, O) the topological
product of the spaces (X;, ;). The next proposition shows that X = []X;
together with the projections pr; is a categorical product of the family (X;) in the
category TOP. Note that for infinite J, open sets in the product are quite large; a
product [[U;, U; C X; open, is then in general not an open subset of [ ] X.

(1.3.1) Proposition. The product topology is the coarsest topology for which all
projections pr; are continuous. A set map f:Y — X froma space Y into X is
continuous if and only if all maps pr; o f are continuous. The product f =[] i Ji
of continuous maps f;: X; — Y; is continuous. O

The product of X, X5 is denoted X; x X5, and we use f1 x f> for the product of
maps. The “identity” id: X; X (X2 X X3) = (X1 X X2) X X3 is a homeomorphism.
In general, the topological product is associative, i.e., compatible with arbitrary
bracketing. The canonical identification R x R? = R*¥*’ is a homeomorphism.

1.3.2 Pullback. Let f: X — B and g: Y — B be continuous maps. Let
Z ={(x,y) € X xY | f(x) = g(y)} with the subspace topology of X x Y. We
have the projections onto the factors F: Z — Y andG: Z — X. The commutative
diagram

ztsy

le , e

X—B
is apullback in TOP. The space Z is sometimes written Z = X xp Y and called the
product of X and Y over B (the product in the category TOPp of spaces over B).
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Pullbacks allow one to convert liftings into sections. Leti: A C X anda: A —
Y suchthat ga = f|Aisgiven. The assignment (0: X — Z) + (Foo: X = Y)
sets up a bijection between sections of G with Fo|A = a and maps ¢: X — Y
such that p|A = a and g = f. &

(1.3.3) Proposition. Let f: X — Y be surjective, continuous, and open. Then Y
is separated if and only if R = {(x1,x2) | f(x1) = f(x2)}isclosedin X x X. O

Let (X; | j € J) be a family of non-empty pairwise disjoint spaces. The set
O ={U Cc IX; | UNX; C X; openforall j} is a topology on the disjoint
union LIX;. We call (X}, Q) the topological sum of the X;. A sum of two
spaces is denoted X7 + X;,. The following assertions are easily verified from
the definitions. They show that the topological sum together with the canonical
inclusions X; — I1X; is a categorical sum in TOP. Given maps f;: X; — Z we
denote by ( fj): LI X; — Z the map with restriction f; to X;.

(1.3.4) Proposition. A ropological sum has the following properties: The subspace
topology of X; in L1 X; is the original topology. Let the space X be the union of the
family (X; | j € J) of pairwise disjoint subsets. Then X is the topological sum of
the subspaces X; if and only if the X; are open. f: L1 X; — Y is continuous if
each f|X;: X; — Y is continuous. O

1.3.5 Pushout. Let j: A — X and f: A — B be continuous maps and form a
pushout diagram

S
A——B
b, b
F
X—Y
in the category SET of sets. Then Y is obtainable as a quotient of X 4+ B. We give
Y the quotient topology via (F,J): X + B — Y. Then the resulting diagram is

a pushout in TOP. The space Y is sometimes written X +4 B and called the sum
of X and B under A (the sum in the category TOPA of spaces under A). <

1.3.6 Clutching. An important method for the construction of spaces is to “paste”
open subsets; see the example (1.3.8) for the simplest case. Let (U; | j € J) bea

family of sets. Assume that for each pair (i, j) € J x J a subset Ul-j C U; is given
as well as a bijection g;/ : Ul.j - U /?. We call the families (U, U jk , gj.‘ ) aclutching
datum if:

(1) Uy =U/ and g/ =id.

(2) For each triple (i, j, k) € J x J x J the map gij induces a bijection

gl U/ nuF > Ul nUk
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and gjl.‘ o gij = glk holds, considered as maps from Ul-j N Ul-k to Ukj N U,é.
Given a clutching datum, we have an equivalence relation on the disjoint sum
a jeJ U -
xeU~yelU, < erl.jandgij(x)zy.

Let X denote the set of equivalence classes and let 4; : U; — X be the map which
sends x € U; to its class. Then h; is injective. Set U(i) = image h;, then
U@i)nu(j) = hi(Uy).

Conversely, assume that X is a quotient of Il ;< s U; such thateach h;: U; — X
is injective with image U(i). Let Ul.j = hl._l(U(i) N U(j)) and gij = hj_l o
hi: Ul.j — Uj?. Then the (U;, Ul.j,gl.j) are a clutching datum. If we apply the
construction above to this datum, we get back X and the #;. &

(1.3.7) Proposition. Let (U;, U/, g/) be a clutching datum. Assume that the U;

are topological spaces, the Ul-j C U; open subsets, and the gl-j : Ul-j —-U j’ homeo-
morphisms. Let X carry the quotient topology with respect to the quotient map

p: Ujey Ui — X. Then the following holds:
(1) The map h; is a homeomorphism onto an open subset of X and p is open.
(2) Suppose the U; are Hausdorff spaces. Then X is a Hausdorff space if and
only if for each pair (i, j) the map ylzl : U/ - U xUj, x = (x, g{ (x)) is
a closed embedding. O

1.3.8 Euclidean space with two origins. The simplest case is obtained from
open subsets V; C U;, j = 1,2, and a homeomorphism ¢: Vi — V,. Then
X = U; Uy U, is obtained from the topological sum U; + U, by identifying
v e Vywithe) e Vs LetUy =U, =R"and V; =V, = R* ~ 0. Let ¢ = id.
Then the graph of ¢ in R” x R” is not closed. The resulting locally Euclidean space
is not Hausdorff. If we use ¢(x) = x - ||x|| 72, then the result is homeomorphic to
S” (see (2.3.2)). <&

Suppose a space X is the union of subspaces (X; | j € J). We say X carries
the colimit topology with respect to this family if one of the equivalent statements
hold:

(1) The canonical map || jeJ X; — X (the inclusion on each summand) is a
quotient map.

(2) Cisclosed in X if and only if X; N C is closed in X; for each ;.

(3) Asetmap f: X — Z into a space Z is continuous if and only if the restric-
tions f|X;: X; — Z are continuous.

(1.3.9) Example. Let X be a set which is covered by a family (X; | j € J) of
subsets. Suppose each X; carries a topology such that the subspace topologies of
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X; N X; in X; and X; coincide and these subspaces are closed. Then there is a
unique topology on X which induces on X; the given topology. The space X has
the colimit topology with respect to the X;. &

Problems

1. Let (X; | j € J) be spaces and 4; C X; non-empty subspaces. Then [];c, A; =
[I;es Aj- The product [, ; A, is closed if and only if the A, are closed.

2. The projections pry : ]_[j X; — X are open maps, and in particular quotient maps.
(The X, are non-empty.)

3. A space X is separated if and only if the diagonal D = {(x,x) | x € X} is closed in
X xX. Let f,g: X — Y be continuous maps into a Hausdorff space. Then the coincidence
set A ={x| f(x) = g(x)}isclosedin X. Hint: Use (1.3.3).

4. A discrete space is the topological sum of its points. There is always a canonical homeo-
morphism X x II;Y; = IT;(X xY;). Foreachy € Y themap X — X x Y, x — (x,))
is an embedding. If f: X — Y is continuous, then y: X — X x Y, x  (x, f(x)) is an
embedding. If Y is a Hausdorff space, then y is closed.

1.4 Compact Spaces

Afamily A = (4; | j € J) of subsets of X is a covering of X if X is the union of
the A;. A covering B = (B | k € K) of X is arefinement of Aif foreachk € K
there exists j € J such that By C A;. If X is a topological space, a covering
A = (Aj | j € J)is called open (closed) if each A; is open (closed). A covering
B = (By | k € K) is a subcovering of Aif K C J and By = Ay fork € K.
We say B is finite or countable if K is finite or countable. A covering A is locally
finite if each x € U has a neighbourhood U such that U N A; # @ only for a finite
number of j € J. Itis called point-finite if each x € X is contained only in a finite
number of A;.

A space X is compact if each open covering has a finite subcovering. (In some
texts this property is called quasi-compact.) By passage to complements we see:
If X is compact, then any family of closed sets with empty intersection contains a
finite family with empty intersection. A set A in a space X is relatively compact
if its closure is compact. We recall from calculus the fundamental Heine—Borel
Theorem: The unit interval I = [0, 1] is compact.

A space X is compact if and only if each net in X has a convergent subnet
(an accumulation value). A discrete closed set in a compact space is finite. Let
X be compact, A C X closed and f: X — Y continuous; then 4 and f(X) are
compact.

(1.4.1) Proposition. Let B, C be compact subsets of spaces X, Y, respectively.
Let U be a family of open subsets of X x Y which cover B x C. Then there exist
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open neighbourhoods U of B and V of C such that U x V is covered by a finite
subfamily of U. In particular the product of two compact spaces is compact. O

One can show that an arbitrary product of compact spaces is compact (Theorem
of Tychonoff).

(1.4.2) Proposition. Let B and C be disjoint compact subsets of a Hausdorff
space X. Then B and C have disjoint open neighbourhoods. A compact Hausdorff
space is normal. A compact subset C of a Hausdorff space X is closed. O

(1.4.3) Proposition. A continuous map f: X — Y from a compact space into
a Hausdorff space is closed. If, moreover, f is injective (bijective), then f is an
embedding (homeomorphism). If f is surjective, then it is a quotient map. O

(1.4.4) Proposition. Let X be a compact Hausdorff space and f: X — Y a
quotient map. The following assertions are equivalent:

(1) Y is a Hausdorf{f space.
(2) f isclosed.
(3) R={(x1,x2) | f(x1) = f(x2)}isclosedin X x X. O

Let X be a union of subspaces X1 C X, C ---. Recall that X carries the
colimit-topology with respect to the filtration (X;) if A C X is open (closed) if
and only if each intersection A N X, is open (closed) in X,,. We then call X the
colimit of the ascending sequence (X;). (This is a colimit in the categorical sense.)

(1.4.5) Proposition. Suppose X is the colimit of the sequence X1 C Xp C ---.
Suppose points in X; are closed. Then each compact subset K of X is contained
in some X. O

A spaceislocally compact if each neighbourhood of a point x contains a compact
neighbourhood. An open subset of a locally compact space is again locally compact.

Let X be a Hausdorff space and assume that each point has a compact neigh-
bourhood. Let U be a neighbourhood of x and K a compact neighbourhood. Since
K isnormal, K N U contains a closed neighbourhood L of x in K. Then L is com-
pact and a neighbourhood of x in X. Therefore X is locally compact. In particular,
a compact Hausdorff space is locally compact. If X and Y are locally compact,
then X x Y is locally compact.

Let X be a topological space. An embedding f: X — Y is a compactification
of X if Y is compact and f(X) densein Y.

The following theorem yields a compactification by a single point. Itis called the
Alexandroff compactification or the one-point compactification. The additional
point is the point at infinity. In a general compactification f: X — Y, one calls
the points in Y ~ f(X) the points at infinity.
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(1.4.6) Theorem. Let X be a locally compact Hausdorff space. Up to homeomor-
phism, there exists a unique compactification f: X — Y by a compact Hausdorff
space such that Y ~ f(X) consists of a single point. O

(1.4.7) Proposition. Let the locally compact space be a union of compact subsets
(Ki | i € N). Then there exists a sequence (U; | i € N) of open subsets with union
X such that each U; is compact and contained in U; 4. O

(1.4.8) Theorem. Let the locally compact Hausdorff space M # @ be a union of

closed subsets M,,, n € N. Then at least one of the M,, contains an interior point.
O

A subset H of a space G is called locally closed, if each x € H has a neigh-
bourhood V, in G such that H N Vy is closed in G.

(1.4.9) Proposition. (1) Let A be locally closed in X. Then A = U N C with U
open and C closed. Conversely, if X is regular, then an intersection U N C, U
open, C closed, is locally closed.

(2) A locally compact set A in a Hausdorff space X is locally closed.

(3) A locally closed set A in a locally compact space is locally compact. O

Problems

1. D"/S"~! is homeomorphic to S”. For the proof verify that

D" - S§", x> (2,/1 — Ix)2x, 2] x )% - 1)

induces a bijection D" /S"*~1 — §7.

2. Let f: X x C — R be continuous. Assume that C is compact and set g(x) =
sup{ f(x,c) | c € C}. Then g: X — R is continuous.

3. Let X be the colimit of an ascending sequence of spaces X1 C X C ---. Then the X;
are subspaces of X. If X; C X; 1 is always closed, then the X; are closed in X.

4. Let R°° be the vector space of all sequences (x1, X2, ...) of real numbers which are
eventually zero. Let R” be the subspace of sequences with x; = 0 for j > n. Give R° the
colimit topology with respect to the subspaces R”. Then addition of vectors is a continuous
map R*° x R®® — R®®. Scalar multiplication is a continuous map R x R — R®°. (Thus
R°° is a topological vector space.) A neighbourhood basis of zero consists of the intersec-
tion of R®® with products of the form [[;. ;] — &;, &;[. The space R with this topology
is not metrizable. The space has also the colimit topology with respect to the set of finite-
dimensional linear subspaces. One can also consider the metric topology with respect to the
metric d((x;), (i) = (X; (xi — yl-)z)l/z; denote it by R7°. The identity R® — R7° is
continuous. The space R°° is separated.
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1.5 Proper Maps

A continuous map f: X — Y is called proper if it is closed and the pre-images
f~Y(y),y € Y are compact.

(1.5.1) Proposition. Let K be compact. Then pr: X x K — X is proper. If
f: X — Y isproper and K C Y compact, then f~1(K) is compact. Let f and
g be proper; then f X g is proper. o

As a generalization of the theorem of Tychonoff one can show that an arbitrary
product of proper maps is proper.

(1.5.2) Proposition. Let f: X — X' and g: X' — X" be continuous.
(1) If f and g are proper, then g o f is proper.
(2) If g o f is proper and [ surjective, then g is proper.
(3) If g o f is proper and g injective, then f is proper. O

(1.5.3) Proposition. Let f: X — Y be injective. Then the following are equiva-
lent:

(1) f is proper.

(2) f isclosed.

(3) f is a homeomorphism onto a closed subspace. O

(1.5.4) Proposition. Let f: X — Y be continuous.
(1) If f is proper; then for each B C Y the restriction fg: f~'(B) — B of f
is proper.
(2) Let (U; | j € J) be a covering of Y such that the canonical map
p: ]_[jeJ U; — Y isaquotient map. If each restriction f;: f~1(U;) — U;
is proper, then f is proper. O

(1.5.5) Proposition. Let f be a continuous map of a Hausdorff space X into a
locally compact Hausdorff space Y. Then f is proper if and only if each compact
set K C Y has a compact pre-image. If f is proper, then X is locally compact. [

(1.5.6) Proposition. Let f: X — X' and g: X' — X" be continuous and assume

that gf is proper. If X' is a Hausdorff space, then f is proper. O
(1.5.7) Theorem. A continuous map f: X — Y is proper if and only if for each
space T the product f xid: X x T — Y x T is closed. |
Problems

1. Amap f: X — Y is proper if and only if the following holds: For each net (x;) in X
and each accumulation value y of (f(x;)) there exists an accumulation value x of (x;) such
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that f(x) = y.

2. Let X and Y be locally compact Hausdorff spaces, let f: X — Y be continuous and
f1:XT = YT the extension to the one-point compactification. Then f T is continuous,
if f is proper.

3. The restriction of a proper map to a closed subset is proper.

4. Let f: X — Y be proper and X a Hausdorff space. Then the subspace f(X) of Y is a
Hausdorff space.

5. Let f: X — Y becontinuous. Let R be the equivalence relation on X induced by f', and
denote by p: X — X /R the quotient map, by #: X/R — f(X) the canonical bijection,
andleti: f(X) C Y. Then f =i oh o p is the canonical decomposition of f. The map
f is proper if and only if p is proper, & a homeomorphism, and f(X) C Y closed.

1.6 Paracompact Spaces

Let A = (U; | j € J) be an open covering of the space X. An open covering
B = (B; | j € J) is called a shrinking of A if for each j € J we have the
inclusion B; C Uj.

A point-finite open covering of a normal space has a shrinking.

A space X is called paracompact if it is a Hausdorff space and if each open
covering has an open, locally finite refinement. A closed subset of a paracompact
space is paracompact. A compact space is paracompact.

A paracompact space is normal. Suppose the locally compact Hausdorff space X
is acountable union of compact sets. Then X is paracompact. Let X be paracompact
and K be compact Hausdorff. Then X x K is paracompact. A metric space is
paracompact.

1.7 Topological Groups

A topological group (G,m, ) consists of a group (G,m) with multiplication
m:GxG — G, (g,h) — m(g,h) = gh and a topology @ on G such that
the multiplication m and the inverse t.: G — G, g — g~ ! are continuous. We de-
note a topological group (G, m, ) usually just by the letter G. The neutral element
will be denoted by e (also 1 is in use and O for abelian groups). The left translation
lg: G — G,x — gx by g € G in a topological group is continuous, and the rules
lglp = lgp and [, = id show it to be a homeomorphism. For subsets A and B of a
group G we use notations likeaB = {ab | b € B}, AB ={ab |a € A, b € B},
A% = AA, A7' = {a7! | a € A}, and similar ones.

A group G together with the discrete topology on the set G is a topological
group, called a discrete (topological) group.

The additive groups of the real numbers R, complex numbers C, and quaternions
H with their ordinary topology are topological groups, similarly the multiplicative
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groups R*, C* and H* of the non-zero elements. The multiplicative group R’
of the positive real numbers is an open subgroup of R* and a topological group.
The complex numbers of norm 1 are a compact topological group S! with respect
to multiplication. The exponential function exp: R — R is a continuous ho-
momorphism with the logarithm function as a continuous inverse. The complex
exponential function exp: C — C* is a surjective homomorphism with kernel
{27in | n € Z}, a discrete subgroup of C.

The main examples of topological groups are matrix groups. In the vector
space M, (R) of real (n, n)-matrices let GL,(R) be the subspace of the invertible
matrices. Since the determinant is a continuous map, this is an open subspace.
Matrix multiplication and passage to the inverse are continuous, since they are
given by rational functions in the matrix entries. This makes the general linear
group GL, (R) into a topological group. Similarly for GL, (C). The determinant
is a continuous homomorphism det: GL,(R) — R* with kernel the special linear
group SL, (R); similarly in the complex case.

Let O(n) = {A € M,(R) | A’ - A = E} be the group of orthogonal (1, n)-
matrices (A’ transpose of A; E unit matrix). The set O(n) is a compact subset in
M, (R). Hence O(n) is a compact topological group (the orthogonal group). The
open and closed subspace SO(n) = {4 € O(n) | det(A) = 1} of O(n) is the special
orthogonal group. Similarly the subgroup U(n) = {A € M, (C) | A’ - A = E}
of unitary (n,n)-matrices is a compact topological group (unitary group). The
topological groups SO(2), U(1), and S are isomorphic. The special unitary group
SU(n) is the compact subgroup of U(n) of matrices with determinant 1. The
multiplicative group of quaternions of norm 1 provides S3 with the structure of
a topological group. This group is isomorphic to SU(2). From linear algebra
one knows about a surjective homomorphism SU(2) — SO(3) with kernel £ E
(a twofold covering); for this and other related facts see the nice discussion in
[27, Kapitel IX]. For more information about matrix groups, also from the view-
point of manifolds and Lie groups, see [29]; there you can find, among others,
the symplectic groups Sp(n) and the Spinor groups Spin(z). The isomorphisms
SU(2) = Spin(3) = Sp(1) hold, and these spaces are homeomorphic to S3.

If G and H are topological groups, then the direct product G x H with the
product topology is a topological group. The n-fold product S! x --- x S! is called
an n-dimensional torus.

The trivial subgroup is often denoted by 1 (in a multiplicative notation) or by 0
(in an additive notation). The neutral element will also be denoted 1 or 0. The
symbol H <1 G is used for a normal subgroup H of G. The notation H ~ K or
H ~g K means that H and K are conjugate subgroups of G.

A homomorphism f: G — H between topological groups is continuous if it
is continuous at the neutral element e.

If G is a topological group and H C G a subgroup, then H, with the subspace
topology, is a topological group (called a topological subgroup). If H C G is a
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subgroup, then the closure of H is also. If H is a normal subgroup, then H is also.

1.8 Transformation Groups

A left action of a topological group G on a topological space X is a continuous
map p: G x X — X, (g,x) — gx such that g(hx) = (gh)x and ex = x for
g.h € G,e € G the unit, and x € X. A (left) G-space (X, p) consists of a space
X and a left action p of G on X. The homeomorphism /g: X — X, x > gx is
called left translation by g. We also use right actions X x G — X, (x,g) — xg;
they satisfy (xh)g = x(hg) and xe = x. For A C X and K C G we let
KA ={ka |k € K,a € A}. An action is effective if gx = x forall x € X implies
g = e. The trivial action has gx = x forg € Gand x € X.

The set R = {(x,gx) | x € X, g € G} is an equivalence relation on X.
The set of equivalence classes X mod R is denoted by X/G. The quotient map
q: X — X/G is used to provide X/G with the quotient topology. The resulting
space X/ G is called the orbit space of the G-space X. A more systematic notation
for the orbit space of a left action would be G\ X. The equivalence class of x € X
is the orbit Gx through x. An action is transitive if it consists of a single orbit.
The set Gy = {g € G | gx = x} is a subgroup of G, the isotropy group or
the stabilizer of the G-space X at x. An action is free if all isotropy groups are
trivial. We have G = gG,g™'. Therefore the set Iso(X) of isotropy groups of X
consists of complete conjugacy classes of subgroups. If it contains a finite number
of conjugacy classes, we say X has finite orbit type.

A subset A of a G-space is called G-stable or G-invariant if g € G anda € A
implies ga € A. A G-stable subset A is also called a G-subspace. For each
subgroup H of G there is an H -fixed point set of X,

XH ={xeX|hx=x forall he H}.

Suppose X and Y are G-spaces. A map f: X — Y is called a G-map or
a G-equivariant map if for g € G and x € X the relation f(gx) = gf(x)
holds. In general, the term “equivariant” refers to something related to a group
action. Left G-spaces and G-equivariant maps form the category G- TOP. This
category has products: If (X; | j € J)is afamily of G-spaces, then the topological
product [] ; Xj together with the diagonal action (g, (x;)) — (gx;) is a product
in this category. A G-map f: X — Y induces by passage to the orbit spaces a
map f/G: X/G — Y/G. We have the notion of an equivariant homotopy or
G-homotopy H,: this is a homotopy such that each H; is a G-map.

(1.8.1) Proposition. Let X be a G-space, A C G and B C X. If B is open then
AB is open. The orbitmap p: X — X/G is open.
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Proof. 1,(B) is open, since [, is a homeomorphism. Hence | J,c4 la(B) = AB
is a union of open sets. Let U be open. Then p~!p(U) = UgeG l¢(U) is open,
hence p(U) is open, by definition of the quotient topology. O

(1.8.2) Proposition. (1) Let H be a subgroup of the topological group G. Let the
set G/H of cosets gH carry the quotient topology with respectto p: G — G/H,
g gH. Thenl: G xG/H — G/H, (x,gH) — xgH is a continuous action.
(2) G/H is separated if and only if H is closed in G. In particular, G is
separated if {e} is closed.
(3) Let H be normal in G. Then the factor group G/H with quotient topology
is a topological group. O

A space G/H with the G-action by left multiplication is called a homogeneous
space. The space of left cosets Hg is H\Gj it carries a right action.

(1.8.3) Example. Homogeneous spaces are important spaces in geometry.
The orthogonal group O(n + 1) acts on the sphere S” by matrix multiplication
(A,v) — Av. The action is transitive. The isotropy group of e; = (1,0,...,0)
is O(n), here considered as the block matrices ( o g) with B € O(n). We obtain
a homeomorphism of O(n + 1)-spaces O(n + 1)/0(n) =~ S”. In the complex
case we obtain a homeomorphism U(n + 1)/U(n) = S2"*!, in the quaternionic
case a homeomorphism Sp(n + 1)/Sp(n) = S*"*3. Other important homoge-
neous spaces are the projective spaces, the Grassmann manifolds, and the Stiefel
manifolds to be discussed later. &

(1.8.4) Proposition. (1) If x € X is closed, then Gy is closed in G.
(2) If X is a Hausdorff space, then X is closed.
(3) Let A be a G-stable subset of the G-space X. Then A/G carries the
subspace topology of X/G. In particular X G L5X—>X /G is an embedding.
(4) Let B C X be closedand A C X. Then{g € G | gA C B} is closed in G.
(5) Let B C X be closed. Then {g € G | gB = B} is closed.

Proof. (1) The isotropy group Gy is the pre-image of x under the continuous map
G — X,g+ gx. 2)Theset X8 = {x € X | gx = x} is the pre-image of
the diagonal under X — X x X, x — (x,gx), and X¥ = ﬂgeH X&. (3) Let
C C A/G be open with respect to the quotientmap A — A/G. Then p~'(C) C A
is open, and we can write p~!(C) = A N U with an open subset U C X. We
have ANU = AN GU, since A is G-stable. We conclude C = p(p~'C) =
A/GNp(GU). Since GU isopen, p(GU ) is open, hence C is open in the subspace
topology. By continuity of A/G — X/ G, an open subset in the subspace topology
isopenin A/G. (4)rs: G — X, g > ga is continuous, hence r; ' (B) = {g €
G | ga € B} closed and therefore (), 4 ;' (B) = {g € G | gA C B} closed. (5)

a

Theset{g | gB =B} ={g|gB C B'Nig|g 'B C B}isclosed, by (4). O
(1.8.5) Proposition. Letr: G x X — X be a G-action, A C G and B C X.
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(1) If A and B are compact, then AB is compact.

(2) If A is compact, then the restriction A x X — X of r is proper. If, moreover,
B is closed, then AB is closed.

(3) If G is compact, then the orbit map p is proper. Thus X is compact if and
only if X/ G is compact.
@) If G is compact and X separated, then X /G is separated.

(5) Let G be compact, A a G-stable closed subset and U a neighbourhood of A
in X. Then U contains a G-stable neighbourhood of A.

Proof. (1) Ax B C G x X is compact as a product of compact spaces. Hence
the continuous image AB of A x B under r: G x X — X is compact. (2) The
homeomorphism Ax X — Ax X, (s, x) — (s, sx) transforms r into the projection
pr: Ax X — X. The projection is proper, since A is compact (see (1.5.1)). Hence
the image AB of the closed set A x B is closed. (3) Let A C X be closed.
Then p~!p(A) = GA is closed, by (2). Hence p(A) is closed, by definition of
the quotient topology. The pre-images of points are orbits; they are compact as
continuous images of G. (4) Since p is proper, so is p X p. Hence the image of
the diagonal under p x p is closed. (5) Let U be open. Then p(X ~ U) is disjoint
to p(A). By 4), X ~ p~!p(X ~ U) is open and a G-stable neighbourhood of A
contained in U. O

The orbit category Or(G) is the category of homogeneous G-spaces G/H, H
closed in G, and G-maps. There exists a G-map G/H — G/K if and only if
H is conjugate to a subgroup of K. If a™'Ha < K, then R,: G/H — G/K,
gH + gaK is a G-map and each G-map G/H — G/K has this form; moreover
R, = Ry ifand only ifa~'b € K.

An action G x V' — V on areal (or complex) vector space V is called a real (or
complex) representation of G if the left translations are linear maps. After choice of
abasis, arepresentation amounts to a continuous homomorphism from G to GL,, (R)
or GL,(C). A homomorphism G — O(n) or G — U(n) is called an orthogonal
or unitary representation. Geometrically, an orthogonal representation is given by
an action G x V — V with an invariant scalar product (—, —). The latter means
(gv,gw) = (v, w) for g € G and v, w € V. In an orthogonal representation, the
unit sphere S(V) = {v € V | {v,v) = 1} is G-stable.

Let E be aright G-space and F a left G-space. We denote by E xg F the
orbit space of the G-action G x (E x F) — E x F, (g, (x,y)) — (xg7 1, gy). A
G-map f: F; — F; induces a continuous map

idxgf: Exg F1— Exg F, (x,y)~ (x, f(x)).

If E carries a left K-action which commutes with the right G-action (i.e., k(xg) =
(kx)g), then E xg F carries an induced K-action (k, (x,y)) — (kx,y). This
construction can in particular be applied in the case that E = K, G a subgroup
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of K and the G- and K-actions on K are given by right and left multiplication.
The assignments F' — K Xg F and f +— id Xg f yield the induction functor

indg : G-TOP — K-TOP. This functor is left adjoint to the restriction functor

resg : K-TOP — G-TOP which is obtained by regarding a K -space as a G-space.
The natural adjunction

TOPk (ind& X, Y) = TOPg (X, resX 1)

sends a G-map f: X — Y tothe K-map (k,x) — kf(x); in the other direction
one restricts amap to X = G xg X C K xg X. (Here TOPk denotes the set of
K-equivariant maps.)

(1.8.6) Theorem. Suppose the Hausdorffgroup G islocally compact with countable
basis. Let X be a locally compact Hausdorff space and G x X — X a transitive
action. Then for each x € X themapb: G — X, g > gx is open and the induced
map b: G/ Gy — X a homeomorphism.

Proof. 1f b is open, then bisa homeomorphism. Let W be a neighbourhood of e,
(Bi | i € N) acountable basis, and g;' € B;. Foreach g € G there exists a j
such that B; C Wg~!, g € g;W. Therefore the g; W cover the group.

Let V. C G be open and g € V. There exists a compact neighbourhood W
of e such that W = W' and gW? C V. Since G is the union of the g; W and
the action is transitive, X = (J g;Wx. Since W is compact and b continuous,
g Wx is compact and hence closed in X. By (1.4.8), there exist j such that g; Wx
contains an interior point, and therefore Wx contains an interior point wx. Then x
is an interior point of w™!Wx C W?2x and hence gx = p(g) an interior point of
gW?2x C Vx = p(V). This shows that p is open. O

(1.8.7) Corollary. Let the locally compact Hausdorff group G with countable basis
act on alocally compact Hausdorff space X. An orbit is locally compact if and only
if it is locally closed. An orbit is a homogeneous space with respect to the isotropy
group of each of its points if and only if it is locally closed. O

Problems

1. Let H be a normal subgroup of G and X a G-space. Restricting the group action to H,
we obtain an H-space X . The orbit space H\ X carries then an induced G/ H -action.
2. Let a pushout in TOP be given with G-spaces A, B, X and G-maps j, f:

s
—

4 B
IR
x5y,

Let G be locally compact. Then there exists a unique G action on Y such that F, J become
G-maps. The diagram is then a pushout in G-TOP. Hint: (2.4.6)
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3. Let Y be a K-space and G a subgroupp of K. Then K xg ¥ — K/G x Y, (k,y) —
(kG,ky) is a K-homeomorphism. If X is a G-space, then

Kxg (X xY)—> (Kxg X)xY, (g,(x,y) ((gx)gy)

is a K-homeomorphism.

4. Let H be a closed subgroup of G. Then G/H is a Hausdorff space and therefore F =
G/H*H is closed. The relation gH € G/H* is equivalent to g='Hg C H. Hence
{g€G|g 'Hg C H}isclosedin G. The normalizer NH = {g € G | g7 ' Hg = H} of
H in G is closed in G. The group H is a normal subgroup of NH and NH/H = Wg H =
WH is the Weyl group of H in G. The group NH always acts on the fixed set X 7, by
restricting the given G-action to NH. The action

G/HxWH — G/H, (gH,nH)w— gnH

is a free right action by G-automorphisms of G/H.

1.9 Projective Spaces. Grassmann Manifolds

Let P(R"*!) = RP" be the set of one-dimensional subspaces of the vector space
R**1. A one-dimensional subspace of V is spanned by x € V ~ 0. The vectors x
and y span the same subspace if and only if x = Ay for some A € R* = R ~ 0.
We therefore consider P(R"*!) as the orbit space of the action

R* x (R"*1 < 0) - R"™1 <0, (X,x)~ Ax.

The quotient map p: R”t! <0 — P(R"*!) provides P(R"*!) with the quotient
topology. The space RP” is the n-dimensional real projective space. We set
p(xo,...,Xn) = [Xo0,...,%n] and call xo, ..., x, the homogeneous coordinates
of the point [xg, ..., X].

In a similar manner we consider the set P(C"*1) = CP" of one-dimensional
subspaces of C"*! as the orbit space of the action

C*x (C"1'<0) > C"1 <0, (A,z) Az.

We have again a quotient map p: C*T1~0 — P(C"*!). The space C P" is called
the n-dimensional complex projective space. (It is 2n-dimensional as a manifold.)

We describe the projective spaces in a different manner as orbit spaces. The
subgroup G = {£1} C R* acts on S” C R"*! by (X,x) — Ax, called the
antipodal involution. The inclusioni : S” — R"*! induces a continuous bijective
map t: S*/G — (R*T! <~ 0)/R*. The map j: R"*! <0 — S", x — |x[|"'x
induces an inverse. The quotient S” /G is compact, since S” is compact. By (1.4.4),
the quotient is a Hausdorff space. In a similar manner one treats C P", but now
with respect to the action S! x $2"+1 — §27+1 (1 7) > Az of S' on the unit
sphere $2"+1 c C"*t1 0.
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Projective spaces are homogeneous spaces. Consider the action of O(z + 1) on
R?*1 by matrix multiplication. If V € P(R"*!) is a one-dimensional space and
A €0(n + 1), then AV € P(R"*!). We obtain an induced action

O(n + 1) x P(R**!) - P(R"1).

This action is transitive. The isotropy group of [1,0,. .., 0] consists of the matrices

(?) g) , A €0(l), BeO(n).

We consider these matrices as the subgroup O(1)xO(n) of O(n+1). The assignment
A +— Ae; induces an O(n + 1)-equivariant homeomorphism

b: O(n 4+ 1)/(0(1) x O(n)) = P(R**1).

The action of O(n + 1) on P(R"*!) is continuous; this follows easily from the
continuity of the action O(n + 1) x (R"*! <~ 0) — R”*! < 0 and the definition
of the quotient topology. Therefore b is a bijective continuous map of a compact
space into a Hausdorff space. In a similar manner we obtain a U(n + 1)-equivariant
homeomorphism U(n + 1)/(U(1) x U(n)) = P(C"**1).

Finally, one can define the quaternionic projective space HP" in a similar
manner as a quotient of H”*! < 0 or as a quotient of $4"+3,

We generalize projective spaces. Let W be an n-dimensional real vector space.
We denote by G (W) the set of k-dimensional subspaces of W. We define a
topology on G (W). Suppose W carries an inner product. Let Vi (W) denote
the set of orthonormal sequences (wy,...,wg) in W considered as a subspace
of Wk. We call Vi (W) the Stiefel manifold of orthonormal k-frames in W. We
have a projection p: Vi (W) — Gy (W) which sends (w1, . . . , wg) to the subspace
[wy, ..., wg] spanned by this sequence. We give G (W) the quotient topology
determined by p. The space G (W) can be obtained as a homogeneous space. Let
W = R” with standard inner product and standard basis ej,...,e,. We have a
continuous action of O(n) on Vi (R") and G¢(R") defined by (4, (vy,...,Vk))
(Avy, ..., Avg) and such that p becomes O(n)-equivariant. The isotropy groups
of (e1,...,ex)and [eq,...,ex] consist of the matrices

Er O A 0
(0 B)’ (0 B)’ A €O(k), B €O —k)

respectively. The map A +— (Aey, ..., Aey) induces equivariant homeomorphisms
in the diagram

O(n)/0(n — k) —=——— Vi (R")

| |

0O(n)/(O(k) x O(n — k)) —=— G (R™).
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This shows that G (R") is a compact Hausdorff space. It is called the Grassmann
manifold of k-dimensional subspaces of R”.

In a similar manner we can work with the k-dimensional complex subspaces of
C" and obtain an analogous diagram of U(n)-spaces (complex Stiefel and Grass-
mann manifolds):

U(n)/U(n — k) ——=—— V(C")

|

U(n)/(U(k) x Un — k)) —— Gx(C").



Chapter 2
The Fundamental Group

In this chapter we introduce the homotopy notion and the first of a series of algebraic
invariants associated to a topological space: the fundamental group.

Almost every topic of algebraic topology uses the homotopy notion. Therefore it
is necessary to begin with this notion. A homotopy is a continuous family 4, : X —
Y of continuous maps which depends on a real parameter ¢ € [0, 1]. (One may
interpret this as a “time-dependent” process.) The maps fp and f; are then called
homotopic, and being homotopic is an equivalence relation on the set of continuous
maps X — Y. This equivalence relation leads to a quotient category of the category
TOP of topological spaces and continuous maps, the homotopy category h-TOP.
The importance of this notion is seen from several facts.

(1) The classical tools of algebraic topology are functors from a category of
spaces to an algebraic category, say of abelian groups. These functors turn
out to be homotopy invariant, i.e., homotopic maps have the same value under
the functor.

(2) One can change maps by homotopies and spaces by homotopy equivalences.
This fact allows for a great flexibility. But still global geometric information
is retained. Basic principles of topology are deformation and approximation.
One idea of deformation is made precise by the notion of homotopy. Conti-
nuity is an ungeometric notion. So often one has to deform a continuous map
into a map with better properties.

(3) The homotopy notion leads in an almost tautological way to algebraic struc-
tures and categorical structures. In this chapter we learn about the simplest
example, the fundamental group and the fundamental groupoid.

The passage to the homotopy category is not always a suitable view-point. In gen-
eral it is better to stay in the category TOP of topological spaces and continuous
maps (“space level” as opposed to “homotopy level””). We thus consider homotopy
as an additional structure. Then classical concepts can be generalized by using the
homotopy notion. For instance one considers diagrams which are only commu-
tative up to homotopy and the homotopies involved will be treated as additional
information. One can also define generalized group objects where multiplication
is only associative up to homotopy. And so on.

The passage from TOP to h-TOP may be interpreted as a passage from “contin-
uous mathematics” to “discrete mathematics”.

The homotopy notion allows us to apply algebraic concepts to continuous maps.
It is not very sensible to talk about the kernel or cokernel of a continuous map.
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But we will see later that there exist notions of “homotopy-kernels” (then called
homotopy fibres) and “homotopy-cokernels” (then called homotopy cofibres). This
is the more modern view-point of a large variety of homotopy constructions. In
general terms: The idea is to replace the categorical notions limit and colimit by
appropriate homotopy notions.

The prototype of a functor from spaces to groups is the fundamental group
functor. Historically it is the first of such functors. It was introduced by Poincaré,
in different context and terminology. In general it is difficult to determine the
fundamental group of a space. Usually one builds up a space from simpler pieces
and then one studies the interrelation between the groups of the pieces. This uses the
functorial aspect and asks for formal properties of the functor. We prove the basic
theorem of Seifert and van Kampen which roughly says that the functor transforms
suitable pushouts of spaces into pushouts of groups. This may not be the type of
algebra the reader is used to, and it can in fact be quite complicated. We describe
some related algebra (presentation of groups by generators and relations) and discuss
a number of geometric results which seem plausible from our intuition but which
cannot be proved (in a systematic way) without algebraic topology. The results are
of the type that two given spaces are not homeomorphic — and this follows, if their
fundamental groups are different. Finally we show that each group can be realized
as a fundamental group (this is the origin of the idea to apply topology to group
theory).

The study of the fundamental group can be continued with the covering space
theory where the fundamental group is exhibited as a symmetry group. This sym-
metry influences almost every other tool of algebraic topology (although we do not
always carry out this influence in this text).

The chapter contains two sections on point-set topology. We discuss standard
spaces like spheres, disks, cells, simplices; they will be used in many different
contexts. We present the compact-open topology on spaces of continuous maps;
they will be used for the dual definition of homotopy as a continuous family of
paths, and this duality will henceforth be applied to many homotopy constructions
and notions.

2.1 The Notion of Homotopy

A path in a topological space X from x to y is a continuous map u: [a,b] — X
such that u(a) = x and u(b) = y. We say that the path connects the points u(a)
and u(b). We can reparametrize and use the unit interval as a source [0, 1] — X,
t = u((1 —t)a + tb). In the general theory we mostly use the unit interval. If
u: [0,1] — X is a path from x to y, then the inverse path u™: t — w(l —¢) is a
path from y to x. If v: [0, 1] — X is another path from y to z, then the product
path u x v, defined by t — u(2t) fort < 1/2 and v(2¢t — 1) for¢ > 1/2, is a path
from x to z. We also have the constant path k, with value x.
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From these remarks we see that being connectible by paths is an equivalence
relation on X. An equivalence class is called a path component of X. We denote
by 7o (X) the set of path components and by [x] the path component of the point x.
A space X is said to be path connected or 0-connected if it has one of the following
equivalent properties:

(1) mo(X) consists of a single element.
(2) Any two points can be joined by a path.

(3) Any continuous map f: dl = {0,1} — X has a continuous extension
F:1—-X.

(Later we study the higher dimensional analogous problem of extending maps from
the boundary 01" of the n-dimensional cube to /”.)

Amap f: X — Y induces mo(f): mo(X) — mo(Y), [x] = [f(x)]. In this
way 1o becomes a functor from the category TOP of topological spaces to the
category SET of sets!. We will see that this functor is the beginning of algebraic
topology, although there is no algebra yet.

Thinking in terms of categories and functors is a basic method in (algebraic)
topology. The size of mo(X) is a topological property of the space X. A functor
transports isomorphisms to isomorphisms. Thus a homeomorphism f induces
a bijection 7o( f). Suppose f: X — Y is a homeomorphism; then f induces a
homeomorphism X ~A — Y ~ f(A) foreach subset A C X. Suppose f: R — R”
is a homeomorphism; the space R ~ x has two path components (intermediate value
theorem of calculus), and R” ~ y is path connected for n > 1; we apply the functor
1o and conclude that R is not homeomorphic to R” for n > 1. This example seems
almost trivial, but the reasoning is typical. Here is another simple example of this
type: The subspace X = R x 0 U 0 x R of R? is not homeomorphic to R since
X contains a point x = (0,0) such that 7o(X ~ x) has four elements whereas
7wo(R ~ y) has always two elements.

2.1.1 Path categories. Forming the product path is not an associative composition.
We can remedy this defect by using parameter intervals of different length. So let
us consider paths of the form u: [0,a] — X, v: [0,b] — X with u(a) = v(0)
and a,b > 0. Their composition v o ¥ = w is the path [0,a + b] — X with
w(t) = u(t) for0 <t <agand w() = v(a—1t)fora <t <a+b. In this
manner we obtain a category W(X): Objects are the points of X ; a morphism from
x to yisapathu: [0,a] - X with u(0) = x,u(a) = y for some a > 0; and
composition of morphisms is as defined before; the path [0,0] — X with value x
is the identity of the object x. A continuous map f: X — Y induces a functor
W(f): WX) - W), x> f(x),ur— fu. &

'Our general conventions: space = topological space, map = continuous map. A set map between
spaces is a map which is not assumed to be continuous at the outset.
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A space is connected if it is not the topological sum of two non-empty subspaces.
Thus X is disconnected if and only if X contains a subset X which is open, closed,
and different from @ and X. A decomposition of X is a pair U, V of open, non-
empty, disjoint subsets with union X. A space X is disconnected if and only if
there exists a continuous surjective map f: X — {0, 1}; a decomposition is given
by U = f~10), V = f~1(1). The continuous image of a connected space
is connected. Recall from calculus: A C R is connected if and only if A is an
interval. (An interval is a subset which contains with x, y also [x, y].)

(2.1.2) Proposition. Let (A; | j € J) be a family of connected subsets of X such
that A; N A; # @ foralli, j. Then U]- A; =Y is connected. Let A be connected

and A C B C A. Then B is connected. O

The union of the connected sets in X which contain x is thus a closed connected
subset. We call it the component X (x) of x in X. If y € X(x), then X(y) = X(x).
A component of X is a maximal connected subset. Any space is the disjoint union
of its components. A space is fotally disconnected if its components consist of
single points. Since intervals are connected a path connected space is connected.

A product IT; X; is connected if each X; is connected. The component of
(xj) € IT; X; is the product of the components of the x;.

(2.1.3) Example. The space
X =[-1,0] x0U0x[-1,1]U {(x,sin(zx"1) |0 < x < 1}

is connected but not path connected. The union S of X with {1} x [-2,0] U
[—2,2] x {2} is called the pseudo-circle. The complement R? ~ S has two path
components.

A pseudo-circle S has a sequence K; D K, D --- of compact neighbourhoods
with (1); K; = S and K; homeomorphic to St x[0,1]. o

Let X and Y be topological spaces and f,g: X — Y continuous maps. A
homotopy from f to g is a continuous map

H: Xx[0,1]—=Y, (x,t)— H(x,t) = H;(x)

such that f(x) = H(x,0) and g(x) = H(x,1) forx € X, ie., f = Hp and
g = H;. We denote this situation by H : f =~ g. One can consider a homotopy as
a dynamical process, the parameter ¢ is the time and H; is a time-dependent family
of maps. One also says that f is deformed continuously into g. Another (dual)
view-point of a homotopy is: a parametrized family of paths. We use the letter / for
the unit interval [0, 1]. If we write a homotopy in the form H;, we understand that
H: X xI —=Y,(x,t)— H;(x) is continuous in both variables simultaneously.
We call f and g homotopic if there exists a homotopy from f to g. (One can, of
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course, define homotopies with [0, 1] x X. While this does not affect the theory, it
does make a difference when orientations play a role.)

The homotopy relation ~~ is an equivalence relation on the set of continuous
maps X — Y. Given H : f ~ g, theinverse homotopy H™: (x,t) — H(x,1—t)
shows g >~ f. Let K: f ~ gand L: g >~ h be given. The product homotopy
K x L is defined by

K(x,2t),

(K D)= a1y

R~ O

IA TA

1
t 7
r <1,

IA A

and shows f =~ h. The constant homotopy H(x,t) = f(x) shows f ~ f.

The equivalence class of f is denoted [ f] and called the homotopy class of f.
We denote by [X, Y] the set of homotopy classes [f] of maps f: X — Y. A
homotopy H;: X — Y is said to be relative to A C X if the restriction H;|A does
not depend on 7 (is constant on A). We use the notation H : f ~ g (rel A) in this
case.

The homotopy relation is compatible with the composition of maps: Let H : f ~
g: X —>YandG: k ~1[:Y — Z be given; then

(x,t) =» G(H(x,t),t) = G;H;(x)

is a homotopy from k f to [ g. We see that topological spaces and homotopy classes
of maps form a quotient category of TOP, the homotopy category h-TOP, when
composition of homotopy classes is induced by composition of representing maps.
If f: X — Y represents an isomorphism in h-TOP, then f is called a homotopy
equivalence or h-equivalence. In explicit terms this means: f: X — Y isa
homotopy equivalence if there exists g: Y — X, a homotopy inverse of f, such
that g/ and fg are both homotopic to the identity. Spaces X and Y are homotopy
equivalent or of the same homotopy type if there exists a homotopy equivalence
X — Y. A space is contractible if it is homotopy equivalent to a point. A map
f: X — Y isnull homotopic if it is homotopic to a constant map; a null homotopy
of f is ahomotopy between f and a constant map. A null homotopy of the identity
id(X) is a contraction of the space X .

2.1.4 Categories of homotopies. We generalize (2.1.1) and define a category
W(X,Y). The objects are the continuous maps f: X — Y. A morphism from f
to g is a homotopy H : X x [0,a] — Y with Hy = f and H, = g. Composition
is defined as in (2.1.1). <&

Asin any category we also have the Hom-functors in h-TOP. Given f: X — Y,
we use the notation

£ 2. X1 = [Z2.Y), g+ fg. [*:[V.Z] > [X.Z], h+> hf
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for the induced maps®>. The reader should recall a little reasoning with Hom-
functors, as follows. The map f is an h-equivalence, i.e., an isomorphism in
h-TOP if and only if f. is always bijective; similarly for f*. If f: X — Y
has a right homotopy inverse h: ¥ — X, i.e., fh =~ id, and a left homotopy
inverse g: ¥ — X, i.e., gf =~ id, then f is an h-equivalence. If two of the maps
f:X—>Y,g:Y — Z,and gf are h-equivalences, then so is the third.

Homotopy is compatible with sums and products. Let p;: [] jes Xj = X be
the projection onto the i-th factor. Then

Y. 1les X1 = [es Y- X1 [f10 (pi o D)

is a well-defined bijection. Let ix: Xz — []
the k-th summand. Then

[jes X Y1 > TTes (X5 Y] [fT0 (Uf ©ik))

is a well-defined bijection. In other words: sum and product in TOP also repre-
sent sum and product in h-TOP. (Problems arise when it comes to pullbacks and
pushouts.)

Let P beapoint. Amap P — Y canbeidentified with its image and a homotopy
P x I — Y can be identified with a path. The Hom-functor [P, —] is therefore
essentially the same thing as the functor .

jes Xj be the canonical inclusion of

2.1.5 Linear homotopy. Given maps f,g: X — A, A C R". Suppose that
the line-segment from f(x) to g(x) is always contained in A. Then H(x,t) =
(1—1)f(x)+tg(x) is ahomotopy from f to g (linear homotopy). It will turn out
that many homotopies are constructed from linear homotopies.

A set A C R” is star-shaped with respect to ag € A if for each a € A the
line-segment from ag to a is contained in A. If A is star-shaped, then H(a,t) =
(1 — #)a + tap is a null homotopy of the identity. Hence star-shaped sets are
contractible. A set C C R” is convex if and only if it is star-shaped with respect to
each of its points.

Note: If A = R” and a¢g = 0, then each H;, t < 1, is a homeomorphism, and
only in the very last moment is H; constant! This is less mysterious, if we look at
the paths t — H(x,1). <&

The reader should now recall the notion of a quotient map (identification), its
universal property, and the fact that the product of a quotient map by the identity of
a locally compact space is again a quotient map (see (2.4.6)).

(2.1.6) Proposition. Let p: X — Y be a quotient map. Suppose H;: Y — Z is
a family of set maps such that H; o p is a homotopy. Then H; is a homotopy.

2As a general principle we use alower index for covariant functors and an upper index for contravariant
functors. If we apply a (covariant) functor to amorphism f* we often call the result the induced morphism
and denote it simply by f if the functor is clear from the context.
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Proof. The product p xid: X xI — Y x I is an identification, since / is compact.
The composition H o (p x id) is continuous and therefore H is continuous. [

(2.1.7) Proposition. Let H;: X — X be a homotopy of the identity Hy = id(X)
such that the subspace @ # A C X is always mapped into itself, H;(A) C A.
Suppose H; is constant on A. Then the projection p: X — X /A (A identified to
a point) is an h-equivalence.

Proof. Since H;(A) is a point, there exists a map ¢: X/A — X such that
qp = H;. By assumption, this composition is homotopic to the identity. The
map p o H,: X — X/A factorizes over p and yields K;: X/A — X /A such that
K;p = pH;. By (2.1.6), K; is a homotopy, Ko = id and K; = pgq. O

Problems

1. Suppose there exists a homeomorphism R — X x Y. Then X or Y is a point.

2. Let f: X — Y be surjective. If X is (path) connected, then Y is (path) connected.

3. Let C be a countable subset of R”, n > 2. Show that R” ~ C is path connected.

4. The unitary group U(n) and the general linear group GL,,(C) are path connected. The
orthogonal group O(n) and the general linear group GL,, (R) have two path components; one
of them consists of matrices with positive determinant.

5. Let U C R” be open. The path components of U are open and coincide with the
components. The set of path components is finite or countably infinite. An open subset of R
is a disjoint union of open intervals.

6. List theorems of point-set topology which show that the product homotopy and the inverse
homotopy are continuous. Do the same for the linear homotopy in 2.1.5.

7. A space X is contractible if and only if the identity id(X) is null homotopic.

8. gf is null homotopic, if f or g is null homotopic.

9. Let A be contractible. Then any two maps X — A are homotopic.

10. The inclusions O(n) C GL,(R) and U(n) C GL,(C) are homotopy equivalences.
Let P(n) denote the space of positive definite real (1, n)-matrices. Then O(n) x P(n) —
GL,(R), (X, P) — XP is a homeomorphism; P(n) is star-like with respect to the unit
matrix.

11. There exist contractible and non-contractible spaces consisting of two points.

2.2 Further Homotopy Notions

The homotopy notion can be adapted to a variety of other contexts and categories:
Consider homotopies which preserve some additional structure of a category. We
describe some examples from which the general idea emerges. This section only
contains terminology.

The construction of group structures on homotopy sets uses the category of
pointed spaces, as we will see shortly. We call a pair (X, x¢) consisting of a space
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X and a base point xy € X apointed space. A pointedmap f: (X, xo) — (Y, yo)
is a continuous map f: X — Y which sends the base point to the base point. A
homotopy H: X x I — Y is pointed if H; is pointed for each t € I. We de-
note by [X, Y]° the set of pointed homotopy classes (fixed base points assumed) or
by [(X, x0), (Y, yo)]. We obtain related notions: pointed homotopy equivalence,
pointed contractible, pointed null homotopy. We denote the category of pointed
spaces and pointed maps by TOP?, and by h-TOP? the associated homotopy cat-
egory. Often a base point will just be denoted by *. Also a set with a single
element will be denoted by its element. The choice of a base point is an addi-
tional structure. There is a functor o from TOP to TOP® which sends a space X to
Xt = X + {x}, i.e., to X with an additional base point added (topological sum),
with the obvious extension to pointed maps. This functor is compatible with homo-
topies. We also have the forgetful functor 8 from TOP? to TOP. They are adjoint
TOP(a(X),Y) = TOP(X, BY), and similarly for the homotopy categories.

The category TOP? has sums and products. Suppose (X 7,x;) is a family of
pointed spaces. The family (x;) of base points is taken as base point in the product
[1; Xj; this yields the pointed product. Let \/;; X; be the quotient of [ [;¢; X;
where all base points are identified to a single new base point. We have canonical
pointed maps ix: Xz — \/ j X; which arise from the canonical inclusions Xz —
[I; Xj. The wedge, also called the bouquet, \/; X; of the pointed spaces X;
together with the iy, is the pointed sum in TOP®.

The sum and the product in TOP? also represent the sum and the product in
h-TOP? (use (2.1.6)).

Let (4, a) and (B, b) be pointed spaces. Their smash product is

AANB=AxB/AxbUaxB=AxB/AV B.

(This is not a categorical product. It is rather analogous to the tensor product.) The
smash product is a functor in two variables and also compatible with homotopies:
Given f: A — C,g: B — D we have the induced map

fAg:AAB—CAD, (a,b)— (f(a),gb)),

and homotopies f;, g; induce ahomotopy f; Ag;. Unfortunately, there are point-set
topological problems with the associativity of the smash product (see Problem 14).

A pair (X, A) of topological spaces consists of a space X and a subspace A.
A morphism f: (X, A) — (Y, B) between pairs is a map f: X — Y such that
f(A) C B. In this way we obtain the category of pairs TOP(2). A homotopy
H in this category is assumed to have each H; a morphism of pairs. We write
[(X, A), (Y, B)] for the associated homotopy sets and h-TOP(2) for the homotopy
category.

If (X, A) is a pair, we usually consider the quotient space X /A as a pointed
space (A identified to a point) with base point {A4}. If A = @, then X/A4 = X is
X with a separate base point.
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(2.2.1) Note. A continuous map f: (X, A) — (Y, %) into a pointed space induces
a pointed map f: X/A — Y. The assignment f + f induces a bijection
[(X, A), (Y, %)] = [X/A,Y]°. Averification uses (2.1.6). O

We use the notation
(X, A)x(Y,B)=(XxY,XxBUAXY),

although this is not a categorical product. With this notation (1™, d1™)x(I",d1") =
(7™m*n 9I™+")  In a similar manner we treat other configurations, e.g., triples
(X, A, B) of spaces A C B C X and the category TOP(3) of triples.

Let K and B be fixed spaces. The category TOPX of spaces under K has as
objects the maps i : K — X. A morphism fromi: K — Xtoj: K — Y isa
map f: X — Y such that fi = j. The category TOPp of spaces over B has as
objects the maps p: X — B. A morphism from p: X — Btog:Y — Bisa
map f: X — Y suchthat gf = p. If B is a point, then TOPp can be identified
with TOP, since each space has a unique map to a point. If K = {x} is a point, then
TOPX is the same as TOP®. If p: X — B is given, then p~'(b) is called the fibre
of p over b; in this context, B is the base space and X the total space of p. A map
in TOPg will also be called fibrewise or fibre preserving.

Categories like TOPX or TOPp have an associated notion of homotopy. A
homotopy H; is in TOPX if each H, is a morphism in this category. A similar
definition is used for TOPp. A homotopy in TOPp will also be called fibrewise
or fibre preserving. Again, being homotopic is an equivalence relation in these
categories. We denote by [X,Y]X the set of homotopy classes in TOPX, and
by [X, Y]p the set of homotopy classes in TOPg. The homotopy categories are
h-TOPX and h-TOPg. Note that a homotopy equivalence in TOPg, i.e., a fibrewise
homotopy equivalence, from p: X — B toq: Y — B induces for each b € B
a homotopy equivalence p~1(h) — g~!(b) between the fibres over b, so this is a
continuous family of ordinary homotopy equivalences, parametrized by B ([96],
[971, [38], [128]).

A morphism 7 fromi: K — X toid: K — KinTOPX isamapr: X — K
such that ri = id(X). It is called a retraction of i. If it exists, then i is an
embedding. If i: K C X we then call K a retract of X. The retraction r of
i K C X isahomotopy equivalence in TOPX if and only if there exists a homotopy

;X — X relative to K such that g = id and #; = ir. In this case we call K a
deformation retract of X . The inclusion $” C R"*! < 0 is a deformation retract.

A morphism s fromid: B —- Btop: E — BinTOPgisamaps: B — E
such that ps = id(B). It is called a section of p. If p: E — B is homotopy
equivalent in TOPp to id(B) we call p shrinkable. All fibres of a shrinkable map
are contractible.
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Problems

1. Let ((X;,x;) | j € J) be a family of pointed spaces. Let \/; X, be the subset of

those points (a;) € [] ; Xj where all but one a; are equal to the base point. There is a

canonical bijective continuous map \/j X; — \/// X;. If J is finite, then this map is a

homeomorphism. If J is infinite and (X, x;) = (I, 0), then it is not a homeomorphism.

2. The canonical maps ix : Xx — \/; X, are embeddings.

3. The comb space X is defined as B x [0, 1] U [0, 1] x {1} with B = {n~! | n € N} U {0}.

Then X is contractible but not pointed contractible with respect to (0,0). Let Y = —X

be another comb space. Then X UY =~ X Vv Y is not contractible. Since (X UY)/Y is

homeomorphic to X, we see that it does not suffice in (2.1.7) to assume that A is contractible.
These counterexamples indicate the need for base points with additional (local) proper-

ties.

4. There exists a contractible subspace X C R? which is not pointed contractible to any of

its points.

5. Let the homotopy H; in (2.1.7) be pointed with respect to some base point a € A. Show

that p: X — X /A is a pointed h-equivalence. Is (X, A) h-equivalent to (X, {a})?

6. Show that (2.1.7) yields a homotopy equivalence of pairs (X, A) — (X/A, *).

7. The inclusion (1,91) — (I, 1 ~ {1/2}) is not an h-equivalence in TOP(2) although the

component maps I — I and d/ — I ~ {1/2} are h-equivalences.

8. Let E C R? consist of k points. Show, heuristically, that the complement R? < E is

h-equivalent to the k-fold sum \/If st

9. Remove a point from the torus S! x S and show that the result is h-equivalentto S1v S1.

Is there an analogous result when you remove a point from S x $*?

10. Construct an inclusion A C X which is a retract and a homotopy equivalence but not a

deformation retract.

11. Constructamap p: E — B such that all fibres p~! (b) are contractible but which does

not have a section. Construct an h-equivalence p: E — B which has a section but which is

not shrinkable.

12. What is the sum of two objects in TOPX ? What is the product of two objects in TOP?

13. A pullback of a shrinkable map is shrinkable. A pushout of a deformation retract is a

deformation retract.

14. Let Y, Z be compact or X, Z be locally compact. Then the canonical bijection (the

identity) (X AY)AZ — X A (Y A Z) is a homeomorphism. (In the category of com-

pactly generated spaces (with its associated product and smash product!) the map is always

a homeomorphism. See also [155, Satz 18].)

15. Let \/;(A; A B) — (\/; 4;) A B be the canonical map which is on each sum-

mand Ax A B induced by the inclusion Ay — \/ ; Aj. Show that this map is a home-

omorphism if the index set is finite. Show that in this case both spaces are quotients of

(A7) x B = 11;(4; x B).

16. Let A be a compact subset of X and p: X — X/A be the quotient map. Then for each

space Y the product p x id(Y') is a quotient map. If X is a Hausdorff space, then p is proper

and p x id closed.

17. The canonical map X x I — X x I /o] — X A 1/0] is a quotient map which induces

ahomeomorphism XX = X x [ /(X x 0l U{x}xI) = X AI/0I.

18. There is a canonical bijective continuous map (X xY)/(X x BUAXY) - X/AAY /B
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(the identity on representatives). It is a homeomorphism if X x ¥ — X/A A Y/B is a quo-
tient map, e.g., if X and Y/ B are locally compact (or in the category of compactly generated
spaces).

2.3 Standard Spaces

Standard spaces are Euclidean spaces, disks, cells, spheres, cubes and simplices.
We collect notation and elementary results about such spaces. The material will be
used almost everywhere in this book. We begin with a list of spaces. The Euclidean
norm is ||x|.

R” Euclidean space

D" ={xeR"||x| <1} n-dimensional disk

Sl ={xeD"||x|| =1} = aD" (n — 1)-dimensional sphere
E" = D"~ S"71 n-dimensional cell
I"={xeR"|0<x; <1} n-dimensional cube

" ={x e I" | x; =0,]1 for some i} boundary of 1"

A" = Aln] ={x e R""' | x; >0, ;, x; = 1} n-dimensional simplex
dA™ = {(x;) € A" | some x; = 0} boundary of A"

The spaces D", I", E™ and A" are convex and hence contractible. We think of
RO = {0}. The spaces DO 1° and A are singletons, and S~ = 9D% 9A° are
empty. In the case of A" we use the indexing ¢t = (tg,...,%,) € A”"; the subset
9; A" = {t € A" | t; = 0} is the i-th face of A"; hence A" = | J/_, 9; A".

It is useful to observe that certain standard spaces are homeomorphic. A general
result of this type is:

(2.3.1) Proposition. Letr K C R" be a compact convex subset with non-empty
interior K°. Then there exists a homeomorphism of pairs (D", S"~') — (K, dK)
which sends 0 € D" to a pre-assigned x € K°.

Proof. Let K C R” be closed and compact and 0 € K°. Verify that a ray from 0 in-
tersects the boundary dK of K in R” in exactly one point. The map f: 0K — S"1,
x + x/|lx|| is a homeomorphism. The continuous map ¢: S"~! x [0,1] — K,
(x,t) — tf~1(x) factors over g: S~ x [0,1] — D", (x,t) ~ tx and yields a
bijective map k: D" — K, hence a homeomorphism (use (1.4.3)). O

This proposition can be used to deduce a homeomorphism (D", S"!) =~
(I™,01™). The simplex A" is a compact convex subset with interior points in the
hyperplane {x € R"*! | 3. x; = 1}. From this fact we deduce a homeomorphism
(D™, 0D™) = (A", 0A").

The sphere S”, as a homeomorphism type, will appear in many different shapes.
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(2.3.2) Example. Let N = ¢e,,; = (0,...,0,1) € R, We define the stere-
ographic projection ¢y : S" ~ {e,+1} — R”"; the point gy (x) is the intersec-
tion of the line through e, and x with the hyperplane R” x 0 = R”. One
computes @n (x1,....Xp+1) = (I — x,41) ' (x1.....x,). The inverse map is
ay:x = ((1+[x]D?)~1(2x, || x||*> — 1). We also have the stereographic projec-
tion ps: S” ~ {—eu+1} — R” and the transition map is g5 o o' (y) = ||y .
From the stereographic projection we obtain S” as a specific model of the one-
point compactification R” U {oo} by extending 7wy (0c0) = e,+1. We also write
SV = V U {oo} for the one-point compactification of a finite-dimensional real
vector space V. <

2.3.3 Spheres. Let y € S". From (2.3.2) we see that S” ~ y is homeomorphic to
R" and hence contractible. Thus, if X — S” is not surjective, it is null homotopic.

The inclusion i : " — R"*! < {0} is an h-equivalence with homotopy inverse
N: R"™1 < {0} — S™, x — |x||"'x. A homotopy (rel S”) from i o N to the
identity is the linear homotopy (x,¢) > tx 4+ (1 —¢)i N(x). Moreover N oi = id.
We see that i is a deformation retract.

Under suitable circumstances each map in a small neighbourhood of f is al-
ready homotopic to f. For a general theorem to this effect see (15.8.3). Here we
only give a simple, but typical, example. Let f,g: X — S” be maps such that
|| f(x) — g(x)|| < 2. Then they are homotopic by a linear homotopy when viewed
as maps into R?T1 < {0}. We compose with N and see that f ~ g.

If f: 8™ — S" is a continuous map, then there exists (by the theorem of
Stone—Weierstrass, say) a C*°-map g: S — S” such that || f(x) — g(x)| < 2.
This indicates another use of homotopies: Improve maps up to homotopy. If one
uses some analysis, namely (the easy part of) the theorem of Sard about the density
of regular values, one sees that for m < n a C®°-map S — S is not surjective
and hence null homotopic. (Later we prove this fact by other methods.) There exist
surjective continuous maps S! — $2 (Peano curves); this ungeometric behaviour
of continuous maps is the source for many of the technical difficulties in topology.<

(2.3.4) Proposition. Themap p: S"" ' xI — D", (x,t) — (1 —1t)x is a quotient
map. Given F: D" — X, the composition Fp: S"~! x I — X is a null homotopy
of f = F|S™'. Each null homotopy of a map f: S""! — X arises from a
unique F.

Proof. Since a null homotopy H of f: $*7! — X sends S"~! x 1 to a point, it
factors through the quotient map ¢: S"~! x I — S"1 x I /S"~! x 1. Thus null
homotopies H correspond via H > Hg tomaps H: S" ' x I/S" 1 x1 — X.
The map p induces a homeomorphism p: S"~!x /5" ! x1 — D" (use (1.4.3)).
Hence there exists a unique F such that Fp = H. O



36 Chapter 2. The Fundamental Group
Let us use the notation
S(n)=1"/31", S™ =R" U {oo},

since these spaces are homeomorphic to $”. The canonical map /"1™ /9["+™ —
1Ma1™ A 1™ /91™ which is the identity on representatives is a pointed homeomor-
phism. If V' and W are finite-dimensional real vector spaces, we have a canonical
pointed homeomorphism S¥ A S¥ =~ SV®W which is the identity away from the
base point. The homeomorphism ]0, I[— R, s + % induces a homeomor-
phism y: S(1) — S which transports ¢ > 1 —1 into the antipodal map x > —x
on R. We obtain an induced homeomorphism

Yu: S) =S A---ASA) > SO AcnSD = g0
of the n-fold smash products.

(2.3.5) Example. A retraction r: D"x — S"™ ! x I U D" x 0is r(x,t) =
QRa(x,t) ' -x,a(x,t)—2+1) witha(x, ) = max(2|x||,2—?). (See Figure 2.1, a
central projection from the point (0, 2).) Givenamap f: I" — X and a homotopy
h:0I" xI — X withhg = f|0I" combinetoamap g: I”" x0UJI[" x I — X.
We compose with a retraction and obtain a homotopy H : I” — X which extends
h and begins at Hy = f. This homotopy extension property is later studied more
generally under the name of cofibration. <

(0.2)

D" r(x)

Figure 2.1. A retraction.

(2.3.6) Example. The assignment H : (x,t) — (a(x, )71 (1 4+1¢)-x,2 —a(x,t))
with the function a(x,¢) = max(2|/x||,2 — ¢) yields a homeomorphism of pairs
(D™, 8" 1) x (1,0) 2= D" x (1,0), see Figure 2.2.

Similarly for (1™, d1") in place of (D", S™~!), since these two pairs are homeo-
morphic. <
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b a a b a’ a

c’ D" c b c b
Figure 2.2. A relative homeomorphism.

Problems

1. Construct a homeomorphism (D", §~1) x (D", §"~1) = (pm+7 gmtn—ly

2. R*T1 < {x} > ", z +— (z — x)/||z — x| is an h-equivalence.

3. Let DY = {(x0,...,xn) € " | x, = 0}. Show that the quotient map S — S§"/D’}
is an h-equivalence.

4. Let f1,..., fr: C" — C be linearly independent linear forms (k < n). Then the com-
plement C” ~ | J; fj_1 (0) is homotopy equivalent to the product of k factors S!.

5. 8" > {(x,y) € " x 8" | x # y}, x > (x,—x) is an h-equivalence.

6. Let f,g: X — S be maps such that always f(x) # —g(x). Then f ~ g.

7. Let A C E" be star-shaped with respect to 0. Show that S”~1 € R” ~ A4 is a deformation
retract.

8. The projection p: TS" = {(x,v) € S" x R*t1 | x L v} — S, (x,v) > x is
called the tangent bundle of S”. Show that p admits a fibrewise homeomorphism with
pr: " x S" ~ D — §", (x,y) — x (with D the diagonal).

2.4 Mapping Spaces and Homotopy

Itis customary to endow sets of continuous maps with a topology. In this section we
review from point-set topology the compact-open topology. It enables us to consider
a homotopy H: X x I — Y as a family of paths in Y, parametrized by X. This
dual aspect of the homotopy notion will be used quite often. It can be formalized;
but we use it more like a heuristic principle to dualize various constructions and
notions in homotopy theory (Eckmann—Hilton duality).

We denote by Y or F(X, Y) the set of continuous maps X — Y. For K C X
and U C Y weset W(K,U) = {f € YX | f(K) C U}. The compact-open
topology (CO-topology) on Y X is the topology which has as a subbasis the sets
of the form W(K, U) for compact K C X and open U C Y. In the sequel the
set YX always carries the CO-topology. A continuous map f: X — Y induces
continuous maps f%: X2 - Y%, g+ feand Z/: Z¥ - ZX g+ gf.

(2.4.1) Proposition. Let X be locally compact. Then the evaluation exy =
e: YXx X =Y, (fx)— f(x)is continuous.
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Proof. Let U be an open neighbourhood of f(x). Since f is continuous and X
locally compact, there exists a compact neighbourhood K of x suchthat f(K) C U.
The neighbourhood W (K, U) x K of (f, x) is therefore mapped under e into U.
This shows the continuity of e at (f, x). O

(2.4.2) Proposition. Let f: X x Y — Z be continuous. Then the adjoint map
A X = ZY A x) () = f(x,y) is continuous.

Proof. Let K CY becompactand U C Z open. Itsuffices toshow that W (K, U) has
an open pre-image under . Let f*(x) € W(K,U) and hence f({x}x K) C U.
Since K is compact, there exists by (1.4.1) a neighbourhood V' of x in X such that
V x K C f~Y(U) and hence f(V) C W(K,U). O

From (2.4.2) we obtain a set map o: ZX*¥ — (Z¥)X, f > f~. Let ey,z
be continuous. A continuous map ¢: X — ZY induces a continuous map ¢V =
ey.zo(pxidy): XxY — Z¥ xY — Z. Hence we obtainasetmap 8: (Z¥Y)X —
ZXXY ¢ (pv_

(2.4.3) Proposition. Let ey z be continuous. Then o and B are inverse bijections.
Thus ¢: X x Y — Z is continuous if ¢¥: X x Y — Z is continuous, and
fi1 X xY — Z is continuous if f*: X — ZY is continuous. O

(2.4.4) Corollary. Ifh: X xY xI — Z is a homotopy, thenh”: X xI1 — ZY isa
homotopy (see (2.4.2)). Hence [X xY, Z] — [X, ZY], [f] ~ [f "] is well-defined.
If, moreover, ey,z is continuous, e.g., Y locally compact, then this map is bijective
(see (2.4.3)). O

2.4.5 Dual notion of homotopy. We have the continuous evaluatione;: Y/ — Y,
w +— w(t). A homotopy from fo: X — Y to f1: X — Y is a continuous
map h: X — Y7 such that e, o h = f; for e = 0, 1. The equivalence with our
original definition follows from (2.4.3): Since [ is locally compact, continuous
maps X x I — Y correspond bijectively to continuous maps X — Y/ . <

(2.4.6) Theorem. Let Z be locally compact. Suppose p: X — Y is a quotient
map. Then p xid(Z): X x Z — Y X Z is a quotient map.

Proof. We verify for p xid the universal property of a quotient map: If h: ¥ xZ —
C is aset map and & o (p x id) is continuous, then % is continuous. The adjoint of
ho(pxid)ish”™ o p. By (2.4.2), it is continuous. Since p is a quotient map, 7"
is continuous. Since Z is locally compact, 4 is continuous, by (2.4.3). O

(2.4.7) Theorem (Exponential law). Let X and Y be locally compact. Then the
adjunction map a: Z*X>*Y — (ZY)X is a homeomorphism.
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Proof. By (2.4.3), a is continuous if &y = ey zv o (& x id) is continuous. And
this map is continuous if &, = ey,x o (a; x id) is continuous. One verifies that
oy = exxy,z. The evaluations which appear are continuous by (2.4.1).

The inverse o~ ! is continuous if exxy,z © (™! x id) is continuous, and this
map equals ey,z o (ex zv xid). O

Let (X, x) and (Y, y) be pointed spaces. We denote by F°(X,Y) the space of
pointed maps with CO-topology as a subspace of F(X,Y). In F°(X,Y) we use the
constant map as a base point. The adjoint f*: X — F(Y,Z)of f: X xY — Z
is a pointed map into F°(X,Y) if and only if f sends X x y U x x Y to the base
pointof Z. Let p: X XY - X AY =X xY/(X x y Ux xY) be the quotient
map.

Ifg: XAY — Zisgiven, wedenote the adjointof gop: X XY — XAY — Z
by «®(g) and consider it as an element of FO(X, F°(Y, Z)). In this manner we
obtainasetmap a®: FO(X AY,Z) — F%(X, F(Y, 2)).

The evaluation F®(X,Y) x X — Y, (f.x) — f(x) factors over the quotient
space FO(X,Y) A X and induces e = ey 1 FO(X,Y) A X — Y. From (2.4.1)
we conclude:

(2.4.8) Proposition. Let X be locally compact. Then e}(},Y is continuous. O

Let e?(,Y be continuous. From a pointed map ¢: X — F°(Y,Z) we ob-
tain ¢V = B%¢p) = exy o(@ Aid): X AY — Z, and hence a set map
B: FO(X,F°%Y,Z)) - FOYX AY, Z).

(2.4.9) Proposition. Let e?( y be continuous. Then a® and B° are inverse bijections.
O

(2.4.10) Corollary. Let h: (X AY) x I — Z be a pointed homotopy. Then
a®(h;): X — FO(Y, Z) is a pointed homotopy and therefore

X AY.Z]° - [X. F(r.2)]°, [f]+ [°(f)]
is well defined. If, moreover, e)(},Y is continuous, then this map is bijective. (]

By a proof formally similar to the proof of (2.4.7), we obtain the pointed version
of the exponential law.

(2.4.11) Theorem (Exponential law). Let X and Y be locally compact. Then the
pointed adjunction map a®: FO(X AY,Z) — F%(X, FO(Y, Z)) is a homeomor-
phism. O

(2.4.12) Lemma. Let k,: Z — A denote the constant map with value a. Then
V:XZxA— (X x A%, (p,a) — (¢,ka) is continuous.
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Proof. Let ¥ (f,a) € W(K,U). This means: For x € K we have (f(x),a) € U.
There exist open neighbourhoods V; of f(K) in X and V, of a in A such that
V1 x Vo C U. The inclusion ¢ (W(K, V1) x V,) C W(K, U) shows the continuity
of ¥ at (f,a). O

(2.4.13) Proposition. A homotopy H;: X — Y induces homotopies H ,Z and Z .

Proof. In the first case we obtain, with a map v from (2.4.12), a continuous map
HZ?oy: X% x1 - (X x1)? > YZ.
In the second case we use the composition
eo(@xid)o(ZH xid): Z¥Y xI - 72X x 1 - (2% x1 - z¥X
which is continuous. O

(2.4.14) Corollary. Let f be a homotopy equivalence. Then the induced maps
F(Z,X) - F(Z,Y)and F(Y,Z) — F(X,Z) are h-equivalences. If f is a
pointed h-equivalence, the inducedmaps F°(Z,X) — F°(Z,Y)and F°(Y,Z) —
F%(X, Z) are pointed h-equivalences. O

Problems

1. Verify that f< and Z/ are continuous.

2. Aninclusioni: Z C Y induces an embedding i ¥ : ZX — Y X,

3. The canonical map F(][; X;.Y) — [, F(X,.Y) is always a homeomorphism.

4. The canonical map F(X,[]; Y;) — [[; F(X,Y;), f + (pr; f)is always bijective and
continuous. If X is locally compact, it is a homeomorphism.

5. Let p: X — Y be a surjective continuous map. Suppose the pre-image of a compact set
is compact. Then Z”: Z¥ — ZX is an embedding.

6. We have a canonical bijective map FO(\/J-EJ X;.Y) = [ljes FO(X;,Y), since
\ F, X is the sum in TOPY. If J is finite, it is a homeomorphism.

7. Let X, Y, U, and V be spaces. The Cartesian product of maps gives a map

a:UXxVY S WU xXY  (fig)— fxg.

Let X and Y be Hausdorff spaces. Then the map m is continuous.

8. By definition of a product, a map X — Y x Z is essentially the same thing as a pair of
maps X — Y, X — Z. In this sense, we obtain a tautological bijection 7: (¥ x Z)¥ —
YX x ZX. Let X be a Hausdorff space. Then the tautological map t is a homeomorphism.
9. Let X and Y be locally compact. Then compositionof maps Z¥ xY X — ZX (g, f) —
g o f is continuous.

10. Let (Y, x) be a pointed space, (X, A) a pair of spaces and p: X — X/A the quotient
map. The space X/ A is pointed with base point {4}. Let F((X, A), (Y, *)) be the subspace of
F(X,7Y) of the maps which send A to the base point. Composition with p induces a bijective
continuous map y: FO(X/A,Y) — F((X, A), (Y, *)); and a bijection of homotopy sets
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[X/A,Y]° — [(X, A), (Y, *)]. If p has compact pre-images of compact sets, then y is a

homeomorphism.

11. Consider diagrams where the right-hand one is obtained by multiplying the left-hand
AxX ——BxX

] [

C —— D, CxX—DxX.

—

If the left-hand diagram is a pushout in TOP and X locally compact, then the right-hand
diagram is a pushout in TOP. In TOP® the smash product with a locally compact space yields
again a pushout.

12. The CO-topology on the set of linear maps R” — R is the standard topology.

13. Let X be a compact space and Y a metric space. Then the CO-topology on ¥ ¥ is
induced by the supremum-metric.

2.5 The Fundamental Groupoid

A path in the plane can be quite ungeometric: nowhere differentiable, infinite length,
surjective onto 7 x I (aso-called Peano curve). We introduce an equivalence relation
on paths, and the equivalence classes still capture qualitative geometric properties
of the path. In particular a reparametrization of a path (different “velocity””) does
not change basic topological properties.

We consider homotopy classes relative to d/ of paths. A homotopy of paths
is always assumed to be relative to d/. A homotopy of paths between paths u
and v with the same end points xog = u(0) = v(0), x; = u(1) = v(1) is a map
H: I x I — X such that

H(s,0) = u(s),
H(s, 1) = v(s),
H(0,7) = u(0) = v(0),
H(1,t) = u(l) = v(l).

Thus for each # € I we have a path H;: s — H(s,t) and all these paths have the
same end points. We write H : u >~ v for this homotopy.

X0 H1=U X1

t 1 ﬁ H constant along dotted lines

X0 HO —u X1
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Being homotopic in this sense is an equivalence relation on the set of all paths
from x to y. The product operation is compatible with this relation as the next
proposition shows.

(2.5.1) Proposition. The product of paths has the following properties:
(1) Leta: I — I be continuous and o(0) = 0, (1) = 1. Then u >~ ua.
(2) uy * (U * uz) >~ (ug * uz) * us (if the products are defined).
(3) uy ~ uy and up >~ vy implies uy * Uy = u'y * uj.
(4) u xu~ is always defined and homotopic to the constant path.
(5) kuy *u = u > u * ky().

Proof. (1) H: (s,t) — u(s(1 —t) + ta(s)) is a homotopy from u to uw.

(2) The relation (11 * (U2 * uz))a = (u; * uz) * usz holds for o defined as
a(t)y=2tfort < j,a(t)=t+ tforg <t <i,a()=5+3fori<r<1l.

(3) Given F;: u; >~ uj then G : uy * up =~ uy * u), for G defined as G(s,t) =
Fi(2s.t)for0 <7 < 1and G(s,1) = F,(2s — 1,1) for § <t < 1.

(4) Themap F: I x I — X defined as F(s,?) = u(2s(1 —t)) for0 <s < %
and F(s,1) = u(2(1 —s)(1 —¢) for % <t < 1is ahomotopy from u * u~ to the
constant path. (At time ¢ we only use the path from 0 to (1 — ¢) and compose it
with its inverse.)

(5) is proved again with the parameter invariance (1). O

From homotopy classes of paths in X we obtain again a category, denoted
IT(X). The objects are the points of X. A morphism from x to y is a homotopy
class relative to d/ of paths from x to y. A constant path represents an identity. If u
is a path from a to b and w a path from b to ¢, then we have the product path u * v
from a to ¢, and the composition of morphisms is defined by [v] o [u] = [u * v]. In
this category each morphism has an inverse, i.e. is an isomorphism, represented by
the inverse path. A category with this property is called groupoid. Note that in a
groupoid the endomorphism set of each object becomes a group under composition
of morphisms. The category T1(X) is called the fundamental groupoid of X. The
automorphism group of the object x in this category is the fundamental group of
X with respect to the base point x. The usual rules of categorical notation force
us to define the multiplication in this group by [u] o [v] = [v * u]. As long as
we are just interested in this group (and not in the categorical aspect), we use the
opposite multiplication [u]-[v] = [u * v] and denote this group by 71 (X, x). This is
the traditional fundamental group of the pointed space (X, x) (Poincaré 1895 [151,
§12]). An element in 1 (X, x) is represented by a closed path w based at x (i.e.,
w(0) = w(l) = x), also called a loop based at x.

(2.5.2) Remark. We can obtain the fundamental groupoid IT1(X) as a quotient
category of the path category W(X). In that case we call paths u: [0,a]: [ — X
andv: [0, b] = X from x to y homotopic, if there exist constant paths with image y
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such that the compositions with ¥ and v, respectively, have the same domain of
definition [0, ¢] and the resulting composed paths are homotopic rel {0, c}. <

(2.5.3) Remark. The set 1 (X, x) has different interpretations. A loop based at
xisamap w: (I,d1) — (X, x). It induces a pointed map w: / /0l — X. The
exponential function po: I — S!, ¢ > exp(2mit) induces a pointed homeomor-
phism g: 1/01 — S which sends the base point {0/} to the base point 1. There
exists a unique u: S! — X such that ug = w. Altogether we obtain bijections

mi(X.x) = [(1,31). (X, x)] = [I/01, X]° = [S", X]°,
induced by [w] < [w] = [ugq] < [u]. &

It is a general fact for groupoids IT that the automorphism groups Aut(x) =
IT(x, x) and Aut(y) = I1(y, y) of objects x, y in IT are isomorphic, provided there
exists a morphism from x to y. If « € TI(x, y), then

M(x,x) — (y,y), B+ afa!

is an isomorphism. It depends on the choice of «; there is, in general, no canonical
isomorphism between these groups. Thus fundamental groups associated to base
points in the same path component are isomorphic, but not canonically.

A space is simply connected or 1-connected if it is path connected and its
fundamental group is trivial (consists of the neutral element alone).

A continuous map f: X — Y induces a homomorphism

i (f): mi(X,x) > m (Y, f(x),  [u] = [fu]

and, more generally, a functor
(N): IX) = OY), x> f(x), [u] = [fu].

In this way, 7r; becomes a functor from TOP? to the category of groups, and IT a
functor from TOP to the category of small categories (small category: its objects
form a set). Homotopies correspond to natural transformations:

(2.5.4) Proposition. Let H: X x I — Y be a homotopy from f to g. Eachx € X
vields the path H* : t — H(x,t) and the morphism [H*] in TI(Y) from f(x) to
g(x). The [H*] constitute a natural transformation T1(H) from T1(f) to T1(g).

Proof. The claim says that for each path u: I — X the relation fu % H*() ~
H*©O x gy holds. Weuse I xI — Y, (s,t) — H(u(s),t). We obtain fu % H*M
as composition with a * b and H u(0) 4 gu as composition with ¢ * d, where a, b,
¢, and d are the sides of the square: a(t) = (¢,0), b(t) = (1,1), c(t) = (0,1),
d(t) = (t,1). Buta % b and ¢ * d are homotopic by a linear homotopy. O
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We express the commutativity of (2.5.4) in a different way. It says that

tgogs = fu: IIX(x,y) = Y (fx, fy),

where 1 : TI(Y)(gx, gy) — II(Y)(fx, fy) is the bijection a — [HY] 'a[H*].
The rule IT(K = L) = IT(L)I1(K) is obvious. Hence if f is an h-equivalence
with h-inverse g: ¥ — X, then IT(f)I1(g) and I1(g)I1( f) are naturally isomor-
phic to the identity functor, i.e., IT( /) is an equivalence of categories. The natural
transformation I1(H) only depends on the homotopy class relative to X x d/ of H.
It is a general categorical fact that a natural equivalence of categories induces

a bijection of morphism sets. We prove this in the notation of our special case at
hand.

(2.5.5) Proposition. Let f': X — Y be a homotopy equivalence. Then the functor
I(f): II(X) — TI(Y) is an equivalence of categories. The induced maps between
morphism sets fi.: 1 X(x,y) — OY(fx, fy) are bijections. In particular,

i (f): m(X.x) = m (Y, f(x),  [w][fw]
is an isomorphism for each x € X. A contractible space is simply connected.

Proof. Let g: Y — X be h-inverse to f. Consider

IMX(x,y) EAR Y (fx, fy) <> X (gfx, ¢fy) EAN Y (fgfx, fgfy)-

Choose H: gf >~ id(X). Then g« f« = (gf)« = tg o (id)x = tg is a bijection,
hence g is surjective. In a similar manner one proves that fi g« is a bijection, hence
g« is also injective. Since g« fx and g are bijective we see that f is bijective.

O

The fundamental group forces us to work with pointed spaces. Usually the base
points serve some technical purpose and one has to study what happens when the
base point is changed. For pointed h-equivalences f it would be immediately clear
that 7r1( f) is an isomorphism. For the more general case (2.5.5) one needs some
argument like the one above.

(2.5.6) Proposition. Ler (X, xq) and (Y, yo) be pointed spaces and i*: X —
X xY,x— (x,y0) andi¥: Y - X x7Y, Y+ (x0,y). Then

m1(X, x0) X 71 (Y, yo) = m1(X X Y, (x0,¥0)), (u,v) ifu . ifv

is a well-defined isomorphism with inverse z — (prX z,prY z).

Proof. Since homotopy is compatible with products we know already that the sec-
ond map is an isomorphism. In order to show that the first map is a homomorphism
we have to verify that i X commutes with i ¥ v. Let now u and v be actual paths
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and write w = (u x v)§ with the diagonal §. With a notation introduced in the proof
of (2.5.4) we have (u x v)(a xb) = iXu xi¥Yvand (u x v)(c xd) = i¥v *i¥u.
We now use that §, a * b, and ¢ * d are homotopic (linear homotopy). It should be
clear that the two maps of the proposition are inverse to each other. O

2.6 The Theorem of Seifert and van Kampen

Let a space X be the union of subsets Xy, X;. A general problem is to derive prop-
erties of X from those of Xy, X, and Xo; = X¢ N X;. (Similar problem for more
general unions.) Usually the covering has to satisfy certain reasonable conditions.
In this section we consider the fundamental groupoid and the fundamental group
under this aspect. The basic result is the theorem (2.6.2) of Seifert [166] and van
Kampen [100].

We first prove an analogous and slightly more general result for groupoids [34].
The result is more formal but the proof is (notationally) simpler because we need
not take care of base points. Note that the hypothesis of the next theorem implies
that X is the pushout in TOP of the inclusions Xy D X¢; C X;. Thus (2.6.1) says
that the functor IT preserves pushouts.

(2.6.1) Theorem (R. Brown). Let X¢ and X1 be subspaces of X such that the
interiors cover X. Let iy,: Xo1 — X, and j,: X, = X be the inclusions. Then

T(Xo1) — 2, T1(X,)
H(il)l I1(jo)
m(Xy) —2 s mi(x)

is a pushout in the category of groupoids.

Proof. Let hy: I1(X,) — A be functors into a groupoid such that z;I1(i;) =
hoTl(ip). We have to show: There exists a unique functor A : TI(X) — A such that
hy = AT1(j1) and hg = ATI(jo). We begin with a couple of remarks.

A path w: [a,b] — U represents a morphism [w] in IT(U) from w(a) to w(b)
if we compose it with an increasing homeomorphism «: [0, 1] — [a, b].

Ifa =1t <t <-- <ty = b, then w represents the composition of the
morphisms [w][t;, t; +1]]-

Suppose that w: I — X is a path. Then there exists a decomposition 0 =
fo <t <+ <tpg1 = 1 suchthat w([t;, t;4+1]) is contained in a set X ;. Choose
y:40,...,m} — {0, 1} such that w([t;, t;+1]) C X;(l.). Consider w|[t;, ti+1] as
path w; in X, ;). Then

[w] = O (ym)[wm] © - o T(jy ) [wol.
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If A exists, then

(i) Aw] = hym)[wm] 0 - - 0 hy (o) [wol.

i.e., A is uniquely determined.

In order to show the existence of A, we have to define A[w] by (i). We have
to verify that this is well-defined. The commutativity s I1(ig) = h1I1(h;1) shows
that a different choice of y yields the same result.

Since hg and & are functors, we obtain the same result if we refine the decom-
position of the interval.

It remains to be shown that (i) only depends on the homotopy class of the path.
Let H: I x I — X be a homotopy of paths from x to y. There exists n € N such
that H sends each sub-square [i/n, (i + 1)/n] x [j/n, (j + 1)/n] into one of the
sets X, (see (2.6.4)). We consider edge-paths in the subdivided square / x / which
differ by a sub-square, as indicated in the following figure (n = 5).

(1. 1)

(0,0

We apply H and obtain two paths in X. They yield the same result (i), since they
differ by a homotopy on some subinterval which stays inside one of the sets X .
Changes of this type allow us to pass inductively from the H on the lower to H on
the upper boundary path from (0, 0) to (1, 1). These paths differ from Hy and H;
by composition with a constant path.

Finally, from the construction we conclude that A is a functor. O

(2.6.2) Theorem (Seifert—van Kampen). Let Xo and X be subspaces of X such
that the interiors cover X. Leti,: Xo1 = XoNXy — X, and j,: X, — X be the

inclusions. Suppose that Xo, X1, Xo1 are path connected with base point x € Xy;.
Then

71 (Xor, %) —2 7y (X1, %)
iO*J( le*
m1(Xo, *) _Jor (X, %)
is a pushout in the category of groups.

Proof. The theorem is a formal consequence of (2.6.1). In general, if Z is path
connected and z € Z we have a retraction functor r: I1(Z) — m1(Z, z) onto the
full subcategory with object z. For each z € Z we choose a morphism u, € I1(Z)



2.7. The Fundamental Group of the Circle 47

from x to z such thatu, = id. Thenr assignsu,au;! toamorphisma: x — y. We
apply this to Z = Xo1, X0, X1, X and z = % and choose a morphism u, € I1(Z)
if x is contained in Z. We obtain a commutative diagram of functors

IM(Xo) ¢+—— II(Xo1) — II(Xy)

JTl(X(),*) (*7‘[1()(01,*) 4)7‘[1()(1,*).

Given homomorphisms ¢, : 71 (X,, *) — G into a group G (= a groupoid with a
single object) which agree on 71 (Xo1, *), we compose with r,, and apply (2.6.1) to
obtain a functor I[1(X) — G. Its restriction to (X, %) is the unique solution of
the pushout problem in (2.6.2). O

(2.6.3) Remark. From the proof of (2.6.1) we see that each morphism in IT(X) is
a composition of morphisms in I1(Xg) and I1(X1). Similarly, in (2.6.2) the group
m1(X, %) is generated by the images of jo« and ji«. This algebraic fact is not
immediately clear from the definition of a pushout. <

We have used above the next fundamental result. It is impossible to prove a
geometric results about continuous maps without subdivision and approximation
procedures. In most of these procedures (2.6.4) will be used.

(2.6.4) Proposition (Lebesgue). Let X be a compact metric space. Let A be an
open covering of X. Then there exists € > 0 such that for each x € X the e-neigh-
bourhood Ug(x) is contained in some member of A. (An & with this property is
called a Lebesgue number of the covering.) O

2.7 The Fundamental Group of the Circle

The space R is simply connected; IT(R) has a single morphism between any two
objects. We consider TT(R) as a topological groupoid: The object space is R, the
morphism space is R x R, the source is (a,b) — a, the range (a,b) — b, the
identity a + (a,a), and (b, c) o (a,b) = (a, ¢) the composition.

The continuous map p: R — S induces a functor IT(p): IT(R) — TI(S1).
It turns out that this functor is surjective on morphisms and provides us with an
algebraic description of TI(S!). So let us define a topological groupoid G. The
object space is S, the morphism space is S x R, the source (a, t) — a, the range
(a,t) — aexp(2mit), theidentity a — (a, 0), and the composition (b, t)o(a,s) =
(a,s +1t).

The assignments a + exp(2wia) and (a,b) + (exp(2mwia),b — a) yield a
continuous functor IT(R) — G. We will show that G (forgetting the topology) is
n(sh).
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We have the open covering of S' € Cby Xo = S!~{l1}and X; = S!~{-1}
with inclusions i : Xo; — Xj and ji: X; — S!. The sets Xy are contractible,
hence simply connected. Therefore there exists a single morphism (a,b);: a — b
between two objects a, b of T1(Xy).

We have bijective maps fp: ]0,1[— Xo and f1:]—1/2,1/2[— X; given
by t — exp(2mwit). We define functors yi: I1(Xx) — G by the identity on
objects and by yx(a.b)x = (a. f;_'(b) — f;7'(a)). Moreover we have a functor
¢: G — TI(S') whichis the identity on objects and which sends the morphism (a, t)
of G to the class of the path I — S!, s > aexp(2mits) from a to a exp(2mit).
(The idea behind the definition of G is the fact that each path in S! is homotopic
to one of this normal form, see (2.7.9).) The following diagram is commutative.

IT(Xo) o
27N TN
¢

IT(Xo1) G————TI(ShH

A

I1(X1) i
(2.7.1) Proposition. The functor ¢ is an isomorphism.

Proof. We apply (2.6.1) to the pair (yo, y1) and obtain a functor y: II(S') — G.
The uniqueness property of a pushout solution shows {y = id. In order to show
y¢ = id we note that the morphisms of G are generated by the images of y,
and y;. Given (a,t) € G(a,b), choose a decomposition t = t; + --- + f,;, such
that |¢,| < 1/2 foreach r. Setap = a and a, = aexp(2nwi(ty +---+ t,)). Then
(a,t) = (am—-1,tm) ©--- 0 (a1, t2) o (ap, t1) in the groupoid G. Since |t,| < 1/2
there exists foreachr ak(r) € {0, 1} suchthata,_, exp(2mit,s) € Xy fors € I.
Then (ar—1.t) = Yy (@r—1.ar)k)- Thus G(a, b) is generated by morphisms in
the images of the yi. O

The unit circle S' in the complex plane is the prototype of a loop. Typical
elements in the fundamental group are obtained by running » times around the circle.
Up to homotopy, there are no other possibilities. With (2.7.1) we have determined
the fundamental group 1 (S!, 1), namely as the automorphism group in I1(S!) of
the object 1. The automorphisms of the object 1 in G are the (1,n),n € Z and
£(1,n) is the loop ¢ +— exp(2mwint).

(2.7.2) Theorem. Lets,: I — S! be the loop t > exp(2mint). The assignment
§: Z — m1(SY, 1), n > [s,] is an isomorphism. O

The circle S! is a group with respect to multiplication of complex numbers.
We show that the composition law in 7z1(S?!, 1) can also be defined using this
multiplication.
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More generally, assume that X is a space with a continuous multiplication
m: X xX—>X  (x,y)>mx,y)=xy

and neutral element up to homotopy e € X (the base point), i.e., the maps x +—>
m(e, x) and x — m(x, e) are both pointed homotopic to the identity. We call such
an object a monoid in h-TOP. (We do not assume that m is associative or commuta-
tive.) We define a composition law on the pointed homotopy set [Y, X]°, called the

m-product, by [f],[g] = [f]m [¢] = [f - g]; here f - g:y = m(f(y),8(y))
is the ordinary pointwise multiplication. The constant map represents a two-sided

unit for the m-product. In a similar manner we define by pointwise multiplication
of loops the m-product on 71 (X, e). The set (X, e) 2= [S', X]° now carries two
composition laws: the m-product and the *-product of the fundamental group.

(2.7.3) Proposition. Let (X, m) be a monoid in h-TOP. Then the *-product and the
m-product on w1(X, e) coincide and the product is commutative.

Proof. Let k be the constant loop. Then for any two loops u and v the relations
uxv>W-k)xk-v)y=wu=xk) - (k*xv)) ~u-v,
uxv>u-v>kxu)-(vxk)=(k-v)*xu-k)y~v*u
hold. In order to see the equalities, write down the definition of the maps. O

(2.7.4) Lemma. The map v: [S', S']° — [S1, S1] which forgets the base point is
a bijection.

Proof. Given f: S! — S! we choose a path w: I — S! from 1 to f(1)7!.
Then (x,t) — f(x)w(¢) is a homotopy from f to a pointed map, hence v is
surjective. Let H: S' x I — S! be a homotopy between pointed maps; then
(x,t) = H(x,t)- H(1,1)"! is a pointed homotopy between the same maps, i.e.,
v is injective. O

If f,g: X — S! are continuous maps, then f - g: x > f(x)g(x) is again
continuous. This product of functions is compatible with homotopies and induces
the structure of an abelian group on [X, S].

(2.7.5) Theorem. From (2.7.2), (2.7.4) and (2.5.3) we obtain an isomorphism d,
d:[S', S =[S, S = 7 (ST 1) = 7.

We call the integer d(f) = d([f]) the degree of f: S' — S'. A standard map of
degree n is 0y, : z > z". A null homotopic map has degree zero. O

(2.7.6) Example. A polynomial function
g:C—>C, g@)=z"+aiz" '+ +a,

has aroot (n > 1).
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Proof. Suppose g(z) # O for |z| = 1. Then f: S — S!, z = g(2)/|g(2)]
is defined. Suppose g is non-zero for |z| < 1. Then h(z,t) = f(tz) is a null
homotopy of f. For ¢ > 0 we have

k(z,t) =z" + t(a1 2"V 4+ aptz" 2 4+ -+ a " = t"g(z/1).

If g is non-zero for |z| > 1, then H(z,t) = k(z,t)/|k(z,t)| is a homotopy from
f to 05,. Thus if g has no root, then o, is null homotopic; this contradicts (2.7.5).
O

The classical approach to 771 (S?!) uses topological properties of the exponential
function p: R — S, t > exp(2mit). A lifting of w: [a,b] — S' along pisa
map W: [a,b] — R with pW = w; the value W(a) is the initial condition of the
lifting. Liftings always exist and depend continuously on the path and the initial
condition (see (2.7.8)).

(2.7.7) Proposition. Let f: S' — S be given. Let F: I — R be alifting of fpo
along p. Then F(1) — F(0) is the degree of f.

Proof. Letg = f(1)™' f. Then8(d(f)) = [gpo], by the definition of 4 in (2.7.5).
There exists a € R such that f(1) = exp(2wia) and F(0) = a. Then ® = F —a
is a lifting of gpo with initial condition 0. Hence F (1) — F(0) = ®(1) — ®(0) =
®(1) = n € Z. The homotopy (x,?) = (1 —1)P(x) + txP(1) is a homotopy of
paths. Hence the loop gpo is homotopic to s,. This shows §(n) = [gpo]. O

The next proposition will be proved in the chapter on covering spaces. It ex-
presses the fact that p: R — S! is fibration.

(2.7.8) Proposition. Given a homotopy h: X x I — S! and an initial condition
a: X — R such that pa(x) = h(x,0). Then there exists a unique homotopy
H: X x I — R such that H(x,0) = a(x) and pH = h. O

(2.7.9) Example. Let w: [0, 1] — S be a path with w(0) = z = exp(2mia). Let
W [0,1] — R be alifting of w with W(0) = a. Suppose W(1) = b. Then W is,
by a linear homotopy, homotopic to ¢t + a + ¢(b — a) and hence w homotopic to
the path in normal form ¢ + z exp(27i (b — a)t). <

2.7.10 The winding number. Let x € C = R?. The map
re: C\{x}—> S, z+0 (z—x)/|z —x]

is an h-equivalence and therefore [S1, C \ {x}] — [S!,S'], [f] ~ [rxf] a bijec-
tion. The degree of ry f is the winding number of f with respect to x. We denote
itby W(f,x). Maps fo, fi: S! — C\ {x} are homotopic if and only if they have
the same winding number. If f: S! — C is given and w: I — C a path with
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SSYH Nw(I) = 0, then (x,1) > ry( f is a homotopy. Therefore the winding
numbers of f with respect to w(0) and w(1) are equal. The complement C \ f(S?)
decomposes into open path components, and the winding number with respect to x
is constant as long as x stays within a component.

Letu: I — C ~ {x} be a loop. Then there exists a unique continuous map
f: 8! — C ~{x}suchthat f o pg = u. The winding number of f is then also
called the winding number of u, and we denote it by W(u, x). &

The notion of the degree can be extended to other situations. Leth: S — S! be
a homeomorphism and f: S — S any map; the degree of 2fh~! is independent
of the choice of a homeomorphism / and also called the degree d( f) of f.

Problems

1. Let p be a polynomial function on C which has no root on S'. Then the number of roots
z with |z| < 1 (counted with multiplicities) is equal to the winding number W(p|S!,0).
What is the winding number of the function 1/ p with respect to 0?

2. (Properties of the degree.) d(f o g) = d(f)d(g). A homeomorphism S! — S has
degree 1. If £: S! — S! has degree d(f) # 1, then there exists x € S! such that
f(x) = x. The map z +— Z has degree —1.

Let u = exp(27i/n) be an n-th root of unity. Suppose i: S — S satisfies h(uz) =
h(z). Then d(h) = 0 mod n.

Letk, j € Z and assume that k is coprime to n. Let f: S — S satisfy the functional
equation f(uXz) = u’/ f(z). Then k d(f) = j mod n. If, conversely, this congruence is
satisfied with some integer d( f), then there exists a map f of degree d( f) which satisfies
the functional equation. In particular an odd map f,i.e., f(—z) = — f(2), has odd degree.

Suppose f(—z) # f(z) for all z; then the degree of f is odd. Suppose f(z) # g(z)
for all z; then d(f) = d(g). Suppose d(g) = 0 mod n for some n > 0; then there exists
h: S' — S such that g = h".

3. Let U: I — C bealifting of u: I — C* = C ~ 0 along the covering P: C — C*,
z + exp(2mwiz). Then W(u,0) = U(1) — U(0).

4. Let y: [0,1] — C* be a continuously differentiable path with initial point 1. Then
r:0,1] - C, t — 217 fyI[O,t] % is a continuously differentiable lifting of y along P
with initial point 0.

5. Ifu: I — C ~ {x} is a continuously differentiable loop, then W(u, x) = 217 u Zd_zx.
6. Let A € GL»(R). Then the winding number of [4: S! — R?~ 0, x — Ax with respect
to the origin is the sign of the determinant det(A).

7. Let v: [S!, X]° — [S!, X] be the map which forgets about the base point (pointed
homotopies versus free homotopies). Conjugate elements in the group [S!, X]° have the
same image under v. Hence v induces a well-defined map v: [S1, X]°/(~) — [S!, X] from
the set of conjugacy classes. This map is injective, and surjective if X is path connected.
Thus v is bijective if X is path connected and the fundamental group abelian.
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2.8 Examples

The formal nature of the theorem of Seifert and van Kampen is simple, but the corre-
sponding algebra can be complicated. The setup usually leads to groups presented
by generators and relations. It may be difficult to understand a group presented in
this manner. For an introduction to this type of group theory see [122]; also [171]
and [39] are informative in this context. We report about some relevant algebra and
describe a number of examples and different applications of the fundamental group.

2.8.1 Spheres. If a space X is covered by two open simply connected subsets with
path connected intersection, then X is simply connected, since the pushout of two
trivial groups is trivial. Coverings of this type exist for the spheres S” for n > 2.
Hence these spheres are simply connected. &

2.8.2 Removing a point. The inclusion D" ~ 0 C D" induces for n > 3 an
isomorphism of fundamental groups; actually both groups are zero, since D" is
contractible and D" ~ 0 ~ §"~1,

Let M be a manifold of dimension n > 3 and U C M homeomorphic to D"
under a homeomorphism that sends x to 0. Then M is the pushout of M ~ {x}
and U. Theorem (2.6.2) implies that M ~ {x} C M induces an isomorphism of
fundamental groups.

Often we view the space S” as the one-point compactification R” U {oco} of the
Euclidean space, see (2.3.2). Let K be a compact subset of R” for n > 3. Then the
inclusion R” ~ K C S§” ~ K induces an isomorphism of fundamental groups. <

2.8.3 Complements of spheres. Let S = S™t"+1 0 (R™*! x 0) and S} =
SmHn+ln (0 x R"1). Then X = S™+7+1 < S is homeomorphic to S™ x E".
A homeomorphism $” x E" — X is (x,y) — (\/1 - ||y||2x,y). The space
Y = §mtntl S (Si U SY) is homeomorphic to $™ x $"x 0, 1] via (x, y,1) >
(v/1 —tx, «/ty). Therefore the complement X is h-equivalent to S and the com-
plement Y is h-equivalent to S x S™.

The fundamental group of S3 ~ ({0} x S!) is isomorphic to Z. If we view
S3 = R3U{oo}, then we are considering the complement of the axis Z = {(0,0, z) |
z € R} U {oo}. The generator of the fundamental group is a loop that runs once
about the axis Z, represented by the standard sphere W = S! x {0}.

It is impossible to span a 2-disk with boundary W in the complement of Z,
because W represents a non-zero element in the fundamental group of the comple-
ment, see Figure 2.3. This is expressed by saying that W and Z are linked in S3.
Apply the stereographic projection (2.3.2) to S x 0U 0 x S C S3. The image
yields W U Z. The complement of W U Z in R? is therefore isomorphic to the
fundamental group Z x Z of the torus S! x S!. The reader should draw generators
of 1 (R3~ W U Z). <&



2.8. Examples 53

v 1D

Z

Figure 2.3. A standard circle in §3.

2.8.4 Presentation of groups by generators and relations. Let S be a set. A free
group with basis S consists of a group F(S)andasetmapi: S — F(S) which has
the following universal property: For each set map «: S — G into a group G there
exists a unique homomorphism A: F(S) — G such that A oi = «. It turns out
that i is injective. Let us consider as an inclusion andset S™! = {s™! | s € S}. A
word in the alphabet X = S 11 S~!isasequence (x1,...,X;;) of elements x; € X.
The elements in F(S) are the products xi ... X, corresponding to the words; the
neutral element belongs to the empty word; a word (x,x~!) also represents the
neutral element.

Let R be a set of words and R the image in F(S). Let N(R) be the normal sub-
group generated by R. The factor group G = F(S)/N(R) is the group presented
by the generators S and the relations R. We denote this group by (S|R). It has the
following universal property: Leto: S — H be a set map into a group H. Assume
that for each (x1, ..., X;) € R the relation «(x1) ...a(x;;) = 1 holds in H. Then
there exists a unique homomorphism A: G — H such that A(x) = «(x) for each
x e S.

Each group can be presented in the form (S | R) — in many different ways. In
practice one uses a less formal notation. Here are a few examples.

(1) The cyclic group of order n has the presentation (a | a”).

(ii) Let S = {x, y}. Consider the word (x,x,y~!, y~!, y~!) and R consisting
of this word. Then we can write G = (S|R) also in the form (x,y | x2y~3)
or (x,y | x2 = y3). The universal property says in this case that homomor-
phisms G — H correspond bijectively to set maps «: {x,y} — H such that
a(x)? = a(y)’.

(iii) {a, b | ab = ba) is a presentation for the free abelian group with basis a, b.

<&

2.8.5 Free product and pushout of groups. The sum (= coproduct) in the cate-
gory of groups is also called a free product. Let (G; | j € J) be a family of groups.
The free product of this family consists of a group X . ; G together with a family
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of homomorphisms ¢; : G; — >;; Gx which have the universal property of a
sum in the category of groups. (The notation G * G is used for the free product
of two groups.) Each family has a sum. Let G; = (S;|R; ) and assume that the §;
are disjoint. Let § = LI;S;. The R; are then words in the alphabet S LT S~!. Let
R = J; R;. We have homomorphisms ¢;: (S;|R;) — (S|R) which are induced
by §; C S. These homomorphisms are a sum in the category of groups.

Let G and H be groupsandi;: G — G H, j;: H — G x H be the canonical
maps which belong to the sum. Let J: P — G, I: P — H be homomorphisms
from a further group P. Let N be the normal subgroup of G * H generated by
the elements {i;J(x) - j1/(x™') | x € P}. Let Q = (G * H)/N and denote by
i:G — Q,j: H— Q the composition of i1, j; with the quotient map. Then
(i, j) is a pushout of (J, I) in the category of groups. In the case that / and J are
inclusions (but sometimes also in the general case) one writes Q = G xp H.

Let S be asetand Z = Z; a copy of the additive group Z foreach s € S. Then
the groups F(S) with basis § is also the free product %k ¢ Z. <

2.8.6 Free products of fundamental groups. The free product 771 (Xg) * 71 (X1)
arises geometrically if X¢; is simply connected.

LetX = S'vStwithXg =Y VvSL X; = S'VvY,where Y = SI~{—1},% =
1. Then (Y, 1) is pointed contractible; hence the inclusion of the summands S! —
Xo, X1 are pointed h-equivalences. One can apply (2.6.2) to the covering of X
by Xo, X1. Since Xy N X is pointed contractible, we see that 771 (X) is the free
product 771 (Xp) * 71 (X1). Hence the inclusions of the summands S! — S! v S!
yield a presentation of 771 (S! v S1) as a free product 71 (S') * 71 (S!) = Z % Z.
By induction one shows that 7 ( \/IIC S1) is the free group of rank k. <&

2.8.7 Plane without two points. The space R? ~ {1} has as a deformation retract
the union X of the circles about £1 with radius 1/2 and the segment from —1/2
to 1/2, see Figure 2.4. (The reader should try to get an intuitive understanding of a

<« <~
[ ] (_ L 2 <_ [ ]
-1 - 0 +1
u v

Figure 2.4. Generators u, v of 1 (RZ ~ £1).

retraction. In order to give a formal proof, without writing down explicit formulas,
it is advisable to wait for the method of cofibrations.) The fundamental group
m1(R? ~ {£1},0) is the free group Z * Z and generators are represented by two
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small circles about +1 (of radius 1/2, say) connected linearly to the base point.
One can apply (2.6.2) to the covering of R? ~ {#1} by the punctured half-spaces

{(x,y) | x <1/3, x #—=1}and {(x,y) | =1/3 < x, x # 1}. &

In the example in 2.8.6 one cannot apply (2.6.2) directly to the covering of
S1v S by the two summands, since the interiors do not cover the space. The general
method in cases like this is to first “thicken” the subspaces up to h-equivalence. In
the next theorem we add a hypothesis which allows for a thickening.

(2.8.8) Theorem. Let ((X;,x;) | j € J) be a family of pointed spaces with
the property: The base point x; has an open neighbourhood U; C X; which is
pointed contractible to the base point. The inclusions of the summands induce
homomorphisms i;: w(X;,x;) = m1(\ ey Xk.x). This family is a free product
of the groups (X}, x;).

Proof. Let J = {1,2}. We apply (2.6.2) to the covering X; v U,,U; Vv X; of
X1V X5. The argument is as for 2.8.4. For finite J we use induction on |J|. Note
that \/ U; C \/ X, is an open, pointed contractible neighbourhood of the base
point.

Let now J be arbitrary. A pathw: I — \/ X; has, by compactness of /, an im-
agein (\,eg Xe)V(V;esg Uj) forafinite subset £ C J. This factand the result
for E' show that the canonical map oy : ;¢ ; 71(X;) — m1(\/ ;s Xj) is surjec-
tive. Each element x € 3, m1(X;) is contained in some X, . 71(X,) for a
finite E. Suppose x is contained in the kernel of o ;. Thenaloopw: I — \/,c5 Xe
representing o x is null homotopic in \/ jes Xj and, again by compactness, null
homotopic in some larger finite wedge. The result for a finite index set now yields
x =0. O

2.8.9 Quotient groups. Leti: K — G be a homomorphism of groups and denote
by N <1 G the normal subgroup generated by the image of i. Then

K——1

[,

G —25G/N

is a pushout in the category of groups, with p the quotient map.
This situation arises geometrically in (2.6.2) if one of the spaces X, is simply
connected. <

2.8.10 Attaching of a 2-cell. We start with a pushout diagram of spaces

SILB

b

D2 ——X.
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Then X is said to be obtained from B by attaching a 2-cell via the attaching map ¢.
(This construction will be studied in detail in the chapter on cell complexes.) Then
a suitable thickening shows that we can apply (2.6.2). Since D? is contractible, we
are in the situation of 2.8.9. Thus J induces an isomorphism 1 (B)/(¢) = 71 (X)
where (@) denotes the normal subgroup generated by [¢] € [S!, B]® = m1(B). ¢

2.8.11 Attaching of a cone. Given a map ¢: A — B from a path connected
space A. The cone on A is the space A x [/A x0. Let j: A > CA,a — (a,l)
denote the inclusion of A into the cone. The cone is contractible, a contracting
homotopy is induced by %, (x, s) = (x, s(1 —t)). Form a pushout

A—2 B

L, L

CA—X.

Since CA is contractible, J, induces an isomorphism w1 (B)/N = m1(X), where
N is the normal subgroup generated by the image of . <

2.8.12 Realization of groups. We demonstrate that arbitrary groups can be realized
as fundamental groups. Let

f1A=\/keKSI—>\/1eLSIZB

be a pointed map. The inclusions of the summands yield a basis a; € 71(A) and
b; € m1(B) for the free groups and fi(ar) = ri is a word in the blt, te”Z. Let
N C %;¢; Z = G be the normal subgroup generated by the ;. Then G/ N is the
group presented by generators and relations (b;,/ € L | rp,k € K). Let CA be
the cone on A and define X by a pushout diagram

A—Lp
I
CA— X.
Then 2.8.11 shows 771 (X) = G/N. Each group can be presented in the form G/ N .
Note that X is a 2-dimensional cell complex. &

2.8.13 Surfaces. The classification theory of compact connected surfaces presents
a surface as a quotient space of a regular 2n-gon, see e.g., [44, p. 75], [167], [123].
The edges are identified in pairs by a homeomorphism. The surface F is obtained
as a pushout of the type

(4
st——\/] St

|,

D2 —F.
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The attaching map ¢ is given in terms of the standard generators of 71 (\/] S') by
the so-called surface-word.

In order to save space we refer to [44, p. 83-87] for the discussion of the
fundamental group of surfaces in general. We mention at least some results. They
will not be used in this text.

(2.8.14) Theorem. (1) The fundamental group of a closed connected orientable
surface Fg of genus g > 1 has the presentation
m1(Fg) = (a1, bi,...,ag,bg | arbray byt .. .agbgaglbgl).

(2) The fundamental group of a closed connected non-orientable surface Ng of
genus g has the presentation

m(Ng) = (ai,...,ag | a3a3 .. .aéz,).

(3) The fundamental group of a compact connected surface with non-empty

boundary is a free group. The number of generators is the finite number 1 — y(Fg)
where y(Fg) is the so-called Euler characteristic.

(4) A simply connected surface is homeomorphic to R? or S2. O

There are many different definitions of the genus. We mention a geometric
property: The genus of a closed connected orientable surface is the maximal number
g of disjointly embedded circles such that their complement is connected. The genus
of a closed connected non-orientable surface is the maximal number g of disjointly
embedded Mobius bands such that their complement is connected. The sphere has
genus zero by the Jordan separation theorem. <

Problems

1. Let S! ¢ R? x 0 C R3 be the standard circle. Let D = {(0,0,¢) | =2 <t < 2} and
§2(2) = {x € R3 | ||x|| = 2}. Then S2(2) U D is a deformation retract of X = R3 ~ §1.
The space X is h-equivalent to SZ v S1.

2. Consider the loop based at (0, 0) in the plane as shown in Figure 2.5. Determine which

gE==umnl

Figure 2.5.
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element in 71 (R% ~ =£1) this loop represents in terms of the generators u, v in 2.8.7. Deter-
mine the winding number about points in each of the six complementary regions.

3. Let (X; | j € J) be a family of subspaces of X such that the interiors ch.’ cover X.
Then each morphism in TT(X) is a composition of morphisms in the X ;. If the intersections
X; N X are path connected and * € X; N X, then 1 (X, *) is generated by loops in the
X;.

4. Let igs in (2.6.2) be an isomorphism. Then ji+ is an isomorphism. This statement is a
general formal property of pushouts. If ig« is surjective, then ji is surjective.

5. Projective plane. The real projective plane P2 is defined as the quotient of S by the
relation x ~ —x. Let [xq, X1, x2] denote the equivalence class of x = (xg, x1, x2). We can
also obtain P2 from S! by attaching a 2-cell

g1 —2 4 p1

b, b

D? — p2,

Here P! = {[x0,x1,0]} € PZandp(xo,x1) = [x0.x1,0]. Thespace P! ishomeomorphic
to S via [xg, x1,0] = 22,z = xo +ix1; and ¢ corresponds to the standard map of degree
2. The map ® is x = (xp,x1) — [x0,x1,+/1 — |[x||2]. As an application of 2.8.10 we
obtain 71 (P?) = Z/2.

Another interpretation of the pushout: P2 is obtained from D? by identifying opposite
points of the boundary S!. The subspace {(xo,x1) | ||x]| = 1/2} becomes in P2 a Mdbius
band M. Thus P? is obtainable from a Mdbius band M and a 2-disk D by identification of
the boundary circles by a homeomorphism. The projective plane cannot be embedded into
R3, as we will prove in (18.3.7). There exist models in R3 with self-intersections (technically,
the image of a smooth immersion.) The projective plane is a non-orientable surface.

6. Klein bottle. The Klein bottle K can be obtained from two Mobius bands M by an
identification of their boundary curves with a homeomorphism, K = M Ugps M.

Apply the theorem of Seifert and van Kampen and obtain the presentation 71 (K) =
{(a,b | a®> = b?). The elements a?, ab generate a free abelian subgroup of rank 2 and of
index 2 in the fundamental group. The element a? generates the center of this group, it is
represented by the central loop M . The quotient by the center is isomorphic to Z /2 % Z /2.

The space M/dM is homeomorphic to the projective plane P2. If we identify the central
dM to a point, we obtainamap ¢: K = M Ugay M — P2V P2. The induced map on the
fundamental group is the homomorphism onto Z /2 % Z /2.

2.9 Homotopy Groupoids

The homotopy category does not have good categorical properties. Therefore we
consider “homotopy” as an additional structure on the category TOP of topological
spaces. The category TOP will be enriched: The set of morphisms IT(X, ¥') between
two objects carries the additional structure of a groupoid. The fundamental groupoid
is the special case in which X is a point.
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Recall that a category has the data: objects, morphisms, identities, and compo-
sition of morphisms. The data satisfy the axioms: composition of morphisms is
associative; identities are right and left neutral with respect to composition.

Let X and Y be topological spaces. We define a category I1(X, Y') and begin
with the data. The objects are the continuous maps X — Y. A morphism from
f:X > Ytog: X — Y isrepresented by a homotopy K: f ~ g. Two such
homotopies K and L define the same morphism if they are homotopic relative to
X x 0l with I = {0, 1} the boundary of /. Let us use a second symbol J = [0, 1]
for the unit interval. This means: A map ®: (X x I) x J — Y is a homotopy
relative to X x 01, if ®(x, 0, ¢) is independent of r and ®(x, 1, ¢) is also independent
of t. Therefore ®;: X xI — Y, (x,s) — ®(x,s,t)is foreacht € J a homotopy
from f to g. For this sort of relative homotopy one has, as before, the notion of
a product and an inverse, now with respect to the J-variable. Hence we obtain
an equivalence relation on the set of homotopies from f to g. We now define: A
morphism 0. f — g in I1(X,Y) is an equivalence class of homotopies relative
to X x dl from f to g. Composition of morphisms, denoted ®, is defined by the
product of homotopies

K:f~gLig~h [Ll®[K]=[K=*L]:f—h

This is easily seen to be well-defined (use ®; *; W;). The identity of f in [1(X,Y)
is represented by the constant homotopy kr: f >~ f.

The verification of the category axioms is based on the fact that a reparametriza-
tion of a homotopy does not change its class.

(2.9.1) Lemma. Leto: I — I be a continuous map with «(0) = 0 and a(1) = 1.
Then K and K o (id xa) are homotopic relative to X x 0l

Proof. ®(x,s,t) = K(x, (1 —t)s + ta(s)) is a suitable homotopy. O

(2.9.2) Proposition. The data for TI(X, Y) satisfy the axioms of a category. The
category is a groupoid.

Proof. The associativity of the composition follows, because
(K*xL)xM =K (L*xM)o(id X ),

with « defined by a(¢) = 2¢ fort < %, at)y =t + % for
for% <t<l.

Similarly, for each K: f ~ g the homotopies kr * K, K, and K * kg differ by
a parameter change. Therefore the constant homotopies represent the identities in
the category.

The inverse homotopy K™ represents an inverse of the morphism defined by K.
Hence each morphism is an isomorphism. Proof: The assignments (x,s,?)
K(x,25(1—t))for0 <s < % and (x,s,7) = K(x,2(1—s)(1—1)) for% <s<l
yield a homotopy relative to X x d/ from K % K~ to the constant homotopy. [

<t<j.a)=%5+

N~
N[=

1
4
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The endomorphism set of an object in a groupoid is a group with respect to
composition as group law. We thus see, from this view point, that the notion of
homotopy directly leads to algebraic objects. This fact is a general and systematic
approach to algebraic topology.

The homotopy categories of Section 2.2 have a similar enriched structure. If
we work, e.g., with pointed spaces and pointed homotopies, then we obtain for
pointed spaces X and Y a category I1°(X,Y). The objects are pointed maps.
Morphisms are represented by pointed homotopies, and the equivalence is defined
by homotopies ® rel X x d/ such that each ®; is a pointed homotopy.

The remainder of this section can be skipped on a first reading. We study the
dependence of the groupoids IT(X,Y) on X and Y. The formal structure of this
dependence can be codified in the notion of a 2-category. Suppose givena: U — X
and 8: Y — V. Composition with & and 8 yield a functor

Py = Ts(B): TI(X, Y) — TI(X, V),
which sends f to 8f and [K] to [8K] and a functor
of = M (a): TI(X,Y) — TI(U,Y),

which sends f to fo and [K] to [K (e x id)]. They satisfy (8'8%)s = B4 B7 and
(a102)* = ada?. These functors are compatible in the following sense:

(2.9.3) Proposition. Suppose K: f ~g: X > Y andL:u ~v:Y — Z are
given. Then [L o K] = vs[K] ® f*[L] = g*[L] ® ug[K]. Here L o K: uf ~
vg: X xI — Z,(x,t) ~ L(K(x,t),t).

Proof. We use the bi-homotopy L o (K xid): X x I x I — Z. Restriction to the
diagonal of I x I defines L ¢ K. Along the boundary of the square we have the
following situation.

vf vK vg
t
L(f xid) T L . L(g xid) (s,t)y el x1I
Lo
e
uf uk ug

g*[L] ® uy[K] is represented by uK * L(g x id). If we compose the bi-homotopy

with id(X) x y, where y(t) = (2¢,0) fort < L and y(¢r) = (1,2t — 1) fort > %,
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we obtain uK * L(g x id). In the same manner we obtain L(f x id) * vK if we
compose the bi-homotopy with id(x) x §, where 6(¢) = (0,2¢t) for t < % and
8(t) = 2t —1,1) fort > % The maps y and § are homotopic relative to d/ by a
linear homotopy in the square. They are also homotopic to the diagonal ¢ — (¢, t)
of the square. O

(2.9.4) Corollary. The homotopy L induces a natural transformation
Ly:us — va: II(X,Y) — TI(X, 2).

The value of Ly at f is f*[L]. The homotopy K induces a natural transformation
K*: " = ¢ TI(Y, Z2) — TI(X, Z).

The value of K* at u is ug[K]. O

(2.9.5) Corollary. Ifu: Y — Z is an h-equivalence, then uy is an equivalence of
categories. Similarly in the contravariant case. O

The data and assertions that we have obtained so far define on TOP the structure
of a 2-category. In this context, the ordinary morphisms f: X — Y are called
1-morphisms and the morphisms [K]: f =~ g are called 2-morphisms. The
composition @ of 2-morphisms is called vertical composition. We also have a
horizontal composition of 2-morphisms defined as [L] ¢ [K] = [L ¢ K]. Because
of (2.9.3) we need not define ¢ via the diagonal homotopy; we can use instead
(2.9.3) as a definition [L] ¢ [K] = v4[K] ® f*[L] = g"[L] ® us[K].

(2.9.6) Note. From this definition one verifies the commutation rule of a 2-category
Gey)o(f@a)=©0op)@(y o). O

The following figure organizes the data (horizontal — vertical).

/ua\/\
\/\/

Conversely, one can derive (2.9.3) from the commutation rule (2.9.6). With the
constant homotopy k,, of u we have

kuoa=usa, yokr=f*y, kpoa=wa, yoks=g"y
and this yields
yoa=( @k o kg ®@a)=(yokg) ® (ky ¢ ) = g* ® usar.

In a similar manner one obtains y ¢ a = vga @ f*y.



Chapter 3
Covering Spaces

A covering space is a locally trivial map with discrete fibres. Objects of this type
can be classified by algebraic data related to the fundamental group. The reduction
of geometric properties to algebraic data is one of the aims of algebraic topology.
The main result of this chapter has some formal similarity with Galois theory.

A concise formulation of the classification states the equivalence of two cate-
gories. We denote by COVp the category of covering spaces of B; it is the full
subcategory of TOPp of spaces over B with objects the coverings of B. Under
some restrictions on the topology of B this category is equivalent to the category
TRAp = [II(B), SET] of functors I1(B) — SET and natural transformations
between them. We call it the transport category. It is a natural idea that, when
you move from one place to another, you carry something along with you. This
transport of “information” is codified in moving along the fibres of a map (here: of
a covering). We will show that the transport category is equivalent to something
more familiar: group actions on sets.

The second important aspect of covering space theory is the existence of a
universal covering of a space. The automorphism group of the universal covering
is the fundamental group of the space — and in this manner the fundamental group
appears as a symmetry group. Moreover, the whole category of covering spaces
is obtainable by a simple construction (associated covering of bundle theory) from
the universal covering.

In this chapter we study coverings from the view-point of the fundamental group.
Another aspect belongs to bundle theory. In the chapter devoted to bundles we show
for instance that isomorphism classes of n-fold coverings over a paracompact space
B correspond to homotopy classes B — BS(n) into a so-called classifying space
BS(n).

3.1 Locally Trivial Maps. Covering Spaces

Let p: E — B be continuous and U C B open. We assume that p is surjec-
tive to avoid empty fibres. A trivialization of p over U is a homeomorphism
¢: p~Y(U) — U x F over U, i.e., ahomeomorphism which satisfies pr; op = p.
This condition determines the space F' up to homeomorphism, since ¢ induces a
homeomorphism of p~!(u) with {u} x F. The map p is locally trivial if there
exists an open covering U of B such that p has a trivialization overeach U € U. A
locally trivial map is also called a bundle or fibre bundle, and a local trivialization
a bundle chart. We say, p is trivial over U , if there exists a bundle chart over U. If
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p is locally trivial, then the set of those b € B for which p~!(b) is homeomorphic
to a fixed space F is open and closed in B. Therefore it suffices for most purposes
to fix the homeomorphism type of the fibres. If the fibres are homeomorphic to F,
we call F the typical fibre. A locally trivial map is open, hence a quotient map.

A covering space or a covering' of B is a locally trivial map p: E — B with
discrete fibres. If F is discrete (= all subsets are open and closed), then U X F is
homeomorphic to the topological sum Lyerp U x {x}. The summands U x {x} are
canonically homeomorphic to U. If ¢: p~'(U) — U x F is a trivialization, then
p yields via restriction a homeomorphism of ¢! (U x {x}) with U. A covering
is therefore a local homeomorphism. The summands ¢~ (U x {x}) = U, are the
sheets of the covering over U ; the pre-image p~!(U) is therefore the topological
sum of the sheets Uy ; the sheets are open in £ and mapped homeomorphically onto
U under p. If |F| = n € N, we talk about an n-fold covering. The trivial covering
with typical fibre F is the projection pr: B x F — B. We say, U is admissible or
evenly covered if there exists a trivialization over U.

(3.1.1) Example. The exponential function p: R — S, t > exp(2mit) is a cov-
ering with typical fibre Z. Foreacht € R and p(¢) = z we have a homeomorphism

p IS~ =1zt A0t +n+ 1=t +1[ xZ,
and p maps each summand homeomorphically. <

(3.1.2) Proposition. Let p: E — B be a covering. Then the diagonal D of E X E
is open and closedin Z = {(x,y) € E X E | p(x) = p(y)}.

Proof. Let Uy be an open neighbourhood of x which is mapped homeomorphically
under p. Then Z N (Uy x Uy) = W, is contained in D, and W, is an open
neighbourhood of (x, x) in Z. This shows that D is open.

Let x # y and p(x) = p(y). Letx € Uy and y € Uy, be the sheets of p over
the open set U C B. Since x # y, the intersection Uy N U, is empty. Hence
Z N (Ux x Uy) is an open neighbourhood of (x, y) in Z and disjoint to D. This
shows that also the complement Z ~ D is open. O

Let p: E — Band f: X — B be maps; then F: X — E is alifting of f
along p,if pF = f.

(3.1.3) Proposition (Uniqueness of liftings). Let p: E — B be a covering. Let
Fo, F1: X — E beliftings of f: X — B. Suppose Fy and Fy agree somewhere.
If X is connected, then Fy = F.

Proof. (Fy, Fy) yield amap F: X — Z. By assumption, F~1(D) is not empty,
and hence, by (3.1.2), open and closed. If X is connected, then F1 (D)= X,i.e,
Fy = Fy. O

'Observe that the term “covering” has two quite different meanings in topology.
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(3.1.4) Proposition. Let g: E — B x [0, 1] be locally trivial with typical fibre F.
Then B has an open cover U such that q is trivial over each set U x [0, 1], U € U.

Proof. If q is trivial over U X [a, b] and over U x [b, c], then ¢ is trivial over
U x [a, c]. Two trivializations over U x {b} differ by an automorphism, and this
automorphism can be extended over U X [b, c]. Use this extended automorphism
to change the trivialization over U X [b, c], and then glue the trivializations. By
compactness of / there exist0) =ty <t} <:-- < t, = 1 and an open set U such
that g is trivial over U X [t;, ¢ 41]. O

For the classification of covering spaces we need spaces with suitable local
properties. A space X is called locally connected (locally path connected) if
for each x € X and each neighbourhood U of x there exists a connected (path
connected) neighbourhood V' of x which is contained in U. Both properties are
inherited by open subspaces.

(3.1.5) Proposition. The components of a locally connected space are open. The
path components of a locally path connected space Y are open and coincide with
the components.

Proof. Let K be the component of x. Let V' be a connected neighbourhood of x.
Then K UV is connected and therefore contained in K. This shows that K is open.

Let U be a component of ¥ and K a path component of U. Then U ~ K is a
union of path components, hence open. In the case that U # K we would obtain a
decomposition of U. O

We see that each point in a locally path connected space has a neighbourhood
basis of open path connected sets.

(3.1.6) Remark. Let B be path connected and locally path connected. Since a
covering is a local homeomorphism, the total space E of a covering of B is locally
path connected. Let E’ be a component of E and p’: E’ — B the restriction of
p- Then p’ is also a covering: The sets U, over which p is trivial, can be taken as
path connected, and then a sheet over U is either contained in E’ or disjoint to E’.
Since B is path connected, we see by path lifting (3.2.9) that p’ is surjective. By
(3.1.5), E is the topological sum of its components. <

A left action G x E — E, (g,x) — gx of a discrete group G on E is called
properly discontinuous if each x € E has an open neighbourhood U such that
U NgU = @ for g # e. A properly discontinuous action is free. For more details
about this notion see the chapter on bundle theory, in particular (14.1.12).

A left G-principal covering consists of a covering p: E — B and a properly
discontinuous action of G on E such that p(gx) = p(x) for (g,x) € G x E and
such that the induced action on each fibre is transitive.
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(3.1.7) Example. A left G-principal covering p: E — B induces a homeomor-
phism of the orbit space E/G with B. The orbit map £ — E/G of a properly
discontinuous action is a G-principal covering. &

A covering p: E — B has an automorphism group Aut(p). An automorphism
is a homeomorphism «: E — E such that p oo = p. Maps of this type are also
called deck transformations of p. 1If p is a left G-principal covering, then each
left translation /g : £ — E, x — gx is an automorphism of p. We thus obtain a
homomorphism /: G — Aut(p). Let E be connected. Then an automorphism «
is determined by its value at a single point x € FE, and «(x) is a point in the fibre
p~Y(p(x)). Since G acts transitively on each fibre, the map / is an isomorphism.
Thus the connected principal coverings are the connected coverings with the largest
possible automorphism group. Conversely, we can try to find principal coverings
by studying the action of the automorphism group.

(3.1.8) Proposition. Let p: E — B be a covering.

(1) If E is connected, then the action of Aut(p) (and of each subgroup of Aut(p))
on E is properly discontinuous.

(2) Let B be locally path connected and let H be a subgroup of Aut(p). Then
the map q: E/H — B induced by p is a covering.

Proof. (1)Letx € E and g € Aut(p). Let U be a neighbourhood of p(x) which is
evenly covered, and let U, be a sheet over U containing x. For y € U, N gU, we
have p(y) = p(g~'y), since g~! is an automorphism. Hence y = g~ !y, since
both elements are contained in Uy. This shows g~! = id, hence Uy N gU, = @
for g # e, and we see that the action is properly discontinuous.

(2) Let U C B be open, path connected, and evenly covered. Let p~1(U) =
\U;es Uj be the decomposition into the sheets over U. Anelement 2 € H permutes
the sheets, since they are the path components of p~!(U). The equivalence classes
with respect to H are therefore open in the quotient topology of E/H and are
mapped bijectively and continuously under g. Since p is open, so is g. Hence ¢ is
trivial over U. Since B is locally path connected, it has an open covering by such
sets U. O

A right G-principal covering p: E — B gives rise to associated coverings.
Let F be a set with left G-action. Denote by E X F the quotient space of E x F
under the equivalence relation (x, f) ~ (xg~',gf)forx € E,f € F,g € G.
The continuous map pr: E xg F — B, (x, f) — p(x) is a covering with typical
fibre F'.

A G-map {: F; — F5 induces a morphism of coverings

idxgy: Exg F1 = E xXg F2, (x, f)— (x,¥(f)).
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We thus have obtained a functor “associated coverings”
A(p): G-SET — COVp

from the category G-SET of left G-sets and G -equivariant maps. We call a G-prin-
cipal covering p: E — B over the path connected space B universal if the functor
A(p) is an equivalence of categories.

3.2 Fibre Transport. Exact Sequence

The relation of a covering space to the fundamental groupoid is obtained via path
lifting. For this purpose we now introduce the notion of a fibration which will be
studied later in detail. A map p: E — B has the homotopy lifting property (HLP)
for the space X if the following holds: For each homotopy #2: X x I — B and each
map a: X — E such that pa(x) = hi(x), i(x) = (x,0) there exists a homotopy
H: X xI — E with pH = hand Hi = a. We call H alifting of h with initial
condition a. The map p is called a fibration if it has the HLP for all spaces.

(3.2.1) Example. A projection p: B x F — B is a fibration. Let a(x) =
(a1(x),az(x)). The condition pa = hi saysa;(x) = h(x,0). If weset H(x,t) =
(h(x,t),az(x)), then H is a lifting of & with initial condition a. &

(3.2.2) Theorem. A covering p: E — B is a fibration.

Proof. Let the homotopy #: X x I — B and the initial condition a be given.
Since [ is connected, a lifting with given initial condition is uniquely determined
(see (3.1.3)). Therefore it suffices to find for each x € X an open neighbourhood
Vy such that h|Vy x I admits a lifting with initial condition a|V,. By uniqueness
(3.1.3), these partial liftings combine to a well-defined continuous map.

By (3.2.3) there exists for each x € B an open neighbourhood V, and an
n € N such that 4 maps Vy x [i/n, (i + 1)/n] into a set U over which p is trivial.
Since p: p~'(U) — U is, by (3.2.1), a fibration, &|Vy x [i/n, (i + 1)/n] has a
lifting for each initial condition. Therefore we find by induction over i a lifting of
h|Vy x [0, i/n] with initial condition a| V. O

(3.2.3) Lemma. Let U be an open covering of B x [0, 1]. For each b € B there
exists an open neighbourhood V(b) of b in B and n = n(b) € N such that for
0 <i <nthesetV(b) x[i/n,i/(n+ 1)]is contained in some member of U. O

The fact that the lifted homotopy is uniquely determined implies that for a
covering p: E — B the diagram

1
EIL>BI

(0] 0

E—2 B
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is a pullback of topological spaces. Here E! is the space of paths in E with
compact-open topology and e% (w) = w(0).

The homeomorphism (2.3.6) k: (I",01") x (I,0) — I" x (I,0) of pairs is
used to solve the next homotopy lifting problem with a modified initial condition.
It reduces the problem to the HLP for 7”.

(3.2.4) Proposition. Let p: E — B have the HLP for the cube 1". For each
commutative diagram

I"x0Ud"x ——=E

ﬂJ{i Phd lp
~
-

"< —"—B
there exists H: I" x I — E with Hi = a and pH = h. O

Let p: E — B be a map which has the HLP for a point and for /. Write Fp =
p~ (). We associate to each path v: I — B from b to ¢ a map vyg: mo(Fp) —
7o(F,) which only depends on [v] € TI(B). Let x € Fp. Choose a lifting
V: I — E of v with V(0) = x. We set vg[x] = [V(1)]. We have to show that this
assignment is well-defined. For this purpose assume given:

(D) u: I — Fp;

(2) h: I x I — B ahomotopy of paths from b to c;

(3) Vo, Vi: I — E liftings of hg, k1 with initial points u(0), u(1).
These data yield amap a: I x I UOQ x I — E, defined by a(s,&) = Ve(s) and
a(0,t) = u(t). The lifting H of h with initial condition a, according to (3.2.4),
yieldsapatht — H(1,t) in F, from V(1) to V1(1). This shows that the map v is
well-defined and depends only on the morphism [v] in the fundamental groupoid.
The rule wgvy = (v * w)s is easily verified from the definitions. Thus we have
shown:

(3.2.5) Proposition. The assignments b +— mo(Fp) and [v] + vy yield a functor
T,: II(B) — SET. O

We call T, = T (p) the transport functor associated to p.
The functor T}, provides us with

7o (Fp) X w1(B.b) = mo(Fp),  (x.[v]) = ve(x) = x - [v],

aright action of the fundamental group on the set 7o (F3). We write 7o (F, x) if [x]
is chosen as base point of the set 7o (F). We use the action to define

dx: m1(B,b) = wo(Fp,x), [v] = x-[v].

The map 0y is 71 (B, b)-equivariant, i.e., dx[v * w] = (dx[v]) - [w].
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Recall that a sequence A % B i C of pointed maps is exact at B if the image
of o equals the kernel 87! (x) of B. Similarly for longer sequences. In this context
a group is pointed by its neutral element.

(3.2.6) Theorem. Let p(x) = b andi: Fp C E. The sequence

‘* * 3x '* *
71 (Fp, x) = 711 (E, x) 25 711 (B, b) =5 mo(Fp, x) — 70(E, x) 25 710(B, b)
is exact.

Proof. 1tis easily verified from the definitions that the composition of two maps is
the constant map. We consider the remaining four cases: kernel C image.

Let [u] € m1(E,x) and h: I x I — B a null homotopy of pu. Consider
the lifting problem for s with initial condition a: I x 0 U d/ x I — E with
a(s,0) = u(s) and a(e,t) = x. The lifting H of & is then a homotopy of loops
from u to a loop in the image of i.

Let dx[v] = [x]. This means: There exists a lifting V' of v from x to V(1) € [x].
Choose a path U: I — Fp from V(1) to x. Then V' x U is a loop in E, and its
class maps under 71 (p) to [v], since pU is constant.

Let 7o (i)[y] = [x]. There exists a path w: I — F from x to y. The projection
v = pw is aloop and d,[v] = [y], by definition of 0.

Let wo(p)[y] = [b]. Thus there exists a path v: I — B from p(y) to x. Let
V: I — E be a lifting of v with initial point y. Then V(1) € Fp, and V' shows

mo()([V(D)] = [y]. =
There is more algebraic structure in the sequence.

(3.2.7) Proposition. The pre-images of elements under 0, are the left cosets of
m1(B, b) with respect to p«11(E, x). The pre-images of 7o(i) are the orbits of the
m1(B, b)-action on 7wo(Fp, X).

Proof. Let dx[u] = 0x[v]. Choose liftings U, V of u, v which start in x, and let
W I — Fp be apath from U(1) to V(1). Then U « W % V™~ is aloop in E, and
p(U W x V™) xv >~ u, ie., the elements [u] and [v] are contained in the same
left coset. Conversely, elements in the same coset have the same image under 0.
(A similar assertion holds for right cosets.)

Suppose 7o (i)[a] = 7o (i)[b]. Then there exists a path w: I — E froma to b.
Set v = pw. Then [a] - [v] = [b]. Conversely, elements in the same orbit have
equal image under 77 (7). O

We can apply (3.2.6) to a covering p: E — B. The fibres are discrete. There-
fore 71 (Fp, x) is the trivial group 1. Hence ps: 71 (E, x) — m1(B, b) is injective.
We state (3.2.6) for a covering:
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(3.2.8) Proposition. Let p: E — B be a covering over a path connected space B.
Then the sequence

* 0y [ 5
1 = m(E, x) 25 71(B,b) —> 10 (Fy, x) —> 700(E, x)

is exact and iy is surjective. (The sets F, = mo(Fp) and o (E) have x as base point,
andi: Fy C E.) Thus E is path connected if and only if w1 (B, b) acts transitively
on Fy. The isotropy group of x € Fy isthe image of p«: m1(E,x) — m1(B,b). O

(3.2.9) Proposition (Path lifting). Let p: E — B be a covering. Let w: I — B
be a path which begins at p(e) = w(0). Then there exists a unique lifting of w
which begins in e. Two paths in E which start in the same point are homotopic if
and only if their images in B are homotopic.

Proof. The existence of the lifting follows from (3.2.2), applied to a point X, and
the uniqueness holds by (3.1.3).

Let h: I x I — B be a homotopy of paths and H: I x [ — E a lifting
of h. Since t — H (e, t) are continuous maps into a discrete fibre, they are constant
(¢ =0,1). Hence H is a homotopy of paths.

Let ug,uq: I — E be paths which start in x, and suppose that puy and pu;
are homotopic. If we lift a homotopy between them with constant initial condition,
then the result is a homotopy between 1y and u;. O

Let p: E — B be a right G-principal covering. Each fibre F} carries a free
right transitive G-action. From the construction of the transport functor it is im-
mediate that the fibre transport T,[w]: F;, — F, is G-equivariant. The left action
(a,x) = a-x = au(x) of mp = II(B)(b,b) on Fp commutes with the right
G-action; we say in this case that Fp is a (7p, G)-set. Fix x € Fp. For each
a € myp there exists a unique yx(a) € G such that a - x = x - yx(a), since
the action of G is free and transitive. The assignment a +— yx(a) is a homo-
morphism yx: 7, — G. Since m1(B,b) is the opposite group to mp, we set
8x(a) = yx(a)~'. Then 8,: m;(B,b) — G is a homomorphism. Recall the
map dy: m1(B, p(x)) — Fp. If we compose it with the bijection py: G — Fp,
g — xg, we obtain p,8y = dx. Then (3.2.8) yields:

(3.2.10) Proposition. Let p: E — B be a right G-principal covering with path
connected total space. Then the sequence of groups and homomorphisms

* 8x
1 - m(E, x) L m1(B,p(x)) — G —> 1

is exact (for each x € E). The image of p« is a normal subgroup. The space
E is simply connected if and only if 8y is an isomorphism. Thus, if E is simply
connected, then G is isomorphic to the fundamental group of B. O
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If we apply this to the exponential covering R — S, a Z-principal covering,
we again obtain 771 (S!) = Z.

The transport functor 7, has an additional property, it is locally trivial in the
following sense. Let p be trivial over U, and let b,c € U. Then Ty, [w]: Fp — F¢
is independent of the path w: I — U from b to c¢. This is due to the fact that lifts
of paths inside U stay within a sheet over U.

3.3 Classification of Coverings

Let TRAp = [I1(B), SET] denote the category of functors IT1(B) — SET (objects)
and natural transformations between them (morphisms). We call this category the
transport category.

Let p: E — B be a covering. We have constructed the associated transport
functor T, = T'(p): I1(B) — SET. Foramorphisma: p — ¢ between coverings
the restrictions o : p~1(b) — ¢~ '(b) of « to the fibres yield a natural transfor-
mation 7T'(«): T(p) — T (q) between the corresponding transport functors. So we
have obtained a functor

T: COVp — TRAp.

A path connected space B is called a transport space if T is an equivalence of
categories.

The main theorem of this section gives conditions under which the transport
functor 7 is an equivalence.

(3.3.1) Note. Let p: E — B be a covering with simply connected E. Then B is
path connected. If p is trivial over U, then two paths in U between the same points
are homotopic in B.

Proof. The space B is path connected, since p is assumed to be surjective and E is
path connected. Let ug, u; be paths in U between the same points. By (3.2.9) they
have liftings v, vy which connect the same points. Since E is simply connected,
vg, U1 are homotopic in E and hence ug, u; are homotopic in B. O

Aset U C B istransport-simple if two paths in U between the same points are
homotopic within B. A space B is semi-locally simply connected if it has an open
covering by transport-simple sets. We have just seen that this condition is implied
by the existence of a simply connected covering. We call B transport-local, if B
is path connected, locally path connected and semi-locally simply connected.

(3.3.2) Theorem (Classification I). Let B be path connected, locally path connected
and semi-locally simply connected. Then B is a transport space, i.e., T is an
equivalence of categories.
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Proof. We begin by constructing a functor
X: TRAp — COVp

in the opposite direction. Let ®: T1(B) — SET be a functor. We construct an
associated covering p = p(®): X(®) — B. Asaset, X(®) = | [,cp P(b), and
p(®) sends ®(b) to b. Let U be the set of open, path connected and transport-
simple subsets of B. We define bundle charts over sets U € U. For b € U we
define

oup: U x ®(b) — p~'(U), (u,z)r d(w)z

with some path w in U from b to u. By our assumption on U, the map ¢y is well-
defined, i.e., the choice of w does not matter. By construction, ¢y is bijective.
We claim: There exists a unique topology on X (®) such that the ¢y, of this type
are homeomorphisms onto open subsets. By general principles of gluing, we have
to verify that the transition maps

pyeopup: (UNV)x®(b) - (UNV)xd(c)

are homeomorphisms. Let x € U NV and let W C U N V be an open, path
connected neighbourhood of x. Let u, be a path from b to x inside U, and v, a
path from c to x inside V. Then forall y € W

Oye 0 9ub(y.2) = @yL o pup(x,2),

because in order to define ¢y 5 (), z) we can take the product of u, with a path w,,

in W from x to y, and similarly for ¢y, so that the contribution of the piece w,

cancels. This shows that the second component of go;i, o @up is on W x ®(b)

independent of x € W. The continuity of the transition map is a consequence.
Ifa: ®; — O, is a natural transformation, then the morphism

X(@): X(®1) — X(®2), x € di(b) > alx) € Da(h),

induced by «, is continuous with respect to the topologies just constructed and
hence a morphism of coverings. The continuity of X («) follows from the fact, that
bundle charts @y 5 for X(P;) and X(P,) transform X (o) into

idxa(b): U x ©1(b) = U x O,(b).

This finishes the construction of the functor X : TRAg — COV3p.

We now show that the functors 7" and X are mutually inverse equivalences of cat-
egories, i.e., that X 7" and T X are naturally isomorphic to the identity functor. From
our constructions we see immediately a canonical homeomorphism p: X(7T(p)) =
E(p) over B for each covering p: E(p) — B, namely set-theoretically the iden-
tity. We have to show that p is continuous. Let v € Fp, C X(T(p)). Let W be a
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neighbourhood of v in E(p). Then there exists an open neighbourhood V' C W of
vin E(p) such that V is path connected and U = p(V) € U. Letb = p(v). Then
we have the bundle charts ¢y, and W = ¢y (U x v) is a neighbourhood of v in
X(T(p)). From the construction of ¢y, we see that p(W) C V. This shows the
continuity at v. It is easily verified that the homeomorphisms p constitute a natural
transformation. Conversely, we have to verify that the transport functor of p(®)
is ®. Using the bundle charts ¢ this is first verified for paths in U. But each
morphism in IT(B) is a composition of morphisms represented by paths in such
sets U. O

Fix b € B. A canonical functor is the Hom-functor I1(b, —) of the category
I1(B). Let p?: E? — B denote the associated covering. We still assume that B is
transport-local. The automorphism group 77, = I1(b, b) of b in T1(B), the opposite
fundamental group 71 (B, b), acts on E fibrewise from the right by composition of
morphisms. The action is free and transitive on each fibre. Via our bundle charts it
is easily verified that the action on E? is continuous. Thus p? is a right 7 -principal
covering. From (3.2.8) we see that £ bis simply connected. Thus we have shown:

(3.3.3) Theorem. The canonical covering pb - E® — B associated to the Hom-

Sfunctor T1(b, —) has a simply connected total space. The right action of T1(b, b) on

the fibres by composition of morphisms is the structure of a right principal covering
b

on p°. O

Problems

1. Let S be the pseudo-circle. The space S is simply connected. But S has non-trivial
connected principal coverings. They can be obtained by a pullback along suitable maps
S — S! from Z/n-principal or Z-principal coverings of 1. In this sense S behaves like
S, We see that certain local properties of B are necessary in order that 7' is an equivalence.
2. Let f: B — C be a continuous map. The pullback p: X — B ofacoveringg: Y — C
along f is a covering. Pulling back morphisms yields a functor f* = COV(f): COV¢c —
COVp. The map f induces a functor I1(f): TI(B) — TII(C), and composition with
functors IT1(C) — SET yields a functor TRA(f): TRAc — TRAp. These functors are
compatible Tp 0o COV(f) = TRA(f) o Tc: COVc — TRAp.

3.4 Connected Groupoids

In this section the space B is assumed to be path connected.

A functor TT(B) — SET is an algebraic object. The category of these functors
has an equivalent description in terms of more familiar algebraic objects, namely
group actions. We explain this equivalence.

Let IT be a connected groupoid (i.e. there exists at least one morphism between
any two objects) with object set B, e.g., [1 = I1(B) for a path connected space B.
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Let IT(x, y) denote the set of morphisms x — y and n = 7 = I1(b, b), the
automorphism group of b with respect to composition of morphisms. A functor
F: TI — SET has an associated set F(b) with left r5-action

wp X F(b) = F(b), (a,x)+— F(x)(x).

A natural transformation «: F — G yields a map «(b): F(b) — G(b) which is
mp-equivariant. In this manner we obtain a functor

ep: [I1,SET] — m-SET

from the functor category of functors IT — SET into the category of left mp-sets
and equivariant maps.

We construct a functor 7 in the opposite direction. So let A be a m-set. The
Hom-functor T1(b, ?) is a functor into the right 5-sets, namely 5 acts on I1(b, x)
by composition of morphisms. These data yield the functor ®(A4) = T1(b, ?) X A.
(Here again A x, B denotes the quotient of A x B by the equivalence relation
(ag,b) ~ (a,gbh), (a,g.b) € A x 7 x B for left m-sets A and right w-sets B.) A
mp-map f: A — B induces a natural transformation ®( f): ®(A) — (B). This
finishes the definition of 7.

(3.4.1) Proposition. The functors ey, and np are mutually inverse equivalences of
categories.

Proof. The composition €31, associates to a mp-set A the mp-set T1(b, b) X, A,
with mp-action g - (f; z). The isomorphisms

ta: b, b)yx, A—> A, (fiz)— f-z

form a natural equivalence ¢: gpnp > Id.
The composition 71pep associates to a functor F': II — SET the functor
(b, —) x, F(b). The maps

Br(x): (b, x) x F(b) = F(x), (f.2) =~ F(f)z

form a natural transformation, i.e., a morphism S : npep(F) — F in [I1, SET].
Since IT is a connected groupoid, the B (x) are bijective, and therefore constitute
an isomorphism in the functor category. The BFr are a natural equivalence
,32 NpeEp = Id. O

In our previous notation TRAp = [I1(B),SET]|. From (3.3.2) and (3.4.1)
we obtain for each transport-local space an equivalence of categories COVp —
7p-SET, the composition of the transport functor 7' with g,. It associates to a
covering p: E — B the mp-set Fp. The inverse equivalence associates to a mp-set
A the covering

X(pA) = [l ep I(B)(b,x) Xz A — B.
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It is the covering E b xx A — B associated to the mp-principal covering (3.3.3).
Let p: E — B be aright G-principal covering with path connected B. Then
we have the functors

A
G-SET 22 OV — T TRAg —2 7,- SET.

The composition associates to a G-set F the mp-set Fj, Xg F, where the mp-action
is induced from the left 7r5-action on Fj,.

Now suppose in addition that E is simply connected. Then we have a bijection
oF . F — Fy xg F, z = [x,z] for a fixed x € Fj as well as the isomorphism
yx: Tp = G, see (3.2.10). The relation yx(a) -z = a - [x, z] holds. So if we view
G-sets via y, as mp-sets, then the above composition of functors is the identity.
Thus we have shown:

(3.4.2) Proposition. Let p: E — B be a simply connected G -principal covering.
Then A(p) is an equivalence of categories if and only if T is an equivalence of
categories. O

(3.4.3) Theorem. The following properties of B are equivalent:
(1) B is a transport space, i.e., T is an equivalence of categories.

(2) B has a universal right G-principal covering p: E — B with simply con-
nected total space E.

Proof. (1) = (2). Since ¢ o T is an equivalence of categories, each object of
7p- SET is isomorphic to an object in the image of &, o T. Thus there exists a
covering p: E — B such that its mp-set Fj is isomorphic to the mp-set ;. By
another property of an equivalence of categories, the morphisms p — p correspond
under g o T bijectively to the wp-maps Fp — Fp. The mp-morphisms m, — mp
are the right translations by elements of mp. Thus mp acts simply and transitively
on E. From (3.2.8) we see that £ is simply connected.

The left action of the automorphism group Aut(p) on E is properly discon-
tinuous and the induced action on each fibre is transitive. If we rewrite this as
a right action of the opposite group G, we obtain a right G-principal covering.
Proposition (3.4.2) now says that p is universal.

(2) = (1) is a consequence of (3.4.2). O

From a geometric view point the interesting coverings are those with connected
total space.

Let p: E — B be a universal right G-principal covering. A left G-set A is
the disjoint sum of its orbits. We have a corresponding sum decomposition of the
total space E xg A into the sum of £ xg C, where C runs through the orbits
of A. An orbit is a transitive G-set and isomorphic to a homogeneous set G/H
for some subgroup H of G. The homeomorphism £ xg G/H =~ E/H shows
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that the summands E xg C are path connected. The action of H on E is properly
discontinuous and therefore £ — E/H an H -principal covering. Also the induced
map py: E/H — B is a covering.

The category of homogeneous G-sets and G-maps is the orbit category Or(G)
of G. The sets G/ K and G/ L are isomorphic if and only if the subgroups K and L
are conjugate in G. The isotropy groups of G/H are conjugate to H. The inclusion
of the subcategory Or(G) into the category of transitive G-sets is an equivalence.

Let p: E — B be a universal right G-principal covering with simply con-
nected E. Then the functor A(p) induces an equivalence of Or(G) with the cate-
gory of connected coverings of B. Each covering is thus isomorphic to a covering
of the form py: E/H — B for a subgroup H of G.

We fix z € p~1(b) C E and obtain an isomorphism §,: G — (B, b). It
sends g € G to the loop [p o wg] where wg: I — E is a path from z to zg~ L

Letg: X — B be a connected covering. We know that the induced homomor-
phism p.: m1(X, x) — m1(B, b) is injective. The image is called the characteris-
tic subgroup C(p,x) of p with respect to x. Let u: I — X be a path from x to
y € p~Y(b). Then w = pu is aloop and C(p, y) = [w]C(p, x)[w]™ !, thus dif-
ferent base points in p~!(b) yield conjugate characteristic subgroups. Conversely,
each subgroup conjugate to C(p, x) arises this way.

We apply this to the covering py withz = zH € E/H. Then
(pr)«(m(E/H,Z) = 8:(H) = C(pH. 2).
We collect the results in the next theorem.

(3.4.4) Theorem (Classification II). Let B be a transport space. The category of
connected coverings of B is equivalent to the orbit category Or(wy(B,b)). The
isomorphism class of a connected covering q: X — B corresponds under this
equivalence to the isomorphism class of my(B,b)/C(q.x) for any x € p~'(b).
The isomorphism class of a connected covering is determined by the conjugacy
class of its characteristic subgroup. O

Problems

1. The automorphism group of pgy: E/H — B is NH/H, where NH denotes the normal-
izer of H in 71 (B, b). The covering is a principal covering (also called regular covering),
if and only if H is a normal subgroup of 71 (B, b).

2. The connected coverings of S are, up to isomorphism, the maps p;, : z > z” forn € N
and p: R — S, ¢ > exp(2mit). These coverings are principal coverings.

3. Let B be a contractible space. Is the identity id: B — B auniversal G-principal covering
for the trivial group G?
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3.5 Existence of Liftings

The following theorem (3.5.2) is interesting and important, because it asserts the ex-
istence of liftings under only the necessary algebraic conditions on the fundamental
groups.

(3.5.1) Lemma. Let wy and wy be paths in E beginning in x. Let u; = pw;.
Then wo(1) = wi(1) if and only if ug(1) = uy(1) and [ug * uy] is contained in
p*ﬂl (E,X)-

Proof. If wo(1) = wy(1), then py[wo * wi] = [uo * uy]. Conversely: We lift
ug*u; withinitial point x. Since [ug*u]] € ps«m1(E, x) there exists aloop which
is homotopic to ug * u7, and which has a lifting with initial point x. By (3.2.9),
uo * u itself has a lifting as a loop. Therefore 1o and 1 have liftings with initial
point x and the same end point. These liftings are then necessarily wg and wy. [

(3.5.2) Theorem. Let p: E — B be a covering. Suppose Z is path connected
and locally path connected. Let f: Z — B be a map with f(z) = p(x). Then
there exists a lifting ®: Z — E of f with ®(z) = x if and only if fum1(Z,2) is
contained in pymy(E, Xx).

Proof. If a lifting exists, then the inclusion of groups holds by functoriality of ;.
Suppose fim1(Z,z) C psxm1(E, x). We begin by constructing ® as a set map.
Then we show its continuity.
Let zg € Z. There exists a path w from z to zy. Let v: I — E be a lifting of
fw starting in x. We want to define ® by ®(z) = v(1). Let w; be another path
from z to z¢ and vy a lifting of fw; starting in x. Then

pv(l) = fw(l) = f(z0) = fwi(1) = pvi(1);

moreover
[pv * pvi] = filw * wi] € psmi(E, x).

By (3.5.1) we have v(1) = vy(1); this shows that ® is well-defined if we set

d(z) =v(1).

Continuity of ®. Let U be an open neighbourhood of ®(z), such that p is trivial
over p(U) = V,andlet p: U — V have the inverse homeomorphism¢g: V — U.
Let W be a path connected neighbourhood of zg such that f(W) C V. We claim
®(W) Cc U. Letz; € W and let w; be a path in W from zg to z;. Then w * w;
is a path from z to z1, and v; = v * ¢ fw; a path with pv; = f o (w * wy) and
v1(0) = x. Thus vy (1) € U. O

(3.5.3) Theorem. Let X be a topological group with neutral element x and let
p: E — X be a covering with path connected and locally path connected E. For
each e € p~1(x) there exists a unique group structure on E which makes E into a
topological group with neutral element e and such that p is a homomorphism.
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Proof. Construction of a group structure on E. Let m: X x X — X be the group
multiplication. We try to find M : E x E — E as a lift m(p x p) along p with
M (e, e) = e. This can be done, by (3.5.2), it m«(p X p)x7w1(E X E) C psxmi1(E).
This inclusion holds, since (using (2.7.3))

M (pXx p)«[(w1, w2)] = [pwr-pwa] = [pwi* pwz] = [p(wi*w2)] = px[wrxwy].

From the uniqueness of liftings one shows that M is associative. In a similar manner
we see that (passage to) the inverse in X has a lifting to E, and uniqueness of liftings
shows that the result is an inverse for the structure M. O

A well-known result of Hermann Weyl is that a compact, connected, semi-simple
Lie group has a finite simply connected covering. See [29, V.7] about fundamental
groups of compact Lie groups. The group O(n) has two different two-fold coverings
which are non-trivial over SO(n). They are distinguished by the property that the
elements over the reflections at hyperplanes have order 2 or 4 (n > 1). We will see
that 71 (SO(n)) = Z/2 for n > 3. The corresponding simply connected covering
groups are the spinor groups Spin(#n); see e.g., [29, 1.6].

We repeat an earlier result in a different context. We do not assume that B has
a universal covering.

(3.5.4) Proposition. Let B be path connected and locally path connected. Cover-
ings pi: (Xi, x;) — (B, b) with path connected total space are isomorphic if and
only if their characteristic subgroups are conjugate in w1 (B, b).

Proof. Since C(p1, x1) and C(p3, x2) are conjugate we can change the base point
X5 such that the groups are equal. By (3.5.2), there exist morphisms f7: (X1, x1) —
(X2,x2) and f3: (X2, x2) — (X1,x1), and since f> f1(x1) = x1, f1 /2(x2) = x2
both compositions are the identity.

By functoriality of 7; we see that isomorphic coverings have conjugate charac-
teristic subgroups. O

Problems

1. We have given a direct proof of (3.5.2), although it can also be derived from our previous
classification results. The existence of a lift ® is equivalent to the existence of a section in
the covering which is obtained by pullback along f. The 71 (Z, z)-action on the fibre E
of the pullback is obtained from the 71 (B, b)-action via fi: 71(Z,z) — m1(B,b). The
existence of a section is equivalent to Ej having a fixed point under the 71 (Z, z)-action.
If the inclusion of groups holds as in the statement of the theorem, then a fixed point exists
because the image of p« is the isotropy group of the 7 (B, b)-action.

2. Let p: E — B be a covering with path connected and locally path connected total space.
The following are equivalent: (1) Aut(p) acts transitively on each fibre of p. (2) Aut(p)
acts transitively on some fibre of p. (3) The characteristic subgroup is normal in 7 (B, b).
(4) p is an Aut(p)-principal covering.
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3.6 The Universal Covering

We collect some of our results for the standard situation that B is path connected,
locally path connected and semi-locally simply connected space. Let us now call a
covering p: E — B auniversal covering if E is simply connected.

(3.6.1) Theorem (Universal covering). Let B be as above.
(1) There exists up to isomorphism a unique universal covering p: E — B.

(2) The action of the automorphism group Aut(p) on E furnishes p with the
structure of a left Aut(p)-principal covering.

(3) The group Aut(p) is isomorphic to w1 (B, b). Given x € p~'(b), an isomor-
phism 1, : Aut(p) — m1(B,b) is obtained, if we assign to a € Aut(p) the
class of the loop pw for a path w from x to a(x).

(4) The space E big simply connected.

Proof. (1) Existence is shown in (3.3.3). Since B is locally path connected, the
total space of each covering has the same property. Let p;: E; — B be simply
connected coverings with base points x; € p;'(b). By (3.5.2), there exist mor-
phisms «: p; — ps and B: p, — pj such that ¢(x;) = x; and B(x3) = x1. By
uniqueness of liftings, «f and Ba are the identity, i.e., @ and B are isomorphisms.
This shows uniqueness.

(2) By (3.1.8), the action of Aut(p) on E is properly discontinuous. Asin (1) one
shows that Aut(p) acts transitively on each fibre of p. The map Aut(p)\E — B,
induced by p, is therefore a homeomorphism. Since £ — Aut(p)\ E is a principal
covering, so is p.

(3) Since E is simply connected, there exists a unique homotopy class of paths
w from x to a(x). Since x and «(x) are contained in the same fibre, pw is a loop.
Therefore t, is well-defined. If we lift a loop u based at b to a path w beginning
in x, then there exists « € Aut(p) such that o(x) = w(1). Hence ty is surjective.
Two paths starting in x have the same end point if and only if their images in B are
homotopic. Hence ¢y is injective. If v is a path from x to «(x) and w a path from
x to B(x), then v * Bw is a path from x to aB(x). Hence t, is a homomorphism.

(4) is shown in (3.3.3). O

(3.6.2) Theorem (Classification III). Suppose that B has a universal covering
p: E — B. Then p is a (B, b)-principal covering. Each connected cover-
ing of B is isomorphic to a covering of the form E/H — B, H C m1(B,b) a
subgroup. This covering has H as a characteristic subgroup. Two such cover-
ings are isomorphic if and only if the corresponding subgroups of mw1(B,b) are
conjugate. O
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Problems

1. The product ]_[To S is not semi-locally simply connected.

2. Is the product of a countably infinite number of the universal covering of S! a covering?
3. Identify in S! the open upper and the open lower hemi-sphere to a point. The resulting
space X has four points. Show 71 (X) = Z. Does X have a universal covering?

4. The quotient map p: R” — R”/Z" is a universal covering. The map ¢: R” — T",
(x;) > (exp2mix;) is auniversal covering of the n-dimensional torus 7" = Slx...x 81!,
Let f: T"™ — T" be a continuous automorphism, and let F: R” — R” be a lifting of fg
along g with F(0) = 0. The assignments x — F(x) + F(y) and x — F(x + y) are liftings
of the same map with the same value for x = 0. Hence F(x + y) = F(x) + F(y). From
this relation one deduces that F is a linear map. Since F(Z") C Z", the map F is given
by a matrix A € GL;(Z). Conversely, each matrix in GL, (Z) gives us an automorphism
of T". The group of continuous automorphisms of 7" is therefore isomorphic to GL,,(Z).
5. Classify the 2-fold coverings of S! v S! and of S v §! v S1. (Note that a subgroup of
index 2 is normal.)

6. The k-fold (k € N) coverings of S v S! correspond to isomorphism classes of 7 =
71(S' Vv S = (u) % (v)-sets of cardinality k. An action of w on {1, ...k} is determined
by the action of u and v, and these actions can be arbitrary permutations of {1,...,k}.

Figure 3.1. The 3-fold regular coverings of S! v SI.

Hence these actions correspond bijectively to the elements of Sx x Sk (Sk the symmetric
group). A bijection @ of {1,...,k} is an isomorphism of the actions corresponding to (u, v)
and (u/,v’) if and only if ™ 'u'a = u, @ 'v’a = v. The isomorphism classes of k-fold
coverings correspond therefore to the orbit set of the action

1

Sk X (Sg x Sk) = Sk x Sk, (a0, u,v) = (ua™ ,owoz_l).

Consider the case k = 3 and S3 = (4,B | A> = 1,B%> = 1, BAB™! = A7}, The
three conjugacy classes are represented by 1, A, B. We can normalize the first component
of each orbit correspondingly. If we fix u, then the centralizer Z(u) of u acts on the second
component. We have Z(1) = S3, Z(B) = {1, B}, and Z(A) = {1, A, A%}. This yields the
following representing pairs for the orbits:

(1,1), (1,A)cn, (1,B),

(A, Den, (A, Ayen, (A, A%)en, (A, B)c,
(B,1), (B.A). (B,B), (B,AB)c.
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The transitive actions (which yield connected coverings) have the addition ¢, the normal
subgroups (which yield regular coverings) have the addition 7.

Draw figures for the connected coverings. For this purpose study the restrictions of the
coverings to the two summands S'; note that under restriction a connected covering may
become disconnected. Over each summand one has a 3-fold covering of S!; there are three
of them.

7. Classify the regular 4-fold coverings of S! v S1.

8. The Klein bottle has three 2-fold connected coverings. One of them is a torus, the other
two are Klein bottles.

9. Let X be path connected andset Y = X x I /X x dI. Show 71 (Y) = Z. Show that Y
has a simply connected universal Z-principal covering. Is Y always locally path connected?
10. Construct a transport space which is not locally path connected.

11. The space R” with two origins is obtained from R” + R” by identifying x # 0 in the
first summand with the same element in the second summand. Let M be the line with two
origins. Construct a universal covering of M and determine w1 (M). What can you say
about 771 of R” with two origins forn > 1?

12. Make the fundamental groupoid I1(B) into a topological groupoid with object space B.
(Hypothesis (3.6.1). Use (14.1.17).)

13. Let X be a compact Hausdorff space and H(X) the group of homeomorphism. Then
H(X) together with the CO-topology is a topological group and H(X)x X — X, (f,x) —
f(x) a continuous group action.

14. The space C(S!, S1) with CO-topology becomes a topological group under pointwise
multiplication of maps.

15. There are two continuous homomorphisms e: C(S!,S1) — S, f — f(1) and
d: C(S',8')Y = Z, f > degree(f). Let MO(S!) be the kernel of (e,d). Let fur-
ther f,,: S — S, z > z". The homomorphism s: S! x Z — C(S!, 1), (a,n) — afy
is continuous. The map

MO(SYYy x (St xZ) — C(SY.8Y),  (fi(a.n) > f-s(a.n)

is an isomorphism of topological groups. The space M °(S!) is isomorphic to the space V
of continuous functions ¢: R — R with ¢(0) = 0 and ¢(x + 27) = ¢(x) or, equivalently,
to the space of continuous functions : S! — R with a(1) = 0. The space V carries the
sup-norm and the induced CO-topology.

16. Let M(S') be the group of homeomorphisms S' — S of degree 1 with CO-topology.
Each A € S! yields a homeomorphism f3 : z — Ax. In this way S! becomes a subgroup
of M(S'). Let M1(S") be the subgroup of homeomorphisms f with f(1) = 1. Then

SUx Mi(SY) = M(SY), (A h)— froh

isahomomorphism. The space M1 (S !) is homeomorphic to the space H of homeomorphism
f:10,1] — [0, 1] with f(0) = 0. The space H is contractible; a contraction is f7(x) =
(1 — 1) f(x) + tx. Therefore the inclusion S — M(S!) is an h-equivalence. The space
H(S') of homeomorphisms of S! is h-equivalent to O(2).



Chapter 4
Elementary Homotopy Theory

Further analysis and applications of the homotopy notion require a certain amount
of formal consideration. We deal with several related topics.

(1) The construction of auxiliary spaces from the basic “homotopy cylinder”
X x I: mapping cylinders, mapping cones, suspensions; and dual construc-
tions based on the “path space” X!. These elementary constructions are
related to the general problem of defining homotopy limits and homotopy
colimits.

(2) Natural group structures on Hom-functors in TOP®. By category theory they
arise from group and cogroup objects in this category. But we mainly work
with the explicit constructions: suspension and loop space.

(3) Exact sequences involving homotopy functors based on “exact sequences”
among pointed spaces (“‘space level”). These so-called cofibre and fibre se-
quences are a fundamental contribution of D. Puppe to homotopy theory
[155]. The exact sequences have a three-periodic structure, and it has by now
become clear that data of this type are an important structure in categories
with (formal) homotopy (triangulated categories).

As an application, we use a theorem about homotopy equivalences of mapping
cylinders to prove a gluing theorem for homotopy equivalences. The reader may
have seen partitions of unity. In homotopy theory they are used to reduce homotopy
colimits to ordinary colimits. Here we treat the simplest case: pushouts.

4.1 The Mapping Cylinder

Let f: X — Y be a map. We construct the mapping cylinder Z = Z(f) of f
via the pushout

id
Y+x 2 xay

Z(f)=XxI+Y/f(x)~ (x,1),
J(io,il ) l(./'J)

J(y) =y, j(x) = (x,0).
X %1 2(f) ) =y, jx)=(x,0)

Here i;(x) = (x,t). Since (ip, {1 ) is a closed embedding, the maps ( j, J ), j and J
are closed embeddings. We also have the projectiong: Z(f) — Y, (x,t) — f(x),
y + y. The relations gj = f and ¢J = id hold. We denote elements in Z( f) by
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their representatives in X x I + Y.

0 1

Y
T f ()

X X 9.

1

The map Jgq is homotopic to the identity relative to Y. The homotopy is the
identity on Y and contracts [ relative 1 to 1.

We thus have a decomposition of f into a closed embedding J and a homotopy
equivalence g. From the pushout property we see:

Continuous maps : Z(f) — B correspond bijectively topairsh: X xI — B
ando: Y — B suchthat h(x,1) = af(x).

In the following we consider Z( f) as a space under X + Y via the embedding
(inclusion) (j, J ). We now study homotopy commutative diagrams

XL>Y

L, ]

X' 4>f Y’
together with homotopies ®: f’a ~ Bf. In the case that the diagram is commu-
tative, the pair («, §) is a morphism from f to f’ in the category of arrows in TOP.
We consider the data («, B, @) as a generalized morphism. These data induce a
map y = Z(a, B, ®): Z(f) — Z(f') defined by

(a(x),25), xe€X,s=1/2,

X =B, yeY, xxs)= Doy 1(x), xe€X,s>1/2.

The diagram

X+Y ——=Z2(f)

J/a-kﬂ lZ(a,ﬂ,fb)

X' +Y' —Z(f")
is commutative. The composition of two such morphisms between mapping
cylinders is homotopic to a morphism of the same type. Suppose we are given
" X" >Y" X - X", .Y — Y”, and ahomotopy ®': f"a’ ~ g’ f.
These data yield a composed homotopy @' ¢ ®: f"o’a >~ B’'Bf defined by
D), oa, t<1/2,

P o D), =
( ) B o®y 1, t=>1/2.

(This is the product of the homotopies @, and f'P;.)
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(4.1.1) Lemma. There exists a homotopy
ZW B, ®)o Z(a,B, D) ~ Z(dat, B'B, D © D)
which is constant on X + Y.

Proof. Both maps coincide on Y and differ on X x I by a parameter transformation
of I. O

We also change o and B by a homotopy. Suppose given homotopies A*: X —
X’and B": Y — Y’andahomotopy I'": f’A" ~ B! . We assume, of course, that
I'* = (I'%)iscontinuous on X x I x I. We getahomotopy Z(A*, B',T"): Z(f) —
Z(f’) which equals A* + B": X +Y — X’ + Y’/ on these subspaces.

We use the fact that A”, B, ® induce a homotopy I'?.

(4.1.2) Lemma. Suppose A", B with A° = a, B® = Band ®: f'A° ~ BO f are
given.Then there exists T'! with T° = ®.

Proof. One applies a retraction X x I x I — X x (3] x I U I x 0) to the map
y: Xx(0I xIUI x0) — Y’ definedby y(x,s,0) = ®(x,s),y(x,0,1) = f'A'(x)
and y(x,1,1) = B' f(x). O

Suppose now that X” = X, Y" =Y, f’ = fandd'a ~ id, '8 =~ id,
fa' ~ B’ f’. We choose homotopies

A da ~id, B':BB~id, @ fa' ~B'f.

As before, we have the composition ¥ = &’ ¢ ®. We use (4.1.2) to find a homotopy
I'" with % = Wand I': fA* ~ B'f. Let I'! be the inverse homotopy of T'!.
LetQ = Z(lx, 1y, T ) o Z(a/, B/, ®'): Z(f') — Z(f); this morphism restricts
oo + B X' +Y - X+7Y.

(4.1.3) Proposition. There exists a homotopy from Q o Z(a, B, ®) to the identity
which equals ((k * A") x k + (k * B') x k) on X + Y ; here k denotes a constant
homotopy.

Proof. By (4.1.1) there exists a homotopy relative to X + Y of the composition in
question to Z(1y, 1y, ') o Z(a'a, B'B, ¥). By (4.1.2) we have a further homo-
topy to Z(1x, 1y, T )o Z(1x, 1y, I'!), which equals A* + B? on X + Y, and then
by (4.1.1) a homotopy to Z(1x, 1y, 'L o T'!), which is constant on X + Y. The
homotopy I'! o ' f ~ £ is homotopic relative to X x 3/ to the constant homo-
topy ks of f. We thus have an induced homotopy relative X + Y to Z(1x, 1y, ky)
and finally a homotopy to the identity (Problems 1 and 2). O

(4.1.4) Theorem. Suppose o« and f are homotopy equivalences. Then the map
Z(a, B, D) is a homotopy equivalence.
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Proof. The morphism € in (4.1.3) has a right homotopy inverse. We can apply
(4.1.1) and (4.1.3) to Q and see that 2 also has a left homotopy inverse. Hence
2 is a homotopy equivalence. From © o Z(«, B, ®) ~ id we now conclude that
Z(a, B, ®) is a homotopy equivalence. O

Problems

1. Suppose ® and V¥ are homotopic relative to X x d/. Then Z(«, 8, ®) and Z(«, B, V) are
homotopic relative to X + Y.

2. In the case that f'a = Bf we have the map Z(«,8): Z(f) — Z(f’) induced by
a X id +B. Let k be the constant homotopy. Then Z(«, 8, k) >~ Z(«, B) relativeto X + Y.
3. Let [®] denote the morphism in IT(X, Y”) represented by ®. We think of («, 8, [®])
as a morphism from « to 8. The composition is defined by (¢, 8/, [®']) o (a, 8, [D]) =
(@’a, B’'B,[®" o ®]). Show that we obtain in this manner a well-defined category. (This
definition works in any 2-category.)

4.2 The Double Mapping Cylinder

Given a pair of maps f: A — B and g: A — C. The double mapping cylinder

Z(f,g)=Z(B <L RN C) is the quotient of B + A x I + C with respect to
the relations f(a) ~ (a,0) and (a, 1) ~ g(a) for each a € A. We can also define
it via a pushout

A+ a2l 51 ¢

l(io,il) l(jOa./.l)

Ax T ——Z(f. g).

The map (o, j1) is a closed embedding. In the case that f = id(A4), we can
identify Z(id(A), g) = Z(g). We can also glue Z( f) and Z(g) along the common
subspace A and obtain essentially Z(f, g) (up to I Ugy I = I). A commutative
diagram

BAALC

bl b

B/ ¢ A/ 5 Cl

induces Z(B,a,y): Z(f.g) = Z(f',g’), the quotient of B + o x id +y. We can
also generalize to an h-commutative diagram as in the previous section.

(4.2.1) Theorem. Suppose B, o, y are h-equivalences. Then Z(B,a,y) is an
h-equivalence.
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In order to use the results about the mapping cylinder, we present Z( f, g),
up to canonical homeomorphism, also as the pushout of j4: A — Z(f) and
jB: A — Z(g). Here the subspace Z( f) corresponds to the image of B + A x
[0,1/2] in Z(f, g) and Z(g) to the image of A x [1/2,1] + C. We view Z(f, g)
as a space under B + A4 + C. If we are given homotopies ®Z: f'a ~ Bf,
®C: g'a ~ yg, we obtain an induced map

W= Z(a B, ®8)Us Z(a, 7. ®C): Z(f.8) > Z(f. &)
which extends 8 4+ « + y.

(4.2.2) Theorem. Let o be an h-equivalence with h-inverse o’ and suppose 8 and y
have left h-inverses B’,y’. Choose homotopies A': a'a ~ id, B': '8 ~ id,
C':y'y ~id. Then there exists 2: Z(f',g") — Z(f, g) and a homotopy from
Q o W to the identity which extends ((k * B") x k + (k * A") x k + (k * C?) x k).

Proof. The hypotheses imply ' f' ~ fo and y'g’ ~ ga. We can apply (4.1.3)
and find left homotopy inverses Q& of Z(a, B, ®8) and Q€ of Z(a, y, ®€). Then
Q = QB Uy Q€ has the desired properties. O

Theorem (4.2.1) is now a consequence of (4.2.2). The reasoning is as for (4.1.4).

In general, the ordinary pushout of a pair of maps f, g does not have good homo-
topy properties. One cannot expect to have a pushout in the homotopy category. A
pushout is a colimit, in the terminology of category theory. In homotopy theory one
replaces colimits by so-called homotopy colimits. We discuss this in the simplest
case of pushouts.

Given a diagram

Xo—25 x4

lff . lu (1)
J

X_%X

andahomotopy h: j_ f_ ~ jy f4. Weobtainaninducedmapg: Z(f—, f+) > X
which is the quotient of (j_,h, j+): X— + Xo x I + X4+ — X. We define:
The diagram (1) together with the homotopy 4 is called a homotopy pushout or
homotopy cocartesian if the map ¢ is a homotopy equivalence. This definition is
in particular important if the diagram is commutative and / the constant homotopy.

Suppose we have inclusions fi: Xo C X4 and ji: X+ C X such that X =
X_ U X,. In the case that the interiors X cover X, the space X is a pushout in the
category TOP. In many cases it is also the homotopy pushout; the next proposition
is implied by (4.2.4) and (4.2.5).

(4.2.3) Proposition. Suppose the covering X+ of X is numerable (defined below).
Then X is the homotopy pushout of f+: Xo C X4.
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For the proof we first compare Z( f_, f) with the subspace N(X_, Xy) =
X_x0UXygx1IUJX4 x1of X xI. We have a canonical bijective map
a: Z(f-, f+) = N(X_, X;). Both spaces have a canonical projection to X
(denoted pz, py), and « is a map over X with respect to these projections.

(4.2.4) Lemma. The map « is an h-equivalence over X and under X 4.

Proof. Let y: I — I be defined by y(¢t) = Ofort < 1/3, y(¢t) = 1fort > 2/3
and y(t) = 3t — 1 for 1/3 <t < 2/3. We define B: N(X_X;) — Z(f-, f+)
as id(Xo) x y on X x I and the identity otherwise. Homotopies o =~ id and
Pa ~ id are induced by a linear homotopy in the 7-coordinate. The reader should
verify that 8 and the homotopies are continuous. O

The covering X4+ of X is numerable if the projection py has a section. A
section ¢ is determined by its second component s: X — [0, 1], and a function of
this type defines a section if and only if X ~ X_ C s71(0), X ~ X3 C s~ (1).

(4.2.5) Lemma. Suppose pn has a section o. Then py is shrinkable.

Proof. A homotopy o o py =~ id over X is given by a linear homotopy in the
I -coordinate. O

(4.2.6) Corollary. Suppose the covering X4 is numerable. Then pz is shrinkable.
O

(4.2.7) Theorem. Let (X, X+) and (Y, Y+) be numerable coverings. Suppose that
F: X — Y is amap with F(X+) C Y1. Assume that the induced partial maps
Fi: X4 - Yrand Fy: Xo — Yo areh-equivalences. Then F is an h-equivalence.

Proof. This is a consequence of (4.2.1) and (4.2.6). O

The double mapping cylinder of the projections X <— X x Y — Y is called the
join X xY of X and Y. Itis the quotient space of X x I x Y under the relations
(x,0,¥) ~ (x,0,y") and (x,1,y) ~ (x', 1, y). Intuitively it says that each point
of X is connected with each point of ¥ by a unit interval. The reader should verify
S™ % S§" = Sm+n+1 Ope can also think of the join as CX x Y Uyxxy X x CY
where CX denotes the cone on X.

4.3 Suspension. Homotopy Groups

We work with pointed spaces. Each object in the homotopy groupoid I1°(X,Y)
for TOP? has an automorphism group. We describe the automorphism group of the
constant map in a different manner.
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Amap K: X x I — Y is a pointed homotopy from the constant map to itself
if and only if it sends the subspace X x 0/ U {x} x I to the base point y of Y. The
quotient space

X =XxI/(XxdlU{x}xI)

is called the suspension of the pointed space (X, x). The base point of the suspen-
sion is the set which we identified to a point.

* 1 . 1
I BN L
—0 0

X

A homotopy K: X x I — Y from the constant map to itself thus corresponds
to a pointed map K : ©X — Y, and homotopies relative to X x 81 correspond to
pointed homotopies X — Y. This leads us to the homotopy set [ X, Y]°. This
set carries a group structure (written additively) which is defined for representing
maps by

1

f+g: (x,0)—~ S(x.20), ifi

g(x,2t —1), 5 =< 1.

(Again we consider the group opposite to the categorically defined group.) The
inverse of [ f] is represented by (x,¢) — f(x, 1 —1t). For this definition we do not
need the categorical considerations, but we have verified the group axioms.

If f: X — Y is a pointed map, then f x id(/) is compatible with passing to
the suspensions and induces Xf: XX — XY, (x,17) = (f(x),t). In this manner
the suspension becomes a functor X : TOP® — TOP. This functor is compatible
with homotopies: a pointed homotopy H; induces a pointed homotopy X (H;).

There exists a canonical homeomorphism 75+ /31%+! = [k /91% A 11 /31!
which is the identity on representing elements in 7%/ = 1% x I’. We have for

each pointed space X canonical homeomorphisms
(X ANTRQIFY AT )OI = X A TR 1%+ sh(skx) =~ sk x.

We define the k-fold suspension by KX = X A (I*¥/3I%). Note that X" X is
canonically homeomorphic to X x 1" /X x 91" U {x} x dI". In the homotopy set
[Z* X, Y] we have k composition laws, depending on which of the /-coordinates
we use:

D=

f(x’tl77tl—172tl’zl+l5)9
g(x’t17'~~7ti—192t[ - lvtl-‘r]’)’

<

(f +i&)x.1) =

IA A

N|—=
<
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We show in a moment that all these group structures coincide and that they are
abelian (n > 2). For the purpose of the proof one verifies directly the commutation
rule (unravel the definitions)

(a+1b)+2(c+1d)=(a+zc¢)+1 (b +24d).

%)

— N

(4.3.1) Proposition. Suppose the set M carries two composition laws +, and
~+, with neutral elements e;. Suppose further that the commutation rule holds.
Then +1 = +, = +, e; = ez = e, and the composition + is associative and
commutative.

Proof. The chain of equalities

a=a-+ze;=(a+1e1)+2(e1 +1€2) = (a+2e1) +1 (e1 +2€2)
=(a+z2e1)+1e1=a+ze;

shows that ey is a right unit for 4+5. In a similar manner one shows that e; is a left
unit and that e, is a left and right unit for 4;. Therefore e; = e; +, €2 = e5. The
equalitiesa +,b = (a+1¢e) +2(e+1b) = (a+2¢) +1 (e +2b) = a +1 b show
+1=4+2,=+4+.Fromb+c=(e+b)+(c+e)=(+c)+(b+e)=c+b
we obtain the commutativity. Finally a + (b +¢) = (@ +¢e) + (b +¢) =
(a+b)+ (e +¢) = (a + b) + c shows associativity. O

The suspension induces a map Zy: [4,Y]° — [ZA4,ZY]° [f] — [Zf], also
called suspension. If A = ¥ X, then X, is a homomorphism, because the addition
in [2X, Y] is transformed by X, into 4.

Suppose X = S = {#£e,} with base point e;. We have a canonical homeo-
morphism

I"/0I" = 2"8% = SO x 1"/SO x 91" Uey x I™
which sends x € I” to (—ey, x).

The classical homotopy groups of a pointed space are important algebraic in-

variants. The n-th homotopy group is

n(X) = mn(X,x) = [I"/31", X]° = [(I", 1™, (X, x)], n > 1I.

These groups are abelian for n > 2. We can use each of the n coordinates to define
the group structure.
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4.4 Loop Space

We now dualize the concepts of the previous section. Let (¥, y) be a pointed space.
The loop space QY of Y is the subspace of the path space Y/ (with compact-open
topology) consisting of the loops in ¥ with base point y, i.e.,

QY ={weY! |w0) =wd) =y}

The constant loop k is the base point. A pointed map f: ¥ — Z induces a pointed
map Qf : QY — QZ, w — f ow. This yields the functor : TOP® — TOP®. It
is compatible with homotopies: A pointed homotopy H; yields a pointed homotopy
QH;. We can also define the loop space as the space of pointed maps F°(1/31,Y).
The quotient map p: I — 1/d1 induces Y?: Y1/ — y ! and ahomeomorphism
FO%(I/01,Y) — QY of the corresponding subspaces.

(4.4.1) Proposition. The product of loops defines a multiplication
m: QY x QY — QY, (u,v) — u *v.

It has the following properties:
(1) m is continuous.
(2) The maps u +— k * u and u — u * k are pointed homotopic to the identity.
(3) m(m x id) and m(id xm) are pointed homotopic.
(4) Themapsu +— uxu~ andu — u~ xu are pointed homotopic to the constant
map.

Proof. (1) By (2.4.3) it suffices to prove continuity of the adjoint map
QY xQY xI =Y, (u,v,t)— (ux*xv)).

This map equals on the closed subspace QY xQY %[0, %] the evaluation (u, v, t) —
u(2t) and is therefore continuous.

) Leth;: I — I,s — (1 —t)min(2s,1) + ¢. Then QY x I — QY,
(u,t) — uh; is a homotopy from u +— u * k to the identity. Continuity is again
proved by passing to the adjoint.

(3) and (4) are proved in a similar manner; universal formulae for associativity
and the inverse do the job. O

The loop product induces the m-sum on [X, QY]°

[f14m gl =[mo(f xg)od]

with the diagonal d = (id,id): X — X x X. The functors ¥ and 2 are adjoint,
see (2.4.10). We compose a map XX — Y with the quotient map X x I — ¥ X.
The adjoint X — Y has an image contained in QY. In this manner we obtain a
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bijection between morphisms X — Y and X — QY in TOP?. Moreover, this
adjunction induces a bijection [ZX, Y]? =~ [X, QY]°, see (2.4.11). It transforms
the p-sum (see the next section) into the m-sum, and it is natural in the variables
X andY.

In [ZX, QY]° we have two composition laws +,, and +,,. They coincide and
are commutative. We prove this in a formal context in the next section.

4.5 Groups and Cogroups

We work in the category TOP. A monoid in h-TOP? is a pointed space M together
with a pointed map (multiplication) m: M x M — M such that x — (x, x) and
x + (x,*) are pointed homotopic to the identity. Spaces with this structure
are called Hopf spaces or H-spaces, in honour of H. Hopf [91]. In [X, M]°
we have the composition law +,,, defined as above for M = QY; the constant
map represents the neutral element; and [—, M]° is a contravariant functor into the
category of monoids. A monoid is a set together with a composition law with neutral
element. An H -space is associative if m(m x id) >~ m(id xm) and commutative
if m ~ mt with the interchange t(x,y) = (y,x). An inverse for an H -space
isamap t: M — M such that m(t x id)d and m(id xt)d are homotopic to the
constant map (d the diagonal). An associative H -space with inverse is a group
object in h-TOP®. By a general principle we have spelled out the definition in
TOP®. The axioms of a group are satisfied up to homotopy. A homomorphism (up
to homotopy) between H -spaces (M, m) and (N,n)isamapA: M — N such that
n(A x A) >~ Am. A subtle point in this context is the problem of “coherence”, e.g.,
can a homotopy-associative H -space be h-equivalent to a strictly associative one
(by a homomorphism up to homotopy)?

The loop space (2(X), m) is a group object in s- TOP.

One can try other algebraic notions “up to homotopy”. Let (M, m) be an as-
sociative H-space and X a space. A left action of M on X in h- TOP? is a map
r: M x X — X suchthat r(m x id) >~ r(id xr) and x — r(*, x) is homotopic to
the identity.

A comonoid in h-TOP? is a pointed space C together with a pointed map
(comultiplication) u: C — C Vv C such that pr; p and pr, p are pointed homotopic
to the identity. In [C, Y]° we have the composition law +,, defined as

[f1+nlgl=1o(f Ve ou

with the codiagonal (also called the folding map) 6 = (id,id): Y vY — Y. The
functor [C, —]° is a covariant functor into the category of monoids. The comultipli-
cation is coassociative up to homotopy if (id(C) v u) o u and (u Vv id(C)) o u are
pointed homotopic; it is cocommutative up to homotopy if © and T are pointed
homotopic, witht: CvVC — C Vv C the interchange map. Let (C, i) and (D, v) be
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monoids in h-TOP?; a cohomomorphism up to homotopy ¢: C — D is a pointed
map such that (¢ Vv ¢)u and ve are pointed homotopic. A coinverse ¢: C — C for
the comonoid C is a map such that §(id Vi) and §(¢ Vv id) u are both pointed ho-
motopic to the constant map. A coassociative comonoid with coinverse in h-TOP?
is called a cogroup in h-TOP®. Let (C, 1) be a coassociative comonoid and Y a
space. A left coaction of C on Y (up to homotopy) isamap p: ¥ — C VY such
that (id Vp)p >~ (u Vv id)p and pry p =~ id.
The suspension XX is such a cogroup. We define the comultiplication

L:EX > SXVEX, pu=i+is

as the sum of the two injections i1,iz: ¥ X — XX v X X. Explicitly, u(x,1) =
(x,2t) in the first summand for ¢t < %, and u(x,t) = (x,2t — 1) in the second
summand for % <t.

1

1 13
5 —
0

The previously defined group structure on [ZX, Y]° is the p-sum.

(4.5.1) Proposition. Let (C, jv) be a comonoid and (M, m) a monoid in h-TOPY.
The composition laws +,, and +p, in [C, M]° coincide and are associative and
commutative.

Proof. We work in h-TOP?, as we should; thus morphisms are pointed homotopy
classes. We have the projections pr: M x M — M and the injections i;: C —
CVvC.Given f: CVC — MxM weset fr; = pr fi;. Thenmf = py f+mp2f
and fu = fiy +, fi>. From these relations we derive the commutation rule

(mfp = (fi1 +u f12) +m (f21 +u f22).
m(fu) = (fi1 +m f21) +u (f12 +m f22).
Now apply (4.3.1). O

Problems

1. Let X be a pointed space and suppose that the Hom-functor [—, X]° takes values in the
category of monoids. Then X carries, up to homotopy, a unique H -space structure m which
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induces the monoid structures on [A, X]° as +,,. There is a similar result for Hom-functors

[C, —]° and comonoid structures on C.
2. Let S(k) = I*/3I%. We have canonical homeomorphisms

QK () = FOS(k).Y) = F(IX,3I%), (Y, %)) and QFQ/(Y) = QKT/ ().

3. The space F((1,0), (Y, *)) C Y7 is pointed contractible.

4. Let Fo(1,X) = {(u,v) € X! x X7 | u(1) = v(0)}. The map puz: F>(I,X) —
F(I,X), (u,v) — u * v is continuous.

5. Let F3(I, X) = {(u, v, w) | u(1) = v(0), v(1) = w(0)}. The two maps

w3, puy: F3(1,X) > F(I,X), (u,v,w) > (u*v)*w,ux (v*w)

are homotopic over X x X where the projection onto X x X is given by (u,v,w) >

(u(0), w(1)).
6. Verify the homeomorphism FO(1/31,Y) = QY.

4.6 The Cofibre Sequence
A pointed map f: (X, *) — (¥, *) induces a pointed set map
[T VBl = [X,Bl°,  [o] = [af].

The kernel of f* consists of the classes [«] such that «f is pointed null homotopic.
We work in the category TOP? and often omit “pointed” in the sequel. A homotopy
set [V, B]® is pointed by the constant map. A base point is often denoted by .

A sequence A Ny L C of pointed set maps is exact if a(4) = B71(*). A

sequence U i> V %5 W in TOP? is called h-coexact if for each B the sequence

[0, Bl <~ (v, B]° <5 [w, B]®

is exact. If we apply this to id(W), we see that g f is null homotopic.

A pointed homotopy X x I — B sends * x I to the base point. Therefore
we use the cylinder XI = X x I/ * xI in TOP? together with the embeddings
ir: X - XI, x — (x,t) and the projection p: XI — X, (x,t) — x, and we
consider morphisms X/ — Y in TOP? as homotopies in TOP?.

The (pointed) cone C X over X is now definedas CX = X x I /X x0U % x [
with base point the identified set. The inclusion i 1X =i X > CX,x— (x,1)
is an embedding. The maps #: CX — B correspond to the homotopies of the
constant map to /iy (by composition with the projection X/ — CX).



4.6. The Cofibre Sequence 93
The mapping cone of f is defined as C(f) = CX vY/(x,1) ~ f(x), or,

more formally, via a pushout

X ——mY

i ‘/f]

cx —L ).

T f(x)

Ccx Y

We denote the points of C(f') by their representing elements in X x I + Y. The
inclusion Y C CX+Y inducesanembedding f1: Y — C(f),andCX C CX+Y
induces j: CX — C(f). The pushout property says: The pairs «: ¥ — B,
h: CX — B with af = hiy, i.e., the pairs of « and null homotopies of «f,
correspond to maps B: C(f) — B with 8j = h. If [«] is contained in the kernel
of f*, then there exists 8: C(f) — B with B8f; = «, i.e., [«] is contained in the
image of f|*. Moreover, f; f: X — C(f')isnullhomotopic with null homotopy ;.

This shows that the sequence X i) Y L> C(f) is h-coexact.

We iterate the passage from f to f1 and obtain the h-coexact sequence

f Vil

x Loy o)L

()L Lt

The further investigations replace the iterated mapping cones with homotopy equiv-
alent spaces which are more appealing. This uses the suspension. It will be impor-
tant that the suspension of a space arises in several ways as a quotient space; certain
canonical bijections have to be proved to be homeomorphisms.

In the next diagram the left squares are pushout squares and p, p(f), q(f) are
quotient maps. The right vertical maps are homeomorphisms, see Problem 1. Now
¥ X = CX/i1 X, by the identity on representatives. Therefore we view p, p(f),
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and ¢(f) as morphisms to XX .

x—" sex—2 scx/inx  =3x
f j
y —L e —Loconpy =sx
i 12

q(f)

cy — s c(h)

C(fuy/hCcYy =3xX

(4.6.1) Note. The quotient map q(f) is a homotopy equivalence.

Proof. We define a homotopy %, of the identity of C( f1) which contracts CY along
the cone lines to the cone point and drags C X correspondingly

(X,(I—I-I)S), (1+I)S§ 1,

M) (2= (s, (051,

ht(yvs) = (yv(l _Z)S)‘

In order to verify continuity, one checks that the definition is compatible with the
equivalence relation needed to define C( f1). The end & of the homotopy has the
form s(f)oq(f) withs(f): TX — C(f1), (x,5) — hi(x,s). The composition
q(f)os(f): (x,s) — (x,min(2s, 1)) is also homotopic to the identity, as we
know from the discussion of the suspension. This shows that s( f) is h-inverse to

q(f). O

We treat the next step in the same manner:

c(f) —Loch) —Ls e

w Jq(f) P Jq(fl)

-——— =
¥X S0 XY

with an h-equivalence ¢(f1). Lett: X — XX, (x,t) — (x, 1 —t) be the inverse
of the cogroup ¥ X. The last diagram is not commutative if we add the morphism
3 f toit. Rather the following holds:

(4.6.2) Note. X(f)oroq(f) = p(fr).

Proof. By (4.6.1) it suffices to study the composition with s( f'). We know already
that p(f1)s(f): (x,s) — (f(x), min(1,2(1—s))ishomotopicto X fot: (x,s) —
(f(x),1—y9). O
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An h-coexact sequence remains h-coexact if we replace some of its spaces by
h-equivalent ones. Since the homeomorphism ¢ does not destroy exactness of a
sequence, we obtain from the preceding discussion that the sequence

>
x2oy e sx sy

is h-coexact.

We can continue this coexact sequence if we apply the procedure above to X f
instead of f. The nextstepisthen (Xf);: £Y — C(Zf). But it turns out that we
can also use the suspension of the original map X ( f1): XY — XC(f) in order to
continue with an h-coexact sequence. This is due to the next lemma.

(4.6.3) Lemma. There exists a homeomorphism t1: C(2f) — XC(f) which
satisfies t1 o ()1 = Z(f1).

Proof. CXX and XCX are both quotients of X x [ x I. Interchange of /-
coordinates induces a homeomorphism 7: CXX — XCX which satisfies t o
iZX = %(iX). We insert this into the pushout diagrams for C(Xf) and ZC(f)
and obtain an induced ;. We use that a pushout in TOP® becomes a pushout again
if we apply X (use 2-X-adjunction). O

We now continue in this manner and obtain altogether an infinite h-coexact
sequence.

(4.6.4) Theorem. The sequence

by s by »2
% y c(f) p(f) Sy S Sy /1 SC(f) p(f)EZX oo

is h-coexact. We call it the Puppe-sequence or the cofibre sequence of f ([155]).
The functor [—, B]® applied to the Puppe-sequence yields an exact sequence of
pointed sets, it consists from the fourth place onwards of groups and homomor-
phisms and from the seventh place onwards of abelian groups. See [49] for an
introduction to some other aspects of the cofibre sequence. O

The derivation of the cofibre sequence uses only formal properties of the ho-
motopy notion. There exist several generalizations in an axiomatic context; for an
introduction see [69], [101], [18].

Let f: X — Y be a pointed map. Define u: C(f) — XX v C(f) by
w(x,t) = ((x,2t),*) for 2t < 1, u(x,t) = (*,(x,2t — 1)) for 2¢ > 1, and
w(y) = y. This map is called the h-coaction of the h-cogroup XX on C(f). This
terminology is justified by the next proposition.
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1
2

C(f) XX v C(f)

(4.6.5) Proposition. The map p induces a left action

[EX. B x[C(f). B’ = [EX v C(f). B 25 [C(/). B’ (@) > OB.

This action satisfies oy © p(f)*a2 = p(f)*(a12). Moreover, fi*(B1) = f1*(B2)
if and only if there exists o such that o © B1 = Bo. Thus f|* induces an injective
map of the orbits of the action.

Proof. That pu* satisfies the axioms of a group action is proved as for the group
axioms involving ¥ X. Also the property involving p(f) is proved in the same
manner. It remains to verify the last statement.

Assume that f, g: C(f) — B are maps which become homotopic when re-
stricted to Y. Consider the subspaces Cyp = {(x,?) | 2t < 1} C C(f) and
Cy ={(x,t) | 2t = 1} UY C C(f). These inclusions are cofibrations (see the
next chapter). Therefore we can change f and g within their homotopy classes
such that f|Cy is constant and g|C; = f|C;. Then g is constant on Cy N Cj.
Therefore there exists h: XX v C(f) — Y such that hu = g and h|C(f) = f.
Letk = h|XX. Then [k] © [f] = [g]. Conversely, i o {(a, b) and b have the same
restriction to Y. O

Problems

1. Let the left square in the next diagram be a pushout with an embedding j and hence an
embedding J. Then F induces a homeomorphism F of the quotient spaces.

A4>
|r
B*>

2. The map p(f)*: [EX, B]° — [C(f), B]? induces an injective map of the left (or right)
cosets of [ X, B]® modulo the subgroup Im = ( f)*.
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4.7 The Fibre Sequence

The investigations in this section are dual to those of the preceding section. For
the purpose of this section we describe homotopies B x I — Y in a dual (adjoint)
form B — Y! as maps into function spaces. A pointed map f: (X, *) — (Y, %)
induces a pointed set map

fvi [B.X]° = [B.Y]°, [a] [fa].
A sequence U i) v —£5 W in TOP® is called h-exact, if for each B the sequence

[B, U]O L[B,V]()& [B, W]O

is exact. If we apply this to id(U), we see that g f is null homotopic.

We need the dual form of the cone. Let F(Y) = {w € Y/ | w(0) = x} be the
space of paths which start in the base point of Y, with the constant path k. (z) = *
as base point, and evaluation e': FY — Y, w + w(1). Via adjunction we have
F°(B,FY) = F°(CB,Y). The pointed maps h: B — FY correspond to pointed
homotopies from the constant map to e'h, if we pass from % to the adjoint map
B x I — Y. We define F(f) via a pullback

F q
1];)14>Ffl F(f)={(x,w)e X x FY | f(x) = w(l)}
f

flx,w)=x, q(x,w)=w.
X —Y

The maps B: B — F(f) correspond to pairs @ = f!B8: B — X together with

1
the null homotopies g8: B — FY of fa. This shows that F(f) L> X i> Yis
h-exact.
We now iterate the passage from f to f!

LRy L Ry L R L x Loy

and show that F(f') and F( f2) can be replaced, up to h-equivalence, by QY and
2 X. We begin with the remark that

D7) = {0nw) [w(0) = *, w(l) = f(x), x = %}

can be identified with QY, via w — (x,w). Leti(f): QY — F(f) be the
associated inclusion of this fibre of #!. The space (by its pullback definition)

F(fY = {(x,w,v) [w(0) = *, w(l) = f(x), x = v(1), v(0) = *}
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can be replaced by the homeomorphic space
F(fY ={(w,v) € FY x FX |w(l) = fv(1)}.
Then f2 becomes f2: F(f') — F(f), (w,v) — (v(1),w). The map
J():QY = F(fH. we (w.ky)
satisfies 20 j(f) =i(f).
(4.7.1) Note. The injection j( f) is a homotopy equivalence.

Proof. We construct a homotopy /; of the identity of F( f!) which shrinks the path
v to its beginning point and drags behind the path w correspondingly. We write
he(w,v) = (h}(w,v), h?(w,v)) € FY x FX and define

hl(s) = w(s(l+1)), s(l+1) <1,
U fv@=+0s), s+ =1,

The end 4 of the homotopy has the form j(f) o r(f) with
r(f): F(fYH = QY, (w,v)~ wx*(fv)".

The relation (7 (f) o j(f))(w) = w =k shows thatalso r( f) o j(f) is homotopic
to the identity. The continuity of /; is proved by passing to the adjoint maps. O

h2(s) = v(s(1 —1)).

We treat the next step in a similar manner.

F(A) -2 F(Y

f(f'ﬁ %1) Tj(f) i(fH) = (ks v).

QXTJ,)QY

The upper triangle is commutative, and (4.7.2) applies to the lower one. The map
i(f1) is the embedding of the fibre over the base point. Let (: QY — QY
w — w~ be the inverse.

(4.7.2) Note. j(f)otoQf ~i(fh).

Proof. We compose both sides with the h-equivalence r(f) from the proof of
(4.7.1). Thenr(f)oi(f')equalsv > k4*(fv)~, and this is obviously homotopic
totoQf: v (fv)~. O

As a consequence of the preceding discussion we see that the sequence

Q i 1
ox Loy ‘e Lax Loy

is h-exact.



4.7. The Fibre Sequence 99

(4.7.3) Lemma. There exists a homeomorphism t': F(Qf) — QF(f) such that
Q@' =Q(fHorl.

Proof. From the definitions and standard properties of mapping spaces we have
QF(f) C QX xQFY and FQ(f) C QX x FQY. We use the exponential law
for mapping spaces and consider QFY and FQY as subspaces of Y%/, In the
first case we have to use all maps which send 0/ x I U I x 0 to the base point, in the
second case all maps which send 7 x d/ U 0 x [ to the base point. Interchanging
the I-coordinates yields a homeomorphism and it induces 1. O

We now continue as in the previous section.

(4.7.4) Theorem. The sequence

Q2 Qi Qfl Q j 1
2 ey ok P ax Loy ki L x Loy

is h-exact. We call it the fibre sequence of f. When we apply the functor [B, —°
to the fibre sequence we obtain an exact sequence of pointed sets which consists
from the fourth place onwards of groups and homomorphisms and from the seventh
place onwards of abelian groups ([147]). O

Problems

1. Work out the dual of (4.6.5).
2. Describe what happens to the fibre sequence under adjunction. A map

a:T— F(f)={x,w)e X xFY | f(x) =w(l)}

has two components b: T — X and f: T — FY. Under adjunction,  corresponds to
amap B: CT — Y from the cone over 7. The condition f(x) = w(l) is equivalent to
the commutativity fb = Bij. This transition is also compatible with pointed homotopies,
and therefore we obtain a bijection [a] € [T, F(f)]° = [i1, f]° > [B,b]. This bijection
transforms f,! into the restriction [B, 5] € [i1, f]° — [T, X]° 3 [b]. In the next step we
have

T,QY]° ——[=T,Y]° ]
li(,f')* l I
[T, F()]° —— [i1. f1°, [y o p.cl.

The image of y is obtained in the following manner: With the quotient map p: CT — XT
we have B = y o p, and b is the constant map c.
3. There exist several relations between fibre and cofibre sequences.

The adjunction (X, Q) yields in TOP® the maps n: X — QXX (unit of the adjunction)
ande: X QX — X (counit of the adjunction). These are natural in the variable X . For each
f: X — Y we also have natural maps

n: F(f) = QC(f)., e ZF(f)— C(f)
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defined by

[x,21], t<1/2,

w2-=2t), t>1/2,

and ¢ adjoint to 7. Verify the following assertions from the definitions.
(1) The next diagram is homotopy commutative

nx, w)(t) = {

; 1
Qy i(f) F(f) S X

lt ln J(ﬂ
Qf Q :
ay 2% ac(n) 2D a5y,

(2)Leti: X — Z(f) be the inclusion and r: Z(f) — Y the retraction. A path in
Z(f) that starts in * and ends in X X 0 yields under the projection to C(f) a loop. This
givesamap i: F(i) = QC(f). The commutativity 7 o F(r) >~ ¢ o 7 holds.

(3) The next diagram is homotopy commutative

Ff) sy

QQ(fl)O?]l lton
QX f
QIX — QYY.



Chapter 5
Cofibrations and Fibrations

This chapter is also devoted to mostly formal homotopy theory. In it we study the
homotopy extension and lifting property.

An extension of f: A — Y alongi: A — X isamap F: X — Y such that
Fi = f.Ifi: A C X isaninclusion, then this is an extension in the ordinary sense.
Many topological problems can be given the form of an extension problem. It is
important to find conditions on i under which the extendibility of f only depends
on the homotopy class of f. If this is the case, then f is called a cofibration.

The dual of the extension problem is the lifting problem. Suppose given maps
p: E — Band f: X — B. Alifting of f along pisamap F: X — E such
that pF = f. We ask for conditions on p such that the existence of a lifting only
depends on the homotopy class of f. If this is the case, then f is called a fibration.

/X 7(E
zli/ Tl /F/‘/ lp

Each map is the composition of a cofibration and a homotopy equivalence and
(dually) the composition of a homotopy equivalence and a fibration. The notions are
then used to define homotopy fibres (“homotopy kernels”) and homotopy cofibres
(“homotopy cokernels”). Axiomatizations of certain parts of homotopy theory
(“model categories™) are based on these notions. The notions also have many
practical applications, e.g., to showing that maps are homotopy equivalences with
additional properties like fibrewise homotopy equivalences.

Another simple typical example: A base point x € X is only good for homo-
topy theory if the inclusion {x} C X is a cofibration (or the homotopy invariant
weakening, a so-called h-cofibration). This is then used to study the interrelation
between pointed and unpointed homotopy constructions, like pointed and unpointed
suspensions.

5.1 The Homotopy Extension Property

A mapi: A— X has the homotopy extension property (HEP) for the space Y if
for each homotopy 2: AxI — Y andeachmap f: X — Y with fi(a) = h(a,0)
there exists a homotopy H: X x I — Y with H(x,0) = f(x) and H(i(a),t) =
h(a,t). We call H an extension of h with initial condition f. Themapi: A - X
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is a cofibration if it has the HEP for all spaces. The data of the HEP are displayed
in the next diagram. We set itX: X - X x1I,x~ (x,t)and e®(w) = w(0).

A h v / \\
b ’0
il Ii 4 leo A
7 f ixid
AxT

For a cofibration i : A — X, the extendibility of f only depends on its homotopy
class.

From this definition one cannot prove directly that a map is a cofibration, but
it suffices to test the HEP for a universal space Y, the mapping cylinder Z (i) of i.
Recall that Z(i) is defined by a pushout

A——x

lié‘ lb
Ax T —573).

Pairs of maps f: X — Y and h: A x I — Y with hi = fi then correspond
to maps 0: Z(i) — Y with ob = f and ok = h. We apply this to the pair
'3(: X > XxTITandi xid: AxI — X x [ andobtains: Z(i) - X x I such
that sb = ig( and sk =i xid.

Now suppose that i is a cofibration. We use the HEP for the space Z (i), the
initial condition » and the homotopy k. The HEP then provides us with a map
r: X x I — Z(i) such that il = b and r(i x id) = k. We conclude from
rsh = rig( = b, rsk = r(i xid) = k and the pushout property that rs = id(Z (7)),
i.e., s is an embedding and r a retraction. Let r be a retraction of s. Given f and
h, find o as above and set H = or. Then H extends & with initial condition f.
Altogether we have shown:

(5.1.1) Proposition. The following statements about i : A — X are equivalent:
(1) i is a cofibration.
(2) i has the HEP for the mapping cylinder Z (i).
(3) s: Z(i) > X x I has a retraction. O

A cofibration i : A — X is an embedding; and i (A) is closed in X, if X is a
Hausdorff space (Problem 1). Therefore we restrict attention to closed cofibrations
whenever this simplifies the exposition. A pointed space (X, x) is called well-
pointed and the base point nondegenerate if {x} C X is a closed cofibration.
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(5.1.2) Proposition. Ifi: A C X is a cofibration, then there exists a retraction
r: X xI - Xx0UAxI. If Ais closed in X and if there exists a retraction r,
then i is a cofibration.

Proof. LetY = X x0U A x I, f(x) = (x,0), and h(a,t) = (a,t). Apply the
HEP to obtain a retraction r = H.

If Aisclosedin X, theng: X XOUAXI — Y,g(x,0) = f(x),(a,t) = h(a,t)
is continuous. A suitable extension H is given by gr. O

(5.1.3) Example. Letr: X x I — X x0U A x [ be aretraction. Set r(x,t) =
(ri(x,1),r2(x,1)). Then

H: XxIxI—=XxI, (x,t,5) (ri(x,t(1 —=25)),st + (1 —=5)r2(x,1))

is a homotopy relative to X x 0 U A x I of r to the identity, i.e., a deformation
retraction. O

(5.1.4) Example. The inclusions S”~! C D" and /" C I" are cofibrations. A
retraction r: D" — S™~!1 x I U D" x 0 was constructed in (2.3.5). <

It is an interesting fact that one need not assume A to be closed. Strgm [180,
Theorem 2] proved that an inclusion A C X is a cofibration if and only if the
subspace X x 0U A x [ is aretractof X x .

If we multiply aretraction by id(Y') we obtain again aretraction. Hence AxY —
X x Y is a(closed) cofibration for each Y, if i : A — X is a (closed) cofibration.
Since we have proved (5.1.2) only for closed cofibrations, we mention another
special case, to be used in a moment. Let Y be locally compactandi: A — X a
cofibration. Theni xid: A xY — X x Y is a cofibration. For a proof use the fact
that via adjunction and the exponential law for mapping spaces the HEP of i x id
for Z corresponds to the HEP of i for ZY.

(5.1.5) Proposition. Let A C X and assume that A x I C X x I has the HEP
forY. Givenmaps o: AxI x1 —-Y, H: XxI—Y, f¢: XxI —Y such
that

¢(a,s.0) = H(a,s), [f°(x.0)=H(x.e), [*(a.t)=¢(acr)
e€{0,1},ae A x € X,s,t € I. Then there exists : X x I x I — Y such that
®(a,s,t) = p(a,s,t), ®(x,s,0)= H(x,s), D(x,et)= f%(x,1).

Proof. H and f°¢ together yield amap a: X x (I x0U dl x I) — Y defined
by a(x,s,0) = H(x,s) and a(x,¢&,t) = f¥(x,t). By our assumptions, & and ¢
coincideon A x (I x0U I x1I). Letk: (I x 1,1 x0Udl xI)— (I xI,Ix0)
be a homeomorphism of pairs. Since A x I — X x [ has the HEP for Y, there
exists W: X x I x I — Y which extends ¢ o (1 x k™!) and o o (1 x k~1). The
map & = W o (1 x k) solves the extension problem. O
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(5.1.6) Proposition. Leti: A C X be a cofibration. Then X x 0l UAXT C X x 1
is a cofibration.

Proof. Givenh: (AxIUX x0dl)xI — Y andaninitial condition H : X xI — Y,
wesetp = h|Ax I x I and f¢(x,t) = h(x,e,t). Then we apply (5.1.5). O

For A = @ we obtain from (5.1.5) that X x 0/ C X x [ is a cofibration, in
particular 0/ C I and {0} C [ are cofibrations. Induction over n shows again that
aI™ C I™ is a cofibration.

We list some special cases of (5.1.5) for a cofibration A C X.

(5.1.7) Corollary. (1) Let ®: X x I — Y be a homotopy. Suppose ¢ = O|A x I
is homotopic rel A x 01 to . Then ® is homotopicrel X x dl toW: X x I — Y
such that V|A x I = .
(2) Let ® solve the extension problem for (@, f) and V the extension problem
Sfor (Y, g). Suppose | ~ grel Aand ¢ >~ rel A x dl. Then ®; ~ WV, rel A.
(3) Let ©,¥: X x I — Y solve the extension problem for (h, f). Then there
exists a homotopy I': & ~ Wrel X xO0U A x 1. O

(5.1.8) Proposition. Let a pushout diagram in TOP be given.

AL>B

b, b

X—Y

If j has the HEP for Z, then J has the HEP for Z. If j is a cofibration, then J is
a cofibration.

Proof. Suppose h: B x I — Z and ¢: Y — Z are given such that £(b,0) =
fJ(b) for b € B. We use the fact that the product with I of a pushout is again a
pushout. Since j is a cofibration, there exists K;: X — Z such that Ky = ¢f
and K;j = h;f. By the pushout property, there exists H,: ¥ — Z such that
H,F = K, and H;J = h;. The uniqueness property shows Hy = ¢, since both
maps have the same composition with Fj and Jf. O

We call J the cofibration induced from j via cobase change along f .

Example. If A C X is acofibration, then {4} C X /A is acofibration. S"~1 c D"
is a cofibration, hence {S"~!} C D"/S"! is a cofibration. The space D"/S"~!
is homeomorphic to S”; therefore (S”, *) is well-pointed. &

Example. If (X;) is a family of well-pointed spaces, then the wedge \/ 5 Xj s
well-pointed. &
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Our next result, the homotopy theorem for cofibration says, among other things,
that homotopic maps induce h-equivalent cofibrations from a given cofibration under
a cobase change.

Let j: A — X be a cofibration and ¢;: f ~ g: A — B a homotopy. We
consider two pushout diagrams.

f g
B

A B A—— B

lj l// lj ljg
F G

X—Yf X — Y

Since j is a cofibration, there exists a homotopy ®;: X — Y with initial condition
@y = F and ®,j = jro;. The pushout property of the Y,-diagram provides us
with a unique map k = K, such that«j, = jr and kG = ®. (We use the notation
ky although the map depends on ®;.) Thus k, is a morphism of cofibrations
K: jg — jr between objects in TOPB. Moreover kG ~ F. We now verify that
the homotopy class of « is independent of some of the choices involved. Let v
be another homotopy from f to g which is homotopic to ¢, relative to A x d1.
Let ¥;: X — Yy be an extension of jsv, with initial condition Wy = F. Let
y: Ax I x I — B beahomotopy rel A x d/ from ¢ to . These data give us on
X x0xITUX xI x0dl amap I into Yy such that

I'(x,0,t) = F(x), TI'(x,s0) =®(x,s), I(x,s,1)=¥(x,s).

By (5.1.5) there exists an extension, still denoted I', to X x I x I such that jry =
I'(j xid xid). We multiply the Y, diagram by / and obtain again a pushout. It
provides us with a unique homotopy K : Yg x I — Yy suchthat K o (G xid) = I'y
and K o (jg xid) = jroprwhere I'1: X x I — Yz, (x,t) = I'(x,1,7). By
construction, K is ahomotopy under B from k, to a corresponding map «, obtained
from ¥, and ¥;. We thus have shown that the homotopy class [¢]® under B of k
only depends on the morphism [¢] from f to g in the groupoid I1(A, B). Let us
write [k] = Bl¢].

We verify that § is a functor B([¥] ® [¢]) = Blplo Bl¥]. Letyy: g ~h: A —
B. Choose a homotopy W;: X — Y, with ¥9 = G and ¥;j = jzy;. Then
ky: Yy — Y, is determined by kv j, = jg and ky H = ;. (Here (H, jp) are
the pushout data for (j, ).) Since «,Wo = k,G = P, we can form the product
homotopy & * k, W. It has the initial condition F* and satisfies (® * «, W) (j xid) =
Jro * koje¥ = jr(@ * ). Hence kpxy, constructed with this homotopy, is
determined by Ky H = koW1 = kpky H and kpwy jr = Jr = Ko jg = KoKy Jh-
Therefore « Ky represents B([V] ® [¢]).

Let h-COF2 denote the full subcategory of h-TOP? with objects the cofibrations
under B. Then we have shown above:
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(5.1.9) Theorem. Let j: A — X be a cofibration. We assign to the object
f: A — B inII(A, B) the induced cofibration jr: B — Yy and to the mor-
phism [p]: f — g in TI(A, B) the morphism [ky]: jo — jr. These assignments
vield a contravariant functor B;: II(A, B) — h-COF2. O

Since T1(A, B) is a groupoid, [k,] is always an isomorphism in h-TOPZ. We
refer to this fact as the homotopy theorem for cofibrations.

(5.1.10) Proposition. Inthe pushout (5.1.8) let j be a cofibration and f a homotopy
equivalence. Then F is a homotopy equivalence.

Proof. With an h-inverse g: B — A of f we form a pushout

B—2-4

L, L

Y —Z7.

Since gf ~ id, there exists, by (5.1.9), an h-equivalence k: Z — X under A
such that kGF =~ id. Hence F has a left h-inverse and G a right h-inverse. Now
interchange the roles of F' and G. O

Problems

1. A cofibration is an embedding. For the proof use thati;: A — Z(i),a — (a, 1) is an
embedding. From i1 = rsi1 = ri 1X i then conclude that i is an embedding.

Consider a cofibration as an inclusioni : A C X. The image of s: Z(i) — X x I is the
subset X x 0 U A x I. Since s is an embedding, this subset equals the mapping cylinder,
i.e., one can define a continuous map X x 0 U A x [ by specifying its restrictions to X x 0
and A x I. (This is always so if A is closed in X, and is a special property of i : A C X if i
is a cofibration.)

Let X be a Hausdorff space. Then a cofibrationi: A — X is a closed embedding. Let
r: X xI — X x0U A x I be aretraction. Then x € A is equivalent to r(x, 1) = (x, 1).
Hence A is the coincidence set of the maps X — X x I, x — (x,1), x — r(x,1) into a
Hausdorff space and therefore closed.

2. Ifi: K - L, j: L — M have the HEP for Y, then ji has the HEP for Y. A home-
omorphism is a cofibration. ¥ C X is a cofibration. The sum IIi;: II A; — IIX; of
cofibrations i; : A; — X is a cofibration.

3. Let p: P — Q be an h-equivalence and i : A C B a cofibration. Then f: A — P has
an extension to B if and only if pf has an extension to B. Suppose fo, f1: B — P agree
on A. If pfo and pf; are homotopic rel 4 so are fo, f1.

4. Compression. Let A C X be a cofibration and f: (X, A) — (Y, B) a map which is
homotopic as a map of pairs to k: (X, A) — (B, B). Then f is homotopic relative to A to
amap g such that g(X) C B.

5. Let A C X be a cofibration and A contractible. Then the quotient map X — X /A is a
homotopy equivalence.
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6. The space C’'X = X x I /X x 1 is called the unpointed cone on X. We have the closed
inclusions j: X — C’X, x — (x,0)and b: {x} — C'X, * — {X x 1}. Both maps are
cofibrations.

7. Let f: A C X be an inclusion. We have a pushout diagram

A—L s cra

lf , I

X —XUC'A.

Since j is a cofibration, so is J. If f is a cofibration, then F is a cofibration. There exists
a canonical homeomorphism X U C’A/C’A =~ X/A; it is induced by J. Since C’A4 is
contractible, we obtain a homotopy equivalence X UC’A — X UC’A/C’A = X/A.

8. The unpointed suspension ¥’ X of a space X is obtained from X x [ if we identify each
of the sets X x 0 and X x 1 to a point. If * is a basepoint of X, we have the embedding
jil = XX, t— (%,1). If {x} C X is a closed cofibration, then j is a closed (induced)
cofibration. The quotient map X’X — XX is a homotopy equivalence.

5.2 Transport
Leti: K — A be acofibration and ¢: K x I — X a homotopy. We define a map

(p#: [(A’l)’ (Xv @0)]K g [(A9l)9 (X’ (pl)]K,

called transport along ¢, as follows: Let f: A — X with fi = ¢( be given.
Choose a homotopy ®;: A — X with &y = f and ;i = ¢,. We define
©*[ f] = [®1]. Then (5.1.5) shows that ¢* is well defined and only depends on the
homotopy class of ¢ rel K x d1, i.e., on the morphism [¢p] € I1(K, X). From the
construction we see (¢ * ¥)* = y*¢*. Altogether we obtain:

(5.2.1) Proposition. Let i: K — A be a cofibration. The assignments ¢ +—>
[i, 0olX and [p] — ¢* yield a transport functor from TI(K, X) to sets. Since
II(K, X) is a groupoid, ¢* is always bijective. O

The transport functor measures the difference between “homotopic” in TOPX
and in TOP. The following is a direct consequence of the definitions.

(5.2.2) Proposition. Leti: K — A be a cofibration. Let f: (A,i) — (X, g) and
[ (A,i) = (X, g') be morphisms in TOPX. Then [f] = [f’], if and only if there
exists [¢] € TI(K, X) from (X, g) to (X, g") with [ f']K = ¢*[ f1XK. O

(5.2.3) Proposition. Let i: K — A be a cofibration, g: K — X a map, and
V: X x I — Y a homotopy. Then (¥ o (g x id))* o Yosx = V14, if we set

Vil f1=[Vi f]
Proof. Use that ¥, f is an extension of ;g and apply the definition. O
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(5.2.4) Proposition. Let f: X — Y be an ordinary homotopy equivalence and
i: K — A a cofibration. Then fi: [(A.i),(X.2)]X — [(4.i), (Y, fg)]X
bijective.

Proof. Let g be h-inverse to f and choose ¢: id ~ g f. Consider

i 0K~ [ oK s g oK L G el

Since g« fx = (gf)+ = [p(v xid)]* id«, we conclude from (5.2.1) and (5.2.3) that
g+ [+ is bijective, hence g is surjective. The bijectivity of fig. shows that g, is
also injective. Therefore g. is bijective and hence f is bijective too. O

(5.2.5) Proposition. Leti: K — X and j: K — Y be cofibrations and f: X —
Y an h-equivalence such that fi = j. Then f is an h-equivalence under K.

Proof. By (5.2.4), we have a bijective map
S (V) (XD = (). (Y )IE.

Hence there exists [g] with fi[g]¥X = [f¢]X = [id]X. Since f is an h-equivalence,
so is g. Since also g is bijective, g has a homotopy right inverse under K. Hence
g and f are h-equivalences under K. O

(5.2.6) Proposition. Leti: A — X be a cofibration and an h-equivalence. Then i
is a deformation retract.

Proof. The map i is a morphism from id(A) to i. By (5.2.5), i is an h-equivalence
under A. This means: There exists a homotopy X x I — X rel A from the identity
toamapr: X — A suchthat ri = id(A), and this is what was claimed. O

(5.2.7) Proposition. Given a commutative diagram

Aty x
I L
Ayt

with a cofibration i and h-equivalences &€ and §'. Givenv: A — X and ¢: §v >~ u.
Then there exists v': A — X' and ¢': £V ~ v such that v'i = fv and
Qi = gor.

Proof. We have bijective maps (note £’ fv = gév >~ gu = u'i)

(g9)" 0 4t [(A".D). (X", f)l — [(A"0). (Y € fo)l* — [(A. ). (Y . u'D)]

Let v': A" — X’ be chosen such that (g@)*£.[v']4 = [u’]4. This means: v'i =
fv; and v’ has a transport along g¢ to a map which is homotopic under A4 to u’.



5.2. Transport 109

This yields a homotopy ¢”: £’v’ ~ u’ such that ¢” (i (a),t) = g¢(a, min(2t, 1)).
The homotopy ¢ * k: (a,t) — ¢(a, min(2¢, 1)) is homotopic rel A x 01 to ¢. We
now use (5.1.6) in order to change this ¢” into another homotopy ¢’ with the desired
properties. O

If we apply (5.2.7) in the case that u and u’ are the identity we obtain the next
result (in different notation). It generalizes (5.2.5).

(5.2.8) Proposition. Given a commutative diagram

S
—

A B
I, b
F
X —Y
with cofibrations i, j and h-equivalences f and F. Giveng: B — Aandy: gf >~
id, there exists G: Y — X and ®: GF ~ id such that Gj = ig and ®;i = i¢;.

In particular: (F, f) is an h-equivalence of pairs, and there exists a homotopy
inverse of the form (G, g): j — i. O

(5.2.9) Proposition. Suppose a commutative diagram

ai az

Xo X X5

lfo ifl lf2
b b

Yo —— Y, —25 Y,

is given with cofibration a;, b; and h-equivalences f;. Let X be the colimit of the
aj and Y the colimit of the bj. Then the map f: X — Y induced by the f; is a
homotopy equivalence.

Proof. We choose inductively h-equivalences F},: Y, — X, such thata, F,,—; =
F,,b,, and homotopies ¢, : X, x I — X, from F,, f, toid(X,) suchthata,@,—1 =
¢n(an x id). This is possible by (5.2.7). The F,, and ¢, induce F: Y — X and
¢: X xI - X, Ff ~id. Hence F is a left homotopy inverse of f. O

Problems

1. Leti: K — Aand j: K — B be cofibrations. Let «: (B, j) — (A, i) be a morphism
under K, £: X — Y acontinuous map, and ¢: K x I — X a homotopy. Then

[(A.0). (X, 00)] K —2— [(A. ). (X. g1)]K

[a,élkl J[a,E]K
#

[(B. ). (Y. £po)] K —2 (B, ). (V. £01)]K
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commutes; here [o, |5 [f] = [Efa].
2. Apply the transport functor to pointed homotopy sets. Assume that the inclusion {*} C A
is a cofibration. For each path w: I — X we have the transport

w4, (X, w(0))]° — [4, (X, w(1))]°.
As a special case we obtain a right action of the fundamental group (transport along loops)
[A,X]O x w1 (X, %) > [A,X]O, (x,a) — x-a = a¥(x).

Let v: [4, X]° — [A, X] denote the forgetful map which disregards the base point. The
map v induces an injective map from the orbits of the 71-action into [4, X]. This map is
bijective, if X is path connected.

A space is said to be A-simple if for each path w the transport w* only depends on the
endpoints of w; equivalently, if for each x € X the fundamental group 71 (X, x) acts trivially
on [A, (X,x)]°. If A = ", then we say n-simple instead of A-simple. We call X simple if
it is A-simple for each well-pointed A.

3. The action on [I /81, X]° = 7 (X) is given by conjugation. Hence this action is trivial
if and only if the fundamental group is abelian.

4. Let [A, X]° carry a composition law induced by a comultiplication on A. Then w* is a
homomorphism. In particular 7r; (X) acts by homomorphisms. (Thus, if the composition
law on [A4, X]° is an abelian group, then this action makes this group into a right module
over the integral group ring Zm1(X).)

5. Write S(1) = 1/3] and 7wy (X) = [S(1), X]°. Then we canidentify [4, X]%xm (X, %) =
[A Vv S(1), X]9. The action of the previous problem is induced by amap v: 4 — A Vv S(1)
which can be obtained as follows. Extend the homotopy I — AV S(1),t +—t € S(1)toa
homotopy ¢: A x I — A Vv S(1) with the initial condition A C A v S(1) and set v = ¢;.
Express in terms of v and the comultiplication of S(1) the fact that the induced map is a
group action (v is a coaction up to homotopy).

6. Let (X, e) be a path connected monoid in h-TOP®. Then the 7 (X, ¢)-action on [A4, X]°
is trivial.

5.3 Replacing a Map by a Cofibration

Werecall from Section 4.1 the construction of the mapping cylinder. Let f: X — Y
be a map. We construct the mapping cylinder Z = Z( f) of f via the pushout

x+x 2y o x

J Z(f)=XxI+Y/f(x)~ (x,0),
(s,/)
: s) =y, jx)=(x1).

(i0si1)
X x1———Z(f)
Since (i, i1 ) is aclosed cofibration, the maps (s, j ), s and j are closed cofibrations.

We also have the projection g: Z(f) — Y, (x,t) — f(x), y — y. In the case
that f: X C Y,let p: Y — Y /X be the quotient map. We also have the quotient
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map P: Z(f) — C(f) = Z(f)/j(X) onto the mapping cone C(f). (Now we
consider the unpointed situation. The “direction” of the unit interval is different
from the one in the previous chapter.) We display the data in the next diagram. The
map r is induced by q.

x—L sy —2y/x . .
qj = f gqs=id
= q||s o, Ps=c(f), pg=rP
X —Z(f) —L= )

(5.3.1) Proposition. The following assertions hold:
(1) j and s are cofibrations.

(2) sq is homotopic to the identity relative to Y. Hence s is a deformation
retraction with h-inverse q.

(3) If f is a cofibration, then q is a homotopy equivalence under X and r the
induced homotopy equivalence.

@) c(f): Y — C(f) is a cofibration.

Proof. (1) was already shown.

(2) The homotopy contracts the cylinder X x I to X x 0 and leaves Y fixed,
hi(x,c) =(x,tc+1—1),hi(y) = y.

(3) is a consequence of (5.2.5).

(4) c(f) is induced from the cofibration ig: X — X x I /X x 1 via cobase
change along f. O

We have constructed a factorization f = ¢j into a (closed) cofibration and a
homotopy equivalence gq. Factorizations of this type are unique in the following
sense. Suppose f = ¢'j': X — Z' — Y is another such factorization. Then
iq': Z' — Z satisfies iq’ j' ~ i. Since j' is a cofibration, we can change i¢’ ~ k
such thatkj’ = j. Since ig’ is an h-equivalence, the map k is an h-equivalence un-
der X, by (5.2.5). Also gk =~ q’. This expresses a uniqueness of the factorization.
If f =gqgj: X - Z — Y is a factorization into a cofibration j and a homo-
topy equivalence ¢, then Z/j(X) is called the (homotopical) cofibre of f. The
uniqueness of the factorization implies uniqueness up to homotopy equivalence of
the cofibre. If f: X C Y is already a cofibration, then Y — Y /X is the projection
onto the cofibre; in this case ¢: Z — Y is an h-equivalence under X .

The factorization of a map into a cofibration and a homotopy equivalence is a
useful technical tool. The proof of the next proposition is a good example.
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(5.3.2) Proposition. Let a pushout diagram
S
A—B
b, b
Xty
with a cofibration j be given. Then the diagram is a homotopy pushout.

Proof. Letqi: A — Z(j) — X be the factorization of j. Since ¢ is a homotopy
equivalence under A, it induces a homotopy equivalence

qU4id: Z(f)Ua B=Z(f,j) > XUgB=Y
of the adjunction spaces. O

(5.3.3) Proposition. Let a commutative diagram

A K C’
4A—*5c
v Jz lL v
B-%.p
y N
! K/

B D’
be given. Suppose the inner and the outer square are homotopy cocartesian. If o,
B, y are homotopy equivalences, then § is a homotopy equivalence.

Proof. From the data of the diagram we obtain a commutative diagram

Z, 1) 2L 7001

oo,

D————D’

where ¢ and ¢’ are the canonical maps. By hypothesis, ¢ and ¢’ are homotopy
equivalences. By (4.2.1) the map Z (8, «, ) is a homotopy equivalence. |

(5.3.4) Proposition. Given a commutative diagram as in the previous proposition.
Assume that the squares are pushout diagrams. Then § is induced by o, B, y.
Suppose that a, B, y are homotopy equivalences and that one of the maps k, | and
one of the maps k', I’ is a cofibration. Then § is a homotopy equivalence.

Proof. From (5.3.2) we see that the squares are homotopy cocartesian. Thus we
can apply (5.3.3). O
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Problems

1. Amap f: X — Y has a left homotopy inverse if and only if j: X — Z(f) has a
retraction r: Z(f) — X. The map f is a homotopy equivalence if and only if j is a
deformation retract.

2. In the case of a pointed map f : (X, *) — (Y, %) one has analogous factorizations into a
cofibration and a homotopy equivalence. One replaces the mapping cylinder Z( f') with the
pointed mapping cylinder Z°( ) defined by the pushout

with the pointed cylinder X1 = X x I /{x} x I. The maps (ig,i1), (s, ), s and j are
pointed cofibrations. We have a diagram as for (5.3.1) with pointed homotopy equivalences
s,g and CO(f) = Z9(f)/j(X) the pointed mapping cone, the pointed cofibre of f.

3. (ip,i1): X V X — XI is an embedding.

4. Let f: X > Y and g: Y — Z be pointed maps. We have canonical maps a: C(f) —
C(gf)and B: C(gf) — C(g); « is the identity on the cone and maps Y by g, and 8 is the
identity on Z and maps the cone by f x id. Show that § is the pointed homotopy cofibre
of a.

5.4 Characterization of Cofibrations

We look for conditions on A C X which imply that this inclusion is a cofibration.
We begin by reformulating the existence of a retraction (5.1.2).

(5.4.1) Proposition. There exists a retractionr: X x I — A x I U X x 0 if and
only if the following holds: There exists a map u: X — [0, oo[ and a homotopy
¢: X x I — X such that:

(1) Acu1(0)

2) p(x,0) =xforx e X

3) ¢(a,t) =afor(a,t)ye AxI

@) @(x,t) € Afort > u(x).

Proof. Suppose we are given a retraction r. We set ¢(x,¢) = pryo r(x,t) and
u(x) = max{t —pryor(x,t) | t € I}. For (4) note the following implications:
t > u(x), pror(x,t) > 0, r(x,t) € Ax I, ¢(x,t) € A. The other properties
are immediate from the definition. Conversely, given u and ¢, then r(x,?) =
(o(x,t), max(t —u(x),0)) is a retraction. O

(5.4.2) Note. Let 1, > u(x) be a sequence which converges to u(x). Then (4)
implies p(x,u(x)) € A. Ifu(x) = 0, then x = ¢(x,0) = @(x,u(x)) € A. Thus
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A = u~Y(0). Therefore in a closed cofibration A C X the subspace A has the
remarkable property of being the zero-set of a continuous real-valued function. &

(5.4.3) Lemma. Leru: X — I and A=u""'(0). Let ®: [ ~g: X — Z rel A.
Then there exists ©: [ ~ g rel A such that ®(x,t) = ®(x,u(x)) = d(x,1) for
t > u(x).

Proof. We define ® by ®(x, 1) = ®(x, 1) for 7 > u(x) and by ®(x, tu(x)~1) for
t < u(x). For the continuity of ® on C = {(x,?) | t < u(x)} see Problem 1. O

We call (X, A) a neighbourhood deformation retract (NDR ), if there exist a
homotopy ¥ : X x I — X and a function v: X — [ such that:
(1) A=v"50)
2) ¥(x,0) =xforx e X
3) Y(a,t) =afor(a,t) e AxI
4 Y¥(x,1) e Aforl > v(x).
The pair (v, v) is said to be an NDR-presentation of (X, A).

(5.4.4) Proposition. (X, A) is a closed cofibration if and only if it is an NDR.

Proof. If A C X is a closed cofibration, then an NDR-presentation is obtained
from (5.4.1) and (5.4.2). For the converse, we modify an NDR-presentation (v, u)
by (5.4.3) and apply (5.4.1) to the result (¥, u). O

(5.4.5) Theorem (Union Theorem). Let A C X, B C X, and AN B C X be
closed cofibrations. Then AU B C X is a cofibration.

Proof ([112]). Letg: (AU B) x I — Z be ahomotopy and f: X — Z an initial
condition. There exist extensions ®4: X xI — Z of ¢|AxI and ®B: BxI — Z
of ¢|B x I with initial condition f. The homotopies ®4 and ®Z coincide on
(A N B) x I. Therefore there exists W: ®4 ~ &8 rel (AN B)x 1 U X x0.

Let p: X x I — X x I/ ~ be the quotient map which identifies each interval
{c} xI,c e AN Btoapoint. Let T: I x I — I x I switch the factors. Then
W o (id X T factors over p x id and yields Q: (X x [/ ~)x [ — Z.

Letu: X — I and v: X — I be functions such that A = ¥~ '(0) and B =
v™1(0). Define j: X — X x I/ ~by j(x) = (x,u(x)/(u(x) + v(x))) for
x ¢ AN Bandby j(x) = (x,0) = (x,t) for x € AN B. Using the compactness
of I one shows the continuity of j.

An extension of ¢ and f is now given by Q o (j x id). O

(5.4.6) Theorem (Product Theorem). Let A C X and B C Y be closed cofibra-
tions. Then the inclusion X x BU A XY C X x Y is a cofibration.

Proof. AxX CXxY, XxBCXxY,andAxB=(AxY)N(X xB) C
X x B C X xY are cofibrations. Now apply (5.4.5). O
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Problems

1. LetC = {(x.1) |t <u(x)yandg: X x I — C, (x,1)  (x,tu(x)). Then &g = .
It suffices to show that ¢ is a quotient map. Themap I': X x I — X x I x I, (x,t) —
(x,1,u(x)) is an embedding onto a closed subspace D. Themapm: I xI — I, (a,b) — ab
is proper, hence M = id xm is closed. The restriction of M to D is closed, hence MT" = ¢
is closed and therefore a quotient map.

2. The inclusion 0 U {n~! | n € N} C [0, 1] is not a cofibration. The inclusions 4; =
{0, j —1Y < T are cofibrations. Hence (5.4.5) does not hold for an infinite number of cofibra-
tions.

3. Set X = {a,b} with open sets @, {a}, X for its topology. Then A = {a} C X is a
non-closed cofibration. The product X x A U A x X C X x X is not a cofibration.

4. Let A; C X be closed cofibrations (1 < j < n). Forallo C {1,...,n} let As =
(N, eo Aj C X be a cofibration. Then | J] 4, C X is a cofibration.

5. Let A and B be well-pointed spaces. Then A A B is well-pointed.

5.5 The Homotopy Lifting Property

A map p: E — B has the homotopy lifting property (HLP) for the space X if the
following holds: For each homotopy A: X x I — B andeachmapa: X — E
such that pa(x) = h(x, 0) there exists a homotopy H: X x I — E with pH = h
and H(x,0) = a(x). We call H alifting of h with initial condition a. The map
p is called a fibration (sometimes Hurewicz fibration) if it has the HLP for all
spaces. It is called a Serre fibration if it has the HLP for all cubes 17, n € Nj.
Serre fibrations suffice for the investigation of homotopy groups. In order to see
the duality we can use the dual definition of homotopy and specify the data in the
right diagram. It uses the evaluation e% :ET - E, w— w(0).

E
a a
X——E Y w
léfl //;; l” B Ef <y X
B

We begin by introducing the dual W(p) of the mapping cylinder. It is defined
by the pullback

E+ w(p)
”J lk W(p) ={(x,w) € E x B! | p(x) = w(0)},

PP M k(x,w) =w, b(x,w)=x.
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If we apply the pullback property to %, p’, we obtain a unique map r: E/ —
W(p), v (v(0), pv) such that br = €% and kr = pl. If we apply the HLP to
(W(p).b.k), we obtain a map s: W(p) — E! such that eds = band pls =k.
The relations brs = e%s =band krs = pls = k imply rs = id, by uniqueness.
Therefore s is a section of r. Conversely, given data (a, &) for a homotopy lifting
problem. They combine to a map p: X — W(p). The composition H = sp with

a section s is a solution of the lifting problem. Therefore we have shown:

(5.5.1) Proposition. The following statements about p: E — B are equivalent:
(1) p is afibration.
(2) p has the HLP for W(p).
(3) r: ET — W(p) has a section. O

(5.5.2) Proposition. Let p: E — B have the HLP for X. Leti: A C X be a
closed cofibration and an h-equivalence. Let f: X — B be givenanda: A — E
a lifting of f over A, i.e., pa = fi. Then there exists a lifting F of f which
extends a.

Proof. By (5.2.6)and (5.4.2) weknow: Thereexistsu: X — [andgp: X xI — X
rel Asuchthat A = u~1(0), p; = id(X), po(X) C A. Setr: X — A, x > @o(x).
Define a new homotopy ®: X x I — X by ®(x,1) = ¢(x, tu(x)"!) fort < u(x)
and ®(x,1) = ¢(x,1) = x fort > u(x). We have seen in (5.4.3) that ® is
continuous. Apply the HLP to &7 = f® with initial condition b = ar: X — E.
The verification

h(x,0) = f®(x,0) = fo(x.0) = fr(x) = par(x) = pb(x)

shows that b is indeed an initial condition. Let H: X x I — E solve the lifting
problem for &, b. Then one verifies that F: X — E, x — H(x,u(x)) has the
desired properties. O

(5.5.3) Corollary. Let p: E — B have the HLP for X x I andleti: A C X be
a closed cofibration. Then each homotopy h: X x I — B with initial condition
givenon A x I U X x 0 has alifting H: X x I — E with this initial condition.

Proof. This is a consequence of (5.1.3) and (5.5.2). O

(5.5.4) Proposition. Let i: A C B be a (closed) cofibration of locally compact
spaces. The restriction from B to A vyields a fibration p: Z8 — ZA4.

Let p: X — B be a fibration. Then p?: X% — BZ is a fibration for locally
compact Z.

Proof. Use adjunction and the fact that X x A — X x B is a cofibration for each X .
O
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(5.5.5) Proposition. Let p: E — B be a fibration. Thenr: ET — W(p), v
(v(0), pv) is a fibration.

Proof. A homotopy lifting problem for X and r is transformed via adjunction into
a lifting problem for p and X x I with initial condition given on the subspace
Xx({Ix0U0x1T). O

(5.5.6) Proposition. Let p: E — B be a fibration, By C B and Ey = p~'(By).
If Bg C B is a closed cofibration, then Eog C E is a closed cofibration.

Proof. Letu: B — I and h: B x I — B be an NDR-presentation of By C B.
Let H: X x I — X solve the homotopy lifting problem for 4 (p x id) with initial
condition id(X). Define K: X — X by K(x,t) = H(x,min(¢,up(x))). Then
(K, up) is an NDR-presentation for Xo C X. O

The proof of the next formal proposition is again left to the reader.

(5.5.7) Proposition. Let a pullback in TOP be given.

X

llgp

q

A—~=

F
—
—

S
Ifq hasthe HLP for Z, then so also has p. If p is afibration, then q is afibration. [

We call ¢ the fibration induced from the fibration p via base change along f .
In the case that f: C C B the restriction p: p~!(C) — C can be taken as the
induced fibration.

(5.5.8) Example. X/ — X% ~ X x X: w — (w(0), w(1)) is a fibration (5.5.4).
The evaluation e!: FY — Y, w — w(l) is a fibration (restriction to % x Y).
Hence we have the induced fibration f1: F(f) — Y. <&

The homotopy theorem for fibrations says, among other things, that homotopic
maps induce h-equivalent fibrations.

Let p: X — Bbeafibrationandg: f ~ g: C — B ahomotopy. We consider
two pullback diagrams.

YfL>X YgLX
Dy D D D

There exists a homotopy ®;: Yy — X such that &9 = F and p®, = ¢, ps. The
pullback property of the right square yields a map « = ky: Yr — Y, such that
Gk = &y and pgk = pr. Let ¥;: f =~ g be homotopic to ¢, by a homotopy



118 Chapter 5. Cofibrations and Fibrations

y: CxIxI — Brelativeto C x d]. We obtain in a similar manner a map «, from
alifting W, of ¥, py. Claim: The maps «,, and k., are homotopic over C. In order to
verify this, we lift the homotopy y o (ps xid xid): Yy xI xI — B toahomotopy I'
with initial data I'(y, s,0) = ®(y,s), ['(y,s,1) = ¥(y,s),and ['(y,0,¢) = F(t)
by an application of (5.1.5). The homotopy H : (y,t) — I'(y,1,t) yields, by the
pullback property of the right square, a homotopy K: Yy x I — Y, such that
GK = H and pg, K = propys. By construction, K is a homotopy over C from ¢
to kg. The reader should now verify the functoriality [kyxy ] = [ky][K].
Leth-FIB¢ be the full subcategory of h-TOP¢ with objects the fibrations over C.

(5.5.9) Proposition. Let p: X — B be a fibration. We assignto f: C — B the
induced fibration py: Yy — C and to the morphism [¢]: f — g in II(C, B) the
morphism (k). This yields a functor I1(C, B) — h-FIB¢. O

Since IT(C, B) is a groupoid, [«,] is always an isomorphism in h-TOPg. This
fact we call the homotopy theorem for fibrations.

As a special case of (5.5.9) we obtain the fibre transport. It generalizes the
fibre transport in coverings. Let p: E — B be a fibration and w: I — B a path
from b to ¢c. We obtain a homotopy equivalence Tj,[w]: F, — F, which only
depends on the homotopy class [w] of w, and T, [u * v] = T,[v]T,[u]. This yields
afunctor T, : I1(B) — h-TOP. In particular the fibres over points in the same path
component of B are h-equivalent.

(5.5.10) Proposition. In the pullback (5.5.7) let p be a fibration and f a homotopy
equivalence. Then F is a homotopy equivalence.

Proof. The proof is based on (5.5.9) and follows the pattern of (5.1.10). O

(5.5.11) Remark. The notion of fibration and cofibration are not homotopy invari-
ant. The projection / x 0U 0 x I — I, (x,t) — x is not a fibration, but the
map is over / h-equivalent to id. One definition of an h-fibration p: E — B is
that homotopies X x I — B which are constant on X X [0, ¢], & > 0 can be lifted
with a given initial condition; a similar definition for homotopy extensions gives
the notion on an h-cofibration. In [46] you can find details about these notions.

Problems

1. A composition of fibrations is a fibration. A product of fibrations is a fibration. § — B
is a fibration.

2. Suppose p: E — B hasthe HLP for Y x I"". Then each homotopy h: Y x I x I — B
has a lifting to E with initial condition givenon Y x (I x0U 1" x I).

3. Let p: E — B x I be a fibration and pg: Eg — B its restriction to B x 0 = B. Then
there exists a fibrewise h-equivalence from pg x id(/) to p which is over B x 0 the inclusion
Eo — E.
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4. Go through the proof of (5.5.9) and verify a relative version. Let (C, D) be a closed
cofibration. Consider only maps C — B with a fixed restrictiond : D — B and homotopies
relative to D. Let pp : Yp — B be the pullback of p along d. Then the maps p s have the
form (pr. pp): (Yr,Yp) — (C, D). By (5.5.6), (Y, Yp) is a closed cofibration, and by
(5.5.3) the homotopies ®; can be chosen constant on Y. The maps «y : Y — Y, are then
the identity on Yp. The homotopy class of «, is unique as a map over C and under Yp.

5. Let (B, C) be aclosed deformation retract with retractionr: B — C. Let p: X — Bbe
afibrationand pc : X¢ — C itsrestrictionto C. Then there exists aretraction R: X — X¢
such that pc R = rp.

5.6 Transport

We construct a dual transport functor. Let p: E — B beafibration,¢: Y xI — B
a homotopy and ®: Y x I — FE alifting along p with initial condition f. We
define

¢" [(Y.00). (E. p)lg — [(Y.01). (E, P, [f]+> [®1].

One shows that this map is well defined and depends only on the homotopy class
of ¢ relative to Y x 91 (see the analogous situation for cofibrations). Moreover,

(o xy)* = yro".

(5.6.1) Proposition. The assignments f + [f. plg and [p] — ¢* are a functor,
called transport functor, from T1(Y, B) into the category of sets. Since I1(Y, B) is
a groupoid, ¢* is always bijective. O

(5.6.2) Note. Let p: E — B be a fibration and - X x I — Y be a homotopy.
Thenyry = [gV:]* Vg here s : (g, pl — [gVo, plisthe compositionwith . O

(5.6.3) Theorem. Let f: X — Y be an h-equivalence and p: E — B be a
fibration. Then f*: v, plg — [vf, plB is bijective for eachv: Y — B.

Proof. The proof is based on (5.6.1) and (5.6.2) and formally similar to the proof
of (5.2.4). O

(5.6.4) Theorem. Let p: X — B and q: Y — B be fibrations. Let h: X — Y
be an h-equivalence and a map over B. Then f is an h-equivalence over B.

Proof. The proof is based on (5.6.3) and formally similar to the proof of (5.2.5).
d

(5.6.5) Corollary. Let q: Y — C be a fibration and a homotopy equivalence.
Then q is shrinkable.

Let p: E — B be a fibration. Then the canonical map r: ET — W(p) is
shrinkable (see (5.5.5)). &
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5.7 Replacing a Map by a Fibration
Let f: X — Y be amap. Consider the pullback

W(f) —— vyl 1
( )J J(o W) =Aw) € X x YT f(x) = w(O)},
a.p O

gx,w)=x, px,w)=w().
X xY W Y xY

Since (e, e!) is a fibration (see (5.5.8)), the maps (¢, p), ¢ and p are fibrations.
Lets: X — W(f),x — (x,kr(x)), with k) the constant path with value y. Then
gs = id and ps = f. (The “direction” of the unit interval is again different from
the one in the previous chapter.) We display the data and some other to be explained
below in a diagram.

F—l ox—L .y

P2
F(f) —— W(f) 5— Y

The map s is a shrinking of ¢; a homotopy &, : sq >~ id is given by &, (x,w) =
(x, w"), wi(s) = w((1 —1)s). We therefore have a factorization f = ps into a
homotopy equivalence s and a fibration p. If f = p’s’ is another factorization of
this type, then there exists a fibrewise homotopy equivalence k : W(f) — W’ such
that p’k = p and ks ~ s’. This expresses the uniqueness of the factorization.

Now suppose f is a pointed map with base points *. Then W( f) is given the
base point (*, k). The maps p, ¢, s become pointed maps, and the homotopy /4, is
pointed too. One verifies that ¢ and p are pointed fibrations. Let F(f) = p~!(x)
and F = f~!(x) be the fibres over the base point, with j and J the inclusions.
The map ¢ induces r. We call F(f) the homotopy fibre of f. We use the same
notion for the fibre of any replacement of f by a fibration as above. If f is already
a fibration, then ¢ is a fibrewise homotopy equivalence (5.6.4) and r the induced
homotopy equivalence; hence the actual fibre is also the homotopy fibre.

A map f: X — Y has aright homotopy inverse if and only if p: W(f) - X
has a section. It is a homotopy equivalence if and only if p is shrinkable.




Chapter 6
Homotopy Groups

The first fundamental theorem of algebraic topology is the Brouwer—Hopf degree
theorem. It says that the homotopy set [S”, S”] has for n > 1 a homotopically
defined ring structure. The ring is isomorphic to Z, the identity map corresponds to
1 € Z and the constant map to 0 € Z. The integer associated toamap f: S — S”
is called the degree of f. We have proved this already forn = 1. Also in the general
case “degree n” roughly means that f winds S” n-times around itself. In order
to give precision to this statement, one has to count the number of pre-images of
a “regular” value with signs. This is related to a geometric interpretation of the
degree in terms of differential topology.

Our homotopical proof of the degree theorem is embedded into a more general
investigation of homotopy groups. It will be a simple formal consequence of the
so-called excision theorem of Blakers and Massey. The elegant elementary proof of
this theorem is due to Dieter Puppe. It uses only elementary concepts of homotopy
theory, it does not even use the group structure. (The excision isomorphism is the
basic property of the homology groups introduced later where it holds without any
restrictions on the dimensions.)

Another consequence of the excision theorem is the famous suspension theorem
of Freudenthal. There is a simple geometric construction (the suspension) which
leads from [S™, S”] to [S™ 1!, S”*1]. Freudenthal’s theorem says that this process
after a while is “stable”, i.e., induces a bijection of homotopy sets. This is the
origin of the so-called stable homotopy theory — a theory which has developed into
a highly technical mathematical field of independent interest and where homotopy
theory has better formal and algebraic properties. (Homology theory belongs to
stable homotopy.)

The degree theorem contains the weaker statement that the identity of S” is not
null homotopic. It has the following interpretation: If you extend the inclusion
S"~1 < R” to a continuous map f: D" — R”, then there exists a point x with
f(x) = 0. Forn = 1 this is the intermediate value theorem of calculus; the higher
dimensional analogue has other interesting consequences which we discuss under
the heading of the Brouwer fixed point theorem.

This chapter contains the fundamental non-formal results of homotopy theory.
Based on these results, one can develop algebraic topology from the view-point
of homotopy theory. The chapter is essentially independent of the three previous
chapters. But in the last section we refer to the definition of a cofibration and a
suspension.
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6.1 The Exact Sequence of Homotopy Groups

Let 1" be the Cartesian product of n copies of the unit interval / = [0, 1], and
aI" = {(t1,...,ty) € I" | t; € {0,1} foratleastone i} its combinatorial
boundary (n > 1). We set I1® = {z}, a singleton, and 9/° = @. In I" /31" we
use 31" as base point. (For n = 0 this yields 1°/d1° = {z} + {*}, an additional
disjoint base point *.) The n-th homotopy group of a pointed space (X, *) is

(X, %) = [(1",31"), (X, ()] = [1"/31", X]°

with the group structure defined below. For n = 1 it is the fundamental group.
The definition of the set 7, (X, *) also makes sense for n = 0, and it can be
identified with the set 1o (X') of path components of X with [*] as a base point. The
composition law on 7, (X, *) for n > 1 is defined as follows. Suppose [ f] and [g]
in 7, (X, %) are given. Then [ f] + [g] is represented by f +; g:

F(t, . tis1, 2t ) fors; < 1,
gy, .. tim1. 2 = 1, ty) for3 <t

O (fHiot,....tn) =

As in the case of the fundamental group one shows that this composition law is a
group structure. The next result is a consequence of (4.3.1); a direct verification
along the same lines is easy. See also (2.7.3) and the isomorphism (2) below.

(6.1.1) Proposition. For n > 2 the group w, (X, %) is abelian, and the equality
+1 = +; holds fori > 2. O

We now define relative homotopy groups (sets) 7z (X, A, *) for a pointed pair
(X,A). Forn > 1,let J* = 9I" x I UI" x {0} c aI"*! C I" x I and
set JO = {0} C I. We denote by m,+1(X, A, *) the set of homotopy classes
of maps of triples f: (I"T1,9I"*! J") — (X, A, *). (Recall that this means
f@I™Y c A, f(J™) C {*}, and for homotopies H we require H, for each
t € I to be a map of triples.) Thus, with notation introduced earlier,

Tar1(X, A, %) = [P 017 ™), (X, A, %))

A group structure +;, 1 <i < n is defined again by the formula (1) above. There
is no group structure in the case n = 0.

We now consider 7, as a functor. Composition with f: (X, 4, x) — (¥, B, %)
induces fx: 7, (X, A, *) — m,(Y, B, *); this is a homomorphism for n > 2. Sim-
ilarly, f: (X, *) — (Y, *) induces for n > 1 a homomorphism f: 7, (X, %) —
7, (Y, x). The functor properties (gf)x = g« f« and idx = id are clear. The
morphism j: 7, (X, %) — m,(X, A, %) is obtained by interpreting the first group
as 7, (X, {*}, %) and then using the map induced by the inclusion (X, {*},*) C
(X, A, *). Maps which are pointed homotopic induce the same homomorphisms.
The group 7, (X, A, %) is commutative for n > 3.
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Leth: (I"T1,01"+1 J") — (X, A, *) be given. We restrict to " = I" x {1}
and obtainamap dh: (I",01") — (A, x). Passage to homotopy classes then yields
the boundary operator 0: 7, 4+1(X, A, *) — 1m,(A, *). The boundary operator is
a homomorphism for n > 1. For n = 0 we have d[h] = [h(1)].

We rewrite the homotopy groups in terms of mapping spaces. This is not strictly
necessary for the following investigations but sometimes technically convenient.

Let QK (X, %) be the space of maps ¥ — X which send d¥ to the base point;
the constant map is the base point. The space ' (X) = Q(X) is the loop space of X .
Given amap (I”,91") — (X, %) we have the induced map f: I"% — QK(X, x)
which sends u € I" % to I*¥ — X, (t1,....tx) = f(t1, ...t UL, Up—k).
This adjunction is compatible with homotopies and induces a bijection

©) Tn (X %) 22 e (R (X, %), ).
Adjunction as above also yields a bijection
(3) Tn1 (X, A ) 22 g1 (5 (X), QA #).

These isomorphisms are natural in (X, A, *), compatible with the boundary opera-
tors, and the group structures.

(6.1.2) Theorem (Exact homotopy sequence). The sequence

s —> p (A, %) L) 7, (X, %) L) (X, A, *)

ad a -
— - — (X, A, %) —> mo(A, *) N 7o (X, %)

is exact. The maps iy and j are induced by the inclusions.

Proof. We prove the exactness for the portion involving 7o and 71 in an elementary
manner. Exactness at (4, *) and the relations dj. = 0 and j.i. = 0 are left to
the reader.

Letw: I — X representan elementin 771 (X, 4, %) with d[w] = 0. This means:
There exists apathu: I — A with u(0) = w(1) and u(1) = *. The product w * u
is then a loop in X. The homotopy H which is defined by

w
: w2s/(1+1)), 2s<1+t,
% u- Ht(s) =
: H, u +2(1—ys)), 2s>1+r1,
w* U

shows j.«[w * u] = [w]. Thus we have shown exactness at 71 (X, 4, *).
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Givenaloop w: I — X. Let H: (I,01,0) x I — (X, A, %) be a homotopy
from w to a constant path. Then u: s +— H(l,s) is a loop in A. We restrict
H to the boundary of the square and compose it with a linear homotopy to prove
ko xw >~ ky xu.

ke *w >~ ky *u,
u(t) = H(1,1).

Hence iy [u] = ix[k« * u] = [k x w] = [w].
We now apply this part of the exact sequence to the pairs (2" (X), 2"(A)) and
obtain the other pieces of the sequence via adjunction. O

(6.1.3) Remark. We previously introduced the mapping space
F@) ={(a.w)e Ax X1 | w(0) = %, w(l) = a}.

with base point (x, k), k: I — {*} the constant path. This space is homeomorphic
to
F(X,A) ={we X' | w0) =*w() e A},

i (1) becomes the inclusion Q(X) C F(X, A), and (! the evaluation F(X, A) — A,
w +— w(l). Forn > 1 we assign to f: (I"T1, 91" J") — (X, A, *) the
adjoint map f": I" — F(X, A), defined by f"(t1,....1,)(t) = f(t1,... . tn,1).
It sends /" to the base point and induces a pointed map f: ["/dI" — F(X, A).
By standard properties of adjunction we see that the assignment [ f] — [f] is a
well-defined bijection

4) Tn41(X, A, %) = 7, (F (X, A), %),

and in fact a homomorphism with respect to the composition laws +; for 1 <i < n.
These considerations also make sense for » = 0. In the case that A = {x}, the
space F(X, A) is the loop space Q(X).

The exact sequence is also obtained from the fibre sequence of . Under the
identifications (4) the boundary operator is transformed into

L[ /1m, F(X, A))° — [17/01™, A]°,
and 7, 4+1(X, %) = m,4+1(X, A4, *) is transformed into
i) [I"/01", QX)) — [I"/3I", F(X, A, %)]°.

Now apply B = ["/dI" to the fibre sequence (4.7.4) of t: A C X to see the
exactness of a typical portion of the homotopy sequence. &
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The sequence (6.1.2) is compatible with maps f: (X, 4, *) — (¥, B, *). In
particular f.d = 0fs.

(6.1.4) Remark. In the sequel it will be useful to have different interpretations for
elements in homotopy groups. (See also the discussion in Section 2.3.) We set
S(n) = I"/dI" and D(n + 1) = CS(n), the pointed cone on S(n). We have
homeomorphisms

S(ny —oI"t/J", Dm+1)—I"T/J",

the first one x +— (x, 1), the second one the identity on representatives in 1" x [;
moreover we have the embedding S(n) — D(n+1), x — (x, 1) which we consider
as an inclusion. These homeomorphisms allow us to write

T (X, %) = [I"/31", X]° = [S(n), X1°,

Tt (X, A, %) = (1" /77 91"TT™), (X, A)° = [(D(n+1), S(n)). (X, A)]°,

and 0: 7w,41(X, A, %) — m,(A, %) is induced by the restriction from D(n + 1)
to S(n).
The pointed cone on S” is D"*1: We have a homeomorphism

S"x1/(S" x0Uepyy xI)— D" (x,t) > (1 —t)epq1 + tx.

Therefore we can also represent elements in m,+1(X, A4, %) by pointed maps
(D", 8") — (X, A) and elements in 7,(X, *) by pointed maps S” — X.
In comparing these different models for the homotopy groups it is important to
remember the homeomorphism between the standard objects (disks and spheres),
since there are two homotopy classes of homeomorphisms. <

Problems

1. 7,(A, A,a) = 0. Given f: (I",dI",J"~ 1) — (A, A,a). Then a null homotopy is
Se(xr,..x0) = f(x1,x2,..., (L=1)xp).

2. Let x € Xo C X1 C X2 C --- be a sequence of T7-spaces (i.e., points are closed).
Give X = |J,;~ X» the colimit topology. Then a compact subset K C X is contained
in some X,. Use this to show that the canonical maps 7, (X;, *) = m, (X, *) induce an
isomorphism colim; 7, (X;, *) & m, (X, *).

3. Let (X, A, B, b) be a pointed triple. Define the boundary operator d: 7, (X, A,b) —
wn—1(A,b) — mu—1(A4, B, b) as the composition of the previously defined operator with
the map induced by the inclusion. Show that the sequence

i = 700(A, B, b) = mn(X, B,b) = 1n(X, A, b) —> 7n_1(A, B,b) = ---

is exact. The sequence ends with 71 (X, A4, b).
4. The group structure in m,41(X, A4, *) is induced by an h-cogroup structure on
(D(n 4 1), S(n)) in the category of pointed pairs.
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5. Let f: (X,x) — (Y,y) be a pointed map. One can embed the induced morphism
fv: ma (X, x) — 7w, (Y, y) into an exact sequence which generalizes the case of an inclu-
sion f. Let Z( f) be the pointed mapping cylinderof f and f = pi: X — Z(f) — Y the
standard factorization into an inclusion and a homotopy equivalence, as explained in (5.3.1).
We can now insert the isomorphism p«: 7, (Z(f), *) — 7, (Y, %) into the exact sequence
of the pair and obtain an exact sequence

e o (X, %) L n (Y, %) = 700 (Z(F), X), %) —> - .

One can define the groups 7, (Z(f), X, *) without using the mapping cylinder. Consider
commutative diagrams with pointed maps ¢ and .

art gt —2 5 x

Y

mygnt 2y

We consider (¢, ®): j — f as a morphism in the category of pointed arrows. Let
7, (f) denote the set of homotopy classes of such morphisms. For f: X C Y we ob-
tain the previously defined 7, (Y, X, *). The projection p: i — f induces an isomorphism
n(Z(f), X, *) = m,(i) = 7, (f). One can also use the fibre sequence of f.

6.2 The Role of the Base Point

We have to discuss the role of the base point. This uses the transport along paths.
Letapathv: I — X and f: (I",d1") — (X,v(0)) be given. We consider v
as a homotopy ¥ of the constant map d7" — {v(0)}. We extend the homotopy v,
to a homotopy V;: I — X with initial condition f = V{. An extension exists
because /" C I" is a cofibration. The next proposition is a special case of (5.2.1)
and problems in that section. In order to be independent of that section, we also
repeat a proof in the present context.

(6.2.1) Proposition. The assignment [Vy]| + [V1] is a well-defined map
v#: 7Tn(Xy U(O)) - nn(Xa v(l))

which only depends on the morphism [v] in the fundamental groupoid T1(X). The
relation (vxw)s = wyovy holds, and thus we obtain a transport functor from T1(X)
which assigns to xog € X the group 7, (X, Xxo) and to a path v the morphism vg.
The map vy is a homomorphism. O

Proof. Letg: f >~ g be ahomotopy of maps (/”,01") — (X, xp)and ¥ : v >~ w
a homotopy of paths from x¢ to x;. Let V;: I" — X be a homotopy which extends
(f, 0) and W; a homotopy which extends (g, w). These data combine to a map on
T=1"x0xITUJ"xIxIUI"xIdl CI"? as follows: On I" x 0 x [
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weuse g,on " x I x [ weuselﬂ,OnI” x I x0weuse V,andon I" x I x 1
we use W. If we interchange the last two coordinates then 7 is transformed into
J" 1. Therefore our map has an extension to /"2, and its restriction to /" x 1 x [
is a homotopy from V7 to Wj. This shows the independence of the representatives
f and v. The other properties are clear from the construction. O

There is a similar transport functor in the relative case. We start with a function
[ ™1™, J" ) — (X, A,ap)andapathv: I — Afromagtoa;. We consider
the path as a homotopy of the constant map J”~! — {ao}. Then we extend this
homotopy to a homotopy V;: (I",d1") — (X, A). An extension exists because
J"=1 C 91" and 1™ C I™ are cofibrations.

(6.2.2) Proposition. The assignment [Vy] + [V1] is a well-defined map
va: u(X, A,a9) = my(X, A, ay)

which only depends on the morphism [v] in the fundamental groupoid T1(A). For
n > 2 the map vy is a homomorphism. As above we have a transport functor
Sfrom TI(A). O

Since vy is always bijective, homotopy groups associated to base points in the
same path component are isomorphic.
We list some naturality properties of the transport functors. As a special case of
the functor property we obtain right actions of the fundamental groups:
Tn (X, X) X m(X, x) > ma (X, x), (. B) > a-f = Pula),
mn (X, A,a) x m1(A,a) —> np(X, A,a), (a,B) > a-B = Bs(a).
We also have an action of 71(A4,a) on 7, (X,a) via the natural homomorphism;

more generally, we can make the 7, (X, a) into a functor on I1(A) by viewing a
path in A as a path in X. From the constructions we see:

(6.2.3) Proposition. The morphisms in the exact homotopy sequence of the pair
(X, A) are natural transformations of transport functors on I1(A). In particular,
they are 11 (A, x)-equivariant with respect to the actions above. O

Continuous maps f: (X, A) — (Y, B) are compatible with the transport func-
tors

Sewy(@)) = (fw)s(fe(@)).
Let f;: (X, A) — (Y, B)beahomotopy andsetw: ¢t — f(a,t). Thenthe diagram

Fox nn(Y, B, foa)
/
m,(X, A, a) wy
T
1% ﬂn(Y, B,fla)

is commutative. As in the proof of (2.5.5) one uses this fact to show:
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(6.2.4) Proposition. Let f: (X,A) — (Y, B) be an h-equivalence. Then the
induced map fy: 7,(X, A,a) — n,(Y, B, fa) is bijective. O

Suppose that f that induces isomorphisms 7;(4) — n;(B) and 7;(X) —
w;j(Y) for j € {n,n + 1}, n > 1. Then the Five Lemma (11.1.4) implies that
fe: wnp1(X, A, %) = w41 (Y, B, %) is an isomorphism. With some care, this also
holds for n = 0, see Problem 3.

Let f: (X,A) — (Y, B) be a map of pairs such that the individual maps
X — Y and A — B induce for each base point in A isomorphism for all 7, then
Jx: (X, A,a) — 7w, (Y, B, f(a)) is bijective for each n > 1 and each a € A.
For the case n = 1 see Problem 3.

The transport functors have special properties in low dimensions.

(6.2.5) Proposition. Letv: I — X be given. Thenvy: m1(X, v(0)) — 71 (X, v(1))
is the map [w] = [v™][w][v]. In particular, the right action of 71 (X, x) on itself is
given by conjugation o - B = B 'ap. O

(6.2.6) Proposition. Let x1,x, € ma(X, A, %) be given. Let z = 0x, € m1(A, *).
Then x1 - z = (x2) ™' x1x2 (multiplicative notation for m5).

Proof. We first prove the claim in a universal situation and then transport it by
naturality to the general case. Set D = D(2), S = S(1).

Let (1,15 € ma(D v D, S Vv S) be the elements represented by the inclusions
of the summands (D, S) — (D v D,S Vv S). Set{ = d(t3) € 71(S Vv S). From
(6.2.3) and (6.2.5) we compute

A1 -8) = () - ¢ = ¢ @) = (B2) 7 (@) (Be2) = (3 ' 1aa)

Since D Vv D is contractible, d is an isomorphism, hence ¢; - 1, = L;llltz.
Letnow h: (D v D,S v S) — (X, A) be a map such that hij represents xg,
i.e., h«(tx) = xx. The computation

X1 2 = (haty) - Ohstn) = he(11 - ) = h*(Lgltltz) = xz_lxlxz
proves the assertion in the general case. O

(6.2.7) Corollary. The image of the natural map my(X, x) — w2 (X, A, %) is con-
tained in the center. O

The actions of the fundamental group also explain the difference between
pointed and free (= unpointed) homotopy classes.

(6.2.8) Proposition. Let [S(n), X]°/(~) denote the orbit set of the 71 (X, *)-action
on [S(n), X]°. The map [S(n), X]° — [S(n), X] which forgets the base point
induces an injective map v: [S(n), X]°/(~) — [S(n), X]. For path connected X
the map v is bijective. The forgetful map

(X, A, %) = [(D(n), S(n — 1)), (X, A)]° — [(D(n), S(n — 1)), (X, A)]



6.3. Serre Fibrations 129

induces an injective map of the orbits of the w1 (A, x)-action; this map is bijective
if A is path connected (n > 2). O

Problems

1. Let A be path connected. Each element of 771 (X, A4, a) is represented by a loop in (X, a).
The map j«: m1(X,a) — 71 (X, A, a) induces a bijection of 771 (X, A, a) with the right (or
left) cosets of w1 (X, a) modulo the image of ix: 71 (4, a) — 71 (X, a).

2. Let x € m1(X, A,a) be represented by v: I — X with v(1) € A and v(0) = a. Let
w: I — X be aloop in (X,a). The assignment ([w], [v]) — [w * v] = [w] - [v] defines
a left action of the group 71 (X, a) on the set w1 (X, A, a). The orbits of this action are the
pre-images of elements under 0: 71 (X, A,a) — no(A4,a). Let (F, f): (X,A) — (Y, B)
be a map of pairs. Then Fy: 71 (X, A,a) — m1(Y, B, f(a)) is equivariant with respect
to the homomorphism Fy: 71(X,a) — 71 (Y, f(a)). Let [v] € m1(X, 4, a) with v(1) =
u € A. The isotropy group of [v] is the image of 71 (A, u) in 71 (X, a) with respect to
[w] = [v * w = v~]. Find an example g, @1 € 71(X, A, a) such that oo has trivial and
a1 non-trivial isotropy group. It is in general impossible to define a group structure on
1(X, A, a) such that 1 (X, a) — 71 (X, A, a) becomes a homomorphism.

3. Although thereis only arestricted algebraic structure at the beginning of the exact sequence
we still have a Five Lemma type result. Let f: (X, A) — (Y, B) be a map of pairs. If
fx: mo(A) = mo(B) and fi: w1 (X,a) — w1(Y, f(a)) are surjective and fi: mo(X) —
7o(Y) is injective, then fy: 71(X, A,a) — 71 (Y, B, f(a)) is surjective. Suppose that for
each ¢ € A the maps fi: m1(X,c) = m1(Y, f(c)) and f«: mo(A) — mo(B) are injective
and fyx: m1(A,c) = 71 (B, f(c)) is surjective, then fi: 71 (X, A,a) — 71 (Y, B, f(a)) is
injective for each a € A.

4. Let (X, A) be a pair such that X is contractible. Then 0: w,4+1(X, A,a) — n4(A4,a)is
for each ¢ > 0 and each a € A a bijection.

5. Let A C X be an h-equivalence. Then 7, (X, A,a) =0forn > l anda € A.

6. Let X carry the structure of an h-monoid. Then 71 (X) is abelian and the action of the
fundamental group on 7, (X, *) is trivial.

7. Give a proof of (6.2.8).

8. The 71 (X, *)-action on 7, (X, *) is induced by a map pu,: S(n) — S(n) v S(1) by an
application of the functor [—, X]°. If we use the model D" /S~ ! for the n-sphere, then an
explicit map p;, is x — (2x, *) for 2||x|| < 1 and x — (*,2| x| — 1) for 2||x|| > 1.

6.3 Serre Fibrations

The notion of a Serre fibration is adapted to the investigation of homotopy groups,
only the homotopy lifting property for cubes is used.

(6.3.1) Theorem. Let p: E — B be a Serre fibration. For By C B set Ey =
p~YBy. Choose base points x € By and x € Ey with p(x) = *. Then p induces
forn > 1 a bijection p«: nn(E, Eg, *) = m,(B, By, *).
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Proof. p« surjective. Let x € m, (B, By, *) be represented by
he (1", 91", J" 1) — (B, By, %).

By (3.2.4), there exists a lifting H: I" — E with H(J"™') = {*} and pH = h.
We then have H(dI") C Ey, and therefore H represents a pre-image of x under p.

px injective. Let xo,x; € m,(E, Ey, *) be represented by fy, f1 and have
the same image under p.. Then there exists a homotopy ¢, : (1", 91", J"" 1) —
(B, By, *) such that ¢o(u) = pfo(u), p1(u) = pfi1(u) foru € I". Consider the
subspace T = I" x 01 U J""! x I and define G: T — E by

, el”, t €{0,1},
Gy = i we It
*, ueJ", tel.

The set T C d(I" x [I) is transformed into J”, if one interchanges the last two
coordinates. By (3.2.4) again, there exists a map H: I” x I — E such that
H|T = G and pH = ¢. We can view H as a homotopy from fj to fj. O

We use the isomorphism 7, (E, F, *) = m,(B, *), F = p~'(*) in the exact
sequence of the pair (E, F, *) and obtain as a corollary to (6.3.1) the exact sequence
of a Serre fibration:

(6.3.2) Theorem. ForaSerrefibration p: E — Bwithinclusioni: F = p~'(b) C
E and x € F the sequence

oo 0y (Fo x) — s 700 (E, xX) 25 100 (B, b) —— 1ty (F, x) > ---

is exact. The sequence ends with wo(E, x) — mo(B, b). O

The new map 9 has the following description: Let f: (I",91") — (B, b) be
given. View f as I""! x I — B. Liftto¢: I" — E, constant on J"~!. Then
[ f] is represented by ¢|1"~! x 1. The very end of the sequence requires a little
extra argument. For additional algebraic structure at the beginning of the sequence
see the discussion of the special case in (3.2.7).

(6.3.3) Theorem. Let p: E — B be a continuous map and U a set of subsets such
that the interiors cover B. Assume that for U € U the map py: p~'(U) — U
induced by p is a Serre fibration. Then p is a Serre fibration.

Proof. A subdivision of width § = 1/N, N € N of I” consists of the cubes
I(ay,....an) = [1j=; I(a;) where I(k) = [k/N,(k +1)/N]for0 < k < N,
k € Z. A k-dimensional face of I(a;, ..., a,) is obtained by replacing n — k of the
intervals /(a;) by one of its boundary points. (The a; are integers, 0 < a; < n.)
It suffices to work with an open covering U. Choose N such that each cube
I(ay,...,ay) x I(b) is mapped under % into some U € U. This is possible by
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the Lebesgue lemma (2.6.4). Let V* c I" denote the union of the k-dimensional
faces of the subdivision of 7”.

We have to solve a lifting problem for the space /” with initial condition a. We
begin by extending a over 1" x [0, §] to a lifting of 4. We solve the lifting problems

e H(k—1)
I"xo0uUV X[O,S]ﬁE

ﬁl T H® J”

I"x0UVkx[0,8] ———— B

fork =0,...,n with V™! = @ and H(—1) = a by induction over k. Let W be

a k-dimensional cube and W the union of its (k — 1)-dimensional faces. We can
solve the lifting problems

W x0U W x [0,8] — &, -1y

1
F\J - /HW JPU

W x [0, 8] - U

by a map Hy, since py is a Serre fibration; here U € U was chosen such that
h(W x[0,8]) C U.

The Hy combine to a continuous map H(k): V¥ x [0,8] — E which lifts &
and extends H(k — 1). We define H on the first layer /" x [0, 8] as H(n). We
now treat /™ x [§, 24] similarly with initial condition given by H(n)|I" x {5} and
continue in this manner inductively. O

(6.3.4) Example. Since a product projection is a fibration we obtain from (6.3.3):
A locally trivial map is a Serre fibration. <

(6.3.5) Example. Let p: E — B be a covering with typical fibre F. Since each
map I" — F is constant, 7, (F, =) is for n > 1 the trivial group. The exact
sequence of p then shows py: 7, (E) = m,(B) for n > 2. The covering R — S
then yields 7, (S1) = 0 for n > 2. Moreover we have the exact sequence

1= 11 (E, %) 25 11(B, %) — 710(F, %) —> 70(E, %) 2> 10(B, %) — 1

with the inclusion i: F = p~l(x) C E and mo(F,*) = F. It yields for
p: R — S! the bijection 9: 7;(S!) = Z. A lifting of the loop s,: I — S1,
t +— exp(2mwint) with initial condition 0 is ¢ +— n¢. Hence d[s,] = n. Thus we
have another method for the computation of 71 (S1). <
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(6.3.6) Example. Recall the Hopf fibration p: $2"T1 — CP" (14.1.9). The exact
sequence (6.3.2) and 7; (S') = 0 fori > 1 yield the isomorphisms

ps: T (SPTY = 1;(CPY), fori > 3;

and in particular 7; (S3) == m;(S?) fori > 3, since CP! is homeomorphic to S2
(the Riemann sphere). <&

(6.3.7) Example. From linear algebra one knows a surjective homomorphism
SU(2) — SO(3) with kernel {+ E} =~ Z/2. The space SU(2) is homeomorphic to
S3. Hence SO(3) is homeomorphic to RP3 and 71 (SO(3)) = Z /2.

(6.3.8) Proposition. Let p: (E1, Eg) — B be a relative Serre fibration, i.e.,
p: E1 — B is a Serre fibration and the restriction of p to Ey is also a Serre
fibration. Let (F?, Fé’) be the pair of fibres over p(e) = b € B. Then:
(1) The inclusion induces bijections 7w, (Flb, Fé’, e) = m,(Eq, Eo, e).
(2) mo(Eg) — mo(E1) is surjective if and only ifno(Fé’) — no(Flb) is surjective
for each b € B.

Proof. (1) We first prove the claim for n = 1 and begin with the surjectivity.
Let f': (1,01,0) — (E1, Eg, e) be given. The path (pf)~: I — B is lifted to
g: I — E( withinitial point f(1). Then g(1) € Fy,and f and f = g represent the
same element in 771 (E1, Eg, ¢). The projection p( f * g) is a null homotopic loop
with base point b. We lift a null homotopy to £ with initial condition f * g on I x0
and constant on d/ x I. The lifting is a homotopy (/,97,0) x I — (E1, Eg, e)
from f % g to amap into (F1, Fy, e). This proves the surjectivity.

Suppose fo, f1: ({,01,0) — (Fy, Fy,e) are given,andlet K : (/,01,0)xI —
(E1, Eg, e) beahomotopy from fyto f1. Welift pK~to L: I xI — Eq withinitial
condition L(s,0) = K(s,1) and L(0,¢) = L(1,t) = e. The homotopy p(K *, L)
is a homotopy of loops which is relative to /2 homotopic to the constant map.
We lift a homotopy to E; with initial condition K %, L on I? x 0 and constant on
012 x I. The end is a homotopy from f * k. to f| * k.. This proves the injectivity.

The higher dimensional case is obtained by an application to the relative Serre
fibration (" F1, Q" Fy) — (RQ"E, Q" Ey) — B.

(2) Suppose mo(Eg) — mo(E1) is surjective. The argument above for the
surjectivity is used to show the surjectivity of no(Fé’) — mo(F lb). The other
implication is easy. O

Problems

1. The 2-fold covering S” — R P’ yields for n > 2 the isomorphism 71 (RP") = Z /2.
2. Prove directly the exactness of the sequence (6.3.2) without using (6.1.2).

3. ThemapC — C, z — 22 has the HLP for 79 but not for /1.

4. Let p: (E,e) — (B, b) be a Serre fibration with fibre F = p~!(b). Then

Q" (p): Q"(E.e) — Q"(B.b)
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is a Serre fibration with fibre Q7 (F, e).

6.4 The Excision Theorem

A basic result about homotopy groups is the excision theorem of Blakers and
Massey [22].

(6.4.1) Theorem (Blakers—Massey). Let Y be the union of open subspaces Y1 and
Y, with non-empty intersection Yo = Y1 N Y,. Suppose that

wi(Y1,Y9,%x) =0 forO<i<p, p>1
7w (Y2, Yo, %) =0 for0<i<gq,q>1

for each base point x € Yy. Then the excision map, induced by the inclusion,
[ ﬂn(Yz, Y(), *) — T[n(Y, Y], >I<)

is surjective for | <n < p + q — 2 and bijective for 1 <n < p 4+ q —2 (for each
choice of the base point x € Yy). In the case that p = 1, there is no condition on
7; (Y1, Yo, *).

We defer the proof of this theorem for a while and begin with some applications
and examples. We state a special case which has a somewhat simpler proof and
already interesting applications. It is also a special case of (6.7.9).

(6.4.2) Proposition. Let Y be the union of open subspaces Y1 and Y, with non-
empty intersection Yo. Suppose (Y2,Yy) = 0 is g-connected. Then (Y,Y7) is
q-connected. O

We apply the excision theorem (6.4.1) to the homotopy group of spheres. We
use the following subspaces of §”,n > 0,

P =A{(x1,....xnq1) € 8" | £xp31 2 0} C HE ={x € 8" | x # Feny1}.

We use R* ¢ R*+1 (z1,...,2n) = (21,...,2,0) and similar inclusions for
subsets of R”. We choose * = —e; as a base point; e; is the standard unit vector.

(6.4.3) Lemma. We have isomorphisms 8: w1 (D", 8" %) — m;(S", %) for
i >0,n>0andm;(S",*) — m;(S", DL, %) fori >0,n > 1.

Proof. In the first case we use the exact sequence of the pair (D"*1, S*). The
space D1 is contractible and hence 7; (D"*!, %) = 0 fori > 0 and n > 0.

In the second case we consider similarly the exact sequence of (S”, D). Note
that x = —e; € D’} forn > 1. O
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For n > 0 we have a diagram with the isomorphisms (6.4.3)

71 (8™, %) ————— w1 (5" %)

43 E

jTl'-‘rl(Derl’ Sn?*) 4L>ni+1(Sn+ls Di—‘rla *)

The morphism ¢ is induced by the inclusion and E is defined so as to make the
diagram commutative. Note that the inductive proof of (1) in the next theorem only
uses (6.4.2).

(6.4.4) Theorem. (1) 7;(S") = 0fori < n.
(2) The homomorphism t is an isomorphism fori < 2n —2 and an epimorphism
fori =2n — 1. A similar statement holds for E.

Proof. Let N(n) be the statement (1) and E (n) the statement (2). Obviously N(1)
holds. Assume N () holds. We then deduce E(n). We apply the excision theorem
to (Y.Y1,Y2.Yp) = (S"F1, D!, D"+ §"). By N(n) and (6.4.3) we have
;i (S") =~ m+1(Di+l,S") = 0for 0 < i < n. We use the excision theorem
for p = g = n + 1 and see that ¢ is surjective for i + 1 < 27 and bijective for
i +1<2n—1. Finally, E(n) and N(n) imply N(n + 1).

In order to have the correct hypotheses for the excision theorem, we thicken
the spaces, replace D’} by H! and note that the inclusions D"+ C H and
S"=''c H% N H" are h-equivalences. O

(6.4.5) Proposition. The homomorphism m; (D™ 1, 8" %) — m;(D"T1/S", %)
induced by the quotient map is an isomorphism fori < 2n — 1 and an epimorphism
fori = 2n.

Proof. Consider the commutative diagram

i (DI, S, %) ——— m; (DT /8", %)

! o

2
i (871, D sy — Py 7 (sm1 D ),

The map (1) is induced by a homeomorphism and the map (2) by a homotopy
equivalence, hence both are isomorphisms. Now apply (6.4.4). O

The homomorphism FE is essentially the suspension homomorphism. In order
to see this, let us work with (6.1.4). The suspension homomorphism X is the
composition

St (X #) o Tt (CX, X %) 2 701 (CX/ X %) = g1 (5X, %)
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with the quotient map ¢: D(n + 1) - D(n + 1)/S(n) = S(n + 1).
The next result is the famous suspension theorem of Freudenthal ([66)).

(6.4.6) Theorem. The suspension Xy : 7;(S(n)) — mi+1(S(n + 1)) is an isomor-
phism fori < 2n — 2 and an epimorphism fori = 2n — 1.

Proof. We have to show that g« : 7 +1(CX, X) —> 7i41(CX/X)isfor X = S(n)
an isomorphism (epimorphism) in the appropriate range. This follows from (6.4.5);
one has to use that S” is homeomorphic to S(n) and that D"*! is the (pointed)
cone on S”". O

(6.4.7) Theorem. 7,(S(n)) = Z and Z«: 1,(S(n)) = wp+1(S(n + 1)) is an
isomorphism (n > 1). The group 7, (S(n)) is generated by the identity of S(n).

Proof. From the exact sequence m5(S3) — m2(5?) — m1(S!) — 7(S3) of the
Hopf fibration S! — $3 — §2 and 7;(S®) = 0 for j = 1,2 we obtain an
isomorphism 9: 75(S?) =~ 7;(S') = Z. From (6.4.6) we obtain a surjection
Yyt m1(S(1)) = 72(S(2)); this is an isomorphism, since both groups are isomor-
phic to Z. For n > 2, (6.4.6) gives directly an isomorphism ¥.. We know that
m1(S(1)) = Z is generated by the identity, and X, respects the identity. O

(6.4.8) Example. We continue the discussion of the Hopf fibrations (6.3.6). The
Hopf fibration S! — §2"*t!1 — CP" and m;(S?"*!) = 0 fori < 2n yield
72(CP") = m1(S!) = Z and 7; (CP™) = 0 for0 < i < 2n,i # 2. The inclu-
sion §2#+1 — §27+3 7 15 (z,0) induces an embedding CP" C CP"*!. We
compare the corresponding Hopf fibrations and their exact sequences and conclude
12(CP") = mp(CP" ). Let CP™® = | J,,..; CP" be the colimit. The canonical
inclusion C P" C C P induces ; (CP") = m; (CP*®) fori < 2n. A proof uses
the fact that a compact subset of C P is contained in some finite C PV . Therefore
C P is a space with a single non-trivial homotopy group 7, (CP*°) = Z.

Note also the special case m3(S?) = m3(S3) = Z.

We have similar results for real projective spaces. The twofold coverings
Z/2 — S™ — RP" are use to show that 7 (RP?) =~ m(RP3) =~ ...
71(RP%) = Z/2, induced by the inclusions, 7r; (RP") = m; (RP"*!) fori <n
and 7; (RP") = 0for0 <i < n,i # 1. The space RP has a single non-trivial
homotopy group 71 (RP*>°) =~ Z/2. <

6.5 The Degree

Letd: 7,(S(n)) — Z be the isomorphism which sends [id] to 1. If f: S(n) —
S(n) is a pointed map, then fi: 7,(S(n)) — 7, (S(n)) is the multiplication by the
integer d(f) = d(f«[id]) = d([f]). Since the map [S(n), S(n)]® — [S(n), S(n)]
which forgets about the base point is bijective (see (6.2.8)), we can transport d
to a bijection d: [S(n),S(n)] — Z. The functoriality fig+« = (fg)« shows
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d(fg) = d(f)d(g); therefore d(h) = %1 if & is a homeomorphism. The suspen-
sion sends [ f] to [f Aid]; hence d(f) = d(f Aid).

(6.5.1) Proposition. Given pointedmaps f: S(m) — S(m)andg: S(n) — S(n).
Then d(f A g) =d(f)d(g).

Proof. We use the factorization f A g = (f Aid)(id Ag). The map f Aidis a
suspension of f, and suspension does not change the degree. Lett: S(m)AS(n) —

S(n) A S(m) interchange the factors. From t(g A id)t = id Ag we conclude
d(idag) =d(gnid) =d(g). O

Let k,: S(n) = S" be a homeomorphism. The bijection
[S",8"] = [S(n), S, [f]+> knShy']

is independent of the choice of k,,. We use this bijection to transport d to a bijection
d:[S", 8" — Z. It d([f]) = k we call k the degree d(f) of f. We still have
the properties d( f)d(g) = d(fg), d(id) = 1, d(h) = £1 for a homeomorphism
h. By a similar procedure we define the degree d( /) for any self-map f of a space
S which is homeomorphic to S(n).

Matrix multiplication /4: R* — R”, x — Ax induces for each A € GL,(R) a
pointed map Ly : S®™ — S _ For the notation see (6.1.4).

(6.5.2) Proposition. The degree of Ly is the sign of the determinant det(A).

Proof. Let w: I — GL,(R), t — A(t) be a path. Then (x,t) > Ly)x is a
homotopy. Hence d(L4) only depends on the path component of 4 in GL,(R).
The group GL,(R) has two path components, distinguished by the sign of the

determinant. Thus it suffices to show that for some A with det(4) = —1 we have
d(L4) = —1. By the preceding discussion and (6.1.4) we see that (x1,...,X,)
(—x1,X2,...,Xxp) has degree —1. O

The stereographic projection (6.1.4) now shows that the map S” — S” which
changes the sign of the first coordinate has degree —1.

(6.5.3) Proposition. Ler A € O(n + 1). Then A4: S™ — S", x — Ax has degree
det(A).

Proof. Again it suffices to verify this for appropriate elements in the two path
components of O(n + 1), and this we have already achieved. O

(6.5.4) Corollary. The map S™ — S™, x > —x has degree (—1)" 1. O

A vector field on S" is a continuous map F: S” — R"*! such that for each
x € S" the vector F(x) is orthogonal to x. For the maximal number of linearly
independent vector fields see [3].
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(6.5.5) Theorem. There exists a vector field F on S™ such that F(x) # 0 for each
x € 8" if and only if n is odd.

Proof. Letn = 2k — 1. Then

(X1, X2, .oy Xog—1, X2k) P> (X2, =X1,. .., X2k, —X2k—1)

is a vector field with the desired property.

Let F be a vector field such that F(x) # 0. Set V(x) = F(x)/||F(x)|. Then
(x,1) = cosmt-x +sinzt - V(x) is a homotopy from the identity to the antipodal
map. Hence the antipodal map has degree 1. By (6.5.4), n is odd. O

(6.5.6) Proposition. Let 7: S(m) A S(n) — S(n) A S(m) interchange the factors.
Then d(t) = (—1)™".

Proof. By (6.5.2) we know the analogous assertion for the models S ). O

6.6 The Brouwer Fixed Point Theorem

We prove the fixed point theorem of Brouwer and a number of equivalent results.
As an application we discuss the problem of topological dimension.
Let us first introduce some notation. Consider the cube

W=W"'={x)eR"|-1<x; <1}

with the faces C; (£) = {x € W" | x; = £1}. We say, B; C W" separates C; (+)
and C;(—), if B; is closed in W, and if

W ~B; =Bi(+)UBi(-), 0=Bi(+)NBi(—), Ci(¥) C Bi(%),

with open subsets B;(+) and B;(—) of W ~ B;. The n-dimensional standard
simplex is A”. Its boundary dA” is the union of the faces 9; A" = {(tp,...,ty) €
A" | t; = 0}.

(6.6.1) Theorem. The following statements are equivalent:

(1) A continuous map b: D™ — D" has a fixed point (Brouwer Fixed Point
Theorem).

(2) There does not exist a continuous map r: D" — S™~! which is the identity
on S"! (Retraction Theorem).

(3) The identity of S"~! is not null homotopic (Homotopy Theorem).

(4) Let f: D" — R”" be a continuous map such that f(z) = z forz € S*L.
Then D" is contained in the image of f.

(5) Letg: D™ — R”" be continuous. Then there exists a fixed point or there exists
z € 8" ! such that g(z) = Az with A > 1.
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(6) Letv;: W" — R, 1 <i < n be functions such that v; (x) < 0 for x € C;(—)
and v;i(x) > 0for x € Cj(+4). Then there exists x € W" such that v; (x) = 0
for each i (Intermediate Value Theorem).

(7) Suppose B; separates C;(—) and C;(+) for 1 <i < n. Then the intersection
By N By, N---N By is non-empty.

(8) Let By, ..., By be aclosed covering of A" suchthate; ¢ B; and 9; A" C B;.
Then (\;—y Bi # 9. The same conclusion holds if we assume that the B; are
open.

(9) Let By, ..., B, beaclosed covering of A" suchthate; € Bj and9; A"NB; =
@. Then (i, Bi # 9.

The fixed point theorem expresses a topological property of D”. If h: X — D"
is a homeomorphism and f: X — X a self-map, then 4fh~! has a fixed point z
and therefore f has the fixed point 2(z). We can apply (2) to the pairs (W", W ")
and (A", 9A™), since they are homeomorphic to (D", S*~1). Statement (3) is also
equivalent to the inclusion S”~! C R” ~ {0} not being null homotopic (similarly
for dW" in place of "~ 1).

Proof. (1) = (2). Suppose r is a retraction. Then x +— —r(x) is a map without
fixed point.

(2) = (3). The map r: D" — S"~! which corresponds by (2.3.4) to a null
homotopy of the identity is a retraction.

(3) = (1). Suppose b has no fixed point. Then

x —th(x)
[x —2b(x)]

Sl x T - 8" (x,1) > = N(x —th(x))

is a homotopy from the identity to the map f: x +— N(x — b(x)). Since b
has no fixed point, the formula for f defines a map on the whole of D", and
then (x,7) — f(tx) is a homotopy from the constant map to f. Thus f is null
homotopic, and therefore also id(S”™!).

(2) = (4). If x is contained in the interior of D", then there exists a retraction
riR" ~x — S" 1 of S”71 c R” <~ x. If x is not contained in the image of f,
thenr o f: D" — S™~! contradicts the retraction theorem.

(4) = (5). Defineamap f: D" — R" by

i) f(x) =2x—g(2x), lxll < 1/2,
i) f() = x| x =20 = Ixg(lxl ™ ). ) = 1/2.

For ||x| = % we obtain in both cases 2x — g(2x). Thus f is a well-defined

continuous map.

For ||x|| = 1 we have f(x) = x. By (4), there exists y with f(y) = 0. If
Iy < %, then (i) shows that 2y is a fixed point. If ||y| > %, then ||y|| # 1, and
(ii) shows the second case with A = (2 —2|y|)~! > 1.
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(5) = (1). A special case.

(3) = (6). Setv: W" — R", x > (v1(x), ..., vs(x)). Suppose v(x) # 0 for
each x € W". Thenv: W" — R" ~ 0. Consider /: (¢,x) — (1 —t)x + tv(x).
If x € Ci(—), i.e., x; <O0,then (1 —t)x; + tv;(x) < O for each ¢t € I. Hence
hy: W™ — R"~0is ahomotopy from the inclusion to v. Since v has an extension
to W, itis null homotopic, but the inclusion is not null homotopic. A contradiction.

(6) = (7). Let d denote the Euclidean distance. Define v; : W — R by

—d(x, B;), x € Bi(-),
vi(x) =
d(x,Bi), XEBi(+)UBi,
and apply (6).

(7) = (2). Letr: W" — 9W" be a retraction. We define B;(+) =
r~Y(£x; > 0)and B; = r~!'(x; = 0). We apply (7) and obtain a contradic-
tion.

(3) = (8). We use the functions v; (x) = d(x, B;). Our assumptions imply
vi(e;) > 0, and v; (x) = 0 provided x € d; A". If the B; have empty intersection,
then v(x) = (vo(x),...,vu(x)) # O for every x € A". This gives us a map

a: A" - A", x> O vi(x) v (x),

because, since the B; cover A", for each x at least one coordinate v; (x) is zero. If
x € 0; A", then a(x) € d; A", hence (1 — t)x + tv(x) € 9; A" foreach ¢ € [0, 1].
The identity of dA” is therefore homotopic to B = «|dA”. Since S has the
extension « it is null homotopic, and therefore also id(dA™) is null homotopic.
This contradicts (3).

Now suppose the B; are open. By a general result of point-set topology there
exist closed sets C; C B; and the C; still form a covering. In order to make sure
that the C; satisfy the hypotheses of (8) we can replace the C; by C; U d; A”. The
first part of the proof now shows that the C; have non-empty intersection.

(8) = (9). Set U; = A" ~ B;. Suppose the B; have empty intersection. Then
the U; cover A". Since the B; are a covering, the U; have empty intersection. By
construction, e; ¢ U; and 9; A" C U;. We therefore can apply (8) in the case
of the open covering by the U; and see that the U; have non-empty intersection.
Contradiction.

9) = (2). Let 4; = {(to,....ts) € 0A" | t; > 1/n}. Letr: A" — 9A" be
a retraction and set B; = r~!(A;). Then (9) tells us that the B; have non-empty
intersection, and this is impossible. O

Theorem (6.6.1) has many different proofs. For a proof which uses only basic
results in differential topology see [79]. Another interesting proof is based on a
combinatorial result, called Sperner’s Lemma [173].
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The retraction theorem does not hold for infinite-dimensional spaces. In [70,
Chapter 19] you can find a proof that the unit disk of an infinite-dimensional Banach
space admits a retraction onto its unit sphere.

Does there exist a sensible topological notion of dimension for suitable classes
of spaces? Greatest generality is not necessary at this point. As an example we
introduce the covering dimension of compact metric spaces X. (For dimension
theory in general see [94].) Let € be a finite covering of X and ¢ > 0 a real
number. We call € an e-covering, if each member of € has diameter less than &.
We say € has order m, if at least one point is contained in m members but no point
inm + 1. The compact metric space X has covering dimension dim X = k, if there
exists for each & > 0 a finite closed e-covering of X of order k + 1 and k € Ny
is minimal with this property. Thus X is zero-dimensional in this sense, if there
exists for each & > 0 a finite partition of X into closed sets of diameter at most €.
We verify that this notion of dimension is a topological property.

(6.6.2) Proposition. Let X and Y be homeomorphic compact metric spaces. If X
is k-dimensional then also is Y .

Proof. Leth: X — Y beahomeomorphism. Fix ¢ > 0and let U be the covering of
Y by the open e-balls Us(y) = {x | d(x,y) < &}. (We use d for the metrics.) Let
8 be a Lebesgue number of the covering (A~1(U) | U € U). Since dim X = k,
there exists a finite closed §-covering € of X of order k + 1. The finite closed
covering & = (h(C) | C € €) of Y has then the order k + 1, and since each
member of C is contained in a set /=1 (U), the covering D is an s-covering. Thus
we have shown dim Y < k.

We now show thatdim ¥ > k, i.e., there exists § > 0 such that each finite closed
8-covering has order at least k + 1. Let ¢ > 0 be a corresponding number for X.
A homeomorphism g: Y — X is uniformly continuous: There exists a § > 0 such
that d(y1, y2) < & implies d(g(y1), g(y2)) < e. Soif € is a §-covering of Y, then
D = (g(C)| C €€)isane-covering of X. Since D has order at least k + 1, so
has €. O

(6.6.3) Proposition. There exists ¢ > 0 such that each finite closed e-covering
(Bj | j €J) of A" has order at least n + 1.

Proof. Let ¢ be a Lebesgue number of the covering U; = A" ~9;A",i =0,...,n.
Hence for each j € J there exist i such that B; C U;, and the latter is equivalent
to B; N 9; A" = @. Suppose e, € Bj. Since ey € 9; A" for i # k, we cannot
have B; C U;; thus e; € B; implies B; C Ug. Since each ey is contained in at
least one of the sets B; we conclude |J| > n + 1. For each j € J we now choose
g(j) €40,...,n} such that B; N dg(;)A" = @ and set Ay = U{B; | g(j) = k};
this is a closed set because J is finite. Each B; is contained in some Ay, hence
the Ay cover A". Moreover, by construction, Az N dz A" = @. We can therefore
apply part (9) of (6.6.1) and find an x in the intersection of the A;. Hence for each
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k there exists ix such that x € B;, . Since each B; is contained in exactly one of
the sets Ay, the element x is contained in the n + 1 members B;, , k=0,...,nof
the covering. O

We can now compare the covering dimension and the algebraic dimension.

(6.6.4) Theorem. A" has covering dimension n. A compact subset of R" has
covering dimension at most n.

Proof. By (6.6.3), A" has covering dimension at least n. It remains to construct
finite closed e-coverings of order n + 1 for each ¢. See Problem 4. O

Problems

1. Let U, V be an open covering of 2. Then there exists either a path u: I — U such that
u(0) e I x0,u(l) e I xlorapathv: I — V suchthatv(0) €e 0x I,v(l) e I x 1.

2. Let U, V be an open covering of AZ. Then there exists a path component U of U such
that U N 3; A% # @ for each i or a path component of V' with a similar property.

3. Generalize the preceding two exercises to n dimensions.

4. The following figure indicates the construction of closed e-coverings of order 3 for the
square.

Generalize this construction to the cube /" by a suitable induction.
5. Suppose 1" is the union of a finite number of closed sets, none of which contains points
of two opposite faces. Then at least n 4 1 of these closed sets have a common point.

6.7 Higher Connectivity

For many applications it is important to know that the homotopy groups of a space
vanish in a certain range. We discuss several reformulations of this fact. In the
following 7o (X, x) = mo(X) with base point [x]. The space D is a singleton and
S~ =g.

(6.7.1) Proposition. Let n > 0. The following are equivalent:
(1) (X, x) = 0foreachx € X.
(2) Each map S™ — X has an extension to D",
(3) Each map 31"t — X has an extension to 1" 1.
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Proof. The case n = 0 is trivial. The equivalence of (2) and (3) is a consequence
of the homeomorphism (D" *1!, §") =~ (1"*1,91"*!). Suppose f: S — X is
given. Use e; = (1,0,...) € S" as a base point and think of f representing
an element in 7, (X, x). If (1) holds, then f is pointed null homotopic. A null
homotopy S” x I — X factors over the quotient map S x I — D", (x,t) —
(1 — t)e; + tx and yields an extension of f. Conversely, let an element « of
7, (X, x) be represented by a pointed map f: (S, e1) — (X, x). If this map has
an extension F to D"T1, then (F, f) represents B € m,+1(X, X,x) = 0 with
B = «. O

(6.7.2) Proposition. Letn > 0. Let f: (D", S"™') — (X, A) be homotopic as
a map of pairs to a map k: (D", S"™1) — (A, A). Then f is relative to S™"~!
homotopic to a map g such that g(D") C A.

Proof. The case n = 0 is trivial. Let G,: (D", S""!) — (X, A) be a homotopy
from f to k according to the assumption. Define A: D" x I — D" x I by
Ax,1) = Qa(x,1) 1 x,2—a(x, 1)) with the function a(x, 1) = max(2| x|, 2—1).
Then H = G o A is a homotopy with the desired property from ftog = H;. O

Dn

(6.7.3) Proposition. Let n > 1. The following assertions about (X, A) are equiv-
alent:
(1) 7, (X, A, %) = 0 for each choice of * € A.
(2) Each map f: (I1",01") — (X, A) is as a map of pairs homotopic to a
constant map.
(3) Eachmap f: (I",d1") — (X, A) is homotopic rel 1" to a map into A.

Proof. (1)=(2). Let f: (I",0I") — (X, A)be given. Since J"~!is contractible,
there exists a homotopy of the restriction f: J"~! — A to a constant map. Since
J"=1 c 9I™ and 3I™ C I™ are cofibrations, f is as a map of pairs homotopic to
g: (I",0I") — (X, A) such that g(J"™ 1) = {ae}. Since m,(X, A,ap) = 0, the
map g: (I",91",J" 1) — (X, A, ay) is null homotopic as a map of triples.

2) = (3). (6.7.2).

(3) = (1). Let f: (" 3I",J" ') — (X,A, *) be given. By assump-
tion (3) [f] is contained in the image of 7, (A, A4, *) — w(X, A, *). Now use
(A, A, x) = 0. O
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We call (X, A) n-compressible if one of the assertions in (6.7.3) holds. More
generally, we call amap f: X — Y n-compressible if the following holds: For
each commutative diagram

9" —— X

|, b
m—2 .y
there exists W: /"™ — X such that V|0I" = ¢ and f¥ >~ O relative to d/”. (This

amounts to part (3) in (6.7.3).) This notion is homotopy invariant in the following
sense:

(6.7.4) Proposition. Given f: X — Y and a homotopy equivalence p: Y — Z.
Then f is n-compressible if and only pf is n-compressible. O

(6.7.5) Proposition. Let n > 0. The following assertions about (X, A) are equiv-
alent:

(1) Eachmap f: (19,019) — (X, A), q € {0,...,n} is relative to 017 homo-
topic to a map into A.

(2) The inclusion j: A — X induces for each base point a € A a bijection
Jx: mwq(A,a) — n4(X,a) for ¢ < n and a surjection for ¢ = n.

(3) mo(A) — mo(X) is surjective, and wy(X, A,a) = 0 forq € {1,...,n} and
eacha € A.

Proof. (1) < (3). The surjectivity of m9(A) — me(X) is equivalent to (1) for
q = 0. The other cases follow from (6.7.3).
(2) < (3). This follows from the exact sequence (6.1.2). O

A pair (X, A) is called n-connected if (1)—(3) in (6.7.5) hold. We call (X, A)
oo-connected if the pair is n-connected for each n. A pair is co-connected if and
only if j.: 7, (A, a) = 7, (X, a) is always bijective. If X # @ but A = @ we say
that (X, A) is (—1)-connected, and (4, @) is co-connected.

(6.7.6) Proposition. Let n > 0. The following assertions about X are equivalent:
(1) mg(X,x) =0for0<q <nandx € X.
(2) The pair (CX, X) is (n + 1)-connected.
(3) Eachmap f: 019 — X,0<q <n + 1 has an extension to 1.

Proof. The cone CX is contractible. Therefore 0: 7441 (CX, X, *) = my(X, *).
This and (6.7.5) shows the equivalence of (1) and (2). The equivalence of (1) and
(3) uses (6.7.1). O

A space X is n-connected if (1)—(3) in (6.7.6) hold for X. Note that this is
compatible with our previous definitions for n = 0, 1.
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Let f: X — Y beamapand X C Z(f) the inclusion into the mapping
cylinder. Then f is said to be n-connected if (Z(f), X) is n-connected. We
then also say that f is an n-equivalence. Thus f is n-connected if and only if
Jei g (X, x) = mg(Y, f(x)) is for each x € X bijective (surjective) for ¢ < n
(g = n). If f is an oo-equivalence we also say that f is a weak (homotopy)
equivalence.  Thus f is a weak equivalence if and only if fy: 7,(X,x) —
7w, (Y, f(x)) is bijective for each n > 0 and each x € X.

(6.7.7) Proposition. Let (p1, po): (E1, Eo) — B be arelative Serre fibration. Let
F jb denote the fibre of p; over b. Then the following are equivalent:

(1) (E1, Eo) is n-connected.
() (F?, Fob) is n-connected for each b € B.

Proof. This is a direct consequence of (6.3.8). O

The compression properties of an n-connected map can be generalized to pairs
of spaces which are regular unions of cubes of dimension at most n. We use this
generalization in the proof of theorem (6.7.9). Consider a subdivision of a cube 7”.
Let us call B a cube-complex if B is the union of cubes of this subdivision. A
subcomplex A of B is then the union of a subset of the cubes in B. We understand
that B and A contain with each cube all of its faces. The k-skeleton B(k) of B
consists of the cubes in B of dimension < k; thus A(k) = B(k) N B.

(6.7.8) Proposition. Let f: X — Y be n-connected. Suppose (C, A) is a pair of
cube-complexes of dimension at most n. Then to each commutative diagram

A—25x

imq} |

C —Y
there exists W: C — X such that V|A = ¢ and [V ~ ® relative to A.

Proof. Induction over the number of cubes. Let A C B C C such that C is
obtained from B by adding a cube W of highest dimension. Then oW C B.
By induction there exists ¥': B — X such that ¥/|4A = ¢ and a homotopy
H: fU' ~ ®|B relative to A. Extend H to a homotopy of ®. The end ®; of this
homotopy satisfies ®1|B = f¥'. We now use that f is n-connected and extend
W over W to W: C — X such that f¥ ~ ®; relative to B. Altogether we have
fY ~p &) ~4 Pand P|A = V|4 = ¢. O

(6.7.9) Theorem. Let ¢: (X, Xo, X1) — (Y, Yy, Y1) be a map such that the re-
strictions @; . X; — Y; are n-connected and ¢o1: Xo N X1 — Yo N Yy is (n —1)-
connected. Suppose X = XgUX{ andY = Y7 UY?. Then ¢ is an n-equivalence.
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Proof. We use mapping cylinders to reduce to the case of inclusions ¢: X C
Y,pi: X; CYi. Let(F, f): (I",01") — (Y, X) be given. We have to show that
this map is homotopic relative to d/” to a map into X. Let

A= F' Y ~Y)U fAHX ~XP).

These sets are closed and disjoint. By the Lebesgue lemma we choose a cubical
subdivision of /" such that no cube W of the subdivision intersects both 4o and
A1. Let K; be the union of the cubes W which satisfy

FW)cy?, fWwnal") cX;.
Then K; is a cubical subcomplex and
I"=KoyUK,, F(K;))CY’ [f(Kindl")cCX;.

We denote by K*® the (n — 1)-skeleton of a cubical complex; then K N dI" =
K*®*NoaI"and Ko N K7 = K§ N K7. We have a commutative square

Xo1 — Yo1

< ¢
Tfm \0\1 TFm
al" N Koy — Ky, -

Since (Yp1, Xo1) is (n — 1)-connected there exists a homotopy relative to 91" N Ko
from Fy; to amap go1: Kg; — Xoi1. Define go: Ko N (01" U Ko) — Xo by

go|lKoNOI" = fo. golKoN K] = go1-

(Both maps agree on the intersection.) The homotopy Fp; =~ go1 and the constant
homotopy of fo combine to a homotopy of Fy|Ko N (01" U K7) to go which is
constant on Ko N d/". Since the inclusion of a cube complex into another one is a
cofibration, this homotopy can be extended to a homotopy ¥ : K¢ x I — Yo from
Fy to Hy. We obtain a diagram

Xo ——— ¥

h ~ ho
80 ~ Hy
~
~

KoN(@I" UKD — K,

where Hy is homotopic to ho: Ko — X, relative to Ko N (3" U K7), since
(Yo, Xo) is n-connected.

We prove the second part similarly. We obtainamap g;: K1N(d/"UKJ) — Y
with g1|Ky N dI" = f; and g1|K; N K§ = go1 and then

X1 ——m1;

ﬁ\ 5
Tgl \\l THI
~
~

KiN@I"UKS — K.
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The maps /o and h; coincide on K§, and yield amap h: K5 U K7 — X which is
homotopic relative d1” to F|K§ U K7; moreover h|dI" = f. Let now W be an
n-dimensional cube, say with W C Ky. Then 0W C K§and h(dW) = ho(dW) C
Xo. Since (Yp, X¢) is n-connected, we can deform the map relative to W to a map
into Xg. O

(6.7.10) Corollary. Let f: X — Y be an n-connected map between well-pointed
spaces. Then Xf : XX — XY is (n + 1)-connected. If X is n-connected, then
SX is (n + 1)-connected. The sphere S¥+1 is k-connected.

Proof. Let X' X denote the unpointed suspension of X . This is a quotient of X x [
and covered by the open cones Co = X x [0, 1[/X x0and C; = Xx]0,1]/X x 1
with intersection X x ]0, 1[. We can apply (6.7.7) directly; the cones are contractible
and therefore the induced maps C;(X) — C;(Y) oo-connected. In the case of a
well-pointed space X the quotient map ¥’X — XX is an h-equivalence. O

(6.7.11) Theorem. Let f: X — Y be a continuous map. Let (U; | j € J) and
(V; | j € J) open coverings of X and Y such that f(U;) C V;. Suppose that
for each finite E C J the induced map fEg: (\;cp Ui — (\jeg V) is a weak
equivalence. Then f is a weak equivalence

Proof. By passage to the mapping cylinder we can assume that f is an inclusion.
Leth: (I",01") — (Y, X) be given. We have to deform £ relative to 07" into X .
By compactness of /" it suffices to work with finite J. A simple induction reduces
the problem to J = {0, 1}. Then we apply (6.7.9). O

Problems

1. LetY ={0}U{n~ ! | n € N} and X the same set with the discrete topology. Then the
identity X — Y is a weak equivalence but there does not exist a weak equivalence ¥ — X.
2. Identify in S the open sets {(x, ¥) | ¥ > 0} and {(x, y) | y < 0} to a point. The quotient
map S! — S onto the quotient space S, consisting of four points, is a weak equivalence
(but not a homotopy equivalence). In particular 71 (S) =~ Z. Show that S has a universal
covering.

6.8 Classical Groups

We use exact sequences of Serre fibrations and deduce from our knowledge of
7; (S™) other results about homotopy groups of classical groups and Stiefel man-
ifolds. We use a uniform notation for the (skew) fields F = R, C, H and the
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corresponding groups (orthogonal, unitary, symplectic)

O(n) = 0(n,R), SO(n) = SO(n,R),
U@n) = 0#,C), SU®@m)=SO0(n,0C),
Sp(n) = O(n, H).

Let d = dimg F. The starting point are the (Serre) fibrations which arise from the
action of the orthogonal groups on the unit spheres by matrix multiplication

0, F) 5 O(n + 1,F) — §4+D-1
SO(n,F) 5 SO + 1,F) — §40+D-1,

The inclusions j of the groups arise from A +— (‘3 (1)) We also pass to the colimit
and obtain O(oo, ) = colim, O(n, ) and SO(oco, F) = colim, SO(n, ). From
;i (S") = 0,7 < n and the exact homotopy sequences of the fibrations we deduce
that the inclusions j : O(n,F) - O(n 4+ 1,F) and j: SO(n,F) — SO(n + 1,[F)
are d(n + 1) — 2 connected. By induction and passage to the colimit we obtain

(6.8.1) Proposition. For n < m < oo, the inclusions O(n,F) — O(m,[F) and
SO(n,F) — SO(m,[F) are d(n + 1) — 2 connected; in particular, the homomor-
phisms 7;(O(n,F)) — m;(O(m, F)) are isomorphisms in the rangei < n—2 (R),
i<2n—1(C),andi <4n + 1 (H). O

We turn our attention to Stiefel manifolds of orthonormal k-frames in F”:
Vi (R") = O(n)/O(n — k) = SO(n)/SO(n — k),
Vi(C*) = Um)/U(n — k) = SU®m)/SU®@n — k),
Vi (H") = Sp(n)/Sp(n — k).

We have the corresponding (Serre) fibrations of the type H — G — G/H for
these homogeneous spaces. We use (6.8.1) in the exact homotopy sequences of
these fibrations and obtain:

(6.8.2) Proposition. ; (Vi (")) =0fori <dn—k+1)—2. O
We have the fibration
p: Vk+1(|}_n+1) —> Vl([F”'H), (U],...,Uk+1) = Vk+1-

The fibre over eg 41 is homeomorphic to Vi (F"); with ¢: v — (v, 0) we obtain a
homeomorphism j : (vy,..., V%) > (tv1, ..., Vg, ex41) onto this fibre. From the
homotopy sequence of this fibration we obtain

(6.8.3) Proposition. j.: 7; (Vi (F")) — m; (Viy1 (F*T)) is an isomorphism for
i<dmn+1) -3 O
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We use V4 (F") = S9! and 7r,(S?) = Z and obtain from (6.8.3) by induction
(6.8.4) Proposition. nz(n_k)+1(Vk(Cn)) ~/7, 7T4(n_k)+3(Vk([H]n)) ~Z. |
The real case is more complicated. The result is

(6.8.5) Proposition.

Z, k=1, orn—keven,

Tk VR = k=2 n—k odd

Proof. By (6.8.3) and induction it suffices to consider the case k = 2. Later we
compute the homology groups of V,(R"), and the theorem of Hurewicz will then
give us the desired result. O

Problems

1. The group O(n) has two path components. The groups SO(n), U(n), SU(n), and Sp(n)
are path connected.
2. In low dimensions we have some special situations, namely

U(l) = SO(2) =~ S,
Spin(3) 2 SU(2) = Sp(1) = S?3,
Z/2 — SU(2) — SO(3), a 2-fold covering,
SU(n) — U(n) — S, afibration.

Use these data in order to verify

71(80(2)) = 11 (0(2)) = Z,

71(SO(3)) = 71(SO(n)) = Z/2, m >3,
r1(U() = 71 (Un)) = Z, n=>1,
71(SU(n)) = m1(Sp(n)) = 0, n=>1,
m2(SU(n)) = m2(U(n)) = m2(Sp(n)) =0, n>1,
m2(S0(n)) = 0, n >3,
73(U(2) = m3(U(k)) = Z, k>2,
73(SU(Q2)) = m3(SU(k)) = Z, k>2,
m3(Sp(1)) = n3(Sp(k)) = Z, k>1,

73(SO(3)) =~ Z.

6.9 Proof of the Excision Theorem

In this section we present an elementary proof of the excision theorem (6.4.1).
The proof is due to D. Puppe [46]. We derive the excision theorem from a more
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conceptual reformulation (6.9.3). The reformulation is more satisfactory, because
it is “symmetric” in Y1, Y. In (6.4.1) we have a second conclusion with the roles
of Y1 and Y, interchanged.

We begin with a technical lemma used in the proof.

A cube in R”, n > 1 will be a subset of the form

W =W@a,§L)={xeR"|a; <x;i <a; +6fori € L,a; = x; fori ¢ L}

fora = (ai,...,an) € R*, 8 >0, L C {1,...,n}. (L can be empty.) We set
dim W = |L|. A face of W is a subset of the form

W ={xeW]|xi=a; fori€lLy x;=a;+8 forje L}

for some Lo C L, Ly C L. (W’ can be empty.) Let dW denote the union

of all faces of W which are different from W. We use the following subsets of
W = W(a,é, L):

K,(W) = {x eW|xi<a; + % for at least p valuesi € L},
G,(W) = {x eW|xi>a; + % for at least p valuesi € L}.

Here 1 < p < n. For p > dim W we let K,(W) and G, (W) be the empty set.

(69.1) Lemma. Let f: W — Y and A C Y be given. Suppose that for p <
dim W the inclusions

FTHANW CK,(W') forall W' C oW

hold. Then there exists a map g which is homotopic to f relative to OW such that
g Y (A) C K,(W). (Similarly for G, in place of K,.)

Proof. We can assume that W = [", n > 1. We define h: I" — I" in the
following manner: Let x = (%, cee, %). For aray y which begins in x we consider
its intersection P(y) with 8[0, %]n and its intersection Q(y) with d/”. Let h map
the segment from P(y) to Q(y) onto the single point Q(y) and the segment from
x to P(y) affinely to the segment from x to Q(y). Then % is homotopic relative to
aI" to the identity. Weset g = fh. Letz € [" and g(z) € A. If z; < % forall i,
then z € K, (I") C K,(I"). Suppose now that for at least one i we have z; > %,
then /i(z) € 91" and hence h(z) € W’ for some face W’ with dim W' = n — 1.
Since also h(z) € f~1(A), by assumption h(z) € K,(W’). Hence we have for at
least p coordinates % > h(z);. By definition of &, we have h(z); = % +t(z; — %)
with # > 1. We conclude that for at least p coordinates % > z;. O

The next theorem is the basic technical result. In it we deform a map 1" — Y
into a kind of normal form. We call it the preparation theorem. Let Y be the union
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of open subspaces Y7, Y> with non-empty intersection Yy. Let f: I" — Y be
given. By the Lebesgue lemma (2.6.4) there exists a subdivision of /” into cubes
W such that either f(W) C Y; or f(W) C Y, for each cube. In this situation we
claim:

(6.9.2) Theorem. Suppose (Y1, Yy) is p-connected and (Y5, Yy) is q-connected
(p,q = 0). Then there exists a homotopy f; of f with the following properties:

() If f(W) C Yy, then fy(W) C Y.
(2) If f(W) C Yy, then f; is constant on W.
B) If fW) C Yy, then f7' (Y1 ~Yo) N W C Kpi 1 (W).
@) If f(W) C Ya, then 7' (Y2~ Yo) N W C Ggsr(W).
Here W is any cube of the subdivision.

Proof. Let C¥ be the union of the cubes W with dim W < k. We construct the
homotopy inductively over C* x I.

Letdim W = 0. If f(W) C Yo we use condition 2). If f(W) C Yy, f(W) ¢
Y,, there exists a path in Y; from f(W) to a point in Yy, since (Y7, Yp) is O-
connected. We use this path as our homotopy on W. Then (1) and (3) hold.
Similarly if f(W) C Y,, f(W) ¢ Y;. Thus we have found a suitable homotopy
on C°. We extend this homotopy to the higher dimensional cubes by induction
over the dimension; we use that 0W C W is a cofibration, and we take care of (1)
and (2).

Suppose we have changed f by a homotopy such that (1) and (2) hold and (3),
(4) for cubes of dimension less than k. Call this map again f. Letdim W = k. If
f(W) C Yy, we can use (2) for our homotopy. Let f(W) C Y1, f(W) ¢ Y,. If
dim W < p, there exists a homotopy £, : W — Y, relative to dW of f|W with

IW(W) C Yy, since (Y1, Yop) is p-connected. If dim W > p weuse (6.9.1) in order
to find a suitable homotopy of f'|W. We treat the case (W) C Ya, f(W) ¢ Y7 in
a similar manner. Again we extend the homotopy to the higher dimensional cubes.
This finishes the induction step. O

Letusdenote by F (Y1, Y, Y») the pathspace {w € Y! | w(0) € Y1, w(1) € Y>}.
We have the subspace F (Y1, Y1, Yo).

(6.9.3) Theorem. Under the hypothesis of the previous theorem the inclusion
F(Y1,Y1,Yy) C F(Y1,Y,Y2) is (p + g — 1)-connected.

Proof. Let amap ¢: (I,,0l,) — (F(Y1,Y,Y,), F(Y1,Y1,Y)) be given where
n < p+q— 1. We have to deform this map of pairs into the subspace. By
adjunction, a map of this type corresponds to a map ®: I” x I — Y with the
following properties:

(1) (x,0) €Yy forxel”,

2) ¢(X,1)e Yy forx e I”,
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(3) (y,t) e Yy foryedl™andt € I.

Let us call maps of this type admissible. The claim of the theorem is equivalent
to the statement, that ® can be deformed as an admissible map into a map with
image in Y;. We apply the preparation theorem to ¢ and obtain a certain map W.
The deformation in (6.9.2) stays inside admissible maps. Consider the projection
m: I" x I — I™. We claim that the images of U~!(Y ~ Y1) and ®~1(Y ~ 13)
under 7 are disjoint. Lety € 70~ (Y ~Y,),y = w(z)andz € ¥~ (Y ~Y)NW
foracube W. Then z € K, (W) and hence y has at least p small coordinates. In
a similar manner we conclude from y € 7W~!(Y ~ Y;) that y has at least ¢ large
coordinates. In the case thatn < p + g the point y cannot have p small and ¢ large
coordinates.

The set 7~ (Y ~Y;) is disjoint to 91", since W(d1") x I) C A. There exists
a continuous function t: I” — I which assumes the value 0 on 7¥~ (Y ~ Y;)
and the value 1 on 971" U n W (Y ~ Y3). The homotopy

((x,1),8) > Y(x, (1 =5t + stt(x))
is a homotopy of admissible maps from ¥ to a map with image in Y;. O

(6.9.4) Theorem. Under the hypothesis of (6.9.2) the inclusion induces an isomor-
phismn;(Y1,Yo) = n; (Y, Y2) for j < p+ q and an epimorphism for j = p +q.

Proof. We have the path fibration F(Y,Y,Y2) — Y, w — w(0). The pullback
along Y7 C Y yields the fibration F(Y1,7Y, Y2) — Y1, w — w(0). The fibre over
xis F(*, Y, Y,). We obtain a commutative diagram of fibrations:

F(#, Y1, Yo) —— F(x,Y,Ys)

| l

F(Y17Y17Y0) L>F(Y19Y7 YZ)

| |

A—— A

The inclusion « is (p + g — 1)-connected (see (6.9.3)). Hence B has the same
connectivity (see (6.7.8)), i.e., the inclusion (Y7, Yy) C (Y, Y2),

ﬂn(F(*7 Y17 YO)) — an(F(*7 Yv YZ))

= =

Tn+1(Y1, Yo, %) —— mp1(Y, Y2, %)

induces an isomorphism forn < p 4+ ¢ — 1 and an epimorphism forn = p+¢g —1.
O
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Problems

1. The hypothesis of (6.4.1) is a little different from the hypothesis of (6.9.4), since we did
not assume in (6.4.1) that (Y7, Yp) and (Y2, Yp) are O-connected. Let Y’ be the subset of
points that can be connected by a path to Yo. Show that Y’ has the open cover Y/, Y] and the
inclusion induces isomorphisms 7« (Y7, Yo) = m«(¥1,Y0) and 7« (Y, Y2) = m.(Y’,Y3).
This reduces (6.4.1) to (6.9.4).

2. The map Yo — F(Y1, Y1, Yo) which sends y € Yp to the constant path with value y is
an h-equivalence.

3. Themapa;: F(Y,Y,Y1) = Y, w — w(0) replaces the inclusion Y1 — Y by a fibration.
There is a pullback diagram

F(11.,Y,Y2) — F(Y,Y. 1)

N

F(Y,Y,Ys) — 2 .y,

Thus (6.9.3) compares the pushout Y of Y1 < Yo — Y> and the pullback of a1, as with
Yo. For generalizations see [73].
4. Show that the proof of (6.4.2) along the lines of this section does not need (6.9.1).

6.10 Further Applications of Excision

The excision theorem is a fundamental result in homotopy theory. For its appli-
cations it is useful to verify that it holds under different hypotheses. In the next
proposition we show and use that Y is the homotopy pushout.

(6.10.1) Proposition. Let a pushout diagram be given with a cofibration j,

4 p

I

X —Y.

Suppose 7wi(X,A,a) = 0for0 <i < pand each a € A, and 7;(f,a) = 0 for
0 <i <qandeacha € A. Thenthemap (F, f)«: mp(X, A,a) — m,(Y, B, f(a))
is surjective for 1 <n < p + q — 2 and bijective for | <n < p +¢q —2.

Proof. We modify the spaces up to h-equivalence such that (6.4.1) can be applied.
LetZ(f) = BUsAx[0,1] = B+Ax[0,1]/f(a) ~ (a, 0) be the mapping cylinder
of f with inclusion k: A — Z(f), a — (a, 1) and projection p: Z(f) — B a
homotopy equivalence. We form the pushout diagrams

LN/ NN

A B
lj L l’
%X,z .,y
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with pk = f and PK = F. Then P is a homotopy equivalence by (5.1.10)
and (P, p) induces an isomorphism of homotopy groups. Therefore it suffices to
analyze (K, k)«. The space Z can be constructed as

Z=BUy Ax[0,1]lUX =Z(f)+ X/(a,1) ~a.
The map (K, k) is the composition of
(X,A,a) - (Ax]0,1]U X, A%]0, 1], (a, 1)), x> (x,1)

with the inclusion ¢ into (Z, Z(f), (a, 1)). The first map induces an isomorphism
of homotopy groups, by homotopy equivalence. In order to exhibit 7, (¢) as an
isomorphism, we can pass to the base point (a, 1/2), by naturality of transport.
With this base point we have a commutative diagram

7, (A%]0, 11U X, Ax]0, 1)) ———— w,(Z, Z(f))

T T

70 (Ax]0, 1] U X, Ax]0, 1[) —— m,(Z, B U A x [0, 1]).

The vertical maps are isomorphism, by homotopy invariance. We apply (6.4.1) to
the bottom map. Note that 77;(A4x%]0, 1] U X, Ax]0, 1]) = n; (X, A) and

wi(BUAX|0,1], Ax]0,1]) = 7; (Z(f), A),
again by homotopy invariance. O

(6.10.2) Theorem (Quotient Theorem). Let A C X be a cofibration. Let further
p: (X, A) = (X /A, %) be the map which collapses A to a point. Suppose that for
each base point a € A,

wi(CA,A,a) =0 forO<i <m, mi(X,A,a)=0 forO<i <n.

Then p«: wi(X,A,a) — mi(X/A,*) is bijective for 0 < i < m +n — 2 and
surjective fori =n +m — 2.

Proof. By pushout excision, ; (X, A) — m; (X UCA, CA) is bijective (surjective)
in the indicated range. Note that d: 7;(CA, A,a) =~ m;i—1(A, a), so that the first
hypothesisis a property of A. Theinclusion CA C X UCA isaninduced cofibration.
Since CA is contractible, the projection p: X UCA - X UCA/CA =~ X/Aisa
homotopy equivalence. O

(6.10.3) Corollary. Let A C X be a cofibration. Assume that w;(A) = 0 for
O0<i<m-—landmi(X)=0for0<i <m > 2. Then wj(X,A) — w;(X/A)
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is an isomorphism for 0 < i < 2m — 1. We use this isomorphism in the exact
sequence of the pair (X, A) and obtain an exact sequence

an—l(A) - 772m—1(X) - 772m—1(X/A) - an—Z(A)
— oo Tp1(X) = 1 (X/A) = 7, (A) — 0.

A similar exact sequence exists for an arbitrary pointedmap f : AX where atypical

portion comes from the cofibre sequence i (A) ﬁ) ;i (X) &) 7w (C(f)). O
We now generalize the suspension theorem. Let (X, *) be a pointed space.

Recall the suspension ¥ X and the homomorphism X : 77, (X) — 7,41 (ZX).

(6.10.4) Theorem. Let X be a well-pointed space. Suppose wi(X) = 0 for 0 <
i <n. Then Xy: mj(X) = mj11(X2X) is bijective for 0 < j < 2n and surjective
forj =2n+4 1.

Proof. LetCX = X xI/(Xx1U{x}xI)betheconeon X. We have an embedding
i: X - CX,x — [x,0] which we consider as an inclusion. The quotient CX /X
can be identified with ¥ X . From the assumption that {*} C X is a cofibration one
concludes that i is a cofibration (Problem 1). Since CX is contractible, the exact
sequence of the pair (CX, X) yields an isomorphism 9: 7;11(CX, X) ~ 7; (X).
The inverse isomorphism sends an element represented by f: I" — X to the
element represented by f x id(/). From this fact we see

Sy = prod i (X) 2 741 (CX, X) —2 1,41 (5X),

with the quotient map p: CX — CX/X = XX. We can therefore prove the
theorem by showing that p. is bijective or surjective in the same range. This
follows from the quotient theorem (6.10.2). O

(6.10.5) Theorem. Let X and Y be well-pointed spaces. Assume 7;(X) = 0 for
i <p(E2andn(Y) =0fori < q (= 2). Then the inclusion X VY —
X x Y induces an isomorphism of the mi-groups fori < p + q — 2. The groups
mi(X xY,XVvY)and n;i(X NY) are zerofori < p+q — 1.

Proof. We first observe that j: 7; (X VY) — m;(X x Y), induced by the inclu-
sion, is always surjective. The projections onto the factors induce isomorphisms
kimi(X xY) = m(X)xm(Y). Let jX: X > XvYandjY:Y - XVY
denote the inclusions. Let

sim(X)xm(Y) > m(X VYY), (xy) e jX@)+ il o).

Then sk is right inverse to j. Hence the exact sequence of the pair (X XY, X VY)
yields an exact sequence

() 0> 71 (X xY,XVY)>m(XVY)—>m(XxY)—0.
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In the case that i > 2, the sequence splits, since we are then working with abelian
groups; hence

i XVvY)zaX)en(Y)®rmia(X XY, XVY), i>2.

Since the spaces are well-pointed, we can apply the theorem of Seifert—van Kampen
to (X VY,X,Y) and see that 1 (X Vv Y) = 0. We now consider the diagram

(X VY,Y)

) T

(X)) —— 7 (X VY)—— (X VY, X)

| =

i (Y)

with exact row and column. The diagonal arrows are always injective and split; this
is seen by composing with the projections.

Since the spaces are well-pointed, we can apply the pushout excision to the triad
(X VY, X, Y, x). Itsays that (1) and (2) are surjective fori < p + ¢ —2, and hence
bijective (since we already know the injectivity).

We now apply the Sum Lemma (11.1.2) to the diagram and conclude that
(X, )Y is an isomorphism, and therefore also the map of the theorem is an iso-
morphism. The exact sequence now yields ; (X XY, X vY) = Ofori < p+¢g—1.

We apply (6.10.2) to 7; (X x Y, X VY) — m;(X AY). By what we have
already proved, we can apply this theorem with the datan = p + ¢ — 1 and
m =min(p — 1,4 — 1). We alsoneed that X VY — X x Y is a cofibration. This
is a consequence of the product theorem for cofibrations. O

(6.10.6) Proposition. Let (Y; | j € J) be the family of path components of Y and
¢/ Y; — Y the inclusion. Then

(cl): Djes (Yt AS™) — m(YF A ST
is an isomorphism for k < n.

Proof. Suppose Y is the topological sum of its path components. Then we have
a homeomorphism Y+ A S = Vies Y/.+ A S", and the assertion follows for
finite J by induction on the cardinality of J from (6.10.5) and for general J then
by a compactness argument. For general Y it suffices to find a 1-connected map
X — Y such that X is the topological sum of its path components, because then
XTAS" - YT AS™is (n+ 1)-connected by (6.7.10) (and similarly for the path
components). O
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(6.10.7) Proposition. Let Y be k-connected (k > 0) and Z be [-connected
(I = —1) and well-pointed. Then the natural maps

7 (Z) > mj(Y X Z,Y x*x) > m;(Y xZ/Y x *) = 7w;(Z)
are isomorphisms for0 < j <k + 1+ 1.

Proof. The first map is always bijective for j > 1; this is a consequence of the
exact sequence of the pair (Y x Z, Y x *) and the isomorphism 7, (Y) x 7;(Z) =
7; (Y x Z). Since the composition of the maps is the identity, we see that the second
map is always injective and the third one surjective. Thusif p.: 7; (Y XZ,Y x*) —
w;(Y x Z/Y x * is surjective, then all maps are bijective. From our assumption
about Z we conclude that 77; (Y x Z,Y x %) = 0for 0 < j </ (thus there is no
condition for / = 0, —1). The quotient theorem now tells us that p. is surjective
forO<j<k+1+1. O

(6.10.8) Corollary. Let Y be path connected. The natural maps
T (S™) — m (Y x 8", x x S™) — mp (Y x §"/ * xS™) — m(S™)
are isomorphisms for 1 <k <n. O

(6.10.9) Proposition. Suppose 7;(X) = 0 fori < p (= 0) and 7;(Y) = 0 for
i<qO0).Thenmi(X *Y)=0fori <p+q+1.

Proof. In the case that p = 0 there is no condition on X. From the definition of
the join we see that X x Y is always path connected. For p = 0 we claim that
mi(X xY) =0fori < g+ 1. Consider the diagram

pr pr
X+——XxY ——Y
| =
X X {*}

and apply (6.7.9). In the general case the excision theorem says that the map
Ti(CX XY, XxY)— m(X %Y, X xCY)isanepimorphism fori < p+¢ + 1.
Now use diagram chasing in the diagram

TL’,‘(XXCY)*)]TI'(X*Y)*)H,'(X*Y,XXCY)*)N,;](XXCY)

I ! I I

Ti(X xXY)— mi(CX XY)—mi(CX XY, X xXY)—mi_1(X xXY)

(a morphism between exact homotopy sequences). O
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The excision theorem in the formulation of (6.9.4) has a dual. Suppose given a
pullback diagram

E-fux

lo s

Y?B

with fibrations f and g. The double mapping cylinder Z(F, G) can be considered
as the fibrewise join of f and g. It has a canonical map p: Z(F,G) — B.

(6.10.10) Proposition. Suppose f is p-connected and g is q-connected. Then p is
p + q + l-connected.

Proof. Use fibre sequences and (6.10.9). O

Problems

1. Let 7o(X) = O and 7; (Y) = O fori < g(> 2). Then 7;(X) — m;(X VvV Y)is an
isomorphism fori < ¢g. Show also T2 (X x Y, X vY) =0.

2. Let X and Y be 0O-connected and well-pointed. Show 71 (X A Y) = 0.

3. Show that 73(D?, S1) — 73(D?/S1) is not surjective.

4. Show 1 (S2vS!, S1) = 0. Showthat m2(S2VvS1, S1) — 75(52vS1/S1) =~ 7,(5?)
is surjective but not injective.

5.For X =Y = S!'andi = 1 the sequence () does not split. The fundamental group
71(S' v §1) = Z % Z has no subgroup isomorphic to Z @ Z.

6. Show that the diagram

XxdlUixT —2 5 x

" |

Xx] —CX

with p(x,0) = x, p(x, 1) = %, p(*,t) = * is a pushout.

7. If X is well-pointed, then XX is well-pointed.

8. Some hypothesis like e.g. well-pointed is necessary in both (6.10.1) and (6.10.4). Let
A={0U{n ' |neZiand A = Ax0C X = AxI/Ax 1 with base point (0,0).
Then 771 (XX) and 771 (A) are uncountable; X : 7o(X) — 71 (X X) is not surjective. Note:
A C X is a cofibration and X/ A is well-pointed.

9. Leteq,...,eu+1 be the standard basis of unit vectors in R”*1 and let e; be the base
point of S”. A pointed homeomorphism 4, : £5" = §711 is

hp: £8" — S"TL (x.1) > %(el +x)~|—%c052m‘-(e| —x)~|—% le; — x|sin2mt-ep42

where R?T1 = R?*1 x 0 c R?1+2,

10. Let K € R+ be compact. Show that each map f: K — S has an extension to the
complement R?11 < E of a finite set E. One can choose E such that each component of
R?+1 < K contains at most one point of E.
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11. Determine 72,—1(S" v §™) forn > 2.
12. Let f; be a self-map of S Show d(fi * f>) = d(f1)d(f>).
13. Let H: 73(S?) — Z be the isomorphism which sends (the class of the) Hopf map

n: 83 — §2 to 1 (the Hopf invariant). Show that for f: S3 — S3 and g: % — S? the
relations H(a o f) = d(f)H () and H(g o o) = d(g)?>H(x) hold.



Chapter 7
Stable Homotopy. Duality

The suspension theorem of Freudenthal indicates that homotopy theory simplifies
by use of iterated suspensions. We use this idea to construct the simplest stable ho-
motopy category. Its construction does not need extensive technical considerations,
yet it has interesting applications. The term “stable” refers to the fact that iteration
of suspension induces after a while a bijection of homotopy classes.

We use the stable category to give an introduction to homotopical duality theory.
In this theory the stable homotopy type of a closed subspace X C R” and its
complement R” ~ X are compared. This elementary treatment of duality theory is
based on ideas of Albrecht Dold and Dieter Puppe; see in particular [54]. Itis related
to the classical Alexander duality of homology theory and to Spanier—Whitehead
duality.

We introduced a naive form of spectra and us them to define spectral homology
and cohomology theories. The homotopical Euclidean complement duality is then
used to give a simple proof for the Alexander duality isomorphism. In alater chapter
we reconsider duality theory in the context of product structures.

7.1 A Stable Category

Pointed spaces X and Y are called stably homotopy equivalent,in symbols X ~; Y,
if there exists an integer k > 0 such that the suspensions XXX and =¥V are
homotopy equivalent. Pointed maps f,g: X — Y are called stably homotopic,
in symbols f ~ g, if for some integer k the suspensions X f and T*g are
homotopic. We state some of the results to be proved in this chapter which use
these notions.

(7.1.1) Theorem (Stable Complement Theorem). Let X and Y be homeomorphic
closed subsets of the Euclidean space R™. Then the complements R" ~ X and R" <Y
are either both empty or they have the same stable homotopy type with respect to
arbitrary base points.

In general the complements themselves can have quite different homotopy type.
A typical example occurs in knot theory, the case that X =~ Y = S are subsets
of R3. On the other hand the stable homotopy type still carries some interesting
geometric information: see (7.1.10).

(7.1.2) Theorem (Component Theorem). Let X and Y be closed homeomorphic
subsets of R™. Then mo(R" ~ X) and wo(R™ ~ Y') have the same cardinality.
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Later we give another proof of Theorem (7.1.2) based on homology theory, see
(10.3.3). From the component theorem one can deduce classical results: The Jordan
separation theorem (10.3.4) and the invariance of domain (10.3.7).

Theorem (7.1.1) is a direct consequence of (7.1.3). One can also compare
complements in different Euclidean spaces. The next result gives some information
about how many suspensions suffice.

(7.1.3) Theorem. Let X C R" and Y C R™ be closed subsets and h: X — Y a
homeomorphism. Suppose n < m. Then the following holds:
(1) IfR® # X, then R™ #£ Y, and h induces a canonical homotopy equivalence
TR < X) ~ IPTY(R™ < Y) with respect to arbitrary base points.
) IfR" = X andR™ # Y, thenn < mand 3" TV (R"~Y) ~ S™, i.e., R"\Y
has the stable homotopy type of S™ "1,
B) IfR* =X and R™ =Y, thenn = m.

In many cases the number of suspensions is not important. Since it also depends
on the situation, it is convenient to pass from homotopy classes to stable homotopy
classes. This idea leads to the simplest stable category.

The objects of our new category ST are pairs (X, n) of pointed spaces X and
integers n € Z. The consideration of pairs is a technical device which allows for a
better formulation of some results. Thus we should comment on it right now.

The pair (X,0) will be identified with X. The subcategory of the objects
(X,0) = X with morphisms the so-called stable homotopy classes is the geo-
metric input. For positive n the pair (X, n) replaces the n-fold suspension X" X .
But it will be convenient to have the object (X, n) also for negative n (“desuspen-
sion”). Here is an interesting example. In the situation of (7.1.3) the homotopy
equivalence "1 (R" ~ X) — Z"T1(R™ < Y) induced by & represents in the cat-
egory ST an isomorphism Ae: (R" ~ X, —n) — (R™ ~ Y, —m). In this formulation
it then makes sense to say that the assignment & — h, is functor. (Otherwise we
would have to use a mess of different suspensions.) Thus if X is a space which
admits an embedding i : X — R” as a proper closed subset for some 7, then the
isomorphism type of (R” ~ i(X),—n) in ST is independent of the choice of the
embedding. Hence we have associated to X a “dual object” in ST (up to canonical
isomorphism).

Let XX = X A S? be the ¢-fold suspension of X. As a model for the sphere
S’ we use either the one-point compactification R’ U {oco} or the quotient space
S(¢t) = I1'/dI". In these cases we have a canonical associative homeomorphism
5% A St >~ §2Fb which we usually treat as identity. Suppose n,m,k € Z are
integers such that n + k > 0,m + k > 0. Then we have the suspension morphism

T [XASTTR Y ASTERO S (X ASTTREL Y AsHREI0 s £ ARd(ST).

We form the colimit over these morphisms, colimg[X A S”+K ¥ A §7+k]0 For
n+k > 2theset [X A S"HE Y A S™FF]0 carries the structure of an abelian group
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and X is a homomorphism. The colimit inherits the structure of an abelian group.
We define as morphism group in our category ST

ST((X,n), (Y,m)) = colimg[X A S"TF ¥ A §mFKIO,

Formation of the colimit means the following: An element of ST((X, n), (Y, m))
is represented by pointed maps fi: X A S"TK — ¥ A S™TK and fi, f1.1 >
k represent the same element of the colimit if ©/~% f; ~ f;. Composition of
morphisms is defined by composition of representatives. Let fi: X A S*TF —
Y AS™kand g;: Y A 8™ — Z A §PH be representatives of morphisms and
let r > k,[. Then the following composition of maps represents the composition
of the morphisms (dotted arrow):

r—k
X ASMT = X A SPR A STk /N Stk A §rk

~ »r—I l_

ZASPHT = 7 A SPH A §Tl 5Ly gml 5 gr-l,

One verifies that this definition does not depend on the choice of representatives.
The group structure is compatible with the composition

Polar+az) =Poar+pfoaz, (B1+p2)oa=pioa+proa.
The category ST has formal suspension automorphisms X7 : ST — ST, p € Z
X,n)—> X,n+p), [feXPf

If f: (X,n) — (Y,m)isrepresented by fi: "X — MKy (withn+k > 0,
m+k >0,k > |pl|), then £? f is represented by

(ZP f)e = SP(fi): vtktex  smtktry p >,

(Epf)k+\p| = fi: sntktptiply 2m+k+p-l—|p\y7 p <.

The rules £° = id(ST) and £? o X9 = XP%9 show that X7 is an automorphism.
For p > 0 we call X7 the p-fold suspension and for p < 0 the p-fold desuspension.
We have a canonical isomorphism «?: (X,n) — (X?X,n — p); it is represented
by the identity X A Sntk s (X ASPYAS"HR=P forn + k > p > 0. We write
X for the object (X, 0). Thus for positive n the object (X, n) can be replaced by
"X,

(7.1.4) Example. Pointed spaces X, Y are stably homotopy equivalent if and only
if they are isomorphic in ST. The image ST(f) of f: X — Y inST(X, Y) is called
the stable homotopy class of . Maps f,g: X — Y are stably homotopic if and
only if they represent the same element in ST(X,Y). The groups ST(S*, §%) =
colimy, 7,4+ (S") are the stable homotopy groups of the spheres. <
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(7.1.5) Example. Itisin general difficult to determine morphism groups in ST. But
we know that the category in non-trivial. The suspension theorem and the degree
theorem yield

ST(S",S") = colimg [S" 1K, §7+F° ~ 7.

The composition of morphisms corresponds to multiplication of integers. <

(7.1.6) Proposition. LetY be pathwise connected. We have the embeddingi : S —
YT A S", x +— (x,x) and the projection p: YT A S" — S", (y,x) — x with
pi = id. They induce isomorphisms of the mwy-groups fork <n > 1.

Proof. Letn = 1. ThenY T A S! = Y x §'/Y x {x} is path connected. The base
point of ¥ T is non-degenerate. Hence the quotient X'(Y ) — X (Y ™) from the
unreduced suspension to the reduced suspension is an h-equivalence. The projection
Y — P onto a point induces a 2-connected map between double mapping cylinders

YY) =Z(x <Y +{x} > %) > Z' (k< P +{x} > % =3'(P") = s
From this fact one deduces the assertion for n = 1.

We now consider suspensions

Te(S™) — (Y F A ST — P (ST

E = E

s Dx
1 (") ——= e (Y A S —— w1 (S™H).

The vertical morphisms are bijective (surjective) fork < 2n —2 (k = 2n —1). For
n=1m (YT AS" = Z. Since m5(Y* A §2) contains 775(S?) = Z as a direct
summand, we conclude that ¥y is an isomorphism. For n > 2 we can use directly
the suspension theorem (6.10.4). O

(7.1.7) Proposition. Ler (Y | j € J) be the family of path components of Y and
¢/ :Y; = Y the inclusion. Letn > 2. Then

(c]): @ nk(Yj+ AS™) - mp (YT A ST
jeJ

is an isomorphism for 0 < k < n. In particular m,(Y* A S™) is a free abelian
group of rank |mo(Y)|.
Proof. (7.1.6) and (6.10.6). O

(7.1.8) Proposition. Let Y be well-pointed and n > 2. Then m,(Y A S™) is
a free abelian group of rank |mwog(Y)| — 1 and the suspension w,(Y N S*) —
Tn1 (Y A S"Y) is an isomorphism.
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From the exact homotopy sequence of the pair (Y + A §”, §") we conclude that
7 (YT AS", 8" = 0for0 < k < n. The quotient theorem (6.10.2) shows that
(YT ASY, S — m (YT AS"/S") = 7 (Y A S™) is bijective (surjective)
for0 < k <2n—2(k = 2n — 1). From the exact sequence 0 — 7,(S") —
(Y TAS") — m,(Y T AS™, S") — 0 we deduce a similar exact sequence where
the relative group is replaced by 7, (Y A S™). The inclusion of 7, (S") splits. Now
we can use (7.1.7).

(7.1.9) Corollary. Let X be awell-pointed space. Then ST(S®, X) is a free abelian
group of rank |mo(X)| — 1. &

The group ST(S?, X) only depends on the stable homotopy type of X . Therefore
we can state:

(7.1.10) Corollary. Let X and Y be well-pointed spaces of the same stable homo-
topy type. Then |mo(X)| = |mo(Y)|. Therefore (7.1.2) is a consequence of (7.1.3).
<&

The category ST has a “product structure” induced by the smash product. The
category ST together with this additional structure is called in category theory
a symmetric tensor category (also called a symmetric monoidal category). The
tensor product of objects is defined by

(X,m)® (Y,n) = (X AY,m +n).

Let
fei X ASTHeE 5 XIAS™HR g Y ASTHE Sy A ST

be representing maps for morphisms f: (X,m) — (X’,m’) and g: (Y,n) —
(Y’,n"). A representing morphism (/' ® g)x 4 is defined to be (—1)¥®+7) times
the composition T/ o (f A g1) o T (dotted arrow)

XAY A Sm+k+n+l %X A Sm+k AY A Sn+l

J{fk NI

- ,
X AY/ A STk T x1 gk \y A gnl

where 7 and 7’ interchange two factors in the middle. Now one has to verify:
(1) The definition does not depend on the representatives; (2) the functor property
(f'Rg)(f®g) = f'f®g gholds; (3) the tensor product is associative. These
requirements make it necessary to introduce signs in the definition. The neutral
object is (S°,0). The symmetry c: (X, m) ® (Y,n) — (Y,n) ® (X, m) is (—1)™"
times the morphism represented by the interchange map X A Y — Y A X.



164 Chapter 7. Stable Homotopy. Duality

Problems

1. The spaces S! x S and S! v §! v §2 are not homotopy equivalent. They have different
fundamental group. Their suspensions are homotopy equivalent.

2. The inclusion X x ¥ — X1 x Y induces for each pointed space ¥ a homeomorphism
(X X Y)/(X x {x}).

3. Let X and Y be well-pointed spaces. Then Y — (X x Y)/(X x {x}), y — (*,y)isa
cofibration.

4. Let P be a point. We have an embedding PT A Y — Xt A 'Y and a canonical homeo-
morphism X AY - Xt AY/PT AY.

7.2 Mapping Cones

We need a few technical results about mapping cones. Let f: X — Y be a pointed
map. We use as a model for the (unpointed) mapping cone C( f') the double mapping
cylinder Z(Y < X — x); itis the quotient of Y 4+ X x I 4 {*} under the relations
f(x) ~ (x,0),(x,1) ~ *. The image of * is the basepoint. For an inclusion
t: A C X we write C(X,A) = C(1). For empty A we have C(X,0) = XT.
Since we will meet situations where products of quotient maps occur, we work in
the category of compactly generated spaces where such products are again quotient
maps. The mapping cone is a functor C: TOP(2) — TOP?; a map of pairs
(F, f): (X,A) — (Y, B) induces a pointed map C(F, f): C(X,A) —» C(Y, B),
and ahomotopy (F}, f;) induces a pointed homotopy C(F;, f;). We note for further
use a consequence of (4.2.1):

(7.2.1) Proposition. If F and [ are h-equivalences, then C(F, f) is a pointed
h-equivalence. O

(7.2.2) Example. We write C" = C(R", R” ~0). This space will be our model for
the homotopy type of S”. In order to get a homotopy equivalence C* — S”, we ob-
serve that S” is homeomorphic to the double mapping cylinder Z (x < S"~1 — x).
We have the canonical projection from C” = Z(R" <— R" ~ 0 — x). An explicit

homotopy equivalence is (x,?) — (sin nt”;‘—”,cos wt),x — (0,...,0,1). o

(7.2.3) Example. Let X C R” be a closed subspace. Then
C(R", R"~X) = Z(R" « R"~X — %) >~ Z(x < R"~X — %) = Y/ (R"~X),

the unpointed suspension. If X = R”, then this space is h-equivalent to S°. If
X # R”, then R” ~ X is well-pointed with respect to any point and X/(R” ~ X) is
h-equivalent to the pointed suspension X (R” ~ X). &

We are mainly interested in the homotopy type of C(X, A) (under {x} + X).
It is sometimes convenient to provide the set C(X, A) with a possibly different
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topology which does not change the homotopy type. Set theoretically we can view
C(X, A) as the quotients C;(X,4) = (X xOU A x I)/A x 1or Co(X,A) =
(X x0UAxITUXx1)/X x 1. We can provide C; and C, with the quotient
topology. Then we have canonical continuous maps p: C(X, A) — C;(X, A) and
q: Ci1(X, A) = C,(X, A) which are the identity on representative elements.

(7.2.4) Lemma. The maps p and q are homotopy equivalences under {x} + X.
Proof. Define p: C1(X, A) — C(X, A) by
p(x,t) =x,t<1/2, p(a,t) = (a,max(2t —1,0)), p(a,l) = *.

One verifies that this assignment is well-defined and continuous. A homotopy
pp =~ id is given by ((x,1),s) — (x,st + (1 —s)max(2¢ — 1,0)). A similar
formula works for pp ~ id. Define g: Co(X, A) — C1(X, A) by

qg(x,t) = (x,min(2¢,1)), t <1, qgx,t)=x={Ax1}, t>1/2.

Again linear homotopies in the f-coordinate yield homotopies from ¢g and gq to
the identity. O

(7.2.5) Proposition (Excision). LetU C A C X and suppose there exists a function
1: X — I suchthat U C t=1(0) and t=1[0, 1[ C A. Then the inclusion of pairs
induces a pointed h-equivalence g: C(X ~U, A~U) — C(X, A).

Proof. Set o(x) = max(2t(x) — 1,0). A homotopy inverse of g is the map
f:(x,t) = (x,0(x)t). The definition of f uses the notation C, for the map-
ping cone. The homotopies from fg and g f to the identity are obtained by a linear
homotopy in the #-coordinate. O

(7.2.6) Remark. Mapping cones of inclusions are used at various occasions to
relate the category TOP(2) of pairs with the category TOP? of pointed spaces. We
make some general remarks which concern the relations. They will be relevant for
the investigation of homology and cohomology theories.

Let TOP? — € be a homotopy invariant functor. We define an associated
functor h = Ph: TOP(2) — € by composition with the mapping cone functor
(X, A) —» C(X, A). The functor Phis homotopy invariant in a stronger sense: If
f:(X,A) — (Y, B) is a map of pairs such that the components f: X — Y and
f: A — B are h-equivalences, then the induced map h(X, A) — h(Y, B) is an
isomorphism (see (7.2.1)). Moreover & satisfies excision: Under the hypothesis of
(7.2.5) the inclusion induces an isomorphism A(X ~ U, A~ U) = h(X, A).

Conversely, let #: TOP(2) — € be a functor. We define an associated functor
Rh = honobjectsby Rh(X) = h(X, %) and with the obvious induced morphisms.
If & is homotopy invariant, then also Rh.
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The composition PR is givenby PRAh(X, A) = h(C(X, A), *). We have natural
morphisms

h(C(X, A), *) — h(C(X, A), CA) < h(C(X, A)~U,CA~U) < h(X, A).

Here CAistheconeon Aand U C CA isthe subspace with z-coordinatesin [1/2, 1].
If & is strongly homotopy invariant and satisfies excision, then these morphisms are
isomorphisms, i.e., PR is naturally isomorphic to the identity.

The composition R P is given by RPh(X) = h(C(X, *)). There is a canonical
projection C(X, *) — X. Itis a pointed h-equivalence, if the inclusion {*} — X
is a cofibration. Thus if / is homotopy invariant, the composition R P is naturally
isomorphic to the identity on the subcategory of well-pointed spaces. <&

Let (X, A) and (Y, B) be two pairs. We call A x Y, X x B excisivein X x Y
if the canonical map p: Z(A XY <~ AxB > XxB) > AxYUXxBisa
homotopy equivalence.

(7.2.7) Proposition (Products). Let (A X Y, X X B) be excisive. Then there exists
a natural pointed homotopy equivalence

a: C(X,A)AC(Y,B) —> C((X,A) x (Y, B)).
It is defined by the assignments
(x.y) = (x. ),
(a,s.y) = (a.y.s),
(x,b,5) > (x,b,5),
(a,s,b,t) — (a,b, max(s,t)).
(See the proof for an explanation of notation).

Proof. In the category of compactly generated spaces C(X,A) A C(Y,B) is a
quotient of

XXY+AXxI XY +XxBxI+AxIxBxI

under the following relations: (a,0,y) ~ (a, y), (x,b,0) ~ (x,b), (a,0,b,t) ~
(a,b,t), (a,s,b,0) ~ (a,s,b),and A x 1 x Bx T UAXxI x B x1is identified
to a base point .

In a first step we show that the smash product is homeomorphic to the double

mapping cylinder Z(X x Y Lz {*}) where
Z =7Z(AxY < Ax B — X x B).
This space is the quotient of

XXY+AXY +AXBXxI+XxB)xI+AxBx({ xI/Ix0)
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under the following relations: (x,b,0) ~ (x,b), (a,y,0) ~ (a, y), (a,b,t,0) ~
(a,b),(a,b,1,5) ~ (a,b,s),and (A XY + Ax B x I + X x B) x 1isidentified
to a base point .

The assignment

Quv, v), u<1/2,

I xI —>1xI, (u,v)r—>§
,2v(l —u)), u=>1/2.

induces a homeomorphism yo: I x I /(I x0) — I x [. Its inverse ¢ has the form

(1—1/2s,5), s>t,
I xI~{0,00}—1Ix(~{0}), (s.0)> {(S/zm), ot
A homeomorphism 8: C(X, A) A C(Y, B) — C(tp) is now defined by B(x, y) =
(x.y), Bla.s.y) = (a.y.s), B(x.b.1) = (x.b.1), B(a.s.b.1) = (a.b. Po(s.1)).
The diagram

XxY L Z {x}

bk

X XY ———AxYUX x B— {x}

induces 7 : C(tp) — C(1). Itis a pointed h-equivalence if p is an h-equivalence.
One verifies that @ = 7. O

(7.2.8) Remark. The maps « are associative: For three pairs (X, A4), (Y, B), (Z,C)
the relation a(@ A id) = a(id Aa) holds. They are also compatible with the
interchange map. Finally, they yield a natural transformation. &

Problems

1. Verify that the map f in the proof of 7.2.5 is continuous. Similar problem for the
homotopies.

2. Let (F, f): (X,A) — (Y, B) be a map of pairs. If F is n-connected and f (n — 1)-
connected, then C(F, f) is n-connected.

3. Let X = A U B and suppose that the interiors A°, B° still cover X. Then the inclusion
induces a weak homotopy equivalence C(B, A N B) — C(X, A).

4. Construct explicit h-equivalences C” — R” U {oo} = S such that

C™M A CH —— gmn

| |

sm) , g(n) i} §(m+n)

is homotopy commutative.
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7.3 Euclidean Complements

This section is devoted to the proof of (7.1.3). We need an interesting result from
general topology.

(7.3.1) Proposition. Let A C R™ and B C R" be closed subsets andlet f : A — B
be a homeomorphism. Then there exists a homeomorphism of pairs

F:(R"xR*, Ax0)— (R" x R", B x0)
such that F(a,0) = (f(a),0) fora € A.

Proof. By the extension theorem of Tietze (1.1.2) there exists a continuous exten-
siong: R — R" of f: A — B C R". The maps

O R" xR" - R" xR", (x,y) > (x,y £9((x))

are inverse homeomorphisms. Let G(f) = {(a, f(a)) | a € A} denote the graph
of f. Then @ sends A x 0 homeomorphically to G(f) by (a,0) — (a, f(a)).

Let ¥ : R* — R™ be a Tietze extension of the inverse g of . Then we have
similar homeomorphisms

Wit R"xR" - R"xR”, (y,x) > (y.x £¥(y)).

The desired homeomorphism F is the composition ¥_oto® where t interchanges
R™ and R” (and sends G(f) to G(g)). O

LetX C R*andY C R™ beclosed subsetsand f: X — Y ahomeomorphism.
The induced homeomorphism F from (7.3.1) can be written as a homeomorphism

F: (R, R" ~ X) x (R™,R™ ~ 0) — (R™,R™ ~ Y) x (R", R" ~ 0).

We apply the mapping cone functor to F' and use (7.2.2) and (7.2.7). The result is
a homotopy equivalence

CR'YR"~X)AS" ~CR™",R"~Y)AS".
If X #R™and Y # R™ we obtain together with (7.2.3)
Em-i—l(an - X) ~ En-i-l([Rm - Y)

If X # R” then we have C(R",R" ~ X) >~ X(R” ~ X), and if X = R” then
we have C(R", R" ~ X) ~ §°.

Suppose X # R" but Y = R™. Then "1 (R" ~ X) ~ §". Since n < m the
homotopy group 7, ("1 (R"” ~ X)) = 0 and 7,(S") = Z. This contradiction
shows that ¥ £ R™.
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Suppose X = R" and Y # R™. Thenn = m is excluded by the previous proof.
Thus

S™ ~ C(R",R" ~X)AS™ ~ C(R™",R" ~Y) A S" ~ T (R™ \Y).
If X =R*and Y = R™, then
S" ~ ¥"C(R",R" ~ X) ~ Z"C(R™,R" ~Y) ~ §™

and therefore m = n.
This finishes the proof of (7.1.3).

7.4 The Complement Duality Functor

The complement duality functor is concerned with the stable homotopy type of
Euclidean complements R” ~ X for closed subsets X C R”. We consider an
associated category &. The objects are pairs (R”, X) where X is closed in R”.
A morphism (R”, X) — (R™,Y) is a proper map f: X — Y. The duality
functor is a contravariant functor D: & — ST which assigns to (R", X) the
object X7"C(R",R"” ~ X) = (C(R",R" ~ X),—n). The associated morphism
D(f): Z"C(R™",R" ~Y) - X7"C(R",R" ~ X) will be constructed via a
representing morphism D ( f ). Its construction needs some preparation.

Given the data X C R”,Y C R™ and a proper map f: X — Y. Henceforth
we use the notation A|B = (A, A ~ B) for pairs B C A. Note that in this notation
A|BxC|D = Ax B|C x D. The basic step in the construction of the functor will
be an associated homotopy class

Dy f: R"|D" x R"|Y — R"|X x R™|0.

Here D" again denotes the n-dimensional standard disk. A scaling function for a
proper map f: X — Y is acontinuous function ¢ : Y — |0, oo[ with the property

p(f() = llx]l. xeX.

The next lemma shows the existence of scaling functions with an additional property.

(7.4.1) Lemma. There exists a positive continuous function y : [0, co[ = ]0, oo
such that the inequality V(|| fx||) = ||x|| holds for x € X. A scaling function in
the sense of the definition is then y +— ¥ (|| y|)).

Proof. Theset f~1D(¢t) = max{x € X | || fx|| <t}iscompact,since f is proper.
Let v/ (¢) be its norm maximum max{||x|| | x € X, | fx|| <t}. Then ¥ (|| fx|) =
max{|la|| | @ € X, || fal| < | fx]||} = ||x|l. The function ¥ : [0, co[— [0, o0 is
increasing. There exists a continuous increasing function ¥ : [0, co[ — ]0, oo[ such
that ¥ () > ¥ (¢) for each > 0. d
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The set of scaling functions is a positive convex cone. Let ¢1, ¢ be scaling
functions and 0 < A < 1; then Ap; + (1 — L) is a scaling function. Let ¢ > ¢;
if ¢ is a scaling function then also ¢.

Let ¢ be a scaling function and set M(¢) = {(x,y) | ¢(¥) > ||x]|}. Then we
have a homeomorphism

R*™7|D" x ¥ — R"™|[M(p).  (x.y) = (p(¥)-x. ).

The graph G(f) = {(x, fx) | x € X} of f is contained in M (¢). We thus can
continue with the inclusion and obtain a map D1 ( f, ¢) of pairs

R'™|ID" x Y — R*™™(G(f), (x.y) > (@(¥)-x,y).

The homotopy class of Di(f,¢) does not depend on the choice of the scaling
function: If @1, @, are scaling functions, then

(x,y,0) = ((te1(y) + (1 = 1)p2(y)) - x, y)

is a homotopy from D1 (f, ¢2) to D1(f, ¢1). A continuous map f: X — Y has a
Tietze extension f R* — R™. The homeomorphism (x, y) — (x,y — f (x)) of
R™*T™ sends (x, f(x)) to (x,0). We obtain a homeomorphism of pairs

Da(f. f): R™™|G(f) — R"™™|X x 0.

The homotopy class is independent of the choice of the Tietze extension: The
homotopy (x, y,t) — (x,y — (1 —¢) f1(x) — ¢ f2(x)) proves this assertion. The
duality functor will be based on the composition

Dy(f) = Da(f, f) o Di(f.9): R"[D" x R™|Y — R"[X x R™[0.

We have written D ( f), since the homotopy class is independent of the choice of the
scaling function and the Tietze extension. The morphism Df : ¥ C(R™|Y) —
>7"C(R"|X) is defined by a representative of the colimit:

(Df)ntm: Z"CR™Y) - Z"C(R"|X).
Consider the composition

T

C(R™|Y) A C" —F 5 C" A C(R™|Y) «=— C(R*|D") A C(R™|Y)
(_l)nm(Df)n+m la
CRM|X) A CM < C(RM|X x R™|0) <22 C(R7| D" x R™|Y).

Explanation. t interchanges the factors; the inclusion R|D" — R”|0 induces a
homotopy equivalence C(R"|D") — C"; the morphisms @ comes from (7.2.7);
and CDy f is obtained by applying the mapping cone to Dy f'; finally, we multiply
the homotopy class of the composition by (—1)*". We take the freedom to use
(Df )ntm: CR™Y)AC" — C(R"|X) A C™ as our model for Df, i.e., we do
not compose with the h-equivalences of the type C" — S obtained in (7.2.2).



7.4. The Complement Duality Functor 171

(7.4.2) Lemma. Let f be an inclusion, f: X C Y C R". Then Df has as
a representative the map C(R"|Y) — C(R"|X) induced by the inclusion. In
particular the identity of X is send to the identity.

Proof. We take the scaling function y — ||y|| + 1 and extend f by the identity.
Then Dg(f) is the map (x, y) = (([|y[[ +1)-x.y = (|y[l + 1) - x). The map D,
is (x,y) = ((|¥]l + 1) - x, y) and the homotopy

(. y. )= (A =0)(yll+D-x+1(x+y).y)

is ahomotopy of pairs from D1 to (x, y) + (x4, y). Hence D50 D is homotopic
to (x, y) = (x + y, —x) and the homotopy (x, y,t) — ((1 —t)x 4+ y, —x) shows
it to be homotopic to (x, ) — (y, —x). Now interchange the factors and observe
that x — —x has the degree (—1)" = (—=1)"". O

Next we consider the case of a homeomorphism f: X — Y with inverse g.
Let g: R™ — R” be a Tietze extension of g. Then:

(7.4.3) Lemma. The maps (x,y) = (e(|y||-x,y)and (x,y) = (x+g(»), y) are
as maps of pairs R"|D" x R™|Y — R"*™|G( f) homotopic. Here v : [0, oo —
10, oo[ is a function such that ¥ (|| fx||) > ||x]|| and (r) = 1+ ¥ (r).

Proof. We use the linear homotopy ((1 —1)(x + g(y)) +te(||¥]l) - x, y). Suppose
this element is contained in G( ). Then y € Y and hence g(y) = g(»), and the
first component equals g(y). We solve for x and obtain

t
= T

Then we take the norm

, D
- @ - 1.
T T

Hence (x,y) € D" x Y. O

(B3

In the situation of the previous lemma the map Dx(f) is homotopic to the
restriction of the homeomorphism R*|0 x R™|Y — R"|X x R™|0 obtainable from
(7.3.1). Another special case is obtained from a homeomorphism / of R™ and
X CR™ Y = h(X) C R™. In this case h and 1! are Tietze extensions.

For the verification of the functor property we start with the following data:
(R*, X), (R™,Y), (R?, Z) and proper maps f: X — Y, g: Y — Z. We have the
inclusion G(g) C R™ x R? and the propermap &: X — G(g), x — (fx, gfx).
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(7.4.4) Proposition. The diagram

R*|D™ x R™*|D™ x R?|Z fnm X1 R™| D™ x R*| D" x R?|Z
llxD#g llxD#(gf)
R*| D" x R™|Y x R?|0 R™| D™ x R*| X x R?|0

J{D#fX1 lﬂ

R"|X x R™|0 x R?|0 — 2! R™|0 x R”|X x RP|0

is homotopy commutative. Here ty,,, are the appropriate interchange maps.

Proof. For the proof we use the intermediate morphism Dy (h). In the sequel we
skip the notation for the scaling function and the Tietze extension. If ¢y is a scaling
function for f" and ¢, s a scaling function for g f, then

V1:YXZ —]0,00[, (y.2) = ¢r(y), Y2:¥YxZ —]0,00[, (y,2) = ¢gr(2)

are scaling functions for 1. We have a factorization D, (h) = D3(h) D1 (h) where
Dy (h)(x,y,2) = (x,y = f(x),2) and D3(h)(x,y,2) = (x,y,Z = g/ (x)) and
weuseh = (f,gf) with gf = g f. The diagram

Tnm X1

R*TTPI{x, 0, g fx} R™FTPI{0, x. g fx}
lD%(h) llXDz(gf)

TnmX1

RTMHTP{x,0,0} ——— R™T7HP|{0, x, 0}

commutes. The notation {(x, 0, g fx)} means that we take the set of all element of
the given form where x € X. We verify that the diagram

TnmXx1

R"|D" x R |D™ x R?|Z R™|D™ x R"| D" x R?|Z

ls‘ ltxDl(gf)

nm X1
RTH™HP|(x,0, g fx} —— R™H1EP |0, x, g fx}

with{ = Dlho Diho(1 x D1g)and:: R™|D™ C R™|0 commutes up to homo-
topy. The map ¢ is, with the choice ¢, = ¢, 7, the assignment

(x,7,2) = (057 (2) - %, 0g(2) - y = flpgr(2) - %), 2).

We use the linear homotopy (¢g 7 (2) - x, s(@g(2) -y — f((pgf @) x)+(1=s5)y,z).
We verify that this is a homotopy of pairs, i.e., an element {X, 0, g f(X) } only occurs
as the image of an element (x, y,z) € D" x D™ x Z. Thus assume

(D)X =g@gr(z)-x €X;
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(ii) 59 (2) -y = 5.f (9 r(2) - %) + (1 = 5)y = 0;

(i) z = gf (%). )
Since ¢g7(z) - x € X, we can replace in (ii) f by f. We apply ¢, s to (iii) and
obtain

Pgr(2) = g1 (8f(@gr(2) - X)) = @gr(2) - |Ix]|.

hence ||x|| < 1. The equation (ii) for s = 0 says y = 0, hence y € D™. Thus
assume s # 0. Then f(pgr(z) - x) = (pg(z) + s~ — 1) - y. We apply g to this
equation and use (ii):

z2=gf(pgr(2)-x) =g((@g(z) +s " =1)-p).

Finally we apply ¢, to this equation and obtain

0g(2) = 9gg((wg(2) + 57" =1+ y) 2 (pg(2) + 57 = DIyl = 9 () 1y

)

and therefore ||y|| < 1.
Finally we show that the diagram

Dy(h
R"| D" x [Rm-‘rp|G(g) % [Rn-i-m-i-PHx’O,O}

JlXng Da(f)x1
R"[D" x R™|Y x RP|0

commutes up to homotopy. In this case we use for /4 the scaling function ;. Then
Dih: (x,y,z) = (¢r(y)-x,y,z) and

(Dsf x 1) o (1o Dag)(x,y,2) = (pr(») - X,y — for(») - X), 2 — §(»)),

Dy(h)(x,y.2) = (0r (») - X,y — f(or (¥) - x), 2 — g [ (r (¥) - X)).

Again we use a linear homotopy with z — g((1 — )y + tf(gof (y) - x)) as the third
component and have to verify that it is a homotopy of pairs. Suppose the image is
contained in {x, 0, 0}. Then

@) @r(y)-x € X;

i)y = flor (%) L flor(y)-x) € ¥;

~ (ii)
(i) z = g((A =)y + 1/ (e (y) - x)) = g(¥).
(iii) shows that (y, z) € G(g). We apply ¢y to (ii) and see that || x| < 1. The three
diagrams in this proof combine to the h-commutativity of the diagram in (7.4.4).
O

(7.4.5) Proposition. Suppose that h: X x I — Y is a proper homotopy. Then
D(ho) = D(hy).



174 Chapter 7. Stable Homotopy. Duality

Proof. Let jo: X — X x I, x — (x,0). The map is the composition of the
homeomorphisma: X — X x0andtheinclusionb: X x0 C X x /. Thus Daisan
isomorphism and Db is induced by the inclusion R*T1| X x I c R"*!|X x0; hence
Db is an isomorphism, since induced by a homotopy equivalence (use (7.4.2)).
Thus Djjy is an isomorphism. The composition pr o jq is the identity; hence D (pr)
isinverse to D(jo). A similar argument for j; shows that Dj, = Dj;. We conclude
that the maps i; = h o j; have the same image under D. O

(7.4.6) Remark. The construction of the dual morphism is a little simpler for a map
between compact subsets of Euclidean spaces. Let X C R” be compact. Choose a
disk D such that X C D. Then the dual morphism is obtained from

R"|0 x R™|Y D R"|D x R™|Y C R"™™|G(f) — R"|X x R™|0

where the last morphism is as before (x, y) — (x,y — f (x)). Also the proof of
the functoriality (7.4.4) is simpler in this case. ~
The composition (Dg f x 1)(1 x Dgg)is (x,y,2) = (x,y — f(x),z = g(y)).
The other composition is (x, y,z) + (x, y,z — g f(x)). Then we use the homo-
topies of pairs (x, y— f(x), z=g(1=1)y+1 £ (x))) and (x, y—1 f (x), 2= f (x)).
&

Problems

1. Verify in detail that the commutativity of the diagram in (7.4.4) implies that D is a
functor.
2. Use the homotopy invariance of the duality functor and generalize (7.1.3) as follows.
Suppose X C R"” and Y C R are closed subsets which are properly homotopy equivalent.
Letn < m.
(1) FR?" <X # @, then R N Y # 0.
(2) Let R™ # X. For each choice of a base point R”” ~ Y has the same stable homotopy
type as L7 (R" ~ X).
(3) If R” ~ X is empty and R” ~ Y is non-empty, then R”” < Y has the stable homotopy
type of §7 "1
(4) Ifn = m then the complements of X and Y have the same number of path components.
3. Let X C R" and Y C R be closed subsets and f: X — Y a proper map. Consider the
closed subspace W C R x R x R” of points

yeY, t=0,x=0

DX = fetay). xeX.rell

Then W is homeomorphic to the mapping cylinder Z( f) of f.
4. Let X C R" and f: X — R” x R the standard embedding x — (x,0). Then Df is
represented by the homotopy equivalence

C(R"|X x R™|0) <= C(R"|X) A C™ ~ C(R"|X) A S™.
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(Direct proof or an application of (7.4.3).)
5. Let X C R” be compact. Suppose ||x|| < r > 0 for x € X. Then the constant function
@(t) = r is a scaling function for each f: X — Y. Show that the map

CR™|Y)AC" -5 C" AC(R™|Y) — C(R"|X) AC™

which is obtained from the definition in (7.4.6) is homotopic to the map C(Dy f) of the
general definition.

7.5 Duality

We have associated to a proper map between closed subsets of Euclidean spaces
a dual morphism in the stable category ST. If X C R” then the stable homotopy
type of R” ~ X or C(R"|X) is to be considered as a dual object of X. There is a
categorical notion of duality in tensor categories.
Let A and B be pointed spaces. An n-duality between (A, B) consists of an
evaluation
g:BAA—S"

and a coevaluation
n:S*"—>AAB

such that the following holds:
(1) The composition

(IAe)npAD):S"AA—AABAA—AAS"

is homotopic to the interchange map .
(2) The composition

eADAAN:BAS" > BAAAB—S"AB

is homotopic to (—1)"t.
We now construct an n-duality for (B, A) = (C(R"|K), K*) where K C R”
is a suitable space. In the general definition of an n-duality above we now replace
S” by C”". The evaluation is defined to be

cd
e: C(R"|K) A C(K,B) — C(R*|K x K|K) =2 c(®"|0)
where d is the difference map
d: R"xK,(R"~K)x K) — (R*",R" ~0), (x,k)r>x—k

as a map of pairs. This definition works for arbitrary K C R”.
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Let K C R" be compact and D C R” a large disk which contains K. Let V be
an open neighbourhood of K. Consider the following diagram

R0 +—=—— R"|D —=—R"|K

%ﬂv jTu

VIV x R*K <2 V|V x RT|K +2— V|K
with the diagonal A: x + (x, x). We apply the mapping cone functor and (7.2.1),
(7.2.7). The maps i and j induce h-equivalences. We obtain

ny: C" =Vt ACRYK).

We want to replace V' by K in order to obtain the desired map. This can be done
if we assume that there exists a retraction r: V' — K of K C V. Then we can
compose with 7T : ¥V — K and obtain a coevaluation

n: C" — C(K,0) A C(R"|K).

We call a closed subspace K C R” a Euclidean neighbourhood retract (= ENR)
if there exists a retraction 7 : V' — K from a suitable neighbourhood V' of K in R”.
We mention here that this is a property of K that does not depend on the particular
embedding into a Euclidean space; see (18.4.1).

The basic duality properties of € and 7 are:

(7.5.1) Proposition. The maps ¢ and n are an n-duality for the pair (K+, C(R"|K)).

Proof. For the proof of the first assertion we consider the diagram

R"|D x K|K —— R"|K x K|K «—21 _ v|K x K|K

T, [

VIV x R"0 <2 V|V x R"|K x K|K
withae(x, y) = (y.x), B(x,y) = (y.x —y),and y = (1 x d)(A x 1): (x,y) >
(x,x — »). The homotopy (x, y,t) — (tx + (1 —t)y, x — y) shows that the right
square is h-commutative and the homotopy (x, y,t) = (y,x — ty) shows that the
triangle is h-commutative. The axiom (1) of an n-duality now follows if we write
out the morphisms according to their definition and use the result just proved.

For the proof of the axiom (2) we start with the diagram

R"|K x R*|D 5 R?|K x R"|K L R"|K x V|K

\ Jﬁ / J(lxrxl)(lxm
dx1

R"|D x R"|K <L R?|K x K|K x R"|K
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with Ol(x,)/) = (—y,X), ﬁ(x’y) = ()C - y,X), and )/(X,y) = (X - y’y) The
homotopy (x, y,t) + (x —ty — (1 —t)r(y), y) shows that the bottom triangle is h-
commutative; the homotopy (x, y,7) = (x—y, (1—t)x+ty) showsy ~ B(1xj);
the homotopy (x, y,t) — (tx — y,x) shows o ~ B(1 x j'). Again we write out
the morphisms according to their definition and use this result. O

Given a natural duality for objects via evaluations and coevaluations one can
define the dual of an induced map. We verify that we recover in the case of compact
ENR the morphisms constructed in the previous section. The following three propo-
sition verify that the duality maps have the properties predicted by the categorical
duality theory.

(7.5.2) Proposition. Let X C R” be compact and a retract of a neighbourhood V .
The following diagram is homotopy commutative
C(R™Y)AC" i, C(R™MY)AC(X,0) A C(R*X)
J]t(Dfm—‘rn)T llAC(f)Al
C™ AC(R"X) & C(R™MY)AC(Y,0) A C(R"|X).

Proof. We reduce the problem to maps of pairs. We use the simplified definition
(7.4.6) of the duality map. First we have the basic reduction

R™|Y x R*|0 < R™|Y x R*|D — R™|Y x R"|X < R™|Y x V|X.

Then the remaining composition R™|Y x V|X — R™|0 x R”|X which involves 7,
C(f), e is the assignment (y, x) = (y — fr(x),x). The other map is (y, x) >
(y — f(x),x). Now we observe that we can arrange that |V = fr (by possibly
passing to a smaller neighbourhood, see Problem 1). O

Dual maps are adjoint with respect to evaluation and coevaluation. This is the
content of (7.5.3) and (7.5.4).

(7.5.3) Proposition. The following diagram is homotopy commutative

C(R"|D) A C(R™|Y) A C(X, 8) —2 MLy C(R"|X) A C(R™(0) A C(X, 0)

JlAlAC(f) J((SM)r

C(R"|D) A C(R™|Y) A C(Y, 0) the C"AC™,

Proof. Consider the diagram

D
RP[D" x R™[Y x X|X 20 Rujx x R™|0 x X|X

llxle J(dxl)t

R"|D" x R™|Y x Y| — %5 R"|0 x R™]0.
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The composition down-right sends the element (a, b, x) to (a,b — f(x)) and the
composition right-down to (¢(b) -a — x,b — f (¢(b) - a)). We use the homotopies

(p(b)-a—x, b—f(t(p(b)a—}—(l—t)x)) andthen ((1—2)a+1t(¢p(b)-a—x),b— f(x)).
O

(7.5.4) Proposition. Let X andY be compact and retracts of open neighbourhoods.
Then the following diagram is homotopy commutative

cnACm AL C(X, ) A C(R*|X) A C™

Jr(l/\n)

C(Y,0) A C(R"|D) A C(R™|Y)

lC(f)/\l/\l

N (v, ) A C(RP|X) A C™.

Proof. We unravel the definitions and deform suitable maps between pairs. The
composition (1 A Dg f)(t A 1)(1 A ) is induced by maps

R"|0 x R™|0«——— R"|D x R"|D —— R"|D x R™|Y

T

Y|Y x R"|X x R"|0 +*— R"|D x W|Y

with a(x,y) = (ry (), x,y — f (x)). Further investigations concern . We use
the next diagram

RUD x WY —— R X x W|Y +——— V|X x W|Y

Y|Y x R"|X x R"|0 22— (V x W)|G(f) +— U|G(f).

Let
AV XWxI—R" (x,y,t) >ty +(1—1)frx(x).

This homotopy is constant on G( f'). Hence there exists an open neighbourhood U
of G(f) such that A(U x I) C W. On U we consider the homotopy of o given
by (ry (ty + (1 =1) frx(x)),x,y — f(x)). Fort = 0 we obtain the morphism
(frx(x),x,y— f(x)) whichis defined on V| X x R™|Y . Consider the composition
(C(f) A1 ATD)(n A D). Itis induced by

VIX xR™|0 - Y|Y x R*|X x R™|0, (x,y) > (frx(x),x,y).

Now we use the homotopy (fry(x),x,y — tf(x)). For t = 1 this homotopy is
defined on V| X x R™|Y. O
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(7.5.5) Remark. Let X C R” be a compact ENR and f: X — X a continuous
map. From the associated n-duality we obtain a homotopy class

n " + n T n +1Af+ n + & ¢n
Ap:S" > XTACR'X)—- CR'X)AXT — CR"|X)A X" = §".

The degree d(Ay) = L(f) € Z is an interesting invariant of the map f, the
Lefschetz fixed point index. If f istheidentity, then L (id) is the Euler characteristic
of X. [51] [54] <&

Problems

1. Let A be a closed subset of a normal space X. Letr: W — A be aretraction of an open
neighbourhood. Choose open sets U, V' such that

AcUcCUcCVcVcw

Choose a continuous function ¢: X — [0, 1] such that (U) = {1} and (X ~ V) = {0}.
Let f: A — [0, 1] be continuous. Define F: X — [0,1] by F(x) = ¢(x) - fr(x) for
x € Vand F(x) = 0for x € X ~ V. Then F is a Tietze extension of f and F|U = fr|U.
2. Verify directly that the homotopy class of the coevaluation 7 does not depend on the choice
of the retraction r: V — X.

3. The n-dualities which we have constructed can be interpreted as representative elements
for morphisms in the category ST. We obtain

g: (C(R"|X),—n) ® (XT,0) = (5°,0)

n: (89,00 > (XT,0) ® (C(R"[X), —n).
They satisfy the relations

Ire)nal)y=id, (A1 An =id

which define dualities in tensor categories.

7.6 Homology and Cohomology for Pointed Spaces

A homology theory for pointed spaces with values in the category R-MOD of
left modules over the commutative ring R consists of a family (h, | n € Z) of
functors /1, : TOP® — R-MOD and a family (0@) | n € Z) of natural suspension

isomorphisms 0 = 0(,): hy — hy41 o . These data are required to satisfy the
following axioms.

(1) Homotopy invariance. For each pointed homotopy f; the equality Iy (fo) =
hy, (f1) holds.
(2) Exactness. For each pointed map f: X — Y the induced sequence

T (X) —Z (V) —255 R (C(f)) is exact.
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Let (X; | j € J) be a family of well-pointed spaces with inclusions i, : X, —
Ve X of the summands. The theory is called additive, if

@je] En(Xj) g ﬁn(\/jeJ Xj)7 (x)) = Zje](ij)*(xj)

is always an isomorphism.

As a variant of the axioms we require the suspension isomorphisms and the

exact sequences only for well-pointed spaces.
_If we apply the exactness axiom to the identity of a point P we see that
hy,(P) = 0. If X and Y are well-pointed, then the inclusion and projection give
a cofibre sequence X — X VY — Y. This is used to verify that the additivity
isomorphism holds for a finite number of well-pointed spaces. The groups 4, (S?)
are the coefficient groups of the theory.

A natural transformation of homology theories for pointed spaces consists of
a family of natural transformations h,(—) — k,(—) which commute with the
suspension isomorphisms.

A cohomology theory for pointed spaces consists of a family of contravari-
ant functors A" : TOP® — R-MOD and natural suspension isomorphisms o =
o™ pn — pnt1 o 3 such that the analogous axioms (1) and (2) hold. The theory
is called additive, if

W\ ey Xj) = Tlies B"(X)).  x = ((7)*(x))

is always an isomorphism for well-pointed spaces X;.

In Chapter 10 we define homology theories by the axioms of Eilenberg and
Steenrod. They involve functors on TOP(2). We show in Section 10.4 that they
induce a homology theory for pointed spaces as defined above.

Given a homology theory Iy for pointed spaces we construct from it a homology
theory for pairs of spaces as follows. We set /1, (X, A) = h,(C(X, A)). It should
be clear that the 4,, are part of a homotopy invariant functor TOP(2) — R-MOD.
We define the boundary operator as the composition

8: (X, A) = hn(CGAY) 225 fa(S(AT)) = frp1 (AT) = 1 (4).

The isomorphism is the given suspension isomorphism of the theory hx. The
Eilenberg—Steenrod exactness axioms holds; it is a consequence of the assumption
that &, transforms a cofibre sequence into an exact sequence and of the naturality
of the suspension isomorphism. The excision isomorphism follows from (7.2.5).
We need the additional hypothesis that the covering is numerable. Remark (7.2.6)
is relevant for the passage from one set of axioms to the other.
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7.7 Spectral Homology and Cohomology

In this section we report about the homotopical construction of homology and
cohomology theories. We work in the category of compactly generated spaces. A
pre-spectrum consists of a family (Z(n) | n € Z) of pointed spaces and a family
(en: XZ(n) —> Z(n + 1) | n € Z) of pointed maps. Since we only work with
pre-spectra in this text, we henceforth just call them spectra. A spectrum is called
an Q-spectrum, if the maps &,: Z(n) — QZ(n + 1) which are adjoint to e, are
pointed homotopy equivalences.

Let Z = (Z(n), &,) be an Q-spectrum. We define Z"(X) = [X, Z(n)]° for a
pointed space X. Since Z(n) is up to h-equivalence a double loop space, namely
Z(n) ~ Q%Z(n +2), we see that Z"(X) is an abelian group, and we can view Z”"
as a contravariant and homotopy invariant functor TOP® — Z-MOD. We define
o: Z"(X) = Z"*1(ZX) via the structure maps and adjointness as

£n)*

X, Z)]° 2% (X, QZ(n + D = [EX, Z(n + D]°.

We thus have the data for a cohomology theory on TOP?. The axioms are satisfied
(Puppe sequence). The theory is additive.

We now associate acohomology theory to an arbitrary spectrum Z = (Z(n), ey,).
For k > 0 we have morphisms

b [SKX, Z()]° —2 [2(SKX), SZ(n)]0 25 [skH X, Z(n + 1)]° -

Let Z"~%(X) be the colimit over this system of morphisms. The b,’f are compatible
with pointed maps f: X — Y and induce homomorphisms of the colimit groups.
In this manner we consider Z” as a homotopy invariant, contravariant functor
TOP® — Z-MOD. (The b,’f are for k > 2 homomorphisms between abelian
groups.) The exactness axiom again follows directly from the cofibre sequence.
The suspension isomorphism is obtained via the identity

[SFH1X, Z(n + k + D]° = [ZKEX), Z + k + 1)]°

which gives in the colimit Z" (X) = Z"*1(ZX). If the spectrum is an Q-spectrum,
we get the same theory as before, since the canonical morphisms [X, Z(n)]° —
Z"(X) are natural isomorphisms of cohomology theories. Because of the colimit
process we need the spaces Z(k) only for k > ko. We use this remark in the
following examples.

7.7.1 Sphere spectrum. We define Z(n) = S(n) ande,: XS(n) = S(n + 1) the
identity. We set w¥ (X) = colim,[£" X, §”7%]% and call this group the k-th stable
cohomotopy group of X . o
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7.7.2 Suspension spectrum. Let Y be a pointed space. We define a spectrum with
spaces Y and e, : Z(X"Y) = X"ty &

7.7.3 Smash product. Let Z = (Z(n), e,) be a spectrum and Y a pointed space.
The spectrum Y A Z consists of the spaces Y A Z(n) and the maps

dnae,: XY ANZ(n)) =Y AXZ(n) > Y ANZ(n +1).

(Notethat XA = AAI/0I. Here and in other places we have to use the associativity
of the A-product. For this purpose it is convenient to work in the category of
k-spaces.) We write in this case

Z¥(X:Y) = colim, [S" X, Y A Z(n + k)]°.

The functors Z*(—; Y) depend covariantly on Y: A pointed map f: Y, — Y,
induces a natural transformation of cohomology theories Z k (=) —>Z k (—; Y2).
<

In general, the definition of the cohomology theory Z*(—) has to be improved,
since this theory may not be additive.
We now construct homology theories. Let

E=(E(n).en: E0)AS' - E(n+1)|neZ)

be a spectrum. We use spheres as pointed spaces and take as standard model the
one-point compactification S” = R” U{oo}. If V is a vector space one often writes
SV = V U {oo} with base point co. Then we have a canonical homeomorphism
SV A SV = SY®W the identity away from the base point. A linear isomorphism
f:V — W induces a pointed map S/ : SV — S%.

The homology group E (X) of a pointed space X is defined as colimit over the
maps

b: [S"R X AEM)]° — [S"TRASY, X AE(m)AS']® — [S"HRHL X AE(n+1)]°.

The first map is — A S! and the second map is induced by id Ae,. Forn + k > 2
the morphism b is a homomorphism between abelian groups.

It should be clear from the definition that Ej (—) is a functor on TOP®. We need
the suspension morphisms. We first define suspension morphisms

01: Ex(Z) = Ex41(SY A 2).
They arise from the suspensions S A —
(™K. Z A Em)]° — [S"FFL ST A Z A E()]°,

which are compatible with the maps b above. Then we set ¢ = (—1)¥7,0; where
themap 7: S' A Z — Z A S! interchanges the factors.
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(7.7.4) Lemma. o; is an isomorphism.

Proof. Let x € E(Z) be contained in the kernel of g;. Then there exists [ f] €
[S"tk Z A E(n)]° representing x such that 1 A f is null homotopic. Consider the
diagram

IANf 1
SU A Stk —— SUAZ A E(n)

lq |

sn+kA51&zAE(n)Asl%zAE(n+1)

with permutation of factors t; and 7,. Since 1 A f is null homotopic, the rep-
resentative (1 A e) o (f A 1) of x is also null homotopic. This shows that o7 is
injective.

In order to prove surjectivity we consider the two-fold suspension. Let x €
Ex4+2(S% A Z) have the representative g: S"k+2 — §2 A Z A E(n). Then

2
fosntkt2 892 N Z NE() — ZAEMAS? S5 ZAE® +2)

represents an element y € E(Z). Here e? is the composition of the spectral
structure maps

EMASZ=EMASHAS' S Em+1)AS! > E(n +2).

We show olz(y) = x. Once we have proved this we see that the second o; is
surjective and injective and hence the same holds for the first o;.
The proof of the claim is based on the next diagram with interchange maps
I 1
r, 7', 1"

1

T
S2 A Sn+k+2 - Sn+k+2 A S2
1ng gnl

a

S2A(S2AZ AEM) —— S2 A Z A E(n) A S2

1At
_L,/

S2A(Z ANEm)AS?) 1ne2

1ne2

S2PANZANEM+2)———S2AZAEMn+2)

The maps 7/ and t” are homotopic to the identity, since we are interchanging a
sphere with an even-dimensional sphere. The composition of the left verticals
represents 0,2 (), and the composition of the right verticals represents x. O
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(7.7.5) Proposition. For each pointed map f: Y — Z the sequence

Ec(Y) L En(2) 15 Ep(C(f))

is exact.

Proof. The exactness is again a simple consequence of the cofibre sequence. But
since the cofibre sequence is inserted into the “wrong” covariant part, passage
to the colimit is now essential. Suppose z € Ey(Z) is contained in the kernel
of fi,. Then there exists a representing map h: S"*K — Z A E(n) such that
(f1 A 1) o h is null homotopic. The next diagram compares the cofibre sequences
ofid: §"tk — §"*t* and f A1: Y A E(n) = Z A E(n).

Sn-‘r-k 1d—1>C(ld) &Sn-i-k A ST 14(1) Sn+k AS!

f o T T

ZAEm) 2N e Ay 29 v 0 By A ST 72 A E(n) A ST
Jl/\e

\ l(ﬂ J{l/\e
1Al
Al

C(f)nNEm) YANEm+1)——ZAEn+1)

The map ¢ is the canonical homeomorphism (in the category of k-spaces) which
makes the triangle commutative. Since (f A 1)1 o A is null homotopic, there exists
H such that the first square commutes. The map f is induced from (4, H) by
passing to the quotients, therefore the second square commutes. It is a simple
consequence of the earlier discussion of the cofibre sequence that the third square is
h-commutative (Problem 1). The composition (1Ae)(h A1) is another representative
of z, and the diagram shows that (1 A ¢)f represents an element y € E;(Y) such
that f.y = z. O

A similar proof shows that the Z¥ (X Y) form a homology theory in the vari-
able Y.

Problems

1. Consider the cofibre sequences of two maps f: A — B and f’: A’ — B’. In the
diagram

r I %8 =5
A B2 o) 2 54 B

lh lH JB th
77 1 p(f) =f7

A/*}B/;}C(f/) EA/ - EB/
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assume given i and H such that the first square commutes. The map S is induced from
(h, H) by passing to the quotients. Show that the third square commutes up to homotopy
(use (4.6.2)).

2. Show that the homology theory defined by a spectrum is additive (for families of well-
pointed spaces).

3. Show that a weak pointed s-equivalence between well-pointed spaces induces an isomor-
phism in spectral homology. The use of k-spaces is therefore not essential.

4. Let Z be the sphere spectrum (7.7.1). Then, in the notation of (7.7.3),

ST((X,n), (Y.m)) = Z""(X:Y),

the morphism set of the category ST of Section 7.1.

7.8 Alexander Duality

Let E = (Ep,e(n): E, A S' — E,41) be a spectrum. Let n: S” — B A A,
e: AN B — S" be an n-duality. The compositions
[AAS, Exsdl® 2255 [BAAAS, BAEgi" ——[S" AS", B A Egss]°
are compatible with the passage to the colimit and induce a homomorphism
D*: E¥(4) > E,_x(B).

The compositions

[St-i-n—k7 B/\Et]o LA> [AASt+n_k, AAB /\Et]o L [A/\S’H_k_t, S /\Et]o

™ [A/\Sn+k—t, E;AS"° e [A/\SH'"_k, Ein]®

with the interchange map t are compatible with the passage to the colimit if we
multiply them by (—1)"*. They induce a homomorphism

D.: E,_i(B) — E*(A).

(7.8.1) Theorem (Alexander duality). The morphisms D® and D, are isomor-
phisms. They satisfy DeD*® = (—1)"* id and D*D, = (—1)"¥ id.

Proof. The relations of the theorem are a direct consequence of the defining prop-
erties of an n-duality. The composition &4 o (A A —) o n* o (B A —) equals
140X" 1 [AASY, Ex44]° = [S"AAAS", S"AEi41]® — [AAS"AS!, S" AEj 14]°.

The definition of D, then involves the sign (—1)"*+?_ This morphism differs from
amap in the direct system for £ k(4) by the interchange S” AS? — S? AS", hence
by a sign (—1)". Hence the sign (—1)"* remains. The second relation is verified
similarly. O
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Let PE«(—) and P h*(—) be the homology and cohomology theories on TOP(2)
constructed from the theories E«(—) and E*(—). If we use the n-duality between
X1 and C(R"|X) for a compact ENR in R” we obtain isomorphisms

PE,_x(R",R" < X) =~ PE¥(X), PE,_x(X)=~ PE*(R",R" ~ X).

This is the usual appearance of Alexander duality.

In this setting one can also work with the bi-variant theory Z¥(X:;Y) =
Z_x(X;Y). Then one obtains from an n-duality an adjointness isomorphism
ZKAANXY)= Zyt(X:BAY).

A homology theory h.(—) is defined on the category ST. Here one defines
hi((X,n)) = hj—,(X). Letamorphism f € ST((X, n), (Y, m)) be represented by
fi: X AS™k Y A S™Fk The induced morphism is defined by commutativity
of the next diagram

— En—‘rk
hi(X,n)) —— hi—n(X) =— hy 4 (X A S"HF)

Jhl(f) l(fk)*

— Em+k
hi((Y.m)) —— hj_py(Y) = hy 1 (Y A STHF),

Given a homology theory %.(—) one can define via the complement duality
functor a sort of cohomology for spaces which admit an embedding as a closed
subset of a Euclidean space. Let X be such a space. Choose an embeddingi: X —
R” and define h*(iX) = h,_x(C(R"|iX)) = h_p(C(R*|iX),—n). If j: X —
R™ is another embedding, we have the homeomorphism ji~':iX — jY and we
have the duality map D(ji~!). The set of embeddings together with the morphisms
D(ji~") fromi to j form a contractible groupoid; it is a complicated replacement
for the space X. We obtain the induced contractible groupoid of the h* (i X). Tt
is equivalent to a group which we denote 7% (X). From the complement duality
functor we obtain a well-defined homomorphism A% (f): h*(Y) — h*¥(X) for a
proper map f: X — Y; in this way #¥(—) becomes a contravariant functor. We
do not discuss in what sense the ¥ (X) can be made into a cohomology theory.
This cohomology theory is the “correct” one for duality theory in the sense that the
Alexander duality isomorphism 4% (X) = h_;(C(R"|X), —n) holds for all spaces
in question (and not only for compact ENR). A similar devise can be applied to
a given cohomology theory. One obtains a homology theory which is again the
“correct” one for duality theory.

7.9 Compactly Generated Spaces

Several constructions in homotopy theory lead to problems in general topology. A
typical problem arises from the fact that a product of quotient maps is in general
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no longer a quotient map. We met this problem already in the discussion of CW-
complexes. In this auxiliary section we report about some devices to deal with such
problems. The idea is to construct a category with better formal properties. One has
to pay a price and change some of the standard notions, e.g., redefine topological
products.

A compact Hausdorff space will be called a ch-space. For the purpose of the
following investigations we also call a ch-space a test space and a continuous map
f: C — X ofatest space C atest map. A space X is called weakly hausdorff or
wh-space, if the image of each test map is closed.

(7.9.1) Proposition. A Hausdorff space is a wh-space. A wh-space is a T-space.
A space X is a wh-space if and only if each test map f: K — X is proper. If X is
a wh-space, then the image of each test map is a Hausdorf{f space. A subspace of a
wh-space is a wh-space. Products of wh-spaces are wh-spaces. O

A subset A of a topological space (X, ) is said to be k-closed (k-open), if
for each test map f: K — X the pre-image f~!(A) is closed (open) in K. The
k-open sets in (X, J) form a topology k7 on X. A closed (open) subset is also
k-closed (k-open). Therefore k7 is finer than 7 and the identity t = 1y : kX — X
is continuous. We set kX = k(X) = (X,kT). Let f: K — X be a test map.
The same set map f: K — kX is then also continuous. For if U C kX is open,
then U C X isk-open, hence f~!(U) C K is open. Therefore tx induces for each
ch-space K a bijection.

TOP(K,kX) —> TOP(K, X), f > ixo f.

Hence X and k X have the same k-open sets, i.e., k(kX) = kX. A topological space
X is called k-space, if the k-closed sets are closed, i.e., if X = kX. Because of
k(kX) = kX the space kX is always a k-space. A k-space is also called compactly
generated. We let k-TOP be the full subcategory of TOP with objects the k-spaces.
A whk-space is a space which is a wh-space and a k-space.

The next proposition explains the definition of a k-space. We call a topology &
on X ch-definable, if there exists a family (fj: K; — X | j € J) of test maps
such that: A C X is §-closed < foreach j € J the pre-image fj_l(A) is closed in
K. We can rephrase this condition: The canonical map ( fj): [[; K; — (X, %)
is a quotient map. A ch-definable topology is finer than 7. We define a partial
ordering on the set of ch-definable topologies by 81 < &, & 81 D &».

(7.9.2) Proposition. The topology kT is the maximal ch-definable topology with
respect to the partial ordering.

Proof. By Zorn’s Lemma there exists a maximal ch-definable topology &. If this
topology is different from k7, then there exists an §-open set U, which is not
k-open. Hence there exists a test map 7: K — X such that t~!(U) is not open. If
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we adjoin this test map to the defining family of &, we see that § is not maximal.
O

(7.9.3) Corollary. The k-spaces are the spaces which are quotients of a topological
sum of ch-spaces. O

(7.9.4) Proposition. The following are equivalent:
(1) X is ak-space.
(2) Asetmap f: X — Y iscontinuous if and only if for each test mapt: K — X
the composition ft is continuous.

Proof. (1) = (2). Let U C Y be open. In order to see that f~!(U) is open it
suffices to show that this set is k-open, since X is a k-space. Lett: K — X be a
test map and f¢ continuous. Then k~!(#~!(U)) is open, and this shows what we
want.

(2) = (1). We show that the identity X — kX is continuous. This holds by (2)
and because X and kX have the same test maps. O

(7.9.5) Proposition. Let f: X — Y be continuous. Then the same set map
kf: kX — kY is continuous. O

The assignments X — kX, f — kf yield a functor k; moreover, we have the
inclusion functor 7,

k: TOP — k-TOP, i:k-TOP — TOP.
(7.9.6) Proposition. The functor k is right adjoint to the functor i.

Proof. A natural bijection is k- TOP(Y,kX) =~ TOP(iY, X), f +— to f. This
map is certainly injective. If Y is a k-space and f: Y — X continuous, then
kf:Y =kY — kX is continuous; this is used to show surjectivity. O

(7.9.7) Proposition. Let X be a wh-space. Then A C X is k-closed if and only if
for each ch-space K C X the set AN K is closed in K. In particular a wh-space
X is a k-space if and only if: A C X is closed & for each ch-space K C X the
intersection A N K is closed in K.

Proof. Let A be k-closed. The inclusion K C X of a ch-space is a test map. Hence
AN K isclosed in K.

Conversely, suppose that A satisfies the stated condition and let f: L — X be
a test map. Since X is a wh-space, f(L) is a ch-space and therefore f(L) N A is
closed in f(L). Then f~1(A) = f~'(f(L) N A)is closed in L = f~! f(L).
This shows: A is k-closed. O

Thus we see that wh-spaces have an internal characterization of their k-closed
sets. For wh-spaces therefore k(X) can be defined from internal properties of X.
If X is a wh-space, sois kX.
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(7.9.8) Theorem. X is a k-space under one of the following conditions:
(1) X is metrizable.
(2) Each point of X has a countable neighbourhood basis.
(3) Each point of X has a neighbourhood which is a ch-space.

(4) For Q C X andx € Q there exists a ch-subspace K C X such x is contained
in the closure of Q N K in K.

(5) For each Q C X the following holds: Q N K open (closed) in K for each
test space K C X implies Q open (closed) in X.

Proof. (1) is a special case of (2).

(2) Let O C X and suppose that f~1(Q) is closed for each test map f: C —
X. We have to show that Q is closed. Thusleta € Q andlet (U, | n € N) be
a neighbourhood basis of a. For each n choose a, € Q N U; N--- N U,. Then
the sequence (a,) converges to a. The subspace K = {0,1,271,371, ...} of R
is compact. The map f: K — X, f(0) = a, f(n~!) = a, is continuous, and
n~! e f71(Q). By assumption, f~!(Q) is closed in K, hence 0 € f~1(Q), and
therefore a = f(0) € Q.

(3) = (4). Let Q C X and suppose a € Q. We choose a ch-neighbourhood
K of a and show that a is contained in the closure of Q N K in K. Thus let U be
a neighbourhood of @ in K. Then there exists a neighbourhood U’ of a in X such
that U’ N K C U. Since U’ N K is a neighbourhood of ¢ in X and a € O, we
conclude

UNONK)DUNK)YN(QONK)=U NK)NQ # 4.

Hence a is contained in the closure of @ N K in K.

(4) = (5). Suppose Q N K is closed in K for every test subspace K C X. Let
a € Q. By (4), there exists a test subspace K of X, such that a is contained in
the closure of Q N Ky in K. By the assumption (5), @ N Kj is closed in Ky; and
hencea € Q N Ko C Q.

(5) Let f~1(Q) be closed in K for each test map f: K — X. Then, in
particular, for each test subspace L C X the set Q N L is closed in L. The
assumption (5) then says that Q is closed in X. This shows that X is a k-space.

O

(7.9.9) Theorem. Let p: Y — X be a quotient map and Y a k-space. Then X is
a k-space.

Proof. Let B C X be k-closed. We have to show that B is closed, hence, since p
is a quotient map, that p~!(B) isclosedin Y. Let g: D — Y be a test map. Then
g Y (p~Y(B)) = (pg)~'(B) is closed in D, because B is k-closed. Since Y is a
k-space, p~1(B) is closed in Y. O



190 Chapter 7. Stable Homotopy. Duality

(7.9.10) Proposition. A closed (open) subspace of a k-space is a k-space. The same
holds for whk-spaces.

Proof. Let A be closed and B C A a subset such that f~!(B) is closed in C for
test maps f: C — A. We have to show: B is closed in A4 or, equivalently, in X .

If g: D — X is a test map, then g~ 1(A) is closed in D and hence compact,
since D is compact. The restriction of g yields a continuous map h: g~ (A4) — A.
The set h~1(B) = g~!(B) is closed in g7!(A) and therefore in D, and this shows
that B is closed in X.

Let U be open in the k-space X. We write X as quotient g: Z — X of a sum
Z of ch-spaces (see 7.9.3). Then ¢: ¢~ (U) — U is a quotient map and ¢~ (U)
as the topological sum of locally compact Hausdorff spaces is a k-space. Therefore
the quotient U is a k-space.

The second assertion follows, if we take (7.9.1) into account. O

In general, a subspace of a k-space is not a k-space (see (7.9.23)). Let X be a
k-space and i : A C X the inclusion. Then the map k(i): k(A) - X = k(X) is
continuous. The next proposition shows that k(i) has in the category k- TOP the
formal property of a subspace.

(7.9.11) Proposition. A map h: Z — k(A) from a k-space Z into k(A) is contin-
uous if and only if k(i) o h is continuous.

Proof. 1f h is continuous then also is k(i) o . Conversely, let k(i) ok be continuous.
We have k(i) = i oty. Since i is the inclusion of a subspace, t4 o / is continuous;
(7.9.6) now shows that A is continuous. O

(7.9.12) Theorem. The product in TOP of a k-space X with a locally compact
Hausdorff space Y is a k-space.

Proof. By (7.9.8), a locally compact Hausdorff space is a k-space. We write X as
quotient of Z, where Z is a sum of ch-spaces, see (7.9.3). Since the product of
a quotient map with a locally compact space is again a quotient map, we see that
X x Y is a quotient of the locally compact Hausdorff space, hence k-space, Z x Y,
and therefore a k-space by (7.9.9). O

A product of k-spaces is not always a k-space (see (7.9.23)). Therefore one is
looking for a categorical product in the category k-TOP. Let (X; | j € J) bea
family of k-spaces and [ | ; Xj its product in the category TOP, i.e., the ordinary
topological product. We have a continuous map

pj = k(pry): k(1 Xj) = k(X)) = X;.

The following theorem is a special case of the fact that a right adjoint functor respects
limits.
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(7.9.13) Theorem. (p;: k([]; X;) — X; | j € J) is a product of (X; | j € J)
in the category k- TOP.

Proof. We use (7.9.6) and the universal property of the topological product and
obtain, in short-hand notation, for a k-space B the canonical bijection

k-TOP(B,k(]_[ Xj)) = TOP(B,]_[Xj) ~ [[TOP(B, X;) = [ [ k-TOP(B, X;).
and this is the claim. O

In the case of two factors, we use the notation X xj Y for the product in k- TOP
just defined. The next result shows that the wh-spaces are the formally hausdorff
spaces in the category k- TOP.

(7.9.14) Proposition. A k-space X is a wh-space if and only if the diagonal Dy of
the product X Xy X is closed.

Proof. Let X be a wh-space. In order to verify that Dy is closed, we have to
show that for each test map f: K — X xj; X the pre-image f~!(Dy) is closed.
Let fj: K — X be the j-th component of f. Then L; = f;(K) is a ch-space,
since X is a wh-space. Hence L = L, U L, C X is a ch-space. The relation
f~'Dx = f~Y((L x L) N Dyx) shows that this set is closed.

Let Dy beclosedin X Xz X and f: K — X atest map. We have to show that
f(K) C X isclosed. Let g: L — X be another test map. Since X is a k-space,
we have to show that g=! f(K) C L is closed. We use the relation

g f(K) = pro((f x g)" ' Dx).

Since Dy is closed, the pre-image under f X g is closed and therefore also its image
under pr, as a compact set in a Hausdorff space. O

Recall the mapping space F(X, Y) with compact-open topology.

(7.9.15) Theorem. Let X and Y be k-spaces, and let f: X X Y — Z be con-
tinuous. The adjoint map f~: X — kF(Y,Z), which exists as a set map, is
CONLINUOUS.

Proof. Themap f": X — kF(Y, Z)is continuous, if for each test map¢: C — X
the composition f " of is continuous. Weuse f "ot = (f o(t xidy))”. Therefore it
suffices to assume that X is a ch-space. But then, by (7.9.12), X xx Y = X xY and
therefore f*: X — F(Y, Z) is continuous and hence also f*: X — kF(Y, Z),
by (7.9.4). O

(7.9.16) Theorem. Let Y be a k-space. Then the evaluation
ey,z: kF(Y,Z)xx Y — Z, (f.y) = f(¥)

is continuous.
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Proof. Lett: C — kF(Y,Z) x; Y be a test map. We have to show the continuity
ofeyzot. Lett]': C — F(Y,Z)andt,: C — Y be the continuous components
of . We show first: The adjoint #,: C x Y — Z of t{ is continuous. By (2.4.3),
this continuity is equivalent to the continuity of the second adjoint map #,": ¥ —
F(C, Z). In order to show its continuity, we compose with a test maps: D — Y.
But?) os = F(s, Z)ot{ is continuous. Moreover we have ey,z ot = t; o (id, 1),
and the right-hand side is continuous. O

A combination of (7.9.15) and (7.9.16) now yields the universal property of the
evaluation ey, z for k-spaces:

(7.9.17) Proposition. Let X and Y be k-spaces. The assignments f +— f” and
g ey,z o (g xXx idy) = g~ are inverse bijections

TOP(X x Y, Z) =~ TOP(X,kF (Y, Z))
between these sets. O

(7.9.18) Theorem. Let X, Y and Z be k-spaces. Since ey,z is continuous, we have
an induced set map

AMkF(X,kF(Y,Z)) > kF(X x¢ Y,Z), freyzo(f xxidy)=f"".
The map A is a homeomorphism.
Proof. We use the commutative diagram

e xid

kE(X.kF(Y,Z)) <k X x Y S kF(Y, Z) xx Y

J/)ind X id lez

KFEX x¢ V. Z) xx X xg ¥ — 2 7

with e; = ex xr(v,z), €2 = ey,z, and e3 = exx,y,z. Since e; x id and e; are
continuous, the universal property of e3 shows that A is continuous; namely, using
the notation from (7.9.17), we have e; o (e; x id) = A™. The universal property of
ey provides us with a unique continuous map

w:kF(X x; Y, Z) - kF(X.kF(Y,Z)), f— f"

such that e o (1 xid(X)) = e5, where e} : kF(X xx Y, Z) xx X — kF(Y, Z) is
the adjoint of e3 with respect to the variable Y. One checks that A and u are inverse
to each other, hence homeomorphisms. O

(7.9.19) Theorem. Let X and Y be k-spaces, and f: X — X' andg: Y — Y’
be quotient maps. Then f x g: X x; Y — X' xi Y' is a quotient map.
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Proof. It suffices to treat the case g = id, since a composition of quotient maps is
a quotient map. Using (7.9.18), the proof is now analogous to (2.4.6). O

(7.9.20) Proposition. Let f: X — Y be a quotient map and X a whk-space. Then
Y is awhk-space ifand only if R = {(x1,xy | f(x1) = f(x2)}isclosedin X x; X.

Proof. The set R is the pre-image of Dy under f x f. Since f X f is a quotient
map (7.9.19), Dy is closed if and only if R is closed. Now apply (7.9.9) and
(7.9.14). O

(7.9.21) Proposition. Let Y and Z be k-spaces and assume that Z is a wh-space.
Then the mapping space kF (Y, Z) is a wh-space. In particular, if Y and Z are
whk-spaces, then kF (Y, Z) is a whk-space.

Proof. Let f~: K — kF(Y,Z) be a test map. We have to show that it has
a closed image hence is k-closed. For this purpose let g”": L — kF(Y,Z) be
another test map. It remains to show that the pre-image M of f”(K) under g"
is closed. We use the adjoint maps f: K xY — Zandg: L xY — Z. For
yeYletiy: KxL — (KxY)xg (LxY), (k) (k,y,l,y). Then
M = pry ((yey ((f % 2)iy)"'Dz). Since Z is a wh-space and therefore the
diagonal Dz is closed by (7.9.14), we see that M is closed. O

We now consider pointed spaces. Let (X; | j € J) be a family of pointed
k-spaces. Let ]_[f X; be its product in k-TOP. Let W;X; be the subset of the
product of those points for which at least one component equals the base point.
The smash product /\;C X is the quotient space ( ]_[f X;)/WyX;. In the case that
J ={l1,...,n} wedenote this space by X1 Ag - -- A Xy. A family of pointed maps
fi: X; — Y; induces a pointed map A¥ £ : /\]1c X; — /\f Y;.

Let X and Y be pointed k-spaces. Let F®(X,Y) C F(X,Y) be the subspace of
pointed maps. We compose a pointed map f: X Ax ¥ — Z with the projections
p: X XY — X At Y. The adjoint (fp)": X — kF (Y, Z) is continuous and has
an image contained in Kk F°(Y, Z). We obtain a continuous map X — kF°(Y, Z)
which will be denoted by f*.

The evaluation ey, z induces eg,  which makes the following diagram commu-
tative:

k(i)xid
KFO(Y. Z) x X — % kR (Y, Z) i X
l” Jz
e%_z
KFO(Y. Z) np X Y.

i is the inclusion and p the quotient map. The continuity of k(i) and ey,z implies
the continuity of the pointed evaluation eg’, 7. In analogy to (7.9.18) one proves:
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(7.9.22) Theorem. Let X, Y and Z be pointed k-spaces. The assignment
wl i kFO(X ALY, Z) - kF°(X,kF°(Y, Z), [+~ f"
is a homeomorphism. O

(7.9.23) Example. Let R/Z be obtained from R by identifying the subset Z to a
point (so this is not the factor group!). We denote by p: R — R/Z the quotient
map.
(1) The product p xid: R x Q — R/Z x Q of quotient maps is not a quotient
map.
(2) The product R/Z x @ is not a k-space, but the factors are k-spaces (see
(7.9.4)).

(3) The product R/Z x R is a k-space (see (7.9.9) and (7.9.12)), but the subspace
R/Z x Q is not a k-space by (2).
If K C R/Z is compact, then there exists [ € N such that K C p[—/,!].

Let (r, | n € N) be a strictly decreasing sequence of rational numbers with
limit +/2. The set F = {(m + 5=, ) | n.m € N} C R x @ is saturated with
respect to p x id and closed in R x Q.

Theset G = (pxid)(F)isnotclosedin R/ZxQ. Notethatz = (p(0),0) & G;
but we show that z € G. Let U be a neighbourhood of z. Then there exists a
neighbourhood V of p(0) in R/Z and ¢ > O such that V x (] —¢,¢[NQ) C U.
Choose m € N suchthatm™1+4/2 < 27 1e. The set p~! (V) is then a neighbourhood
of m in R, since m € p~!p(0) C p~'(V). Hence there exists § > 0 such
that Jm — 8,m + §[C p~'(V). Now choose n € N such that ﬁ < 6 and

rm— 2 < m%. Then (p x id)(m + 5-.2) € V x (] — &,6[NQ) C U holds,
becausem—l—ﬁ €lm—8.m+8[C p~'(V)and0 < 2 = “/75—1—# <i+i=e
We see that U N G # @. This finishes the proof that z € G.

We now see that p xid is not a quotient map, since there exists a saturated closed
set ' with non-closed image G.

The space R/Z x @ is not a k-space. Let s: K — R/Z x Q be an arbitrary
test map. We show that s~1(G) is closed in K although G is not closed (this could
not occur in a k-space). The two projections pr; s(K) are compact and Hausdorff.
Hence there exists / € N such that pry s(K) C p[—/,!]. The inclusion

$(K) C pry s(K) xprys(K) C p[=l = 1] x pry s(K)

then shows that we have s~1(G) = s~1(G N p[-1,1] x prys(K)). But the set
G N p[—1,1] x pry s(K) is finite: By construction, F is a closed discrete subspace
of R x Q; moreover, F' N [/, /] x pr, s(K) is finite as a closed discrete subspace
of the compact space [—/, [] x pr, s(K); therefore also

(p xid)(F N[, 1] x prys(K)) = G N p[—1,1] x pry s(K)
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is finite. A finite set in a Hausdorff space is closed, and therefore s~!(G) as pre-
image of a closed set is closed itself. <

(7.9.24) Example. It is stated already in [155, p. 336] that (Q A Q) A Ny and
Q A (Q A Ng) are not homeomorphic. In [128, p. 26 ] it is proved that the canonical
continuous bijection from the first to the second is not a homeomorphism. <&

Problems

1. A space is a k-space if and only if it is a quotient of a locally compact Hausdorff space.
2. Let X1 C Xo C ---, let X; be a whk-space and let X; C X, be closed. Then
X=U i X, with colimit topology, is a whk-space. If the X; are k-spaces, then X is a
k-space, being a quotient of the k-space [ [; X;. If the X; are wh-spaces, hence T’ -spaces,
then each test map f: K — X has an image which is contained in some X; and therefore
closed. If each inclusion is X; C X; 41 closed, the image is also closed in X and therefore
X is a wh-space.

3. Let X and Y be k-spaces. Passage to adjoint maps induces bijections of homotopy sets
[X xx Y. Z] = [X.kF(Y,Z)] and [X A Y, Z]® = [X.kFO(Y, Z)]°.

4. Let (X; | j € J) be a family of k-spaces. Then the topological sum [[;c; X, is a
k-space. The product in k-TOP is compatible with sums.

5. Let a pushout of topological spaces with closed j: A C X be given.

s
—

A B
oo b
x Loy

Let X and B be whk-spaces. Then Y is a whk-space.



Chapter 8
Cell Complexes

The success of algebraic topology is largely due to the fact that one can describe
spaces of interest by discrete (or even finite) combinatorial data. Purely combina-
torial objects are simplicial complexes. Given such a complex, one defines from
its data by simple linear algebra the homology groups. It is then a remarkable
fact that these groups are independent of the combinatorial description and even
homotopy invariant. Simplicial complexes are a very rigid structure. A weaken-
ing of this structure is given by the cell complexes (CW-complexes in the sense of
J.H. C. Whitehead). They are more flexible and better adapted to homotopy theory.

An n-cell in a space is a subset which is homeomorphic to the standard n-cell
E" = {x € R" | ||x|| < 1}. A cell complex is a decomposition of a space into
cells. In order that one obtains something interesting, one has to add conditions
about the closure of the cells, and one has to relate the topology of the space to the
topology of the closed cells.

A finite cell complex is easily defined: a Hausdorff space X which is the union
of a finite number of cells. It e is an n-cell of this decomposition, then it is required
that there exists a continuous map ¢ : D" — X which induces a homeomorphism
E"™ — e and sends S”~! into the union of the cells up to dimension n — 1.

From these data one obtains already an interesting invariant of X, the so-called
Euler characteristic. Letn (i) denote the number of i -cells. Define the combinatorial
Euler characteristic to be the alternating sum y(X) = Zi>0(—1)i n(i). Itis a non-
trivial fact that h-equivalent finite complexes have the same Euler characteristic.
The origin of the notion is the famous result of Leonhard Euler (~ 1752) that for a
sphere S? each polyhedral decomposition yields the value n(0) —n(1) +n(2) = 2.

In this chapter we present some point-set topology and elementary homotopy
theory of cell complexes. Then we demonstrate the use of cell complexes in the
construction of spaces with specific properties. In particular we construct so-called
Eilenberg—Mac Lane spaces K (7, n). They have a single non-vanishing homotopy
group 7, (K (7r,n)) = 7 (here 7 can be an arbitrary abelian group). Eilenberg-Mac
Lane spaces can be used as building blocks for general homotopy types (Postnikov
systems). They also yield a homotopical definition of cohomology (and homology)
groups: The homotopy set [X, K (i, n)] carries a natural structure of an abelian
group and is known to be a version of a cohomology group denoted H" (X ; ).
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8.1 Simplicial Complexes

Simplicial complexes are the objects of combinatorial topology.
A simplicial complex K = (E, S) consists of a set E of vertices and a set S
of finite non-empty subsets of £. A set s € S with ¢ + 1 elements is called a
q-simplex of K. We require the following axioms:
(1) {e} € S foreache € E.
(2) If t € S and s C t is non-empty, then s € S.
If s € S is a g-simplex, then ¢ is called the dimension of s. If t C s, then ¢ is
a face of s. A 1-simplex of K is also called an edge of K. The 0-simplices of
K correspond to the elements of E; a 0-simplex is called a verfex. A simplex is
determined by its O-faces.
A simplicial complex is n-dimensional, if it contains at least one n-simplex but
no (n + 1)-simplices. A subcomplex L of K consists of a set of simplices of K
which contains with s also the faces of s. A 1-dimensional complex is a graph.
A complex K = (E,S) is finite if E is finite and locally finite if each vertex
is contained in a finite number of simplices. The n-skeleton K" = (E, S") of
K = (E, S) is the subcomplex with S = {s € § | dims < n}.

(8.1.1) Example. Let U = (U; | j € J) be a covering of a set X by non-
empty sets U;. For a finite non-empty set £ C J let Ug = ();eg U; and let
E(J) ={E C J | Ug # @}. Then (J, E(J)) is a simplicial complex, called the
nerve N(U) of the covering U. &

(8.1.2) Example. Let P be a set with a partial ordering <. The simplicial complex
(P, Sp) associated to a partially ordered set has as simplices the totally ordered
finite subsets of P. <

(8.1.3) Example. Let K = (E, S) be a simplicial complex. Define a partial order
on Sbys <t < s C¢t. The simplicial complex K’ associated to this ordered set
is called the barycentric subdivision of K. &

Let K = (E, S) be a simplicial complex. We denote by | K| the set of functions
o: E — I such that

(1) {e € E | a(e) > 0} is a simplex of K.

) Yeepale) =1.
We regard |K| as a subset of the product /£. Let |K|, denote this set with the
subspace topology of the product topology. We have a metric d on | K| defined by

(@, ) = (Toep(@(e) — B(e)?)?.

We denote | K | with this metric topology by | K |,,,. Each vertex e € E gives us acon-
tinuous map e: |K|,, — I, o — «a(e). Therefore the identity |K|,, — |K]|, is
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continuous. We leave it as an exercise to show that this map is actually a homeo-
morphism. The numbers (¢ (e) | e € E) are the barycentric coordinates of o.

We define a further topology on |K|. For s € S let A(s) be the standard
simplex {(t,) € |K| | to = Ofore ¢ s}. Then |K]| is the union of the A(s), and
we write | K|, for |K| with the quotient topology defined by the canonical map
[Ises A(s) = |K|. The identity |K|. — |K|, is continuous but not, in general, a
homeomorphism. The next proposition will be proved in the more general context
of simplicial diagrams.

(8.1.4) Proposition. |K|. — |K|, is a homotopy equivalence. O

In the sequel we write | K| = | K|, and call this space the geometric realization
of K. We define |s| C |K|as |s|] = {& € |K| | a¢(e) # 0 = e € s} and
call this set a closed simplex of |K|. For each simplex s of K the open simplex
(s) C |K]| is the subspace (s) = {« € |K| | a(e) # 0 < e € s}. The complement
Is|\ (s) = d|s| is the combinatorial boundary of |s|; it is the geometric realization
of the subcomplex which consists of the proper faces of s. The set | K| is the disjoint
union of the (s),s € S.

Let | K|" be the union of the A(s) with dims < n.

(8.1.5) Proposition. The space |K| is the colimit of the | K|"*. The equality |K"| =
|K|" holds. The canonical diagram

].[s,dims:n aA(S) O |K|n_1

! |

]_[s,dim s=n A(S) — |K|n

is a pushout. O

A homeomorphism z: |K| — X is called a triangulation of X. The triangu-
lation of surfaces was proved by Rad¢ [161], the triangulation of 3-dimensional
manifolds by Moise (see [141] for references and proofs; [197, 7.5.1]). Differen-
tiable manifolds can be triangulated, and the triangulation can be chosen in such a
way that it is on each simplex a smooth embedding ([193]; [143]).

Since | K|, is separated and id: | K| — | K|, continuous, |K| is separated. For
finite K the identity | K| — | K|, is a homeomorphism.

For each vertex e € E the set St(e) = {« € |K| | a(e) # 0} is called the star
of e. Since o — «(e) is continuous, the set St(e) is open in |K|; and therefore
also in | K|. If we identify e with the function a(e) = 1,a(e’) = 0 fore # ¢/, then
St(e) is an open neighbourhood of e.

Points e, ..., e; of R" are affinely independent, if the relations XA;e; = 0
and XA; = 0 imply that each A; = 0. If ey, ..., ex are affinely independent, then
the simplex {Zf:o Aiei | A =0, ZA; = l} spanned by ey, ..., e is the convex
hull of this set and homeomorphic to the k-dimensional standard simplex.
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Let K = (E, S) be a simplicial complex and (x. | e € E) a family of points
in R". Consider the continuous map

fiIK| =R, a—)  cpale)x.

If f is an embedding, we call the image of f a simplicial polyhedron in R" of type
K, and f(]K]) is a realization of K as a polyhedron in R”.

Standard tools for the application of simplicial complexes in algebraic topology
are subdivision and simplicial approximation [67, p. 124].

Problems

1. id: |K|; — |K]|p is a homeomorphism.

2. Let K = (Ng, S) be the simplicial complex where S consists of all finite subsets of No.
The canonical map |K|. — | K|, is not a homeomorphism.

3. Let L be asubcomplex of K. We can identify | L| with a subset of | K|, and | L| carries then
the subspace topology of |K|. If (L; | j € J) is a family of subcomplex of K, then | J L;
and () L; are subcomplexes and the relations | J|L;| = [|JL;|and (|L;| = | L;]
hold.

4. Let K be a simplicial complex. Then the following assertions are equivalent: (1) K is
locally finite. (2) | K| is locally compact. (3) The identity | K| — |K |4 is ahomeomorphism.
(4) |K| is metrizable. (5) Each point of | K| has a countable neighbourhood basis. (See [44,
p. 65].)

5. Let K be a countable, locally finite simplicial complex of dimension at most n. Then K
has a realization as a polyhedron in R2” 1. (See [44, p. 66].)

8.2 Whitehead Complexes

We use the standard subsets of Euclidean spaces S”~!, D" E" = D"\ S"71,
(n > 1). Weset S™! = @ and let D° be a point, hence E° = D°. A k-dimen-
sional cell (a k-cell) in a space X is a subset e which is, in its subspace topology,
homeomorphic to E¥. A point is always a 0-cell.

A Whitehead complex is a space X together with a decomposition into cells
(ex | A € A) such that:

(W1) X is a Hausdorff space.
(W2) For each n-cell e, there exists a characteristic map ©,: D" = D} — X
which induces a homeomorphism E” — e, and sends S”~! into the union
X"~1 of the cells up to dimension n — 1.
(W3) The closure e}, of each cell e, intersects only a finite number of cells.
(W4) X carries the colimit topology with respect to the family (e | A € A).
A subset A of a Whitehead complex is a subcomplex if it is a union of cells and
the closure of each cell in A is contained in A. We will see that a subcomplex together
with its cells is itself a Whitehead complex. From the definition of a subcomplex
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we see that intersections and unions of subcomplexes are again subcomplexes.
Therefore there exists a smallest subcomplex X (L) which contains a given set L.

The decomposition of a Hausdorff space into its points always satisfies (W1)—
(W3). We see that (W4) is an important condition. Condition (W3) is also called
(C), for closure finite. Condition (W4) is called (W), for weak topology. This is the
origin for the name CW-complex. In the next section we consider these complexes
from a different view-point and introduce the notion of a CW-complex.

(8.2.1) Lemma. Let ®: D" — X be a continuous map into a Hausdorff space.
Lete = ®(E™). Then ®(D™") = e. In particular e is compact.

Proof. ®(D") is a compact subset of a Hausdorff space and therefore closed. This
yields e = ®(E") C O(D") = (D") = O(E™) C P(E™) =e. O

(8.2.2) Example. Suppose X has a cell decomposition into a finite number of cells
such that properties (W1) and (W2) hold. Then X is a finite union of closures e of
cells and therefore compact by (8.2.1). Properties (W3) and (W4) are satisfied and
X is a Whitehead complex. <

(8.2.3) Examples. The sphere S” has the structure of a Whitehead complex with
a single 0-cell and a single n-cell. The map

®: D" — S", x> 2y1—|x[2-x,2x]*> = 1)

sends S"~1 to the O-cell e,41 = (0,...,0,1) and induces a homeomorphism of
E™ with §" ~ {e,+1}, hence is a characteristic map for the n-cell.

From this cell decomposition we obtain a cell decomposition of D" ! by adding
another (n + 1)-cell E”T! with characteristic map the identity.

Another cell-composition of S” has two j-cells for each j € {0,...,n} and
is obtained inductively from D’} = {(x;) € $" | £x,41 > 0} with intersection

§n=1 = 8§71 x 0. A characteristic map is D" — D', x > (x, £/1 — ||x]?).©

(8.2.4) Proposition. Let X be a Whitehead complex.
(1) A compact set K in X meets only a finite number of cells.
(2) A subcomplex which consists of a finite number of cells is compact and closed
in X.
(3) X(e) = X(e) is for each cell e a finite subcomplex.
(4) A compact subset of a Whitehead complex is contained in a finite subcomplex.
(5) X carries the colimit topology with respect to the finite subcomplexes.
(6) A subcomplex A is closed in X.

Proof. (1) Let E be the set of cells which meet K. For each e € E we choose a
point x, € K Neandset Z = {x, | e € E}. LetY C Z be any subset. For each
cell f of X the closure f is contained in the union of a finite number of cells. Thus
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Yn f is a finite set, hence closed in f since f is a Hausdorff space. The condition
(W4) now says that Y is closed in X and hence in Z. This tells us that Z carries
the discrete topology and is closed in X. A discrete closed set in a compact space
is finite.

(2)Let A = e;U---Ue, be afinite union of cells ;. Then A=¢eU---Ug C 4,
by definition of a subcomplex. By (8.2.1), A = A is compact and closed.

(3) Induction over dim(e). If e is a O-cell, then e is a point and closed, hence a
subcomplex and X(e) = X(e) = e. Suppose X(f) is finite for each cell f with
dim( f) < n. Let e be an n-cell with characteristic map .

The set ®(S”~1) is contained in the union of cells of dimension at most n — 1,
hence is contained in e ~ e.

Then 2 ~ e = ®(S""!) is compact, hence contained in a finite number of
cells ey, ..., ek, by (1), which are contained in xn1 by (W2). By induction
hypothesis, the set C = e U X(e1) U --- U X(ex) is a finite subcomplex which
contains e and hence X (e). Therefore X(e) is finite. Since X(e) is closed, by (2),
we have e C X(e) and X(e) C X(e).

(4) This is a consequence of (1) and (3).

(5) We show: A C X is closed if and only if for each finite subcomplex Y the
intersection A N Y is closedin Y.

Suppose the condition is satisfied, and let f be an arbitrary cell. Then AN X(f)
is closed in X(f'), hence, by (2) and (3), closed in X; therefore AN f = AN
X(f)N fisclosedin X and in f, hence closed in X by condition (W4).

(6) If Y is a finite subcomplex, then A NY is a finite subcomplex, hence closed.
By (5), A is closed. O

(8.2.5) Proposition. A subcomplex Y of a Whitehead complex X is a Whitehead
complex.

Proof. LetebeacellinY and ®: D" — X a characteristic map. Then ®(D") =
e C Y,since Y is closed. Hence @ can be taken as a characteristic map for Y.

It remains to verify condition (W4). Let L C Y and suppose L N e is closed
in e for each cell e in Y. We have to show that L is closed in Y. We show that L
is closed in X. Let f be a cell of X. By (W3), f is contained in a finite union
ep U---Ueg of cells. Letey, ..., e; be those which are contained in Y. Then

fNYceU---Ue; CeyU---Ug CY
since Y is a subcomplex. Hence
fnYy =(fneyu---u(fne), fNL=fnLny =Uj_,(fnenL).

By assumption, ex N L is closed in e ; hence f Neg N L is closed in f ; therefore
f N L is a finite union of sets which are closed in X. O
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(8.2.6) Proposition. Let X be a Whitehead complex. Then:
(1) X carries the colimit topology with respect to the family (X" | n € Ny).

(2) Let (e | A € A(n)) be the family of n-cells of X with characteristic maps
®,: D} — X" and restrictions @ : S/’{_l — X" 1. Then

LI, D} ——————— x*

is a pushout in TOP. (X~! = 0.)

Proof. (1) Suppose A N X" is closed in X" for each n. Then for each n-cell e of
Xtheset ANe=ANeN X"isclosedine. By (W4), A is closed in X.

(2) The diagram is a pushout of sets. Give X" the pushout topology and denote
this space by Z. By construction, the identity k : Z — X" is continuous. We show
that « is also closed. Let V' C Z be closed. By definition of the pushout topology
this means:

(i) V' N X" 'isclosed in X" 1.

(i) @~ 1(V) N DY is closed in DY, hence also compact.

We conclude that CD((ID Lvyn DY) =V N&(DY) = VNe,isclosedine,, being
a continuous image of a compact space in a Hausdorff space. From (i) and (ii) we
therefore conclude that for each cell e of X" the set V N e is closed in e. Since X"
is a Whitehead complex, V' is closed in X™”. O

(8.2.7) Proposition. Let X be a Whitehead complex, pointed by a O-cell. The
inclusions of the finite pointed subcomplexes F C X induce a canonical map
colimg 7y (F, %) — mp (X, *). This map is an isomorphism. O

Recall from Section 7.9 the notion of a k-space and the k-space k(X) obtained
from a space X.

(8.2.8) Proposition. Let X have a cell decomposition such that (W1)—(W3) hold
and such that each compact set is contained in a finite number of cells. Then k(X)
is a Whitehead complex with respect to the given cell decomposition and the same
characteristic maps. Moreover, X is a Whitehead complex if and only if k(X) =

Proof. Let ®: D" — X be a characteristic map for the cell e. Since e is compact
it has the same topology in k(X). Hence ®: D" — k(X) is continuous. Since ®
is a quotient map and ®~!(e) = E", we see that e has the same topology in k(X)
and X. Thus e is a cell in k(X)) with characteristic map .

Let A N e be closed in e for each cell e. Let K C k(X) be compact. By
hypothesis, K is contained in a finite number of cells, say K C e; U---Ueg. Then
ANK = ((ANey)U---U(ANeg)) N Kisclosedin K. Hence A4 is k-closed. [
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Let X and Y be Whitehead complexes and e C X, f C Y cells. Then
e X f C X xY isacell. From characteristic maps ®: D — X, V: D" — Y
for e, f we obtain ® x W: D™ x D" — X x Y, and this can be considered as a
characteristic map for e x f. For this purpose use a homeomorphism

(Dm-‘rn, Sm+n—1) - (Dm X Dn’ D™ x Sn—l U Sm—l % Dn)‘

With this cell structure, X x Y satisfies conditions (W1)—-(W3) in the definition
of a Whitehead complex. In general, property (W4) may not hold. In this case
one re-topologizes X x Y such that the compact subsets do not change. The space
X X Y = k(X xY) is then a Whitehead complex (see (8.2.8)).

Problems

1. R carries the structure of a Whitehead complex with O-cells {n}, n € Z and I-cells
Jn.,n + 1], n € Z. There is an analogous Whitehead complex structure W(§) on R” with
0-cells the set of points 8(k1,...,k.), k; € Z, § > 0 fixed and the associated §-cubes.
Thus, given a compact set K C R” and a neighbourhood U of K, there exists another
neighbourhood L of K contained in U such that L is a subcomplex of the complex W (3).
In this sense, compact subsets can be approximated by finite complexes.

2. The geometric realization of a simplicial complex is a Whitehead complex.

8.3 CW-Complexes

We now use (8.2.6) as a starting point for another definition of a cell complex. Let
(X, A) be a pair of spaces. We say, X is obtained from A by attaching an n-cell,
if there exists a pushout

Sn—l L} A

lﬂ \Lﬂ
pr—2 5 x.

Then A is closed in X and X \ A is homeomorphic to E” via ®. We call X \ 4 an
n-cell in X, ¢ its attaching map and @ its characteristic map.

(8.3.1) Proposition. Let a commutative diagram with closed embeddings j, J be
given:

AL>Y

bl
F
X—Z.
Suppose F induces a bijection X ~ A — Z ~ Y. Then the diagram is a pushout,
provided that (1) F(X) C Z is closed; 2) F: X — F(X) is a quotient map.
Condition (2) holds if X is compact and Z Hausdorff.
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Proof. Letg: X — U and h: Y — U be given such that gj = hf. The diagram
is a set-theoretical pushout. Therefore there exists a unique set map ¢: Z — U
with oF = g, ¢J = h. Since J is a closed embedding, ¢|J(Y) is continuous.
Since F is a quotient map, ¢|F(X) is continuous. Thus ¢ is continuous, since
F(X) and J(Y) are closed sets which cover Z. O

(8.3.2) Note. Let X be a Hausdorff space and A a closed subset. Suppose there
exists a continuous map ®: D" — X which induces a homeomorphism ®: E" —
X \ A. Then X is obtained from A by attaching an n-cell.

Proof. We show ®(S"~!) C A. Suppose there exists s € S"~! with ®(s) € X \ 4.
Then there exists a unique ¢ € E" with ®(s) = ®(¢). Let V C E", W C D"
be disjoint open neighbourhoods of ¢, s. Then ®(V) C X \ A is open in X, since
®: E" — X\ Aisahomeomorphism and 4 is closed in X . Since @ is continuous,
there exists an open neighbourhood W; C W of s with ®(W;) C ®(V). This
contradicts the injectivity of ®|E".

Thus ® provides us with a map ¢: S”~! — A. We now use (8.3.1). O

(8.3.3) Example. The projective space R P" is obtained from R P! by attaching
an n-cell. The projective space C P" is obtained from C P"~! by attaching a 2n-
cell.

We recall that CP"~! is obtained from S2"~! by the equivalence relation
(Z1...n2zn) ~ (Az1, ..., Azp), A € SY, or from C* \ O by z ~ Az, A € C*.
The class of z is denoted [z1,...,z,]. A characteristic map ®: D?* — CP" is

[x. V1= [x]?].

The space R P! is obtained from S”~! by the relation z ~ —z, or from R” \ 0
by z ~ Az, A € R*. A characteristic map ®: D" — RP”" is given by the same
formula as in the complex case. &

We can also attach several n-cells simultaneously. We say X is obtained from A
by attaching n-cells if there exists a pushout

]_[jeJ S;l_l L) A

|n J

L[je] D_7 —X.

The index j just enumerates different copies of the same space. Again, A4 is then
closed in X and ® induces a homeomorphism of ]_[ E " with X \ A. Therefore
X \ A is a union of components and each component is an n-cell. (By invariance
of dimension, the integer n is determined by X \ A.) We allow J = 0; in that case
A= X. Wewrite ®; = ®|D} and ¢; = @|S™1 and call ®; the characteristic
map of the n-cell ®(E7) and ¢; its attaching map.
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Let us give another interpretation: X = X(¢) is the double mapping cylinder

of J < 5" x J %5 A where J is a discrete set. From this setting we see: If ¢
is replaced by a homotopic map v, then X(¢) and X (/) are h-equivalent under A.

Let f: A — Y be a given map. Assume that X is obtained from A by attaching
n-cells via attaching maps (¢;): || ;S ;'_1 — A. From the pushout definition of
the attaching process we obtain:

(8.3.4) Note. There exists an extension F: X — Y of f if and only if the maps
f@j are null homotopic. We view a null homotopy of f¢; as an extension to D7.
Then the extensions I correspond to the set of null homotopies of the f¢;. O

In view of this note we call the homotopy classes [ f¢;] the obstructions to
extending f.

Let A be asubspace of X. A CW-decomposition of (X, A) consists of a sequence
of subspaces A = X! ¢ X° c X! C --- C X such that:

(1) X = UpsoX™.

(2) For each n > 0, the space X" is obtained from X”~! by attaching n-cells.

(3) X carries the colimit topology with respect to the family (X7).
X is a subspace of the colimit X of a sequence X; C X;41 C ---. If the
inclusions are closed, then Xy is closed in X. This is an immediate consequence
of the definition of the colimit topology.

A pair (X, A) together with a CW-decomposition (X" | n > —1) is called a
relative CW-complex. In the case A = @ we call X a CW-complex. The space X"
is the n-skeleton of (X, A) and (X" | n > —1) is the skeleton filtration. The cells
of X\ X"~ ! are the n-cells of (X, A). We say, (X, A) is finite (countable etc.) if
X \ A consists of a finite (countable etc.) number of cells. If X = X" X # X1
we denote by n = dim(X, A) the cellular dimension of (X, A). If A = @, then A
is suppressed in the notation. We call X a CW-space if there exists some cellular
decomposition X® ¢ X! C -+ of X.

Let X be a Whitehead complex. From (8.2.6) we obtain a CW-decomposition
of X. The converse also holds: From a CW-decomposition we obtain a decompo-
sition into cells and characteristic maps; it remains to verify that X is a Hausdorff
space and carries the colimit topology with respect to the closures of cells (see
(8.3.8)).

In the context of CW-complexes (X, A), the symbol X” usually denotes the
n-skeleton and not the n-fold Cartesian product.

(8.3.5) Note. If (X, A) is a relative CW-complex, then also (X, X") and (X", A)
are relative CW-complexes, with the obvious skeleton-filtration inherited from
(X" |n>-1). O

(8.3.6) Example. From (8.3.3) we obtain cellular decompositions of CP" and
RP™. The union of the sequence RP" C R"*! C ... defines the infinite projective
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space R P°° as a CW-complex. It has a single n-cell for each n > 0. Similarly, we
obtain C P *° with a single cell in each even dimension. <

(8.3.7) Example. The sphere S” has a CW-decomposition with a single 0-cell
and a single n-cell, and another CW-composition with two j-cells for each j €
{0,...,n}, see (8.2.3). The quotient map S” — RP” sends each cell of the latter
homeomorphically onto a cell of RP” in the decomposition (8.3.6). We can also
form the colimit S® of S ¢ S**1 C ..., a CW-complex with two cells in each
dimension. <

The general topology of adjunction spaces and colimit topologies gives us the
next results.

(8.3.8) Proposition. Ler (X, A) be a relative CW-complex. If A is a Ty-space, then
X is a T1-space and a compact subset of X meets only a finite number of cells. If
A is a Hausdorff space, then X is a Hausdorff space. If A is normal, then X is
normal. If A is a Hausdorff space, then X carries the colimit topology with respect
to the family which consists of A and the closures of cells.

Proof. We only verify the last statement. Let C be a subset of X and suppose ANC
in closed in A and A N e closed in e for each cell e. We show inductively, that
C N X" is closed in X". This holds for n = —1 by assumption. The space X"
is a quotient of Z" = X"~ ! + ] D?. Each characteristic map ®;: D} — ¢; is
a quotient map, since X is Hausdorff. From the assumptions we see that X" N C
has a closed pre-image in Z”. O

The considerations so far show that a CW-complex is a Whitehead complex.

(8.3.9) Proposition. Let (X, A) be a relative CW-complex. Then A C X is a
cofibration.

Proof. We know that [ [ S7~! — [ D} is a cofibration. Hence X"~' C X" is

an induced cofibration. Therefore the compositions X C X”*k are cofibrations.
Given f: X — Z and ahomotopy h~!: X~! x I — Z of f|X ™!, we can extend
this inductively to homotopies A" : X" xI — Z suchthath”™1|X"xI = h". Since
X x [ is the colimit of the X" x I, the 4" combine to a homotopy &: X x I — Z.

O

Problems

1. The attaching map for the n-cells yields a homeomorphism \/; (D" /S =l =~ X/A.
2. Let (X, A) and (Y, B) be relative CW-complexes. Consider X x Y with the closed
subspaces

(X xY)' = xixyn—i, n>-1.

i=—1
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In favorable cases, the filtration ((X x Y)" | n > —1) is a CW-decomposition of the pair
(X xY, Ax B).

Let Y be locally compact. Then (X x Y)" is obtained from (X x ¥)"~! by attaching
n-cells.
3. Let (X, A) be a relative CW-complex and let C C A. Then (X/C, A/C) is a relative
CW-complex with CW-decomposition (X" /C). Moreover, X /A is a CW-complex.
4. Let A C X be a subcomplex. Then X /A is a CW-complex.
5. Let A and B be subcomplexes of X. Then A/(A N B) is a subcomplex of X/B.
6. Let A be a subcomplex of B and Y another CW-complex. Then A Ax Y is a subcomplex
of B Ak Y.
7. Let Abe a CW-complex. Suppose X is obtained from A by attaching n-cells via attaching
maps¢: [[S j’.’_l — A"~1. Then X is a CW-complex with CW-decomposition X/ = A/
for j <nand X/ = A/ U (X ~ A) for j > n, and A is a subcomplex of X.
8. Letgo.¢1: [ S j’.’_l — A be homotopic attaching maps. The spaces X (0), X (1) which
are obtained by attaching n-cells with ¢g, ¢1 are h-equivalent under A. (Homotopy theorem
for cofibrations.)
9. Let X be a pointed CW-complex with base point * a 0-cell. Then the cone CX and the
suspension XX are CW-complexes. (In statements of this type the reader is asked to find a
canonical cell decomposition induced from the initial data.)
10. Let (X, | j € J) be a family of pointed CW-complexes with base point a O-cell. Then
\/jes X, has the structure of a CW-complex such that the summands are subcomplexes.
11. Let p: E — B be a Serre fibration and (X, A) a CW-pair. Then each homotopy
h: X x I — B has alifting along p with given initial conditionon X x0U A4 x I.
12. Suppose X is obtained from A by attaching n-cells. Let p: E — X be a covering and
E’ = p~1(A). Then E is obtained from E’ by attaching n-cells.
13. Let X be a CW-complex with n-skeleton X”* and p: E — X a covering. Then E is a
CW-complex with n-skeleton E” = p~1(B”") such that p maps the cells of E homeomor-
phically to cells of X. An automorphism of p maps cells of £ homeomorphically to cells.
14. Each neighbourhood U of a point x of a CW-complex contains a neighbourhood V
which is pointed contractible to x. A connected CW-complex has a universal covering. The
universal covering has a cell decomposition such that its automorphism group permutes the
cells freely.
15. Let X and Y be countable CW-complexes. Then X x Y is a CW-complex in the product
topology.

8.4 Weak Homotopy Equivalences

We now study the notion of an n-connected map and of a weak homotopy equiva-
lence in the context of CW-complexes.

(8.4.1) Proposition. Let (Y, B) be n-connected. Then amap f: (X, A) — (Y, B)
from a relative CW-complex (X, A) of dimension dim(X, A) < n is homotopic
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relative to A to a map into B. In the case that dim(X, A) < n the homotopy class
of X — B is unique relative to A.

Proof. Induction over the skeleton filtration. Suppose X is obtained from A by
attaching g-cells via ¢: [] k SZ -1 A, g < n. Consider a commutative diagram

Hsi' —»a—2sp

l m} . mlf

]_[DZLX%Y.

Since (Y, B) is n-connected, F® is homotopic relative to | | SZ Tioa map into
B. Since the left square is a pushout, we obtain a homotopy of F' from a pair of
homotopies of F® and Fi which coincide on [ [ S ,’f ~!. Since we have homotopies

of F relative to | | SZ_I, we can use on A the constant homotopy. Altogether we
obtain a homotopy of F relative to A4 to a map into B.

For an arbitrary (X, A) withdim(X, A) < n we apply this argument inductively.
Suppose we have a homotopy of f relative to A to a map g which sends X* into
B. By the argument just given we obtain a homotopy of g|X**1 relative to X*
which sends X%*! into B. Since X¥*! C X is a cofibration, we extend this
homotopy to X . In the case thatn = oo, we have to concatenate an infinite number
of homotopies. We use the first homotopy on [0, 1/2] the second on [1/2,3/4] and
so on. (Compare the proof of (8.5.4).) Suppose dim(X, A) < n. Let Fy, F1: X —
B be homotopic relative to 4 to f. We obtain from such homotopies a map
(X xI,X xdl UAxI)— (Y,B) which is the constant homotopy on A. We
apply the previous argument to the pair (X x I, X x 9/ U A x I') of dimension < n
and see that the homotopy class of the deformation X — B of f is unique relative
to A. O

(8.4.2) Theorem. Let h: B — Y be n-connected, n > 0. Then hy: [X, B] —
[X, Y] is bijective (surjective) if X is a CW-complex with dim X < n (dim X < n).
Ifh: B — Y is pointed, then h: [X, B]® — [X, Y% is injective (surjective) in the
same range.

Proof. By use of mapping cylinders we can assume that /4 is an inclusion. The
surjectivity follows if we apply (8.4.1) to the pair (X, @). The injectivity follows,
if we apply it to the pair (X x I, X x d7). In the pointed case we deform (X, x) —
(Y, B) rel {x} to obtain surjectivity, and for the proof of injectivity we apply (8.4.1)
to the pair (X x I, X x dl U x I). O

(8.4.3) Theorem. Let f: Y — Z be a map between CW-complexes.

(1) f is a homotopy equivalence, if and only if for each b € Y and each g > 0
the induced map fy: wq(Y,b) — my(Z, f(b)) is bijective.
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(2) Suppose dimY <k, dim Z < k. Then f is a homotopy equivalence if fs is
bijective for q < k.

Proof. (1)1If f, is always bijective, then f is a weak equivalence, hence the induced
map f«: [X,Y] — [X, Z] is bijective for all CW-complexes X (see (8.4.2)). By
category theory, f represents an isomorphism in h-TOP: Take X = Z; then there
exists g: Z — Y such that fg ~ id(Z). Then g is always bijective. Hence g
also has a right homotopy inverse.

2) f«:[Z,Y] — [Z,Z] is surjective, since f is k-connected (see (8.4.2)).
Hence there exists g: Z — Y such that fg ~id(Z). Then g«: n4(Z) — my(Y)
is bijective for ¢ < k, since f.g« = id and f is bijective. Hence there exists
h:Y — Z withgh ~ id(Y). Thus g has aleft and a right h-inverse and is therefore
an h-equivalence. From fg ~~ id we then conclude that f is an h-equivalence. [

The importance of the last theorem lies in the fact that “homotopy equivalence”
can be tested algebraically. Note that the theorem does not say: If 7,4 (Y) = 7,4(Z)
for each ¢, then Y and Z are homotopy equivalent; it is important to have a map
which induces an isomorphism of homotopy groups. Mapping a space to a point
gives:

(8.4.4) Corollary. A CW-complex X is contractible if and only if my(X) = 0 for
q=0. O

(8.4.5) Example. From ;(S") = 0for j < n and 7;(S*°) = colim, 7;(S") we
conclude that the homotopy groups of S are trivial. Hence S is contractible.<

(8.4.6) Example. A simply connected 1-dimensional complex is contractible. A
contractible 1-dimensional CW-complex is called a tree. &

(8.4.7) Theorem. A connected CW-complex X contains a maximal (with respect
to inclusion) tree as subcomplex. A tree in X is maximal if and only if it contains
each 0-cell.

Proof. Let B denote the set of all trees in X, partially ordered by inclusion. Let
T C Bbeatotally ordered subset. Then C = | Jy.4 T is contractible: 71 (C) = 0,
since a compact subset of C is contained in a finite subcomplex and therefore in
some T € 7. Thus, by Zorn’s lemma, there exist maximal trees.

Let B be a maximal tree. Consider the 1-cells which have at least one end point
in B. If the second end point is not contained in B, then B is obviously not maximal.
Therefore the union V' of these 1-cells together with B form a subcomplex of X!,
and the remaining 1-cells together with their end points form a subcomplex X ! < V.
Since X is connected sois X!, hence V = X!, and B® = V9 = X0,

Let B be a tree which contains X°. Let B’ D B be a strictly larger tree. Since
B is contractible, B’ and B’/B are h-equivalent. Hence B’/B is contractible.
Since X° C B, the space B’/B has the form \/ S! and is not simply connected.
Contradiction. O
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We now generalize the suspension theorem (6.10.4). Let X and Y be pointed
spaces. We have the suspension map Z.: [X,Y]? — [ZX,ZY]° We use the
adjunction [ZX, XY 1% = [X, QXY ]°. The resulting map [X,Y]° — [X,QXY]°
is then induced by the pointed map o: ¥ — QXY which assigns to y € Y the
loop ¢ — [y,t]in ZY.

(8.4.8) Theorem. Suppose w;(Y) = 0 for 0 < i < n. Then the suspension
Ta: [X,Y]? = [ZX,2Y]° is bijective (surjective) if X is a CW-complex of di-
mension dim X < 2n (dim X < 2n + 1).

Proof. By the suspension theorem (6.10.4), the map o is (2n + 1)-connected. Now
use the pointed version of (8.4.2). O

(8.4.9) Theorem. Let X be a finite pointed CW-complex. Then
T [BFX, 2FY]° — [2hFLy, gkFtyP
is bijective for dim(X) < k — 1.

Proof. We have dim XXX = k + dim X. The space XY is path connected. By
the theorem of Seifert and van Kampen, %2Y is simply connected. From the
suspension theorem we conclude that 7; (ZkY) = 0for0 < j <k — 1. By the
previous theorem, X is a bijection for k + dim X < 2(k — 1). O

8.5 Cellular Approximation

(8.5.1) Proposition. Suppose X is obtained from A by attaching (n + 1)-cells.
Then (X, A) is n-connected.

Proof. We know that (D1, S™) is n-connected. Now apply (6.4.2). O

(8.5.2) Proposition. Let X be obtained from A by attaching n-cells (n > 1).

Suppose A is simply connected. Then the quotient map induces an isomorphism
(X, A) = 7, (X/A).

Proof. (8.5.1) and (6.10.2). O

(8.5.3) Proposition. For each relative CW-complex (X, A) the pair (X, X™) is
n-connected.

Proof. From (8.5.1) we obtain by induction on k that (X"+*, X™) is n-connected.
The compactness argument (8.3.8) finally shows (X, X”) to be n-connected. [

Let X and Y be CW-complexes. Amap f: X — Y iscellular,if f(X") C Y"
for each n € Ng. The cellular approximation theorem (8.5.4) is an application of
(8.4.1).
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(8.5.4) Theorem. A map f: X — Y is homotopic to a cellular map g: X — Y.
If B C X is a subcomplex and f|B cellular, then the homotopy f >~ g can be
chosen relative to B.

Proof. We show inductively that there exist homotopies H” : X x I — Y such that

(1) H) = f,H! ' = H} forn > 1,

(2) H'X") C Yifori <n;

(3) H" is constanton X"~ ! U B.
For the induction step we assume f(X’) C Y/ fori < n. Let ®: (D", S""!) —
(X", X"~1) be a characteristic map of an n-cell not contained in B. The map f o ®
is homotopic relative to S"1toa map into Y, since (Y, Y") is n-connected. A
corresponding homotopy is used to define a homotopy of f on the associated closed
n-cells. This process defines the homotopy on B U X”; and we extend it to X,
using the fact that B U X" C X is a subcomplex and hence a cofibration. We now
concatenate the homotopies H":

Hix, 24 —1427), 1-27 < <1-2771,

H(x,t) = ) )
(x.2) H'(x,1), xe X, t=1.

This map is continuous on X’ x I and hence on X x I, since this space is the colimit
of the X' x I. O

(8.5.5) Corollary. Let fy, f1: X — Y be cellular maps which are homotopic.
Then there exists a homotopy f between them such that (X" x I) C Y"1 If
fo, f1 are homotopic rel B, then f can be chosen rel B.

Proof. Choose a homotopy f: fo >~ firel B. Then f maps X xdl U B x [ into
Y. Now apply 8.54)to X xdl UB x 1 C X x 1. O

Problems

1. Let A C X be a subcomplex and f: A — Y acellular map. Then Y = X Ur Y isa
CW-complex.

2. A CW-complex is path connected if and only if the 1-skeleton is path connected. The
components are equal to the path components, and the path components are open.

8.6 CW-Approximation

We show in this section, among other things, that each space is weakly homotopy
equivalent to a CW-complex. Our first aim is to raise the connectivity of a map.

(8.6.1) Theorem. Let f: A — Y be a k-connected map, k > —1. Then there
exists for each n > k a relative CW-complex (X, A) with cells only in dimensions
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jelk+1,...,n}, n <00, and an n-connected extension F: X — Y of f. If A
is CW-complex, then A can be chosen as a subcomplex of X.

Proof. (Induction over n.) Recall that the map f is k-connected if the induced
map fi: 7w (A, *) — 7; (Y, f(*)) is bijective for j < k and surjective for j = k
(no condition for k = —1). If we attach cells of dimension greater than k& and
extend, then the extension remains k-connected. This fact allows for an inductive
construction.

Letn = 0, k = —1. Suppose fi: mo(A) — mo(Y) is not surjective. Let
C ={cj | j € J} beafamily of points in Y which contains one element from each
path component 7o(Y) \ fimo(A). Set X = A+ [] Dj‘.) and define F: X - Y
by F|A = f and F(DJ(.’) = {c;}. Then X is obtained from A by attaching 0-cells
and F is a O-connected extension of f.

n = 1. Suppose f: A — Y is O-connected. Then fi: mo(A) — mo(Y) is
surjective. Let c_1, c; be points in different path components of A which have the
same image under fi. Then ¢: S® — A, ¢(£1) = c, is an attaching map for a
1-cell. We can extend f over A U, D! by a path from f(c_) to f(c4+). Treating
other pairs of path components similarly, we obtain an extension F’: X’ — Y of f
over a relative 1-complex (X', A) such that F,: mo(X') — mo(Y) is bijective. The
bijectivity of F, follows from these facts: We have F) j. = fi with the inclusion
j: A — X’; the map j is O-connected; path components with the same image
under f have, by construction, the same image under j.

We still have to extend F': X’ — Y to a relative 1-complex X D X’ such that
Fy: m(X,x) — w1 (Y, f(x)) is surjective for each x € X. Let F;: (D', 5% —
(Y, y) be afamily of maps such thatthe [F;] € 1 (Y, y) together with F (71 (X', x))
generate 71(Y,y), y = F'(x). Let X D X’ be obtained from X’ by attaching 1-
cells with characteristic maps (®;,¢;): (D1, 5% — (X', x). We extend F’ to F
such that F o ®; = F;. Then Fy: 7 (X, x) — m;(Y, ) is surjective.

n > 2. Suppose f: A — Y is (n — 1)-connected. By the use of mapping
cylinders, we can assume that f is an inclusion. Let (®;,¢;): (D", S ey) —
(Y, A, a) be a set of maps such that the y; = [®;, ¢;] € 7,(Y, A, a) generated the
71(A, a)-module 7, (Y, A, a). We attach n-cells to A by attaching maps ¢; to obtain
X and extend f to F by the null homotopies ®; of f¢;. The characteristic map
of the n-cell with attaching map ¢; represents x; € m,(X, 4,a) and Fyx; = y;.
The map F induces a morphism of the exact homotopy sequence of (X, 4, a) into
the sequence of (Y, A4,a), and Fy: 7,(X, A,a) — 7w,(Y, A,a) is surjective by
construction. Consider the diagram

7n(A) 7n (X) 7n (X, A) —— mp—1(A) —— 111 (X) —— 0

J{= (I)JF* (Z)JF* J{= (3)\[&

7n (A) n(Y) (Y, A) —— 1tp—1(4) —— 11 (Y) —— 0.
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The sequences end with 0, since 7,_1(X,A) = 0 and 7,_1(A) — m,—1(Y) is
surjective by assumption. (2) is surjective. The Five Lemma shows us that (1)
is surjective and (3) injective. By induction hypothesis, (3) is already surjective.
Hence F is n-connected.

In order to obtain A as a subcomplex of X, one works with cellular attaching
maps. O

(8.6.2) Theorem. Let Y be a CW-complex such that 7i(Y) = 0 for 0 <i < k.
Then Y is homotopy equivalent to a CW-complex X with X* = {x}.

Proof. Start with the k-connected map f: A = {x} — Y and extend it to a weak
equivalence F': X — Y by attaching cells of dimension greater than k. O

(8.6.3) Proposition. Let A and B be pointed CW-complexes. Assume that A is
(m — 1)-connected and B is (n — 1)-connected. Then A Ny B is (m +n — 1)-
connected.

Proof. We can assume that A has no cells in dimensions less than m and n no cells
in dimensions less than n (except the base point). Then A A B has no cells in
dimensions less than m + n. O

(8.6.4) Theorem. Let (X; | j € J) beafamily of (n—1)-connected CW-complexes.
Let y: Xg = \/ ey X be the inclusion of the k-th summand. Then

oy = (Lx: )@je] (X)) — ”n(\/jej X;j)
is an isomorphism (n > 2).

Proof. Let J be finite. Up to h-equivalence we can assume that X; has no cells
in dimensions less than n, except the base point. Then [] ; Xj is obtained from
\/; X by attaching cells of dimension > 2n. Hence 7, (\/ X;) — wm([] X;) is
an isomorphism for m < 2n — 2. From the diagram

ma(V Xj) —=—= ma([1 X))

0‘]1\ %l(Pj*)

(1)
D 7n (X)) —— [17a(X;)
we conclude that «zy is an isomorphism.

Letnow J be arbitrary. For each x € 7, (\/;¢; X;) there exists a finite £ C J
such that x is contained in the image of m,(\/ g X;) — m,(\/; X;), since a
compact subset is contained in a finite wedge. The result for E now shows that
o is surjective. If x; and x, have the same image under « s, then these elements
are contained in some finite sum €z and, again by a compactness argument, they
have the same image under some o g, if E is chosen large enough. This shows the
injectivity of ;. O



214 Chapter 8. Cell Complexes

(8.6.5) Proposition. Suppose w;(Y) = 0 for j > n. Let X be obtained from
A by attaching cells of dimension > n + 2. Then A C X induces a bijection
[X,Y] = [A, Y]

Proof. Surjective. Let f: A — Y be given. Attach (n + 2)-cells via maps
p: S"T1 — A. Since f¢: S"t! — Y is null homotopic, we can extend f
over the (n + 2)-cells. Continue in this manner.

Injective. Use the same argument for (X x I, X x 0 U A x I'). The cells of
this relative complex have a dimension > n + 2. O

(8.6.6) Theorem. Let A be an arbitrary space and k € Ng. There exists a relative
CW-complex (X, A) with cells only in dimensions j > k+2, suchthat 7, (X,x) =0
forn > kandx € X, andthe inducedmap 7, (A, a) — w,(X,a) isanisomorphism
forn <kanda € A.

Proof. We construct inductively for # > 2 a sequence A = Xk+1 c Xk+2
-+ C X**1 guch that 7, (A4, a) = 7,(X*¥t, a) forn < k, m,(X*¥+, a) = 0 for
k <n <k+1t—1,and X! is obtained from X™ by attaching (m + 1)-cells.

The induction step: If we attach (m + 1)-cells to X™ by the attaching maps
@j: (8™, e9) — (X™,a) to obtain X"t then ,(X™,a) = m,(X™*!, a) for
n < m — 1. The exact sequence

d
T (XL X™ a) — 1(X™,a) = 7 (X™ T a) — 0

shows that the [¢;] are in the image of d. Thus, if the [¢;] generate 7, (X™, a),
then 7, (X™+! a) = 0. O

(8.6.7) Example. We can attach cells of dimension > n 4 2 to S” to obtain a space
K(Z,n) which has a single non-trivial homotopy group 7, (K(Z,n)) =~ Z. See
the section on Eilenberg—Mac Lane spaces for a generalization. &

Let i,f( : X — X[n] be an inclusion of the type constructed in (8.6.6), namely
X|[n] is obtained by attaching cells of dimension greater than n + 1 such that
7k (X[n]) = Ofork > n andi,X induces an isomorphism 7 (i) for k < n. Given
amap f: X — Y andiY: Y — Y[m] for m < n, there exists a unique homotopy
class fym: X[n] — Y[m] such thatiY o f = f, m oiX; this is a consequence
of (8.6.5). We let an: X (n) — X be the homotopy fibre of i,f(. We call an the
n-connective covering of X . The induced map 7; (j,X): ; (X (n)) — m;(X) isan
isomorphism for i > n and 7; (X (n)) = 0 for i < n. The universal covering has
such properties in the case that n = 1. So we have a generalization, in the realm of
fibrations. Objects of this type occur in the theory of Postnikov decompositions of
a space, see e.g., [192].

As a consequence of (8.6.1) for A = @ we see that for each space Y there
exists a C W-complex X and a weak equivalence f: X — Y. We call such a weak
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equivalence a CW-approximation of Y . Note that a weak equivalence between CW-
complexes is a homotopy equivalence (8.4.3). We show that CW-approximations
are unique up to homotopy and functorial in the homotopy category.

(8.6.8) Theorem. Let f: Yy — Y, be a continuous map and let oaj: X; — Y; be
CW-approximations. Then there exists a map ¢: X1 — X such that fay >~ az@,
and the homotopy class of ¢ is uniquely determined by this property.

Proof. Since a, isa weak equivalence, oy : [X1, X3] — [X1, Y2]isbijective. Hence
there exists a unique homotopy class ¢ such that fa; >~ as¢. O

A domination of X by K consists of maps i: X — K,p: K — X and a
homotopy pi ~ id(X).

(8.6.9) Proposition. Suppose M is dominated by a CW-complex X. Then M has
the homotopy type of a CW-complex.

Proof. Supposei: M — X andr: X — M are given such that ri is homotopic to
the identity. There exists a CW-complex ¢: X C Y and an extension R: ¥ — M
of r such that R induces an isomorphism of homotopy groups. Let j = ti: M —
X — Y. Since Rj = ri ~ id, the composition Rj induces isomorphisms of
homotopy groups, hence so does j. From jRj =~ j we conclude that jR induces
the identity on homotopy groups and is therefore a homotopy equivalence. Let k
be h-inverse to jR, then j(Rk) ~ id. Hence j has the left inverse R and the right
inverse Rk and is therefore a homotopy equivalence. O

A (half-exact) homotopy functor on the category C° of pointed connected CW-
spaces is a contravariant functor #: C°® — SET? into the category of pointed sets
with the properties:

(1) (Homotopy invariance) Pointed homotopic maps induce the same morphism.

(2) (Mayer—Vietoris property) Suppose X is the union of subcomplexes A and B.
Ifa € h(A) and b € h(B) are elements with the same restrictionin 2(4AN B),
then there exists an element x € h(X) with restrictions a and b.

(3) (Additivity) Let X =/ j X; with inclusions i; : X; — X. Then
h(X) — H_/ h(X;), xw (h(ij)x)
is bijective.

(8.6.10) Theorem (E. H. Brown). For each homotopy functorh: C° — SETP there
exist K € C® and u € h(K) such that

[X.K]” = h(X). [flm f*@)

is bijective for each X € C°. O
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In category theory one says that K is a representing object for the functor /.
The theorem is called the representability theorem of E. H. Brown. For a proof see
(311, [4].

(8.6.11) Example. Let 2(X) = [X, Z]° for a connected pointed space Z. Then h
is a homotopy functor. From (8.6.10) we obtain K € C® and f: K — Z such that
fe: [X,K]® — [X, Z]° is always bijective, i.e., f is a weak h-equivalence. Thus
we have obtained a CW-approximation X of Z. &

Problems

1. As a consequence of (8.6.8) one can extend homotopy functors from CW-complexes
to arbitrary spaces. Let F' be a functor from the category of CW-complexes such that
homotopic maps f =~ g induce the same morphism F(f) = F(g). Then there is, up to
natural isomorphism, a unique extension of F' to a homotopy invariant functor on TOP which
maps weak equivalences to isomorphisms.

2. A point is a C W-approximation of the pseudo-circle.

3. Determine the C W -approximation of {0} U {n~! | n € N}.

4. Let X and Y be CW-complexes. Show that the identity X xx ¥ — X x Y is a CW-
approximation.

S. Let (Y; | j € J) be a family of well-pointed spaces and «; : X; — Y; a family of
pointed CW-approximations. Then \/ ; @ is a CW-approximation. Give a counterexample
(with two spaces) in the case that the spaces are not well-pointed.

6. Let f: A — Band g: C — D be pointed weak homotopy equivalences between well-
pointed spaces. Then f A g is a weak homotopy equivalence.

7. Verify from the axioms of a homotopy functor that 4 (P) for a point P contains a single
element.

8. Verify from the axioms of a homotopy functor that for each inclusion 4 C X in C© the
canonical sequence h(X/A) — h(X) — h(A) is an exact sequence of pointed sets.

8.7 Homotopy Classification

In favorable cases the homotopy class of a map is determined by its effect on
homotopy groups.

(8.7.1) Theorem. Let X be an (n — 1)-connected pointed CW-complex. Let Y be
a pointed space such that w;(Y) = 0 fori > n > 2. Then

hx : [X, Y] = Hom(m, (X), 72 (Y)),  [f]+ fa
is bijective.

Proof. The assertion only depends on the pointed homotopy type of X. We use
(8.6.2) and assume X"~ = {x}. The hy constitute a natural transformation in the
variable X . Since (X, X"*!)is (n+1)-connected, the inclusion X! C X induces
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an isomorphism on 7,. By (8.6.5), the restriction r: [X,Y]® — [X"*!,Y]%isa
bijection. Therefore it suffices to consider the case, that X has, apart from the base
point, only cells of dimension # and n 4+ 1. Moreover, by the homotopy theorem for
cofibrations, we can assume that the attaching maps for the (n + 1)-cells are pointed.
In this case X is the mapping cone of a pointed map f: A =\/ S — \/ S} =
We therefore have the exact cofibre sequence

(4,Y]° L2 [B,Y]" < [X, Y]° <[4, V).

Our assumption about Y yields [SA4,Y]° = [\/ =57, Y]° ~ [ mn+1(Y) = 0.
We apply the natural transformation /4 and obtain a commutative diagram

0 f* 0 4 0
4, Y] +———[B,Y]"+——[X,Y]"+——0

b
Hom(w, A, n,Y) <— Hom(n, B, 7,Y) +— Hom(m, X, 7, Y) +— 0.

As one of the consequences of the excision theorem we showed that the sequence
7y (A) = mu(B) — m,(X) — 0 is exact, and therefore the bottom sequence of
the diagram is exact. We show that si4 and hp are isomorphisms. If A = §”, then

ha: mn(Y) = [S".Y]° — Hom(m, (S"), mn(Y))

is an isomorphism, since 7w, (S") is generated by the identity. In the case that
A =\/ S}, we have a commutative diagram

[\Vspr]° = [1se.y

]

Hom (1, (\/ S2), 7 (Y)) —25 [THom (7, (S1), 70, ().

The map (1) is induced by the isomorphism P 7, (S}!) = 7,(\/ S{) and there-
fore an isomorphism. We now want to conclude from the diagram by a Five
Lemma type argument that hy is bijective. The proof of surjectivity does not
use the group structure. Injectivity follows, if fi* is injective. In order to see
this, one can use the general fact that [ A, Y]° acts on [X, Y]° and the orbits are

mapped injectively, or one uses that f is, up to homotopy, a suspension, because
DI [\/S,’c’_l,\/SJ’.’_l]O — [\/S,’c’,\/S/’-’]0 is surjective. O

8.8 Eilenberg—Mac Lane Spaces

Let r be an abelian group. An Eilenberg—Mac Lane space of type K(m,n) is a
CW-complex K (7, n) such that 77, (K (7, n)) = mw and 7r; (K(m,n)) = Ofor j # n.
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In the cases n = 0, 1, the group & can be non-abelian. In the case n = 0, we think
of K(m,0) = & with the discrete topology.

(8.8.1) Theorem. Eilenberg—Mac Lane spaces K(m,n) exist.

Proof. Letn > 2. There exists an exact sequence

o B

0 F1 F() T 0

with free abelian groups Fy and F;. We fix a basis (@ | k € K) of F; and
(bj | j € J) of Fy. Then « is determined by the matrix a(ag) = Zj n(j,k)b;.
We now construct a geometric realization of this algebraic situation. The group
(Vi SP) = @y mn(S7) is free abelian (8.6.4). A basis is given by the canonical
inclusions S — \/ S7!. There exists a unique homotopy class f: A = \/; S} —
\V S? = B which realizes the matrix (n(/, k)) with respect to these bases. Let
X = C(f) be the mapping cone of f. Then the sequence

S+

fl*
mn(A) 7n(B) (X)) ——0
is exact. Hence 77, (X) = m. Also 7;(X) = 0 for i < n. We can now attach cells
of dimensions > n + 2 to X in order to obtain a K (7, n), see (8.6.6). O

(8.8.2) Examples. The space S! isa K(Z,1). We know 71(S!) = Z, and from
the exact sequence of the universal covering R — S we know that 7, (S') = 0 for
n > 2. The space C P*° is a model for K(Z,2). The space RP* isa K(Z/2,1).

<&

The adjunction [ZX, Y]% = [X,QY]° shows that QK (7, n + 1) has the ho-
motopy groups of a K(m,n). By a theorem of Milnor [132], [67], QY has the
homotopy type of a CW-complex if ¥ is a CW-complex. If one does not want to
use this result one has the weaker result that there exists a weak homotopy equiva-
lence K(mr,n) — QK(m,n + 1).

We now establish further properties of Eilenberg—Mac Lane spaces. We begin
by showing that Eilenberg—Mac Lane spaces are H-spaces. Then we construct
product pairings K(mw,m) A K(p,n) — K(w ® p,m + n). In this context 7 ® p
denotes the tensor product of the abelian groups 7 and p (alias Z-modules) over Z.

We call the space K (i, n) polarized, if we have chosen a fixed isomorphism
a: 1, (K(w,n)) — n. If (K(,n),a) and (K(p,n), B) are polarized complexes,
the product K (7, n) x K(p, n) will be polarized by

Ta (K(1.1) x K(p, 1)) = 700 (K (0. 1)) % 70 (K (p, 1)) L5 701 x 702,

(8.8.3) Proposition. Having chosen polarizations, we obtain from (8.7.1) an iso-
morphism [K (7, n), K(p,n)]° = Hom(m, p). O



8.8. Eilenberg—Mac Lane Spaces 219

(8.8.4) Theorem. Let w be an abelian group. Then an Eilenberg—Mac Lane com-
plex K(m,n) is a commutative group object in h-TOP.

Proof. Let K = (K(m,n),a) be a polarized complex with base point a 0-cell
e. For an abelian group s, the multiplication u: 7 x & — n, (g,h) — ghis
a homomorphism. Therefore there exists a map m: K x K — K, unique up to
homotopy, which corresponds under (8.8.3) to 1. Similarly,:: 7 — 7, g+ g~ lis
a homomorphism and yields amap i : K — K. Claim: (K, m, i) is an associative
and commutative H-space. The maps m o (m x id) and m o (id xm) induce the
same homomorphism when 7, is applied; hence these maps are homotopic. In a
similar manner one shows that x — m(x, ¢) is homotopic to the identity. Since
K v K C K x K is a cofibration, we can change m by a homotopy such that
m(x,e) = m(e,x) = x. We write x > m(x, i(x)) as composition

K-S kx K™ gk ™K

and apply m,,; the result is the constant homomorphism. Hence this map is null
homotopic. Commutativity is verified in a similar manner by applying 7,,. See also
Problem 1. o

For the construction of the product pairing we need a general result about
products for homotopy groups. We take the smash product of representatives
foI1m/ol™ — X, g: I"/0I"™ — Y and obtain a well-defined map

Tm(X) X 10 (V) = Amin(X AL Y), (Uf][gD) = [f Agl=[f1nlgl

We call this map the A-product for homotopy groups. It is natural in the variables
X andY.

(8.8.5) Proposition. The A-product is bi-additive.
Proof. The additivity in the first variable follows directly from the definition of the

addition, if we use +;. We see the additivity in the second variable, if we use the
composition laws +1 and +,41 in the homotopy groups. O

(8.8.6) Proposition. Let A be an (m — 1)-connected and B an (n — 1)-connected
CW-complex. Then A A B is (m + n — 1)-connected and the A-product

Tm(A) @ 7y (B) = Tm+n(A Nk B)

is anisomorphism (m,n > 2). If m orn equals 1, then one has to use the abelianized
groups.
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Proof. The assertion about the connectivity was shown in (8.6.3). For A = S™ the
assertion holds by the suspension theorem. For 4 = \/ j S Jm we use the commuta-
tive diagram

nm(\/ Sjm) ® ”n(B) # nm—i—n((\/ S/m) Nk B)

T(l) T(Z)

(D mm(S]") ® mn(B) Tmtn(V (S A B))

TB) T(4)

D m(S7) ® 14(B)) —> s B 7t 4n (ST A B).

(1) is an isomorphism by (8.6.4). (2) is induced by a homeomorphism. (3) is an
isomorphism by algebra. (4) is an isomorphism by (8.6.4). (5) is an isomorphism
by the suspension theorem. This settles the case of a wedge of m-spheres. Next
we let A be the mapping cone of amap f: C — D where C and D are wedges of
m-spheres. Then we have a commutative diagram with exact rows:

Tm(C) @ m(Y) —— wm(D) ® my(B) —— mm(A) @ mp(B) —— 0
Tm+n(C Nk B) —— Tmyn(D Ag B) —— tmyn(A A B) —— 0.

The general case now follows from the observation that the inclusion A”*! — A
induces an isomorphism on 7,,, and A” ! A B — A A B induces an isomorphism
ON Ty+n. O

Let (K(G,m),«), (K(H,n), ) and (K(G ® H,m +n), y) be polarized Eilen-
berg—Mac Lane complexes for abelian groups G and H. A product is a map

Ymn: K(G,m) Ay K(H,n) > K(G® H,m + n)

such that the diagram

Tm(K(G,m)) ® 10, (K(H, 1)) —"— Ttmin(K(G,m) A K(H,n))

T(X@ﬂ J(Vm,n)*

G H Tm+n(K(G ® H,m + n))

is commutative. Here we have use the A-product (8.8.5).

(8.8.7) Theorem. There exists a product. It is unique up to homotopy.
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Proof. Let G and H be abelian groups. The first non-trivial homotopy group of
K(G,m) Ay K(H,n) is 7,4y and it is isomorphic to G ® H, see (8.8.6). By
(8.6.6) there exists an inclusion

Yman: K(G,m) A K(H,n) - K(G ® H,m + n).

We can choose the polarization y so that the diagram above becomes commutative.
Uniqueness follows from (8.7.1). O

The products (8.8.7) are associative, i.e.,
Ym+n,p © (Vmn X 1d) 2 Yimnqp © (id Xyn,p).
The products are graded commutative in the following sense:
K(x,m+n)oymu =~ (D)™t oypm

with the interchange maps t': K(m,G) A K(n, H) — K(n, H) A K(m, G) and
t:G®H —- HQR®G.

Let R be a commutative ring with 1. We think of the multiplication as being a
homomorphism u: RQ R — R between abelian groups. From this homomorphism
we obtain a unique homotopy class K(i): K(R ® R,m) — K(R,m).

We compose K (1) with yi ; and obtain a product map

mi,: K(R. k) Ax K(R,[) — K(R.k +1).

Also these products are associative and graded commutative.
In the associated homotopy groups H k(X;R) = [XT,K(R,k)]° we obtain

via (f, g) = my ;1 (f A g) products
H*(X:R)® H'(Y:R) > H**' (X x Y R),

which are also associative and graded commutative. (See also Problem 3.) In a
similar manner we can start from an R-module structure R®@ M — M on M.
Later, when we study singular cohomology, we show that for a CW-complex X the
group [X T, K(R, k)]° is naturally isomorphic to the singular cohomology group
H¥(X; R) with coefficients in the ring R. This opens the way to a homotopical
study of cohomology. The product (8.8.7) can then be used to construct the so-called
cup product in cohomology.

Once singular cohomology theory is constructed one obtains from the repre-
sentability theorem of Brown Eilenberg—Mac Lane spaces as representing objects.

8.8.8 Eilenberg-Mac Lane spectra. Let A be an abelian group. The Eilenberg—
Mac Lane spectrum H A consists of the family (K(A4,n) | n € Ng) of Eilenberg—
Mac Lane CW-spaces and maps e, : XK(A,n) — K(A,n + 1) (an inclusion of
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subcomplexes; attach cells to X K (A, n) to obtain a K(A, n + 1)). This spectrum is
an Q-spectrum. We have proved in any case that ¢, : K(A4,n) — QK(A,n+ 1) is
a weak homotopy equivalence. This suffices if one wants to define the cohomology
theory only for pointed CW-spaces. <

Problems

1. From the natural isomorphism [X, K (1, 7)]° = [X, Q2K (7, n + 2)]° we see that X —
[X, K(,n)]° is a contravariant functor into the category of abelian groups. Therefore, by
category theory, there exists a unique (up to homotopy) structure of a commutative h-group
on K (s, n) inducing the group structures of this functor.

2. Leta € m;(X), B € my(Y),and 7: X A Y — Y Ax X the interchange map. Then
aAB =D Aa.

3. Let M be an R-module. A left translation [, : M — M, x + rx is a homomorphism
of the abelian group M and induces therefore a map L,: K(M,k) — K(M, k). Use these
maps to define a natural structure of an R-module on [X, K(M, k)]°.

4. The simply connected surfaces are S 2 and R? [44, p- 87]. If a surface is different from
S2 and RPZ, then it is a K(m, 1).

5. Let E(w) — B(m) be a w-principal covering with contractible E (7). Then B(x) is a
K(m, 1). Spaces of the type B(sr) will occur later as classifying spaces. There is a bijection
[K(7, 1), K(p, 1)] = Hom(x, p)/ ~ between homotopy classes and group homomorphisms
up to inner automorphisms.

6. Let S be the colimit of the unit spheres S(C”) C S(C"T!) C ... This space carries
a free action of the cyclic group Z/m C S! by scalar multiplication. Show that S with
this action is a Z /m-principal covering. The quotient space is a CW-space B(Z/m) and
hence a K(Z/m, 1).

7. A connected 1-dimensional CW-complex X is a K(r, 1). Determine 7 from the topology
of X.

8. A connected non-closed surface (with or without boundary) is a K(r, 1).



Chapter 9
Singular Homology

Homology is the most ingenious invention in algebraic topology. Classically, the
definition of homology groups was based on the combinatorial data of simplicial
complexes. This definition did not yield directly a topological invariant. The
definition of homology groups and (dually) cohomology groups has gone through
various stages and generalizations.

The construction of the so-called singular homology groups by Eilenberg [56]
was one of the definitive settings. This theory is very elegant and almost entirely
algebraic. Very little topology is used as an input. And yet the homology groups are
defined for arbitrary spaces in an invariant manner. But one has to pay a price: The
definition is in no way intuitively plausible. If one does not mind jumping into cold
water, then one may well start algebraic topology with singular homology. Also
interesting geometric applications are easily obtainable.

In learning about homology, one has to follow three lines of thinking at the same
time: (1) The construction. (2) Homological algebra. (3) Axiomatic treatment.

(1) The construction of singular homology groups and the verification of its main
properties, now called the axioms of Eilenberg and Steenrod.

(2) A certain amount of algebra, designed for use in homology theory (but also of
independent algebraic interest). It deals with diagrams, exact sequences, and
chain complexes. Later more advanced topics are needed: Tensor products,
linear algebra of chain complexes, derived functors and all that.

(3) The object that one constructs with singular homology is now called a ho-
mology theory, defined by the axioms of Eilenberg and Steenrod. Almost all
applications of homology are derived from these axioms. The axiomatic treat-
ment has other advantages. Various other homology and cohomology theories
are known, either constructed by special input (bordism theories, K-theories,
de Rham cohomology) or in a systematic manner via stable homotopy and
spectra.

The axioms of a homology or cohomology theory are easily motivated from
the view-point of homotopy theory. But we should point out that many results of
algebraic topology need the idea of homology: The reduction to combinatorial data
via cell complexes, chain complexes, spectral sequences, homological algebra, etc.

Reading this chapter requires a parallel reading of the chapter on homological
algebra. Already in the first section we use the terminology of chain complexes and
their homology groups and results about exact sequences of homology groups.
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9.1 Singular Homology Groups

The n-dimensional standard simplex is
A" = Aln] = {(to. ... .tn) e R | Y7 1 = 1,4; > 0} C R*TL.

We set [n] = {0, ...,n}. A weakly increasing map « : [m] — [n] induces an affine
map
Ale): Alm] — Aln], Y igtiei = Y rtotiea(-

Here e; is the standard unit vector, thus Z:‘n=o tiei = (fo,...,tm). These maps
satisfy the rules of a functor A(x o f) = A(x) o A(B) and A(id) = id. Let
8% : [n — 1] — [n] be the injective map which misses the value i.

(9.1.1) Note. 5]'-""_18;’ = 81’.1+18J'.’_1, i < j. (The composition misses i and j.) We
write d]' = A(S7'). By functoriality, the d" satisfy the analogous commutation
rules. O

A continuous map o : A" — X is called a singular n-simplex in X. The i-th
Jace of 0 is 0 o d'. We denote by S, (X) the free abelian group with basis the
set of singular n-simplices in X. (We also set, for formal reasons, S,(X) = 0
in the case that n < 0 but disregard mostly this trivial case. If X = 0, we let
Sn(X) = 0.) Anelement x € S,(X) is called a singular n-chain. We think of x
as a formal finite linear combination x = ) n,0, nys € Z. In practice, we skip
a summand with n; = 0; also we write 1 - 0 = o. We use without further notice
the algebraic fact that a homomorphism from S, (X) is determined by its values on
the basis elements 0 : A” — X, and these values can be prescribed arbitrarily. The
boundary operator 9, is defined for ¢ > 1 by

3g: Sq(X) = Sq—1(X), o X1 (-Diod],
and for ¢ < 0 as the zero map. Basic for everything that follows is the
9.1.2 Boundary relation. d,_,9, = 0.
Proof. We decompose the sum ddo = qu'=0 Ziq;é (=1)it/ Udjqdiq_l into the

parts ), _ ; and dis ;- When we rewrite the first sum using (9.1.1), the result is
the negative of the second sum. O

The singular chain groups S;(X) and the boundary operators d, form a chain
complex, called the singular chain complex So.(X) of X. Its n-th homology group
is denoted H,(X) = H,(X;Z) and called singular homology group of X (with
coefficients in Z). A continuous map f: X — Y induces a homomorphism

Je = Sq(f): Sg(X) = S4(Y), o+~ fo.
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The family of the S, (f) is a chain map Se(f): Se(X) — Se(Y). Thus we have
induced homomorphisms fx = Hy(f): Hy(X) — Hy(Y). In this manner, the
H, become functors from TOP into the category ABEL of abelian groups.

Let now i: A C X be an inclusion. We define S, (X, A) as the cokernel of
Sn(@): Sp(A) = S,(X). Less formally: The group S, (X, A) is free abelian and
has as a basis the singular simplices o: A” — X with image not contained in
A. Since S, (¥) = 0, we identify canonically S, (X) = S, (X, @). The boundary
operator of Se(X) induces a boundary operator d,, : S, (X, A) — S,—1(X, A) such
that the family of quotient homomorphisms S, (X) — S, (X, A) is a chain map.
The homology groups H,(X,A) = Hu(X,A;Z) of S.(X,A) are the relative
singular homology groups of the pair (X, A) (with coefficients in Z). A continuous
map f: (X,A) — (Y, B) induces a chain map fo: Se(X, A) — So(Y, B) and
homomorphisms fi = H,(f): Hy(X, A) - Hy(Y, B). In this way, H, becomes
a functor from TOP(2) to ABEL.

We apply (11.3.2) to the exact sequence of singular chain complexes

00— Se(A) = Se(X) > Se(X,A) > 0
and obtain the associated exact homology sequence:

(9.1.3) Theorem. For each pair (X, A) the sequence

oo 2 HL(A) > Hy(X) — Hy(X, A) = Hyy (A) = -

is exact. The sequence terminates with Hyo(X) — Ho(X, A) — 0. The undeco-
rated arrows are induced by the inclusions (A, 3) C (X,0) and (X, 0) C (X, A).
O

Let (X, A, B) be a triple, i.e., B C A C X. The inclusion Se¢(A4) — Se(X)
induces by passage to factor groups an inclusion Se(A4, B) — S.(X, B), and its
cokernel can be identified with S¢(X, A). We apply (11.3.2) to the exact sequence
of chain complexes

0 — So(A, B) — Se(X, B) — Se(X, A) — 0

and obtain the exact sequence of a triple

0 ad
---— H,(A,B) > Hy,(X,B) > Hy,(X,A) — H,_1(A,B) —> --- .

The boundary operator d: H,(X, B) — H,—_1(A, B) in the exact sequence of a
triple is the composition of the boundary operator for (X, A) followed by the map
H,_1(A) - H,_1(A, B) induced by the inclusion.

It remains to verify that the connecting morphisms d constitute a natural trans-
formation, i.e., that for each map between triples f: (X, A, B) — (X', A’, B’) the
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diagram
Hi(X, A) —"— Hi_1(A, B)

I I

Hy (X', A') —— Hy_1 (A", B)
is commutative. This is a special case of an analogous fact for morphisms be-
tween short exact sequences of chain complexes and their associated connecting
morphisms. We leave this as an exercise.

One cannot determine the groups H, (X, A) just from its definition (except in a
few trivial cases). Note that for open sets in Euclidean spaces the chain groups have
an uncountable basis. So it is clear that the setup only serves theoretical purposes.
Before we prove the basic properties of the homology functors (the axioms of
Eilenberg and Steenrod) we collect a few results which follow directly from the
definitions.

9.1.4 Point. Let X = P be a point. There is a unique singular n-simplex, hence
Sn(P) = Z,n > 0. The boundary operators dg and d,; 4 are zero and d;, 4, . . .
are isomorphisms. Hence H;(P) = 0 fori # 0; and Ho(P) =~ Z, via the
homomorphism which sends the unique 0-simplex to 1 € Z. <

9.1.5 Additivity. Let (X; | j € J) be the path components of X, and let
/1 (Xj,X; N A) — (X, A) be the inclusion. Then

Dics Sn(Xj. X; N A) = Su(X. A), (x) > X ) (x))

is an isomorphism. Similarly for H, instead of S,. The reason is that A" is path
connected, and therefore o: A" — X has an image in one of the X;, so we can
sort the basis elements of S, (X) according to the components X . <&

9.1.6 The groups Hy. The group Hy(X) is canonically isomorphic to the free
abelian group Zmo(X) over the set mo(X) of path components. We identify a
singular O-simplex o: A® — X with the point o(A®%). Then Sp(X) is the free
abelian group on the points of X. A singular 1-simplex o: A! — X is essentially
the same thing as a path, only the domain of definition has been changed from /
to Al. We associate too the pathw, : I — X, t +— o(1—t,t). Then dgo = wy (1)
and ;0 = w4 (0), hence do = dpo—0;0 corresponds to the orientation convention
Jw = w(l) — w(0). If two points a, b € X are in the same path component, then
the zero-simplices a and b are homologous. Hence we obtain a homomorphism
from Zwo(X) into Ho(X), if we assign to the path component of a its homology
class. We also have a homomorphism So(X) — Zmo(X) which sends the singular
simplex of a € X to the path component of a. This homomorphism sends the
image of : S7(X) — So(X) to zero. Hence we obtain an inverse homomorphism
H()(X) — ZJT()(X) <&
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9.2 The Fundamental Group

The signs which appear in the definition of the boundary operator have an inter-
pretation in low dimensions. They are a consequence of orientation conventions.
A singular 1-simplex o : A! — X is essentially the same thing as a path, only the
domain of definition has changed from [0, 1] to A!. We associate to o the path
I - X,t +— o(l —t,t). The inverse path is then 0~ (tg,1;) = o(t1,t9). The
product of paths has now the form

o2ty — 1,2t1), 1, <1/2,

x*7)(fp, 1) =
(0 % 7)o 11) t(2t9,2t1 — 1), 11 >1/2.

If we define w: A2 — X, (to.11,12) — (0 * T)(to + t1/2,11/2 + t»), then one
verifies dw = 0 —o * T + 1. Aloop 0: A — X is a 1-cycle; let [o] be its
homology class. Thus for loops o, T we have

(1) [0 % 7] = [o] + [7].

(Here [z] denotes the homology class of the cycle z.) Let k: Al x I — X
be a homotopy of paths A! — X. The map k factors over the quotient map
qg: AV x I — A% (ty,t1.1) — (to,t1(1 — 1), 111) and yields 0: A? — X. We
compute do = ¢ —kj + ko, with a constant c. A constant 1-simplex is a boundary.
Hence ko — k1 is a boundary

[ko] = [k1] € C1(X)/B1(X).

In particular, homotopic loops yield the same element in H;(X). Thus we obtain
a well-defined map 4': 71(X, x9) — H1(X); by (1), it is a homomorphism. The
fundamental group is in general non-abelian. Therefore we modify 4’ algebraically
to take this fact into account. Each group G has the associated abelianized factor
group G = G/[G, G]; the commutator group [G,G] is the normal subgroup
generated by all commutators xyx~!y~!. A homomorphism G — A to an abelian
group A factorizes uniquely over G%2. We apply this definition to /4’ and obtain a
homomorphism
h: (X, x0)%? — Hy(X).

(9.2.1) Theorem. Let X be path connected. Then h is an isomorphism.

Proof. We constructahomomorphism in the other direction. For x € X we choose a
path u(x) from xo to x. We assigntoa 1-simplexo: A! — X fromog = o (1,0) to
o1 = 0(0, 1) the class of the loop (u(0¢) * o) *u(o1)~. We extend this assignment
linearly to a homomorphism [’: C;(X) — m1(X,x0)??. Let t: A> - X be a
2-simplex with faces t; = vd;. Since A? is contractible, 7o * 79 ~ 7;. This
implies

I'([e2]) + I'([wo]) = I'([z2] + [r0]) = I"([r2 * 7)) = I"([m1]).
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Hence [’ factors over C;(X)/B1(X) and induces [ : Hy(X) — m1(X, x0)*. By
construction, /2 = id. We show that % is surjective. Let Y as0 € C;(X) be a
cycle. Then

D aslo] =) ag([u(oo)] + [o] — (o)) = D _ agl((00) * o) x u(o1) 7],
and the last element is contained in the image of . O

One of the first applications of the homology axioms is the computation
H{(S') =~ Z. Granted the formal result that 71(S!) is abelian, we obtain yet
another proof for 71 (S!) =~ Z.

9.3 Homotopy

We prove in this section the homotopy invariance of the singular homology groups.
We begin with a special case.

9.3.1 Cone construction. Let X be a contractible space. Define a chain map
e = (1) Se(X) = Se(X)bye, =0forn # 0andby eo(Y_ns0) = (> ns)00
where 0g: A® — {xo}. We associate to each homotopy &: X x I — X from the
identity to the constant map with value xo a chain homotopy s = (s,) from ¢ to
the identity. The homomorphisms s: S,—1(X) — S, (X) are obtained from a cone
construction. Let

g: A" T > A" ((os - tne1). ) > (6, (1= Dpto, ..o (1= 1) ptn—1).

Giveno: A"™! — X, there exists a unique simplex s(0) = so : A" —X such that
ho (o xid) = s(0) o g, since ¢ is a quotient map. For the faces of s we verify
(so)d; = s(odi—1), fori > 0, and (so)dy = 0. From these data we compute for
n>1,

d(so) = (s0)do — Y1 (=) " (s0)d; =0 — Y0 (1) s(od;—y)

=0 —s(do)
and d(so) = o — o0p for a O0-simplex . These relations imply ds + sd = id —e.
Note that ¢ induces the zero map in dimensions n # 0. <
(9.3.2) Proposition. Let X be contractible. Then H,(X) = 0 forn # 0. O
The inclusions 7" (X) = n': X — X x I, x — (x,t) induce chain maps

(%) = 1 Se(X) — Se(X x I). We consider these chain maps as natural
transformations between functors; the naturality says that for each continuous map
f: X — Y the commutation relation ( f x id)e7’ (X)e = 1' (¥ )e fe holds.

(9.3.3) Theorem. There exists a natural chain homotopy se from 1% to nl.
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Proof. We apply (11.5.1) to € = TOP, Fx(X) = Se(X), G+(X) = Se(X x 1)
and the natural transformation 7. The model set for F, consists of A", and the
corresponding b-element is the identity of A" considered as a singular simplex.
From (9.3.2) we see that G is acyclic. It should be clear that % and n! induce the
same transformations in Hy. O

For the convenience of the reader we also rewrite the foregoing abstract proof in
explicit terms. See also Problem 2 for an explicit chain homotopy and its geometric
meaning.

Proof. We have to show: There exist morphisms s;:( 1 Su(X) > Sp41(X xT)such
that

(Kn) 08+ 53010 = 0, (X) = (X)
(chain homotopy), and such that for continuous X — Y the relations
(Nn) (f xid)g o5, =5, 0 fu

hold (naturality). We construct the s, inductively.
n = 0. In this case, 5o sends the O-simplex o : A? — {x} C X to the 1-simplex
s00: A'' — X x I, (to,t;) — (x,t1). Then the computation

d(s00) = (s00)do — (s00)d1 = ngo — nyo

shows that (K¢) holds, and also (/Np) is a direct consequence of the definitions.

Now suppose that the si for k < n are given, and that they satisfy (K ) and (Ng).
The identity of A" is a singular n-simplex; let ¢, € S, (A") be the corresponding
element. The chain to be constructed s,¢, should satisfy

(Sptn) = ﬂi(tn) - ng(ln) — Sp—10(ty).

The right-hand side is a cycle in S, (A" x I'), as the next computation shows.

A1y (tn) = 1y (tn) — Sn—19(tn))
= et () — M1 (Bn) — Bsn—1(3t)
= 77,1,_1(3[,,) - 772—1(3Ln) - (77;1;_1(8Ln) - 772_1(85n) — Sp—2001,) = 0.
We have used the relation (K,—1) for ds,—109(t,) and that the 7’ are chain maps.
Since A" x I is contractible, there exists, by (9.3.2),ana € S;,1(A” x I') with the

property da = nl(tn) — 1% (tn) — $n—19(tn). We choose an a with this property and
define s, (t,) = a and in general s, (0) = (0 xid)sa foro: A" — X; the required
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naturality (V,) forces us to do so. We now verify (K,) and (N,). We compute
0s,(0) = d(o xid)ga = (o x id)xda
= (0 x id)4(Mytn — Nytn — Sn—10tn)
= ﬂrle#Ln - nﬁwn — Sp—10%0Ly
=neo —ndo — su—100.

We have used: (o x id)g is a chain map; choice of a; naturality of 5!, 7%, and
(Np—1); 0sly = 0; 04 is a chain map. Thus we have shown (K}). The equalities

(f xid)gsn(0) = (f xid)s(o xid)ya = (fo xid)sa = sp(f0) = sp fy0
finally show the naturality (N,). O

With (9.3.3) we control the universal situation. Let f: (X, A) x I — (Y, B)
be a homotopy in TOP(2) from f° to f!. The s, in (9.3.3) induce by naturality
also a chain homotopy s, : S, (X, A) = Sy+1(X x I, A x I). The computation

I fe 0 5n) + (fy 0 50-1)0 = fadsn + fysn—10 = fun! =n°) = f' = f
proves the fus, to be a chain homotopy from £,0 to f,!. Altogether we see:

(9.3.4) Theorem. Homotopic maps induce homotopic chain maps and hence the
same homomorphisms between the homology groups. O

(9.3.5) Example. Let a®(X),a'(X): Se(X) — S¢(X) be chain maps, natural in
X, which coincide on So(X). Then there exists a natural chain homotopy from a°
to al. This is a consequence of (11.5.1) for Fx = G4 and the models A" as in the
proof of (9.3.3). &

Problems

1. Let 7,: A" — A", (Ao,...,An) = (An,...,Ag). Verify that S, (X) — S, (X),
o (=1)@+Dn/250 is a natural chain map. By (9.3.5), it is naturally homotopic to the
identity.
2. One can prove the homotopy invariance by constructing an explicit chain homotopy.
A natural construction would associate to a singular n-simplex o: A" — X the singular
prism o x id: A" x I — X x I. The combinatorial (set-theoretic) boundary of A” x I
is A" x 1 U A" x 0 U (d0A™) x I, and this corresponds exactly to the definition of a chain
homotopy, if one takes orientations into account. This idea works; one has to decompose
A" x I into simplices, and it suffices to do this algebraically.

In the prism A” x [ let 0, 1, ..., n denote the vertices of the base and 0, 1/, .. ., n’ those
of the top. In the notation for affine singular simplices introduced later, show that an explicit
formula for a = s, is

Sptn = Y r—o(=DI0, 1,...,i,i" (i +1),....n"].

(This is a special case of the Eilenberg—Mac Lane shuffle morphism to be discussed in the
section on homology products.)
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The basic property of homology is the excision theorem (9.4.7). It is this theo-
rem which allows for effective computations. Its proof is based on subdivision of
standard simplices. We have to work out the algebraic form of this subdivision first.

Let D C R” beconvex, and let vy, ..., v, be elements in D. The affine singular
simplexo: A? — D,Y . Aje; — Y ; A;jv; willbedenotedo = [vo, ..., vp]. With
this notation

Mvo. ..., vpl = 2P (=D [vos.... 0. 0],

where 0; means that v; has to be omitted from the string of vertices. For each
v € D we have the contracting homotopy D X I — D, (x,t) — (1 —t)x +tv. If
we apply the cone construction 9.3.1 to [vg, ..., vp] we obtain [v, vg, ..., vp]. We
denote the chain homotopy associated to the contraction by S,(D) — S,+1(D),
¢ — v-c. We have for ¢ € S,(D):

(1) dv-c) = c—v-de, p>0,
c—elc)v, p=0,

with e: So(D) = Z,Y neo = Y ng.
The barycenter of o = [vg, ..., vp] is of = ﬁ va:o v;. We define induc-
tively
Bp(X) = Bp: Sp(X) = Sp(X)
to be the homomorphism which sends o: A? — X to 8,(0) = 048, (tp), where

By (1p) is defined inductively as

Lo, p =0,

@) By(tp) =
prr Lg - Bp—1(0p), p>0.

(9.4.1) Proposition. The B, constitute a natural chain map which is naturally
homotopic to the identity.

Proof. The equalities
J4Bo = fyoyB(1p) = (f0)sB(p) = B(fo) = B fyuo

prove the naturality. We verify by induction over p that we have a chain map. Let
p =1.Then 08B(t;) = 8([’1S - B(0t1)) = iy = BI(t1). For p > 1 we compute

0Biy = I - B(31p)) = By, — & - 0B, = By — 15 - B0, = By

We have used: Definition; (1); inductive assumption; dd = 0. We now use this
special case and the naturality

Boo = Bioyt, = Boydy, = 03B, = 03B, = dopBL, = dBo,
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and this computation covers the general case.
The chain map B is naturally homotopic to the identity (see (9.3.5)). O

Let U be a family of subsets of X such that their interiors cover X. We call
a singular simplex U-small, if its image is contained in some member of U. The
subgroup spanned by the U-small simplices is a subcomplex SX (X) of S (X) with
homology groups denoted by H,*(X).

(9.4.2) Lemma. The diameter d(vy, ..., vp) of the affine simplex [vo. ..., v,] with
respect to the Euclidean norm is the maximum of the ||v; — v;||.

Proof. Letx,y € [vg,...,vp] and x = ) A;v;. Then, because of )" A; =1,

[x =yl =124 = <X Aillv; =yl < max; |Jv; — y].

This shows in particular ||y — v;|| < max; |[v; — v;||; we insert this in the above
and obtain ||x — y|| < max; ; [|[v; — v;||; hence the diameter is at most as stated.
On the other hand, this value is clearly attained as the distance between two points.

O

(9.4.3) Lemma. Let vy, ...,v, € R". Then Bp[vo, ..., vp]is alinear combination
of affine simplices with diameter at most #d(vo, ey Up).

Proof. From the inductive definition (2) and the naturality of 8 we conclude
(3) Blvo, ..., vp]l = X F_o(=1)/ 0 - Blvo,.... T}, ..., vp)

where 0 = [vg, ..., Vp].
We prove the claim by induction over p. The assertion is obvious for p = 0,
a point has diameter zero. By induction hypothesis, the simplices in the chain

Blvo. ..., Vj,...,vp] are affine of diameter at most pTTld(vo,...,ﬁ},...,vp) <

ijld(vo, ..., Vp). The simplices in B[vo, ..., vp] have vertices o and vertices
from simplices in B[vg, ..., ;,...,vp]. It suffices to evaluate the distance of ob
from such vertices. It is less than or equal to sup(|lo? — x|| | x € [vo, ..., vp]).
Let x = Y A;v;. Then [[0# — x| < max ||o# — v;||, as in the proof of (9.4.2).
Moreover we have

lo? —vill = || 757 (i vi) —vs || < 55 i e — w5
< Sy max;; vi —v;ll = 55 d(vo. ... vp).
Since (p — 1)/p < p/(p + 1) we have verified, altogether, the claim. O

(9.4.4) Lemma. Leto: A? — X be a singular simplex. Then there existsak € N
such that each simplex in the chain B ko has an image contained in a member of U.
(Here B* is the k-fold iteration of B.)
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Proof. We consider the open covering (6~ (U°)),U € U of A?. Lete > Obea
Lebesgue number of this covering. The simplices of B¢ arise by an application of
o to the simplices in 8% p. From (9.4.3) we see that the diameter of these simplices
is at most (#)kd(eo, ..., ep). If k is large enough, this number is smaller than ¢.

|

(9.4.5) Theorem. The inclusion of chain complexes SY(X) C So(X) induces an
isomorphism H;u (X) > Hy(X).

Proof. Leta € S*(X) be acycle which represents a homology class in the kernel.
Thus a = 0b with some b € S,4+1(X). By (9.4.4), there exists k such that
Bk ) € S,E_I(X ) (apply (9.4.4) to the finite number of simplices in the linear
combination of b). By (9.4.1), there exists a natural chain homotopy T} between
B* and the identity. Therefore

Bk(b) — b = T (3b) + 8Ti(b) = Ti(a) + Ty (b),
and we conclude
AB*(b) — 9b = 3Ty (a), a = b = A(B*(b) — Tx(a)).

From the naturality of T} and the inclusion a € S%(X) we see Ty (a) € S,;lfrl (X).
Therefore a is a boundary in S¥(X). This shows the injectivity of the map in
question.
Leta € S,(X) be a cycle. By (9.4.4), there exists k such that B%a S;lu(X).
We know that
Bka —a = Ty (9a) + 3Ty (a) = 3Tk (a).

Since B* is a chain map, B¥a is a cycle. From the last equality we see that a
is homologous to a cycle in S¥(X). This shows the surjectivity of the map in
question. O

Let now (X, A) be a pair of spaces. We write UN A =(UNA|U € U) and
define the chain complex S¥ (X, 4) = S¥(X)/S¥"4(A4) with homology groups
HY (X, A). We obtain a commutative diagram of chain complexes with exact rows:

0— SUNA(Y) — SU — SU(X, A) — 0

| | |

00— Se(A) —— Se(X) —> Se(X, A) — 0.

Each row has its long exact homology sequence. We apply (9.4.5) to (X, U) and
(A, U N A), use the Five Lemma (11.2.7), and obtain:

(9.4.6) Theorem. The inclusion of chain complexes 1: S¥ (X, A) — S(X, A) in-
duces an isomorphism H¥ (X, A) = H.(X, A). By an application of (11.6.3) we
see that the inclusion v is actually a chain equivalence. O
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(9.4.7) Theorem (Excision Theorem). Let Y = Y U Y,. Then the inclusion
induces an isomorphism H.(Y>,Y1 NY,) = H.(Y,Y1). Let B C A C X and
suppose that B C A°. Then the inclusion (X ~ B, A~ B) — (X, A) induces an
isomorphism H.(X ~ B, A~ B) = H.(X, A). Again we can invoke (11.6.3) and
conclude that the inclusion actually induces chain equivalences between the chain
complexes under consideration.

Proof. The covering U = (Y7, Y>) satisfies the hypothesis of (9.4.5). By definition,
we have SY(X) = S,(Y1) + S, (Y2) and also S, (Y1 N Y2) = S, (Y1) N Sy (Y2).
The inclusion Se(Y2) — S.(Y) induces therefore, by an isomorphism theorem of
elementary algebra,

SaYa)  _ SuY2) _ Sa(Y) 4+ Sa(Y2) _ SPHY)
Si(Y1NY2) "~ SV NSu(Y2) —  Su(¥) Sa(¥1)’

By (9.4.5) and (11.2.7) we see, firstly, that SY(Y)/Se(Y1) — Se(Y)/Se(Y1) and,
altogether, that Se(Y2)/Se(¥Y1 N Y2) = Se(Y)/Se(Y1) induces an isomorphism in
homology. The second statement is equivalent to the first; weuse X =Y, 4 =711,
X~B="Y,. 0

Problems

1. Let D C R™ and E C R” be convex and let f: D — E be the restriction of a linear
map. Then fu(v-c) = f(v)- fu(c).

2. Although not necessary for further investigations, it might be interesting to describe the
chain B[vg, ..., vp] in detail. We use (3) in the proof of (9.4.3). By (2), formula (3) also
holds for [vg, ..., vp]. This yields B[vg.v1] = [vo1.v1] — [vo1. vo] with barycenter v,
and for B[vg, v1, v2] we obtain in short-hand notation what is illustrated by the next figure.

[012,12,2] — [012,12,1] — [012,02,2] + [012, 02, 0] + [012,01, 1] — [012,01,0].
Vs [012,12,2]

Tl 1 1
. §U0 =+ §U1 + §U2

vo U1

One continues inductively in this manner. Let S(p + 1) denote the permutation group
of {0,..., p}. We associate to 0 = [vg,...,Vp] and = € S(p + 1) the simplex 6" =
[v3.....v5], where v = [vr(r), ..., Uy (py]P. With this notation the following holds:

Bo =3 es(pt1)sign(m)o”.
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9.5 Weak Equivalences and Homology

Although singular homology groups are defined for arbitrary topological spaces,
they only capture combinatorial information. The theory is determined by its values
on cell complexes. Technically this uses two facts: (1) a weak homotopy equiv-
alence induces isomorphisms of homology groups; (2) every topological space is
weakly equivalent to a CW-complex. One can use cell complexes to give proofs
by induction over the skeleta. Usually the situation for a single cell is quite trans-
parent, and this fact makes the inductive proofs easy to follow and to remember.
Once a theorem is known for cell complexes, it can formally be extended to general
topological spaces. We now prove this invariance property of singular homology
[56], [21].

Let (X, A, %) be a pointed pair. Let A[k]" be the n-skeleton of the standard
simplicial complex A[k] (this is the reason for switching the notation for the standard
k-simplex). Let S ,5""4) (X) for n > 0 denote the subgroup of Si(X) spanned by
the singular simplices o : A[k] — X with the property

(#) o (A[K]") C A.

The groups (S,E”’A) (X) | k > 0) form the Eilenberg subcomplex S (X) of
Su(X).

(9.5.1) Theorem. Let (X, A) be n-connected. Then the inclusion of the Eilenberg
subcomplex o : S.(”’A)(X) — Se(X) is a chain equivalence.

Proof. We assign to a simplex o : A[k] — X ahomotopy P(0): Alk]x I — X
such that

(1) P(o)o =0,

(2) P(0); satisfies (#),

(3) P(0); = o, provided o satisfies already (#),

(4) P(0)o (dF xid) = P(o 0 dF).
According to (3), the assignment P is defined for simplices which satisfy (#). For
the remaining simplices we use an inductive construction.

Suppose k = 0. Then o(A[0]) € X is a point. Since (X, A) is O-connected,
there exists a path from this point to a point in A. We choose a path of this type
as P(0).

Suppose P is given for j-simplices, j < k. Then for each k-simplex o the
homotopy P (o o dl.k) is already defined, and the P (o o dl-k) combine to a homotopy
dAlk] x I — X. Moreover P (o) is given. Altogether we obtain

P(0): (A[k] x 0 U dA[k] x I, dA[k] x 1) — (X, A).

Let k < n. Then Afk]" = Alk], and similarly for the faces. By the inductive
assumption, P (o) sends dA[k] x 1 into A.
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There exists a homeomorphism k : A[k] x I — A[k] x I which induces home-
omorphisms (see (2.3.6))

Alk] x 0 = A[k] x 0 U dA[k] x 1,
IA[K] x 0 = dA[K] x 1,
JA[K] x I U A[k] x 1 2= Alk] x 1.

Since (X, A) is k-connected, the map
P(0)ok: (A[k] x 0, dA[k] x 0) — (X, A)

can be extended to a homotopy Q : A[k] x I — X which is constant on dA[k] x [
and sends A[k] x 1 into A. We now set P(0) = Q ok~ '. Then P(c0) extends
P (0), hence (1) and (4) are satisfied, and (2) also holds by construction.

Let k > n. We use the cofibration (A[k], dA[k]) in order to extend P (o) to
P(0). Since A[k]" C dA[k], we see that P(0); satisfies (#).

We now define p: Sx(X) — S,E"’A)(X) by 0 +— P(0);. Property (4) shows
that p is a chain map, and p oo = id holds by construction. We define s: Si(X) —
Sk+1(X) by s(0) = P(0)#h(ik)

e € SE(ATKD) — St 1 (A x 1) 2% §41(X) 3 5(0)

where £ is the natural chain homotopy between ig and i#}, see (9.3.3). The compu-
tations

ds(0) = I(P(0)sh(wk)) = P(0)dh (1)
= P(0)1#(tk) — P(0)os (k) — P(0)sh(du)
= p(0) — 0 — P(0)4h(du),

59(0) = s (X (=Dic odF) = Y (=1)' P(6 0 d})sh(—1)
= P(0)s (X (1) dkh(u—1)) = P(0)4h(dux)

show that s is a chain homotopy between « o p and id. O

For k < n we have A[k]" = Alk] and therefore S,E"’A)(X) = Sr(A). The
chain equivalence (9.5.1) and the exact homology sequence of (X, A) now yield:

(9.5.2) Theorem. Let (X, A) be n-connected. Then Hy(A) =, Hi(X) and
Hy(X,A) =0fork <n. O

Let f: X — Y be a weak homotopy equivalence. We can assume that f is an
inclusion (mapping cylinder and homotopy invariance).



9.6. Homology with Coefficients 237

(9.5.3) Theorem. A weak homotopy equivalence induces isomorphisms of the sin-
gular homology groups. O

(9.5.4) Remark. Suppose that (X, A, *) is a pointed pair and A4 is pathwise con-
nected. Then we can define a subcomplex S, .(X’A’*) (X) of Se(X) where we require
in addition to (#) that o(A[k]®) = {x}. Again the inclusion is a chain equivalence.

&

9.6 Homology with Coefficients

Let Co = (Cy, cp) be a chain complex of abelian groups and let G be a further
abelian group. Then the groups C,, ® G and the boundary operators ¢, ® id form
again a chain complex (the tensor product is taken over Z). We denoteitby Coe @ G
We apply this process to the singular complex So(X, A) and obtain the complex
Se(X,A) ® G of singular chains with coefficients in G. Its homology group
in dimension 7 is denoted H,(X, A; G). The cases G = Z,Q,Z/p are often
referred to as integral, rational, mod(p) homology. Chains in S, (X, A) ® G can
be written as finite formal linear combinations ) as0, a; € G of singular n-
simplices o; this accounts for the name “chain with coefficients”. The sequence
0 = Se(A) = Se(X) — Se(X,A) — 0 remains exact when tensored with G,
ie, SH(X,A) ® G = S,(X) ® G/S,(A) ® G. Therefore we still have the exact
homology sequence (11.3.2)

ad
-oo—> Hy(A;G) > Hy(X;G) > Hy(X,A,G) > H,—1(A;G) — ---

and the analogous sequence for triples. The boundary operators d are again natural
transformations. If 0 — G’ — G — G” — G is an exact sequence of abelian
groups, then the tensor product with Se(X, A) yields again an exact sequence of
chain complexes and we obtain from (11.3.2) an exact sequence of the form

o> Hy(X,A:G)—> H,(X,A;G) - Hy (X, A;G") > Hy (X, A;G') — --- .

The passage from C, to Co ® G is compatible with chain maps and chain homotopies.
A chain equivalence induces a chain equivalence. This fact yields the homotopy
invariance of the homology groups H, (X, A; G). The excision theorem still holds.
This is a consequence of (9.4.7): Under the hypothesis of the excision theorem, the
chain equivalence Se (Y71, Y1 NY,) — Se(Y, Y>) induces a chain equivalence when
tensored with G. Hence the functors H,, (X, A; G) satisfy the axioms of Eilenberg
and Steenrod for a homology theory. The dimension axiom holds: We have a
canonical isomorphism ep : Ho(P) = G for a point P, which maps the homology
class of the chain ao to a, where o is the unique O-simplex.

The application of (11.9.1) to topology uses the fact that the singular chain
complex consists of free abelian groups. Therefore we obtain:
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(9.6.1) Theorem (Universal Coefficients). Let R be a principal ideal domain and
G an R-module. There exists an exact sequence

0— Hy(X,A:R) ®r G —> Hy(X, A; G) — Tor(H,_1(X, A: R), G) — 0.

The sequence is naturalin (X, A) and G. The sequence splits, the splitting is natural
in G, but not in (X, A). O

The splitting statement means that H, (X, A; G) can be determined as an abelian
group from homology with coefficients in Z, but the functor H,(—; G) is not
the direct sum of the functors H,(—;Z) ® G and Tor(H,—1(—;Z), G). Here
is a consequence of (9.6.1): If f: (X,A) — (¥, B) induces an isomorphism
fx: Hyo(X, A) = H.(Y, B) for * = n — 1, n, then it induces also an isomorphism
H,(X,A;G) =~ H,(Y, B;G).

9.7 The Theorem of Eilenberg and Zilber

We study the homology of products. For this purpose we compare the chain com-
plexes Se(X) ® So(Y) and Se(X x Y). Both are values at (X, Y) of a functor
TOP x TOP — CH into the category of chain complexes which are zero in nega-
tive degrees. In dimension zero they essentially coincide. For x € X letx € So(X)
also denote the basis element given by the singular simplex A° — {x} C X.
Then Se(X x Y) has the basis (x,y) and Se(X) ® S¢(Y) the basis x ® y for
(x,y) € X x Y. Natural transformations P : Se(—) ® Se(—) — Se(— x —) and
0 : Se(—x—) = Se(—) ® Se¢(—) are called an Eilenberg—Zilber morphisms if in
dimension zero always P(x ® y) = (x,y) and Q(x,y) = x ® y. Both functors
are free and acyclic in the sense of (11.5.1). For (Se(—) ® Se(—)), we use the
models (A¥, A”7k) and the elements id ® id; for S, (— x —) we use the models
(A", A™) and the diagonal maps A" — A" x A”. They account for the freeness.
The homology of the chain complexes So(A? x A?) is zero in positive dimensions,
since A? x A is contractible; the homology of Se(A?) ® Se (A7) is zero in positive
dimensions, since the tensor product of chain complexes is compatible with chain
homotopies, and the chain complexes So(A?) are homotopy equivalent to the triv-
ial complex. Similar statements hold for the analogous functors in three (or more)
variables like S¢(X x Y x Z) or the corresponding three-fold tensor products. As
an application of (11.5.1) we obtain:

(9.7.1) Theorem. (1) Eilenberg—Zilber morphisms P and Q exist. For each pair
(P, Q) of Eilenberg—Zilber morphisms the compositions P o Q and Q o P are nat-
urally homotopic to the identity. Hence the Pxy and Qx y are chain equivalences
and any two Eilenberg—Zilber morphisms P, P’ are naturally homotopic (similarly
for @, Q.

(2) An Eilenberg—Zilber morphism P is associative and commutative up to
natural homotopy, i.e., the natural transformations Pxxy,z o (Px,y ® 1) and
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Pxyxz o (1 ® Pyz) from Se(X) ® Se(Y) ® Se(Z) to Se(X x Y x X) are
naturally homotopic and the transformations (txy )4 © Px,y and Py x o txy are
naturally homotopic. Heretyy: X xY — Y x X interchanges the factors and
wy(x®y) = (=D Ply .

(3) An Eilenberg—Zilber morphism Q is coassociative and cocommutative up
to natural homotopy, i.e., the natural transformations (Qx,y ® 1) o Qxxy.z and
(1® Qy,z) o Qx,y xz are naturally homotopic, and the transformations tx,y o Qx.y
and Qy,x o (tx,y )4 are naturally homotopic. O

As a consequence one can determine the homology of X x Y from the chain
complex S¢(X) ® Se(Y). We now turn to relative chain complexes and abbreviate
S =S..

(9.7.2) Proposition. For FEilenberg—Zilber transformations P, Q and pairs of
spaces (X, A), (Y, B) we have a commutative diagram with short exact rows

S(A) ® S(Y) + S(X) ® S(B) — S(X) ® S(Y) —— S(X, 4) ® S(Y, B)

T
S(X x Y)

SAXxY)+S(X xB)— S(X xY) SUAxY) L SX xB)

The vertical maps are induced by P and Q. The compositions P'Q’, Q" P’, P" Q”,
Q" P" are naturally homotopic to the identity.

Proof. The naturality of P shows P(S(4) ® S(Y)) C S(A x Y) and similarly
for Q. This shows that P, Q induce by restriction P’, Q’, and P”, Q" are the
homomorphisms induced on the quotients. Since the homotopy PQ =~ id is natural,
itmaps S(A x Y) + S(X x B) into itself and shows P'Q’ ~ id. O

9.7.3 We can compose

P:S(X,A)®S(Y,B)— S(X xY)/(S(AxY) + S(X x B))

with the map induced by the inclusion S(A XY )+ S(X xB) C S(AxY UX x B)
and obtain altogether natural chain maps

P:S(X,A)® S,B) — S(X,A) x(Y,B)).

We call the pair (A x Y, X x B) excisive, if this chain map is a chain equivalence.

<&
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9.7.4 The natural chain map P induces natural chain maps for singular chain
complexes with coefficients. Let R be a commutative ring and M, N R-modules.

S(X,A:M) ® S(Y.B:N) = (S(X.4) @ M) ®r (S(Y.B) ® N)
- (S(X.A)®S(Y.B)) ® (M ®r N)
— (S((X. 4) x (Y, B))) ® (M Qg N).

In many cases this chain map is followed by a homomorphism induced by a linear
map M ® g N — L. Examples are R Qg R — R, x ® y — xy in the case of a
ring Rand RQr N — N, x ® n > xn in the case of an R-module N. <&

Problems

1. There exist explicit Eilenberg—Zilber morphisms which have further properties. Let p, g €
N. We use the notation [n] = {0, 1,...,n}. A (p, q)-shuffleisamap A: [p+q] — [p]x[q]
with A(0) = (0,0) and A(p + ¢) = (p, g) such that both components of L = (A1, 1) are
(weakly) increasing. Given A, there exists a permutation (i, V) = (U1, ..., Lp, V1, ..., Vq)
of 1,2,..., p + g such that

I<pu1<--<up=<p+q, 1=5vi,....,v4<p-+gq

and Aq(u;) > Ar(u; — 1) and A2(vk) > A2(vg — 1). We denote the signum of the
permutation (u, v) by e(1). If we interpret the points A(0),...,A(p + ¢) in the integral
lattice [p] X [¢] as the vertices of an edge-path from (0, 0) to (p, g), then the step A(j) —
A(j + 1) is horizontal or vertical of length 1. In the convex set A? x A4 we have the affine
(p + g)-simplex [A(0),...,A(p + q)], also denoted A, and the set of these simplices form
a triangulation of the product when A runs through the (p, g)-shuffles X(p, g). (We do not
need this geometric fact, but it explains the idea of the construction.) Define

Py i Sp(X)®Sq(Y) = Sp4q(X.Y), 0®@TH Y sex(p.g M0 xT)0R)

on a pair o, T of singular simplices.

The P, , are a strictly associative Eilenberg-Zilber morphism. We call it the shuffle
morphism or the Eilenberg—Mac Lane morphism.

2. Anapproximation of the diagonal is a natural chain map D : Se(X) — Se(X) ® Se(X)
which coincides in dimension zero with x +— x ® x. (The name refers to the fact that the
diagonal of a cellular complex is not a cellular map, and so one looks for a homotopic cellular
approximation.) By an application of (11.5.1) one shows that any two approximations of the
diagonal are naturally chain homotopic.

3. The classical approximation of the diagonal is the Alexander—Whitney map.

Leto: A, — X be an n-simplex,n = p + ¢, 0 < p,q < n. We have the affine maps
ap: Ap = Ay, e; = e and by: Ay — Ay, e; — ey—g4i. They are used to define
a; =0oap andcrg =0 o0by.

The Alexander—Whitney approximation of the diagonal is defined by

Don =3 ,i4=n o,i ®0q2, on: Ny = X
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and linear extension.
4. Given an approximation D of the diagonal one constructs from it an Eilenberg—Zilber
morphism Q as the composition

« X® Y
Se(X X Y) — 22X L Su (X x V) ® Se(X x V) —2EP L 60 (X) @ Se(Y).

Let O4W be the Eilenberg—Zilber morphism obtained from the Alexander—Whitney ap-
proximation of the diagonal and call it the Alexander—Whitney morphism. The Alexander—
Whitney morphism is strictly coassociative.

5. The Eilenberg—Mac Lane morphism EM and the Alexander—Whitney morphism AW are
also compatible in a certain sense:

Se(W x X)® Se(Y x Z) ——EM L Sq(W x X x Y x Z)
J]AW@AW l(le‘x_YXl)g
Se(W) ® Se(X) ® Se(Y) ® Se(Z) Se(W XY x X x Z)
ll®fx,y®l lAW

Se(W) ® Se(Y) ® Se(X) @ Sa(Z) ZHBEM, oW x ¥) ® Se(X x Z)

commutes.

9.8 The Homology Product

We pass to homology from the chain map P in (9.7.4)

Ho(X,A;M) ® Ho(Y,B;N) = Ho(S(X, A; M)) ® Ho(S(Y, B; N))
— Hi(S(X,A;M)® S(Y, B;N))
— Ho(S((X,A) x (Y,B));:M ® N)

These maps are natural transformations, and we call them the homology product.
We use the notation x ® y — x x y for the homology product. In the case of
M = N = R we combine with the map induced by the canonical isomorphism
R ® g R — R and obtain a homology product

Hi(X,A:R) ® H;j(Y,B:R) > H;;((X,A) x (Y, B): R).

In general we can compose with abilinearmap M @ N — P; forinstance we can use
an R-module structure R® M — M on M. We list some formal properties of the
homology product, for simplicity of notation only for homology with coefficients
in R. We use the following notation: f: (X,A4) — (X’,4’) and g: (Y, B) —
(Y', B’) are continuous maps. Let (X x B, A x Y) be excisive in X x Y. Then we
have two boundary operators

0: Hp((X,A)x(Y,B)) - Hp_1 (X xBUAXY, X XB) < H,_1(Ax (Y, B)),
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0" Hp((X,A)x(Y,B)) = Hp (X XBUAXY,AxY) < H,,_1((X, A)x B).

t istheinterchange map ¢ (u, v) = (v,u). Let C = {c}beapointandl € Hy(C:; R)
be represented by ¢ ® 1.

9.8.1 Properties of the homology product.

(f X @)x(x xy) = fux x gx(y),
dx xy =9d(x xy),
x x 9y = (=)¥3"(x x y),
(xxy)xz=xx(yxz),
xxy = (=DM (y x x),
Ixy=y.

The algebraic Kiinneth formula (11.10.1) yields

(9.8.2) Theorem (Kiinneth Formula). Let R be an integral domain. Further, let
(AXY, X x B) be excisive in X XY for singular homology. Then we have a natural
exact sequence

0~ @ Hi(X,A;R)® H;(Y, B;R) — Hu((X,A) x (Y, B); R)
i+j=n

— @ Hi(X,A:R)* H;(Y,B:R) — 0.
i+j=n—1

The sequence splits, but the splitting is not natural in the variable (X, A). For
homology with coefficients in a field k we obtain an isomorphism

Ho(X, A; k) @ Hy(Y, B;k) = Hyo((X, A) x (Y, B): k)

as a special case. This isomorphism holds for an arbitrary commutative ring R if
the homology groups H«(X, A; R) are free R-modules. O

(9.8.3) Example. The homology class e € H;(R, R ~ 0; R) = R represented by
o ® 1 with the singular simplex o: A — R, (fo, ;) — 1 —2tg is a generator. The
product y > e X y with e is an isomorphism

Hy(Y,B;N) = Hy1((R,R~0) x (Y, B); N)

for each R-module N. This isomorphism can also be deduced from the axiomatic
properties 9.8.1 (see a similar deduction (17.3.1) in the case of cohomology the-
ories). The n-fold product e, = e x --- x e € H,(R",R” ~ 0; R) serves as a
canonical generator (a homological R-orientation of R"). <
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Problems

1. Let vo, ... v, be affinely independent points in R” and suppose that the origin 0 € R” is
contained in the interior of the affine simplex v = [vg, ..., v,]. We then have the singular
simplex 6 : A" — R”" determined by o (e;) = v;. Show that o represents a generator x;, of
H;, (R", R"~0; Z). We therefore have arelation x,, = +e,. Determine the sign, depending
on v. You might first consider the case n = 2 and make an intuitive guess. (This problem
indicates that keeping track of signs can be a nuisance.)

2. Verify the properties 9.8.1 of the homology product.

3. Study the axioms for a multiplicative cohomology theory and use 9.8.1 to define multi-
plicative homology theories axiomatically.



Chapter 10
Homology

In this chapter we define homology theories via the axioms of Eilenberg and Steen-
rod. From these axioms we derive some classical results: the Jordan separation
theorem; invariance of domain and dimension; degree and its determination by lo-
cal data; the theorem of Borsuk—Ulam. The theorem of Borsuk—Ulam is used for
a problem in combinatorics: the determination of the chromatic number of Kneser
graphs.

A second topic of the chapter is the derivation of some results of a general
nature: reduced homology; additivity; suspension isomorphisms; Mayer—Vietoris
sequences; compatibility of homology with colimits.

10.1 The Axioms of Eilenberg and Steenrod

Recall the category TOP(2) of pairs of topological spaces. We use the functor
k: TOP(2) — TOP(2) which sends (X, A) to (4,0) and f: (X, A) — (Y, B) to
the restriction f: (4, 9) — (B, 9).

A homology theory for pairs of spaces consists of a family (h, | n € Z) of
covariant functors /1, : TOP(2) — R-MOD and a family (d,, | n € Z) of natural
transformations d,, : h,, — h,—; ok. These data are required to satisfy the following
axioms of Eilenberg and Steenrod [58], [59]:

(1) Homotopy invariance. For each homotopy f; in TOP(2) the equality
ha(fo) = hn(f1) holds.
(2) Exact sequence. For each pair (X, A) the sequence

e o B (X A) = 1y (A, 0) = Ty (X, B) — hp (X, A) —> -

is exact. The undecorated homomorphisms are induced by the inclusions.

(3) Excision. Let (X, A) be a pair and U C A such that U C A°. Then
the inclusion (X ~ U, A ~ U) — (X, A) induces an excision isomorphism
ha(X ~U,A~NU) = h,(X, A).

The excision axiom can be expressed in a different form. Suppose Y1, Y, are
subspaces of Y suchthat Y = Y?UY;. Then the inclusion induces an isomorphism
hn(Yl, Yin Yz) = hn(Y, Yz)

The module /4, (X, A) is the n-th homology group (module) of (X, A) in the
homology theory (we also say in degree or in dimension n). We set h,(X,0) =
hy(X). The groups h,(X) are the absolute groups and the groups /4, (X, A) are
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the relative groups. The homomorphisms d = d,, are the boundary operators. We
often write 41, ( f) = f« and call (as already above) f the induced morphism. The
homology groups 4, (P) for a point P are the coefficient groups of the theory.
(More precisely, a group &, together with a compatible family of isomorphisms
ep: hy — h,(P) for each point P is given.) In the case that &, = 0 forn # 0, we
say that the homology theory satisfies the dimension axiom and call the homology
theory an ordinary or classical one.

The exact sequence of a pair of spaces can be extended slightly to an exact
sequence for triples B C A C X (see [59, p. 24], [189]). The boundary operator
for a triple is defined by

3: hn(X, A) = hn_1(A) = hn_1(A, B):

the first map is the previous boundary operator and the second map is induced by
the inclusion.

(10.1.1) Proposition. For each triple (X, A, B) the sequence

il il
v > 1 (X, A) — hy(A,B) = hy (X, B) = hp(X, A) — ---
is exact. The undecorated homomorphisms are induced by the inclusions. O

We do not derive this proposition from the axioms right now (see 10.4.2 for a
proof which uses the homotopy invariance). In most constructions of homology
theories one verifies this more general exact sequence directly from the definitions;
so we can treat it as an extended axiom.

A homology theory is called additive, if the homology groups are compatible
with topological sums. We formulate this as another axiom.

(4) Additivity. Let (X;, A;), j € J be a family of pairs of spaces. Denote by
ij: (Xj,A;) — (I;X;,11; A;) the canonical inclusions into the topological
sum. Then the additivity axiom says that

@je] ha(Xj. Aj) = ha(LL; X;, L Aj),  (x)) > Zje] h (i) (x;)

is always an isomorphism. For finite families the additivity follows from the
axioms (see (10.2.1)).
Singular homology theory has further properties which may also be required in
an axiomatic treatment.

(5) Weak equivalence. A weak equivalence f: X — Y induces isomorphisms
fr: he(X) = hy(Y) of the homology groups.

(6) Compact support. For each x € h, (X, A) there existsamap f: (K, L) —
(X, A) from a pair (K, L) of compact Hausdorff spaces and z € h, (K, L)
with f.z = x.
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If Axiom (5) holds, then the theory is determined by its restriction to CW-complexes
(actually to simplicial complexes).

Sometimes we have to compare different homology theories. Let i, = (hy,, 0,)
and ky = (ky, d,) be homology theories. A natural transformation @ : hsx — ky
of homology theories consists of a family ¢, : &, — k, of natural transformations
which are compatible with the boundary operators 9}, 0 ¢ = @,—1 © 0.

Problems

1. Let (h;, 0,) be a homology theory with values in R-MOD. Let (¢, € R) be a family of
units of the ring R. Then (4, &,,0,;) is again a homology theory. It is naturally isomorphic
to the original theory.

2. Given a homology theory (h,, d,) we can define a new theory by shifting the indices
kn = hy4s.

3. Let h4 be a homology theory. For a fixed space Y we define a new homology theory
whose ingredients are the groups k; (X, A) = h, (X x Y, A x Y'). The boundary operators
for the new theory are the boundary operators of the pair (X x Y, A x Y'). The projections
pr: X x Y — X induce a natural transformation k.. — h.. of homology theories. If /i is
additive then k. is additive.

4. Let h4 be ahomology theory with values in R- MOD. Let M be a flat R-module, i.e., the
tensor product ® g M preserves exact sequences. Then the 7, (—) ® g M and 0 ® g M are
the data of a new homology theory. Since the tensor product preserves direct sums, the new
theory is additive if 4 was additive. In the case that R = Z one can take for M a subring
T of the rational numbers Q, in particular Q itself. It turns out that the rationalized theories
h+«(—) ® Q are in many respects simpler than the original ones but still contain interesting
information.

5. If j h4 is a family of homology theories (j € J), then their direct sum B ; ; /14 is again
a homology theory. One can combine this device with the shift of indices.

10.2 Elementary Consequences of the Axioms

We assume given a homology theory %, and derive some consequences of the
axioms of Eilenberg and Steenrod.

Suppose the inclusion A C X induces for j = n,n + 1 an isomorphism
hj(A) = h;j(X). Then h,(X,A) = 0. In particular ,(X, X) = 0 always, and
hn(@) = h,(@,0) = 0. This is an immediate consequence of the exact sequence.

Let f: X — Y be an h-equivalence. Then fx: h,(X) — h,(Y) is an isomor-
phism, by functoriality and homotopy invariance. If f is, in addition, an inclusion,
then 1, (X,Y) = 0.

Let f: (X, A) — (Y, B) be a map such that the components f: X — Y and
f: A — B induce isomorphisms of homology groups, e.g., the components are
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h-equivalences. Then the induced maps fi: h, (X, A) — h,(Y, B) are isomor-
phisms. The map f induces a morphism from the homology sequence of (X, A)
into the homology sequence of (Y, B), by functoriality and naturality of d. The
claim is then a consequence of the Five Lemma (11.1.4).

If X and A are contractible, then /,(X, A) = 0. If (X, A, B) is a triple and
X, B are contractible, then the exact sequence of a triple shows that d: h, (X, A) —
hn—1(A, B) is an isomorphism.

Let the homology theory satisfy the dimension axiom. If X is contractible, then
hi(X) = 0 for k # 0. A null homotopic map ¥ — Y therefore induces the zero
morphism on sy (Y) for k # 0.

Leti: A C X and suppose there exists r: X — A such that ri ~ id. From
id = idx = (ri)« = r«i« we see that r, is a retraction of i., hence i, is always
injective. Therefore the exact homology sequence decomposes into split short exact
sequences 0 — hy,(A) = hy,(X) = h,(X, A) — 0.

(10.2.1) Proposition (Finite Additivity). Let (X;, A;), j € J be a finite family of
pairs of spaces. Denotebyi;: (X;, Aj) — (U;X;, ; A;) the canonical inclusions
into the topological sum. Then

@je] hn(Xj,Aj) - hn(Hij, HjAj), (xj) = Zje_] hn(ij)(xj)
is an isomorphism.

Proof. As a consequence of the excision axiom we see that the inclusion always
induces an isomorphism %, (A, B) =~ h,(A + C, B + C). It suffices to consider
the case J = {1,2} and, by the Five Lemma, to deal with the absolute groups.
One applies the Sum Lemma (11.1.2) with Ay = h,(X%), Br = hn(X, Xz),C =
hn (X1 + X2). u

(10.2.2) Proposition. The identity 1, of A" is a cycle modulo dA" in singular ho-
mology theory. The group H, (A", dA™) is isomorphic to Z and [1,] is a generator.

Proof. The proof is by induction on n. Denote by s(i) = d* A"~! the i-th face of
A". Consider

@)« .
he—1 (A" gAY —= he—1(0A", 0A" ~ 5(i)°) % hi (A", 0A™).

The space dA”™ ~ s(i)° is contractible, a linear homotopy contracts it to the
point e;. Since A" is also contractible, d is an isomorphism. The inclusion 4
maps (A" 9A" 1) into the complement of e;, and as such it is a deformation
retraction of pairs. The excision of e; induces an isomorphism. Therefore (d]")«
is the composition of two isomorphisms. If we always work with the first face
map d?, we obtain by iteration an isomorphism hy_, (A%) = hi (A", dA"). (So
far we can work with any homology theory.)
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Now consider the special case #, = H, of singular homology with coefficients
in Z. By definition of the boundary operator, d[t,] = (—1)’ [d}"], since the d}' for
Jj # i are zero in the relative group. If we again work with dJ, we see that the
isomorphism above sends the generator [t;,—1] to [ty].

If we work with Hy for k # n, then the isomorphism above and the dimension
axiom tell us that Hi(A",dA") = 0. The pair (A", dA") is homeomorphic to
(D™, S"71). So we also see that Hy (D", S"!) is zero for k # n and isomorphic
to Z for k = n. O

In an additive homology theory we also have an additivity isomorphism for
pointed spaces if the base points are well-behaved. For a finite number of summands
we do not need the additivity axiom in (10.2.3).

(10.2.3) Proposition. Let (X;, P;) be a family of pointed spaces and \/ X =
(X, P) the pointed sum with embedding i’ : X; — X of a summand. Assume that
the closure of P in X has a neighbourhood U such that h«(U, P) — hy«(X, P) is
the zero map. Then (li ) @j h«(Xj, Pj) = h«(X, P) is an isomorphism.

Proof. SetU; = U N X;. Consider the diagram

00— he(X, P)— L h(X.U)—2 s h(U. P)

T(Z) TO) T(4)

ho(UX;, U P;) —— hy(UX;, LU;) —2— b (LU;, L P;).

The vertical morphisms are induced by the quotient maps. The horizontal mor-
phisms are part of the exact sequence of triples. The hypothesis implies that (1) is
injective. We use the additivity in order to conclude that (2) and (4) are injective.
This is due to the fact that we have the projections p/: X — X 7, and pf i] =8k,
We show that (3) is an isomorphism. Consider the diagram

h*(X ~P U~ P)éh*(H(X] ~ Pj),H(Uj ~ Pj))

: :

he(X,U) D pux; 10U,

The isomorphisms hold by excision; here we use the assumption P C U°. Diagram
chasing (Five Lemma) now shows that (2) is also surjective. O

(10.2.4) Remark. The hypothesis of (10.2.3) is satisfied if P; is closed in X; and
has a neighbourhood U; such that U; C X; is pointed homotopic to the constant
map. These conditions hold if the spaces (X;, P;) are well-pointed; see (5.4.4). <
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10.2.5 Suspension. We define the homological suspension isomorphism o =
oA by the commutative diagram

ha(X, A) ha(1x X, 1% B)

|- o

It (131) % (X, A)) —2—= hy () x X UI x A.0x X U1 x A).

IR

(1) is an isomorphism: excise 0 x X and then use an h-equivalence. The boundary
operator d for the triple sequence of (I X X, 0l x X UI x A,0x X U x A)is an
isomorphism, since 0x X U1 x A C I x X is an h-equivalence. We can interchange
the roles of 0 and 1; let 0~ denote this suspension isomorphism. By applying the
Hexagon Lemma (11.1.3) with center group 4, (I x X, I x AUl x X)) we obtain
o = —o~ (draw the appropriate diagram). For some purposes of homotopy theory
one has to use a similar suspension isomorphism defined with X x 1.

The n-fold iteration of o provides us in particular with an isomorphism
o":hk;hk(lo);hkﬂ(l,al);---;hkﬂ(]”,a]”). &

10.3 Jordan Curves. Invariance of Domain

As a first application of homology theory we prove a general duality theorem.
We then apply this general result to prove classical results: A generalized Jordan
separation theorem and the invariance of domain and dimension. For this section
see [53].

The propositions (10.3.1) and (10.3.2) can be proved in a similar manner for an
arbitrary homology (or, mutatis mutandis, cohomology) theory. For the applications
one needs homology groups which determine the cardinality of 7¢(X) for open
subsets X of Euclidean spaces, and this holds, e.g., for singular homology H(—).
(If one knows a little analysis, one can use de Rham cohomology for open subsets
of Euclidean spaces.)

(10.3.1) Proposition. Let A C R" be a closed subset. Then Hy(R™, R" ~ A) and
Hp 1 (R" x R, R" x R~ A x 0) are isomorphic.

Proof. We use the open subsets of R”*!
Hy = (R" ~ A)x] — 1, 00[ U Ax]0, 00]
H_=(R"~A)x]—o00, 1 UAX]—00,0[

HyUH_=R""'<Ax0
H,NH_ = R"~A)x]-1,1[.



250 Chapter 10. Homology

These data occur in the diagram

H(R*RP~A)— — — — — — — — — — — — — > Hi 1 (R"T1, R < A % 0)

(B)J BJ
2) 1)

Hy(RM, Hy N H_) ¢— Hy(Hy, Hy N H_) ——— Hy(Hy U H_, H_).

The map 9 is the boundary operator of the triple (R**!, Hy U H_, H_). The maps
(1), (2), and (3) are induced by the inclusions. We show that the morphisms in the
diagram are isomorphisms. The proof uses the fact that A and H_ are contractible;
the homotopy h,: Hy — H4, (x,s) — (x,s + t) starts at the identity and has an
image in the contractible space R” x ]0, oo[. The map d is an isomorphism, because
Hi(R"*1 H_) = 0, by contractibility of H_. The map (1) is an excision. The
maps (2) and (3) are isomorphisms by homotopy invariance (R” = R” x 0). O

(10.3.2) Theorem (Duality Theorem). Let A and B be closed homeomorphic sub-
sets of R"™. Then the groups Hy (R", R" ~ A) and Hy (R", R" ~ B) are isomorphic
(k € Z).

Proof. A homeomorphism f: A — B yields a homeomorphism «: R” x R" —
R" x R", which sends A x 0 via f x0to B x 0 (see (7.3.1)). We obtain an induced
isomorphism

Hiyn(RP X R, R" x R" ~ A x0) = Hpp, (R" x R",R"” X R” ~ B x 0).
Now apply (10.3.1) n times. O

(10.3.3) Theorem (Component Theorem). Let A and B be closed homeomorphic
subsets of R"™. Then mo(R"™ ~ A) and 7o(R" ~ B) have the same cardinality.

Proof. We use the fact that Ho(R" ~ A) is the free abelian group on o(R” ~ A)
and the algebraic fact a free abelian group determines the cardinality of a basis (=
the rank). Suppose that A # R”. Then we have an exact sequence

0— H{(R",R" ~ A) — Ho(R" ~ A) - Hp(R") — 0.

This shows the rank of H;(R"”, R” ~ A) is one less than the rank of Hy(R"” ~ A).
Hence if A and B are different from R”, then the result follows from (10.3.2). We
see in the next section that A = R” implies that B is open in R” and therefore,
since R” is connected, also equal to R”. O

An injective continuous map f: S! — R? is an embedding, and its image is
called a Jordan curve.
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(10.3.4) Theorem (Jordan Separation Theorem). Let S C R” be homeomorphic to
S"1(n > 2). Then R" ~ S has two path components, the bounded interior J and
the unbounded exterior A. Moreover, S is the set of boundary points of J and of A.

Proof. The assertion holds in the elementary case S = S™~!. Hence, by (10.3.3),
the complement of S has two components. It remains to study the boundary points.
Letx € S andlet V be an openneighbourhoodof x in R”. ThenC = S~(SNV)

is closed in S and homeomorphic to a proper closed subset D of S”~!. Therefore
R™ ~ D is path connected and hence, by (10.3.3), also R” ~ C. Let p € J and
g € Aand w: [0,1] — R" ~ C a path from p to ¢. Then w™!(S) # 0. Let t; be
the minimum and #, the maximum of w=!(S). Then w(¢;) and w(t,) are contained
in § N V. Therefore w(¢;) is limit point of w([0, #1[) C J and w(¢2) limit point of
w(]t2, 1]) C A. Hence there exist #3 € [0,#;[ with w(tz) € J NV and 14 €3, 1]
with w(t4) € AN V. This shows that x is contained in the boundary of J and of A.
O

(10.3.5) Remarks. For n = 2 one can improve the separation theorem. There
holds the theorem of Schoenflies (for a topological proof see [141]):

Let J C R? be a Jordan curve. Then there exists a homeomorphism f: R> —
R2 which maps J onto the standard circle.

There exists a stronger result. By the Riemann mapping theorem there exists
a holomorphic isomorphism from the interior of J onto the interior of S!; and
one can show that this isomorphism can be extended to a homeomorphism of the
closures. Seee.g., [149].

For n > 3itis in general not true that the interior of an embedding §”~! — R”
is homeomorphic to an n-cell. One can construct an embedding D3 — R3 such
that the complement is not simply connected. Under some regularity conditions on
the embedding the situation still resembles the standard embedding. There holds
the theorem of M. Brown [32] (see also [25, p. 236]):

Let f: 8" x[=1,1] = S" be an embedding (n > 1). Then the closure of
each component of S" ~ f(S§"~! x 0) is homeomorphic to D".

From the duality theorem (18.3.3) one can conclude that both components of
S ~ § have for an arbitrary embedding the integral singular homology groups of
a point.

(10.3.6) Theorem. Let A C R” be homeomorphic to DX k <n. Then R* ~ A is
path connected (n > 1).

Proof. D¥ is compact, hence A is compact too. Therefore A is closed in R”
and the assertion follows from (10.3.3), since D* obviously has a path connected
complement. O

(10.3.7) Theorem (Invariance of Domain). Let U C R” be open and f: U — R"
an injective continuous map. Then f(U) is openin R", and f maps U homeomor-
phically onto f(U).



252 Chapter 10. Homology

Let V. C R"™ be homeomorphic to an open subset of U C R". Then V is open
in R™.

Proof. 1t suffices to show that f(U) is open. It then follows that f is open.

Let D = {x e R" | ||x —a| <6} C U, and let S be the boundary of D.
It suffices to show that f(D°) is open. We consider the case n > 2 and leave
the case n = 1 as exercise. The set S as well as T = f(S) are homeomorphic
to S"~!. Suppose Uy, U, are the (open) components of R” ~ 7. Let U; be
unbounded. By (10.3.6), R” ~ f(D) is path connected, and therefore contained in
Uy or U,. Since f(D) is compact, the complement is unbounded. This implies
TuU; =R*"~U, C f(D) and then U; C f(D°). Since D° is connected, so
is f(D°). The inclusion f(D°) C U; U U, shows that f(D°) C U;. Therefore
f(D°®) = Uy, and this set is open.

The second statement follows from the first, since by hypothesis there exists an
injective continuous map f: U — R” with image V. O

(10.3.8) Theorem (Invariance of Dimension). Let U C R™ and V' C R”" be non-
empty homeomorphic open subsets. Then m = n.

Proof. Let m < n. Then, by (10.3.7), U € R™ C R” is open in R”, which is
impossible. 0

10.4 Reduced Homology Groups

The coefficient groups of a homology theory are important data of the theory but
they contain no information about spaces. We therefore split off these groups from
the homology groups /1, (X).

Let X be a non-empty space and 7 : X — P the unique map to a point. We set

hn(X) = kernel (s : hn(X) — hn(P))

and call this group a reduced homology group. The homomorphism 7, ( /) for a
continuous map f: X — Y restricts to i, (f): hpy(X) — h,(Y). In this way 4,
becomes a homotopy invariant functor TOP — R-MOD. Let (X, *) be a pointed
space and i : P = {x} C X be the inclusion of the base point. Then we have a
short exact sequence

0= hn(P) <5 hn(X) 25 hy(X, P) — 0

with a splitting r of ix. Thus j, induces isomorphisms hp(X) = hy(X, P) =
Coker(ix). By(11.1.1) we also have an isomorphism

ha(X) = hn(X) @ ix(hn(P)) = hn(X)  hy
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which is natural for pointed maps (but not, in general, for arbitrary maps), and the
canonical diagram

h~n(X) —— hy(X) —— Coker i

|

hn(X, P)

IR
1R

is commutative.

(10.4.1) Proposition. Let A be non-empty. The image of the boundary operator
0: hy(X, A) = hy—1(A) is containedin h,,—1 (A). The images of h,, (X)) and hy, (X)
in hy, (X, A) coincide. The homology sequence for the reduced groups

oo > i (A) = hp(X) = hp(X, A) = hy_1(A) — -+
s exact.

Proof. Map the exact sequence of (X, A) into the exact sequence of (P, P) and
perform diagram chasing. The exactness is also a special case of (11.3.2). O

From (10.4.1) we see: If A is contractible, then /2, (A) = 0 and ﬁn (X) —
hy (X, A) is an isomorphism. If X is contractible, then 9: 1, (X, A) — h,—1(A) is
an isomorphism.

10.4.2 Triple sequence. Let (X, A, x) be a pointed pair. The reduced homology
sequence of (X, A) is canonically isomorphic to the homology sequence of the
triple (X, A, *). Hence the latter is exact.

Let CB denote the cone over B. The homology sequence of a triple (X, 4, B)
is, via excision, isomorphic to the sequence of (X U CB, A U CB, CB), and the
latter, via h-equivalence isomorphic to the sequence of (X UCB, AU CB, *). This
proves the exactness of the triple sequence. <&

Under the hypothesis of (10.2.3) or (10.2.4) we have for an additive homology
theory an isomorphism €P; h«(X;) = h«(\/; X;). For a finite number of sum-
mands we do not need the additivity axiom. We call \/; X; decomposable with

respect to /1, if the canonical map D, hn (X i) — hin( \/; X;) is an isomorphism.

(10.4.3) Proposition. Suppose X Vv Y is decomposable with respect to hy, hy+1.
Then the homology sequence of (X x Y, X V' Y) yields a split short exact sequence

0> ha(XVY) > hy(X XY) > hy(X XY, X VY) = 0.

Proof. The projections onto the factors induce hn(X XY) = hp(X) @ hp(Y), and
together with the assumed decomposition isomorphism we obtain a left inverse to
the morphism /2, (X VY) = h,(X xY). O
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Let (C, u) be a monoid in h-TOP, i.e., u: C — C Vv C is a pointed map such
that the composition with the inclusions of the summands is pointed homotopic to
the identity. Then we have the p-sum in each homotopy set [C, Y]°, defined by
[f1+ [g]l = [8(f V g)u] with the folding map § = (id,id): ¥ VY — Y. Letus
write h = h,,.

(10.4.4) Proposition. Assume that C Vv C is decomposable with respect to hy,. Then
the morphism

w: [C,Y]° - Hom(h(C),h(Y)), [fl+ fe
is a homomorphism.

Proof. Consider the commutative diagram

h(C) —" v e)y—L pyvy)— )

d (I)F (2)T a

h(C) & h(C) 25 h(v) @ h(Y)

with the diagonal d and the addition a(y, z) = y + z. By our assumption about C,
the isomorphism (1) is induced by the projections onto the summands, and by our
assumption about ju, the left triangle commutes. The morphism (2) and the inverse
of (1) are induced by the injection of the summands; this shows that the rectangle
and the right triangle commute. Now observe that a( f« D g«)d = f« + g«. O

The hypothesis of (10.4.4) holds for the suspension C = X X of a well-pointed
space X. We thus obtain in particular a homomorphism

w: 7, (X) — Hom(f1,(S™), hn (X))
for each pointed space X .

(10.4.5) Proposition. Leti: A C X beacofibrationandlet p: (X, A) — (X/A, %)
be the map which identifies A to a base point x. Then ps«: hy (X, A) — h,(X/A, %)
is an isomorphism. We can write this isomorphism also in the form q : h, (X, A) =
hn(X/A).

Proof. Let X UCA = (CA + X)/(a,1) ~ i(a) be the mapping cone of i. The
inclusion j: (X, A) — (X U CA, CA) induces an isomorphism in homology:
Excise the cone point A x 0 and apply a homotopy equivalence. For a cofibration
we have an h-equivalence p: XUCA - X UCA/CA = X/A. Hence g« = p«j«
is the composition of two isomorphisms. O
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The isomorphism ¢ also holds for A = @. In this case X/A4 = X + {*} and p
is the inclusion (X, @) — (X, {*}). We use ¢ to modify the exact sequence (10.4.1)
in the case of a cofibration A C X

coo = i (A) = h(X) = hp(X/A) = hyo1(A) — -+

(10.4.6) Proposition. Let j: A C X be a cofibration and attach X to B via
f: A— B. Then the map h,(X, A) — h,(X Uq B, B) induced by the inclusion
is an isomorphism.

Proof. We apply (10.4.5) to the homeomorphism X/A4 — X Uy B/B. O

(10.4.7) Proposition. Let f: X — Y be a pointed map between well-pointed
spaces and X i) Y i) C(f) the beginning of the cofibre sequence. Then the

sequence };n (X) L> ﬁn (Y) A> ﬁn (C(f)) s exact.

Proof. Let Z(f) = (X xI +7Y)/(x,1) ~ f(x) be the (unpointed) mapping
cylinder of f and X C Z(f), x — (x,0) the canonical inclusion, a cofibration.
Consider the commuting diagram

Iy (X) — hu(Z(f)) —— hn(Z(f). X)

L

() —L— () 2L 20/ X)

with the canonical inclusion c¢(f): Y C Z(f)/X. The top row is the exact se-
quence of the pair. The isomorphisms hold by homotopy invariance and (10.4.5).
Now we use that for a well-pointed pair the quotient map Z(f)/X — C(f)isa
homotopy equivalence, since a unit interval which is embedded as a cofibration is
identified to a point. O

For a well-pointed space X the inclusion X x df U {*} x I C X x [ is
a cofibration. The quotient is the suspension ¥ X. From (10.4.5) we obtain an
isomorphism

q: hn((X, %) x (1,01)) = hpy(SX, %) = hy(SX)
and a suspension isomorphism & : hp(X) 2 hyt1 (SX) which makes the diagram
ha(X, %) —Z— hy 1 ((X, %) x (1,01))
hn(X) = hns1(£X)

commutative. In particular, we obtain /i, 2 iy, (1°/91°) 2 hyyyn (1" /3IM).
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Problems

1. Let f;: S” — S” be a map of degree ¢, and denote by M(q,n) its mapping cone.
Determine the groups and homomorphisms in the sequence (9.6.1) for the space M(q, n).
2. Let M(q,1) = M(q). Use the cofibre sequence of idx A f; in order to derive an exact
sequence

0= hn(X) ® Z/q — hpt1(X A M(q)) — Tor(hp—1(X),Z/q) — 0.

This suggests defining for any homology theory hy a theory with coefficients Z/q by
h+«(— A M(q)). Unfortunately the homotopy situation is more complicated than one would
expect (or wish), see [8]. Spaces of the type M (g, n) are sometimes called Moore spaces.

10.5 The Degree

In 10.2.5 we determined the homology groups of spheres from the axioms of a
homology theory /.. We describe yet another variant.

We use the standard subspaces D", $"~!, E" = D" ~ §"~! of R” and D’} =
{(X1,....Xns1) € S™ | £x,41 > 0}. The space D® = {D} is a singleton and
S~ =9.

We define a suspension isomorphism o as the composition

0t Iy (S"7Y) e hi (D2, S™1) L hie(S™, DIL) eZ— g (S™).

The maps j and 9 are isomorphisms, since D’} is contractible, and s+ is an iso-
morphism (compare (6.4.4)). Iteration of o4 yields (suspension) isomorphisms

0 by 2= h—n(S%) = hi(S™). hie(S™) = g @ hn.
The first isomorphism is determined by
han = him(S) C hin(S®) = b (+1) @ hn (1) = hm @ b, X = (¥, —x).

We also have an isomorphism 9: g (D", S"™1) o hy_1 (S" 1, €) = hy_y (S™ V).
In the case of ordinary homology H.(—; G) with coefficients in G we obtain:

G, k=n>0,n>k=0,
H. (S":G)={GdG, k=n=0,
0, otherwise.

Moreover H, (D", 8" ':G) = H,(R",R" ~0;G) = G.

A generator of H,(D",S"!;7Z) = Z is called a homological orientation of
D"; and a generator of H,(S"), n > 1 a homological orientation of S”. Given
an orientation z € H,(S") and a continuous map f: S” — S”, we define the
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(homological ) degree d(f) € Z of f by fx(z) = d(f)z. A different choice
of a generator does not effect the degree. We also define the degree for n = 0:
The identity has degree +1, the antipodal map the degree —1 and a constant map
the degree 0. From the definition we see directly some properties of the degree:
d(fog)=4d(f)d(g),d(id) = 1; a homotopy equivalence has degree +1; a null
homotopic map has degree zero.

(10.5.1) Proposition. Let h« be a homology theory such that ho(Point) = Z. Then
w: [S", 8" — Hom(h, (S"), hn(S™)), f — fu is an isomorphism (n > 1).

Proof. The suspension isomorphism and the hypothesis yield /2, (S") = Z. Thus
the Hom-group is canonically isomorphic to Z. We now use that 7, (S") =
[S™,S8"] =~ Z. The identity of S” is mapped to 1. By (10.4.4), @ is a homo-
morphism, hence necessarily an isomorphism. O

We have already defined a (homotopical) degree. From (10.5.1) we see that
the homotopical and the homological degree coincide. If one starts algebraic
topology with (singular) homology, then one has in any case the important homo-
topy invariant “degree”. Proposition (10.5.4) is notimmediate from the homological
definition.

(10.5.2) Proposition. Define an isomorphism o—_: R (s — Iy (S™) as in
the case of o, but with the roles of D'} interchanged. Then 04 = —o_.

Proof. Consider the commutative diagram

hx(S", DY) n hi(S", D)
% -
St | = hie (8™, S"1) = |s—
i iy
he (D™, S"1) 3 he (D™, S™1)
$~ —5
hie—1(S"71)
and apply the Hexagon Lemma (11.1.3). O

(10.5.3) Proposition. Let A € O(n + 1) and [4: S — S, x > Ax. Then [
is on hy (S™) the multiplication by det(A). The antipodal map x — —x on S™ has
the degree (—1)" 1.
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Proof. Lett: S" — S" change the sign of the first coordinate. Then t,04+ = o_.
Hence ¢« = —id, by (10.5.2). The group O(n + 1) has two path components.
If A and B are contained in the same component, then /4 and /2 are homotopic.
Representatives of the components are the unit matrix E and the diagonal matrix
T = Diag(—1,1,...,1). The relations /7 = ¢ and /£ = id now finish the proof.

O

(10.5.4) Proposition. Let f: S" — S" be a map of degree d. Then [ induces on
hi (S™) the multiplication by d.

Proof. The cases d = 1,0 are clear and d = —1 follows from (10.5.3). The
general case is then a consequence of (10.4.4) and our knowledge of 7, (S"). O

(10.5.5) Proposition. Let A € GL,(R) and [4: R* — R", x > Ax. Then I2 is
on hi(R", R™ ~ 0) the multiplication by the sign e(A) = det(A)/|det(A)| of the
determinant.

Proof. We have isomorphisms /i (R”, R” ~ 0) _a) h~k_1([R” ~0) ~ ﬁk_l(S"_l)
which are compatible with the action of /2 if A € O(n). In this case the claim
follows from (10.5.3). In the general case we use that GL,,(R) has two path com-
ponents which are characterized by the sign of the determinant. O

Let S™(a) = {x € R**! | |x—al| = r}. We have a canonical homeomorphism
hra: S® — S"(a), x = rx +aandrp: R*™' < b — S" x > N(x —b). The
winding number of f: S"(a) — R"*! < b about b is defined as the degree of
rpo fohrg.

10.5.6 Local degree. Let K C S” be compact and different from S” and let
U be an open neighbourhood of K. Then we have an excision isomorphism
H,(U, U~ K) = H,(S",S8" ~ K). For a continuous map f: S" — S" we
let K = f~!(p). Consider the diagram

Ho(S") — L H,(s7)
L o

H,(S§",8" ~K) —— H,(S",8" ~ p)

= -

Hy(U,U ~ K) -2 H,(S",5" ~ p)

with the restriction fU of f. The exact sequence of the pair (S”, " ~ p) shows
that (1) is an isomorphism (n > 1). Let z € H,(S") be a generator and z (U, K)
its image in H,(U,U ~ K). Commutativity of the diagram shows fVzy x =
d(f)zsn p. Hence the degree only depends on the restriction fU. For any compact
set L with f(L) = {p} and open neighbourhood W of L we define the (partial)
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degree d(f. L) by fY z(W,L) = d(f. L)z(S", p); it is independent of the choice
of W.

(10.5.7) Lemma. Suppose U = Uy U U, is the disjoint union of open sets U;. Set
K; = U; N K. The inclusions induce the additivity isomorphism

(il,iz)I H,,(U], U] ~ K]) © Hn(Uz, U2 ~ Kz) — Hn(U, U~ K)
Then the relation z(U, K) = i1z(Uy, K1) + i2z(U,, K3) holds.
Proof. Consider the diagram with M = S":

Hy(M)
Hy (M, M ~ K) Hy (M, M ~ K»)
Hy(U,U ~ K) 2 Hy(Up, Uy ~ K3)
J1 ai
H,(U,U ~ K3).

There exist x1, xp such that z(U, K) = i;x; + i»x2. We compute
J12(U, K) = z(U, K3) = a1z(Uz, K3) = jiizx2 = aixs.
This proves x, = z(Us, K>3). O

As a consequence of this lemma we obtain the additivity of the degree d( f) =
d(f, K1) + d(f. K>). Suppose K is a finite set, then we can choose U as a
disjoint union of open sets Uy,x € K such that Uy N K = {x}. In that case
Dex Hn(Ux,Ux ~x) = H,(U,U ~ K); and H,(Ux, Uy ~ x) = Z, by exci-
sion and H, (D", S"1) =~ Z. We call the integer d(f, x) defined by fuzy, » =
d(f,x)zsn,p the local degree of f at p. With this notation we therefore have

d(f) = Xrex d(f. %). <

Let U C R” be an open neighbourhood of the origin. Then we have an excision
isomorphism /5 (U, U ~0) = hi (R", R” ~0). Suppose g: U — R" is a map with
the properties: (1) Continuously differentiable (a C !-map); (2) g~ (0) = {0}; (3)
the differential Dg(0) is invertible. Under these conditions we show:

(10.5.8) Proposition. The induced map
he(R™, R ~ 0) 2 hy (U, U ~ 0) =5 (R, R" ~ 0)

is multiplication by the sign of the determinant of the differential D g(0).
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Proof. There exist continuous maps /; : U — R" with g(x) = Y, x;h;(x) and
Dg0)(x1,...,xp) = > i—y xih;(0). We define a homotopy /;: (U, U ~ 0) —
(R™, R" ~ 0) from g to Dg(0)

n t_lg(t-x)» r> 07
he(x) = Y7, xihi(tx) =
t(x) Zl—l X ( X) Dg(()), P 0.

Now we use (10.5.5). O

(10.5.9) Example. Let /: S” — S” be continuously differentiable and p a regular
value of £, i.e., the differential of f in each point x € f~1(p) is bijective. Then
d(f,x) = =£1, and the plus-sign holds, if the differential respects the orientation
at x. For the proof express f in terms of orientation preserving local charts and
apply (10.5.8). <

If S is homeomorphic to S” and f a self map of S we choose a homeomorphism
h: S™ — S and define the degree of f as the degree of A~ fh. Let g: R* — R”
be a proper map. We define its degree as the degree of the extension of g to the
one-point compactification.

Amap f: 8" xS" - S", n > 1, has a bi-degree (a,b) € Z x Z where a is
the degree of x — f(x, y) for a fixed y and b the degree of y — f(x, y) for a
fixed x.

Problems

1. If f: S — S’ is not surjective, then f is null homotopic and hence d(f) = 0.

2. Suppose f(x) # —x foreachx € S, thenh(x,t) = tf(x)+(1—1t)x # Oforz € [0, 1].
We compose with N : x — x/| x| and obtain in F(x,t) = Nh(x,t) a homotopy from the
identity to f. If always f(x) # x, then G(x,t) = N(—tx + (1 —¢) f(x)) is a homotopy
from f to the antipodal map. Thus if d(f) # %1, there exists x such that f(x) = x or
f(x) = —x.

3. A permutation A of (¢g,...,1;) induces an affine homeomorphism of (A”,dA™). The
induced homomorphism in iz (A", dA™) is the multiplication with the sign of the permuta-
tion A. The same holds for the linear permutation map /, induced by A on the vector space
N ={(to,....tn) | 3_; t; = 0} and hg (N, N ~ 0). One can compute the determinant of /),
by using the decomposition R”T! = N @ D with the diagonal D = {(¢,...,t) | t € R}.
4. The map S* — S%, (y,1) > (ty,2t2—1), y € R\, ¢ € R has degree 1 + (1) +1.
The point (0, ...,0, 1) is a regular value.

5. Consider a complex polynomial as self-map of the Riemann sphere CP! =~ S2. Then
the homological degree is the algebraic degree of the polynomial. A quotient f = p/q of
two complex polynomials (without common divisor) p of degree m and ¢ of degree n can be
considered as a self-map of CP!. Show that the homological degree is @ = max(m, n). In
homogeneous coordinates f can be written as [z, w] — [w? p(z/w), w?q(z/w)]. Suppose
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¢ € Cissuchthat z +— p(z) — cq(z) has a pairwise different zeros. Then [c, 1] is a regular
value of f.

6. Consider S3 as the topological group of quaternions of norm 1. Determine the degree of
s>k kez.

7. The map S” x S — S™, (x,£) — & — 2(x, £)x has bi-degree (1 + (—1)*~!,=1). If
& =(1,0,...,0) = eo, then —eq is a regular value of x — ep — 2{eq, x )x. (Here (—, —)
is the standard inner product.)

8. Leta,b, p,g € Nwithap —bg = 1. Then f: C2 — C2, (x,y) — (x?7%,x? + y9)
is proper and has degree 1. The point (1, 0) is a regular value.

10.6 The Theorem of Borsuk and Ulam

We describe another classical result which uses the homotopy notion in the presence
of a symmetry. As a rather striking application to a problem in combinatorics we
present the proof of Greene [74] for the determination of the chromatic number of
the Kneser graphs.

We have the antipodal symmetry x — —x on the Euclidean spaces. A map
f: A — B which is equivariant with respect to this symmetry, i.e., which satisfies
f(=x) = — f(x), is called antipodal or odd; here A and B are subsets of Euclidean
spaces that are invariant with respect to the antipodal symmetry. The additional
presence of the symmetry has remarkable consequences: Classical theorems known
under the name of Borsuk—Ulam theorems and Lusternik—Schnirelmann theorems.
The basic result has a number of equivalent formulations.

(10.6.1) Theorem. The following assertions are equivalent:

(1) Let f: 8™ — R" be continuous. Then there exists x € S™ such that f(x) =
S (=x).

(2) Let f: 8™ — R" be antipodal. Then there exists x € S™ suchthat f(x) = 0.

(3) There does not exist an antipodal map f: S™ — S"~1.

(4) There does not exist a continuous map f: D" — S™~! which restricts to an
antipodal map on the boundary.

(5) An antipodal map S"~' — S™~ is not null homotopic.

(6) Suppose S* = Fy U F, U --- U Fy,1 with non-empty closed sets F;. Then
at least one of the sets F; contains an antipodal pair of points.

(7) Let S" = A1 U A, U --- U A, and assume that each A; is either open or
closed. Then at least one of the Aj contains an antipodal pair.

Proof. (1) = (2). By (1) there exists x with f(x) = f(—x). Since f is antipodal,
f(x) = —f(x) and hence f(x) = 0.

(2) = (3). The existence of an antipodal map contradicts (2).

(3) = (4). Let D} = {(xo....,xn) € S" | £x, > 0}. The projection
h: D — D" onto the first n — 1 coordinates is a homeomorphism which is the
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identity on the boundary. Suppose f: D" — S~ is antipodal on the boundary.
Define g: " — S ! by

) fh(x), x € DY,

g(x) = M
—fh(—x), xeD".

If x e S"71 = D} N D", then h(x) = x, h(—x) = —x and fh(x) = f(x) =

— f(=x) = — fh(—x). Hence g is well-defined and continuous. One verifies that

g is antipodal.

(4) © (5). If an antipodal map S”~! — S”~! were null homotopic, then we
could extend this map to D", contradicting (4). Conversely, if a map of type (4)
would exist, then the restriction to S”~! would contradict (5).

(1) = (6). We consider the function

f:8" > R", x> (dx, Fy),....d(x, Fy))

defined with the Euclidean distance d. By (1), there exists x such that f(x) =
f(=x) = y. If the i-th component of y is zero, then d(x, F;) = d(—x, F;) =0
and therefore x, —x € F; since F; is closed. If all coordinates of y are non-zero,
then x and —x are not contained in U?=1 F;, so they are contained in Fj,4 .

(6) = (3). There exists a closed covering Fi, ..., F,+1 of S"7! such that
no F; contains an antipodal pair, e.g., project the standard simplex onto the sphere
and take the images of the faces. Suppose f: S” — S"~! is antipodal. Then the
covering by the f~!(F;) contradicts (6).

(3) = (2). If f(x) # 0 for all x, then x — || £(x)||”! f(x) is an antipodal
map §" — S"71,

(2) = (1). Given f: S®™ — R". Then g(x) = f(x) — f(—x) is antipodal;
g(x) = 0 implies f(x) = f(—x).

(6) = (7). Suppose for the moment that the A; are open. Then we can find
a closed shrinking and apply (6). In the general case let Ay, ..., A; be closed and
Uit+1,...,Uyq1 open. Suppose there are no antipodal pairs in the U;. Thicken
the A; to open e-neighbourhoods Us(A;). Let ¢ = n~!. By the case of an open
covering we find an antipodal pair (x,,—x,) in some Ug(A;). By passing to a
subsequence we find ani < j and

lim d(x,, A;) = lim d(—x,, A;) = 0.
n—>oo n—>oo
A convergent subsequence yields an antipodal pair in A4;.
(7) = (3). As in the case (6) = (3). O

Since the identity is antipodal, we see that (10.6.1) implies the retraction theo-
rem, see (6.6.1). Part (1) shows that R” does not contain a subset homeomorphic
to S™.
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(10.6.2) Lemma. Let F: S" — S" be an odd map. Then F is homotopic as odd
map to a map g such that g(S') C S* for0 <i <n.

Proof. Let p: S — RP" be the quotient map and f: RP" — RP" be induced
by F on the orbit space. Choose a homotopy f; from f = f; to a cellular map,
ie., fi(RP") C RP! for 0 <i < n. Lift the homotopy f; p = h; to a homotopy
H;: §" — S" with initial condition f. Then H, is an odd map and H; = g has
the desired property. O

We obtain a proof of (10.6.1) from
(10.6.3) Theorem. An odd map has odd degree.

Proof. The proof is by induction on the dimension of the sphere. Let f: S" — S”
be an odd map. By (10.6.2) we can deform f as odd map into a map g such that
g(8""1) ¢ §"~!. The induction is now a consequence of (10.6.4). O

(10.6.4) Proposition. Let f : S™ — S™ be an odd map such that f(S"~') c "~ 1.
Then we have the degree D( f) of f and the degree d( ') of its restriction to S"~ .
These degrees have the same parity.

Proof. We study the diagram in the proof of (10.5.2) more closely for singular
homology with coefficients in Z. We fix a generator z € H,_1(S""!) and define
other generators by

0+z4+ =2z, S+Z+ =W+, [1v4 = w4,

We set ixz+ = u4. The Sum Lemma tells us that u 4 is a Z-basis of the group
H,(S", 5" 1). Let T: S — S™ be the antipodal map. Suppose given f: S" —
S™ such that f(S""!) ¢ $”7'and Tf = fT. Then we have two degrees D(f)
and d( f') defined by

fey) = D(fHvg,  fulz) = d(f)z.

Since u 4 is a Z-basis we can write fix(44+) = auy + bu_. Using this notation,
we show

d(f)=a+b, D(f)=a—b.

Hence d( f) and D(f) are congruent modulo 2. From f.z = fiduy = dfsuy =
d(au 4+ +bu_) = (a+b)z we obtain the first assertion d( /) = a +b. Naturality of
the boundary operator 0_Tx = T4+ and Tz = (—1)"z imply Txz4+ = (—1)"z_
and Twuy+ = (—1)"u—_. We conclude

feu— = (D" fiTsuy = (=1)" Ty fiug
= (—=)'"Tx(auy + bu_) = au_ + bu.
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The exactness of (7, d) shows that the image of 7 is generated by vy — u_, hence
n(v+) = e(ug —u—_) with ¢ = +1. The computation

Jrut =sqiozy =1y = januy = gjp (g —u-) = gjyuy

shows ¢ = 1. The computation

D(f)(u4 —uq) = D(f)nvy = nfevy = fanvg
= feluy —u_) =(@—b)(uy —u-)

finally yields the second assertion D(f) = a — b. O

(10.6.5) Example. The map f: S! — S, z — z2k*1 satisfies the hypothesis of
(10.6.4). We know already that D(f) =2k + 1 and d(f) = 1,hencea =k + 1
and b = —k. Let d+ denote the singular 1-simplex represented by the path from 1
to —1 and d_ the 1-simplex running from —1 to 1 (both counter-clockwise). Then
d4+ 4+ d_isacycle and vy = [d4+ + d_] is a natural choice of a generator. Then
d_ represents ¥4, w4, and z4; and z = [1] — [—1]. By considering the simplex
fd_, the relation fyuq = [fd_] = (k + 1)[d-] + k[d+] becomes apparent. For
k = 1 say, fd_ runs counter-clockwise from —1to 1 to —1 to 1.

Let f: S! — S! be any self-map which commutes with the antipodal map.
We can multiply f by a constant such that the new map g satisfies g(1) = 1. From
(10.6.4) we see that g and hence f has odd degree, since g has degree 1 on S°. &

We now apply the Borsuk—Ulam theorem to a problem in combinatorics: The
determination of the chromatic number of the so-called Kneser graphs.

We begin by explaining the problem. Let [z] = {1,...,n} and denote by Ni
the set of subsets of [n] with k elements.

A graph consists of a set E of vertices and a set K of edges. Each edge has
two boundary points, and they are identified with one or two points in E. (In other
terms: A graph is a 1-dimensional CW-complex.) The Kneser graph KG, j has
E = Njg. Vertices F1, I, are connected by an edge if they represent disjoint subsets
of [n].

Let € = [k], and call the elements of € colours. A k-colouring of a graph
(E,K)isamap f: E — € such that f(e;) # f(ez) whenever e; and e, are
connected by an edge. The chromatic number of a graph (E, K) is the smallest
k such that there exists a k-colouring. The following result was conjectured by
Martin Kneser (1955) [105]. This conjecture was proved by Lovasz [114] with
topological methods. The following ingenious proof was given by Greene [74].

(10.6.6) Theorem. Let k > 0 and n < 2k — 1. Then KG, y has the chromatic
number n — 2k + 2.

Proof. An explicit construction shows that the chromatic number is at most
n—2k +2. We associate to a set F' with k elements the colour ¢ (F) = min(min(F’),
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n — 2k + 2). Suppose ¢(F) = ¢(F') =i < n — 2k + 2. Then these sets are not
disjoint, since they contain the element i. If their colour is n — 2k + 2, then they
are contained in {n — 2k + 2, ..., n}, and then they cannot be disjoint.

Now we come to the topological part. Let d = 2n — 2k + 1. Choose a set
X C S with n elements and such that no hyperplane (through the origin) contains
more than d points of X. We consider the subsets of X with cardinality k as
the vertices of the Kneser graph KG,, . Suppose there exists a colouring with
d = n — 2k + 1 elements and we choose one. Let

A ={x eS| H(x) = {y|(x.y) > 0} contains a k-tuple in X with colour i}

and Agyq = §4 < (A, U---U Ag). The sets Ay, ..., Ag are open and Ay is
closed. By (10.6.1), one of the sets A; contains an antipodal pair x, —x.

If i < d, then we have two disjoint k-tuples with colour i, one in H(x) the
other one in H(—x). This contradicts the definition of a colouring.

Leti = d + 1. Then, by definition of Ay, ..., Ay, the half-space H(x) contains
at most k — 1 points of X, and similarly for H(—x). The set S¢ ~ (H (x) U H(—x))
is contained in a hyperplane and contains at leastn —2(k — 1) = d + 1 points, and
this contradicts the choice of X. O

Problems

1. Let n be odd. Then £id: S” — S™ are homotopic as odd maps.

2. Let f,g: 8" — S be odd maps with the same degree. Then they are homotopic as odd
maps.

3. Let do,d,...,d, be a family of odd integers with dg = 41. There exists an odd map
f: 8" — S§" such that £(S') C S* and the map S’ — S’ induced by f has degree d;.

10.7 Mayer-Vietoris Sequences

We derive further exact sequences for homology from the axioms, the so-called
Mayer—Vietoris sequences.

Let 1, be ahomology theory. Let (X; A, B) be atriad,i.e., A, B C X = AUB.
The triad (X; A, B) is said to be excisive for the homology theory if the inclusion
induces an (excision) isomorphism /4(A, A N B) = h.(X, B). The condition is
actually symmetric in A and B. We write AB = AN B.

(10.7.1) Proposition. The following are equivalent:
(1) (AU B; A, B) is excisive.
(2) (AU B; B, A) is excisive.
(3) t: he(A,AB) @ h« (B, AB) — h«(A U B, AB) is an isomorphism.
@) w: he (AU B, AB) - h«(AU B, A) & h«(A U B, B) is an isomorphism.
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Proof. Apply the Sum Lemma (11.1.2) to the diagram
h«(A,AN B) h«(AU B, B)

T

he(AU B, AN B)

/

he(B, AN B) he(AU B, A).

/7

The morphisms are induced by the inclusions. O

The boundary operator A of an excisive triad is defined by

=~ d
A:hy(X) > hy(X,B) «<— hy,(A,AB) — h,—1(AB).
This operator is part of the Mayer—Vietoris sequence (= MVS) of the triad.

(10.7.2) Theorem. Let (AU B; A, B) be an excisive triad and C C AB. Then the
sequence

2B ) 4, C) @ (B, C) 5 (AU B, C)

A 1
—>h,,_1(AB)Q>---

is exact. The inclusions i“: AB C A and i®: AB C B yield the first map
X (—ifx,ifx); and the inclusions j4: A C AUB and jB: B C AU B yield
the second map (a,b) — jAa + jBb. If C = {x} is a point, we obtain the MVS
for reduced homology groups.

There exists anotherrelative MVS. Let (AUB; A, B) beexcisiveand AUB C X.
We define a boundary operator A by
9
A:hy(X,AUB) — hy_1(AUB,A) = hy_1(B,AB) = h,—1(X, AB).
(10.7.3) Theorem. The sequence

e A (X AB) Y b (X, A) @ (X, B) -2 (X, AU B)

A (X, AB) -

is exact. The maps (1) and (2) are defined as in (10.7.2).
Proof. The homology sequences of the triples of (B, AN B, C) and (X, A4, C) yield
a commutative diagram (a “ladder”)

o —hy(AB,C) — hy(A,C) — hy (A, AB) — hy—1(AB,C) — -+

! ! ! l

oo —hy(B,C) — hy(X,C) — hy(X,B) —> hy—1(B,C) — - .
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We apply (10.7.4) to this diagram and obtain (10.7.2). There exists a similar diagram
which compares the sequences of the triples (X, A, AB) and (X, A U B, B), and
(10.7.4) yields now (10.7.3). O

(10.7.4) Lemma. Suppose the following diagram of abelian groups and homomor-
phisms is commutative and has exact rows.

i i hi
g Al' 7 Bl' il Cl' Ai—l —> e
lai lb,— lci lai—l
1 i h;
s A B 5 ¢ A

i i i i—1

Assume moreover that the c; are isomorphisms. Then the sequence

(bi,f]) B! hic; gl

1

---eAiMBi@A;.

is exact ([17, p. 433]). O

We use abbreviations of the type I x X = 1X,d] x X =3dIX,0x X =0X.
We associate to a triad (X; A, B) the subspace N = N(A,B) =04UIABU 1B
of I x X. Let p: N(A, B) — X be the projection onto the second factor.

(10.7.5) Proposition. The following are equivalent:
(1) The triad (X; A, B) is excisive.
(2) px: he(N(A, B)) = h«(X) is an isomorphism.

Proof. We have isomorphisms
h«(A,AB) @ hy«(B,AB) = h«(0A 4+ 1B,04AB + 1AB) = h«(N, IAB),

by additivity, excision and h-equivalence. It transforms p. into the map ¢ of item
(3)in (10.7.1). Hence (1) and (2) are equivalent. O

The excision axiom says that the triad is excisive if X = A°U B°. The auxiliary
space N(A, B) allows us to transfer the problem into homotopy theory: A triad is
excisive for each homology theory, if p: N — X is an h-equivalence. Recall from
Section 3.3:

(10.7.6) Proposition. Suppose the covering A, B of X is numerable. Then p is an
h-equivalence. <

We now give a second proof of the MVS; it uses the homotopy axiom but not
lemma (10.7.4). Let (X; A, B) be a triad. Via excision and h-invariance we see that
the inclusion induces an isomorphism

hu((1,d1) x AB) = hy(N,0x AU 1 x B).
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We rewrite the exact sequence of the pair (N, 0x AU 1 x B). Using the suspension
isomorphism and the additivity, we obtain an exact sequence

coo = hp(A) B hy(B) = hy(N) — hy_1(AB) — -+~ .

If the triad is excisive, we can use (10.7.5) and replace h«(N) by h«(X). Itis an
exercise to compare the boundary operators of the two constructions of the MVS.

There exists a more general MVS for pairs of spaces. It comprises the previously
discussed cases.

(10.7.7) Theorem. Let (A; Ag, A1) C (X; Xo, X1) be two excisive triads. Set
Xo1 = Xo N X1, Ag1 = Ao N Ay. Then there exists an exact Mayer—Vietoris
sequence of the form

oo = hp(Xo1, Ao1) = hn(Xo, Ao) © hn(X1, A1) = hp(X, A) — --- .

Proof. Let N(X, A) = 0XoU I Ag; U1X;. The sequence in question arises from a
rewriting of the exact sequence of the triple (N(X), N(X, A), N(A)). We consider
three typical terms.

(1) px: h(N(X), N(A)) = h.(X, A), by (10.7.5) and the hypotheses.

(2) The inclusions (X;, A;) = {j} x (X;,4;) = (N(X, A), N(A)) induce an
isomorphism

hs«(Xo, Ao) @ hx(X1, A1) = he(N(X, A), N(4)).

For the proof one excises [1/3,2/3] x Ao and then uses an h-equivalence and
additivity.

(3) The group h«(N(X), N(X, A)) is isomorphic to /(I Xo1, 01 Xo1 U Ag1)
via inclusion, and the latter via suspension isomorphic to /4—1 (X1, Ao1). For the
proof one replaces N(X, A) by the thickened space

0Xo U [0,1/4]Xo1 U TAg1 U [3/4]Xo1 U 1X.

Then one can excise 0X( and 1X; and use suitable h-equivalences.
It remains to identify the morphisms in the resulting sequence. The map
hy(N(X,A), N(A)) > h,(N(X), N(A)) becomes

(72, i1y ha(Xo, Ao) ® hn (X1, A1) — hn(X, A).

The map 0: hy+1(N(X), N(X, A)) = h,(N(X, A), N(A) becomes, with our def-
inition of the suspension isomorphism,

(—i2,i0): hy(Xo1, Ao1) = hn(Xo, Ao) ® hn(X1, Ar).

The boundary operator A of the generalized MV-sequence becomes, in the special
cases X = X9 = X1 = Xp1and A = Ay = A1 = Ag1 C Xo1, the same as in the
previously discussed algebraic derivation of the MV-sequences. O
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(10.7.8) Example. Leti',i2: S* — S" x S", x > (x, yo), resp. x — (xo, ).
Then (i}, i2): H,(S™) & H,(S") — H,(S™ x S™) is an isomorphism (n > 1)
with inverse (prl, pr2). We fix a generator z € H,(S™) and write z; = i{z. Then
(z1,22) is a Z-basis of H,(S" x §™). Leta = (a1,a2): " x §" — §" x §”
be a map with bi-degree (a, b) of «; and bi-degree (¢, d) of az. Then ax(z1) =
azy + czp and ax(z3) = bz + dz;.

Construct a space, a (2n + 1)-manifold, X by identifying in D"*! x S +
D"+l x S™ the point (x,y) € S™ x S” in the first summand with a(x, y) in the
second summand via a homeomorphism o = («1, @) of §” x S” as above. The
two summands are embedded as X; and X, into X. We use the MV-sequence of
(X; X1, X3) to determine the integral homology of X . Let us consider a portion of
this sequence

Hn(S" x S") -1 H,(D"! x §") @ H, (D"t x ") — Hy,(X).

We use the Z-basis (z1, z5) as above. The inclusion S” — D"T1 x S" x > (0, x)
give us as image of z the generators u 1, U5 in the summands H,(D"*!x S™). The
image of the basis elements under j is seen to be j(z1) = cuz, j(z2) = u1 + dus
(we do not use the minus sign for the second summand). We conclude for ¢ # 0
that H, (X) is the cyclic group of order |c|; the other homology groups of X are in
this case Ho(X) = Z = Hyp41(X) and H;(X) = O0for j # 0,n,2n 4+ 1. We
leave the case ¢ = 0 to the reader. &

Problems

1. Let R” be the union of two open sets U and V.

(1) If U and V are path connected, then U N V is path connected.

(ii) Suppose two of the sets wo(U), mo(V), mo(U N V') are finite, then the third set is
also finite and the relation

lmo(U N V)| = (Imo(U)| + |mo(V)]) + [mo(U U V)| =0

holds.

(iii) Suppose x, y € U N V can be connected by a path in U and in V. Then they can
be connected by apathin U N V.

Can you prove these assertions without the use of homology directly from the definition
of path components?
2. Letthereal projective plane P be presented as the union of a Mobius band M and adisk D,
glued together along the common boundary S'. Determine the groups and homomorphisms
in the MV-sequence of (P; M, D). Do the same for the Klein bottle (K; M, M). (Singular
homology with arbitrary coefficients.)
3. Let (X1,..., Xn) be an open covering of X and (Y1, ...,Y,) be an open covering of Y.
Let f: X — Y be amap such that f(X;) C Y;. Suppose that the restriction (), c 4 Xa —
Naca Ya of f induces a homology isomorphism for each @ # A C {1,...,n}. Then f



270 Chapter 10. Homology

induces a homology isomorphism.

4. Suppose AB C A and AB C B are closed cofibrations. Then p: N(4, B) > AU B is
an h-equivalence.

5. The boundary operators in (10.7.2) and (10.7.3) which result when we interchange the
roles of A and B differ from the original ones by —1. (Apply the Hexagon Lemma to the
two boundary operators.)

6. Thetriad (X x 0/ UAXT; X xOU A X I, X x1U A x I) is always excisive. (Excision
of X x0U A x [0, 1/2[ and h-equivalence.)

7. Verify the assertions about the morphisms in the sequence (10.7.7).

10.8 Colimits

The additivity axiom for a homology theory expresses a certain compatibility of
homology and colimits (namely sums). We show that this axiom has consequences
for other colimits.

f! 12 f3
Let (X., fo) be a sequence X; X5 X3 --- of continuous

maps f/. Recall that a colimit (a direct limit) of this sequence consists of a space
X and continuous maps j¥: X; — X with the following universal property:

(D) jk+1fk — jk-
(2) Ifa*: X; — Y isafamily of maps such that a**! ¥ = g then there exists

aunique map a: X — Y such that aj* = k.

(This definition can be used in any category.) Let us write
colim(X,, fo) = colim(Xy)

for the colimit. In the case that the f kix,cx k-1 are inclusions, we can take as
colimit the union X = (J; X; together with the colimit topology: U C X open if
and only if U N X, open in X, for each n.

Colimits are in general not suitable for the purpose of homotopy theory, one has
to weaken the universal property “up to homotopy”. We will construct a so-called
homotopy colimit. Colimits of sequences allow a special and simpler treatment than
general colimits. A model of a homotopy colimit in the case of sequences is the
telescope. We identify in [ [; X; x[i,7 + 1] the point (x;,i + 1) with (7 (x;),i +1)
for x; € X;. Denote the result by

T = T(Xe, fo) = hocolim(X., fo).

We have injections jX: X; — T, x +— (x, k) and ahomotopy «*: j&+1 fk ~ jk
a linear homotopy in Xy x [k, k 4 1]. Thus the telescope T consists of the mapping
cylinders of the maps f' glued together. The data define the homotopy colimit of
the sequence.
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Given maps a¥: X; — Y and homotopies ¥ : X; x [k.k + 1] — Y from
a1 £k to a¥. Then there exists amap a: T — Y such that j*¥a = ¥, and the
composition of the canonical map Xy x [k, k + 1] — T with a is h¥.

We have subspaces T C T, the image of ]_[f:ll Xi x[i,i + 1] + Xp x {k}.
The canonical inclusion ¥ : X — T} is a homotopy equivalence (compare the
analogous situation for a mapping cylinder).

In homology we have the equality j& = j¥+1 fk: (X)) = hy(Xiq1) —
h,(T). By the universal property of the colimit of groups we therefore obtain a
homomorphism

t: colimhy, (Xg) = hy(T(Xe, fo)).

(10.8.1) Theorem. In an additive homology theory ( is an isomorphism.

Proof. We recall an algebraic construction of the colimit A, LI Aj L2 of

abelian groups. Consider

Dis1 Ak = Dis1 Ak (k) B (X1 — ar(xg))-

The cokernel is the colimit, together with the canonical maps (inclusion of the j -th
summand composed with the projection) A; — @, Ax — colimAy. We therefore
need a computation of /4, (T') which has this form. We cover T by the subspaces

A=T~Ujs  X2i x{2i + 3}, B =T~ X2i-1 x {20 — 3}
(10.8.2) Lemma. The inclusions

I X2i x{2i} > A, ] Xai-1x{2i—=1} > B, []Xix{i}—=ANB

i>1 i>1 i>1
are h-equivalences, and (A, B) is a numerable covering of T. O

Because of this lemma we have a Mayer—Vietoris sequence

hn(AN B) ————— hu(A) & hy(B) ———————— ha(T)

. .

P hn(Xj) —— D=0 hn (X)) & D) =1(2) tn (X))
The map « has the form

a(x2i) = (x2i, [ (x2:)) and  a(x2i41) = (F2 T (x2i41), X2i41)

for xj € hn(X;). We see that « is injective; therefore we can obtain h,(T) as
cokernel of a. The automorphism (x;) — ((—1)"x;) transforms « into the map
which was used in the algebraic definition of the colimit. O
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For applications we have to find conditions under which the homotopy colimit
is h-equivalent to the colimit. We consider the case that the f kX - X k41 are
inclusions, and denote the colimit by X = | J,, Xx. We change the definition of the
telescope slightly and consider it now as the subspace

T =g Xk x[k,k+1] C X x[0,00].

The topology of T may be different, but the proof of (10.8.1) works equally well
in this case. The projection onto the first factor yields p: T — X.

(10.8.3) Example. Let A: X — [1, oo[ be a function such that
s=(d,A): X - X x[1,o0]

has an image in 7. Then s: X — T is a section of p. The composition sp is
homotopic to the identity by the homotopy ((x,u),t) — (x, (1 —t)u + tA(x)).
This is a homotopy over X, hence p is shrinkable. The property required by A
amounts to A(x) <i = x € X;_; foreachi.

Let (U; | i € N) be a numerable covering of X with locally finite numeration
(;) (see the chapter on partitions of unity). Set X = | J*_, U;and A = Y2, it;.
Then A(x) < i implies x € X;_;. <

(10.8.4) Proposition. Suppose the inclusions Xy C Xy41 are cofibrations. Then
T C X x [1, o[ is a deformation retract.

Proof. Since X C X is a cofibration, there exists by (5.1.3) a homotopy
h&: X x [1,00[— X x [1,00[ rel Y = Xj x [1,00[UX x [k + 1, 00]

from the identity to a retraction X x [0, c0[— Yx. The retraction R; acts as
the identity on X x [1,00[ for [ > k, and therefore the infinite composition
R/ =..-0Rj;130R;;10R; is a well-defined continuous map. From i/ we obtain
a homotopy R/ ~ R/*1 relative to Y;. We can concatenate these homotopies and
obtain a homotopy from the retraction R! to the identity relative to 7. O

Problems

1. Let T be a subring. Find a system of homomorphisms Z — Z — --- such that the
colimitis 7.

2. LetS™ — §™ — S — ... be a sequence of maps where each map has degree two. Let
X be the homotopy colimit. Show that 7, (X) = Z[1/2], the ring of rational numbers with
denominators a power of two. What system of maps between S” would yield a homotopy
colimit Y such that 7, (Y) = Q?

3. Let X be a CW-complex and T the telescope of the skeleton filtration. Then the inclusion
T C X x [1,00[ induces isomorphisms of homotopy groups and is therefore a homotopy
equivalence. One can also apply (10.8.4) in this case.



10.9. Suspension 273
10.9 Suspension

Recall the homological suspension isomorphism 10.2.5. We use abbreviations of
the type I x A = [A, dl x A = 0[A, 0 x X = 0A. We set k,(A4,B) =
hy((1,01) x (A, B)). The k.«(—) are the data for a new homology theory. The
boundary operator of this homology theory is defined for a triple (4, B, C) by

= il =~
0: hyt1(IA,0IAU IB) — h,(0IAU B,0IAU IC) <— h,(IB,dIBUIC).
In order to work with this definition we use

(10.9.1) Lemma. For each triple (A, B, C) the triad (0IA U IB; IB,0IA U IC)
is excisive.

Proof. The inclusion induces an isomorphism

hu(d1A, DIB) — hu(dIAU IC,dIB U IC),

excise % x C and use a homotopy equivalence. If we use this also for B = C we
conclude that 2, (0/AUIC,0IBUIC) — h, (0] AU IB, IB) is an isomorphism.

O

The exact sequence of the triple (/A,3d/A U IB,dlA) is transformed with
the isomorphism k,(B) = h,(IB,dIB) =~ h,(IB U dlA,dlA) into the exact
sequence of (A, B) for the k-groups. Let U C B C Aand U C B°. The excision
isomorphism for the k.-theory claims that

hy(IA~U), I(B~U)UJI(A~U)) — hn(IA, 1B U3l A)

is an isomorphism. This is a consequence of /U = IU C (IB U dIA)° and the
usual excision isomorphism. The isomorphisms 0 4-5): 1, (A4, B) — kn+1(A, B)
defined in (10.2.5) form a natural transformation. The next proposition says that
they are natural transformations of homology theories of degree 1.

(10.9.2) Proposition. For each triple (A, B, C) the diagram

hni1(A, B) —"— h,(B.C)

lo(A,B) J_U(B,C)

Kns2(A, B) —2 knuy1(B, C)

is commutative.
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Proof. By naturality it suffices to consider the case C = @. The Hexagon Lemma
shows o = —f for the maps

a: hpy1(IA, IB UJIA) — h,(IB U JIA,dIA)
~ h,(IBUOA,04 U 1B) — h,_1(0A U 1B,04),

B: hpy1(IA, IB UJIA) — hy(IBUJIA, IB UOA)
~ hu(d14,04 U 1B) — hy_1(0A U 1B,04),

and the center group A, (/B U 0l A, 1B U0A). Let j be the isomorphism

j: hne1(1B UO0A,04) <— hp_1(1B) = hp_1(B).
By diagram chasing one verifies 0® jo = 9 and jBo4-B) = §. O
(10.9.3) Lemma. Let (A, B, C) be a triple. Then we have an isomorphism
(t1,00,t): hp(A, BY®hy(A, BY®h,(IB,0IBUIC) — h,(0lAUIB,0IBUIC).
Here ( is induced by the inclusion, and t, by a — (v, a).
Proof. This is a consequence of (10.9.1) and (10.7.1). O
(10.9.4) Proposition. For each triple (A, B, C) the diagram

o(A.B)

ha(A, B) hns1(IA,d1A U IB)

I ,3 K

hn(A.B) & hy((A. B) & hy(IB.0IB U IC) —— hy(} AU IB,dIB U IC)

is commutative; here a(x) = (x, —x, —o‘B-C)dx), and the isomorphism B is taken
Sfrom (10.9.3).

Proof. The assertion about the third component of « follows from (10.9.2). The
other components require a little diagram chasing. For the verification it is helpful
to use the inverse isomorphism of 8 given by the procedure of (10.7.1). The minus
sign in the second component is due to the fact that the suspension isomorphism
changes the sign if we interchange the roles of 0, 1, see 10.2.5. O



Chapter 11
Homological Algebra

In this chapter we collect a number of algebraic definitions and results which are
used in homology theory. Reading of this chapter is absolutely essential, but it
only serves practical purposes and is not really designed for independent study.
“Homological Algebra” is also the name of a mathematical field — and the reader
may wish to look into the appropriate textbooks.

The main topics are diagrams and exact sequences, chain complexes, derived
functors, universal coefficients and Kiinneth theorems. We point out that one can
imitate a lot of homotopy theory in the realm of chain complexes. It may be helpful
to compare this somewhat simpler theory with the geometric homotopy theory.

11.1 Diagrams

Let R be a commutative ring and denote by R-MOD the category of left R-
modules and R-linear maps. (The category ABEL of abelian groups can be iden-
tified with Z-MOD.) Recall that a sequence of R-modules and R-linear maps

aj41 a; . .
- — Aj N Aj — A;j_y — --- is exact at A; if Im(a;4+1) = Ker(a;) and

exact if it is exact at each A;. The language of exact sequences is a convenient way
to talk about a variety of algebraic situations.

(Ho—> A 2, Bexact & a injective. (We also use A >> B for an injective
homomorphism.)

b
(2) B — C — 0 exact & b surjective. (We also use B — C for a surjective
homomorphism.)

b
B3)0—> 4 2B C - 0exact < ais injective, b is surjective, b induces
an isomorphism of the cokernel of @ with C.
1 2 3
(4) Let A (—3 B (—3 C (—3 D be exact. Then the following are equivalent:
(1) surjective <& (2) zero <& (3) injective.

An exact sequence of the form (3) is called a short exact sequence. It sometimes
happens that in a longer exact sequence every third morphism has the property (1)
(or (2), (3)). Then the sequence can be decomposed into short exact sequences.
Note that the exact homotopy sequences and the exact homology sequences have
“period” 3.

A family (M; | j € J) of modules has a direct sum EB]-E 7 M;, the sum

in the category R-MOD, and a product [ ] jes Mj, the product in the category
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R-MOD. The underlying set of the product is the Cartesian product of the under-
lying sets, consisting of all families (x; € M; | j € J); the R-module structure
is given by pointwise addition and scalar multiplication. The canonical projection
pe: I] ; Mj — M onto the k-th factor is part of the categorical product struc-
ture. The sum €P; M; is a submodule of the product and consists of all families
(x;) where all but a finite number of x; are zero. We have the canonical injection
ix: My — D; M;,definedby pyix = idand pxi; = Ofork # 1. If f;: Mj — N
is a family of R-linear maps, then

(fi): DM; —> N

denotes the morphism determined by ( f;) o ix = fx. If g;: L — M; is a family
of R-linear maps, then

(gj): L — Hj M;

denotes the morphism determined by py o (g;) = g«.

Let (A; | j € J) be a family of submodules of M. Then ) ; A;j denotes the
submodule generated by U i Aj. We say that M is the internal direct sum of the A4;
if the map

D4 —>M (1)) a;

is an isomorphism. In that case we also write M = (P, 4;. A submodule 4 C M
is called a direct summand of M if there exists a complement of 4, i.e., a submodule
B such that M is the internal direct sum of A and B.

We assume known the structure theory of finitely generated abelian groups. An
element of finite order in an abelian group A is called a torsion element. The torsion
elements form a subgroup, the torsion subgroup 7°(A4). The torsion subgroup of
A/ T (A) is trivial. If the group is finitely generated, then the torsion subgroup has
a complement F, and F is a free abelian group. The cardinality of a basis of F is
called the rank of A. A finitely generated torsion group is the direct sum of cyclic
groups of prime power order Z/(p¥), and the number of factors isomorphic to
Z/(p¥) is uniquely determined by the group. A similar structure theory exists for
finitely generated modules over principal ideal domains.

A linear map p: M — M with the property p o p = p is called a projection
operator on M.

(11.1.1) Splitting Lemma. Let 0 — E —/> F —%> G — 0 be a short exact
sequence of modules. Then the following assertions are equivalent:

(1) The image of f is a direct summand of F.
(2) There exists a homomorphismr: F — E such that r f = id.
(3) There exists a homomorphism s: G — F such that gs = id.

If (1)=(3) holds, we say the sequence splits. We then call r and s splittings, r a
retraction of f, s a section of g. In case (2) fr is a projection operator, hence we
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have F = Im(fr) ® Ker(fr) = Im(f) & Ker(r). In case (3) sg is a projection
operator, hence we have F = Im(sg) @ Ker(sg) = Im(s) & Ker(g). O

(11.1.2) Sum Lemma. Suppose given a commutative diagram in R- MOD:

B B,

/\

Assume jrip = 0 fork =1,2.
(1) If the ay are isomorphisms and (io, j,) is exact, then

(il,iz)i A1 ® Ay > C and (jz,j1): C — B, @ B

are isomorphisms and (i1, j1) is exact.

(2) If (i1, i) is an isomorphism and (i3, j») is short exact, then a, is an isomor-
phism (j1,ay are not needed). If (ja2, j1) is an isomorphism and (i1, j1) is short
exact, then ay is an isomorphism (i, a, are not needed).

Proof. (1) The hypothesis implies (ja, j1) o (i1,i2) = a; ® a>. We show that
(i1,i2) is surjective. Given ¢ € C we have ja(c —i1ay!j2(c)) = 0, by commuta-
tivity. Hence there exists by exactness x € A, such thatc —ijay!j2(c) = i2(x2),
i.e., ¢ is contained in the image of (i1, ).

Let ji1(c) = Oand writec = i1 x1+i2X2. Then0 = ji(c) = jii1x1+j1i2Xx2 =
J1ia2x2 = az(x3), hence x, = 0 and ¢ € Im(iy).

(2) Exercise. O

(11.1.3) Hexagon Lemma. Given a commutative diagram of abelian groups.

Gy Jo G,

Go
Suppose that k1, ko are isomorphisms, (i1, j2) exact, (i, j1) exact, and joig = O.
Then ]’llkl_lll = —]’lzkz_llz.
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Proof. The part i, j, k satisfies the hypothesis of the Sum Lemma (11.1.2). Given
x € Gy there exist x; € G, such that iopx = i1x1 + i2x2. We compute

0 = joiox = joi1X1 + joi2X2 = h1x1 + hax2,

hx = jiiox = jii1x + jii2x = jiiix = kixy,

hence x; = kl_lllx and similarly x, = kz_llzx. O

(11.1.4) Five Lemma. Given a commutative diagram of groups and homomor-
phisms with exact rows:

(1) a surjective, b, d injective = c injective. (Here the E-part of the diagram is
not needed.)

(2) b, d surjective, e injective = c surjective. (Here the A-part of the diagram
is not needed.)

(3) a surjective, b, d bijective, e injective = c¢ bijective.

Proof. For another proof see (11.2.7). We give here a direct proof by the “method”
called diagram chasing. One refers to diagram chasing whenever the proof (chasing
elements through the diagram) does not really require a mathematical idea, only
careful patience.

(1) Let c(w) = 0. Then y’c(w) = dy(w) = 0, and injectivity of d shows
y(w) = 0. By exactness, 8(v) = w for some v. Since 'b(v) = cf(v) = 0, we
have o’(u’) = b(v) for some u’, by exactness, and a(u) = u’ by surjectivity of
a. By injectivity of » and commutativity we see «(1#) = v and hence by exactness
w = B(v) =0.

(2) Given w’ € C’. Choose x such that d(x) = y’(¢/). By exactness,
commutativity, and injectivity of e, we see §(x) = 0 and hence y(w) = x for
some w. By commutativity, c(w) and w’ have the same image under y’. Hence
w’' = c(w)-B'(v') forsome v'. Thenc(w-B(v)) = c(w)-cB(v) = c(w)-B'b(v) =
c(w) - B’'(v') = w', ie., w is contained in the image of c.

(3) A consequence of (1) and (2). O
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Problems

1. Let p be a projection operator on M. Then 1 — p is a projection operator. The equalities
Im(1 — p) = Ker(p) and Ker(1 — p) = Im(p) hold. Moreover M = Im(p) & Im(1 — p).
The submodule A of M is a direct summand if and only if there exists a projection operator
with image A.
2. Let(A; | j € J) be a finite family of modules. Suppose given linear maps i kidp - A
and p’: A — A; suchthat p¥i% = idand p¥i! = Ofork # I (we write pXi’ = §¥ in this
case). Then (px) o (iK) =idand (i%)o (pi) = 2 i’ p/ is a projection operator. Hence
the following are equivalent: (1) (i¥ ) is an isomorphism. (2) (p¥) is an isomorphism. (3)
> il p/ =id.
3. Let p be a prime number. Determine the number of subgroups of Z/(p*) & Z/(p*).
4. Consider the group Z/(6) @ Z. Determine the subgroups of index 2, 3,4, 5, 6. Determine
the number of complements of the torsion subgroup.
5. Let A be a finitely generated abelian group. Then 4 ® z Q is a Q-vector space. Show
that its dimension is the rank of A.
6. Let M;, j € J be submodules of M. The following assertions are equivalent:

(1) >_; M is the direct sum of the M.

(2) Foreachi € J,M; N} ; i .; M; = {0}.

(3) Suppose ) _; x; =0, x; € M;, almostall x; = 0, then x; = 0 foreach j € J.

11.2 Exact Sequences

We start with a commutative diagram of modules.

A—sp-—"Lsc
L, b, )
PO L
It yields two derived diagrams (Ke = kernel, Ko = cokernel, Im = Image).

b

Ke (@) —— Ke(p) Ke(y)

ol

Ke(d'a) —2— Ke(B) —2— Ke(y) N Im(b)
Ko@) —% 3 Ko(B) —2— Ko(y)
l@) T= T(4)

A a’ B’ b’ C’

Im(a) + Ke(a’) Im(B) Im(yb)
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The morphisms named a, b, a’, b’ are induced by the original morphisms with the
same name by applying them to representatives. (1) and (2) are inclusions, (3) and
(4) are quotients.

(11.2.1) Proposition. Let (a,b) and (a’, b’) be exact. Then aconnecting morphism

A/

5: Ke(y) NIm(b) — m

is defined by the correspondence (a')~'BbL.

Proof. For z € Ke(y) N Im(b) there exists y € B such that b(y) = z; since z €
Ke(y) and yb = b’ we have B(y) € Ke(d’); since Ke(h') C Im(a’), there exists
x" € A’ such that a’(x") = B(y). We set §(z) = x" and show that this assignment
is well-defined. If y € B, b(y) = z, then b(y — J) = 0; since Ke(b) C Im(a),
there exists x € A such that a(x) = y — j. We have B(y) — B(J) = ad’a(x),
because of @'a = Ba, and with @’ (X’) = B(J) we obtain a’(x’ — ¥’ — a(x)) = 0,
ie., x’ = X’ mod Im(x) + Ke(a') . O

We add further hypotheses to the original diagram and list the consequences
for the derived diagrams. We leave the verification of (11.2.2), (11.2.3), (11.2.4),
(11.2.5) to the reader.

11.2.2 If 4’ is injective, then (1) and (3) are bijective. If b is surjective, then (2)
and (4) are bijective. <o

11.2.3 Let (a’, b’) be exact. Then

A s B vy
Im(@) + Ke(@)  Im(B)  Im(yb)

is exact. If, moreover, b is surjective, then (4) is bijective and therefore
Ko(@) -2 Ko(8) - Ko(y)
is exact. If b’ is surjective, then the derived b’ is surjective too. <
11.2.4 Let (a, b) be exact. Then
Ke(d'a) — Ke(B) 2, Ke(y) N Im(b)
is exact. If, moreover, a’ is injective, then (1) is bijective and therefore

Ke(a) = Ke(8) 2> Ke(y)
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is exact. If a is injective, then the derived a is injective too. <

11.2.5 Let (a,b) and (a’, b’) be exact. Then, as we have seen, § is defined. Under
these assumptions the bottom lines of the derived diagrams together with § yield
an exact sequence. (See the special case (11.2.6).) &

(11.2.6) Kernel-Cokernel Lemma. Ifin the original diagram a' is injective and b
surjective, then (1), (2), (3), and (4) are bijective and the kernel-cokernel-sequence

Ke(ar) - Ke(B) —2> Ke(y) — Ko(@) - Ko(B) —2> Ko(y)

is exact.

Proof. We show the exactness at places involving §; the other cases have already
been dealt with. The relations 65 = 0 and a’§ = 0 hold by construction.
If the class of x’ is contained in the kernel of a’, then there exists y such that
a’(x")y = B(y). Hence z = b(y) € Ke(y) by commutativity, and §(z) = x’.
Suppose z € Ke(y) is contained in the kernel of §. Then there exists y such
that z = b(y), B(y) = d’(x’) and B(z) = a(x) € Im(«). Then b(y —a(x)) = z
and B(y —a(x)) = B(y) — Ba(x) = B(y) —d'a(x) = B(y) —a'(x’) = 0. Hence

y —a(x) is a pre-image of z. O

We now relate the Kernel-Cokernel Lemma to the Five Lemma (11.2.7); see also
(11.1.4). Given a commutative five-term diagram of modules and homomorphisms
with exact rows.

A—2sp-Ltocrp- Sk
N U N (N |
oy o Xy P

We have three derived diagrams.

0——Ke@®) — D25 E A—%% B — Ko@) —0
i o e ool e
0——Ke(®) — D' 25 E, A B Ko@) — 0,
B y

0 Ko() C Ke(§) — 0

o, e, o

0 — Ko(e) 2= ¢/ 5 Ke(§') — 0.
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The rows of the first two diagrams are exact for trivial reasons. The exactness of the
rows of the original diagram implies that the third diagram has exact rows. From
the considerations so far we obtain the exact sequences

Ke(e) N Im(8) — Ko(d) — Ko(d),

Ke(b) — Ke(b) — A'/(Im(a) + Ke(')),
0 — Ke(b) — Ke(c) — Ke(cZ) — Ko(b~) — Ko(c) — Ko(d) — 0.
This yields:
(11.2.7) Five Lemma. Given a five-term diagram as above. Then the following
holds:
(1) Ke(b) = 0,Ke(d) =0 = Ke(c) = 0.
(2) Ko(b) = 0,Ko(d) =0 = Ko(c) = 0.
(3) Ke(b) = 0, 4’/(Im(a) + Ke(e')) =0 = Ke(h) = 0.
(4) Ke(e) NIm(8) = 0,Ko(d) =0 = Ko(d) = 0.
(5) a surjective, b, d injective = c injective. (Here the E-part of the diagram
is not needed.)

(6) b, d surjective, e injective = c surjective. (Here the A-part of the diagram
is not needed.)

(7) a surjective, b, d bijective, e injective = c¢ bijective. O

Problems

1. Given homomorphisms f: A — B and g: B — C between R-modules. Then there is
a natural exact sequence

0 — Ke(f) — Ke(gf) — Ke(g) = Ko(f) — Ko(gf) — Ko(g) — 0.
The connection to the previous considerations: The commutative diagram with exact rows

1.7 (—/.1)

0 A Ao B B 0
lf lngBl lg
.1 —1,
0 B scgp ¢ 0

can be viewed as an exact sequence of chain complexes. Its homology sequence (11.3.2) is
the desired sequence, if we identify the kernel and cokernel of g f & 1 with the corresponding
modules for g f.

Describe the morphisms of the sequence and give also a direct proof.
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11.3 Chain Complexes

The algebraic terminology of chain complexes arose from the definition of ho-
mology groups. Since then it also has become of independent interest in algebra
(homological algebra). The construction of (singular) homology proceeds in two
stages: First one associates to a space a so-called chain complex. Then the chain
complex yields, by algebra, the homology groups. The category of chain complexes
and chain maps has an associated homotopy structure.

We work in this section with the category R- MOD of left modules over some
fixed ring R. A family Ax = (A, | n € Z) of modules A, is called a Z-graded
module. We call A, the component of degree or dimension n. One sometimes
considers the direct sum €D, .7 4n; then the elements in A4, are said to be ho-
mogeneous of degree n. Typical examples are polynomial rings; if k[x, y] is the
polynomial ring in two indeterminates x, y of degree 1 say, then the homogeneous
polynomials of degree n are spanned by x’ y"~ for 0 < i < n, and in this manner
we consider k[x, y] as a graded k-module (actually a graded algebra, as defined
later). One can also consider formal power series; this would correspond to taking
the product [ [, . A, instead of the sum.

Let A« and B be Z-graded modules. A family f,: A, — Bj+x of homomor-
phisms is called a morphism of degree k between the graded modules.

A sequence Co = (Cy,d, | n € Z) of modules C,, and homomorphisms
0y : Cp — Cy_1, called boundary operators or differentials, is said to be a chain
complex, if foreachn € Z the boundary relation d,,_; 09, = 0holds. We associate
to a chain complex C, the modules

Zn =Z,(Ce) =Ker(d,: C;, »> Cy—1),
Bn = Bn(C.) = Im(8n+1: Cn+1 —> Cn),
H, = Hn(Co) = Zn/Bn

We call C,, (Z,, By,) the module of n-chains (n-cycles, n-boundaries) and H,
the n-th homology module of the chain complex. (The boundary relation dd = 0
implies B, C Z,, and therefore H, is defined.) Two n-chains whose difference is
a boundary are said to be homologous. Often, in particular in the case R = Z, we
talk about homology groups.

Let Co = (Cy,cy) and Do = (D, d,) be chain complexes. A chain map
fo: Co — D, is a sequence of homomorphisms f,: C, — D, which satisfy the
commutation rules d, o f, = fy,—1 © ¢y. A chain map induces (by restriction
and passage to the factor groups) homomorphisms of the cycles, boundaries, and
homology groups

Zn(fo): Zn(Co) = Zn(Do).
By(fe): Bu(Co) = By(D.),
fe = Hu(fo): Hy(Co) — Hyp(Do).
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A (short) exact sequence of chain complexes

0 Lot o

. . S g .
consists of chain maps f and g such that 0 — C! - C, =% C/ — 0 is exact

for each n.

We certainly have the induced morphisms H, ( f) and H, (g). Moreover, there
exists a connecting morphism 0,,: H,(C") — H,_1(C’), also called boundary
operator, which is induced by the correspondence f, !, od, o g, .

g
Cn ——C, 37"

dn

Jn—1

zZ7eCl_, 2 Chq

n—1

(11.3.1) Lemma. For a cycle z” € C,' with pre-image z under g, the relation
gn—1dnz = d)gnz = d))z" = 0 and exactness shows that there exists z’ with
dn(z) = fu—1(2’). The assignment z"" + z’ induces a well-defined homomorphism
On: Hy(C") — Hy,—1(C).

Proof. Therelation f,_»d, _,z' = dy_1 fa—1Z' = dyp—1dnz = Oand theinjectivity
of f,—» show that z’ is a cycle. If we choose another pre-image z + f,w’ of z”,
then we have to replace z’ by z’ + d,,w’, so that the homology class of z’ is well-
defined. Finally, if we change z” by a boundary, we can replace z by the addition
of a boundary and hence d,,z does not change. O

(11.3.2) Proposition. The sequence

s Hy(C)) LS Hy () B Hue) 2 Haoi(C) > -
is exact.
Proof. The boundary operator d,,: C,, — C,—; induces a homomorphism
dy: Ky =Cy/By —> Zy—1,

and its kernel and cokernel are H,, and H,—_;. By (11.2.3) and (11.2.4) the rows of
the next diagram are exact.

K;,l Jn Kn &n K;l/ 0

o o [u
Jn—1 &n—1
/ — Zp—1 — Zy

n—1

0o——Z

d
The associated sequence (11.2.6) H, - H, - H,) — H,_, - H,_y — H,_,

is the exact homology sequence. O
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Let f,g: C = (Cy,cp) = D = (Dy,d,) be chain maps. A chain homotopy
s from f to g is a sequence s, : C, = D, 4+ of homomorphisms which satisfy

dpy10Sn +Sp—10Ch = gn — fn

(This definition has two explanations; firstly, one can define “chain homotopy” in
analogy to the topological definition by using the chain complex analogue of the
unit interval; secondly, it codifies the boundary relation of a geometric homotopy.)
We call f and g homotopic or chain homotopic, if there exists a chain homotopy
s from f to g, in symbols s: f =~ g. “Chain homotopic” is an equivalence
relation on the set of chain maps C — D; the datas: f ~ gandt: g >~ h
imply (s, + t,): f ~ h. This relation is also compatible with composition; if
s:f~f':C —>Dandt: g~ g':D — E,then (gy+15:): gf =~ gf’ and
(thfn): gf ~ g'f. Wecall f: C — D a chain equivalence, if there exists a
chain map g: D — C and chain homotopies fg ~ id and gf ~ id.

(11.3.3) Proposition. Chain homotopic maps induce the same morphisms between
the homology groups.

Proof. Letx € Cy, be acycle. The homotopy relation g, (x) — f, (x) = dp+15,(X)
shows that f,(x) and g, (x) are homologous. O

11.4 Cochain complexes

Let Co = (Cy, d,) be a chain complex of R-modules. Let G be another R-module.
We apply the functor Hom g (—, R) to Ce and obtain a chain complex C* = (C”", §")
of R-modules with C" = Homg(C,,, R) and the R-linear map

§": C" = Homg(Cy,, R) = Homg(Cy41, R) = C" 1!

defined by §"(¢) = (=1)"*1¢ 0 3,41 for ¢ € Hom(Cy, R).

For the choice of this sign see 11.7.4. The reader will find different choices of
signs in the literature. Other choices will not effect the cohomology functors. But
there seems to be an agreement that our choice is the best one when it comes to
products.

Now some “co” terminology. A cochain complex C* = (C",6") is a Z-
graded module (C" | n € Z) together with homomorphisms §": C" — C**1,
called coboundary operators or differentials', such that 871" = 0. We set

Z" =Keré", B"=Imé"!, H"=Z2"/B"

and call C", Z", B" the module of n-cochains, n-cocycles, n-coboundaries, and
H" the n-th cohomology module of the cochain complex.

! An important cochain complex arises from the exterior differentiation of differential forms. So one
should not use a “‘co” word here.
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11.5 Natural Chain Maps and Homotopies

Let € be an arbitrary category and CH the category of chain complexes (Cy,, ¢,,) of
abelian groups with C,, = 0 for n < 0 and chain maps. A functor F,: € — CH
consists of a family of functors F,,: € — Z-MOD and natural transformations
d,f: F, — F,_1 suchthat df_lodf = 0. A natural transformation g, : Fyx — G«
between such functors is a family of natural transformations ¢, : F,, — G, such
that d% ¢, = @n—1dF . A natural chain homotopy sx: @x = Vs from @y to ¥ is
a family s, : F,, — G, of natural transformations such that

G F
d) 108y +sp—10d;, =Vn— .

A functor F,: € — Z-MOD is called free if there exists a family ((By,;.bn,;) |
J € J(n)) of objects B, ; of € (called models) and elements b,,,; € Fy, (B, ;) such
that

Fo(f)(bn,j). J €J(n), f € Home(By ;. X)

is for each object X of € a Z-basis of F,,(X). A natural transformation ¢, : F, —
G,, from a free functor F}, into another functor G, is then determined by the values
@n(bn, ;) and the family of these values can be fixed arbitrarily in order to obtain a
natural transformation. We call F free if each F,, is free. We call G acyclic (with
respect to the families of models for F ) if the homology groups H,(G«(Bp,;)) =0
for n > 0 and each model B, ;.

(11.5.1) Theorem. Let Fy be afree and G« be an acyclic functor. For each natural
transformation ¢: Hy o Fy — Hy o Gy there exists a natural transformation
¢« : Fx — Gy which induces ¢. Any two natural transformations ¢ and  with
this property are naturally chain homotopic ([57]).

Proof. We specify a natural transformation ¢ by the condition that ¢(by, ;) rep-
resents the homology class @[bg ;]. Let now ¢;: F; — G; be natural transfor-
mations (0 < i < n) such that dl-G(pl- = (pi_ldl-F for 0 < i < n. Consider the
elements gon_ldfbn,j € Gp_1(By,;). For n = 1 this element represents 0 in
Hy, by the construction of ¢g. For n > 1 we see from the induction hypothesis
that df_lfpn_ldfbn’j = @n_zdf_lanbn,j = 0. Since G4 is acyclic we find
gn.j € Gn(By ;) suchthat dSg, i = @u—1df b, ;. We specify a natural trans-
formation ¢ by the conditions ¢(b,,;) = gx,;. This transformation then satisfies
dC¢n = gn_1dF . This finishes the induction step.

Let now ¢ and ¥ be given. Then o(bo,;) — @o(bo,;) = dco,; for some
co,j» since Yo(bo,;) and @o(bo, ;) represent the same homology class. We define
the transformation so: Fo — G by the condition s¢(bg ;) = co,;. Suppose now
that s, : F,, = Gy are given such that dg_lsl- —I—si_ldiF =vY;—gpfor0<i<n
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(and s—; = 0). We compute with the induction hypothesis
dnG(l//n —@n — Sn—ldyf)
= Wn—ldf - (Pn—ldf - (wn—ldf - Qf’n—ldrfv - Sn—de—l)df = 0.

Thus, by acyclicity, we can choose ¢,,; € Gy41(Bjy,;) such that

d,,G_;.lcn,j = (Vn —¢n _Sn—ldrf)(b":j)'

We now specify a natural transformation s, : Iy, = Gpng1 by 54 (bn,j) = cn,j. It
then has the required property dnGHs,, = Vn —@n —sn—1d}. O

Problems

1. Let Fy < F1 < --- be achain complex of free R-modules F; and Do <— D1 < -+ an
exact sequence of R-modules. A chain map (¢: F; — D; | i € No) induces a homomor-
phism Ho(@«): Ho(Fx) — Ho(D«). Given a homomorphism «: Ho(Fx) — Ho(Do)
there exists up to chain homotopy a unique chain map (¢; ) such that Ho(¢«) = «. This can
be obtained as a special case of (11.5.1).

The reader should now study the notion of a projective module (one definition is: direct
summand of a free module) and then show that a similar result holds if the F; are only
assumed to be projective.

An exact sequence of the form 0 <— A < Py <— P; < --- with projective modules
P; is called a projective resolution of the module A. The result stated at the beginning says
that projective resolutions are unique up to chain equivalence. (Fundamental Lemma of
homological algebra). Each module has a free resolution.

11.6 Chain Equivalences

A chain map which induces an isomorphism of homology groups is under certain
circumstances a chain equivalence. This is one of the results of this section.

The notion of a chain homotopy can be used to develop a homotopy theory of
chain complexes in analogy to the topological homotopy theory.

We have the null complex; the chain groups are zero in each dimension. A
chain complex is called contractible if it is chain equivalent to the null complex, or
equivalently, if the identity is chain homotopic to the null map. A chain complex is
said to be acyclic if its homology groups are zero.

Let f: (K,d®X) — (L, d")beachain map. We construct a new chain complex
Cf, the mapping cone of f,by

(Cfn=Ln®Kno1, d(y,x) = (dEy + fx,—d%x).

This can also be written in matrix form

()= (5 ) ()
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The suspension £K of K is defined by (£K), = K,_; and d*K = —ak.
The canonical injection and projection yield an exact sequence of chain complexes
0> L —- Cf - XK — 0. Associated is an exact sequence (11.3.2), and
the boundary morphism d: H,4+1(XK) — H,(L) equals H,(f), if we use the
canonical identifications Hy,1(XK) =~ H,(K). The next result shows a typical
difference between the topological and the algebraic homotopy theory.

(11.6.1) Theorem. Let Cf be contractible. Then f is a chain equivalence.

Proof. The inclusion ¢: L — Cf, y + (¥,0) is null homotopic, since Cf is
contractible. Let s: ¢ >~ 0 be a null homotopy. We write s(y) = (y(»), g(y)) €
L & K (without notation for the dimensions). The condition ds + sd = ¢ then reads

Oyy + fgy + ydy,—dgy + gdy) = (».0),

ie.,dg = gdand dy + yd = id — fg. Hence g is a chain map, and because of the
y-relation, a right homotopy inverse of f.

The projection xk: Cf — XK is likewise null homotopic. Let ¢: ¥k >~ 0 be a
null homotopy. We write ¢#(y, x) = h(y) + n(x). The equality d¢ + 10 = « then
means

—0hy + hdy — dnx + nox + hfx = x,

hence 0h = hd and dn + nd = hf — id. Therefore /4 is a chain map and a left
homotopy inverse of f. O

(11.6.2) Proposition. Let K be acyclic and suppose that Z,, C K, is always a
direct summand. Then K is contractible.

Proof. We have the exact sequence 0 — Z, — K, _a) B,,_1 — 0, and since
K is acyclic we conclude Z,, = B,. Moreover there exists t,—1: B,—1 — K,
with dt,_1 = id, since Z, is a direct summand of K. We therefore have a direct
decomposition K, = B, ® ty,—1B,—1. We defines: K, — K, +1 by s|B, = t,
and s, |t,—1 Bn—1 = 0. With these definitions one verifies separately on B,, as well
ason t,_1 B,_1 that ds + 50 is the identity, i.e., s is a null homotopy of the identity.

O

(11.6.3) Theorem. Let f: K — L be a chain map between chain complexes which
consist of free modules over a principal ideal domain R. If f induces isomorphisms
fr: He(K) = Hi(L), then f is a chain equivalence.

Proof. The exact homology sequence and the hypothesis imply that C f is acyclic.
A submodule of a free R-module is free. Hence the boundary groups of the complex
Cf are free, and therefore the exact sequence 0 — Z,, — Cf, — B,_1 — Osplits.
Now we apply (11.6.1) and (11.6.2), in order to see that f is a chain equivalence.

O
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In the topological applications we often have to work with large chain complexes.
In some situations it is useful to replace them by smaller chain equivalent complexes.
A graded R-module A = (A,) is said to be of finite type if the modules A4, are
finitely generated R-modules.

(11.6.4) Proposition. Let R be a principal ideal domain. Let C = (Cy) be a chain
complex of free R-modules such that its homology groups are finitely generated.

Then there exists a free chain complex D of finite type which is chain equivalent
to C.

Proof. Let F, be a finitely generated submodule of Z,,(C) which is mapped onto
H,(C) under the quotient map Z,(C) — H,(C), and denote by G,, the kernel
of the epimorphism F,, — H,(C). Define a chain complex D = (D,,d,) by
D, =F,®G,—1and d,(x,y) = (¥,0). Then D is a free chain complex of finite
type and H,(D) = F,/G, =~ H,(C). Since G, is a free submodule of B, (C) we
can choose for each n ahomomorphism ¢, : G, — C, 41 suchthatc,+1¢,(y) =y
for each y € G,. Define ¥,: D, = F,, ® Gy—1 — Cp, (x,y) = X + ¢p—1(p).
One verifies that ¥ = () is a chain map which induces an isomorphism of
homology groups. By (11.6.3), ¥ is a chain equivalence. O

11.7 Linear Algebra of Chain Complexes

We work in the category R- MOD for a commutative ring R.

11.7.1 Graded modules. Let A, = (A,) and B, = (B;) be Z-graded left R-
modules over a commutative ring R. The tensor product Ae & B, is the module
with @, ,—, Ap ®R By as entry in degree n. If f: Ae — A, and g: Be — B,
are morphisms of some degree, then their tensor product f ® g is defined by

(f ®g)a®b) = (-1l f(a) ® g(b).

Here |a| denotes the degree of a. The formula for the tensor product obeys the
(heuristic) “graded signrule”: Whenever entities of degree x and y are interchanged,
then the sign (—1)*” appears. The tensor product of objects and of morphisms is
associative and compatible with composition (in the graded sense)

(f®go(f'®g)= DV ®gg

(signrule). This composition is associative, as it should be. When we use the degree
as upper index (e.g., in cohomology), then the agreement AKX = A_ is sometimes
suitable. <&

11.7.2 Graded algebras. A Z-graded R-algebra A® is a Z-graded R-module
(A" | n € Z) together with a family of R-linear maps

A QrA) > AT, x@yrx-y.
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The algebra is associative, if always x - (y-z) = (x - y) - z holds, and commutative,
if always x - y = (=1)*I?ly . x holds (sign rule). A unit element 1 € A° of the
algebra satisfies 1 - x = x = x - 1. Let M®* = (M") be a Z-graded R-module. A
family
Ai®Mj —>Mi+j, a®x+—>a-x

of R-linear maps is the structure of an A®*-module on M ®, provided the associativity
a-(b-x)=(a-b)-xholds fora,b € Aand x € M. If A has a unit element,
then the module is unital, provided 1 - x = x always holds. Let A® and B*® be Z-
graded algebras. Their tensor product A ® B is the tensor product of the underlying
graded modules (4 ® B)" = D, ;—, A" ® B/ together with the multiplication
(a®b)-(a @b = (=1)?11lgq’ @ bb’ (sign rule). If A and B are associative,
then A ® B is associative. If both have a unit element 1, then 1 ® 1 is a unit element
for the tensor product. If both algebras are commutative, then their tensor product
is commutative. The tensor product of graded algebras is an associative functor. &

11.7.3 Tensor product of chain complexes. Let (4., d4) and (B., dg) be chain
complexes. Then the graded module A¢ ® B. is a chain complex with boundary
operator d = dq ® 1 + 1 ® dp. Here we have to take the sign rule into account,
i.e.,

d(a®b) =dsa ® b+ (-1)"la @ dpb.
One verifies dd = 0, using this sign rule. Passage to homology induces
Hp(Ae) ® Hy(Be) = Hpyg(Ae ® Bo), [a] ® [b] — [a ® b].
The tensor product of chain complexes is associative. <
11.7.4 Dual chain complex. We regard the ground ring R as a trivial chain complex
with R in degree 0 and zero modules otherwise. Let (A4,, d) be a chain complex.
We define the dual graded R-module by A*, = Homg(A4,.R). We require a

boundary operator §: A*, — A*,_, on the dual module such that the evaluation
e: Ay ® Ae > R

gAY, ® 4y > R, ¢ Qar> ¢(a),

& = 0 otherwise, becomes a chain map. This condition, e(¢ ® a) = 0 and 11.7.3
yieldforo ® a € A*, | ® A,

0=de(p®@a)=¢d(p ®a)
=ep ®a+ (—1)’¢ ® da
= (8¢)(a) + (=1)¥lp(0a),

i.e., we have to define §¢ = (—1)1#/*1¢p 0 3. &
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11.7.5 Hom-Complex. For graded modules A, and B, we let Hom(A., B.) be
the module with [],. Hom(A,, Bs+n) as component in degree n. On this Hom-
module we use the boundary operator

d(fi) = @0 fi) = (=1)" fi 0 9)

for (f;: Ai — Bitn) . i.e., the a-component pr,(df) € Hom(Ag,, Bsyn—1) for
f = (fz) € Hom(A., B.), is defined to be

pry(df) =090 fa—(—=1)"ga—100.

One verifies dd = 0. This definition generalizes our convention about the dual
module. <&

11.7.6 Canonical maps. The following canonical maps from linear algebra are
chain maps.
(1) The composition

Hom(B, C) ® Hom(A, B) — Hom(A4, B), (fi) ® (gj) = (fi+|g| © &1)-
(2) The adjunction
®: Hom(A® B,C) — Hom(A4,Hom(B,C)), ®(fi)(x)(¥) = fix|+y/(x®Y).
(3) The tautological map
y: Hom(C,C’') ® Hom(D, D) - Hom(C ® D,C’ ® D’)

with y(f ® 9)(x ® y) = (=16 7 (x) ® g(y) (sign rule).
(4) The trace map A: A* ® B — Hom(A4, B), A(¢ ® b)(a) = (—1)141tly(a)b. ©

Problems

1. Tensor product is compatible with chain homotopy. Let s: f ~ g: C — C’ be a chain
homotopy. Then s ® id: f ®id ~ g ®id: C ® D — C’ ® D is a chain homotopy.

2. A chain complex model of the unit interval is the chain complex /o with two non-zero
groups /1 = R with basis e, Iop = R & R with basis eg, e; and boundary operator d(e) =
e1 — eg (in the topological context: the cellular chain complex of the unit interval). We use
this model to define chain homotopies with the cylinder /o ® C. Note

ChCr®Ch1=Ue®C)py, (x1,X0,y) > e1®@x1 +e0®@xp+e®y.

A chain map h: I¢e ® C — D consists, via these isomorphisms, of homomorphisms
h',: Cy, — Dy and s,: C — Dyy1. The hi are chain maps (1 = 0, 1) and ds, (y) =
hh () = hO(y) —sn—1cy,ie., se: hl ~ hY is a chain homotopy in our previous definition.
3. Imitate the topological definition of the mapping cone and define the mapping cone of a
chainmap f: C — D asaquotient of /¢ ® C @ D. The n-th chain group is then canonically
isomorphic to C,,—1 @ D,, and the resulting boundary operator is the one we defined in the
section on chain equivalences. Consider also the mapping cylinder from this view-point.



292 Chapter 11. Homological Algebra
11.8 The Functors Tor and Ext

Let R be a principal ideal ring. We work in the category R- MOD; this comprises
the category of abelian groups (Z-modules). An exact sequence 0 — F; — Fy —
A — 0 with free modules Fi, Fy is a free resolution of A. Since submodules of
free modules are free, it suffices to require that Fy is free. Let F(A) denote the
free R-module generated by the set A. Denote the basis element of F(A) which
belongs to a € A by [a]. We have a surjective homomorphism p: F(A) — A,
> nglal = Y nga. Let K(A) denote its kernel. The exact sequence

0— K(4) > F(A) B 40

will be called the standard resolution of A. We take the tensor product (over R)
of this sequence with a module G, denote the kernel of i ® 1 by TorR(4,G) =
Tor(A, G) and call it the torsion product of A, G.

We now derive some elementary properties of torsion products. We show that
Tor(A, G) can be determined from any free resolution, and we make Tor(—, —) into
a functor in two variables. In the next lemma we compare free resolutions.

(11.8.1) Lemma. Given a homomorphism f: A — A’ and free resolution ¥ and
F' of A and A, there exists a commutative diagram

i p

0 Fi Fy A 0o 7
Jfl o Jfo Jf
)
! / / lrod
0 Fl i FO P’ A 0 v

(without s). If ( ]71, ]70) is another choice of homomorphisms making the diagram
commutative, then there exists a homomorphism s: Fo — F{ with fo — fo = i’'s

and fi — f{ = si.

Proof. Let (xi) be a basis of Fy. Choose x; € Fg such that p'(x;) = fp(xx).
Define fo by fo(xx) = x;. Then fp = p’fo. Since p’ foi = 0, there exists by
exactness of ¥’ aunique f; suchthat foi =i’ fi. Since p'(fo— fy) = fr—fp =
0, the elements (fo — f)(xx) are contained in the kernel of p’. Hence we have
(fo — f))(xx) = i'(yx) for suitable y;. We define s by s(xx) = yx. From
i'(fi— f{) = foi — fyi = i’si and the injectivity of i’ we conclude f; — f = si.

O

We take the tensor product ® G of the diagram in (11.8.1). The homomorphism
/1 ® 1 induces a homomorphism Ker(i ® 1) — Ker(i’ ® 1) and f; — f] = si
shows that this homomorphism does not depend on the choice of ( f1, fo). Let us
denote this homomorphism by T(f; %, %’). If g: A’ — A" is given and ¥" a
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free resolution of A”, then T (g; ¥/, F" o T(f: ¥, %) = T(gf; ¥ .F"). This
implies that an isomorphism f induces an isomorphism 7'( f; ¥, ). In particular
each free resolution yields a unique isomorphism Ker(i ® 1) == Tor(4; G), if we
compare ¥ with the standard resolution. The standard resolution is functorial in A.
This fact is used to make Tor(—, G) into a functor. It is clear that a homomorphism
G — G’ induces a homomorphisms Tor(A4, G) — Tor(A4, G’). Hence Tor is also
a functor in the variable G (and the two functor structures commute).

If we view 0 —> F; — Fy — 0in (11.8.1) as a chain complex, then ( f1, fo) is
a chain map and s yields a chain homotopy between ( f1, fo) and (f{, fy)-

(11.8.2) Proposition. Elementary properties of torsion groups in the category of
abelian groups are:

(1) Let A be a free abelian group. Then Tor(A,G) = 0.
(2) Tor(Z/n,G) ={ge G |ng =0} CG.
(3) If G is torsion free, then Tor(Z /n,G) = 0.
@) Tor(Z/m,Z/n) = Z/d with d the greatest common divisor of m, n.
(5) Adirect sumdecomposition A = A1 ® A, induces a direct sum decomposition
Tor(A, G) = Tor(A1, G) & Tor(A3, G).
Proof. (1)0 - 0 —> A — A — 0is a free resolution. (2) Use the free resolution

0725757 /n — 0. (3) and (4) are consequences of (2). In order to verify
(5), use the direct sum of free resolutions. O

We can also work with a resolution of the other variable. Let Q1 >> Q¢ — B
be a free resolution and define Tor’ (4, B) = Ker(A ® Q1 — A ® Q).

(11.8.3) Proposition. There exists a canonical isomorphism
Tor(A, B) = Tor'(A, B).

Proof. Let P; — Py — A be a free resolution. From the resolutions of 4 and B
we obtain a commutative diagram:

Tor(A, B)

PI®01 —PiI®0g—— P1®B

Ja lﬁ y

Ph® 01— Py ®Qo——— Py ® B

|

Tor'(A,B) m— A® Q01— A® Qo ——— AR B.
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The Kernel-Cokernel Lemma (11.2.6) yields an isomorphism § of Tor(A, B) =
Ker(y) with the submodule Tor’(A, B) of Coker . O

Interchanging the tensor factors yields an isomorphism Tor(B, A) = Tor’ (A, B).
We combine this with (11.8.3) and see that the isomorphisms (11.8.2) also hold if
we interchange the variables. It is now no longer necessary to use the notation Tor’.

The functor Ext is defined in analogy to the functor Tor, the tensor product is
replaced by the Hom-functor.

Let R be a principal ideal domain and 0 — K(A) 5 F (A) 2 A 0the
standard free resolution of A as above. We apply the functor Hom g (—, B) to this
sequence. The cokernel of i *: Hom(F(A), B) — Hom(K(A), B) is defined to be
ExtR(A, B) = Ext(A4, B). We show that Ext(4, B) can be determined from any
free resolution. We start with a diagram as in (11.8.1) and obtain a well-defined
homomorphism Coker(Hom(i, B)) — Coker(Hom(i’, B)); in particular we obtain
an isomorphism Ext(A, B) =~ Coker(Hom(i, B)).

(11.8.4) Proposition. Elementary properties of Ext in the category of abelian
groups are:

(1) Ext(A, B) = 0 for a free abelian group A.

(2) Ext(Z/n,B) =~ B/nB.

(3) Ext(Z/n,B) =0for B =Q,Q/Z,R.

4) Ext(Z/m,Z/n) = Z/(m,n).

5 EXt(Al @Az,B) = EXt(Al,B) @EXt(Az,B). (]

The foregoing develops what we need in this text. We should at least mention
the general case. Let 0 <~ C < Py <— P; < --- be a projective resolution of the
R-module C and let A be another R-module. We apply Hom(—, 4) to the chain
complex P, and obtain a cochain complex Hom( P, A); its i -th cohomology group
(i > 1) is denoted Ext’s (C, A). Since projective resolutions are unique up to chain
equivalence, the Ext’IR—groups are unique up to isomorphism. For principal ideal
domains only Ext; occurs, since we have resolution of length 1. The notation Ext
has its origin in the notion of extensions of modules. An exact sequence

0—>A—-B,1—>+-+-—>B; —>By—~C—0

is called an n-fold extension of A by C. One can obtain Ext’y (C, A) as certain
congruence classes of n-fold extension of A by C, see [120, Chapter III]. Write
E ~> E’ if there exists a commutative diagram

E: 0—C—B,1—"""—By—4—0

FOTTL

E:0—C —B,_,— " —B),—A4—0.

The congruence relation is generated by ~>.
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Problems

1. Suppose Tor(A, Z/p) = 0 for each prime p. Then the abelian group A is torsion free.
2. The kernel of A - A ® 7z Q, a — a ® 1 is the torsion subgroup of A.
3. Does there exist a non-trivial abelian group A such that A ® F = 0 for each field [?

11.9 Universal Coefficients

We still work in R-MOD for a principal ideal domain R. Let C = (Cy,c,) be
a chain complex of modules. Then C ® G = (C,, ® G, ¢, ® 1) is again a chain
complex.

(11.9.1) Proposition (Universal Coefficients). Let C be a chain complex of free
modules. Then there exists an exact sequence

0> Hy(C)® G —> Hy(C ® G) - Tor(Hy—1(C). G) — 0.

The sequence is natural in C and G and splits. The homomorphism o sends [z2] ® g
for a cycle z to the homology class [z @ g].

Proof. The sequence0 — Z, — C, S B, _1 — Oisexact; B,,_1 is asubmodule
of C,,—; and hence free. Therefore the sequence splits and the induced sequence

0-72,986—->C, G —>B,_19G —0

is again a split exact sequence. We consider the totality of these sequences as an
exact sequence of chain complexes, the Z - and the B-complex have trivial boundary
operator. Associated to this short exact sequence of chain complexes is a long exact
homology sequence of the form
B, G247, 096G — H(C®G)— Bp1 ®G- 257, ®G.

One verifies that the boundary operator (11.3.1) of the homology sequence isi ® 1,
wherei: B, C Z,. Thesequence B, ® G - Z, ® G - H, ® G — 0 is exact,
hence the cokernel of i ® 11is H,(C) ® G, and the resulting map H,(C) ® G —
H,(C ® G)isa. Thekernel of B,_1 ® G - Z,_1 ® G is Tor(H,—1(C), G),
because 0 - B,—1 — Z,—1 — H,_1(C) — 0 is a free resolution. Letr: C,, —
Z, be a splitting of Z,, C C,. Then

Z(C®G) CCr®G 2 7,86 - Hy(C)® G

maps B, (C ® G) to zero and induces p: H,(C®G) - H,(C)® G with pa = id,
i.e., a splitting of the universal coefficient sequence. O
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Let again C = (Cy,,c,) be a chain complex with free R-modules C,,. We
obtain the cochain complex with cochain groups Hom(C,, G) and cohomology
groups H"(C; G).

(11.9.2) Proposition (Universal Coefficients). There exists an exact sequence
0 — Ext(H,—-1(C),G) - H"(C;G) X Hom(H,(C),G) — 0.

The map a sends the cohomology class of the cocycle ¢ : C, — G to the homo-
morphism H,(C) — G, [c] — @(c). The sequence is natural with respect to chain
maps (variable C) and module homomorphisms (variable G). The sequence splits,
and the splitting is natural in G but not in C.

Proof. Again we start with the split exact sequence 0 - Z, - C, — B,—; — 0
and the induced exact sequence

0 <~ Hom(Z,,G) < Hom(C,,,G) < Hom(B,_1,G) < 0.

We consider the totality of these sequences as an exact sequence of cochain com-
plexes, the Z- and the B-complex have trivial coboundary operator. Associated
to this short exact sequence of cochain complexes is a long exact cohomology
sequence of the form

dn
.-+« Hom(B,,,G) «— Hom(Z,,G) < H"(C;G) < Hom(B,—1,G) < ---
which induces a short exact sequence
(4) 0 < Kerd" < H"(C;G) < Cokerd" ™' « 0.

We need:

(11.9.3) Lemma. The formal coboundary operator d" (without the additional sign
introduced earlier!) is the homomorphism induced by i : B,, — Z,.

Proof. Letp: Z,, — G be given. Then d”(¢) is obtained as follows: Extend ¢ to
¢@: C, — G. Apply 6 and find a pre-image of §(¢) = @cy+1 in Hom(By, G). One
verifies that @i is a pre-image. O

From the exact sequence 0 - B, — Z, — H,(C) — 0 we obtain the exact
sequence

Hom(By., G) <— Hom(Z,, G) < Hom(H,(C).G) < .

We use it to identify the Keri* with Hom(H, (C), G). One verifies that « is as
claimed in the statement (11.9.2). From the free presentation and the definition
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of Ext we thus obtain the exact sequence of the theorem. The naturality of this
sequence is a consequence of the construction. It remains to verify the splitting.
We choose a splitting r: C,, — Z, of the inclusion Z,, C C,. Now consider the
diagram

0 —— Z"(Hom(C, G)) —S— Hom(Cy, G) —>— Hom(Cp+1, G)

0 —— Hom(H,(C), G) — Hom(Zy, G) ———s Hom(By, G).

If ¢ € Keri*, then r*(p) = ¢ or € Ker§. The splitting is induced by Keri* —
Z"(Hom(C, G)), ¢ — ¢t. O

Without going into the definition of Ext we see from the discussion:

(11.9.4) Proposition. Suppose H,,—1(C) is a free R-module. Then the homomor-
phismo: H*(C;G) - Hom(H,(C), G) in (11.9.2) is an isomorphism.

Proof. The sequence 0 — B,_y — Z,—1 — H,—1 — 0 splits and therefore the
cokernel of d"*~1 is zero. O

Given a cochain complex C*®* = (C49,§9) we can view it as a chain complex
C. = (Cy4, 99) by a shift of indices: We set C; = C~7 and we define d,: C; —
Cy—1as89: C~7 — C~9"1. We can now rewrite (11.9.1):

(11.9.5) Proposition. Let C* be a cochain complex of free R-modules. Then we
have a split exact sequence

0> HIC*)®G — HI(C*® G) — Tor(HI(C*),G) — 0. O

Let now C, be a chain complex of free modules. We apply (11.9.5) to the dual
cochain complex with C¢ = Hom(C,, R) and cohomology groups H4(C; R).

(11.9.6) Proposition. Let C be a free chain complex and G be a module such that
either H,(C) is of finite type or G is finitely generated. Then there exists a natural
exact sequence

0— H?(C)® G — HY(C;G) — Tor(HIT1(C),G) - 0
and this sequence splits.

Proof. If G is finitely generated we have a canonical isomorphism of the form
Hom(C, R) ® G =~ Hom(C, G); we use this isomorphism in (11.9.5). If H.(C)
is of finite type we replace C by a chain equivalent complex C’ of finite type (see
(11.6.4)). In that case we have again a canonical isomorphism Hom(C’, R) ® G =~
Hom(C’, G). We apply now (11.9.5) to C". O
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(11.9.7) Proposition. Let f: C — D be a chain map between complexes of free
abelian groups. Suppose that for each field F the map f Q[ induces isomorphisms
of homology groups. Then f is a chain equivalence.

Proof. Let C(f) denote the mapping cone of f. The hypothesis implies that
H«(C(f) ® F) = 0. We use the universal coefficient sequence. It implies that
Tor(H«(C(f)),Z/p) = 0 for each prime p. Hence H.(C(f)) is torsion-free.
From H.(C(f)) ® Q we conclude that H«(C(f)) is a torsion group. Hence
H.(C(f)) = 0. Now we use (11.6.3). O

11.10 The Kiinneth Formula

Let C and D be chain complexes of R-modules over a principal ideal domain R. We
have the tensor product chain complex C ® g D and the associated homomorphism

a: Hi(C) ®g Hj(D) - Hi+;(C ®r D), [x]® [y]+ [x ® y].

We use the notation * for Tor®. The next theorem and its proof generalizes the
universal coefficient formula (11.9.1).

(11.10.1) Theorem (Kiinneth Formula). Suppose C consists of free R-modules.
Then there exists an exact sequence

0— @ Hi(C)®RHj(D)—>Hn(C®RD)—> @ Hi(C)*Hj(D)—>0.
i+j=n i+j=n—1

If also D is a free complex, then the sequence splits.

Proof. We consider the graded modules Z(C) and B(C) of cycles and boundaries
as chain complexes with trivial boundary. Since Z(C) is free, we have the equalities
(canonical isomorphisms)

(Z(C)® Z(D))n = Ker(1® 9: (Z(C) ® D) - (Z(C) @ D)n-1)
and

(Z(C) ® B(D))p =Im(1 ® 3: (Z(C) ® D)nt1 = (Z(C) ® D)),
and they imply H(Z(C) ® D) = Z(C) ® H(D) (homology commutes with the
tensor product by a free module). In a similar manner we obtain an isomorphism

H(B(C)® D) = B(C)® H(D). We form the tensor product of the free resolution
of chain complexes

0— B(C) > Z(C) —» H(C) = 0



11.10. The Kiinneth Formula 299

with H(D). We obtain the following exact sequence, referred to as (), with
injective morphism (1) and surjective morphism (2)

H(C) * H(D) - B(C) @ H(D) 2% z(C) ® H(D) -2 H(C) ® H(D)

T

HBC)® D) 2% H(Z(C) ® D).

Let us use the notation (A[—1]),, = A,—; for a graded object A. We tensor the
exact sequence of chain complexes 0 — Z(C) — C — B(C)[—1] — 0 with D
and obtain an exact sequence

0-Z(C)®D—->C®D — (B(C)® D)[-1] = 0.
Its exact homology sequence has the form
.. > H(B(C)® D)% H(Z(C)® D) - H(C & D)
— H(B(C) ® D)[-1] > H(Z(C) ® D)[-1] > --- .
One verifies that (1) is the map (i ® 1).. Hence we obtain the exact sequence
0 — Coker(isx) - H(C ® D) — Ker(iy)[-1] = 0

which yields, together with the sequence (), the exact sequence of the theorem.
Choose retractions r: C, — Z,(C)ands: D, — Z,(D). Then (C ® D), —

H(C)® H(D),c ® d — [r(c)] ® [s(d)] sends the boundaries of (C ® D), to

zero and induces a retraction p: H,(C ® D) — (H(C) ® H(D)), of «. O

As in the case of the universal coefficient theorem we can rewrite (11.10.1) in
terms of cochain complexes. Under suitable finiteness conditions we can then apply
the result to the dual complex of a chain complex and obtain:

(11.10.2) Theorem (Kiinneth Formula). Let C and D be free chain complexes such
that H«(C) or H.(D) is of finite type. Then there exists a functorial exact sequence

0—> @ HI(C)®H/(D)— H'(C®D)— @ H(C)xH/(D)—0
i+j=n i+j=n+1

and this sequence splits. O



Chapter 12
Cellular Homology

In this chapter we finally show that ordinary homology theory is determined on
the category of cell complexes by the axioms of Eilenberg and Steenrod. From the
axioms one constructs the cellular chain complex of a CW-complex. This chain
complex depends on the skeletal filtration, and the boundary operators of the chain
complex are determined by the so-called incidence numbers; these are mapping
degrees derived from the attaching maps. The main theorem then says that the
algebraic homology groups of the cellular chain complex are isomorphic to the ho-
mology groups of the homology theory (if it satisfies the dimension axiom). From
this fact one obtains immediately qualitative results and explicit computations of
homology groups. Thus if X has k(n) n-cells, then H,(X;Z) is a subquotient
of the free abelian group of rank k(n). A finite cell complex has finitely gener-
ated homology groups. We deduce that the combinatorial Euler characteristic is a
homotopy invariant that can be computed from the homology groups.

In the case of a simplicial complex we show that singular homology is isomor-
phic to the classical combinatorial simplicial homology. In this context, simplicial
homology is a special case of cellular homology.

12.1 Cellular Chain Complexes

Let h4 be an additive homology theory. Let X be obtained from A by attaching
n-cells via (®,¢): [[,cx (D2, S"~1) — (X, A). The characteristic map of the
cell e is denoted by (9, ¢¢). The index e distinguishes different copies.

(12.1.1) Propeosition. The induced map
" = (0%): D, h«(D,S;7") — ha(X, A)
is an isomorphism.
Proof. By (10.4.6), ®s: h«([[,(D2,S*71)) — h«(X, A) is an isomorphism.

Now apply the additivity isomorphism @D, h«(DZ?, S?~1) = h.([[,(DZ, S*~1)
and compose it with ®,. O

The isomorphism inverse to ®” is obtained as follows. Given z € hi (X, A).
We use the inclusion p¢: (X, A) C (X, X ~ e) and the relative homeomorphism
®¢: (D", S" 1) - (X, X ~e). Let z, € hp(D?, S?~1) denote the image of z
under

¢ ¢
z€he(X, A) 5 he(X. X ~e) < hi(D", S"1) 5 z,.
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Then z + (2. | e € E) is inverse to ®”.

Let X be a CW-complex. The boundary operator 9: Ay (X", X") —
hi (X", X" 1) of the triple (X" +!, X, X"~ 1) is transformed via the isomorphisms
(12.1.1) into a matrix of linear maps

m(e, f): hk+1(D;+l, S7) — hi (D sn—1

e’ e

for each pair ( f; e) of an (n + 1)-cell f and an n-cell e (as always in linear algebra).
Let >/ be the composition

v e e
sp s xm L X /(x" <) & /st

If we compose 1/ with an h-equivalence " : D”/S"™! — §" then «"(¢/ has
as a self-map of S” adegree d(e, f). We call d(e, f) the incidence number of the
pair ( f, e) of cells. The case n = 0 is special, so let us consider it separately. Note
that D%/S~! is the point D® = {0} together with a disjoint base point {*}. Let x°
be given by k°(0) = +1 and «°(x) = —1. We have two O-cells ¢/ (£1) = ex
(they could coincide). With these conventions d( f,e+) = £1.

In the following considerations we use different notation d, d’, 9" for the bound-
ary operators.

(12.1.2) Proposition. The diagram

hk+1(1)]’£+1, S}t) M he (D1, SP1

e’~e

Ja” lp*
e.f

hi(S) ———— Iy (D2/S27)
is commutative.

Proof. Consider the diagram

hk+1(Xn+lv Xm) L /:lk(Xn) ;) hi (X", Xn—l) L) Ek(X”/X”_l)

Tcpf Tot pl |

e (D" Lo (57 (XX~ o) S (XX <o)

}Pi Tcpg;

hy (D", Sn—l) L} ﬁk(Dn/Sn—l)'

Given x € hktl(D”H, S™). Then p.m(e, f)x is, by definition of m(e, f), the
image of x in hx (D" /S™~!). Now use the commutativity of the diagram. O
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(12.1.3) Corollary. Let o: hi (D", S™ 1) — hy (D", S™) be a suspension
isomorphism. Then m(e, f) o o is the multiplication by d(e, f), provided the
relation 3" o 0 = k™ o py holds. O

We now write the isomorphism (12.1.1) in a different form. We use an it-
erated suspension isomorphism o”: hy_, — hi(D",S"!) in each summand.
Let C,,(X) denote the free abelian group on the n-cells of (X, A). Elements in
Cy(X) ®z hi—, will be written as finite formal sums ) _, e ® u, where u, € hy_y;
the elements in C,,(X) ® hy_, are called cellular n-chains with coefficients in
hy—n,. We thus have constructed an isomorphism

Cn: Cn(X) ®Z hie—n — hi(X, A), Y, e @ue > 3, PLo™ (ue).
The matrix of incidence numbers provides us with the Z-linear map

M(n): Cpp1(X) > Cu(X). [ d(e. fe.

The sum is finite: d(e, f) can only be non-zero if the image of ¢/ intersects e
(property (W3) of a Whitehead complex). From the preceding discussion we obtain:

(12.1.4) Proposition. Suppose o and k are chosen such that the relation (12.1.3)
holds. Then the diagram

hiegr (X1 X1y — 2 (xm, XY

Tfn-o-l Té’n

M((n)®id
Cpi1(X) ® hy_p —— Ca(X) ® hy—y

is commutative. O

The composition of the boundary operators (belonging to the appropriate triples)

il a
hm+1(Xn+l,Xn) — hm(Xn,Xn_l) N hm_l(Xn—l’Xn—Z)

is zero, because the part /1, (X") — hp(X™, X" 1) — hy_1(X™1) of the ex-
act sequence of the pair (X", X"~1) is “contained” in this composition. We set
hn k(X)) = hyix (X™, X"~ ). Thus the groups (h, x(X) | n € Z) together with
the boundary operators just considered form a chain complex A i (X).

(12.1.5) Proposition. The product M (n — 1) M (n) of two adjacent incidence ma-
trices is zero. The cellular chain groups C, (X)) together with the homomorphisms
M(n): C(n) - C(n — 1) form a chain complex Co(X). This chain complex is
called the cellular chain complex of X .

Proof. The relation M(n — 1) M (n) = 0 follows from (12.1.4) applied to the chain
complex H, o(X) obtained from singular homology with coefficients in Z. O
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The cellular chain complex has its algebraically defined homology groups. Inthe
next section we prove that in the case of an ordinary homology theory the algebraic
homology groups of the cellular chain complex are naturally isomorphic to the
homology groups of the theory. We should point out that the algebraic homology
groups of the chain complexes /1, (X ) only depend on the space and the coefficients
of the homology theory, so are essentially independent of the theory. Nevertheless,
they can be used to obtain further information about general homology theories —
this is the topic of the so-called spectral sequences [130].

The definition of incidence numbers uses characteristic maps and a homotopy
equivalence x. These data are not part of the structure of a CW-complex so that
the incidence numbers are not completely determined by the CW-complex. The
choice of a characteristic map determines, as one says, an orientation of the cell. If
®,W: (D", 8" 1) — (X", X" 1) are two characteristic maps of a cell e, then

Ulep: pP/S" 5 X" /X" ~e < D"/S"!

is a homeomorphism and hence has degree £1. One concludes that the incidence
numbers are defined up to sign by the CW-complex.

(12.1.6) Proposition. A cellular map f: X — Y induces a chain map with com-
ponents fx: hp(X™, X" 1) = h,, (Y™, Y"1, Homotopic cellular maps induce
chain homotopic maps.

Proof. The first assertion is clear. Let f,g: X — Y be cellular maps and let
¢: XxI =Y, f ~ gbeahomotopy between them. By the cellular approximation
theorem we can assume that ¢ is cellular, i.e., ¢((X x I)") C Y". Note that
(X xI)" = X" x3I UX" ! x I. We define a chain homotopy as the composition

St (X, XY D B 1 (X, XYY X (1,00)) 25 By (YFL VM),

In order to verify the relation ds, = g« — f« — sp—10 we apply (10.9.4) to
(A,B,C) = (X", X!, X"=2) and compose with ¢x. O

(12.1.7) Proposition. Let p: k.(—) — l«(—) be a natural transformation be-
tween additive homology theories such that p induces isomorphisms of the coeffi-
cient groups p: ky,(P) = [,(P), n € Z, P a point. Then p is an isomorphism
k«(X) — [«(X) for each CW-complex X.

Proof. Since pis compatible with the suspension isomorphism we see from (12.1.1)
that p: k« (X", X" 1) == [,(X", X""1). Now one uses the exact homology se-
quences and the Five Lemma to prove by induction on n that p is an isomorphism
for n-dimensional complexes. For the general case one uses (10.8.1). O
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Problems

1. The map x — (24/1 — ||x||2x,2||x||> — 1) induces a homeomorphism «”. Let ¢ be the
suspension isomorphism (10.2.5). Then commutativity holds in (12.1.3). For the proof show
that " — S"/D =~ pr/sn—1 AN D" /sn1 £ 8", with the projection r which
deletes the last coordinate, has degree 1.

2. Prove M(n — 1)M(n) = 0 without using homology by homotopy theoretic methods.

12.2 Cellular Homology equals Homology

Let H«(—) = Hx«(—; G) be an ordinary additive homology theory with coefficients
in G (not necessarily singular homology). The cellular chain complex Co(X) =
Ce(X;G) of a CW-complex X with respect to this theory has its algebraically
defined homology groups. It is a remarkable and important fact that these algebraic
homology groups are naturally isomorphic to the homology groups of the space X .
This result says that the homology groups are computable from the combinatorial
data (the incidence matrices) of the cellular complex.

(12.2.1) Theorem. The n-th homology group of the cellular chain complex Co(X)
is naturally isomorphic to H,(X).

Proof. We show that the isomorphism is induced by the correspondence
H,(X", X" « H,(X") - H,(X).

We divide the proof into several steps.

(1) A basic input is Hy (X", X" 1) = 0 for k # 0; this follows from our
determination of the cellular chain groups in (12.1.1) and the dimension axiom.

(2) H(X") = 0 for k > n. Proof by induction on n. The result is clear
for X° by the dimension axiom. Let k > n + 1. We have the exact sequence
Hi(X") — Hp(X"1) — Hp(X"+1 X"™). The first group is zero by induction,
the third by (1).

(3) Since H,_1(X"2) =0, the map H, (X" ') - H, (X" !, X" 2?)is
injective. Hence the cycle group Z,, of the cellular chain complex is the kernel of
0: Hy(X™, X" 1) - H,_ (X" ).

(4) The exact sequence 0 — H,(X") — H,(X", X" ') - H, (X"
induces an isomorphism (b): H,(X") = Z,,.

(5) Hr(X,X™) = 0 for k < n. One shows by induction on ¢ that the groups
Hy (X"t X™) are zero for t > 0 and k < n. We know that for an additive theory
the canonical map colim, Hy (X"*!, X") — Hy (X, X") is an isomorphism (see
(10.8.1) and (10.8.4)). For singular homology one can also use that a singular
chain has compact support and that a compact subset of X is contained in some
skeleton X™.
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(6) The map H,(X"™1') — H,(X) is an isomorphism. This follows from the
exact sequence of the pair (X, X"*1) and (5).
(7) The diagram

Hn-‘rl(Xn—Hy Xn) Zn Zn/Bn —0

/I\
F ®) @, =
I

Hypoy (X", XY —25 H(X™) —— H,(X"1) ——0

IR

IR

H, (X)
shows us that we have an induced isomorphism (a) (Five Lemma). O

(12.2.2) Corollary. Suppose X has a finite number of n-cells; then H,(X;Z) is a
finitely generated abelian group. Let X be n-dimensional; then H, (X ; G) = 0 for
k > n. O

(12.2.3) Example (Real projective space). The diagram

Si-1l ——— R pi-l

| |

Di —q)> [RPI
with attaching map ®: x — [x, /1 — [|lx |?] is a pushout. The incidence map with
the homomorphism k=1 of Problem 1 in the previous section is computed to be
Si=l — §71 (y,1) = (2ty,2t>—1) of degree 1 + (—1)’. This yields the cellular

chain complex

0 2 0
C0<—C1<—C2<—---

with C; = Z for0 < i < n and boundary operator, alternatively, the zero morphism
and the multiplication by 2. The cellular chain complex with coefficients in the
abelian group G is of the same type (using the canonical identification Z® G = G).
Let ,G = {g € G | 2g = 0}. We obtain the cellular homology

G, J =0,

G/2G, 0<j=2k—1<n,
»G, 0<j=2k<n,

G n =2k —1.

Hj(lRPn;G) =

Similarly for R P*°. &
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(12.2.4) Example. The sphere S has a CW-decomposition with two i-cells in
each dimension i, 0 <i < n. The attaching diagram is

Sn—l + Sn—l RN Sn—l

l (0_.®y) l

D" 4 D ——— g

with @4 (x) = (x,4/1—]x||?) and ®_(x) = —P4(x). This attaching map
is G-equivariant, if the cyclic group G = {1,¢ | t> = 1} acts on the spheres
by the antipodal map and on the left column by permutation of the summands.
The equivariant chain groups are therefore isomorphic to the group ring ZG =
Z-1@® Z -t. In order to determine the equivariant boundary operator we use
the fact that we know already the homology of this chain complex. If we add the
homology groups in dimension 0 and n we obtain an exact sequence

0 Z(ey) > ZG - ZG — --- > ZG > 7 — 0.

The map ¢ sends 1,7 to 1. The kernel is generated by 1 — ¢. From the geometry
we see that the first boundary operator sends the generator 1 € C; represented by
a suitably oriented 1-cell to (1 — #). We orient the cell such that the plus-sign
holds. Then d; is the multiplication by 1 —¢. The kernel of d; is thus generated by
1 + ¢t. We can again orient the 2-cells such that d; is multiplication by 1 4 z. If we
continue in this manner, we see that d, = 1—1 fork odd, and d; = 141 fork even.
The homology module H, (S") = Z(e,) carries the ¢-action &, = (—1)"*!, the
degree of the antipodal map. One can, of course, determine the boundary operator
by a computation of degrees. We leave this as an exercise. Similar results hold
for $°°. <

Let X and Y be CW-complexes. The product inherits a cell decomposition.
The cross product induces an isomorphism

Brsion He X, XY @ H(Y! YT - H, (X x Y)", (X x V)71,

With a careful choice of cell orientations these isomorphisms combine to an iso-
morphism Cx(X) ® Cx(Y) = Cx(X x Y) of cellular chain complexes.

12.3 Simplicial Complexes

We describe the classical combinatorial definition of homology groups of polyhe-
dra. These groups are isomorphic to the singular groups for this class of spaces.
The combinatorial homology groups of a finite polyhedron are finitely generated
abelian groups and they are zero above the dimension of the polyhedron. This finite
generation is not at all clear from the definition of the singular groups.
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Recall that a simplicial complex K = (E, S) consists of a set E of vertices and
aset S of finite subsets of E. A sets € S with ¢ + 1 elements is called a g-simplex
of K. We require the following axioms:

(1) A one-point subset of E is a simplex in S.

2) se Sand@ # ¢t Csimplyt € S.
An ordering of a p-simplex is a bijection {0, 1,..., p} — s. An ordering of K
is a partial order on E which induces a total ordering on each simplex. We write
s = (vg,...,vp),if the vertices of s satisfy vg < vy < -+ < v, in the given partial
ordering. Let C, (K) denote the free abelian group with basis the set of p-simplices.
Its elements are called the simplicial p-chains of K. Now fix an ordering of K and
define a boundary operator

9: Cp(K) > Cp—1(K), (vo,...,0p »—>Z _o(— 1) (Voy - vy ViyeenyUp).

The symbol v; means that this v; is to be omitted from the string of vertices.
The boundary relation 90 holds (we set C,(K) = 0 for p < —1). We denote
the p-th homology group of this chain complex by H,(K). This is the classical
combinatorial homology group.

A simplicial complex K has a geometric realization |K|. An ordered simplex
s = (vg....,vp) has an associated singular simplex

@SZAP—>|K|, (lo,...,lp)Hlevj.

We extend s — ®° by linearity to a homomorphism pj,: C,(K) — S,(|K|). The
boundary operators are arranged so that p = (p,) is a chain map.

(12.3.1) Theorem. p induces isomorphisms Rp: H,(K) = H,(|K]).

Proof. We write X = |K|. Let S(p) be the set of p-simplices. The characteristic
maps ®°: (AP, dAP) — (XP, XP~1) yield an isomorphism (12.1.1),

7 Pyesp) Ho(AL DAD) — Hy(XP XP7Y),

The identity of A? represents a generator ¢, of H,(A?, dAP). Let x4 be its image
under ®5. Then (x; | s € S(p)) is a Z-basis of Hg(X?, X?~!). If we express
x e Hy(XP, X P~1) in terms of this basis, x = > ¢ NsXs, then ng is determined by
the image nt, of x under

@y
x € Hy(XP, XP™Y) — H,(XP, XP ~ e5) <— H,(AP,dAP) > ngu,.

Here e; is the open simplex which belongs to s. Let s(i) denote the i-th face of
AP and xy() € Hp—1(X p=1 X P=2) the corresponding basis element. We claim
dxs =0 —o(—=1) x4(). Itis clear for geometric reasons that the expression of dx;
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in terms of the basis (x; | £ € S(p — 1)) can have a non-zero coefficient only for
the x,(;). The coefficient of x,(;) is seen from the commutative diagram

@

H,(AP,QAP) Hy(XP, XP71)

| . b

Hy 1 (0AP AP ~ 5(1)°) — 2" H,_ (XP~L, XP2)

T(d,!’)* J
i)

-1 —1y @ -1 -1 -1
H, 1 (AP7Y 9AP~Y) 2 HP=L (X P71 X271 egy).

Note ®d? = @@, The left column sends ¢, to (—=1)'t,—;. We have con-
structed so far an isomorphism of C,(K) with the cellular chain complex Co(|K|)
of |K|. Let Pp: Hy(Co(K)) — Hp(Co(]K])) be the induced isomorphism. Let
Op: Hy(Co(|K|)) = Hp(]K|) be the isomorphism in the proof of (12.2.1). Trac-
ing through the definitions one verifies R, = O, P,. Hence R, is the composition
of two isomorphisms. O

An interesting consequence of (12.3.1) is that p: Co(K) — So(|K]) is a chain
equivalence. Thus, for a finite complex K, the singular complex of | K| is chain
equivalent to a chain complex of finitely generated free abelian groups, zero above
the dimension of K.

(12.3.2) Example. A circle S! can be triangulated by a regular n-gon with ver-
tices {eo,...,en—1} and ordered simplices s; = (e;,¢;+1), 0 <i <n —1 and
mod 7 notation e,, = eg. The cellular chain complex is given by d{e;,e;+1) =
(e;i) — (ei+1). The sum z = Zl'.’;é s; isa l-cycle. Lett: Z — C1(K), 1 — z
and ¢: Cy(K) — Z, ej — 1. Then the sequence

07 -5 C1(K) -5 Co(K) <> 7 — 0

is exact. Hence ¢ induces an isomorphism H;(C) = Z. <

Problems

1. Let K be the tetrahedral simplicial complex; it consists of E = {0, 1,2, 3}, and all subsets
are simplices. Verify H; (K) = 0 for n > 0. Generalize to an n-simplex.

12.4 The Euler Characteristic

Let X be a finite C W-complex and f; (X) the number of its i -cells. The combina-
torial Euler characteristic of X is the alternating sum

A(X) = Yo (=D fi(X).



12.4. The Euler Characteristic 309

The fundamental and surprising property of this number is its topological invariance,
in fact its homotopy invariance — it does not depend on the cellular decomposition
of the space. The origin is the famous result of Euler which says that in the case
X = S? the value y(X) always equals 2 ([61], [62], [64]).

We prepare the investigation of the Euler characteristic by an algebraic result
about chain complexes. Let M be a category of R-modules. An additive invariant
for M with values in the abelian group A assigns to each module M in M an element
A(M) € A such that for each exact sequence 0 - My - M1 — M, — 0in M
the additivity

() A(Mo) — A(My) + A(M3) =0

holds. For the zero-module M we have A(M) = 0 since there exists an exact
sequence 0 > M — M — M — 0. We consider only categories which contain
with a module also its submodules and its quotient modules as well as all exact
sequences between its objects. Let

a a
Ci: 00— Cp —5 Cpey — -+ — C1 —5 Cop >0

be a chain complex in this category. Then its homology groups H;(Cy) are also
contained in this category.

(12.4.1) Proposition. Let A be an additive invariant for M. Then for each chain
complex Cy in M as above the following equality holds:

YE o (=DAC) = Ybo(— ) A(H; (Cy)).

Proof. Induction on the length k of Ci. We set H; = H;(Cy), B; = Imd;4,
Z; = Kerd;. For k = 1 there exist, by definition of homology groups, exact
sequences

0—-By—>Co—>Hy—>0, 0—>H; —-Cy— By—0.

We apply the additivity (1) to both sequences and thereby obtain A(Hy) —A(H;) =
A(Co) — A(Cy). For the induction step we consider the sequences

C;:O—)Ck_1—>---—)CO—>0,

0—-H,—>Cy —>Br_1—>0, 0—Br_1—>Zi1— Hr_1—0;

the last two are exact and the first one is a chain complex. The homology groups
of the chain complex are, for k > 2,

Hi(C,) = Hi(Cy), 0<i<k-—2, Hi_1(C))=Zp_.

We apply the induction hypothesis to C;, and (1) to the other sequences. We obtain
the desired result by eliminating A(Bx—1) and A(Zg—_1). O
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The relation of the combinatorial Euler characteristic to homology groups
goes back to Henri Poincaré [150], [152]. The i-th Betti number, named after
Enrico Betti [20], b;(X) of X is the rank of H;(X;Z), i.e., the cardinality of a
basis of its free abelian part, or equivalently, the dimension of the Q-vector space
Hi(X;Z)® Q = Hi(X; Q). The result of Poincaré says:

(12.4.2) Theorem. For each finite CW-complex X the combinatorial Euler char-
acteristic equals the homological Euler characteristic ) ;o(—1)"b; (X).

Proof. For finitely generated abelian groups A + rank A is an additive invari-
ant. We apply (12.4.1) to the cellular chain complex C(X) of X and observe that
rank C; (X) = f;i (X). O

If A is an additive invariant for eM‘and C, a chain complex of finite length in
M, then we call x(Cx) = 3 ;5o(=D)'A(C;) = 3 ;o 0(=1)'A(H;(Cy)) the Euler
characteristic of C, with respect to A.

(12.4.3) Proposition. Let
0« Hy<« Hy<« Hj < H{ < Hy < H/ < Hy < Hy < ---
be an exact sequence of modules in M which consists eventually of zero-modules.
Let y(Hx) = ) ;5o(=1)' A(H;) and similarly for H' and H". Then
X(H,) = x(Hy) + x(H) = 0.

Proof. Apply (12.4.1) to the given exact sequence, considered as chain complex,
and order the terms according to H, H’, and H"”. O

One can define the Euler characteristic by homological methods for spaces which
are not necessarily finite CW-complexes. There are several possibilities depending
on the homology theory being used.

Let R be a principal ideal domain. We call (X, A) of finite R-type if the groups
H; (X, A; R) are finitely generated R-modules and only finitely many of them are
non-zero. In that case we have the associated homological Euler characteristic

X(X,A:R) = Y ;. o(—=1)'rankg H; (X, A: R).

(12.4.4) Proposition. If (X, A) is of finite Z-type, then it is of finite R-type and the
equality y(X, A; Z) = (X, A; R) holds.

Proof. 1If (X, A) is of finite Z-type, then the singular complex So(X, A) is chain
equivalent to a chain complex D, of finitely generated free abelian groups with
only finitely many of the D, non-zero (see (11.6.4)). Therefore

x(X,A;R) =Y ;(—1)'rankg H;(De ® R) = Y_;(—1)'rankg(D; ® R)
=Y ;(=D'rankz(D;) = x(X, 4;Z),
by (12.4.1), and some elementary algebra. O
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Proposition (12.4.3) has the following consequence. Suppose two of the spaces
A, X, (X, A) are of finite R-type. Then the third is of finite R-type and the additivity
relation
X(A;R) + x(X, A;R) = x(X; R)

holds. Let Ay, A; be subspaces of X with MV-sequence, then
x(Ao; R) + x(A1; R) = x(Ao U A1; R) + x(Ao N A1; R)

provided the spaces involved are of finite R-type. Similarly in the relative case. Let
(X, A) and (Y, B) be of finite R-type. Then the Kiinneth formula is used to show
that the product is of finite R-type and the product formula

X(X.A:R) - x(Y.B:R) = y((X., A) x (Y. B): R)

holds. These relations should be clear for finite CW-complex and the combinatorial
Euler characteristic by counting cells.

For the more general case of Lefschetz invariants and fixed point indices see
[51], [52], [109], [116].

12.5 Euler Characteristic of Surfaces

We report about the classical classification of surfaces and relate this to the Euler
characteristic. For details of the combinatorial or differentiable classification see
e.g., [167], [80], [123]. See also the chapter about manifolds.

Let F; and F, be connected surfaces. The connected sum F;#F, of these
surfaces is obtained as follows. Let D; C F; be homeomorphic to the disk D?
with boundary ;. In the topological sum F; ~ D} + F> ~ D3 we identify x € §;
with ¢(x) € S, via a homeomorphism ¢: S; — S,. The additivity of the Euler
characteristic is used to show

1(F1) =1+ x(F2) — 1 = y(F1#F),

i.e., the assignment F' +— y(F) — 2 is additive with respect to the connected sum.
Let m F denote the m-fold connected sum of F' with itself. We have the standard
surfaces sphere S2, torus T, and projective plane P. The Euler characteristics are

¥(S?) =2, y(mT)=2-2m, x(mP)=2-n.

If F is a compact surface with k boundary components, then we can attach k disks
D? along the components in order to obtain a closed surface F*. By additivity
x(F*) = y(F) + k. Connected surfaces F; with the same number of bound-
ary components are homeomorphic if and only if the associated surfaces FJ* are
homeomorphic.
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(12.5.1) Theorem. A closed connected surface is homeomorphic to exactly one of
the surfaces S2, mT withm > 1, nP withn > 1. The nP are the non-orientable
surfaces.

The homeomorphism type of a closed orientable surface is determined by the
orientation behaviour and the Euler characteristic. The homeomorphism type of
a compact connected surface with boundary is determined by the orientation be-
haviour, the Euler characteristic and the number of boundary components.

The sphere has genus 0, mT has genus m and n P has genus n. O

12.5.2 Platonic solids. A convex polyhedron is called regular if each vertex is the
end point of the same number of edges, say m, and each 2-dimensional face has
the same number of boundary edges, say n. If E is the number of vertices, K the
number of edges and F' the number of 2-faces, thenmE = 2K andnF = 2K. We
insert this into the Euler relation £ + F = K + 2, divide by 2K, and obtain

1 1 1 1

mth Tk 2

We have m > 3, n > 3. The equation has only the solutions which are displayed
in the next table.

m|n solid E | F
31316 tetrahedron 4 1 4
4 13|12 | octahedron 6 | 8
314112 cube 816
3 | 5130 | dodecahedron | 20 | 12
5 13130 icosahedron | 12 | 20
12.5.3 Lines in the projective plane. Let Gy, ..., G, be lines in the projective

plane P. We consider the resulting cells decomposition of P. Let ¢, be the number
of points which are incident with r lines. We have the Euler characteristic relation
fo— f1 + f» = 1 where f; is the number of i-cells. Thus fo = t5 + 13 + ---.
From an r-fold intersection point there start 2r edges. The sum over the vertices
yields f; = 2t, + 3t3 + 4t4 + ---. Let p, denote the numbers of n-gons, then
2= ps, 2f1 =) sps. Weinsert these relations into the Euler characteristic
relation and obtain

222G =0t + 3B =9)ps =3fo— fi+3/2-2/1 =3

We now assume that not all lines are incident with a single point; then we do not
have 2-gons. From 2 f1 > 35 and then f1 < 3(fo — 1) we conclude

th >3+ 2,24(r — 3ty



12.5. Euler Characteristic of Surfaces 313

Thus there always exist at least three double points. <

(12.5.4) Proposition. Let X be a Hausdorff space and p: X — Y a local homeo-
morphism onto a connected space. Then p is a covering with finitely many leaves
if and only if p is proper.

Proof. (1) Suppose p is proper. Forn € NletY, ={y €Y | n < |[p~1(y)|}. We
show that Y, is open and closed. Since Y is connected, either Y, = @JorY, =Y.
The inclusion Y, D Y,4+; shows that there is a largest n such that ¥, = Y and
Y41 = 0. Hence the fibres have the cardinality 7.

Let p~'(y) = {x1,...,xm}. Since X is a Hausdorff space and p a local
homeomorphism, there exist open pairwise disjoint sets U; > x; which are mapped
homeomorphically under p onto the same open set V' > y. Hence each fibre
p‘l(z), z € V has at least cardinality n. If y € Y,,, then m > n and hence z € Y,
i.e., V C Y,. This shows that Y, is open.

Let p7'(y) = {x1,...x;},t <m,ie,y &Y,. Letagain the U; > x; be open
with homeomorphic image V € Y. Since p is closed, being a proper map, the set
C =X~ (U U---UUy))isclosed in Y. This set does not contain y. Hence
Y ~ C = W is an open neighbourhood of y and

P W)=p ' (Y)~p T p(X ~ (UL U---UUy)) CU U--- U

This shows |p~!(z)| < t for each z € W, and the complement of Y}, is seen to be
open.

We now know that all fibres of p have the same cardinality, and since p is a
local homeomorphism it must be a covering.

(2) Suppose conversely that p is an n-fold covering. We have to show that p is
closed. A projection pr: B x F' — B with a finite discrete set I as fibre is closed.
Now we use (1.5.4). O

A continuous map p: X — Y between surfaces is called a ramified covering it
for each x € X there exist centered charts (U, ¢, U’) about x and (V, ¥, V') about
y = p(x) with p(U) C V such that

Vo lioU)=U - C, zrz"

withn € N. We call n — 1 the ramification index of p at x. In the case thatn = 1
we say that p is unramified at x and for n > 1 we call x a ramification point.

(12.5.5) Proposition. Let p: X — Y be a ramified covering between compact
connected surfaces. Let V be the image under p of the ramification points. Then
p: X ~ p~Yp) = Y ~V is a covering with finitely many leaves.



314 Chapter 12. Cellular Homology

Proof. For each y € Y the set p~'(y) C X is closed and hence compact. The
pre-images p~!(y) in a ramified covering are always discrete, hence finite. The
set V' is also discrete and hence finite. The map p is, as a continuous map between
compact Hausdorff spaces, closed. Thus we have shown that the map in question
is proper. Now we use (12.5.4). O

(12.5.6) Proposition (Riemann—-Hurwitz). Let p: X — Y be a ramified covering
between compact connected surfaces. Let Py,..., P, € X be the ramification
points with ramification index v(P;). Let n be the cardinality of the general fibre.
Then for the Euler characteristics the relation

(X)) =nx(Y) =37 v(P))

holds.
Proof. Let Q1,..., Qs be the images of the ramification points. Choose pairwise
disjoint neighbourhoods Dy, ..., Dy C Y where D; is homeomorphic to a disk.
Then

p: Xo =X\Uj.:1p—1(D}))—>Y\Uj:1 DJo =Y

is an n-fold covering (see (12.5.4)). We use the relation y(Xo) = ny(Yo) for n-fold
coverings. If C is a finite set in a surface X, then y(X ~ C) = y(X) — |C|. Thus
we see

x(X) =35 [P = n(x(Y) —9).
Moreover

ns — Zj=1 pHQ)| = i v(P),

since for p~1(Q;) = {P{..... Pr{(j)} the relation 3"Y) (v(P/) + 1) = n holds.
O

An interesting application of the Riemann—Hurwitz formula concerns actions
of finite groups on surfaces. Let I be a compact connected orientable surface and
G x F — F an effective orientation preserving action. We assume that this action
has the following properties:

(1) The isotropy group G, of each point x € F is cyclic.

(2) There exist about each point x a centered chart ¢: U — R? such that U
is Gx-invariant and ¢ transforms the G -action on U into a representation
on R?, i.e., a suitable generator of G acts on R2 as rotation about an angle
27/|Gxl.

In this case the orbit map p: F — F/G is aramified covering, /G is orientable,
and the ramification points are the points with non-trivial isotropy group. One can
show that each orientation preserving action has the properties (1) and (2). Examples
are actions of a finite group G C SO(3) on $? by matrix multiplication and of a
finite group G C GL,(Z) on the torus T = R?/Z? by matrix multiplication.
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The ramified coverings which arise as orbit maps from an action are of a more
special type. If x € F is a ramification point, then so is each point in p~! px, and
these points have the same ramification index, since points in the same orbit have
conjugate isotropy groups. Let Cy, ..., C, be the orbits with non-trivial isotropy
group and let n; denote the order of the isotropy group of x € C;; hence |C;|n; =
|G|. The Riemann—Hurwitz formula yields in this case:

12.5.7 Riemann-Hurwitz formula for group actions.

X(F) = |Gl(x(F/G) = ¥j (1 =1/n))).

In the case of a free action r = 0 and there is no sum. &

12.5.8 Actions on spheres. Let F = S2 and |G| > 2. Since y(S?) = 2 we see
that y(F/G) < 0 is not compatible with 12.5.7, hence y(F/G) = 2 and the orbit
space is again a sphere. We also see that r < 3 and r = 0, 1 are not possible. For
r =2wehave2/|G| = 1/ny; + 1/n,,2 = |C; + |C,. Hence there are two fixed
points (example: rotation about an axis). For r = 3 one verifies that
1+ 2 _ 1 + : + :
|G|  n1 n2  n3

has the solutions (for ny > n, > n3) displayed in the next table.

ny | ny|n3| |G|
IGl/2] 2|2 |G|
3 312112
4 312|224
5 312160

Examples are the standard actions of subgroups of SO(3), namely D5, (dihedral),
Ay (tetrahedral), S4 (octahedral), A5 (icosahedral). Up to homeomorphism there
are no other actions. o

12.5.9 Action on the torus. Let F = T = S! x S! be the torus, y(F) = 0. The
Riemann-Hurwitz formula shows that for r > 1 we must have y(F/G) = 2. The
cases r > 5and r = 1,2 are impossible. For r = 4 we must have n; = n, =
n3 =n4 =2and G = Z/2. For r = 3 the solutions of 12.5.7 are displayed in a
table.

ny|nz|ns

3
2
2

B W W
B O W
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Consider the matrices in SL,(Z)

0 1 -1 1
A= .
G) o)
The cyclic groups generated by A, A2, A3 realize cases 2 and 1 of the table and the
case r = 4 above. The matrix B realizes case 3 of the table. <

Problems

1. Let G acteffectively on aclosed orientable surface F of genus 2 preserving the orientation.
Then |G| divides 48 or 10. There exist groups of orders 48 and 10 which act on a surface
of genus 2. The group of order 48 has a central subgroup C of order 2 and G/C is the
octahedral group S4 acting on the sphere F/C. Study the solutions of 12.5.7 and determine
the groups which can act on F'. Use covering space theory and work towards a topological
classification of the actions.

2. The nicest models of surfaces are of course Riemann surfaces. Here we assume known
the construction of a compact Riemann surface from a polynomial equation in two variables.
The equation y2 = f(x) with 2g 42 branch points defines a surface of genus g. Such curves
are called hyper-elliptic (g > 2). It is known that all surfaces of genus 2 are hyper-elliptic.
A hyper-elliptic surface always has the hyper-elliptic involution I(x,y) = (x,—y). Here
are some examples. Let us write e(a) = exp(2ria).

(1) y2 = x(x? — 1)(x? — 4) has a Z /4-action generated by A(x, y) = (—x, e(1/4)y).
Note A2 = 1.

(2) y2 = (x3 = 1)/(x3 — 8) has a Z/3-action generated by B(x, y) = (e(1/3)x, y).
Since B commutes with 7/, we obtain an action of Z /6.

(3) y% = (x3 = 1)/(x3 + 1) has a Z/6-action generated by C(x, y) = (e(1/6)x, 1/y).
Since C commutes with /, we obtain an action of Z/6 & Z/2. It has an action of Z /4
generated by D(x,y) = (1/x,e(1/4)y). Note D> = [. The actions C and D do not
commute, in fact CD = DC?. Thus we obtain an action of a group F which is an extension

1->7Z/2—-F — D2 —> 1

where Z /2 is generated by I and D15 denotes the dihedral group of order 12.
(4) 2 = x(x* — 1) has the following automorphisms (see also [121, p. 94])

G(x,y) = (e(1/%)x.,e(1/8)y), G®¥=id, G*=1,

H(x,y) = (1/x,e(1/4)y/x?), H*=id, H?=1,

K(x.y) = (=(x =i)/(x +).2v2e(1/8)y/(x + 1)), K> =1.
The elements G, H, K generate a group of order 48. If we quotient out the central hyper-
elliptic involution we obtain the octahedral group of order 24 acting on the sphere. Thus
there also exists an action of a group of order 24 such that the quotient by the hyper-elliptic
involution is the tetrahedral group (and not the dihedral group D15, as in (3)).

(5) > = x> —1hasanaction of Z /5 generated by J(x, y) = (e(1/5)x, y). It commutes
with I and gives an action of Z/10.
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3. By an analysis of 12.5.7 one can show that, for an effective action of G on a closed
orientable surface of genus g > 2, the inequality |G| < 84(g — 1) holds. There exists a
group of order 168 which acts on a surface of genus 3 [63, p. 242].



Chapter 13
Partitions of Unity in Homotopy Theory

Partitions of unity and numerable coverings of a space are useful tools in order to
obtain global results from local data. (A related concept is that of a paracompact
space.) We present some notions about partitions of unity in the context of point-set
topology. Then we use them to show that, roughly, local homotopy equivalences
are global ones and a map is a fibration if it is locally a fibration (see the precise
statements in (13.3.1) and (13.4.1)). We apply the results to prove a theorem of Dold
about fibrewise homotopy equivalences (see (13.3.4)). Conceptually, partitions of
unity are used to relate the homotopy colimit of a covering to the colimit of the
covering; see (13.2.4) for a result of this type. There are many other results of this
type in the literature. This chapter only can serve as an introduction to this topic.

13.1 Partitions of Unity

Let7: X — R be continuous. The closure of 11 (R ~ 0) is the support supp(t)
oft. Afamily T = (t;: X — R | j € J) of continuous functions is said to be
locally finite if the family of supports (supp(z;) | j € J) is locally finite. We call
T point finite it {j € J | tj(x) # 0} is a finite set for each x € X. We call a
locally finite T a partition of unity if the t; assume only non-negative values and
if for each x € X we have Zje] ti(x) =1. AcoveringU = (U; | j € J)is
numerable if there exists a partition of unity 7" such that supp(¢;) C U; holds for
each j € J; the family T is then called a numeration of U or a partition of unity
subordinate to U.

(13.1.1) Theorem. A locally finite open covering of a normal space is numerable.

Proof. LetU = (U; | j € J) be alocally finite open covering of the normal space
XandV = (V; | j € J) ashrinkingof U and W = (W; | j € J) a shrinking
of V. By the theorem of Urysohn, there exist continuous functions 7; : X — [0, 1]
which assume the value 1 on W; and the value O on the complement of V;. The
function t = } ;. ; 7;: X — [0, 1] is well-defined and continuous, since by local
finiteness of V/, in a suitable neighbourhood of a point only a finite number of t;
are non-zero. We set f;(x) = t;(x) - t(x)~!. The functions (f; | j € J) are a
numeration of U. O

(13.1.2) Lemma. Let the covering V.= (Vi | k € K) be a refinement of the
covering U = (U; | j € J). If V is numerable, then also U is numerable.
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Proof. Let (fx | k € K) be a numeration of V. For each k € K choose
a(k) € J with Vi C Ug). This definesamapa: K — J. We set g;j(x) =
> ka(k)= ; Jie(x); this is the zero function if the sum is empty. Then g; is con-
tinuous; the support of g; is contained in the union of the supports of the f; with
a(k) = j and is therefore contained in U;. Moreover, the sum of the g; is 1. The
family (g; | j € J) is locally finite: If W is an open neighbourhood of x which
meets only a finite number of supports supp( fx), k € E C K, E finite, then W
meets only the supports of the g; with j € a(E). O

(13.1.3) Theorem. Each open covering of a paracompact space is numerable.

Proof. Let U = (U; | j € J) be an open covering of the paracompact space X
and let V = (Vi | k € K) be alocally finite refinement. Since X is normal, there
exists a numeration (f; | k € K) of V. Now apply the previous lemma. O

(13.1.4) Lemma. Let (fj: X — [0,00[| j € J) be a family of continuous func-
tions such that U = (710, 00[| j € J) is a locally finite covering of X. Then U
is numerable and has, in particular, a shrinking.

Proof. Since U is locally finite, f: x +— max(f;(x) | j € J) is continuous and
nowhere zero. We set g;(x) = f; (x) f(x)~!. Then

ti: X —[0,1], x+ max(2g;(x) —1,0)
is continuous. Since ¢;(x) > 0 if and only if g;(x) > 1/2, we have the inclusions
supp(t;) C gj-_1[1/4, oo[C f710,00[. Forx € X andi € J with f;(x) =
max( f;(x)) we have #;(x) = 1. Hence the supports of the #; form a locally finite

covering of X, and the functions x > #;(x)/1(x), t(x) = Y ;c,1;(x) are a
numeration of U. O

(13.1.5) Theorem. Let U = (U; | j € J) be a covering of the space X. The
following assertions are equivalent:

(1) U is numerable.
(2) There exists afamily (Sq.n: X — [0,00[ | a € A, n € N) = § of continuous
Sfunctions s, , with the properties:
(a) S, ie., (s;,]0,00][), refines U.
(b) For each n the family (sa_,z]O, oo[ | a € A) is locally finite.
(c) Foreach x € X there exists (a,n) such that sq ,(x) > 0.
Proof. (1) = (2) is clear.
(2) = (1). (S4,n) is, by assumption, a countable union of locally finite fami-

lies. From these data we construct a locally finite family. By replacing s, , with
San/(1 + Sq4,,) we can assume that s, , has an image contained in [0, 1]. Let

gr(x)= Y sai(x). r=1

acA,i<r
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and g, (x) = 0 for » = 0. (The sum is finite for each x € X.) Then ¢, and

pa,r(x) = max(O, Sa,r (x) —Irgqr (x))

are continuous. Let x € X; then there exists s, x With s, £ (x) # 0; we choose such
a function with minimal k; then gi (x) = 0, pg k (x) = 54,k (x). Therefore the sets
p;}( 10, 1] also cover X. Choose N € N such that N > k and s, x(x) > % Then
qgn(x) > %, and therefore Ngx (y) > 1 for all y in a suitable neighbourhood of x.
In this neighbourhood, all p, , with r > N vanish. Hence

(pa_}l]o,l] |lae A, neN)

is a locally finite covering of X which refines U. We finish the proof by an appli-
cation of the previous lemma. O

(13.1.6) Theorem. Let (U; | j € J) be a numerable covering of B x [0, 1]. Then
there exists a numerable covering (Vi | k € K) of B and a family (e(k) | k € K)
of positive real numbers such that, for t1,t, € [0,1], t1 < tp and |t; — t2| < €(k),
there exista j € J with Vi x [t1,t2] C U; .

Proof. Let(t; | j € J)beanumerationof (U;). Foreachr-tuplek =(ji,..., j;) €
J', define a continuous map

r

Vg: B— 1, x»—>1_[min(tji(x,s)|s c [%&])

r+1
i=1
Let K = (J22, J". We show that the V} = v 10, 1] and €(k) = 5, for k =
(J1, ..., Jr) satisfy the requirements of the theorem. Namely if |f; — 12| < 2—1r
there exists i with [t1, f] C [r+11, ;ill] and hence Vi x [t1, 2] C Uj,.

We show that (V) is a covering. Let x € B be given. Each point (x,?)
has an open neighbourhood of the form U(x, ) x V(x, t) which is contained in a
suitable set W(i) = ¢7']0, 1] and meets only a finite number of the W(j). Suppose
V(x,t1),...,V(x, 1) cover the interval I = [0, 1]; let -3 be a Lebesgue number

of this covering. Weset U = U(x,t;) N---NU(x, t,). Each set U x [r+l’ ’rill] is
then contained in a suitable W(j;). Hence x is contained in V¢, k = (ji1,..., jr).

There are only a finite number of j € J for which W(;j) N (U x I') # @. Since
v (x) # 0 implies the relation W(j;) N {x} x I # @, the family (V; | k € J") is
locally finite for r fixed. The existence of a numeration for (V. | k € K) follows
now from theorem (13.1.5). O

A family of continuous maps (¢;: X — [0,1] | j € J) is called a generalized
partition of unity if for each x € X the family (¢;(x) | j € J) is summable with
sum 1.
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(13.1.7) Lemma. Let (t; | j € J) be a generalized partition of unity. Then
(tj_l]O, 11| j € J) is a numerable covering.

Proof. Summability of (#;(a)) means: For each ¢ > 0 there exists a finite set
E C J such that for all finite sets F D E the inequality |1 — ZjeF ti(a)>1—¢
holds. In that case V = {x | ZJEE ti(x) > 1 — ¢} is an open neighbourhood
ofa. If k ¢ E, x € V and #;(x) > ¢, then f(x) + ZjeE ti(x) > 1. This is
impossible. Hence for each a € X there exists an open neighbourhood V(a) such
that only a finite number of functions ¢; have a value greater than ¢ on V(a). Let
$jn(x) = max(s;(x) —n~1,0) for j € J andn € N. By what we have just shown,
the s; , are locally finite for fixed 7. The claim now follows from (13.1.5). O

It is a useful fact that arbitrary partitions of unity can be reduced to countable
ones. The method of proof is inspired by the barycentric subdivision of a simplicial
complex. Let U = (U; | j € J) be a covering of the space Z with subordinate
partition of unity T = (¢; | j € J). For each finite set £ C J we set g (z) =
max (0, min;eg 1;(z) —max;¢ s t;(z)). The function g, is continuous, since 7 is
locally finite. From this definition one verifies:

(13.1.8) Lemma. If gp(x) # 0 # gr(x), then either E C F or F C E. The
family (|E\qg | E C J finite) is a locally finite partition of unity. O

(13.1.9) Corollary. Let U(E) = 510, 1]. Then U(E)NU(F) # @and|E| = | F|
implies E = F. We set U, = ]—[IE|=n U(E) and define t,: U, — [0,1] by
| U(E) = |E|qg. Then (t, | n € N) is a numeration of (U, | n € N). O

Suppose the functions ¢; are non-zero. Let N be the nerve of the covering
(tj_l]O, 1] | j € J). Then the nerve of the covering (qEI]O, 1] | E C J finite) is
the barycentric subdivision of N.

13.2 The Homotopy Colimit of a Covering

Let K = (V, S) be a simplicial complex. We consider it as a category: The objects
are the simplices, the morphisms are the inclusions of simplices. A contravariant
functor X : K — TOP is called a simplicial K -diagram (in TOP). It associates to
each simplex s a space X and to each inclusion # C s a continuous map r;: X; —
X;. We also have a covariant functor A: K — TOP which A(s) = { >, < to? |
ty € 1,) t, = 1}, and for an inclusion ¢ C s we have the canonical inclusion
ij: A(t) = A(s). The geometric realization | X | of a K-diagram X is the quotient
of [ [, X5 x A(s) with respect to the relation

Xy x A(s) 3 (x,i}(a) ~ (r] (x),a)) € X; x A(t).

Restriction to the n-skeleton K” yields a functor X" : K" — TOP. In | X| we have
the subspace | X |* which is the image of the X x A(s) with dim s < n. Since | X"|
is a quotient of the sum of these products we obtain a continuous map | X" | — | X|".
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(13.2.1) Proposition. The space |X| is the colimit of the subspaces |X|". The
canonical map |X"| — |X|" is a homeomorphism. There exists a canonical
pushout diagram

]—[s,dim.y:n X5 X 8A(S) L> |Xn—1|

! |

q)n
]_[s,dims=n XS X A(S) O |Xn|

The attaching map " is defined as follows: dA(s) is the union of the i} A(t), where
the t C s have one element less than s. The map ¢" is defined on Xy x if A(s) by
r$ x (%)~ composed with the canonical map into | X"~ 1|. O

Let U = {U; | j € J} be a covering of a space X. For each finite non-empty
E C J we write Ug = ();c U;. We define a subspace C(U) of X x [[;c; 1,
I; =1, as the set of families y = (x;¢;) such that:

(1) Only a finite number of the #; are non-zero.

2) >, =1

Q) IfJ(y) =1{j € J |t; # 0} thenx € Uy,).
We have coordinate maps pr = pr©: C(U) — X, (x;;) + xandt;: C(U) — I,
(x:t;) — t;. They are restrictions of the product projections and therefore continu-
ous. The ¢; form a point-finite partition of unity on C(U). We view C(U) via pr©
as a space over X .

We define a second space B(U) with the same underlying set but with a new
topology. Recall the nerve N(U) of the covering U. We have the simplicial N(U)-
diagram which associated to a simplex E of the nerve the space Ug and to an
inclusion F C E of simplices the inclusion rl‘? : Ug — Ufg. The space B(U) is
the geometric realization of this N(U)-diagram. Thus B(U) is the quotient space
of [ [z Ug x A(E) by the relation

Ug x A(E) 3 (x,dE (a)) ~ GE(x),a) € Ur x A(F).

The sum is taken over the finite non-empty subsets £ of J. Let A(E)° be the
interior of A(E) and dA(E) its boundary. Then each element of B(U) has a
unique representative of the form (x;7) € Ug x A(E)® for a unique £E. We can
interpret this element as an element of C(U), and in this manner we obtain a
bijection of sets p: B(U) — C(U). This map is continuous, since the canonical
maps Ug x A(E) — C(U) are continuous. The space B(U) has a projection
pr = pr® onto X and p is a map over X.

(13.2.2) Proposition. The map p is a homotopy equivalence over X .

Proof. We construct a map 7 : C(U) — B(U). For this purpose we choose a lo-
cally finite partition of unity (z;) subordinate to the open covering ¢ j_l]O, 1]of C(U).
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Then we define
miy = (xi) = (g () =z
The map is well-defined and continuous: Let j € J(z),1ie., 0 # #;(z) = 7;(¥)
hence J(z) C J(y)and x € J(z); thisshowsthatz € B(U). Let W C C(U) be an
open set such that J(W) = {j | t;|W # 0} is finite. Let y = (x;¢;) € W. Then
J(W) C J(y), therefore mr factors on W through amap W — U w) x A(J(W)),
and this shows the continuity.
A homotopy prr =~ idc(y) is defined by

(.1) = ((x:),0) = (s 28 + (1 = O)75).

This assignment is clearly well-defined and continuous. A homotopy mp =~ id is
defined by the same formula (y;t) +— (x;¢¢;(y) + (1 —t)7;p(y)). In order to
verify the continuity, we let again W be as above, but now considered as a subset
of B(U). We consider the composition with Xg x A(E) — B(U). The formula
for the homotopy on the pre-image of W has an image in Xg x A(E). a

Let B(U)" be the subspace of B(U) which is the image of the Ug x A(E) with
|E| <n+ 1. We state (13.2.1) for the special case at hand.

(13.2.3) Proposition. B(U) is the colimit of the sequence of subspaces B(U)". The
canonical map | [4im g<p UE X A(E) — B(U)" is a quotient map. The inclusion
B"~' C B" is obtained via a pushout diagram

[iim £=n UE X 0A(E) L B(U)"!

| |

]—[dimE=n UE x A(E) L B(‘U)n

The map ky, is defined on Xg x 0A(E) as follows: Let F C E be a proper subset.
Then ky, is defined on Xg x A(F) by Xg x A(F) C Xp x A(F) — B*™. [

(13.2.4) Proposition. Let U be numerable. Then the projections C(U) — X and
B(U) — X are shrinkable.

Proof. Let (tr; | j € J) a numeration of U. Then x — (x;7;(x)) is a section
s of pr€ and ((x;27),t) = (x;tt; + (1 — £)7;(x)) is a homotopy from spr€ to
the identity over X. Thus pr€ is shrinkable, and (13.2.2) shows that also pr? is
shrinkable. O

For some applications we need a barycentric subdivision of B(U). Recall that
we have the barycentric subdivision N'(U) of the nerve of U. An n-simplex of
N'(U) is an ordered set T = (Eg & E1 & -+ & E,) such that Ug, # 0. We
write ¢(t) = E,. We have the N’'(U)-diagram which associates to T the space
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X4(r) and to o C 7 the inclusion X, ;) C X4(s). Let B'(U) denote the geometric
realization of this N’(U)-diagram. Since the simplices are ordered, we can replace
A(7) by the standard simplex A[n] spanned by [r] = {0, 1,...,n}.

(13.2.5) Remark. In the case of the barycentric subdivision the pushout diagram
in (13.2.3) reads as follows:

kn
Heea, Xq@ x 0A" —— B'(U)"!

|+ |-

K»
[iea, Xq@ x A" —— B/(U)".

The sum is over the set A, = {(09,...,0n) |00 & --+ & 0u, 0, C J finite}, and
q(0g,...,0n) = Oy. <

13.3 Homotopy Equivalences

The main result (13.3.1) of this section asserts that being a homotopy equivalence
is in a certain sense a local property.

(13.3.1) Theorem. Let p: X — Bandq: Y — B bespacesover Band f: X —Y
amap over B. Let X = (X; | j € J) bea coveringof X and¥ = (Y; | j € J)
a covering of Y. Let f(X;) C Y; and assume that for each finite E C J the
map g: Xg — Yg induced by f is a homotopy equivalence over B. Then the
induced map B(f): B(X) — B(¥) is a homotopy equivalence over B. Thus if
the coverings X, and Y are numerable, then f is a homotopy equivalence over B.

Proof. From (5.3.4) and (13.2.3) we prove inductively that the induced maps
B(X)* — B(¥Y)" are h-equivalences. Now we use (5.2.9), in order to show that
Bf is an h-equivalence. In the case of numerable coverings we also use (13.2.4).

O

(13.3.2) Remark. In the situation of (13.3.1) we can conclude that f is a homotopy
equivalence, if the projections px : B(X) — X and py are homotopy equivalences.

<

(13.3.3) Theorem. Let p: X — B and q: Y — B be spaces over B and
f:X — Y amap over B. Let (U; | j € J) be a numerable covering of B.
Let f;: p~Y(U;) — q~Y(U;) be the map induced by f over U;. Suppose each f;
is a fibrewise homotopy equivalence. Then f is a fibrewise homotopy equivalence.

Proof. The hypothesis implies that f is a fibrewise homotopy equivalence over
each set V' C V;. We can therefore apply (13.3.1). O
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We say that a covering (U; | j € J) of B is null homotopic if every inclusion
U; C B is null homotopic.

(13.3.4) Theorem. Let f: X — Y beamap over Bfromp: X - Btog: Y — B.
Assume that p and q are fibrations. Suppose B has a numerable null homotopic
covering (V; | j € J) and that each path component of B contains a point b
such that f is a homotopy equivalence over b. The f is a fibrewise homotopy
equivalence.

Proof. Let V; C B be homotopic to the constant map V; — {b(j)}. We can
assume that f5(;): Xp(;y = Yp()) is an h-equivalence. By the homotopy theorem
for fibrations we obtain a homotopy commutative diagram of maps over V;

V) — g )

J{(l) J{(Z)
id X fp(j)

Vi X Xp(j) —————V; X Ya(y)

with fibrewise homotopy equivalences (1) and (2). Hence f; is a fibrewise equiva-
lence and we can apply (13.3.3) O

Problems

1. For each j € J we let C(U); = pr~!'(U;) and similarly for B. Then the partial
projection maps per: C(UW; - U; and prf: B(U); — Uj are shrinkable.

2. If the coverings in (13.3.1) are open, then fi: [Z, X] — [Z, Y] is for each paracompact
Z abijection. The canonical projection p: B(X) — X induces for a paracompact space Z
a bijection px: [Z, B(X)] — [Z, X].

13.4 Fibrations

(13.4.1) Theorem. Let V = (V; | j € J) be a covering of B and p: E — B
a continuous map. Assume that the map p; p (B ;) — Bj induced by p is for
each j € J afibration. If the covering 'V is numerable, then p is a fibration. If the
covering 'V is open, then p has the HLP for paracompact spaces.

Proof. We have to solve a homotopy lifting problem (left diagram)

a

X——F Y —E
[ [
XxI-—"5B XxI "B
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We form the pullback of p along £ (right diagram). The initial condition a yields
a section sg of ¢ over X x 0. A lifting of 4 with this initial condition amounts to
a section s of ¢ which extends sg. We pull back the numerable covering of B to a
numerable covering of X x /. There exists anumerable covering U = (U | k € K)
of X such that g is a fibration over the sets Uy x I (Problem 1). We begin by
constructing a lifting #: B(U) x I — E of pr® which extends the lifting #o over
B(U) x 0 determined by s¢. The lifting is constructed inductively from partial
liftings ¢, over B(U)" x I. The induction step is again based on the pushout
diagram (13.2.3), now multiplied by /. The extension of the lifting #,, amounts to
solving a lifting problem of the type

L[UE x QA(E) x I UA(E) x0) ——= Y

l P Jq

[JTUE X A(E) x | ——— X x [

and this is possible (by (5.5.3)), because Ug x A(E) x I is mapped into a subset
over which ¢ is a fibration. If the covering U is numerable we compose it with a
section of pr® and obtain the desired extension of so. O

(13.4.2) Theorem. Let p: Y — X be a continuous map. LetY = (Y; | j € J)
be a family of subsets of Y and X = (X; | j € J) a numerable covering of X.
Assume that p(Y;) C X; and that for finite E C J the map pg: Yg — Xg
induced by p is shrinkable. Then p has a section. (Note that Y is not assumed to
be a covering of Y .)

Proof. We work with the barycentric subdivision B’(X). We show the existence of a
maps: B'(X) — Y suchthat ps = prB. The proof does not use the numerability of
the covering. We constructinductively maps s™ : B’(X)" — Y with the appropriate
properties and an additional property which makes the induction work.

The map B® = [ [z Xg — Y is given as follows: We choose sections Xg —
YE of pg and compose them with the inclusion Yg C Y.

Suppose 5”1 is given. We want to extend

sk, [[(Xg@x) x 0A[n]) — E

over [ [(X4(r) X An]). If © = (Ey, ..., E,) we impose the additional hypothesis
that the image of X;(;) X dA[n] under s~ 'k, is contained in Yg,. The construction
of s° agrees with this requirement. Under this additional hypothesis we have a
commutative diagram

n—lkn
Xy(x) X 0A[n] N YE,

! |

Xq(r) % XE0~
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From (5.5.3) we see that s" 'k, can be extended over [ [ X, () x A[n]. With an
extension we construct s” via the pushout (13.2.5). We show that s” satisfies the
additional hypothesis. Given t = (Ey, ..., E,4+1) we describe

kn+1: Xy X dA[n + 1] — B(U)".

Let d; : A[n] — Aln]; be the standard map onto the i-th face of A[n + 1] with
inverse homeomorphism e;. Let 9;: X4(:) — Xgy(;r) be the inclusion where
it = (Eo,...,Ei—1,Ei+1,..., Ent1). The restriction of k,1; to the subset
Xy() X Aln+1]; is K, (9; X e;). By construction of s” the image of 5" K, (9; x e;)
is contained in Xg, (fori > 0) or Xg, (fori = 0). But Xg, C Xg,, hence s” has
the desired property.

If X is numerable, then pr has a section ¢ and st is a section of p. O

(13.4.3) Theorem. Let p: X — B be a continuous map and X = (X; | j € J)
a numerable covering of X. Assume that for each finite E C J the restriction
PE: XE — B is a fibration (an h-fibration, shrinkable). Then p is a fibration (an
h-fibration, shrinkable).

Proof. Recall that for a fibration p: X — B the canonical map r: X! — W(p)
is shrinkable (see (5.6.5)), and that p is a fibration if this map has a section (see
(5.5.1)). If the pg are fibrations, then the rg : X é — W(pEg) are shrinkable. The
W(p;) form a numerable covering of W(p). Theorem (13.4.2) shows that r has a
section, hence p is a fibration.

Assume that the pg are shrinkable, i.e., homotopy equivalences over B. We
apply (13.3.1) and see that p is shrinkable.

Assume that the pg are h-fibrations. The map p is an h-fibration if and only if
the canonical map b: W(p) — X is a homotopy equivalence over B (this can be
taken as a definition of an h-fibration). The W(p,) form a numerable covering of
W(p) and the bg: W(pg) — XEg are homotopy equivalences over B, since pg
are h-fibrations. Thus we are in a position where (13.3.1) can be applied. O

The hypothesis of (13.4.3) is satisfied if the X g are either empty or contractible.

Problems

1. Ifg: M — N X [a, b] is a fibration over N x [a,c] and N x [c, b], then ¢ is a fibration.
2. Let X = (X; | j € J) be a numerable covering of X. If the spaces X g have the
homotopy type of a CW-complex, then X has the homotopy type of a CW-complex.

3. Let p: E — B be an h-fibration. Suppose B and each fibre p~! (b) have the homotopy
type of a CW-complex. Then E has the homotopy type of a CW-complex.



Chapter 14
Bundles

Bundles (also called fibre bundles) are one of the main objects and tools in topology
and geometry. They are locally trivial maps with some additional structure. A
basic example in geometry is the tangent bundle of a smooth manifold and its
associated principal bundle. They codify the global information that is contained
in the transitions functions (coordinate changes).

The classification of bundles is reduced to a homotopy problem. This is achieved
via universal bundles and classifying spaces. We construct for each topological
group G the universal G-principal bundle EG — BG over the so-called classifying
space BG. The isomorphism classes of numerable bundles over X are then in
bijection with the homotopy set [X, BG].

The classification of vector bundles is equivalent to the classification of their
associated principal bundles. A similar equivalence holds between n-fold covering
spaces and principal bundles for the symmetric group S,. This leads to a different
setting for the classification of coverings.

From the set of (complex) vector bundles over a space X and their linear algebra
one constructs the Grothendieck ring K(X). The famous Bott periodicity theorem
in one of its formulations is used to make the functor K(X) part of a cohomology
theory, the so-called topological K -theory. Unfortunately lack of space prevents us
from developing this very important aspect.

Classifying spaces and universal bundles have other uses, and the reader may
search in the literature for information.

The cohomology ring H*(BG) of the classifying space BG of a discrete group
G is also called the cohomology of the group. There is a purely algebraic theory
which deals with such objects.

If X is a G-space, one can form the associated bundle EG xg X — BG. This
bundle over BG can be interpreted as an invariant of the transformation group X.
The cohomology of EG xg X is a module over the cohomology ring H*(BG)
(Borel-cohomology). The module structure contains some information about the
transformation group X, e.g., about its fixed point set (see [7], [43]).

14.1 Principal Bundles

Let G be a topological group. In the general theory we use multiplicative notation
and denote the unit element of G by e. Letr: E xG — E, (x,g) — xg be a
continuous right action of G on E, and p: E — B a continuous map. The pair
(p,r) is called a (right) G -principal bundle if the following axioms hold:
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(1) For x € E and g € G we have p(xg) = p(x).

(2) For each b € B there exists an open neighbourhood U of b in B and a G-
homeomorphism ¢: p~!(U) — U x G which is a trivialization of p over U
with typical fibre G. Here G actson U x G by ((u, h), g) — (u, hg).

If we talk about a G-principal bundle p: E — B, we understand a given action of G
on E. From the axioms we see that G acts freely on E. The map p factors through
the orbit map ¢: £ — E/G and induces a continuous bijection h: E/G — B.
Since g and p are open maps, hence quotient maps, / is a homeomorphism. Thus
G -principal bundles can be identified with suitable free right G-spaces. In contrast
to an arbitrary locally trivial map with typical fibre G, the local trivializations in a
principal bundle have to be compatible with the group action. In a similar manner
we define left principal bundles.

A G-principal bundle with a discrete group G is called a G -principal covering.
The continuity of the action r is in this case equivalent to the continuity of all
right translations rg: E — E, x — xg. This is due to the fact that £ x G is
homeomorphic to the topological sum L ,ecg E x {g}, if G is discrete.

Let E x G — E be a free action and set C(E) = {(x,xg) | x € E, g € G}.
Wecallt =tg: C(E) — G, (x,xg) — g the translation map of the action.

(14.1.1) Lemma. Let p: E — E/G be locally trivial. Then the translation map
is continuous.

Proof. Let W = p~1(U) C E be a G-stable open set which admits a trivialization
Y: UxG — W. The pre-image of (W x W)NC(E) under ¢ x ¢ is {(u, g, u, h) |
ueU, g.heG}andt o (Y x ) is the continuous map (u, g, u,h) — g~ 'h.

O

A free G-action on E is called weakly proper if the translation map is continu-
ous. It is called proper if, in addition, C(E) is closed in £ x E.

(14.1.2) Proposition. A free action of G on E is weakly proper if and only if
0 ExG — C(E), (x,g) — (x,xg) is a homeomorphism.

Proof. The map ¥: C(E) - E x G, (x,y) — (x,tg(x,y)) is a set-theoretical
inverse of ’. It is continuous if and only if £ is continuous. O

Let E carry a free right G-action and F aleft G-action. We have a commutative
diagram

pry
ExXF——FE

|» L

ExgF-15E/G

with orbit maps P and p and g = pr; /G.
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(14.1.3) Proposition. A free right G action on E is weakly proper if and only if for
each left G-space F the diagram is a topological pullback.

Proof. We compare the diagram with the canonical pullback

X%E

[ L

ExgF-1*5E/G

with X = {((x, f),y) € (Exg F) X E | p(x) = p(y)}anda = pry, b =
pr,. There exists a unique map A: E x F — X such that bA = pr;, al = P,
ie., A(x, f) = ((x, f),x). The diagram in question is a pullback if and only
if A is a homeomorphism. Suppose this is the case for the left G-space G. The
homeomorphism £ xg G — E, (x, g) — xg transforms ¢ into p, X into C(FE)
and A into (x, g) — (xg, x). The latter is, in different notation, 6’. Hence 6’ is a
homeomorphism if the diagram is a pullback for ' = G.

Conversely, let the action be weakly proper. The map

o X = {((x, £, 9) | px) = p(0)}y = ExF, ((x, f),3) = (7,106, )7 f)

is continuous. One verifies that ji induces amap u: X — E x F. The equalities

HACx, f) = p((x, £),x) = (x5, 071, 0) ) = (x, f)
show that  is an inverse of A. O

(14.1.4) Proposition. Let G act freely and weakly properly on E. The sections
of q: E xg F — E/G correspond bijectively to the maps f: E — F with the
property f(xg) = g~ ! f(x); here we assign to f the section sy : x > (x, f(x)).

Proof. It should be clear that s¢ is a continuous section. Conversely, let s: B —
E xg F be a continuous section. We use the pullback diagram displayed before
(14.1.3). Ityields an induced section o of pr; which is determined by the conditions
pryooc =idand Poo =so p. Let f = pryoo: E — F. Then pryo(xg) =
xg = pry(o(x)g), since o is a section and pr; a G-map. (The right action on
E x Fis (e, f.g) — (eg, g~ ' f).) The equalities Po(xg) = sp(xg) = sp(x) =
Po(x) = P(o(x)g) hold, since o is an induced section and P the orbit map. Since
o(xg) and o (x)g have the same image under P and pr,, these elements are equal;
we now apply the G-map pr, and obtain finally f(xg) = g~ ! f(x). O

(14.1.5) Proposition. Let the free G-action on E be weakly proper. Then the orbit
map p: E — E/G = B is isomorphictopr: B x G — B, if and only if p has a
section.
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Proof. Let s be a section of p. Then B x G — E, (b,g) + s(b)g and E —
B x G, x+ (p(x),t(spx, x)) are inverse G-homeomorphisms, compatible with
the projections to B. Conversely, pr has a section and hence also the isomorphic
map p. O

(14.1.6) Proposition. Let X and Y be free G-spaces and ®: X — Y a G-map. If
¢ = ®/G is a homeomorphism and Y weakly proper, then ® is a homeomorphism.

Proof. X is weakly proper, since the translation map of X is obtained from the
translation map of ¥ by composition with & x ®. We have to find an inverse
V:Y — X. By (14.1.4), it corresponds to a sectionof ny : (Y x X)/G — Y/G.
We have the section s: x — (x, ®(x))of nx: (X xY)/G — X/G. Let ¢ be the
inverse of ¢. With the interchange map t: (X xY)/G — (Y x X)/G we form
o = t o s o . One verifies that ¢ is a section of wy. O

Let a commutative diagram below with principal G-bundles p and g be given,
and let F be a G-map. Then F or (F, f) is called a bundle map.

X

-+,
q p
o

ON—~

If f is a homeomorphism, then F is a homeomorphism (see (14.1.6)). If f is the
identity, then F is called a bundle isomorphism.

Given a principal bundle p: X — Bandamap f: C — B, we have a pullback
diagram as above with Y = {(c,x) | f(c) = p(x)} C C x X. The maps ¢g and
F are the restrictions of the projections onto the factors. The G-action on Y is
(c,x)g = (c,xg). If pis trivial over V, then ¢ is trivial over f (V). Therefore
¢ is a principal bundle, called the bundle induced from p by f. Also F is a bundle
map. From the universal property of a pullback we see, that the bundle map diagram
above is a pullback.

(14.1.7) Proposition. Let U be a right G-space. The following are equivalent:
(1) There existsa G-map f: U — G.

(2) There exists a subset A C U such thatm: Ax G — U, (a,g) — agisa
homeomorphism.

(3) Theorbitmap p: U — U/ G is G-homeomorphic over U | G to the projection
pr: U/G xG — U/G.

4) U is afree G-space, p: U — U/ G has a section, and ty is continuous.

Proof. (1) = (2). Let A = f~'(e)andv: U — Ax+> x - f(x)"!(x). Then
(v, f): U - A x G is an inverse of m.
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(2) = (3). The G-homeomorphism m induces a homeomorphism m /G of the
orbit spaces. We have the homeomorphisme: A — (Ax G)/G,a + (a,e). With
these datam o (¢ x id) om/G = pr.

(3) > 4). If p: U/G x G — U is a G-homeomorphism over U/G, then
the G-action is free and x +— ¢(x,e) is a section of p. The translation map of
U/G x G is continuous and hence, via ¢, also ty.

(4) = (1). Lets: U/G — G be asection. ThenU — G, u — ty(sp(u), u)
is a G-map. O

A right G-space U is called trivial if there exists a continuous G-map
f: U — G into the G-space G with right translation action. A right G-space
is called locally trivial if it has an open covering by trivial G-subspaces.

(14.1.8) Proposition. The total space E of a G-principal bundle is locally trivial.
If E is locally trivial, then E — E /G is a G-principal bundle. O

14.1.9 Hopf fibrations. Consider S?"~! C C” as a free S!-space with action
induced from scalar multiplication. Let U; be the subset of points z = (zx) with
z; # 0. The map z +> z;|z;|~! shows that U; is a trivial S!-space. The orbit
space of this action is CP"~!. The S!-principal bundle p: §2"~1 — CP" 1,
i.e., the orbit map, is called a Hopf fibration. There is a similar Z/2-principal
bundle S”~! — RP"~! onto the real projective space and an S3-principal bundle
S4n=1 _ H P"~! onto the quaternionic projective space. <&

(14.1.10) Proposition. Let f: X — Y be a G-map and py: Y — Y/G a G-
principal bundle. Then the diagram

x—L oy

e n

X/G6——Y/G
is a pullback.

Proof. LetU C Y bea G-setwithaG-maph: U — G. Thenho f: f~1(U) —
U — G is a G-map. Hence px is a G-principal bundle. The diagram is therefore
a bundle map and hence a pullback. O

We say, amap f: X — Y has local sections if each y € Y has an open
neighbourhood V and asections: V' — X of f over V; the latter means fs(v) = v
forallv e V.

(14.1.11) Propeosition. Let G be a topological group and H a subgroup. The
quotient map q: G — G/H is an H -principal bundle if and only if g has a section
over some neighbourhood of the unit coset.
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Proof. A locally trivial map has local sections. Conversely, let s: U — G be a
section of g over U. The map #¢ is continuous. For each k € G we have the H-
equivariant map kq~'(U) — H, kg — s(q(g))~'g. We thus can apply (14.1.8)
and (14.1.7). O

Actions with the properties of the next proposition were called earlier properly
discontinuous.

(14.1.12) Proposition. Let E x G — E, (x, g) — xg be afree right action of the
discrete group G. The following assertions are equivalent:

(1) The orbitmap p: E — E/G is a G-principal covering.
(2) Each x € E has a neighbourhood U, such that U N Ug = @ for each g # e.
(3) The sett~'(e) is open in C.

(4) The map t is continuous.

Proof. (1) = (4) holds by (14.1.1).

(4) = (3). The set {e} C G is open, since G is discrete.

(3) = (2). We have t(x,x) = e. Since t~!(e) is open, there exists an open
neighbourhood U of x in E such that (U x U) N C C t~(e). Let U N Ug # @,
say v = ug for u,v € U. Then (u,v) = (u,ug) € (U x U) N C, hence
t(u,ug) =g =e.

(2) = (1). Let U be open. Then U x G — UG, (u, g) — ug is a G-homeo-
morphism, hence UG an open trivial G-subspace. O

(14.1.13) Example. Let G be a closed discrete subgroup of the topological group
E. Then the action G x E — E, (g, x) — gx is free and has property (4) of the
previous proposition. Examples are Z C Ror Z C C. <

(14.1.14) Example. The map g: R — S, ¢ > exp(2mit) has kernel Z. There-
fore there exists a bijective map f: R/Z — S! such that fp = g. Since g is an
open map, g is a quotient map and therefore f a homeomorphism. By the previ-
ous example, g is therefore a covering. Similarly exp: C — C* is seen to be a
covering. &

(14.1.15) Example. Let G be a Lie group and H a closed subgroup. Then the quo-
tient map p: G — G/H is an H -principal bundle. In the chapter on differentiable
manifolds we show that G/H carries the structure of a smooth manifold such that
p is a submersion. A submersion has always smooth local sections. <

We construct locally trivial bundles from principal bundles. Let p: £ — B
be a right G-principal bundle and F a left G-space. The projection £ x F — E
induces, via passage to orbit spaces, ¢ : E xg FF — B. The map g is locally trivial



334 Chapter 14. Bundles

with typical fibre F. A bundle chart ¢: p~'(U) — U x G of p yields a bundle
chart

U = p ' (U)xg F -2 (Ux G)yxg F=UxF

for g. We call g the associated fibre bundle with typical fibre F, and G is said to
be the structure group of this fibre bundle. The structure group contains additional
information: The local trivializations have the property that the transition functions
are given by homeomorphisms of the fibre which arise from an action of an element
of the group G.

Let p: Y — B be aright G-principal bundle. It may happen that there exists
a right H -principal bundle g: X — Y for a subgroup H C G and a G-homeo-
morphism p: X xg G — Y over B. In that case (g, p) is called a reduction
of the structure of p. One can consider more generally a similar problem for
homomorphisms o: H — G.

(14.1.16) Example. Let E — B be a G-principal bundle and H C G a subgroup.
Then E xg G/H — E/H, (x,gH) + xgH is a homeomorphism. Therefore
E/H — E/G,xH + xG is isomorphic to the associated bundle £ xg G/H —
E/G. From a subgroup K C H C G we obtain in this manner G/ K — G/H as
a bundle with structure group H and fibre H/K, if G — G/H has local sections.

If X isa G-spaceand H <1 G, then G/H actson X/H by (xH,gH) — xgH.
The quotient map X/H — X /G induces a homeomorphism (X/H)/(G/H) =
X/G. In particular, E/H — E/G becomes in this manner a G/H -principal
bundle. <

One can “topologise” various algebraic notions in analogy to the passage from
groups to topological groups. An important notion in this respect is that of a small
category.

A (small) topological category C consists of an object space Ob(C) and a
morphism space Mor(C) such that the structure data

s: Mor(C) — Ob(C) (source),

r: Mor(C) — Ob(C) (range),

i: Ob(C) — Mor(C) (identity),

¢: Mory(C) — Mor(C) (composition)

are continuous. Here
Mor,(C) = {(B, @) € Mor(C) x Mor(C) | s(B) = r()}

carries the subspace topology of Mor(C ) x Mor(C). For these data the usual axioms
of a category hold. In a groupoid each morphism has an inverse. In a topological
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groupoid we require in addition that passage to the inverse is a continuous map
Mor(C) — Mor(C).

A topological group can be considered as a topological groupoid with object
space a point. Principal bundles yield a parameterized version.

(14.1.17) Example. Let E be a free right G-space with a weakly proper action.
Let p: E — B be a map which factors over the orbit map ¢: E — E/G and
induces a homeomorphism E£/G =~ B. We construct a topological groupoid with
object space B. The product p x p: E x E — B x B factors over the orbit map
Q. EXE — (EXE)/G, (a,b) — [a,b] of the diagonal action and induces

(s,r): (ExXE)/G — B x B.

We define (E x E)/G as the morphism space of our category and s, r as source,
range. The diagonal of E inducesi: B = E/G — (E x E)/G, and this is defined
to be the identity. We define the composition by

[a.b] o [x,y] = [x.b-1(y.a)7"]

with the translation map ¢ = ¢g of E. One verifies that composition is associative
and continuous. (The space Mor; is a quotient space of £ x C(E) x E.) The
morphism [b, a] is inverse to [a, b], hence the inverse is continuous and we have
obtained a topological groupoid. <

Problems

1. A free action of a finite group G on a Hausdorff space E is proper.
2. The action R ~0 x R* — RZ~0, ((x, y),t) — (tx,t~y) is a non-trivial R*-principal
bundle. Determine the orbits and the orbit space.
3. Let E be a space with a free right G-action. Then the translation map ¢ £ is continuous if
and only if the pullback of p along p is a trivial G-space.
4. The continuous maps £ xg F1 — E Xg F> over E/G correspond via (x,u) +
(x,a(x,u)) to the continuous maps «: E x F; — F, with the equivariance condition
ga(x,u) = al(xg ' gu).

If E is connected and Fp, F> discrete, then o does not depend on x € E and has the
form B o pr with a uniquely determined equivariant map B: Fi — F».
5. The groupoid (14.1.17) has further properties. There exists at least one morphism be-
tween any two objects. The map (s,r): (E x E)/G — B x B is open.
6. Reconsider in the light of (14.1.17) the topological groupoid that was used in the deter-
mination of the fundamental groupoid of S!.

14.2 Vector Bundles

Vector bundles are, roughly speaking, continuous families of vector spaces. Sup-
pose given a continuous map p: X — B and the structure of an n-dimensional
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R-vector space on each fibre X;, = p~!(b). A bundle chart or a trivialization over
the open basic set U C B for these data is ahomeomorphism ¢ : p~!(U) — U xR"
over U which is fibrewise linear. A set of bundle charts is a bundle atlas, if their
basic domains cover B. The data p: X — B together with the vector space struc-
tures on the fibres are an n-dimensional real vector bundle over the space B if a
bundle atlas exists. Thus a vector bundle is in particular a locally trivial map. In a
similar manner one defines complex vector bundles or quaternionic vector bundles.
A vector bundle §: E(§) — B is called numerable, if there exists a numerable
covering U of B such that £ is trivial over the members U € U. (This notion is
also used for other types of locally trivial bundles.) A bundle has finite type, if it
has a finite bundle atlas.
Let (U, ) and (V, 1) be bundle charts for p. Then the transition map is

Yol (UNV)xR" - (UNV)xR", (x,v) ~ (x,gx(v))

with g, € GL,(R). The assignment g: U NV — GL,(R), x + g, is continuous.

A bundle atlas is said to be orienting, if the g, have positive determinant. If
an orienting atlas exists, then the bundle is orientable. An orientation of a vector
bundle p: E — B consists of a vector space orientation of each fibre p~1(b) with
the property: For each x € B there exists a bundle chart (U, ¢) about x such that
¢ transports for each b € U the given orientation on p~!(b) into the standard
orientation of R”. A chart with this property is called positive with respect to the
given orientation. The positive charts form an orienting atlas, and for each orienting
atlas there exists a unique orientation such that its charts are positive with respect
to the orientation. A complex vector space has a canonical orientation. If one uses
this orientation in each fibre, then the bundle, considered as a real bundle, is an
oriented bundle.

Let&: E(§) — B and n: E(n) — C be real vector bundles. A bundle mor-
phism & — nover ¢: B — C is a commutative diagram

E®) —2= E(p)

L, b

B—C

with a map ® which is fibrewise linear. If ® is bijective on fibres, then we call the
bundle morphism a bundle map. Thus we have categories of vector bundles with
bundle morphisms or bundle maps as morphisms. The trivial n-dimensional bundle
is the product bundle pr: B x R” — B. More generally, we call a bundle trivial if
it is isomorphic to the product bundle.

(14.2.1) Proposition. A bundle map over the identity is a bundle isomorphism.
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Proof. We have to show that the inverse of ® is continuous. Via bundle charts this
can be reduced to a bundle map between trivial bundles

UxR"—UxR",  (u,v) ~ (4, gu(v)).

_1 . . . . _1 .
In that case (4,v) +— (u,g, (v)) is a continuous inverse, since u +— g, ' is
continuous. O

(14.2.2) Proposition. Ifthe previous diagram is a pullback in TOP and n a vector
bundle, then there exists a unique structure of a vector bundle on & such that the
diagram is a bundle map.

Proof. Since @ is bijective on fibres, we define the vector space structures in such
a way that @ becomes fibrewise linear. It remains to show the existence of bundle
charts.

If n is the product bundle, then & can be taken as product bundle. If n has
a bundle chart over V, then & has a bundle chart over ¢~ (V'), by transitivity of
pullbacks. O

We call £ in (14.2.2) the bundle induced from 1 along ¢ and write occasionally
& = ¢™*n in this situation. The previous considerations show that a bundle map is
a pullback. (Compare the analogous situation for principal bundles.)

A bundle morphism over id(B) has for each b € B arank, the rank of the linear
map between the fibres over b. It is then clear what we mean by a bundle morphism
of constant rank.

Asubset E’ C E of ann-dimensional realbundle p: E — B isak-dimensional
subbundle of p, if there exists an atlas of bundle charts (called adapted charts)
¢: p~Y(U) - U x R" such that g(E' N p~1(U)) = U x (R¥ x 0). The restriction
p: E’ — B is then a vector bundle.

A vector bundle is to be considered as a continuous family of vector spaces. We
can apply constructions and notions from linear algebra to these vector spaces. We
begin with kernels, cokernels, and images.

(14.2.3) Proposition. Let o: & — &, be a bundle morphism over B of constant
rank and ay, the induced linear map on the fibres over b. Then the following hold:

(1) Kera = (Jpep Ker(ap) C E(&1) is a subbundle of &;.
(2) Im(a) = Upep Im(ap) C E(&2) is a subbundle of &.

(3) Suppose Coker() = \Upep E(E2)p/Im(ap) carries the quotient topology
from E(&,). Then, with the canonical projection onto B, Coker(«) is a vector
bundle.

Proof. The problem in all three cases is the existence of bundle charts. This is a
local problem. Therefore it suffices to consider morphisms

a: BxR"™ - BxR", (b,v) (b,ap(v))
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between trivial bundles.

We write K, = Ker(oy) and Ly = Im(ey). We fix b € B and choose
complements R” = K@ K' and R" = L@ L' for K = Kp and L = Ly.
Let g: R — K and p: R" — L be the projections with Ker(qg) = K’ and
Ker(p) = L’. Then

Vi RTOL > R"@® K, (v.w) > (ax(v) +w,q(v))

is anisomorphism for x = b, hence also an isomorphism for x in a neighbourhood of
b. Thus let us assume without essential restriction that y, is always an isomorphism.
Since «, has constant rank k, we conclude that K, N K’ =0and L, N L' = 0.
This fact is used to verify that

BxR"™ - Bx(LxK), (x,v) (x,pax(v),q))

Bx(K'xL)— BxR", (x,v,w)r (x,0,(v) + w)

are fibrewise linear homeomorphisms. The first one maps |, cg{x} x Ky onto
B x (0 x K) and the second one B x (K’ x 0) onto | J,cp{x} X Lx. Moreover,
the second induces a bijection of B x (0 x L) with |, cp{x} x R"” /L. Thus we
have verified (1)—(3) in the local situation. O

14.2.4 Tangent bundle of the sphere. Let
TS™ = {(x,v) | {(x,v) = 0} C " x R"*!

with the projection p: TS" — S” onto the first factor. The fibre p~!(x) is the
orthogonal complement of x in R”*!. These data define the tangent bundle of the
sphere. One can apply (14.2.3) to the family o : R"*! — R"*! v > (x,v)x of
orthogonal projections.

Recall the stereographic projections ¢+ : S” ~{%e,+1} — R”. The differential
of p_ o (p:Ll : R” ~0 — R" ~ 0 at x is the linear map

112 —2{x.§)x

c1*

R" - R", &

For ||x|| = 1 we obtain the reflection £ +— & — 2(x, & )x at the hyperplane
orthogonal to x. Let Uy = p~1(S" ~ {ey+1}). The differential of ¢ yields a
homeomorphism which is fibrewise linear and the diagram

D
Up — % S jrxge

| Jprl

S < {ﬂ:e,,+1} <ﬂ—:|:> R”.
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If we identify in R” x R” + R” x R” the point (x,v) € (R” ~ 0) x R” in the
lx]26—2(x.&)x

flf]#
(R" ~ 0 + R" ~ 0)/x ~ x]||x||~2 which is isomorphic to p: TS" — S™. We can
simplify the situation by identifying in D" x R" + D" x R” the point (x,v) €
S"~1 x R" in the first summand with (x, v — 2(x, v)x) in the second summand.

In the tangent bundle we have the subspace of tangent vectors of length 1. In
our case this is the space {(u,v) € §" x §" | (u,v) = 1}, the Stiefel manifold
V2(R*T1). We can obtain it from D" x $"~! 4 D" x §"~! by the identifica-
tion (x,v) ~ (x,v — 2(x,v)v). For even n we obtain from (10.7.8) the integral
homology of this Stiefel manifold.

For “smallest” structure groups of the tangent bundle of S” see [36]. The vector
field problem [3] is a special case of this problem. <

first summand with (W, ) then we obtain a vector bundle over S =

Important vector bundles in geometry are the tangent bundles of differentiable
manifolds and the normal bundles of immersed manifolds.

14.2.5 Tautological bundles. Let V' be an n-dimensional real vector space and
G (V) the Grassmann manifold of the k-dimensional subspaces of V. We set

E,(V)={(x,v) | x e G(V),vex} CG(V)xV.

We have the projections yx (V) = yr: Ex(V) — Gr(V), (x,v) — x, and the
fibre over the element x € G (V) is the subspace x. For this reason we call this
bundle the tautological bundle. 1t remains to verify that yy is locally trivial. For
this purpose we recall the O(k)-principal bundle p: Si(R") — G¢(R") from the
Stiefel manifold to the Grassmann manifold. The map

Sk(R™) xog) RF — Ex(R™),
((vl,...,vk),(/h,...,)Lk)) = ((vl,...,vk),ZAjvj)

is a fibrewise linear homeomorphism; it describes the tautological bundle as an
associated fibre bundle.

Here is a different argument. Suppose x is spanned by (vq, ..., vt) € Sg(R");
then py: R* — R", v > Zle(v, v; )v; is the orthogonal projection onto x. It
depends continuously on (vq,...,v) and induces a continuous map G (R") —

Hom(R"”, R"), x + px, and
Gr(R") x R" — Gi(R") x R", (x,v) = (x, px(v))

is a bundle morphism of constant rank with image Ex(R"). Now one can use
(14.2.3).

There exist analogous complex tautological bundles over the complex Grass-
mannians. <&
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14.2.6 Line bundles over CP". Let H: C"*! <~ 0 — CP" be the defining
C*-principal bundle. Let C (k) be the one-dimensional complex C*-representation
C* x C — C, (A, z) — AKz. We obtain the associated complex line bundle

H(k) = (C""!' < 0) x¢c+ C(—k) — CP".

Thus H (k) is the quotient of (C" 1 ~.0) x C under the equivalence relation (z, u) ~
(Az,Aku) for A € C*. We also have the S'-principal bundle §2*+! — C”
(the Hopf bundle). The inclusion $?"*! x C — (C"*! < 0) x C induces a
homeomorphism

§2n+1 o1 C(=k) — (C"M1 < 0) xcx C(—k).

The inverse homeomorphism is induced by (z,u) +— (||z] ™'z, lzll7*u). The
unit sphere bundle is S2"*! x¢1 S'(—k). The assignment z > (z, 1) induces a
homeomorphism
S/ Cpy — 82 x g1 ST(—k).
Here C,, C S is the subgroup of order m (roots of unity).
The bundles H (k) over CP" exist for | < n < co. We call the bundle H(1)
the canonical complex line bundle. For n = oo it will serve as a universal one-

dimensional vector bundle.
The tautological bundle over CP" = G{(C"*!)is H(—1), since

(C"1N0) xc+ C(1) — Ef(C"1Y),  (x,u) = ([x],ux)

is an isomorphism.

The sections of H (k) correspond to the functions f: C"*t! < 0 — C with the
property f(Az) = AK f(z), they are homogenous functions of degree k. This is the
reason to define H (k) with C(—k). &

Let g: E — B be aright G-principal bundle and V' an n-dimensional repre-
sentation of G. Then the associated bundle p: E xg V — B is an n-dimensional
vector bundle. A bundle chart ¢: ¢~ (U) — U x G for ¢ induces a bundle chart
g Y (U) xg V — U x V for p, and the vector space structure on the fibres of p is
uniquely determined by the requirement that the bundle charts are fibrewise linear.

We now show that vector bundles are always associated to principal bundles. Let
p: X — B be an n-dimensional real vector bundle. Let E3 = Iso(R”, X3) be the
space of linear isomorphisms. The group G = GL,(R) = Iso(R", R") = Aut(R")
acts freely and transitively on Ep from the right by composition of linear maps. We
have the set map

q: E() = E =lpep Ev > B, Ep — {b}

with fibrewise GL,, (R)-action just explained. If ¢: p~1(U) — U xR*, ¢p: X}, —
R" is a bundle chart of p, we define

¢ q7N(U) = [lper Eb = U xIso(R",R"), « € Ep > (b,¢p o)
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to be a bundle chart for g. The transition function for two such charts has the form
U NV)xAuwt(R") - (UNV)xAut(R"), (b,y) > (b, Y0, y).

This map is continuous, because b wapb_l is continuous. Therefore there
exists a unique topology on E in which the sets g~!(U) are open and the charts
¢ homeomorphisms. The fibrewise GL,,(R)-action on £ now becomes continuous
and ¢ is equivariant. This shows ¢: E — B to be a GL,(R)-principal bundle.
The evaluation Iso(R”, Xp) x R” — Xp, (f,u) — f(u) induces an isomorphism
E (&) xaL,®) R" = X(§) of vector bundles.

(14.2.7) Theorem. The assignment which associated to a GL, (R)-principal bundle
E — B the vector bundle E Xy, (r) R" — B is an equivalence of the category of
GL,, (R)-principal bundles with the category of n-dimensional real vector bundles;
the morphisms are in both cases the bundle maps.

Proof. The construction above shows that each vector bundle is, up to isomorphism,
in the image of this functor. The construction also associates to each bundle map
(F, f): £ = n between vector bundles a bundle map between principal bundles
which is given on fibres by

E(§)p = Iso(R", X(§)p) — Iso(R", X(n)r)) = E(M)r ).

and these isomorphisms are compatible with the original bundle maps, i.e., they
constitute a natural isomorphism. Therefore the functor is surjective on morphism
sets between two given objects. The injectivity is a consequence of the fact thata G-
map E(§)p, — E(n)r@) is determined by the associated linear map E(§), xg R" —
E(T])f(b) xg R" (where G = GL,,([R)). O

Problems

1. Determine an O(n)-principal bundle such that the associated vector bundle is the tangent
bundle of S”.
2. Consider in €t the set of points (zo, . . . , z;) which satisfy the equations

z§+z%+.-.+z3=o, lzol? + |z11% + -+ + |za|* = 2.

Show that this space is homeomorphic to the Stiefel manifold V5 (R”11). Show that V> (R3)
is the projective space R P3. Thus we have embedded this space into S°.

3. An n-dimensional real vector bundle is trivial if and only if it has n continuous sections
which are everywhere linearly independent.

4. The bundle H(k) over CP! is obtained from two trivial bundles pr;: C x C — C by
gluing over C* x C with the transition maps (z, w) + (z7 !, z ¥ w).

5. The complex tangent bundle of CP ! is H(2).

6. A bundle morphism J : £ — & of a real vector bundle which satisfies J2(x) = —x for
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each x € E(§) is called a complex structure on . If we define in each fibre the multiplica-
tion by i € C as the map J, then £ becomes a complex vector bundle. One has to verify the
local triviality as a complex bundle.

7. An oriented real vector bundle is associated to a GL, (R)-principal bundle. It is con-
structed as above using the orientation preserving isomorphisms Iso4 (R”, £~1(b)). There
exists an equivalence of categories analogous to (14.2.7).

A reduction of the structure group from GL,, (R) to GL;, (R) 4 corresponds to the choice of

an orientation of the vector bundle. The reductions of a GL,, (R)-bundle £ — B correspond
to the sections of E/GL,(R); — B; the latter is a twofold covering, the orientation
covering.
8. The simplest non-trivial vector bundle is a line bundle over S'. Its total space X can
be viewed as the (open) Mobius band [140, Werke II, p. 484]. A formal definition is
X = S! xg R, where G = {£1} acts on S! and R by (1, z) > Az. It is also associated
to the G-principal bundle ¢: S! — S!, z — z2 (where S! C C). Suppose the bundle
were trivial. Then there would exist a nowhere vanishing section s: S! — E, hence a map
o: 8! — R\ {0} satisfying 6(—z) = —o(z). The latter contradicts the intermediate value
theorem of calculus.

In the same manner one constructs for each n > 1 a non-trivial line bundle S xg R —

RP" =8"/G.
9. Let f: X - G/HbeaG-mapand A = f~!(eH). Then A is a left H-space and we
have abijective G-map F': Gxyg A — X, (g, x) — gx. The map F is ahomeomorphism if
G — G/H has local sections. If p is a vector bundle and G acts by bundle automorphisms,
then A is an H -representation.

14.3 The Homotopy Theorem

A locally trivial bundle is called numerable if it is trivial over the members of
a numerable covering of the base space. We show that homotopic maps induce
isomorphic bundles. We begin with the universal situation of a homotopy.

(14.3.1) Theorem. Let p: E — B x I be a numerable, locally trivial bundle with
typical fibre F'. Then there exists a bundle map R: E — E overr: BxI — BxI,
(b,t) — (b, 1) which is the identity on E|B x 1 and the morphism (R,r) is a
pullback.

Proof. (1) By (13.1.6), (3.1.4), and (13.1.8) we choose a numerable countable
covering (U; | j € N) of B such that p is trivial over U; x I. We then choose
a numeration (#;) of (U;). Let (x) = max(#;(x)) and set u;(x) = #;(x)/t(x).
Then the support of u; is contained in U; and max{u;(x) | j € N} = 1 holds. Let

ri:BxI — BxI, (x,t)— (x,max(u;(x),1)).

We define over r; a bundle map R;: E — E: Itis the identity in the complement
of p~1(U; x I),and over U; x I atrivialization U; x I xG — E|U; x I transforms
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it into

(x.1.g) > (x,max(u; (x). ). 8).
Then R; is the identity on E|B x 1. From the construction we see that (R;, r;) is
a pullback. The desired bundle map R is the composition of the R; according to
the ordering of N. This is sensible, since for each x € E only a finite number of
R; (x) are different from x. The condition max{u;(x) | j € J} = 1 shows that R
is a map over r. O

If we apply the previous proof to principal bundles (to vector bundles), then
(R, r) is a bundle map in the corresponding category of bundles.

Let p: E — B x I be as in (14.3.1) and denote by p;: E;, - B xt = B
its restriction to B x t. We obtain from (14.3.1) a pullback (R,r): p — pi. The
map r induces from p the product bundle p; xid: Ey x I — B x I. We conclude
that there exists an isomorphism E = FE; x I of bundles which is the identity
FEi{=FE{ x1lover B x1.

(14.3.2) Theorem. Under the assumptions of (14.3.1) the bundles Ey and E; are
isomorphic.

Proof. We have bundle maps Eo = E|B x0 C E = Ey x [ —> Ej. 0

14.3.3 Homotopy Theorem. Let g: £ — C be a numerable G-principal bundle
and h: B x I — C a homotopy. Then the bundles induced from p along k¢ and
hy are isomorphic. A similar statement holds for vector bundles.

Proof. This follows from the previous theorem, since h}*q = (h*q); . O

14.3.4 Homotopy lifting. Let

X2

Y
» lq
B—YcC

be a bundle map between numerable G-principal bundles. Let h: B x I — C
be a homotopy with g = ¢. Then there exists a homotopy of bundle maps
H:XxI—Y withHy=®andgo H=ho(pxid).

Proof. There exists a diagram
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with two pullback squares and hip = ¢ and hi = ®. There exists an isomorphism
a: X x I — Z of pxid with Q such that @iy = ¢. The desired homotopy is
H=houo. O

(14.3.5) Theorem. Let g: X — C be a numerable locally trivial map.Then q is a
fibration.

Proof. Given a homotopy 4: B x I — C and an initial conditiona: B — X. We
pull back the bundle along /. The initial condition gives a section of the pullback
bundle over B x 0. We have seen that the bundle over a product B x I is isomorphic
to a product bundle, and in a product the section has an obvious extensionto B x I.
We have remarked earlier that the extendibility of the section is equivalent to finding
a lifting of the homotopy with given initial condition. O

14.4 Universal Bundles. Classifying Spaces

We denote by B (B, G) the set of isomorphism classes of numerable G-principal
bundles over B. (This is a set!) A continuous map f: B — C induces via
pullback a well-defined map B(f) = f*: B(C,G) — B(B, G). We thus obtain
a homotopy invariant functor B(—, G).

Let pg: EG — BG be a numerable G-principal bundle and [B, BG] the set of
homotopy classes B — BG. Since homotopic maps induce isomorphic bundles,
we obtain a well-defined map

181 [B,BG] — B(B.G)., [f]+~ [f"pcl.

The (g constitute a natural transformation.

We call the total space EG universal if each numerable free G-space E has up
to G-homotopy a unique G-map £ — EG. (Thus EG is a terminal object in the
appropriate homotopy category.) The corresponding bundle pg : EG — BG is also
called universal.

Let £: E(§) — B be a numerable G-principal bundle. Then there exists a
G-map ®: E(§) — EG and an induced map ®: B — BG; and G-homotopic
maps induce homotopic maps between the base spaces. We assign to & the class
[®] € [B,BG]. Isomorphic bundles yield the same homotopy class. Thus we
obtain a well-defined map kg : B(B, G) — [B, BG], and the x p constitute a natural
transformation. The compositions tpkp and kptp are the identity.

If p’: E‘'G — B'G is another universal bundle, then there exist bundle maps
B: EG — E'G, y: E'G — EG. The compositions By and y8 are homotopic to
the identity as bundle maps. In particular, the spaces BG and B'G are homotopy
equivalent. The space BG is called a classifying space of the group G. A map
k: B — BG which induces from EG — BG a given bundle ¢: E — B is called a
classifying map of the bundle g. Hence:
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(14.4.1) Theorem (Classification Theorem). We assign to each isomorphism class
of numerable G -principal bundles the homotopy class of a classifying map and ob-
tain a well-defined bijection B(G, B) = [B, BG). The inverse assignstok: B —
BG the bundle induced by k from the universal bundle. O

(14.4.2) Theorem. There exist universal G-principal bundles.

The proof of the theorem will be given in three steps.
(1) Construction of the space EG (14.4.3).
(2) Proof that any two G-maps E — EG are G-homotopic (see (14.4.4)).
(3) Proof that each numerable G-space E admits a G-map (see (14.4.5)).

14.4.3 The Milnor space. We present a construction of the universal bundle which
is due to Milnor [131]. It uses the notion of a join of a family of spaces. Let
(X;j | j € J) be atfamily of spaces X;. The join

X = *j es Xj
is defined as follows. The elements of X are represented by families
Gxjljed), el0ll, xjeX, Yet=1

in which only a finite number of ¢; are different from zero. The families (¢;x;) and
(u;y;) represent the same element of X if and only if

(1) t; =uj foreach j € J,

(2) x; = y; whenever t; # 0.
The notation #;x; is short-hand for the pair (¢;, x;). This is suggestive, since we
can replace Ox; by Oy; for arbitrary x; and y; in X;. We therefore have coordinate
maps

i X — [0,1], (tix;) — i, pj: lj_l]o, 1] — Xj, (tix;) — Xj.

The Milnor topology on X shall be the coarsest topology for which all ¢; and p; are
continuous. This topology is characterized by the following universal property: A
map f: Y — X from any space Y is continuous if and only if the maps ¢; f: ¥ —
[0,1] and p; f': f_ltj_l]O, 1] — X; are continuous. For a finite number of spaces
we use the notation X * --- x X, for their join.

If the spaces X are right G-spaces, then ((¢;x;), g) — (¢;x; g) defines a con-
tinuous action of G on X. Continuity is verified with the universal property of the
join topology. The Milnor space is

EG=G+xGxGx---,

a join of a countably infinite number of copies of G. We write BG = EG/G for
the orbit space and p: EG — BG for the orbit map.
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It remains to show that EG — BG is numerable. The coordinate functions ;
are G-invariant and induce therefore functions z; on BG. The t; are a point-finite
partition of unity subordinate to the open covering by the V; /G, V; =t j_l]O, 1]. The
bundle is trivial over V; /G, since we have, by construction, G-maps p;: V; — G.

<&

(14.4.4) Proposition. Let E be a G-space. Any two G-maps f,g: E — EG are
G-homotopic.

Proof. We consider the coordinate form of f(x) and g(x),

(11(x) f1(x), 22(x) f2(x),...) and (u1(x)g1(x), u2(x)g2(x),...),

and show that f and g are G-homotopic to maps with coordinate form

(11(x) f1(x), 0, 12(x) f2(x),0,...) and (0,u1(x)g1(x),0,u2(x)g2(x),...)

where 0 denotes an element of the form O - y. In order to achieve this, for f say,
we construct a homotopy in an infinite number of steps. The first step has in the
homotopy parameter ¢ the form

(i fi.tta fo, (A =D)t2 fo, 113 f3, (1 = 1)t3 f3,...).

It removes the first zero in the final result just stated. We now iterate this process
appropriately. We obtain the desired homotopy by using the first step on the interval
[0, %], the second step on the interval [% %], and so on. The total homotopy is
continuous, since in each coordinate place only a finite number of homotopies are
relevant.

Having arrived at the two forms above, they are now connected by the homotopy
(1 =0)t1 f1,tu181, (1 —t)t2 f2,tUzgo, .. .) in the parameter ¢. O

(14.4.5) Proposition. Let E be a G-space. Let (U, | n € N) be an open covering
by G-trivial sets. Suppose there exists a point-finite partition of unity (v, | n € N)
by G-invariant functions subordinate to the covering (Uy,). Then there exists a
G-map ¢: E — EG.

A numerable free G-space E admits a G-map E — EG.

Proof. By definition of a G-trivial space, there exist G-maps ¢;: U; — G. The
desired map ¢ is now given by ¢(z) = (v1(2)¢1(2), v2(2)@2(2),...). Itis contin-
uous, by the universal property of the Milnor topology.

In order to apply the last result to the general case, we reduce arbitrary partitions
of unity to countable ones (see (13.1.8)). O

(14.4.6) Proposition. The space EG is contractible.
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Proof. We have already seen that there exists a homotopy of the identity to the
map (¢;g;) — (t181.0,1282.1383,...). The latter map has the null homotopy
(I =0ng1,te, (1 —1)i2ga,...). u

(14.4.7) Example. The locally trivial map p: EG — BG is a fibration with con-
tractible total space by (14.3.5). We also have the path fibration P — BG with
contractible total space and fibre 2BG. We can turn a homotopy equivalence
EG — P into a fibrewise map, and this map is then a fibrewise homotopy equiva-
lence. Hence we have a homotopy equivalence Q2BG ~ G. The exact homotopy
sequence then yields an isomorphism 9: 7, (BG) = 7,—1(G). <

(14.4.8) Example. For a discrete group, BG is an Eilenberg—Mac Lane space of
type K(G,1). The space BS! is an Eilenberg-Mac Lane space K(Z,?2). Models
for BZ /2 and BS' are RP* and C P>, respectively. <

A continuous homomorphism «: K — L induces the map
E(O[)Z EK — EL, (l,‘ki) = (tia(k,-))

which is compatible with the projections to the classifying spaces. We obtain an
induced map B(«): BK — BL. In this manner B becomes a functor from the
category of topological groups into TOP.

(14.4.9) Proposition. An inner automorphisma: K — K, k — uku™" induces a
map B(a) which is homotopic to the identity.

Proof. The map (t;k;) — (tjuk;) is a K-map and therefore K-homotopic to the
identity. The assignment (;k;) — (f;uk;u~') induces the same map between the
orbit spaces. O

(14.4.10) Proposition. Let X be a free numerable G-space. Then the join E =
X * X x--- is a universal G-space.

Proof. As in the proof of 14.4.3 we see that any two G-maps into E are G-
homotopic. Since X is numerable, so is E. O

(14.4.11) Corollary. Let H be a subgroup of G. Assume that G is numerable as
H -space. Then EG is, considered as H -space, universal. O

The next theorem characterizes universal bundles so that we need not rely on a
special construction.

(14.4.12) Theorem. A numerable G-principal bundle q: E — B is universal if
and only if E is contractible (as a space without group action).
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Proof. We know already that Milnor’s space EG is contractible. If p is universal,
the G-space E is G-homotopy equivalent to EG and hence contractible.
Conversely, assume that E is contractible. Then the associated fibre bundle
E xg EG — B has acontractible fibre EG and is therefore shrinkable (use (13.3.3)).
Hence it has a section and any two sections are homotopic as sections. A section
corresponds to a bundle map «: £ — EG (see (14.1.4). For the same reason there
exists a bundle map : EG — E. By 14.4.3, af is homotopic to the identity as a
bundle map. In order to see that S« is homotopic id(E), we use that sections are
homotopic. O

We compare classifying spaces of different groups and discuss the functorial
properties of classifying spaces. Let «: K — L be a continuous homomorphism
between topological groups. We denote by , L the K-space

KxL—>L, (k/l)y—uak)-l

The associated bundle E(K) Xk oL — B(K) inherits a right L-action and is an
L-principal bundle. It has a classifying map B(«): B(K) — B(L). For the Milnor
bundle the homotopy class is the same as the one already defined. If 8: L — M is
a further homomorphism, then the relation B(8) B(«) >~ B(B«) is easily verified.

Leti: H C G be the inclusion of a subgroup. We restrict the G-action to H
and obtain a free and contractible H -space resyg EG. If G — G/H is a numerable
H -principal bundle, then resg EG is numerable as H -space; hence we have in
this case in resg EG — (resg EG)/H as model for EH — BH. We then obtain,
because of EG xg H =~ EG/H, a map

Bi: BH = (EG)/H — (EG)/G = BG,

which is a fibre bundle with fibore G/H. If G/H is contractible, then Bi is a
numerable fibration with contractible fibre, hence a homotopy equivalence. This
situation occurs for the inclusions O(n) — GL,(R) and U(n) — GL,(C), and in
general for the inclusion K C G of a maximal compact subgroup K of a connected
Lie group G [84, p. 180].

(14.4.13) Proposition. The inclusions of subgroups induce homotopy equivalences
BO(n) - BGL,(R) and BU(n) — BGL,(C). O

Let H be a normal subgroup of G. Then E(G/H) x E(G) is a numerable
free G-space; hence (E(G/H) x EG)/G is a model for BG. (In general, for each
G-space X which is contractible, the product X x EG is another model for EG.)
With this model and the orbit map of the projection E(G/H) x EG — E(G/H)
we obtain a map p: BG — B(G/H) which is a fibre bundle with structure group
G/H and fibre BH. In this case BH = EG/H with induced G/H -action. The map
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p and the inclusion i : BH — BG of a fibre are induced maps of the type Bp for
the casesi: H C G and p: G — G/H . Therefore we have a fibre bundle

1 B
BH 2 BG 25 B(G/H).

Principal bundles for a discrete group G are covering spaces; this holds in
particular for the universal bundle EG — BG. Since EG is simply connected, it is
also the universal covering of BG. Thus two notions of “universal” meet. What is
the relation between these concepts?

Let B be a pathwise connected space with universal covering p: E — B, a
right m-principal covering for 7 = m1(B). Let ¢: 7 — G be a homomorphism.
We have as before the right G-principal covering E X ,G. If ¢ and v are conjugate
homomorphisms, i.e., if gp(a)g™ = V¥ (a) fora g € G, then

Exz oG — E Xz yG, (x,h)— (x,8h)

isanisomorphism of G-principal coverings. The assignment — E'x,G isamap
«: Hom(w, G), — B(G, B) from the set of conjugacy classes of homomorphisms
(index c) to the set of isomorphism classes of G-principal bundles over B.

(14.4.14) Proposition. The map « is a bijection. O

(14.4.15) Example. Let G be discrete and abelian. Then conjugate homomor-
phisms are equal. If all coverings of B are numerable (say B paracompact), then
B(B, G) = [B, BG]. A bijection

o: Hom(w, G) = [B,BG] = H'(B;G)

is obtained from (14.4.14). For the last equality note that BG is an Eilenberg—Mac
Lane space and represents the first cohomology. <

(14.4.16) Example. The fibration U(n)/U(n — 1) - BU(n — 1) - BU(n) and
U(n)/U(n — 1) 2= §2"~1 show that the map i (n): BU(n — 1) — BU(n) induced
by the inclusion U(n — 1) C U(n) is (2n — 1)-connected. The induced map
i(n)«: [X,B(n —1)] = [X, BU(n)] is therefore bijective (surjective) for a CW-
complex X ofdimensiondim X < 2n—1(dim X < 2n—1). Soifdim X <2n —2,
then a k-dimensional complex vector bundle £ over X is isomorphic to n @ (k —n)e
for a unique isomorphism class n of an n-dimensional bundle 7. <

Problems

1. Work out a proof of (14.4.14).
2. The canonical diagram
K —— QBK

la J,QB((X)

L — QBL
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is homotopy commutative. See (14.4.7).

3. The abelianized group 71 (B) is isomorphic to the homology group H;(B; Z). Therefore
we can write (14.4.15) in the form o : Hom(H{(B), G) = H'(B; G). The classifying map
f: B — BG of a G-principal bundle ¢: X — B induces homomorphisms fi: 71 (X) —
71(B) and fi: H1(B) — Hi(BG). If G is abelian and discrete, then G =~ 71 (BG) =
H1(BG). We thus obtain a map

B [B, BG] — Hom(H; (B), G).

Under the hypotheses of (14.4.15), 8 is inverse to «.
4. We give an example of a non-numerable bundle. The equation xz 4+ y> = 1 yields a
hyperboloid Q in R3. The action of the additive group R on R3

c-(x,y,z2) =(x,y +cx,z—2cy —czx),

is free on Q, and Q becomes an R-principal bundle. Numerable R-principal bundles are triv-
ial, since R is contractible. The bundle Q is non-trivial. The orbit space is the non-Hausdorff
line with two origins. If the bundle were trivial it would have a section, and this would imply
that the orbit space is separated.

5. The join S”* % §” is homeomorphic to S+ (1121, 1222) > (V1121 /1222) is
a homeomorphism. The join of k copies S! is homeomorphic to S?~1. A suitable
homeomorphism respects the S1-action, if we let S act on 2~ by scalar multipli-
cation (A,v) + Av. The Milnor construction thus yields in this case the Hopf bundle
S2k—l — (]:Pk_l.

6. A suitable isomorphism 7, (BG) = m,—1(G) has the following interpretation. Let
p: E — S" be a G-principal bundle. Write §” = D4 UD_, S"~! = D4y N D_ asusual.
Then p|D+ and p|D— are trivial. Choose trivializations t4: p~!(D4) — D4 x G. They
differ over S”~! by an automorphism

Sl G > S x G, (x,8) > (x,ax(g))

of principal bundles. Hence o (g) = ax(e)g, and x — o (e) represents an element in
7n—1(G) which corresponds under the isomorphism in question to the classifying map of
p.

7. The canonical map S — C P> is an S ! -principal bundle with contractible total space.
Hence C P°° is a model for BS!. This space is also an Eilenberg—Mac Lane space of type
K(Z,?2). In a similar manner one has B(Z/2) = RP*>° = K(Z/2,1).

8. Suppose the X; are Hausdorff spaces. Then their join is a Hausdorff space.

9. The map (X1 » X2) » X3 — X1 » X2 » X3 which sends (u1(t1x1,2x2), u2x3) to
(u1t1x1,u1t2X2,u2x3) is a homeomorphism. Discuss in general the associativity of the
join.

10. The join of a family (X; | j € J) is a subspace of the product [, ; CX; of cones,
when the cone CX = I x X/0 x X is given the Milnor topology with coordinate functions
t: (x,t) — t and t71]0,1] — X, (x,7) — x (and not the quotient topology as previously
used in homotopy theory).

11. Asaset, Xo » --- x X, is a quotient of Xo x --- X X, x A[n]. If the X; are compact
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Hausdorff spaces, then the join carries the quotient topology. In general the two topologies
yield h-equivalent spaces.

12. A theorem of type (14.2.7) can be proved in certain other situations. Let p: E — B
be a right S(n)-principal bundle for the symmetric group S(n) and F(n) = {1,...,n} the
standard left S(n)-set. Then p,, : E Xs) F(n) — B is an n-fold covering. The assignment
p > py is part of an equivalence between the category of S(n)-principal bundles and n-fold
coverings. Isomorphism classes of n-fold numerable coverings of B are therefore classified
by [B, BS(n)].

13. Use the previous problem in order to classify n-fold coverings of S ' v S ! via the bijection
to[S! v S BS@n)].

14.5 Algebra of Vector Bundles

Let&é: E(§) — B and n: E(n) — C be vector bundles over the same field. The
product £ x n: E(§) x E(n) — B x C is a vector bundle. Let B = C; we pull
back the product bundle along the diagonal d : B — B x B, b — (b, b) and obtain
d*(& x n) = & & n, the Whitney sum of £ and n. The fibre of £ & 7 over b is the
direct sum of the fibres &, @ 7. A bundle 7 is called an inverse of &, if £ @ n is
isomorphic to a trivial bundle.

A Riemannian metric on a real vector bundle £ is a continuous map
s: E(§ ®& £&) — R which is on each fibre an inner product s(x) on E(§),. If &
has a Riemannian metric and if & : n — £ is a fibrewise injective bundle morphism
over B, then Coker(«) is isomorphic to the fibrewise orthogonal complement ¢
of Im(«) (this is a subbundle). We have therefore an isomorphism & =~ n & ¢.
Similarly for complex bundles and hermitian metrics.

(14.5.1) Proposition. A numerable vector bundle has a Riemannian metric.

Proof. Let U be a covering of B with numeration (ty | U € U). A trivial bundle
certainly has a Riemannian metric; so let sy be a metric on £|U. Then ) U TUSU
is a Riemannian metric on £. The sum is short-hand notation for the inner product
> v tu(x)sy(x) on the fibre over x, and we agree that “zero times undefined =
zero”. O

(14.5.2) Proposition. A bundle £: E(§) — B has an inverse if and only if it is
numerable of finite type.

Proof. Let ¢;: E_I(Uj) — U; x R" be bundle charts and (7;) a numeration of
(Uj), (j € J, J finite). Then

a: E(§) > Bx@es R". x> ()5 (X)) pragi(x) | j € J)

is a fibrewise injective bundle morphism into a trivial bundle. The orthogonal
complement of the image of « is an inverse of £.
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Let £ be a k-dimensional bundle with inverse 1. From an isomorphism of £ &

to a trivial bundle we obtainamap f: E(§) C E(§®n) =~ B xR" P R” which
is injective on each fibre. Given a map with this property we get a bundle map
& — v (R™) into the tautological bundle by mapping x € &, to (f(&p), f(x)) €
Er(R") C Gx(R")xR". (Verify that b — f(£p) is continuous.) This map is called
the Gauss map of £. The bundle y; is numerable of finite type, as a bundle over
a compact Hausdorff space, hence the induced bundle & has the same properties.

O

Standard constructions of linear algebra can be applied fibrewise to vector bun-
dles. Examples are:

v dual space of V &* dual bundle of &
VeWw direct sum EDn Whitney sum
Vew tensor product E®n tensor product
AV i-th exterior power A’ i-th exterior power

Hom(V, W) homomorphisms Hom(&,n) homomorphism bundle

Canonical isomorphisms between algebraic constructions yield canonical isomor-
phisms for the corresponding vector bundles. Examples are:

EoNRI=E’xD®M®)
Hom(¢,n) = £* ® 1

AFE @) = @H—j:k(Aié ® A/n).

In the last isomorphism A°f is the trivial one-dimensional bundle and A'§ = £.
In order to prove such statements, one has to use that the constructions of linear
algebra are in an appropriate sense continuous. It suffices to consider an example,
say the tensor product. Let§: E(§) — B andn: E(n) — B bereal vector bundles.
The total space of & ® 1 has the underlying set

User& ® mp) = E(E ® 1),

the disjoint union of the tensor products of the fibres. Let ¢: §~1(U) — U x R™
be a bundle chart of £ and ¥ : 71 (U) — U x R" a chart of 5. Then a bundle chart
for £ ® n over U should be

v: UpevEp ® mp) = Uj x (R @ R"),

the fibre &, ® 7 is mapped by the tensor product of the linear maps ¢ over b and
Y over b. At this point it is now important to observe that the transition maps
of such charts are homeomorphisms. Therefore there exists a unique topology on
E (£ ® n) such that the sources of the y are open and the y are homeomorphisms. In
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this manner we have obtained the data of the bundle £ ® 5. In dealing with tensor
products one has to distinguish ®p for real bundles and ®¢ for complex bundles.

If we start with bundles £: E(§) — B and n: E(n) — C we obtain in a similar
manner a bundle £®7 over B x C with fibres &, ® 7. It is called the exterior tensor
product. Let B = C andletd : B x B be the diagonal; then d*(§®n) = £®1. Let
p: BxC — Bandgq: B x C — C be the projections; then £&n = p*£ ® ¢*1.

(14.5.3) Example. Let p: E — B be an S!-principal bundle and £: E(§) =
E xg1 C — B the associated complex line bundle. Then p is the unit-sphere
bundle of £. Let C,, C S be the cyclic subgroup of order m. The m-fold tensor
product £ = £ ®--- ® £ is E x g1 C(m), where S! acts on C by (A, z) = A™z.
The unit-sphere bundle of n®™ is E/C,, — B. If we use the model S — BS!
for the universal S!-principal bundle, we obtain the canonical map BC,, — BS'
as the sphere bundle of the m-fold tensor product of the universal line bundle. <

(14.5.4) Example. Let p: E — B be a right G-principal bundle. Let V, W be
complex G-representations. Let py: E xg V — B be the associated complex
vector bundle. Then there are canonical isomorphisms py @ pw = pyew and
pv®pw = pvew. Forthebundles H (k) over C P” therelations H (k)®c H(/) =
H(k + 1) hold. <

14.5.5 Complex vector bundles over S2 = C P 1. We have the line bundles H (k)
over CP! for k € Z. The total space is H(k) = (C? ~ 0) xc* C with equivalence
relation ((Zo, z1), u) ~ ((Azo, Az1), A¥u). Set n = H(1); then n* = H(n). Let
£ be an arbitrary line bundle over CP'. We have the charts ¢o: C — Uy =
{[z0,21] | zo # 0} and ¢1: C — U{[z0,21] | z1 # 0}. We pull back & along
¢, and obtain a trivial bundle. Let ®;: C x C — £|U; be a trivialization. Then
®71®g: C* x C — C* x C has the form (z,u) > (z7',a, - u) for some map
a: C* — C*. The map a is homotopic to a map z — z~*. We use a homotopy in
order to construct a bundle over C P! x [0, 1] which is over C P! x 0 given by the
gluing (z,u) — (z~', a;u) and over C P! x 1 by the gluing (z, u) — (z~', z7u).
The latter gives H(k). By the homotopy theorem we see that £ is isomorphic
to H(k). Let B denote the set of isomorphism classes of complex line bundles
over C P! with tensor product as composition law (see Problem 4). We have just
seen that k: Z — B, k — H(k) is a surjective homomorphism. We know that
B = [CP!,CP®] = n,(CP>®) = Z. Therefore k has a trivial kernel, because
otherwise 83 would be a finite cyclic group. Altogether we have seen that the H (k)
represent the isomorphism classes of complex line bundles.

Now we use (14.4.16) and see that a k-dimensional bundle (k > 1) is isomorphic
to H(n) @ (k — 1)e for a unique n € Z. Bundles over CP! have a cancellation
property: Anisomorphism & ¢ = 1@ ¢ implies £ = 7; this is again a consequence
of (14.4.16).
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For the bundles H (k) over CP! the relations H(k) ® H(l) x Hk +1) @ ¢
hold. In order to prove this relation, we construct an isomorphism of n @ n~! to
the trivial bundle. We write the bundle in the form S3 x g1 (C(=1) & C(1)). A
fibrewise map to C? is given by

((zo,z1), (Mo, u1)) = (ZoUo — Z1U1, Z1Uo + ZoU1).

Observe that the matrix with rows (zg, —z1), (21, Zo) is unitary. For u( the image is
the tautological bundle H(—1), for u; the orthogonal complement H(1). We show
by induction n* 4+ (k — 1)e = k. This relation is clear for k = 1 and follows for
k =2 fromn @ n~! = 2e. Multiply n* + (k — 1)e = kn by 1, add ke and cancel
(k — 1)n; the desired relation for k + 1 drops out. Suppose k,/ € N. Then

Fen @k —1+1-De=(k+Dn=n""@k+I-1e

and cancellation of (k — 1 4 [ — 1)e gives n* @ ! = n*+! @ e. We multiply this
relation by 7%, n~! or n~®*+D in order to verify the remaining cases. <

Problems

1. Let £ and 5 be vector bundles over B. An orientation of £ and 7 induces an orientation
of £ @ n, fibrewise the sum orientation of the vector spaces. If two of the bundles &, 1, and
& @ n are orientable, then the third is orientable.

2. In a bundle with Riemannian metric the fibrewise orthogonal complement of a subbundle
is a subbundle.

3. Let p: E — B be an n-dimensional bundle with Riemannian metric. Then there exists a
bundle atlas such that the transition maps have an image in the orthogonal group O(#). The
structure group is therefore reducible to O(n). If the bundle is orientable, then the structure
group is reducible to SO(n).

4. Let £ and n be complex line bundles over B. Then £ ®c 7 is again a line bundle. The
bundle £ ® £™ is trivial; the assignments £, ® £ — C, (x, ) = A(x) are an isomorphism
to the trivial bundle. The isomorphism classes of complex line bundles are an abelian group
with composition law the tensor product.

5. Let X be a normal space and ¥ C X a closed subset. A sections: ¥ — E|Y over Y of
a numerable vector bundle £: E — X has an extension to a section over X .

6. Let p: E — X and gq: F — X be vector bundles. The bundle morphisms £ — F
correspond to the sections of Hom(E, F) — X.

7. Let p: E — X and q: F — X be numerable bundles over the normal space X. If
f: E|Y — F|Y is an isomorphism over the closed set Y, then there exists an open neigh-
bourhood U of Y and an isomorphism f': E|U — F|U which extends f over Y.

8. The map CP% x CP? — CP*T?, ([x;],[y;]) + [zx] with x; = D i j=t Xiyj in-
duces from H (1) the exterior tensor product H(1)& H(1). In the case ¢ = b = oo the map
is associative and defines the structure of an H-space. It induces on [B, C P°°] the group
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structure on the set of line bundles given by the tensor product.
9. Determine two-dimensional real bundles over R P2 [44, p. 434].

14.6 Grothendieck Rings of Vector Bundles

Denote by V(X) the set of isomorphism classes of complex vector bundles over X .
The Whitney sum and the tensor product induce on V(X) two associative and
commutative composition laws (addition 4, multiplication -), and the distributive
law holds. Addition has a zero element, the 0-dimensional bundle; multiplication
has a unit element, the 1-dimensional trivial bundle.

A commutative monoid M is a set together with an associative and commuta-
tive composition law + with zero element. A universal group for M is a homo-
morphism k: M — K(M) into an abelian group K (M) such that each monoid-
homomorphism ¢: M — A into an abelian group A has a unique factorization
® o k = ¢ with a homomorphism &: K(M) — A. A monoid-homomorphism
f: M — N induces a homomorphism K(f): K(M) — K(N). Let N C M be
a submonoid. We define an equivalence relation on M by

x~y <& thereexista,b € N suchthatx +a =y + b.

Let p: M — M/N, x — [x] denote the quotient map onto the set of equivalence
classes. We obtain by [x] + [y] = [x + y] a well-defined composition law on M /N
which is a monoid structure.

In the product monoid M x M we have the diagonal submonoid D(M) =
{(m,m)}. Weset K(M) = (M xM)/D(M) and k(x) = [x,0]. Then K(M) is an
abelian group and « a universal homomorphism. Since [x, 0]+ [0, x] = [x,x] = 0,
we see [0, x] = —k(x). The elements of K(M) are formal differences x —y, x,y €
M, k(x)—«(y) =[x,yl,andx—y = x'—y'ifandonlyif x +y' +z = x'+y+z
holds as equality in M for some z € M.

We apply these concepts to M = V(X) and write K(X) = K(V(X)). The
tensor product induces a bi-additive map V(X) x V(X) — V(X). It induces a
bi-additive map in the K-groups:

(14.6.1) Proposition. Let A, B, C be abelian monoids and m: A x B — C be
a bi-additive map. The there exists a unique bi-additive map K(m) such that the
diagram

AxB—2——C

ll{A XKpB llcc
(

K(A) x K(B) —", k(C)

is commutative. O
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The bi-additive map induced by the tensor product is written as multiplication,
and K(X) becomes in this way a commutative ring. This ring is often called the
Grothendieck ring of complex vector bundles. In general, the universal groups
K(M) are called Grothendieck groups.

We can apply the same construction to real vector bundles and obtain the
Grothendieck ring KO(X). Other notations for these objects are KO(X) = Kr(X)
and K(X) = KU(X) = Kc(X).

Pullback of bundles along f: X — Y induces a ring homomorphism K(f) =
f*: K(Y) - K(X) and similarly for KO. Homotopic maps induce the same
homomorphism.

(14.6.2) Example. K(S?) is free abelian as an additive group with basis 1 and 7.
The multiplicative structure is determined by n> = 25 — 1. This is a consequence
of 14.5.5. <

The inclusions U(n) — U(n + 1), 4 + (¢ 9) are used to define U =
colim U(n), a topological group with the colimit topology. The inclusion of groups
U(n) — Uinduces BU(n) — BU. If we compose a classifying map X — BU(n)
with this map, we call the result X — BU the stable classifying map. Bundles &
and & @ ae are called stably equivalent, and they have the same stable classifying
map (up to homotopy).

(14.6.3) Proposition. Let X be a path connected compact Hausdorff space. Then
there exists a natural bijection K(X) = [X,Z x BU]. Here Z carries the discrete

topology.

Proof. Let [§] — [n] € K(X). A bundle 1 over a compact Hausdorff space has
an inverse bundle n~ (see (14.5.2)). Hence [E ® 7] — [n ® n7] € K(X) is the
same element. Therefore each element in K(X) can be written in the form [£] — n.
Suppose [E] —n = [n] —m. Then § ®me ® ¢ =~ n @ ne & ¢ for some . We
add an inverse of ¢ and arrive at a relation of the form & @ ae =~ n & be, ie.,
¢ and 7 are stably equivalent. The homotopy class of a stable classifying map
ke: X — BU is therefore uniquely determined by the element [§] — n. We define
k: K(X) = [X,Z x BU] by sending [§] —n tokg: X — (dim& —n) x BU.
Conversely, let f: X — Z x BU be given. Since X is path connected, the
image is contained in some k x BU. The compactness of X is used to verify that
f admits a factorization X — BU(n) — BU. We obtain a well-defined inverse
map [X,Z x BU] - K(X), if we assignto f: X — BU(n) — BU the element

[ vl = [n — k]. O

For more general spaces the Grothendieck ring K(X) can differ substantially
from the homotopy group [X, Z x BU]J, e.g., for X = CP*°. The latter is a kind
of completion of the Grothendieck ring.
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The (exterior) tensor product of bundles yields a ring homomorphism
K(X)®z K(Y) > K(X xY).

A fundamental result is the periodicity theorem of Bott. One of its formulations is:
For compact spaces X the tensor product yields isomorphisms

K(X)® K(S?) = K(X x §%), KO(X)® KO(S%) =~ KO(X x S%).

Starting from this isomorphism one constructs the cohomology theories which are
called K-theories. For an introduction see [15], [9], [10], [12], [11], [13], [14],
[102]. For the Bott periodicity see also [6], [106], [19].



Chapter 15
Manifolds

This chapter contains an introduction to some concepts and results of differential
topology. For more details see [30], [44], [107]. We restrict attention to those
parts which are used in the proof of the so-called Pontrjagin—Thom theorem in the
chapter on bordism theory. We do not summarize the results here, since the table
of contents should give enough information.

15.1 Differentiable Manifolds

A topological space X is n-dimensional locally Euclidean if each x € X has an
open neighbourhood U which is homeomorphic to an open subset V' of R”. A
homeomorphism 4: U — V is a chart or local coordinate system of X about x
with chart domain U. The inverse h~!: V — U is a local parametrization of X
about x. If 1(x) = 0, we say that 4 and 4 ~! are centered at x. A set of charts is an
atlas for X if their domains cover X. If X is n-dimensional locally Euclidean, we
call n the dimension of X and write dim X = n. The dimension is well-defined,
by invariance of dimension.

An n-dimensional manifold or just n-manifold is an n-dimensional locally
Euclidean Hausdorff space with countable basis for its topology. Hence manifolds
are locally compact. A surface is a 2-manifold. A 0-manifold is a discrete space
with at most a countably infinite number of points. The notation M" is used to
indicate that n = dim M.

Suppose (U, hy, V1) and (U,, hy, V) are charts of an n-manifold. Then we
have the associated coordinate change or transition function

hzhl_ll hi(Uy NUR) — hy(Uy N US),

a homeomorphism between open subsets of Euclidean spaces.

Recall: A map f: U — V between open subsets of Euclidean spaces (U C
R”,V C R™)isaC*k -map if it is k-times continuously differentiable in the ordinary
sense of analysis (1 < k < 00). A continuous map is also called a C%-map. A
Ck-map f: U — V has a differential Df(x): R” — R™ atx € U.

If the coordinate changes hzhl_1 and hlhgl are Ck -maps, we call the charts
(U1, h1, V1) and (Uy, hy, V) Ck-related (1 <k <00). An atlasisa C*-atlas if any
two of its charts are C*-related. We call C*-maps smooth or just differentiable;
similarly, we talk about a smooth or differentiable atlas.
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(15.1.1) Proposition. Let A be a smooth atlas for M. The totality of charts which
are smoothly related to all charts of A is a smooth atlas D(A). If A and B are
smooth atlases, then A U B is a smooth atlas if and only if D(A) = D(B). The
atlas D(A) is the uniquely determined maximal smooth atlas which contains A. O

A differential structure on the n-manifold M is a maximal smooth atlas O
for M. The pair (M, D) is called a smooth manifold. A maximal atlas serves just
the purpose of this definition. Usually we work with a smaller atlas which then
generates a unique differential structure. Usually we omit the differential structure
from the notation; the charts of O are then called the charts of the differentiable
manifold M.

Let M and N be smooth manifolds. Amap f: M — N issmooth at x € M if
£ is continuous at x and if for charts (U, h, U’) about x and (V, k, V') about f(x)
the composition k fh~! is differentiable at h(x). We call kfh™! the expression
of f in local coordinates. The map f is smooth if it is differentiable at each
point. The composition of smooth maps is smooth. Thus we have the category of
smooth manifolds and smooth maps. A diffeomorphism is a smooth map which
has a smooth inverse. Manifolds M and N are diffeomorphic if there exists a
diffeomorphism f: M — N.

Smooth manifolds M and N have aproduct in the category of smooth manifolds.
The charts of the form (U x V, f x g, U’ x V') for charts (U, f,U’) of M and
(V, g, V') of N define a smooth structure on M x N. The projections onto the factors
are smooth. The canonical isomorphisms R” x R" = R™*" are diffeomorphisms.

A subset N of an n-manifold M is a k-dimensional submanifold of M if the
following holds: For each x € N there exists a chart h: U — U’ of M about x
such that A(U N N) = U’ N (R¥ x 0). A chart with this property is called adapted
to N. The difference n — k is the codimension of N in M. (The subspace R¥ % 0
of R” may be replaced by any k-dimensional linear or affine subspace if this is
convenient.) If we identify R¥ x 0 = R, then (UNN, U N Rk) isachartof N.
If M is smooth, we call N a smooth submanifold of M if there exists about each
point an adapted chart from the differential structure of M. The totality of charts
(UNN, h, U’ NR¥) which arise from adapted smooth charts of M is then a smooth
atlas for V. In this way, a differentiable submanifold becomes a smooth manifold,
and the inclusion N C M is a smooth map. A smooth map f: N — M isa
smooth embedding if f(N) C M is a smooth submanifoldand f: N — f(N)a
diffeomorphism.

The spheres are manifolds which need an atlas with at least two charts. We have
the atlas with two charts (Un, ¢n) and (Us, ¢s) coming from the stereographic
projection (see (2.3.2)). The coordinate transformation is ¢g o (pﬁl ) = |y 72y.
The differential of the coordinate transformation at x is £ > (||x||?§ — 2(x, £)x) -
lx||~*. For ||x|| = 1 we obtain the reflection £ > & — 2(x, £ )x in a hyperplane.

We now want to construct charts for the projective space RP”. The subset



360 Chapter 15. Manifolds
Ui = {[x0,...,xn] | xi # 0}is open. The assignment
@i Ui = R", [x0,.. o Xn] > X7 (X0 + ooy Xim 1y Xit1s - -+ » Xn)

is a homeomorphism. These charts are smoothly related.

Charts for CP" can be defined by the same formulas. Note that CP" has
dimension 27 as a smooth manifold. (It is n-dimensional when viewed as a so-
called complex manifold.)

(15.1.2) Proposition. Let M be an n-manifold and U = (U; | j € J) an open
covering of M. Then there exist charts (Vi,hx, Bx | k € N) of M with the
Jfollowing properties:

(1) Each Vi is contained in some member of U.

(2) B = Us(0) = {x € R" | ||x]| <3}.

(3) The family (Vi | k € N) is a locally finite covering of M.
In particular, each open cover has a locally finite refinement, i.e., manifolds are
paracompact. If M is smooth, there exists a smooth partition of unity (oy | k € N)
subordinate to (Vi). There also exists a smooth partition of unity (a; | j € J)
such that the support of «; is contained in U; and at most a countable number of
the a; are non-zero.

Proof. The space M is a locally compact Hausdorff space with a countable basis.
Therefore there exists an exhaustion

MyCcMyCMyC---CM=U72,M,

by open sets M; such that M; is compact and contained in M;,,. Hence K; =
M,'.H ~ M; is compact. Foreachi we can find a finite number of charts (V,,, 4,, B,),
B, = Us(0), such that V,, C U; for some j and such that the 4 1U; (0) cover K;
and such that V}, C M;45 ~ M;_1 (M_; = @). Then the V, form a locally finite,
countable covering of M, now denoted (Vi, hy, Br | k € N).

The function A: R — R, A(t) = 0 fort < 0, A(¢) = exp(—1/¢) fort > 0, is
a C*-function. For ¢ > 0, the function @s(t) = A(t)(A(t) + A(e — 1)) Lis C®
and satisfies 0 < ¢, < 1, (1) =0 & t <0, pc(t) = 1 & t > ¢. Finally,
Yv:R" - R, x = @:(]|x]| —r) is a C*°-map which satisfies 0 < ¥ (x) < 1,
Yv(x)=1xelU0),v(x)=0< ||x||>r+e

We use these functions  for r = 1 and ¢ = 1 and define v; by ¥ o h; on V;
and as zero on the complement. Then the oy = s~ 19y with s = Zf’;l Y yield a
smooth, locally finite partition of unity subordinate to (Vx | k € N).

The last statement follows from (13.1.2). O

Let Cy and C; be closed disjoint subsets of the smooth manifold M. Then there
exists a smooth function ¢ : M — [0, 1] such that ¢(C;) C {/ }; apply the previous
proposition to the covering by the U; = M ~ C;.
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Let A be a closed subset of the smooth manifold M and U an open neigh-
bourhood of 4in M. Let f: U — [0, 1] be smooth. Then there exists a smooth
function F: M — [0, 1] such that F'|A = f|A. For the proof choose a partition of
unity (¢o, ¢1) subordinate to (U, M ~ A). Then set F(x) = ¢o(x) f(x) forx € U
and F(x) = 0 otherwise.

(15.1.3) Proposition. Let M be a submanifold of N. A smoothfunction f: M — R
has a smooth extension F: N — R.

Proof. From the definition of a submanifold we obtain for each p € M an open
neighbourhood U of p in N and a smooth retraction r: U — U N M. Hence
we can find an open covering (U; | j € J) of M in N and smooth extensions
Ji: Ui — Rof flU N M. Let(«; | j € J) be asubordinate smooth partition of
unity and set F(x) = )¢y @;(x) fj(x), where a summand is defined to be zero
it f;(x) is not defined. O

(15.1.4) Proposition. Let M be a smooth manifold. There exists a smooth proper
Sfunction f: M — R.

Proof. A function between Hausdorff spaces is proper if the pre-image of a compact
set is compact. We choose a countable partition of unity (tx | K € N) such that the
functions 7 have compact support. Then we set f = > po k-1: M — R. If
x ¢ U;’:l supp(z;), then 1 = 3 .- 7;(x) = }_;., 7;(x) and therefore f(x) =
> j>n JTj(x) > n. Hence f~Y[—n,n]is contained in U;’=1 supp(t;) and therefore
compact. O

In working with submanifolds we often use, without further notice, the following
facts. Let M be asmooth manifoldand A C M. Then A is a submanifold if and only
ifeacha € A has an open neighbourhood U such that A NU is a submanifold of U.
(Being a submanifold is a local property.) Let f: N; — N, be a diffeomorphism.
Then M; C Njisasubmanifoldifandonlyif f(M;) = M, C N, isasubmanifold.
(Being a submanifold is invariant under diffeomorphisms.)

Important objects in mathematics are the group objects in the smooth category.
A Lie group consists of a smooth manifold G and a group structure on G such
that the group multiplication and the passage to the inverse are smooth maps. The
fundamental examples are the classical matrix groups. A basic result in this context
says that a closed subgroup of a Lie group is a submanifold and with the induced
structure a Lie group [84], [29].

Problems

1. The gluing procedure (1.3.7) can be adapted to the smooth category. The maps gij are
assumed to be diffeomorphisms, and the result will be a locally Euclidean space. Again one
has to take care that the result will become a Hausdorff space.
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2. Let E be an n-dimensional real vector space 0 < r < n. We define charts for the
Grassmann manifold G, (E) of r-dimensional subspaces of E. Let K be a subspace of
codimension r in E. Consider the set of complements in K

UK)=1{F € G,(E) | F& K = E}.

The sets are the chart domains. Let P(K) = {p € Hom(E,E) | p> = p, p(E) = K}
be the set of projections with image K. Then P(K) — U(K), p + Ker(p) is a bijection.
The set P(K) is an affine space for the vector space Hom(E /K, K). Let j: K C E and let
q: E — E/K) be the quotient map. Then

Hom(E/K, K) x P(K) — P(K), (¢,p) p+ joq

is a transitive free action. We choose a base point pg € P(K) in this affine space and obtain
a bijection

U(K) < P(K) - Hom(E/K,K), Ker(p) < p+ p— po.

The bijections are the charts for a smooth structure.

3. {(x,y,2) € R3 | 22x3 4+ 32x2 4 3x — zy%Z — 2y = 1} is a smooth submanifold of R3
diffeomorphic to R2. If one considers the set of solutions (x, y,z) € C?2, then one obtains
a smooth complex submanifold of C3 which is contractible but not homeomorphic to C2
(see [47]).

15.2 Tangent Spaces and Differentials

We associate to each point p of a smooth m-manifold M an m-dimensional real
vector space T,(M ), the tangent space of M at the point p, and to each smooth
map f: M — N alinearmap T, f : Tp(M) — Ty(p)(N), the differential of f at
P, such that the functor properties hold (chain rule)

T,(gf) =TrpygoTpf. Tp(d) =id.

The elements of T, (M) are the tangent vectors of M at p.

Since there exist many different constructions of tangent spaces, we define them
by a universal property.

A tangent space of the m-dimensional smooth manifold M at p consists of an
m-dimensional vector space T,,(M) together with an isomorphism ix: T,M —
R™ for each chart k = (U, ¢, U’) about p such that for any two such charts k
and [ = (V,y, V') the isomorphism i~ Li is the differential of the coordinate
change Vo~ ! at p(p). If (T,M,iy) is another tangent space, then t, = ik_1 o
ir: T,M — T,M is independent of the choice of k. Thus a tangent space is
determined, up to unique isomorphism, by the universal property. If we fix a chart
k, an arbitrary m-dimensional vector space 7, M , and anisomorphism iy : T, M —
R™, then there exists a unique tangent space with underlying vector space 7, M and
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isomorphism iy ; this follows from the chain rule of calculus. Often we talk about
the tangent space 7, M and understand a suitable isomorphism iy : T, M — R as
structure datum.

Let f: M™ — N be a smooth map. Choose charts k = (U, ¢, U’) about
p € Mandl = (V,y,V’) about f(p) € N. There exists a unique linear map
T, f which makes the diagram

T,
TpM L Tf(p)N

[ [

R D(yfe™") R
commutative; the morphism at the bottom is the differential of ¥ fo~! at ¢(p).
Again by the chain rule, 7}, f is independent of the choice of k and /. Differentials,
defined in this manner, satisfy the chain rule. This definition is also compatible with
the universal maps ¢, for different choices of tangent spaces 7, f o1, = tr(p)o T, f-

In abstract terms: Make a choice of T, (M ) for each pair p € M. Thenthe T, M
and the T}, f constitute a functor from the category of pointed smooth manifolds
and pointed smooth maps to the category of real vector spaces. Different choices
of tangent spaces yield isomorphic functors.

The purpose of tangent spaces is to allow the definition of differentials. The ac-
tual vector spaces are adapted to the situation at hand and can serve other geometric
purposes (e.g., they can consist of geometric tangent vectors).

We call a smooth map f an immersion if each differential 7} f is injective and
a submersion if each differential T f is surjective. The point x € M is a regular
point of f if Ty f is surjective. A point y € N is a regular value of f if each
x € f~(y) is a regular point, and otherwise a singular value. If f~'(y) = 0,
then y is also called a regular value.

(15.2.1) Rank Theorem. Let f: M — N be a smooth map from an m-manifold
into an n-manifold.

(1) If T, f is bijective, then there exist open neighbourhoods U of a and V of
f(a), such that f induces a diffeomorphism f: U — V.

(2) If T, f is injective, then there exist open neighbourhoods U of a, V of f(a),
W of 0 € R*"™™ and a diffeomorphism F : U xW — V such that F(x,0) = f(x)
forx eU.

(3) If T, f is surjective, then there exist open neighbourhoods U of a, V of f(a),
W of 0 € R and adiffeomorphism F: U — V xW suchthatpry F(x) = f(x)
for x € U with the projectionpry: VxW — V.

(4) Suppose Tx f has rank r for all x € M. Then for each a € M there
exist open neighbourhoods U of a, V of f(a) and diffeomorphisms ¢: U — U’,
Y.V — V' onto open sets U C R™, V' C R" such that f(U) C V and
Ve (x1, ..., xm) = (x1,....%7,0,...,0) forall (x1,...,xn) €U".
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Proof. The assertions are of a local nature. Therefore we can, via local charts,
reduce to the case that M and N are open subsets of Euclidean spaces. Then these
assertions are known from calculus. O

(15.2.2) Proposition. Let y be a regular value of the smooth map f: M — N.
Then P = f~Y(y) is a smooth submanifold of M. For each x € P, we can identify
Ty P with the kernel of Ty, f .

Proof. Let x € P. The rank theorem (15.2.1) says that f is in suitable local coor-
dinates about x and f(x) a surjective linear map; hence P is locally a submanifold.

The differential of a constant map is zero. Hence T P is contained in the kernel
of Ty f. For reasons of dimension, the spaces coincide. O

(15.2.3) Example. The differentials of the projections onto the factors yield an
isomorphism Ty, ,y(M x N) = Ty (M) x T, (N) which we use as an identification.
With these identifications, T(x y)(f X g) = Tx f x Ty g for smooth maps f and
g. Leth: M x N — P be a smooth map. Then T( y)h, being a linear map, is
determined by the restrictions to Ty M and to 7y N, hence can be computed from
the differentials of the partial maps h1: a + h(a,y) and hy: b — h(x,b) via
T, yyh(u,v) = Tyhy(u) + Tyha(v). <&

(15.2.4) Proposition. Suppose f: M — N is an immersion which induces a
homeomorphism M — f(M). Then f is a smooth embedding.

Proof. We first show that f(M) is a smooth submanifold of N of the same dimen-
sion as M. It suffices to verify this locally.

Choose U, V, W and F according to (15.2.1). Since U isopenand M — f(M)
a homeomorphism, the set f(U) isopenin f(M). Therefore f(U) = f(M)N P,
with some open set P C N. The set R = V' N P is an open neighbourhood of b
in N,and RN f(M) = f(U) holds by construction. It suffices to show that f(U)
is a submanifold of R. Weset Q = F ~IR andhave a diffeomorphism F: Q — R
which maps U x 0 bijectively onto f(U). Since U x 0 is a submanifold of U x W,
we see that f(U) is a submanifold.

By assumption, f: M — f(M) has a continuous inverse. This inverse is
smooth, since f: M — f(M) has an injective differential, hence bijective for
dimensional reasons, and is therefore a local diffeomorphism. O

(15.2.5) Proposition. Let f: M — N be a surjective submersionand g: N — P
a set map between smooth manifolds. If g f is smooth, then g is smooth.

Proof. Let f(x) = y. By the rank theorem, there exist chart domains U about
x and V about y such that f(U) = V and f: U — V has, in suitable local
coordinates, the form (x1,...,X,) — (x1,...,x,). Hence there exists a smooth
map s: V — U suchthat fs(z) = zforallz € V. Then g(z) = gfs(z),and g fs
is smooth. (The map s is called a local section of f about y.) O
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Itis an important fact of analysis that most values are regular. Aset A C N inthe
n-manifold N is said to have (Lebesgue) measure zero if for each chart (U, h, V')
of N the subset #(U N A) has measure zero in R”. A subset of R” has measure
zero if it can be covered by a countable number of cubes with arbitrarily small total
volume. We use the fact that a diffeomorphism (in fact a C'-map) sends sets of
measure zero to sets of measure zero. An open (non-empty) subset of R” does not
have measure zero. The next theorem is a basic result for differential topology; in
order to save space we refer for its proof to the literature [136], [30], [177].

(15.2.6) Theorem (Sard). The set of singular values of a smooth map has measure
zero, and the set of regular values is dense. O

Problems

1. An injective immersion of a compact manifold is a smooth embedding.

2. Let f: M — N be a smooth map which induces a homeomorphism M — f(M). If the
differential of f has constant rank, then f is a smooth embedding. By the rank theorem, f
has to be an immersion, since f is injective.

3. Let M be a smooth m-manifold and N C M. The following assertions are equivalent:
(1) N is a k-dimensional smooth submanifold of M. (2) Foreacha € N there exist an open
neighbourhood U of @ in M and a smooth map f: U — R such that the differential
Df (1) has rank m — k for all u € U and such that N N U = f~1(0). (Submanifolds are
locally solution sets of “regular” equations.)

4. £ R"TL S5 R, (x0,....xn) lez = |x||* has, away from the origin, a non-
zero differential. The sphere S (c) = f~1(c?) = {x € R"T! | ¢ = |x]|]} of radius
¢ > 0 is therefore a smooth submanifold of R”!. From Proposition (15.2.2) we obtain
TeS"(c) = {v e R*"T1 | x L.

5. Let M(m,n) be the vector space of real (m,n)-matrices and M(m,n; k) for 0 < k <
min(m, n) the subset of matrices of rank k. Then M(m,n;k) is a smooth submanifold of
M(m, n) of dimension k(m + n — k).

6. The subset Sg (R") = {(x1,...,xx) | xi € R";x1,..., xi linearly independent } of the
k-fold product of R” is called the Stiefel manifold of k-frames in R”. It can be identified
with M (k, n; k) and carries this structure of a smooth manifold.

7. The group O(n) of orthogonal (1, n)-matrices is a smooth submanifold of the vector space
M,, (R) of real (n, n)-matrices. Let S, (R) be the subspace of symmetric matrices. The map
f: My(R) = Su(R), B — B’ . B issmooth, O(n) = f~!(E), and f has surjective
differential at each point A € O(n). The derivative at s = 0 of s > (A’ + sX*)(A + sX)
is A” - X 4+ X' - A; the differential of f at A is the linear map M,,(R) — S,(R), X >
A" - X 4+ X' . A. Ttis surjective, since the symmetric matrix S is the image of X = %AS.
From (15.2.2) we obtain

T40(n) ={X e M,(R) | A" - X + X" A =0},

and in particular for the unit matrix £, TeO(n) = {X € M, (R) | A* + A = 0}, the space
of skew-symmetric matrices. A local parametrization of O(#n) about E can be obtained from
the exponential map T0(n) — O(n), X +>expX = > o° X k /k\. Group multiplication



366 Chapter 15. Manifolds

and passage to the inverse are smooth maps.

8. Make a similar analysis of the unitary group U(n).

9. The Stiefel manifolds have an orthogonal version which generalizes the orthogonal group,
the Stiefel manifold of orthonormal k-frames. Let Vi (R™) be the set of orthonormal k-
tuples (v1,...,vk), v; € R”. If we write v; as row vector, then Vi (R") is a subset of the
vector space M = M(k,n; R) of real (k,n)-matrices. Let S = Sk (R) again be the vector
space of symmetric (k, k)-matrices. Then f: M — S, A — A - A’ has the pre-image
f~YE) = Vi (R™). The differential of f at A is the linear map X +— XA’ + AX? and it is
surjective. Hence E is a regular value. The dimension of Vi (R”) is (n — k)k + %k(k —-1).
10. The defining map R? 110 — RP" isasubmersion. Itsrestrictionto S” is a submersion
and an immersion (a 2-fold regular covering).

11. The graph of a smooth function f: R” — R is a smooth submanifold of R”?+1.

12. Let Y be a smooth submanifold of Z and X C Y. Then X is a smooth submanifold
of Y if and only if it is a smooth submanifold of Z. If X is a smooth submanifold, then
there exists about each point x € X a chart (U, ¢, V') of Z such that ¢(U N X) as well as
¢(U N'Y) are intersections of V' with linear subspaces. (Charts adapted to X C Y C Z.
Similarly for inclusions of submanifolds X1 C X> C--- C X;.)

13. Let AX(R") be the k-th exterior power of R”. The action of O() on R” induces an
action on AX(R™), a smooth representation. If we assign to a basis x(1),...,x(k) of a
k-dimensional subspace the element x (1) A --- A x (k) € A% (R"), we obtain a well-defined,
injective, O(n)-equivariant map j: Gx(R") — P(AXR™) (Pliicker coordinates). The
image of j is a smooth submanifold of P(AKR"),ie., jisan embedding of the Grassmann
manifold G (R™).

14. The Segre embedding is the smooth embedding

RP™ x RP" — RPTD@HD=L (] [y;]) = [xi ;).

For m = n = 1 the image is the quadric {[so, 51, 52, 53] | Sos3 — 5152 = 0}.

15. Leth: R*H1 x R? 1 — R7+T&+1 pe a symmetric bilinear form such that x # 0, y # 0
implies A(x, y) # 0. Let g: 8" — Sk x > h(x,x)/|h(x, x)|. If g(x) = g(¥), hence
h(x,x) =t2h(y, y) withsome ¢ € R, then & (x + 1y, x —ty) = 0 and therefore x +1y = 0
or x —ty = 0. Hence g induces a smooth embedding RP” — S”T%_ The bilinear form
h(Xx0, ..., Xn,sY0,---s¥n) = (z0,...,z2,) withzg = Zi_H:k x;y; yields an embedding
RP" — S2" [89], [95].

16. Remove a point from S x §! and show (heuristically) that the result has an immersion
into R2. (Removing a point is the same as removing a big 2-cell!).

15.3 Smooth Transformation Groups

Let G be a Lie group and M a smooth manifold. We consider smooth action
G xM — M of Gon M. The left translations lg: M — M, x +— gx are
then diffeomorphisms. The map 8: G — M, g — gx is a smooth G-map with
image the orbit B = Gx through x. We have an induced bijective G-equivariant
set map y: G/Gx — B. The map B has constant rank; this follows from the
equivariance. If Lg: G — G and [;: M — M denote the left translations by g,
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then [ = BL,, and since Lg and [, are diffeomorphisms, we see that 7, 8 and
T, B have the same rank.

(15.3.1) Proposition. Suppose the orbit B = Gx is a smooth submanifold of M.
Then:

(1) B: G — B is a submersion.
(2) Gx = B~Y(x) is a closed Lie subgroup of G.
(3) There exists a unique smooth structure on G/ Gy such that the quotient map

G — G/Gy is a submersion. The induced map y: G/G, — B is a diffeo-
morphism.

Proof. If f would have somewhere a rank less than the dimension of B, the rank
would always be less than the dimension, by equivariance. This contradicts the
theorem of Sard. We transport via y the smooth structure from B to G/Gy. The
smooth structure is unique, since G — G/ Gy is a submersion. The pre-image G
of a regular value is a closed submanifold. O

The previous proposition gives us G as a closed Lie subgroup. We need not
use the general theorem about closed subgroups being Lie subgroups.

(15.3.2) Example. The action of SO(n) on S”~! by matrix multiplication is smooth.
We obtain a resulting equivariant diffeomorphism S”~! 2~ SO(n)/SO(n —1). Ina
similar manner we obtain equivariant diffeomorphisms 2"~ =~ U(n)/U(n—1) =
SU(n)/SU(n — 1). <&

(15.3.3) Theorem. Let M be a smooth n-manifold. Let C C M x M be the graph
of an equivalence relation R on M, i.e., C = {(x,y) | x ~ y}. Then the following
are equivalent:

(1) The set of equivalence classes N = M/ R carries the structure of a smooth
manifold such that the quotient map p: M — N is a submersion.

(2) C isaclosed submanifold of M x M andpr,: C — M is a submersion. [

(15.3.4) Theorem. Let M be a smooth G-manifold with free, proper action of the
Lie group G. Then the orbit space M /G carries a smooth structure and the orbit
map p: M — M/ G is a submersion.

Proof. We verify the hypothesis of the quotient theorem (15.3.3). We have to show
that C is a closed submanifold. The set C is homeomorphic to the image of the
map ®: GxM — M x M, (g,x) — (x,gx), since the action is proper. We
show that ® is a smooth embedding. It suffices to show that ® is an immersion
(see (15.2.4)). The differential

Tgx)0: TG X TXxM — TyM X Ty M
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will be decomposed according to the two factors
T(g.x»)OW,v) = ToO, x)u + TxO(g, Dv.

The first component of T, ®(?, x)u is zero, since the first component of the partial
map is constant. Thus if T(g y)(u,v) = 0, the component of Tx®(g,?)v in T M
is zero; but this component is v. It remains to show that Ty f': TG — Tgx M
is injective for f: G — M, g — gx. Since the action is free, the map f is
injective; and f has constant rank, by equivariance. An injective map of constant
rank has injective differential, by the rank theorem. Thus we have verified the first
hypothesis of (15.3.3). The second one holds, since pr; o® = pr, shows that pr,
is a submersion. O

(15.3.5) Example. The cyclic group G = Z/m C S! acts on C" by
Z/m X (]:n — G:n, (é‘, (217 o 7Zn)) = (§r1219 s ’é-rnzn)

where r; € Z. This action is a smooth representation. Suppose the integers r;
are coprime to m. The induced action on the unit sphere is then a free G-manifold
S(r1,...,ry); the orbit manifold L(ry, ..., ry,) is called a (generalized) lens space.

&

(15.3.6) Example. Let H be a closed Lie subgroup of the Lie group G. The
H -action on G by left translation is smooth and proper. The orbit space H\G
carries a smooth structure such that the quotient map G — H\G is a submersion.
The G-action on H\G is smooth. One can consider the projective spaces, Stiefel
manifolds and Grassmann manifolds as homogeneous spaces from this view-point.

<&

(15.3.7) Theorem. Let M be a smooth G-manifold. Then:

(1) An orbit C C M is a smooth submanifold if and only if it is a locally closed
subset.

(2) Ifthe orbit C is locally closed and x € C, then there exists a unique smooth
structure on G/ Gy such that the orbit map G — G/ Gy is a submersion. The
map G/Gy — C, gGx +— gx is a diffeomorphism. The G-action on G/ Gy
is smooth.

(3) Ifthe action is proper; then (1) and (2) hold for each orbit.

Proof. (1) B: G — C, g — gx has constant rank by equivariance. Hence there
exists an open neighbourhood of ¢ in G such that 8(U) is a submanifold of M.
Since C is locally closed in the locally compact space M, the set C is locally
compact and therefore §: G — C is an open map (see (1.8.6)). Hence there exists
an open set W in M such that C N W = B(U). Therefore C is a submanifold in a
neighbourhood of x and, by equivariance, also globally a submanifold.
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(2) Since C is locally closed, the submanifold C has a smooth structure. The
map B has constant rank and is therefore a submersion. We now transport the
smooth structure from C to G/ Gy.

(3) The orbits of a proper action are closed. O

15.4 Manifolds with Boundary

We now extend the notion of a manifold to that of a manifold with boundary. A
typical example is the n-dimensional disk D" = {x € R” | |x| < 1}. Other
examples are half-spaces. Let A: R” — R be a non-zero linear form. We use the
corresponding half-space H(L) = {x € R" | A(x) > 0}. Its boundary d0H (1) is
the kernel of A. Typical half-spaces are R, = {(x1,...,x,) € R" | x; > 0}. If
A C R™ is any subset, we call f: A — R” differentiable if for each a € A there
exists an open neighbourhood U of @ in R™ and a differentiable map F: U — R”
such that F|U N A = f|U N A. We only apply this definition to open subsets A
of half-spaces. In that case, the differential of F at a € A is independent of the
choice of the extension F and will be denoted Df (a).

Let n > 1 be an integer. An n-dimensional manifold with boundary or
d-manifold is a Hausdorff space M with countable basis such that each point has
an open neighbourhood which is homeomorphic to an open subset in a half-space
of R”. A homeomorphism &: U — V, U openin M, V open in H(A) is called a
chart about x € U with chart domain U. With this notion of chart we can define
the notions: C¥-related, atlas, differentiable structure. An n-dimensional smooth
manifold with boundary is therefore an n-dimensional manifold M with boundary
together with a (maximal) smooth C *-atlas on M.

Let M be a manifold with boundary. Its boundary oM is the following subset:
The point x is contained in dM if and only if there exists a chart (U, i, V') about
x such that V. C H(A) and h(x) € 0H(A). The complement M ~ 0M is called
the interior In(M) of M. The following lemma shows that specifying a boundary
point does not depend on the choice of the chart (invariance of the boundary).

(15.4.1) Lemma. Let ¢: V — W be a diffeomorphism between open subsets V C
H(A)and W C H(w) ofhalf-spacesinR". Thenp(VNOH (L)) = WNOH (). O

(15.4.2) Proposition. Let M be an n-dimensional smooth manifold with boundary.
Then either oM = @ or IM is an (n — 1)-dimensional smooth manifold. The set
M ~ OM is a smooth n-dimensional manifold with empty boundary. O

The boundary of a manifold can be empty. Sometimes it is convenient to view
the empty set as an n-dimensional manifold. If oM = @, we call M a manifold
without boundary. This coincides then with the notion introduced in the first section.
In order to stress the absence of a boundary, we call a compact manifold without
boundary a closed manifold.
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Amap f: M — N between smooth manifolds with boundary is called smooth
if it is continuous and C *°-differentiable in local coordinates. Tangent spaces and
the differential are defined as for manifolds without boundary.

Letx € 0M and k = (U, h, V') be a chart about x with V' open in R” . Then the
pair (k,v), v € R” represents a vector w in the tangent space Tx M. We say that
w is pointing outwards (pointing inwards, tangential) to 0M if v; > 0 (v <0,
v1 = 0, respectively). One verifies that this disjunction is independent of the choice
of charts.

(15.4.3) Proposition. The inclusion j: dM C M is smooth and the differential
Txj: Tx(0M) — Tx M is injective. Its image consists of the vectors tangential to
dM. We consider Ty j as an inclusion. O

The notion of a submanifold can have different meanings for manifolds with
boundary. We define therefore submanifolds of type I and type IL.

Let M be a smooth n-manifold with boundary. A subset N C M is called a
k-dimensional smooth submanifold (of type 1) if the following holds: For each
x € N there exists a chart (U,h, V), V C R” open, of M about x such that
h(U N N) = V N (RF x 0). Such charts of M are adapted to N. The set
VN (RFx0) C RF x0 = R¥ is openin R¥ . A diffeomorphism onto a submanifold
of type I is an embedding of type I. From this definition we draw the following
conclusions.

(15.4.4) Proposition. Let N C M be a smooth submanifold of type 1. The restric-
tionsh: UNN — h(U N N) of the charts (U, h, V') adapted to N form a smooth
atlas for N which makes N into a smooth manifold with boundary. The relation
N N oM = dN holds, and ON is a submanifold of OM . O

Let M be a smooth n-manifold without boundary. A subset N C M is a k-di-
mensional smooth submanifold (of type 11) if the following holds: For each x € N
there exists a chart (U, h, V') of M about x such that 2(U N N) = V N (R x 0).
Such charts are adapted to N .

The intersection of D" with R* x 0 is a submanifold of type I (k < n). The
subset D" is a submanifold of type II of R”. The next two propositions provide a
general means for the construction of such submanifolds.

(15.4.5) Proposition. Let M be a smooth n-manifold with boundary. Let f: M — R
be smooth with regular value 0. Then f 1[0, oo[ is a smooth submanifold of type 11
of M with boundary f~'(0).

Proof. We have to show that for each x € f 1[0, oo[ there exists a chart which
is adapted to this set. If f(x) > 0, then x is contained in the open submanifold
7710, oo[; hence the required charts exist. Let therefore f(x) = 0. By the rank
theorem (15.2.1), f has in suitable local coordinates the form (x1,...,x,) — X1.
From this fact one easily obtains the adapted charts. O
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(15.4.6) Proposition. Let f: M — N be smoothand y € f(M) N (N ~ dN) be
a regular value of f and f|0M. Then P = f~1(y) is a smooth submanifold of
type Lof M with 0P = (f|0M)~'(y) = dM N P.

Proof. Being a submanifold of type I is a local property and invariant under diffeo-
morphisms. Therefore it suffices to consider a local situation. Let therefore U be
openin R” and f: U — R" a smooth map which has 0 € R” as regular value for
fand f|oU (n = 1,m > n).

We know already that f~1(0) N In(U) is a smooth submanifold of In(U). It
remains to show that there exist adapted charts about points x € dU. Since x is
a regular point of f|0U, the Jacobi matrix (D; fj(x) |2 <i <m, 1 < j <n)
has rank n. By interchange of the coordinates x», ..., X, we can assume that the
matrix

Difix)lm—n+1<i=<n 1<j<n)

has rank n. (This interchange is a diffeomorphism and therefore harmless.) Under
this assumption, ¢: U — R™, u — (u1,...,Um—n, f1(4),..., fn(u)) has bijec-
tive differential at x and therefore yields, by part (1) of the rank theorem applied to
an extension of f to an open set in R™, an adapted chart about x. O

If only one of the two manifolds M and N has a non-empty boundary, say
M , then we define M x N as the manifold with boundary which has as charts the
products of charts for M and N. In that case d(M x N) = dM x N. If both M
and N have a boundary, then there appear “corners” along dM x N ; later we shall
explain how to define a differentiable structure on the product in this case.

Problems

1. The map

Dp(4+) ={(x,0) |t >0, |x|*>+12 < 1} =] —1,0]x U1 (0), (x,1) — (ﬁ— 1, x)
is an adapted chart for §”~! = D" c D".

2. Let B be a d-manifold. A smooth function f: dB — R has a smooth extension to B. A
smooth function g: A — R from a submanifold A of type I or of type II of B has a smooth
extension to B.

3. Verify the invariance of the boundary for topological manifolds (use local homology
groups).

4. A 0-manifold M is connected if and only if M ~ dM is connected.

5. Let M be a d-manifold. There exists a smooth function f: M — [0, oo[ such that
f(OM) = {0} and Ty f # O for each x € M.

6. Let f: M — RX be an injective immersion of a compact d-manifold. Then the image is
a submanifold of type II.

7. Verify that “pointing inwards” is well-defined, i.e., independent of the choice of charts.
8. Unfortunately is not quite trivial to classify smooth 1-dimensional manifolds by just
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starting from the definitions. The reader may try to show that a connected 1-manifold
without boundary is diffeomorphic to R! or S!; and a d-manifold is diffeomorphic to [0, 1]
or [0, 1].

15.5 Orientation

Let V be an n-dimensional real vector space. We call ordered bases by, ..., by,
and cy,...,c, of V positively related if the determinant of the transition matrix
is positive. This relation is an equivalence relation on the set of bases with two
equivalence classes. An equivalence class is an orientation of V. We specify
orientations by their representatives. The standard orientation of R” is given by
the standard basis ey, ..., e,, the rows of the unit matrix. Let W be a complex
vector space with complex basis wy, ..., w,. Then wy,iwy, ..., w,,iw, defines
an orientation of the underlying real vector space which is independent of the
choice of the basis. This is the orientation induced by the complex structure.
Let uy,...,u,, be a basis of U and wq,...,w, a basis of W. In a direct sum
U ® W we define the sum orientation by uy, ..., Uy, Wy,...,w,. If o(V) is
an orientation of V, we denote the opposite orientation (the occidentation) by
—o(V). A linear isomorphism f: U — V between oriented vector spaces is
called orientation preserving or positive if for the orientation uy,...,u, of U the
images f(u1),..., f(uy,) yield the given orientation of V.

Let M be a smooth n-manifold with or without boundary. We call two charts
positively related if the Jacobi matrix of the coordinate change has always positive
determinant. An atlas is called orienting if any two of its charts are positively related.
We call M orientable, if M has an orienting atlas. An orientation of a manifold
is represented by an orienting atlas; and two such define the same orientation if
their union contains only positively related charts. If M is oriented by an orienting
atlas, we call a chart positive with respect to the given orientation if it is positively
related to all charts of the orienting atlas. These definitions apply to manifolds of
positive dimension. An orientation of a zero-dimensional manifold M is a function
€: M — {£13}.

Let M be an oriented n-manifold. There is an induced orientation on each of its
tangent spaces T M . Itis specified by the requirement that a positive chart (U, &, V')
induces a positive isomorphism Txh: TyM — Tj)V = R" with respect to the
standard orientation of R”. We can specify an orientation of M by the corresponding
orientations of the tangent spaces.

If M and N are oriented manifolds, the product orientation on M x N is
specified by declaring the products (U x V., k x [,U’ x V') of positive charts
(U,k,U") of M and (V,[,V’) of N as positive. The canonical isomorphism
Tix,y)(M x N) = TyM @ T, N is then compatible with the sum orientation of
vector spaces. If N is a point, then the canonical identification M x N =~ M is
orientation preserving if and only if €(N) = 1. If M is oriented, then we denote
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the manifold with the opposite orientation by —M .

Let M be an oriented manifold with boundary. For x € dM we have a direct
decomposition Tx(M) = Ny @& Tx(dM). Let ny € N, be pointing outwards.
The boundary orientation of Ty (dM) is defined by that orientation vy, ..., Uy—1
for which ny, vy, ..., v,—1 is the given orientation of Ty (M ). These orientations
correspond to the boundary orientation of M ; one verifies that the restriction of
positive charts for M yields an orienting atlas for M .

In R”, the boundary dR” = 0 x R”"! inherits the orientation defined by
€2, ...,ey. Thus positive charts have to use R”.

Let D? C R? carry the standard orientation of R2. Consider S! as boundary of
D? and give it the boundary orientation. An orienting vector in 7S is then the
velocity vector of a counter-clockwise rotation. This orientation of S! is commonly
known as the positive orientation. In general if M C R? is a two-dimensional
submanifold with boundary with orientation induced from the standard orientation
of R?, then the boundary orientation of the curve M is the velocity vector of a
movement such that M lies “to the left”.

Let M be an oriented manifold with boundary and N an oriented manifold
without boundary. Then product and boundary orientation are related as follows

0(d(M x N)) =0(0M x N), 0(d(N x M)) = (=1)"No(N x IM).

The unit interval I = [0, 1] is furnished with the standard orientation of R.
Since the outward pointing vector in O yields the negative orientation, we specify
the orientation of 1 by €(0) = —1, €(1) = 1. Wehave d({ xM) = OxM U1xM.
The boundary orientation of 0 x M = M is opposite to the original one and the
boundary orientation of 1 x M =~ M is the original one, if / x M carries the
product orientation. We express these facts by the suggestive formula d(/ x M) =
I x M —0 x M. (These conventions suggest that homotopies should be defined
with the cylinder I x X.)

A diffeomorphism f: M — N between oriented manifolds respects the ori-
entation if Ty f is for each x € M orientation preserving. If M is connected, then
[ respects or reverses the orientation.

Problems

1. Show that a 1-manifold is orientable.
2. Let f: M — N be a smooth map and let A be the pre-image of a regular value y € N.
Suppose M is orientable, then A is orientable.

We specify an orientation as follows. Let M and N be oriented. We have an exact

1 2
sequence 0 — Ty A 2 7, M 2 T, N = 0, with inclusion (1) and differential T, f at

(2). This orients T, A as follows: Let vq,..., vk be a basis of T, A, wy, ..., w; a basis of
TyN,and uy,...,u; be pre-images in T, M ; then vy, ..., vk, u1,...,u; is required to be
the given orientation of 7, M . These orientations induce an orientation of A. This orientation
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of A is called the pre-image orientation.
3. Let f: R" - R, (xj) — lez and S”~1 = f~1(1). Then the pre-image orientation
coincides with the boundary orientation with respect to S”~! c D”.

15.6 Tangent Bundle. Normal Bundle

The notions and concepts of bundle theory can now be adapted to the smooth
category. A smooth bundle p: E — B has a smooth bundle projection p and the
bundle charts are assumed to be smooth. A smooth subbundle of a smooth vector
bundle has to be defined by smooth bundle charts. Let o: &5 — &, be a smooth
bundle morphism of constant rank; then Ker o and Im o are smooth subbundles.
The proof of (14.2.3) can also be used in this situation. A smooth vector bundle has
a smooth Riemannian metric; for the existence proof one uses a smooth partition
of unity and proceeds as in (14.5.1). Let £ be a smooth subbundle of the smooth
vector bundle n with Riemannian metric; then the orthogonal complement of & in
n is a smooth subbundle.

Let M be a smooth n-manifold. Denote by TM the disjoint union of the tangent
spaces 1,(M), p € M. We write a point of T,(M) C TM in the form (p, v) with
v € T,(M), for emphasis. We have the projection war: TM — M, (p,v) — p.
Each chart k = (U, h, V) of M yields a bijection

(pk:TU:UpEU TP(M)_)UXRn’ (P’U)H(P’ik(v))-

Here iy, is the morphism which is part of the definition of a tangent space. The map
¢k 1s a map over U and linear on fibres. The next theorem is a consequence of the
general gluing procedure.

(15.6.1) Theorem. There exists a unique structure of a smooth manifold on TM such
that the (TU, gr, U x R™) are charts of the differential structure. The projection
iy TM — M is then a smooth map, in fact a submersion. The vector space
structure on the fibres of mpy give myy the structure of an n-dimensional smooth
real vector bundle with the ¢y as bundles charts. O

The vector bundle 7wy : TM — M is called the tangent bundle of M. A smooth
map f: M — N induces a smooth fibrewise map Tf: TM — TN, (p,v) —

(f (). Tp f (V).

(15.6.2) Proposition. Let M C R? be a smooth n-dimensional submanifold. Then
™ ={(x,v) | xeM, veT M} CR?xR?

is a 2n-dimensional smooth submanifold.
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Proof. Write M locally as A~ (0) with a smooth map h: U — R4~ of constant
rank ¢ — n. Then TM is locally the pre-image of zero under

UxR? - RIT*Px R, (u,v) = (h(u), Dh(u)(v)),

and this map has constant rank 2(g—n); this can be seen by looking at the restrictions
to U x 0and u x RY. O

We can apply (15.6.2) to S” C R"*! and obtain the model of the tangent bundle
of S”, already used at other occasions.
Let the Lie group G act smoothly on M. We have an induced action

GxTM — TM, (b,v) — (Tlg)v.

This action is again smooth and the bundle projection is equivariant, i.e., TM — M
is a smooth G -vector bundle.

(15.6.3) Proposition. Let £: E — M be a smooth G-vector bundle. Suppose the
action on M is free and proper. Then the orbit map E/G — M/G is a smooth
vector bundle. We have an induced bundle map § — £/G. O

The differential Tp: TM — T (M/G) of the orbit map p is a bundle morphism
which factors over the orbit map TM — (TM)/G and induces a bundle morphism
q: (TM)/G — T(M/G) over M/G. The map is fibrewise surjective. If G is
discrete, then M and M/G have the same dimension, hence ¢ is an isomorphism.

(15.6.4) Proposition. For a free, proper, smooth action of the discrete group G on
M we have a bundle isomorphism (TM)/G = T (M/G) induced by the orbit map
M — M/G. O

(15.6.5) Example. We have abundle isomorphism 78" ®¢e =~ (n+1)e. IfG = Z /2
acts on TS” via the differential of the antipodal map and trivially on ¢, then the said
isomorphism transforms the action into S” x R**! — §" x R*"*1 (x,v)
(—x, —v). We pass to the orbit spaces and obtain an isomorphism T(RP") & & =~
(n + 1)n with the tautological line bundle 1 over R P". <

In the general case the map ¢: (TM)/G — T(M/G) has a kernel, a bundle
K — M/ G with fibre dimension dim G. See [44, IX.6] for details.

(15.6.6) Example. The defining map C"*! <0 — (C**!~0)/C* = CP" yields
a surjective bundle map ¢: T(C"*!' ~ 0)/C* — T(CP"). The source of ¢ is the
(n + 1)-fold Whitney sum (n + 1)n where E () is the quotient of (C"*! ~ 0) x C
with respect to (z, x) ~ (Az,Ax) for A € C* and (z, x) € (C"*! <~ 0) x C. The
kernel bundle of g is trivial: We have a canonical section of (n + 1)

CP" — (C"' N0 xC"H/C*, [zl = (z.2)/ ~,



376 Chapter 15. Manifolds

and the subbundle generated by this section is contained in the kernel of g. Hence
the complex tangent bundle of C P” satisfies T(CP") @ ¢ = (n + 1)n. For n see
H(1) in (14.2.6). <&

Let p: E — M be a smooth vector bundle. Then E is a smooth manifold and
we can ask for its tangent bundle.

(15.6.7) Proposition. There exists a canonical exact sequence
0—>p*Ei>TEi>p*TM—>0
of vector bundles over E, written in terms of total spaces.

Proof. The differential of p is a bundle morphism 7p: TE — TM, and it induces
a bundle morphism 8: TE — p*TM which is fibrewise surjective, since p is a
submersion. We consider the total space of p*E — E as E @ E and the projection
onto the first summand is the bundle projection. Let (v, w) € Ex @ E. We define
o (v, w) as the derivative of the curve t — v + tw at ¢t = 0. The bundle morphism
« has an image contained in the kernel of 8 and is fibrewise injective. Thus, for
reasons of dimension, the sequence is exact. O

(15.6.8) Remark. We restrict the exact sequence givenin (15.6.7) to the zero section
i: M C E. Since pi = id we obtain an exact sequence

0 E-TEM 2L T = 0

of vector bundles over M. For w € E,, x € M the vector a(w) € TyE is
the derivative at t = 0 of the curve t — tw € E,. The bundle map § has the
right inverse ti: TM — TE|M. We therefore obtain a canonical isomorphism
(¢, Ti): E® TM =~ TE|M. We have written this in a formal manner. The
geometric meaning is that 7 E splits into the tangent vectors in direction of the
fibre and the tangent vectors to the submanifold M. Since the tangent space of a
vector space is canonically identified with the vector space, we can consider « as
an inclusion. <

Let f: M — N beanimmersion. Then Tf is fibrewise injective. We pull back
TN along f and obtain a fibrewise injective bundle morphismi: TM — f*TN|M.
The quotient bundle is called the normal bundle of the immersion. In the case of a
submanifold M C N the normal bundle v(M, N) of M in N is the quotient bundle
of TN|M by TM. If we give TN a smooth Riemannian metric, then we can take
the orthogonal complement of 7M as a model for the normal bundle. The normal
bundle of S” C R"*! is the trivial bundle.

We will show that the total space of the normal bundle of an embedding M C N
describes a neighbourhood of M in N. We introduce some related terminology.
Letv: E(v) — M denote the smooth normal bundle. A tubular map is a smooth
map ¢: E(v) — N with the following properties:
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(1) Itis the inclusion M — N when restricted to the zero section.

(2) It embeds an open neighbourhood of the zero section onto an open neigh-
bourhood U of M in N.

(3) The differential of ¢, restricted to TE(v)|M, is a bundle morphism
t: TE(w)IM — TN|M.
We compose with the inclusion (15.6.8)
a: Ev) > EWw)®TM =~ TE(w)|M
and the projection
w:TN|\M — E(v) = (TN|M)/TM.

We require that w7 is the identity. If we use another model of the normal
bundle given by an isomorphism ¢: E(v) — (TN|M)/TM, then we require
TTH = L

The purpose of (3) is to exclude bundle automorphisms.

(15.6.9) Remark (Shrinking). Let?: E(v) — N be a tubular map for a subman-
ifold M. Then one can find by the process of shrinking another tubular map that
embeds E(v). There exists a smooth function e: M — R such that

E(v) ={y e EQ@)x | Iyl <e(x)} CU.

Let A,(t) = nt - (n®*> + t2)~"/2. Then A,: [0, 00[— [0, [ is a diffeomorphism
with derivative 1 at # = 0. We obtain an embedding

hiE—E, y=deyD-IyI™ -y, yeEWk.
Then g = fh is a tubular map that embeds E(v). &

The image U of a tubular map ¢: E(v) — N which embeds E(v) is called a
tubular neighbourhood of M in N.

Let M be an m-dimensional smooth submanifold M C R” of codimension k.
Wetake N(M) = {(x,v) | x e M,v L TxM} C M x R" as the normal bundle of
M C R".

(15.6.10) Proposition. N(M) is a smooth submanifold of M x R", and the pro-
jection N(M) — M is a smooth vector bundle.

Proof. Let A: R" — R¥ be a linear map. Its transpose A’ with respect to the
standard inner product is defined by (Av,w) = (v, A'w). If A is surjective,
then A’ is injective, and the relation image (A?) = (kernel A)* holds; moreover
A- A" € GLg(R).
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We define M locally as the solution set: Suppose U C R” is open, ¢: U — RF
a submersion, and 91 (0) = U N M = W. Weset N(M) N (W x R*) = N(W).
The smooth maps

O:W xR > W xR, (x,v) > (x, Txp(v)),
U W xRF 5> W xR, (x,v) ~ (x, (Txg) (v)

satisfy
NW)=ImV¥, T(W)=Ker®.

The composition ®W is a diffeomorphism: it has the form (w, v) + (w, gy (v))
with a smooth map W — GL (R), w > gy, and therefore (w, v) > (w, g;,' (v))
is a smooth inverse. Hence W is a smooth embedding with image N(W) and
W1 N(W) is a smooth bundle chart. O

(15.6.11) Proposition. The map a: N(M) — R", (x,v) — x + v is a tubular
map for M C R".

Proof. We show that a has a bijective differential at each point (x,0) € N(M).
Let NyM = Ty M~+. Since M C R” we consider Ty M as a subspace of R”. Then
T(x,00)N(M) is the subspace Ty M x NyM C T(x 0)(M x R") = TyM x R". The
differential T4 gya is the identity on each of the subspaces Ty M and N, M . There-
fore we can consider this differential as the map (u, v) — u + v, i.e., essentially
as the identity.

It is now a general topological fact (15.6.13) that a embeds an open neighbour-
hood of the zero section. Finally it is not difficult to verify property (3) of a tubular
map. O

(15.6.12) Corollary. If we transport the bundle projection N(M) — M via the
embedding a we obtain a smooth retractionr: U — M of an open neighbourhood
UoM cCR" O

(15.6.13) Theorem. Let f: X — Y be a local homeomorphism. Let A C X and
f: A — f(A) = B be a homeomorphism. Suppose that each neighbourhood
of B in Y contains a paracompact neighbourhood. Then there exists an open
neighbourhood U of A in X which is mapped homeomorphically under f onto an
open neighbourhood V of B in Y (see [30, p. 125]). O

For embeddings of compact manifolds and their tubular maps one can apply
another argument as in the following proposition.

(15.6.14) Proposition. Let ®: X — Y be a continuous map of a locally compact
space into a Hausdorffspace. Let @ be injective onthe compactset A C X. Suppose
that each a € A has a neighbourhood U, in X on which ® is injective. Then there
exists a compact neighbourhood V of A in X on which ® is an embedding.



15.7. Embeddings 379

Proof. The coincidence set K = {(x,y) € X x X | ®(x) = ®(y)} is closed in
X x X, since Y is a Hausdorff space. Let D(B) be the diagonal of B C X. If ®
is injective on Uy, then (U, x U;) N K = D(U,). Thus our assumptions imply
that D(X) is open in K and hence W = X x X \ (K \ D(X)) openin X x X.
By assumption, 4 x A is contained in W. Since 4 x A is compact and X locally
compact, there exists a compact neighbourhood V' of A such that V x V C W.
Then ®|V is injective and, being a map from a compact space into a Hausdorff
space, an embedding. O

(15.6.15) Proposition. A submanifold M C N has a tubular map.

Proof. We fix an embedding of N C R”. By (15.6.12) there exists an open neigh-
bourhood W of V in R” and a smooth retraction r: W — V. The standard inner

product on R” induces a Riemannian metric on TN. We use as normal bundle for
M C N the model

E={(x,v) e M xR"|ve (T«M):XNTN}.

Again we use the map f: E — R”, (x,v) = x +vandset U = f~}(W). Then
U is an open neighbourhood of the zero sectionof E. Themapg =rf: U — N is
the inclusion when restricted to the zero section. We claim that the differential of g
at points of the zero section is the identity, if we use the identification T(y 0)E =
TxM @ Ex = TxN. On the summand 7y M the differential T, )g is obviously
the inclusion TyM C T,V. For (x,v) € Ey the curve t — (x,tv) in E has
(x,v) as derivative at ¢ = 0. Therefore we have to determine the derivative of
t > r(x +tv) att = 0. The differential of r at (x, 0) is the orthogonal projection
R"™ — Ty N, if we use the retraction r in (15.6.12). The chain rule tells us that the
derivative of t + r(x + tv) at t = 0 is v. We now apply again (15.6.13). One
verifies property (3) of a tubular map. O

15.7 Embeddings

This section is devoted to the embedding theorem of Whitney:

(15.7.1) Theorem. A smooth n-manifold has an embedding as a closed submanifold
of R27n+1

We begin by showing that a compact n-manifold has an embedding into some
Euclidean space. Let f: M — R’ be a smooth map from an n-manifold M. Let
(U;,9;.U3(0)), j € {l,...,k} be a finite number of charts of M (see (15.1.2)
for the definition of U3(0)). Choose a smooth function t: R* — [0, 1] such that
7(x) = O for |[x] = 2 and 7(x) = 1 for ||x|| < 1. Define 6;: M — R by
0j(x) = 0forx ¢ U; and by 0;(x) = 1¢;(x) for x € Uj; then o0, is a smooth
function on M. With the help of these functions we define

®: M —> R x (RxR") x---x(RxR") =R xR
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O(x) = (f(x):01(x), 01(x)1(x); ... ;0% (x), 0k (x) P (x)),

(k factors R x R"), where a; (x)¢; (x) should be zero if ¢; (x) is not defined. The
differential of this map has the rank n on W; = ¢]71(U1 0),as ®(W;) C V; =
{(ziay,x1;...;ak, xx) | aj # 0}, and the composition of ®|W; with V; — R”,
(z;ai, x1;...) > aj_lxj is ¢;. By construction, ® is injective on W = Ule Wi,
since ®(a) = ®(b) implies oj(a) = o;(b) for each j, and then ¢; (a) = ¢; (D)
holds for some i. Moreover, ® is equal to f composed with R¥ C R? x RY on
the complement of the ¢]-_1 U,(0). Hence if f is an (injective) immersion on the
open set U, then @ is an (injective) immersion on U U W. In particular, if M is
compact, we can apply this argument to an arbitrary map f and M = W. Thus we
have shown:

(15.7.2) Note. A compact smooth manifold has a smooth embedding into some
Euclidean space. O

We now try to lower the embedding dimension by applying a suitable parallel
projection.

Let R9™! = RY™! x 0 C RY. Forv € R? \ R?~! we consider the projection
pv: R4 — RY7! with direction v, i.e., for x = xo + Av with xo € RY"! and
A € R we set py(x) = xo. In the sequel we only use vectors v € S971. Let
M C RY. We remove the diagonal D and consider 0: M x M \ D — S§971,

(x,y) > N(x—y)=(x—=y)/[x =yl

(15.7.3) Note. ¢, = py|M is injective if and only if v is not contained in the image

of o.

Proof. The equality ¢, (x) = ¢y (¥),x # yandx = xo+Av, y = yo+ uv imply
x—y=@A—pu)v#0,hencev = £N(x —y). Noteo(x,y) = —o(y,x). O

Let now M be a smooth n-manifold in R?. We use the bundle of unit vectors

STM = {(x,v) |veTM, |v]| =1} C M x §97!

and its projection to the second factor T = pr, |STM : STM — S9!, The function
(x,v) ~ |Jv]|? on TM C R? x R? has 1 as regular value with pre-image STM,
hence STM is a smooth submanifold of the tangent bundle 7M.

(15.7.4) Note. ¢, is an immersion if and only if v is not contained in the image

of t.

Proof. The map ¢, is an immersion if for each x € M the kernel of Ty p, has
trivial intersection with Tx M. The differential of p, is again p,. Hence 0 # z =
pv(z) + Av € Ty M is contained in the kernel of T p, if and only if z = Av and
hence v is a unit vector in 7,y M . O
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(15.7.5) Theorem. Let M be a smooth compact n-manifold. Let f: M — R?"*1
be a smooth map which is an embedding on a neighbourhood of a compact subset
A C M. Then there exists for each ¢ > 0 an embedding g: M — R*"*! which
coincides on A with f and satisfies || f(x) — g(x)|| < e for x € M.

Proof. Suppose f embeds the open neighbourhood U of A andlet V' C U be a
compact neighbourhood of A. We apply the construction in the beginning of this
section with chart domains U; which are contained in M \ V and such that the sets
W; cover M ~ U. Then & is an embedding on some neighbourhood of M \ U and

O: M- R @RY =RY, x> (f(x), ¥(x))

is an embedding which coincides on V' with f (up to composition with the inclusion
R2"+1 c RY). For 2n < q — 1 the image of ¢ is nowhere dense and for 2n — 1 <
q — 1 the image of 7 is nowhere dense (theorem of Sard). Therefore in each
neighbourhood of w € S97! there exist vectors v such that p, o ® = @, is an
injective immersion, hence an embedding since M is compact. By construction,
®, coincides on V with f. If necessary, we replace ¥ with sW (with small s)
such that || f(x) — ®(x)|| < &/2 holds. We can write f as composition of o
with projections R? — RY™1 — ... — R2"T1 along the unit vectors (0, ..., ).
Sufficiently small perturbations of these projections applied to ® yield a map g
such that || f(x) — g(x)|| < e, and, by the theorem of Sard, we find among these
projections those for which g is an embedding. O

The preceding considerations show that we need one dimension less for immer-
sions.

(15.7.6) Theorem. Let f: M — R?" be a smooth map from a compact n-mani-
fold. Then there exists for each ¢ > 0 an immersion h: M — R?" such that
|h(x) — f(x)|| < eforx € M. If f: M — R?*"*!is a smooth embedding, then
the vectors v € S?" for which the projection p, o f: M — R*" is an immersion
are dense in S*". O

Let f: M — R be a smooth proper function from an n-manifold without
boundary. Let ¢ € R be a regular value and set A = f~!(¢). The manifold 4 is
compact. There exists an open neighbourhood U of A in M and a smooth retraction
r: U — A.

(15.7.7) Proposition. There exists an ¢ > 0 and open neighbourhood V- .C U of A
such that (r, f): V — Ax ]t — e, t + ¢[ is a diffeomorphism.

Proof. Themap (r, f): U — A xR has bijective differential at points of A. Hence
there exists an open neighbourhood W C U of A such that (r, ') embeds W onto
an open neighbourhood of A x {¢t}in A x R. Since f is proper, each neighbourhood
W of A contains a set of the form V = f 1]t —e, ¢ + ¢[. The restriction of (r, f)
to V' has the required properties. O
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In a similar manner one shows that a proper submersion is locally trivial (theorem
of Ehresmann).

We now show that anon-compact n-manifold M has anembedding into R?"+! as
aclosed subset. For this purpose we choose a proper smooth function f: M — Ry.
We then choose a sequence (t; | k € N) of regular values of f such that#; < f541
and limy tx = oo. Let Ay = f~'(tx) and My = f~'[tx,tx+1]. Choose g > 0
small enough such that the intervals J; = ]tx — ek, tx + &x[ are disjoint and such
that we have diffeomorphisms f~!(Jy) = A x Ji of the type (15.7.7). We
then use (15.7.7) in order to find embeddings @ : f~!1(Jx) — R?" x Ji which
have f as their second component. We then use the method of (15.7.5) to find an
embedding My — R?" x [ty tx+1] which extends the embeddings ®; and ®y
in a neighbourhood of My + My ;. All these embeddings fit together and yield an
embedding of M as a closed subset of R27T1,

A collar of a smooth d-manifold M is a diffeomorphism «: dM x [0,1] - M
onto an open neighbourhood U of dM in M such that x (x,0) = x. Instead of [0, 1]
one can also use R4.

(15.7.8) Proposition. A smooth 0-manifold M has a collar.

Proof. There exists an open neighbourhood U of dM in M and a smooth retraction
r: U — dM. Choose a smooth function f: M — R such that f(dM) = {0}
and the derivative of f at each point x € dM is non-zero. Then (r, f): U —
dM x Ry has bijective differential along M . Therefore this map embeds an open
neighbourhood V' of dM onto an open neighbourhood W of dM x 0. Now choose
a smooth function ¢: dM — R such that {x} x [0, e(x)[C W for each x € M.
Then compose dM x [0, 1[— M x Ry, (x,s) — (x, e(x)s) with the inverse of
the diffeomorphism V' — W. O

(15.7.9) Theorem. A compact smooth n-manifold B with boundary M has a smooth
embedding of type 1 into D?"+1,

Proof. Let j: M — S2" be an embedding. Choose a collar k: M x [0,1[— U
onto the open neighbourhood U of M in B, and let [ = (1, [5) be its inverse. We
use the collar to extend j to f: B — D271

f) = max(0,1 — 2L (x))j(i(x)), xeU,
0, x ¢ U.

Then f is a smooth embedding on k(M x [0, %[) As in the proof of (15.7.4) we

approximate f by a smooth embedding g: B — D?"*! which coincides with f

on k(M x [0, [) and which maps B ~ M into the interior of D?"*1. The image

of g is then a submanifold of type I of D2"+1, O
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15.8 Approximation

Let M and N be smooth manifolds and A C M a closed subset. We assume that
N C RP? is a submanifold and we give N the metric induced by this embedding.

(15.8.1) Theorem. Let f: M — N be continuous and f|A smooth. Let§: M —
10, oo[ be continuous. Then there exists a smoothmap g: M — N which coincides
on A with f and satisfies ||g(x) — f(x)| < é(x) forx € M.

Proof. We start with the special case N = R. The fact that f is smooth at x € 4
means, by definition, that there exists an open neighbourhood Uy of x and a smooth
function fyx: Uy — R which coincides on U, N A with f. Having chosen f, we
shrink Uy, such that for y € U, the inequality || fx(y) — f(¥)|| < §(y) holds.

Fix now x € M ~ A. We choose an open neighbourhood Uy of x in M ~ A
such that for y € U, the inequality || f(y) — f(x)|| < 8(») holds. We define
fx: Uy = Rinthis case by f5(y) = (x).

Let (zx | x € M) be a smooth partition of unity subordinate to (U, | x € M).
The function g(y) = >_car Tx (V) fx () now has the required property.

From the case N = R one immediately obtains a similar result for N = R?.
The general case will now be reduced to the special case N = R?. For this purpose
we choose an open neighbourhood U of N in R? together with a smooth retraction
r: U — N. We show in a moment:

(15.8.2) Lemma. There exists a continuous function ¢: M — 10, 00[ with the
properties:

(1) Ux = Ugx)(f(x)) C U foreach x € M.

(2) For each x € M the diameter of r (Uy) is smaller than 5(x).

Assuming this lemma, we apply (15.8.1) to N = R? and ¢ instead of 6. This
provides us with a map g;: M — R” which has an image contained in U. Then
g = r o g has the required properties. O

Proof. Wefirst consider the situation locally. Let x € M be fixed. Choose y(x) > 0
and a neighbourhood Wy of x such that §(x) > 2y(x) for y € Wy. Let

Ve =11 (Uyy2(f(x)) N N).

The distance n(x) = d(f(x), R? ~ V) is greater than zero. We shrink Wy to a
neighbourhood Z, such that | f(x) — f(y)| < %n(x) fory € Z,.

The function f|Zy satisfies the lemma with the constant functione = &5 : y
in(x). In order to see this, let y € Z, and ||z — f(p)| < %n(x), ie,z € U,.
Then, by the triangle inequality, ||z — f(x)] < %n(x), and hence, by our choice of
n(x),

ze€Vy CU, r(z) € Uyxy(f(x)).
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If z1, zp € Uy, then the triangle inequality yields |7 (z1) —r(z2)|| < y(x) < %S(x).
Therefore the diameter of r(U,) is smaller than §(y).

After this local consideration we choose a partition of unity (7, | x € M)
subordinate to (Zxy | x € M). Then we define e: M —]0,00[ as e(x) =
> aem %ra (x)n(a). This function has the required properties. O

(15.8.3) Proposition. Let f: M — N be continuous. For each continuous map
8: M — 0, 00][ there exists a continuous map €: M — |0, oo[ with the following
property: Each continuous map g: M — N with ||g(x) — f(x)| < e(x) and
flA = g|A is homotopic to f by a homotopy F: M x [0,1] — N such that
F(a,t) = f(a) for (a,t) € Ax[0,1] and ||F(x,t) — f(x)| < 8(x) for (x,t) €
M x [0,1].

Proof. We chooser: U — N ande: M —]0, oo[ asin (15.8.1) and (15.8.2). For
(x,1) e M x[0,1]weset H(x,t) =t-g(x)+ (1 —=1)- f(x) € Ugx)(f(x)). The
composition F(x,t) = rH(x,t) is then a homotopy with the required properties.

O

(15.8.4) Theorem. (1) Let f: M — N be continuous and f|A smooth. Then f
is homotopic relative to A to a smooth map. If f is proper and N closed in R?,
then f is properly homotopic relative to A to a smooth map.

(2) Let fo, f1: M — N be smooth maps. Let f;: M — N be a homotopy
which is smoothon B = M x [0,e[UM x]1 —¢, 1]U A x [0, 1]. Then there exists a
smooth homotopy g; from fo to f1 which coincides on A x [0, 1] with f. If f; isa
proper homotopy and N closed in R?, then g; can be chosen as a proper homotopy.

Proof. (1)We choose § and ¢ according to (15.8.3) and apply (15.8.1). Then (15.8.3)
yields a suitable homotopy. If f is proper, § bounded, and if ||g(x) — f(x)| < &(x)
holds, then g is proper.

(2) We now consider M x ]0, 1] instead of M and its intersection with B instead
of A and proceed as in (1). O

15.9 Transversality

Let f: A— M and g: B — N be smooth maps. We form the pullback diagram

c—Lt5p

la p
s

A—T1sm

with C = {(a,b) | f(a) = g(b)} C Ax B. If g: B C M, then we identify C
with f~1(B). Ifalso f: A C M, then f~!(B) = AN B. The space C can also
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be obtained as the pre-image of the diagonal of M x M under f x g. The maps f
and g are said to be transverse in (a,b) € C if

Ta f(ToA) + Tpg(Ty B) = Ty M,

y = f(a) = g(b). They are called transverse if this condition is satisfied for all
points of C. If g: B C M is the inclusion of a submanifold and f(a) = b, then
we say that f is transverse to B in a if

T, f(TyM) + Ty B =TpyM

holds. If this holds for eacha € f~!(B), then f is called transverse to B. We also
use this terminology if C is empty, i.e., we also call f and g transverse in this case.
In the case that dim A + dim B < dim M, the transversality condition cannot hold.
Therefore f and g are then transverse if and only if C is empty. A submersion f
is transverse to every g.

In the special case B = {b} the map f is transverse to B if and only if b is a
regular value of f. We reduce the general situation to this case.

We use a little linear algebra: Leta: U — V be alinear mapand W C V a
linear subspace; then a(U) + W = V if and only if the composition of @ with the
canonical projection p: V — V/W is surjective.

Let B C M be a smooth submanifold. Let > € B and suppose p: ¥ — RF is
a smooth map with regular value 0, defined on an open neighbourhood Y of b in
M suchthat BNY = p~1(0). Then:

(15.9.1) Note. f: A — M is transverse to B ina € A if and only if a is a regular
value of po f: f~1(Y) - Y — Rk,

Proof. The space Ty B is the kernel of Ty p. The composition of T, f : T,A —
Ty M/ Ty B with the isomorphism Ty M/ Tp B = ToR¥ induced by Tp: TpyM —
ToR* is T,(p o f). Now we apply the above remark from linear algebra. O

(15.9.2) Proposition. Let f: A — M and f|0A be smooth and transverse to the
submanifold B of M of codimension k. Suppose B and M have empty boundary.
Then C = f~Y(B) is empty or a submanifold of type 1 of A of codimension k. The
equality T,C = (Taf)_l(Tf(a)B) holds. O

Let, in the situation of the last proposition, v(C, A) and v(B, M) be the normal
bundles. Then 7f induces a smooth bundle map v(C, A) — v(B, M); for, by
definition of transversality, T, f': T, A/T,C — Tyra)/Trq)B is surjective and
then bijective for reasons of dimension.

From (15.9.1) we see that transversality is an “open condition”: If f: A —> M
is transverse in a to B, then it is transverse in all points of a suitable neighbourhood
of a, since a similar statement holds for regular points.
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(15.9.3) Proposition. Let f: A — M and g: B — M be smooth and let y =
f(a) = g(b). Then f and g are transversein (a, b) ifand only if f X g is transverse
in (a, b) to the diagonal of M x M.

Proof. LetU =T, f(T4A),V = Tpg(Tp B), W = T, M. The statement amounts
to: U+ V =Wand (U ®V)+ D(W) = W & W are equivalent relations (D (W)
diagonal). By a small argument from linear algebra one verifies this equivalence.

O

(15.9.4) Corollary. Suppose f and g are transverse. Then C is a smooth subman-
ifold of A x B. Let ¢ = (a,b) € C. We have a diagram

7.c £, 1,B

JTG ng
Tf

T,A—— TyM.

It is bi-cartesian, i.e., (Tf,Tg) is surjective and the kernel is T,C. Therefore the
diagram induces an isomorphism of the cokernels of T G and T'g (and similarly of
TF and TY).

(15.9.5) Corollary. Let a commutative diagram of smooth maps be given,

c—Lt-B

[, |
Z%A*f>M.

Let f be transverse to g and C as above. Then h is transverse to G if and only if
fh is transverse to g.

Proof. The uses the isomorphisms of cokernels in (15.9.4). O

(15.9.6) Corollary. We apply (15.9.5) to the diagram

M —— {s}

L,

W—Mx§——

and obtain: f is transverse to is: x — (x,s) if and only if s is a regular value of
prof. O
Let F: M xS — N be smooth and Z C N a smooth submanifold. Suppose

S, Z,and N have no boundary. Fors € S weset Fs: M — N, x — F(x,s). We
consider F as a parametrized family of maps Fs. Then:
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(15.9.7) Theorem. Suppose F: M xS — N anddF = F|(0M xS) are transverse
to Z. Then for almost all s € S the maps Fs and 0F; are both transverse to Z.

Proof. By (159.2), W = F~1(Z) is a submanifold of M x S with boundary
W =WnNoM xS). Let w: M x S — S be the projection. The theorem of
Sard yields the claim if we can show: If s € S is aregular valueof 7: W — S,
then Fj is transverse to Z, and if s € S is a regular value of d7: dW — S, then
0Fj is transverse to Z. But this follows from (15.9.6). O

(15.9.8) Theorem. Let f: M — N be a smooth map and Z C N a submanifold.
Suppose Z and N have no boundary. Let C C M be closed. Suppose f is
transverse to Z in points of C and df transverse to Z in points of IM N C. Then
there exists a smooth map g: M — N which is homotopic to f, coincides on C
with f and is on M and M transverse to Z.

Proof. We begin with the case C = #. We use the following facts: N is diffeo-
morphic to a submanifold of some R¥; there exists an open neighbourhood U of
N in R¥ and a submersion r: U — N with r|N = id. Let § = E¥ C R* be the
open unit disk and set

F:MxS—N, (x,5)r(f(x)+e(x)s).

Here ¢: M — 0, oo[ is a smooth function for which this definition of F makes
sense. We have F(x,0) = f(x). We claim: F and 0F are submersions. For the
proof we consider for fixed x the map

S = Ue(f(x), s> f(x)+e(x)s:

it is the restriction of an affine automorphism of R¥ and hence a submersion. The
composition with r is then a submersion too. Therefore F' and 0F are submersions,
since already the restrictions to the {x} x S are submersions.

By (15.9.7), for almost all s € S the maps Fy and 0F are transverse to Z. A
homotopy from F to fis M x I — N, (x,t) — F(x, st).

Letnow C be arbitrary. There exists an open neighbourhood W of C in M such
that f is transverse to Z on W and df transverse to Z on W NdM . We choose a set
V which satisfies C C V° € V C W° and a smooth function 7: M — [0, 1] such
that M \ W C =~ 1(1), V C t71(0). Moreover we set & = 2. Then Tyo = 0,
whenever 7(x) = 0. We now modify the map F from the first part of the proof

G:MxS—N, (x,5) F(x,0(x)s)

and claim: G is transverse to Z. For the proof we choose (x,s) € G~1(Z).
Suppose, to begin with, that o(x) # 0. Then S — N, t — G(x,t) is, as a
composition of a diffeomorphism ¢ + o (x)¢ with the submersion ¢ — F(x,1),
also a submersion and therefore G is regular at (x, s) and hence transverse to Z.
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Suppose now that o (x) = 0. We compute T(x )G at (v, w) € TxM x TS =
T X x R™. Let

m: MxS—>MxS, (x,s)— (x,o(x)s).

Then
T, ym(,w) = (v,0(x)w + Txo (v)s).

The chain rule, applied to G = F o m, yields
T(x,s)G(va w) = Tm(x,s)F © T(x,s)m(vv w) = T(x,O)F(va) = Tx f(v),

since o(x) = 0, Tyo = 0 and F(x,0) = f(x). Since o(x) = 0, by choice of
W and 7, f is transverse to Z in x, hence — since T(x 5)G and Ty f have the same
image — also G is transverse to Z in (x,s). A similar argument is applied to dG.
Then one finishes the proof as in the case C = . O

15.10 Gluing along Boundaries

We use collars in order to define a smooth structure if we glue manifolds with
boundaries along pieces of the boundary. Another use of collars is the definition of
a smooth structure on the product of two manifolds with boundary (smoothing of
corners).

15.10.1 Gluing along boundaries. Let M, and M, be 9-manifolds. Let N; C dM;
be a union of components of dM; and let ¢: Ny — N, be a diffeomorphism. We
denote by M = M, U, M, the space which is obtained from M; + M, by the
identification of x € Ny with ¢(x) € N,. The image of M; in M is again denoted
by M;. Then M; C M is closed and M; ~ N; C M open. We define a smooth
structure on M . For this purpose we choose collars k; : R— x N; — M; with open
image U; C M;. The map

ki(z, x), t <0,

k:iRx Ny —> M, (t,x)+— -

kz(_tv (p(x))s t Z 07

is an embedding withimage U = U; U, U,. We define a smooth structure (depend-
ing on k) by the requirement that M; ~ N; — M and k are smooth embeddings.
This is possible since the structures agree on (M; ~ N;) N U. <&

15.10.2 Products. Let M; and M, be smooth d-manifolds. We impose a canonical
smooth structure on M1 x M, ~ (0M1 x 0M>) by using products of charts for M; as
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charts. We now choose collars k; : R_xdM; — M; and consider the composition A,

7 Xid

R2 x M x OMy ——— R_ x R_ x M x 0M>

JA J(l)
k] Xk2

My x My +——— (R_ x OM1) x (R= x IM>).

Here 7: R2 — RL x RL, (r.¢) + (r. ¢ + 3Z), written in polar coordinates
(r,¢), and (1) interchanges the second and third factor. There exists a unique
smooth structure on My x M, such that M; x My ~ (0M; x dM,) C My x M,
and A are diffeomorphisms onto open parts of My x M5. <

15.10.3 Boundary pieces. Let B and C be smooth n-manifolds with boundary.
Let M be a smooth (n — 1)-manifold with boundary and suppose that

wp: M — 0B, ¢c: M — dC

are smooth embeddings. We identify in B 4+ C the points ¢p (m) with ¢¢ (m) for
eachm € M. Theresult D carries a smooth structure with the following properties:
(1) B~ ¢p(M) C D is a smooth submanifold.
(2) C ~¢c(M) C D is a smooth submanifold.
3) t: M - D,m+ @p(m) ~ ¢c (m) is a smooth embedding as a submanifold
of type L.
(4) The boundary of D is diffeomorphic to the gluing of dB ~ ¢g(M)° with
0C ~ oc(M)° via pg(m) ~ ¢oc(m), m € M.
The assertions (1) and (2) are understood with respect to the canonical embeddings
B € D D C. We have to define charts about the points of ¢(M), since the
conditions (1) and (2) specify what happens about the remaining points. For points
of t(M ~ dM) we use collars of B and C and proceed as in 15.10.1. For ¢(dM)
we use the following device.
Choose collars kg: R— x 9B — B andk: R_ x IM — M and an embedding
7p: R X dM — 9B such that the next diagram commutes,

Rx oM —2— 3B

o e

R_x M —— M.

Here 75 can essentially be considered as a tubular map, the normal bundle of ¢(0M')
in 0B is trivial. And « is “half” of this normal bundle.

Then we form ®p = kp o (id xtg): R—- x R x dM — B. For C we choose
in a similar manner k¢ and t¢, but we require pc o kK~ = t¢ where Kk~ (m,t) =
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k(m,—t). Then we define ®¢ from k¢ and 7¢. The smooth structure in a neigh-
bourhood of ¢ (M) is now defined by the requirement that «: R— x R x dM — D
is a smooth embedding where

Op(r,2¢ —n/2,m), Z <Y <m,
a(rpim = PV Sy
C(r’ W_ T[/ 7m)7 jT_’(/j_Ty
with the usual polar coordinates (r, ¥) in R— x R. <

15.10.4 Connected sum. Let M; and M, be n-manifolds. We choose smooth
embeddings s; : D" — M; into the interiors of the manifolds. In M; ~ s1(E") +
My ~ so(E™) we identify s (x) with s5(x) for x € $”~!. The result is a smooth
manifold (15.10.1). We call it the connected sum M1# M, of M; and M,. Suppose
M1, M are oriented connected manifolds, assume that s; preserves the orientation
and s, reverses it. Then M #M, carries an orientation such that the M; ~ s; (E™)
are oriented submanifolds. One can show by isotopy theory that the oriented dif-
feomorphism type is in this case independent of the choice of the s; . <

15.10.5 Attaching handles. Let M be an n-manifold with boundary. Furthermore,
lets: S¥1 x D"k — 9M be an embedding and identify in M + D* x D"* the
points s(x) and x. The result carries a smooth structure (15.10.3) and is said to be
obtained by attaching a k-handle to M.

Attaching a 0-handle is the disjoint sum with D”. Attaching an n-handle means
that a “hole” with boundary S”~! is closed by inserting a disk. A fundamental
result asserts that each (smooth) manifold can be obtained by successive attaching
ofhandles. A proofuses the so-called Morse theory (seee.g., [134], [137]). Ahandle
decomposition of a manifold replaces a cellular decomposition, the advantage is
that the handles are themselves n-dimensional manifolds. <

15.10.6 Elementary surgery. If M’ arises from M by attaching a k-handle,
then dM’ is obtained from dM by a process called elementary surgery. Let
h: S¥=1 x D"k — X be an embedding into an (n — 1)-manifold with image
U. Then X ~ U° has a piece of the boundary which is via & diffeomorphic to
Sk=1 5 §7=k=1 We glue the boundary of D¥ x S$”~*~1 with A; in symbols

X' = (X ~U°) U, D¥ x s"7*=1,

The transition from X to X’ is called elementary surgery of index k at X via
h. The method of surgery is very useful for the construction of manifolds with
prescribed topological properties. See [191], [162], [108] to get an impression of
surgery theory. <
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Problems

1. The subsets of 7 T7+1 c Rm+1  gr+1
Dy={x. ) |IxI?= 3.y <1 Da={Gx.»|IxI> <3 IyI> =1

are diffeomorphic to Dy = §™ x D"*+1, D, = D™+ x §”_ They are smooth submani-
folds with boundary of $”7+1_ Hence S”*1”+! can be obtained from $” x D"+ and
D+ 1 % S7 by identifying the common boundary S x S” with the identity. A diffeomor-
phism D; — S x D"t 1is (z,w) = (||z]| 7'z, vV2w).

2. Let M be a manifold with non-empty boundary. Identify two copies along the boundary
with the identity. The result is the double D(M) of M. Show that D(M) for a compact M
is the boundary of some compact manifold. (Hint: Rotate M about dM about 180 degrees.)
3. Show M#S”" =~ M for each n-manifold M.

4. Study the classification of closed connected surfaces. The orientable surfaces are S2
and connected sums of tori T = §' x S!. The non-orientable ones are connected sums of
projective planes P = RP2. The relation T#P = P#P#P holds. The connected sum with
T is classically also called attaching of a handle.



Chapter 16
Homology of Manifolds

The singular homology groups of a cell complex vanish above its dimension. It
is an obvious question whether the same holds for a manifold. It is certainly
technically complicated to produce a cell decomposition of a manifold and also
an artificial structure. Locally the manifold looks like a Euclidean space, so there
arises no problem locally. The Mayer—Vietoris sequences can be used to paste local
information, and we use this technique to prove the vanishing theorem.

The homology groups of an n-manifold M in dimension # also have special
properties. They can be used to define and construct homological orientations of a
manifold. A local orientation about x € M is a generator of the local homology
group H,(M, M ~ x;Z) =~ Z. In the case of a surface, the two generators corre-
spond to “clockwise” and “counter-clockwise”. If you pick a local orientation, then
you can transport it along paths, and this defines a functor from the fundamental
groupoid and hence a twofold covering. If the covering is trivial, then the manifold
is called orientable, and otherwise (as in the case of a Mobius-band) non-orientable.

Our first aim in this chapter will be to construct the orientation covering and use
it to define orientations as compatible families of local orientations.

In the case of a closed compact connected manifold we can define a global
homological orientation to be a generator of H, (M ;Z); we show that this group
is either zero or Z. In the setting of a triangulation of a manifold, the generator
is the sum of the n-dimensional simplices, oriented in a coherent manner. In a
non-orientable manifold it is impossible to orient the simplices coherently; but in
that case their sum still gives a generator in H,(M;Z/2), since Z /2-coefficients
mean that we can ignore orientations.

Once we have global orientations, we can define the degree of a map between
oriented manifolds. This is analogous to the case of spheres already studied.

16.1 Local Homology Groups
Let /1.(—) be ahomology theory and M an n-dimensional manifold. Groups of the

type hi (M, M ~ x) are called local homology groups. Let ¢: U — R” be a chart
of M centered at x. We excise M ~ U and obtain an isomorphism

he(M, M ~x) = hi (U, U ~ x) 2> h(R", R" ~ 0).

For singular homology with coefficients in G we see that H,(M, M ~ x;G) = G,
and the other local homology groups are zero. Let R be a commutative ring. Then
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H,(M,M ~ x; R) = R is afree R-module of rank 1. A generator, corresponding
to a unit of R, is called a local R-orientation of M about x. We assemble the
totality of local homology groups into a covering.

Let K C L C M. The homomorphism rI%: he(M,M~L) — hy(M,M ~K),
induced by the inclusion, is called restriction. We write rxL inthe case that K = {x}.

(16.1.1) Lemma. Each neighbourhood W of x contains an open neighbourhood
U of x such that the restriction r)f] is for each y € U an isomorphism.

Proof. Chooseachartg: V — R" with V C W centered at x. Set U = ¢~ 1(E™),

E"™ ={x € R" | ||x]| < 1}. We have a commutative diagram

he(M, M ~U) <2 b (v, V < U)

b

he (M. M ~ ) <2 e (V.V ~ ),

with morphisms induced by inclusion. The maps (1) and (2) are excisions, and (3)
is an isomorphism, because V' ~ U C V ~ y is for each y € U an h-equivalence
(see Problem 1). O

We construct a covering w: hy (M, M ~ ) — M. As a set
he(M, M ~ o) =[], cpr b (M, M ~ x),

and hi (M, M ~ x) is the fibre of @ over x (with discrete topology). Let U be an
open neighbourhood of x such that r)f] is an isomorphism for each y € U. We
define bundle charts

oxv: Uxh(M,M ~x) — o ' (U), (y,a) ryU(r)E])_l(a).

We give hy (M, M ~ e) the topology which makes ¢, 7 a homeomorphism onto an
open subset. We have to show that the transition maps

Oy oxu: (UNV) X (M, M ~x) — (UNV) x hi(M, M~ y)

are continuous. Given z € U NV, choose z € W C U N V such that r)¥ is an
isomorphism for each w € W. Consider now the diagram

U U
he(M, M~ x) <2 (M, M ~U) —2 he (M, M ~ w)

U Vv
Ty w Tw
T

he(M, M ~ W) ﬁhk(M,M ~V)
w

Vv

hi(M, M ~y).
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It shows ¢~ Voxu = ryV (ri) i (rY)~1. Hence the second component of
o). %,gax,y is independent of w € W, and this shows the continuity of the tran-
sition map.

We take advantage of the fact that the fibres are groups. For A C M we
denote by I'(A) the set of continuous (= locally constant) sections over A of
w: hpy(M,M ~ &) — M. If s and ¢ are sections, we can define (s + #)(a) =
s(a)+t(a). One uses the bundle charts to see that s + ¢ is again continuous. Hence
I'(A) is an abelian group. We denote by . (A4) C I'(A) the subgroup of sections
with compact support, i.e., of sections which have values zero away from a compact
set.

(16.1.2) Proposition. Let z € hy(M,M ~U). Then y +> rij Z is a continuous
section of w.

Proof. The bundle chart ¢,  transforms the constant section y — (y, rg z) into

the section y > rlz. O

Problems

L. "7V CcRP~E"and R”" ~e — S" !, y > (y —e)/|ly — e| are h-equivalences
(e € E™). Themap S"~! — §"71, y > (y —e)/||y — e is homotopic to the identity.
These facts imply that R” ~ E C R” ~ e is an h-equivalence.

2. Let M be an n-dimensional manifold with boundary dM . Show thatx € dM if and only if
H,, (M, M ~x) = 0. From this homological characterization of boundary points one obtains:
Let f: M — M be ahomeomorphism. Then f(0M) = IM and f(M ~0M) = M ~ oM.
3. Letg: (C,0) — (D, 0) be a homeomorphism between open neighbourhoods of 0 in R”.
Then ¢« : H,(C,C ~0; R) - H, (D, D ~ 0; R) is multiplication by £1.

16.2 Homological Orientations

Let M be an n-manifold and A C M. An R-orientation of M along A is a section
sel(A;R)ofw: Hy(M, M ~e; R) — M suchthats(a) € H,(M,M ~a; R) =
Risforeacha € A agenerator of this group. Thus s combines the local orientations
in a continuous manner. In the case that A = M, we talk about an R-orientation
of M, and for R = Z we just talk about orientations. If an orientation exists, we
call M (homologically) orientable. If M is orientable along A and B C A, then
M is orientable along B.

(16.2.1) Note. Let Ori(M) C H,(M, M ~ o; Z) be the subset of all generators of
all fibres. Then the restriction Ori(M) — M of w is a 2-fold covering of M, called
the orientation covering of M. O

(16.2.2) Proposition. The following are equivalent:
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(1) M is orientable.

(2) M is orientable along compact subsets.

(3) The orientation covering is trivial.

(4) The covering w: Hy(M, M ~ &;Z) — M is trivial.

Proof. (1) = (2). Special case.

(2) = (3). The orientation covering is trivial if and only if the covering over
each component is trivial. Therefore let M be connected. Then a 2-fold covering
M — M is trivial if and only if M is not connected, hence the components of M
are also coverings.

Suppose Ori(M) — M is non-trivial. Since Ori(M) is then connected, there
exists a path in Ori(M ) between the two points of a given fibre. The image S of such
a path is compact and connected, and the covering is non-trivial over S, since we can
connect two points of a fibre in it. By the assumption (2), the orientation covering
is trivial over the compact set S, hence it has a section over S. Contradiction.

(3) = (4). Let s be a section of the orientation covering. Then M x Z —
H,(M,M ~ o;7), (x,k) — ks(x) is a trivialization of w: It is a map over M,
bijective on fibres, continuous, and a morphism between coverings.

(4) = (1). If wis trivial, then it has a section with values in the set of generators.

O

(16.2.3) Note. Ori(M) — M is a twofold principal covering with automorphism
group C = {1,t | t> = 1}. Let t act on G as multiplication by —1. Then the
associated covering OriiM) x¢ G is isomorphic to H,(M, M ~ o; G).

Proof. The map
OriM)xG - H(M\M ~; )G =2 H,(M,M ~;G), (u,g)—~>u®g

induces the isomorphism. (The isomorphism is the fibrewise isomorphism
H,(MM~x;Z)® G =~ H,(M, M ~ x;G) from the universal coefficient for-
mula.) O

(16.2.4) Remark. The sections I'(A4; G) of w over A correspond bijectively to the
continuous maps A: Ori(M)|A — G with the property A ot = —A. This is a
general fact about sections of associated bundles. <

Problems

1. Let M be a smooth n-manifold with an orienting atlas. Then there exists a unique
homological Z-orientation such that the local orientations in H, (M, M ~ x; Z) are mapped
via positive charts to a standard generator of H, (R, R"” ~ 0;Z). Conversely, if M is Z-
oriented, then M has an orienting atlas which produces the given Z-orientation.

2. Every manifold has a unique Z /2-orientation.
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16.3 Homology in the Dimension of the Manifold

Let M be an n-manifold and A C M aclosed subset. We use in this section singular
homology with coefficients in the abelian group G and sometimes suppress G in
the notation.

(16.3.1) Proposition. For each o € H,(M, M ~ A; G) the section
JA((x): A—-> H,(M,M ~e;G), x> rf(a)
of w (over A) is continuous and has compact support.

Proof. Let the chain ¢ € S, (M ; G) represent the homology class . There exists
a compact set K such that ¢ is a chain in K. Let x € A ~ K. Then the image of ¢
under

Sy(K;:G)— S, (M;G) > S,(M,K;G) —> S,(M,M ~ x;G)

is zero. Since this image represents 2 (a), the support of J4(a) is contained in
ANK.
The continuity is a general fact (16.1.2). O

From (16.3.1) we obtain a homomorphism
JAH, (M, M ~ A;G) = Te(4:G),  a (x = ri(a)).

(16.3.2) Theorem. Let A C M be closed.
(1) Then Hi(M,M ~ A) = 0 fori > n.
(2) The homomorphism J4: Hy(M, M ~ A) — T'c(A) is an isomorphism.

Proof. Let D(A, 1)and D(A, 2) stand for the statement that (1) and (2) holds for the
subset A, respectively. We use the fact that J4 is a natural transformation between
contravariant functors on the category of closed subsets of M and their inclusions.
The proof is a kind of induction over the complexity of A. It will be divided into
several steps.

(1) D(A, j),D(B, j),D(AN B, j)imply D(A U B, j). For the proof we use
the relative Mayer—Vietoris sequence for (M ~ AN B; M ~ A, M ~ B) and an
analogous sequence for sections. This leads us to consider the diagram

Hyr (M. M ~ (A1) B)) . i
Hy(M, M ~ (AU B)) JAr T.(AU B)

! l

A
Hy(M,M ~ A) ® H,(M, M ~ B) L-&/

TIOI%, 1 (4) @ Te(B)

! !

JA(‘IB
H,(M,M ~ (AN B)) - T.(AN B).
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The Five Lemma and the hypotheses now show D(A U B, 2). The Mayer—Vietoris
sequence alone yields D(A U B, 1).

(2) D(A, j) holds for compact convex subsets A in a chart domain U, i.e.,
@(A) = B is compact convex for a suitable chart ¢ : U — R”. For the proof we
show that for x € A the restriction r;c“ is an isomorphism. By an appropriate choice
of ¢ we can assume 0 € B C E™. Then we have a commutative diagram

Hy(D", 571 -~ Hy (R R~ B) 255 Hy (U, U ~ A) -2 H; (M. M ~ 4)

|- ! l 4

Hy (D", 571 <25 Hy (R R ~ 0) 2 Hi (U, U ~ x) ~2 Hy(M, M ~ x).

The maps (3) and (4) are excisions. The maps (1) and (2) are isomorphisms,
because S”~! C R" ~ B is an h-equivalence. The isomorphism r;;1 shows, firstly,
that D(A, 1) holds; and, secondly, D(A4,2), since a section of a covering over a
connected set is determined by a single value.

(3) Suppose A C U, ¢: U — R*achart, A = K; U---U K, ¢(K;) compact
convex. We show D(A, j) by induction on 7. Let B = K; U---U K,_; and
C = K,. Then B and B N C are unions of r — 1 sets of type (2), hence D(B, j)
and D(B N C, j) holds by induction. Now use (1).

4)Let K C U, ¢: U — R" achart, K compact. Let K C W C U, W open.
Then there exists a neighbourhood V of K inside W of type (3). In this case J " is
an isomorphism. The restrictions r }é induce canonical maps from the colimits

colimy H; (M, M ~ V) 25 H,(M, M ~ K)

lco]imy JV l] K

colimy To(V) ——2 L 1.(K),

where the colimit is taken over the directed set of neighbourhoods V' of K of type
(3). What does this isomorphism statement mean in explicit terms? Firstly, an
element xg in the image has the form r II(/ xy for a suitable V'; and secondly, if xy
and xp have the same image xg, then they become equal under a restriction to a
suitable smaller neighbourhood. From this description it is then easy to verify that
J X is indeed an isomorphism. Suppose () and (%) are isomorphisms. Then we
obtain D(K, 1), and the isomorphisms J " yield D(K, 2).

The isomorphism (x) holds already for the singular chain groups. It uses the
fact that a chain has compact support; if the support is contained in M ~ K, then
already in M ~ V for a suitable neighbourhood V of K.

(*x) is an isomorphism: See Problem 1.

(5) D(K, j) holds for arbitrary compact subsets K, for K is a union of a finite
number of sets of type (4). Then we can use induction as in case (3).
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(6)Let K = K1 UK, U K3U--- with compact K;. Suppose there are pairwise
disjoint open neighbourhoods U; of K;. By additivity of homology groups and
section groups, J X is the direct sum of the JXi

(7) Let A finally be an arbitrary closed subset. Since M is locally compact
with countable basis, there exists an exhaustion M = UK;, K; C K, C --- by
compact sets K; such that K; C Kl.°+1. Set A; = AN(K; ~K?_ ), Ko = 0,
B = U;j—s, 4i. C = U;j—pn41 4i- Then D(B, j), D(C, j),and D(B N C, j)
hold by (6); the hypothesis of (6) follows from the fact that a manifold is a normal
space. Now D(A, j) holds by (1), since A = BUC. O

(16.3.3) Theorem. Suppose A is a closed connected subset of M. Then:
(1) Hy,(M,M ~ A;G) =0, if A is not compact.
2) Hy(M,M ~ A;G) = G, if M is R-orientable along A and A is compact.
Moreover Hy(M,M ~ A;G) — H,(M,M ~ x;G) is an isomorphism for
each x € A.
B3) Hi(M,M ~ A;7) = ,G = {g € G| 2g = 0}, if M is not orientable along
A and A is compact.

Proof. (1) Since A is connected, a section in I'(A; G) is determined by its value at
a single point. If this value is non-zero, then the section is non-zero everywhere.
Therefore there do not exist non-zero sections with compact support over a non-
compact A, and (16.3.2) shows H,(M, M ~ A; G) = 0.

(2) Let A be compact. Then H, (M, M ~ A; G) = I'(A4; G). Again a section is
determined by its value at a single point. We have a commutative diagram

Hy(M,M ~ A;G) —=—T(4:;G)

[ I

Hy,(M,M ~ x;G) ——T'({x}; G).

If M is orientable along A, then there exists in I'(A) an element such that its value
at x is a generator. Hence b is an isomorphism and therefore also r;f.

(3) A section in I'(4; G) corresponds to a continuous map A: Ori(M)|A — G
with At = —A. If M is not orientable along A, then Ori(M)|A is connected and

therefore A constant. The relation At = —A shows that the value of A is contained
in ,G. In this case r;;‘: H,(M,M ~A;G) - H,(M,M ~ x;G) =~ G is injective
and has image ,G. O

Theorem (16.3.3) can be considered as a duality result, since it relates an asser-
tion about A with an assertion about M ~ A.

(16.3.4) Proposition. Let M be an n-manifold and A C M a closed connected
subset. Then the torsion subgroup of Hy,—1(M, M ~ A;7Z) is of order 2 if A is
compact and M non-orientable along A, and is zero otherwise.



16.4. Fundamental Class and Degree 399

Proof. Letq € N and suppose M is orientable along the compact set A. Then

Z/q=H,(M,M~ A:Z/q)
>~ Hy (MM ~A;Z)®@Z/q & Hi—1(M, M ~ A;Z) x Z /q
=7/q® Hi-n(M,M ~ A;Z)xZ/q.

We have used: (16.3.3); universal coefficient theorem; again (16.3.3). This implies
that H,—1(M, M ~ A;Z) x Z/q = 0. Similarly for non-compact A or ¢ odd

0= Hy (M. M~ A;Z/q) = H,_ (M. M ~ A;Z) x Z/q.

Since Tor(G,Z/q) = {g € G | qg = 0}, this shows that H,,_; (M, M ~ A; Z) has
no g-torsion in these cases. If A is compact and M non-orientable along A4, then

Z/2 > H,(M,M~A;Z/4) = Hy_ (M. M ~ A;Z) x Z /4

by (16.3.3) and the universal coefficient formula. Since we know already that the
group in question has no odd torsion, we conclude that there exists a single non-zero
element of finite order and the order is 2. O

Problems

1. Let s be a section over the compact set K. For each x € K there exists an open neigh-
bourhood U(x) and an extension sy of s|U(x) N K. Cover K by U(x1),...,U(x,). Let
W ={y | sx;(y) = sx,; (x) if y € U(x;) N U(x;)} and define s(y), y € W as the common
value. Show that W is open. Let s, s’ be sections over V' which agree on K. Show that
they agree in a smaller neighbourhood V; C V of K. (These assertions hold for sections of
coverings.)

16.4 Fundamental Class and Degree

The next theorem is a special case of (16.3.3).

(16.4.1) Theorem. Let M be a compact connected n-manifold. Then one of the
following assertions holds:
(1) M isorientable, H,(M) = Z, andforeachx € M the restriction H,(M) —
H, (M, M ~ x) is an isomorphism.
(2) M is non-orientable and H,(M) = 0. O

Under the hypothesis of (16.4.1), the orientations of M correspond to the gen-
erators of H,(M). A generator will be called fundamental class or homological
orientation of the orientable manifold.

We now use fundamental classes in order to define the degree; we proceed as
in the special case of S”. Let M and N be compact oriented n-manifolds. Let
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N be connected and suppose M has components My, ..., M,. Then we have
fundamental classes z(M;) for the M; and z(M) € H,(M) = G}j H,(M;) is
the sum of the z(M;). For a continuous map f: M — N we define its degree
d(f) € Z via the relation f.z(M) = d(f)z(N). From this definition we see
immediately the following properties of the degree:

(1) The degree is a homotopy invariant.

(2) d(f og) =d(f)d(g).

(3) A homotopy equivalence has degree +1.

4 IfM =My + M, thend(f) =d(f|M1)+ d(f|M>).

(5) If we passin M or N to the opposite orientation, then the degree changes the

sign.
We now come to the computation of the degree in terms of local data of the map.

Let M and N be connected and set K = f~!(p). Let U be an open neighbourhood
of K in M. In the commutative diagram

(M) € Hy(M) — " H.(N) 5 2(N)

Lk

H,(M,M ~K)—— H,(N,N ~ p)

= o I

(UK e  HyUU~NK) "= H,(N.N~p)  3z(N,p)

we have £,V z(U, K) = d(f)z(N, p). Thus the degree only depends on the restric-
tion fUY of f to U. One can now extend the earlier investigations of self maps of
S” to this more general case. The additivity of the degree is proved in exactly the
same manner. Let K be finite. Choose U = | J,.c g Ux where the Uy are pair-wise
disjoint open neighbourhoods of x. We then have

Pk Ho(Us. Ux ~x) = Hy(U.U~K), Hy(Uy,Ug~x) = Z.

The image z(Uy, x) of z(M) is a generator, the local orientation determined by
the fundamental class z(M). The local degree d( f, x) of f about x is defined by

Sfxz(Uyx,x) = d(f,x)z(N, p). The additivity yields d(f) = ) _,cx d(f. x).

(16.4.2) Remark. Let f be a C!-map in a neighbourhood of x; this shall mean
the following. There exist charts ¢: U, — R” centered at x and ¢: V — R”
centered at p such that f(Uy) C V and g = ¥ fe~ ! is a Cl-map. We can
suppose that the charts preserve the local orientations; this shall mean for ¢ that
0« Hy(Uy,Ux ~x) = H,(R", R" ~ 0) sends z(Uy, x) to the standard generator.
Such charts are called positive with respect to the given orientations. Suppose now
in addition that the differential of g at x is regular. Then d( f, x) is the sign of the
determinant of the Differential D g(0). &
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(16.4.3) Proposition. Let M be a connected, oriented, closed n-manifold. Then
there exists for eachk € Z amap f: M" — S" of degree k.

Proof. If f: M — S"hasdegreea and g: S"” — S" degree b, then g f has degree
ab. Thus it suffices to realize a degree 1. Let ¢ : D" — M be an embedding.
Then we have amap f: M — D" /S"~! which is the inverse of ¢ on U = @(E™)
and sends M ~ U to the base point. This map has degree £1. O

Let the manifolds M and N be oriented by the fundamental classes z3; €
H,,(M) and zy € H,(N). Then the homology product z3s X zy is a fundamental
class for M x N, called the product orientation.

Problems

1. Let p: M — N be a covering of n-manifolds. Then the pullback of Ori(N) — N along
pisOri(M) - M.

2. Let p: M — N bea G-principal covering between connected » manifolds with orientable
M . Then N is orientable if and only if G acts by orientation-preserving homeomorphisms.
3. The manifold Ori(M) is always orientable.

4. RP" is orientable if and only if  is odd.

5. Let M be a closed oriented connected n-manifold. Suppose that M carries a CW-
decomposition with k-skeleton M. The inclusion induces an injective map H, (M) —
H,,(M,,, M;,_1). The fundamental class is therefore represented by a cellular chain in
H,,(M,,, M,,_1). If we orient the n-cells in accordance with the local orientations of the
manifold, then the fundamental class chain is the sum of the n-cells. This is the classical in-
terpretation of the fundamental class of a triangulated manifold. A similar assertion holds for
unoriented manifolds and coefficients in Z /2 and manifolds with boundary (to be considered
in the next section).

In a sense, a similar assertion should hold for non-compact manifolds; but the cellular
chain would have to be an infinite sum. Therefore a fundamental class has to be defined via
an inverse limit.

6. Let M be a closed connected n-manifold. Then H,, (M ; Z/2) = Z /2 and the restrictions
M. H,(M;Z/2) - Hy(M, M ~ x;Z/2) are isomorphisms.

7. Let f: M — N be a map between closed connected n-manifold. Then one can define
the degree modulo 2 d>(f) € Z/2; it is zero (one) if fi«: Hy,(M;Z/2) — H,(N;Z/2)
is the zero map (an isomorphism). If this degree is non-zero, then f is surjective. If the
manifolds are oriented, then d( ) mod 2 = d>(f).

8. Let G be a compact connected Lie group and let 7 be a maximal torus of G. The map
q: G/TxT — G,(g,t) — gtg— ! has degree |W|. Here W = NT/T is the Weyl group.
Since g has non-zero degree, this map is surjective (see [29, IV.1]).

9. Let G be a compact connected Lie group and 7" a maximal torus of G. The degree of
f:G — G, g+ gFhasdegree k", r = dimT. Let ¢ € T be an element such that the
powers of ¢ are dense in 7', then | f ~!(c)| = k", f~'(c) C T, and c is a regular value of
f.190]

10. Let f: M — N be a proper map between oriented connected n-manifolds. Define the
degree of f.
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16.5 Manifolds with Boundary

Let M be an n-dimensional manifold with boundary. We call z € H,(M,0M) a
Jundamental class if for each x € M ~ 0M the restriction of z is a generator in
H,(M, M ~ x).

(16.5.1) Theorem. Let M be a compact connected n-manifold with non-empty
boundary. Then one of the following assertions hold:

(1) Hy,(M,0M) =~ Z, and a generator of this group is a fundamental class.
The image of a fundamental class under 0: H,(M,0M) — H,_1(0M) is a
Sfundamental class. The interior M ~ OM is orientable.

2) H,(M,oM) = 0, and M ~ dM is not orientable.

Proof. Letk: [0,00[ xdM — U be a collar of M, i.e., a homeomorphism onto an
open neighbourhood U of dM such that (0, x) = x for x € M. For simplicity
of notation we identify U with [0, co[ xdM via «; similarly for subsets of U. In
this sense dM = 0 x dM. We have isomorphisms

Hp(M,dM) =~ H,(M,[0,1[xdM) = H,(M ~ dM.]0, [[xdM) = T'(A).

The first one by h-equivalence; the second one by excision; the third one uses the
closed set
A=M~([0,1[x0M) C M ~ M

and (16.3.2). The set A is connected, hence I'(A) = Zor'(A) = 0. If '(4) = Z,
then M ~dM is orientable along A. Instead of A we can argue with the complement
of [0, e[ xdM . Since each compact subset of M ~ dM is contained in some such
complement, we see that M ~ dM is orientable along compact subsets, hence
orientable (see (16.2.2)). The isomorphism H,(M ~ dM,]0,1[xdM) = T'(A)
says that there exists an element z € H,(M ~ dM,]0, 1[ xdM ) which restricts to
a generator of H, (M ~ oM, M ~ dM ~ x) for each x € A. For the corresponding
element z € H, (M, dM) a similar assertion holds foreach x € M ~dM,i.e., z is
a fundamental class (move around x within the collar).

It remains to show that dz is a fundamental class. The lower part of the diagram
(for x €10, 1[ x aM)

Hy_1(0M) —=— Hy_1(0M U A, A) +—=— H,_1 (3] x IM, 1 x IM)

o| o[ o[

Hy(M,0M) — H,(M,dM U A) «+———— H, (I x IM,dI x M)

T | |

Hy(M, M ~ x) +—— H,(I x M, I x M ~ x)
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shows that z yields a fundamental class in H, (I x M, dI x dM). The upper part
shows that this fundamental class corresponds to a fundamental class in H,— (dM),
since fundamental classes are characterized by the fact that they are generators (for
each component of dM). O

(16.5.2) Example. Suppose the n-manifold M is the boundary of the compact ori-
entable (n+1)-manifold B. We have the fundamental classes z(B) € H,+1(B, dB)
and z(M) = dzp € H,(M). Let f: M — N be a map which has an extension
F: B — N, then the degree of f (if defined) is zero, d(f) = 0, for we have
fez(M) = fi0z(B) = Fyix0z(B) = 0, since i, d = 0 as consecutive morphisms
in the exact homology sequence of the pair (B, M'). We call maps f,,: M, — N ori-
entable bordant if there exists a compact oriented manifold B with oriented bound-
ary 0B = M; — M5 and an extension F': B — N of ( f1, f2): M1 + M, — N.
The minus sign in dB = My — M, means dz(B) = z(M;) — z(M>). Under these
assumptions we have d( f1) = d(f2). This fact is called the bordism invariance
of the degree; it generalizes the homotopy invariance. <

Problems

1. Let M be a compact connected n-manifold with boundary. Then H,(M,dM;Z/2)
is isomorphic to Z/2; the non-zero element is a Z /2-fundamental class z(M; Z/2). The
restriction to H, (M, M ~x; Z/2)is foreachx € M ~dM anisomorphismand dz (M ;Z/2)
is a Z /2-fundamental class for M.

2. Show that the degree d»( f) is a bordism invariant.

16.6 Winding and Linking Numbers

Let M be a closed connected oriented n-manifold. Let f: M — R"*! and a ¢
Im(f). The winding number W( f,a) of f with respect to a is the degree of the
map

Pfa = Pa: M — S", x> N(f(x)—a)

where N: R"*1 <0 — S”, x — ||x|'x. If f; is a homotopy with a ¢ Im(f;)
for each ¢, then W( fy,a) = W(f;,a).

(16.6.1) Theorem. Let M be the oriented boundary of the compact smooth oriented
manifold B. Let F: B — R"t! be smooth with regular value 0 and assume

0¢ f(M). Then
W(f.0) = cpe(F.x), P=F"Y0), f=F|B

where e(F, x) € {1} is the orientation behaviour of the differential Tx F : Tp —
To([RrH_l).
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Proof. Let D(x) C B~0B,x € P besmalldisjointdisksaboutx. ThenG = NoF
is definedon C = B ) |J,cp D(x), and by the bordism invariance of the degree
d(G|oB) = ) . cp d(G|dD(x)). By (16.4.2), d(G|dD(x)) = &(F, x). O

Let M and N be oriented closed submanifolds of R¥*1 of dimensions m and n
withk = m +n. Let M x N carry the product orientation. The degree of the map

fM,N=f:M><N—>Sk, (x,y) > N(x—y)

is the linking number L(M, N) of the pair (M, N). More generally, if the maps
w: M™ — RFt1 and v: N* — R¥*! have disjoint images, then the degree of
(x,y) = N(u(x) — v(p)) is the linking number of (i, v).

Problems

1. Let the n-manifold M be the oriented boundary of the smooth connected compact mani-
fold B. Suppose f: M — S’ has degree zero. Then f can be extended to B.

2. Show L(M,N) = (=)t +1L(N, M).

3. Let f, g: R — R3 be smooth embeddings with disjoint closed images. Define a linking
number for the pair ( f, g) and justify the definition.



Chapter 17
Cohomology

The axioms for a cohomology theory are analogous to the axioms of a homology
theory. Now we consider contravariant functors. The reader should compare the
two definitions, also with respect to notation. One advantage of cohomology is an
additional internal product structure (called cup product) which will be explained
in subsequent sections. The product structure suggests to view the family (A" (X) |
n € Z) as a single object; the product then furnishes it with the structure of a ring
(graded algebra). Apart from the additional information in the product structure, the
ring structure is also notationally convenient (for instance, a polynomial ring has a
better description than its additive group without using the multiplicative structure).

Singular cohomology is obtained from the singular chain complex by an ap-
plication of the Hom-functor. We present an explicit definition of the cup product
in singular cohomology (Alexander—Whitney). In more abstract terms the product
can also be obtained from the Eilenberg—Zilber chain equivalences as in the case of
the homology product.

We use the product structure to prove a powerful theorem (Leray—Hirsch) which
says roughly that the cohomology of the total space of a fibration is a free module
over the cohomology ring of the base, provided the fibre is a free module and a basis
of the fibre-cohomology can be lifted to the total space. In the case of a topological
product, the result is a special case of the Kiinneth theorem if the cohomology of the
fibre is free, since the Ext-groups vanish in that case. One interesting application
is to vector bundles; the resulting so-called Thom isomorphism can be considered
as a twisted suspension isomorphism in that the suspension is replaced by a sphere
bundle. As a specific example we determine the cohomology rings of the projective
spaces.

17.1 Axiomatic Cohomology

17.1.1 The axioms. A cohomology theory for pairs of spaces with values in the
category of R-modules consists of a family (k" | n € Z) of contravariant functors
h": TOP(2) — R-MOD and a family (6" | n € Z) of natural transformations
8": h"~1 ok — h™. These data are required to satisfy the following axioms.

(1) Homotopy invariance. Homotopic maps fy and f; between pairs of spaces
induce the same homomorphism, A" ( fo) = h"( f1).
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(2) Exact sequence. For each pair (X, A) the sequence

e o VAL ) = (XL A) = (XL B) — B(ALB) — .

is exact. The undecorated arrows are induced by the inclusions.

(3) Excision. Let (X, A) be a pair and U C A such that U C A°. Then
the inclusion (X ~ U, A ~ U) — (X, A) induces an excision isomorphism
(X, A) = h"(X~U,A~U).

We call h"(X, A) the n-th cohomology group of (X, A). The §" are called the
coboundary operators. We write h™ (X, @) = h"(X) and h"(f) = f*. Occasion-
ally we refer to the homomorphisms i *: h" (X) — h"(A) induced by an inclusion
i: A C X asrestriction. The groups h"(P) = h" for a point P are said to be
the coefficient groups of the theory (compatible family of isomorphisms to a given
module 4"). In the case that A" (P) = 0 for n # 0, we talk about an ordinary or
classical cohomology theory and say that the theory satisfies the dimension axiom.
The notation 4" (X, A) = H" (X, A; G) stands for an ordinary cohomology theory
with a given isomorphism h°(P) = G.
The cohomology theory is additive if

W (L X5 11, A7) = T1; i"(X;. 4)), x = (" (i;)(x))

is always an isomorphism (i; the inclusion of the j-th summand). For finite J the
additivity isomorphism follows from the other axioms. <

Several formal consequences of the homology axioms have analogues in coho-
mology and the proofs are similar. We mention some of them.

We begin with the exact sequence of a triple (X, A, B). The coboundary op-
erator is in this case defined by §: h"~1(A4, B) — h""1(A) — h"(X,A). The
first map is induced by the inclusion and the second map is the given coboundary
operator. For each triple (X, A, B) the sequence

§ §
o> W14, B) = h"(X, A) - h"(X,B) = h"(A,B) — ---
is exact. The undecorated arrows are restrictions.

17.1.2 Suspension. The suspension isomorphism o is defined by the commutative
diagram

h"(Y, B) = h"(0 x Y,0 x B)

Ja ]

W ((1,01) x (Y, B)) —— W] x Y UI x B.1x Y UI x B).

For homology we used a definition with the roles of 0, 1 interchanged. &
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17.1.3 Reduced cohomology. The reduced cohomology groups of a non-empty
space X are defined as 4" (X) = coker(p*: h"(P) — h"(X)) where p: X — P
denotes the unique map to a point. The functors 4" (—) are homotopy invariant. For
a pointed space (X, *) we have the canonical split exact sequence

0— W"(X, %) 5> 1"(X) - 1" (x) = 0.

The restriction j induces an isomorphism A" (X, %) = " (X) and we have isomor-
phisms

(.p* ) "X, %) @ K" = h™(X), (q.i): h"(X) = h"(X) & h"

with the quotient map g. The coboundary operator 6" : h"~1(A) — h(X, A) factors
over the quotient map ¢: h"~1(A) — h""!(A). Passing to quotients yields the
exact sequence

e PN A) S (X A) > X > ) S

for the reduced groups. &

17.1.4 Mayer-Vietoris sequence. A triad (X; A, B) is excisive for the cohomol-
ogy theory if the inclusion induces an isomorphism 2* (AU B, A) =~ h*(B, AN B).
This property can be characterized in different ways as in the case of a homology
theory, see (10.7.1) and (10.7.5). In particular the property is symmetric in A, B.

We have exact Mayer—Vietoris sequences for excisive triads. As in the case of
a homology theory one can derive some MV-sequences by diagram chasing. For
the general case of two excisive triads we use a method which we developed in the
case of homology theory; the MV-sequence was obtained as the exact sequence of
a triad of auxiliary spaces by some rewriting (see (10.7.6)). This procedure also
works for cohomology.

Let (A; Ag, A1) C (X; Xo, X1) be excisive triads. Set Xo; = Xo N X; and
Ag1 = Ao N Ay. Then there exists an exact Mayer—Vietoris sequence of the
following form

o <— h"(Xo1. 4o1) & h" (Xo., Ao) ® h" (X1, A1) 2 h" (X, A)
L " (Xo1, Agr) <— -+~ .

The map (1) is (xg, x1) > igxo — i; x1 with the inclusions i, ; the components of
(2) are the restrictions. The connecting morphism in the case A = Ay = A is the

composition

A h"N(Xo1, A) = B (Xo, Xo1) = W' (X, X1) — h"(X, A)
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and the connecting morphism in the case X = Xo = X is

A: (X, Agr) — W (Ao, Aor) = h"(A, Ay) —> I"*+1(X, A). o

17.1.5 Limits. We have seen that an additive homology theory is compatible with
colimits. The situation for cohomology and limits is more complicated.

Let Go: G o G, & G; & - be a sequence of groups and ho-
momorphisms. The group [[; <) Gi acts on the set [ [;) Gi

(81,82,...) - (h1,ha,...) = (g1h1p1(g2) ™", g2hapa(ga) ™t .. ).

The orbit set is denoted lim'(G.) = lim'(G;, p;) = lim'(G;). A direct conse-
quence of this definition is:
Suppose the groups G; are abelian. Then we have an exact sequence

. d .
0= im(Gi, pi) = [lien Gi — [liew Gi — lim"(Gi, p;) — 0.

Here d(g1,g2,...) = (g1 — p1(g2), &2 — p2(g3),...) and lim is the limit of the
sequence. As a consequence of the ker-coker-sequence we obtain:
A short exact sequence

0 — (G}, p;) — (Gi, pi) > (G{, p{') > 0

l
of inverse systems induces an exact sequence
0 — 1lim°(G}) — 1im%(G;) — 1im°(G/)
— lim'(G}) — lim'(G;) — lim'(G/) — 0.

Let now an additive cohomology theory by given. We apply the Mayer—Vietoris
sequence to the telescope T of a sequence X7 C X, C --- of spaces with colimit X .
The result is [133]:

(17.1.6) Proposition. There exists an exact sequence
0 — lim' (A"~ 1(X;)) = W(T) — lim(h" (X;)) — O.

Proof. We use the MV-sequence of the triad (T'; 4, B) as in (10.8.2). It has the
form

e W(T) = 1 (A) & W (B) L5 i (AN B) — -

and yields the short exact sequence

0 — Coker(B" 1) — h"(T) — Ker(p") — 0.
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Thus we have to determine the kernel and the cokernel. By additivity of the coho-
mology theory we obtain

W)= [ "x). "(B)= J] "X, h"(AnB)=]]r"Xo).

i=0(2) i=1(2) ieN
These isomorphisms transform 8" into
(X1, X2, X3,...) > (=x1 + f{'(x2), x2 — f5 (x3),...).

The isomorphism (a;) — ((—1)'a;) transforms this map finally into the map d in
the definition of lim and lim". O

(17.1.7) Proposition. Suppose the homomorphisms p; between the abelian groups
G; are surjective. Then lim'(G;, p;) = 0.

Proof. Let g = (g1,82....) € [ljen Gi- We have to show that g is contained

in the image of d, i.e., we have to solve the equations g; = x; — p; (x;+1) with
suitable x; € G;. This is done inductively. O
Problems

1. The system (G;, p;) satisfies the Mittag-Leffler condition (= ML) if for each i there
exists j such that for k > j the equality Im(G;+x — G;) = Im(G;4+; — G;) holds.
If (G;, p;) satisfies ML, then lim' (G;, p;) = 0. Thus if the groups G; are finite, then
lim! (G;, pi) = 0. If the G; are countable and iflim' (G;, pi) = 0, then the system satisfies
ML ([44, p. 154]).

2. Imitate the earlier investigation of cellular homology and show that H*(X) can be de-
termined from a cellular cochain complex which arises from a cellular decomposition of X .
3. Let p: k™(—) — [™(—) we a natural transformation between additive cohomology theo-
ries which induces isomorphisms of the coefficient groups. Show that p is an isomorphism
for each CW-complex.

17.2 Multiplicative Cohomology Theories

Let 1™ be a cohomology theory with values in R- MOD. A multiplicative structure
on this theory consists of a family of R-linear maps (m,n € Z)

(X, A) @r h"(X,B) = h™™(X,AUB), x®y+—>xuUy,

defined for suitable triads (X; A, B), and in any case for excisive (A4, B) in X. We
call x U y the cup product of x, y. The products are always defined if A or B is
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empty or if A = B. In this section, tensor products will be taken over R. The cup
product maps are required to satisfy the following axioms.

(1) Naturality. For maps of triads f: (X; 4, B) — (X’; A’, B’) the commutativity
f*(xvuy) = f*xu f*y holds.

(2) Stability. Let (A, B) be excisive in X. We use the restriction morphism
ta: W/ (X, B) = h/(A, AN B) and the coboundary operator §4: h" (A, AN B) =

8
h"(AU B, B) — h"™t1(X; AU B). The diagram

R (A) @ hi (X, B) — hi (A) @ h/ (A, A N B) —2— hi+i (4, AN B)

KX, A) @ b/ (X, B) WYX, AU B)

is commutative.
(3) Stability. Let (A, B) be excisive in X. We use the restriction morphism
tp: h' (X, A) — h' (B, AN B) and the coboundary operator §p: h" (B, AN B) =

§
h" (AU B, A) — h"T1(X, AU B). The diagram

i (X, A) @ hi (B) 225 hi(B, AN B) ® h/ (B) —— hi*+J (B, AN B)

(X, A) @ h/t1(X, B) hd hit/+1(X, AU B)

is commutative up to the sign (—1)’.

(4) Unit element. There is given a unit 1 € h°(P), P a fixed point, as additional
structure datum. It induces 1 = 1y = p*(1) € h°(X), p: X — P. Then
lux=xul=xforeachx € h""(X, A).

(5) Associativity. (x vy)uz =xu (y v z).

(6) Commutativity. x U y = (=)Dl U x.

One can also consider situations where (6) or (5) do not hold. This is the reason
for requiring (2) and (3) separately. For (5) it is required that the products are
defined. For the convenience of the reader we also display the properties in a table
and refer to the detailed description above.
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frxvuy) = frxu [Ty
d(a) ux =64(aviygx)
xUdb) = (—)*8g(gx U b)
lux=x=xul
xuy)vuz=xu((yuvz)

xuy= (_I)IXI\ny U x

The cup product defines on 2*(X, A) the structure of a Z-graded associative and
commutative algebra. If A = @ this algebra has a unit element 1y € h°(X).
Moreover h*(X, A) becomes a unital graded left #*(X)-module. These structures
have the obvious naturality properties which follow from the axioms, e.g., a map
f: X — Y induces a unital algebra homomorphism f*: h*(Y) — h*(X).

In particular the graded module 2* = (h") of the coefficient groups becomes a
unital commutative graded algebra. We make 2* (X, A) into a unital left #*-module
viaa-x = p*(a) u x with p: X — P the unique map to a point. Morphisms
induced by continuous maps are then /2 *-linear. This is a particular case of the cross
product introduced later.

We list some consequences of naturality and stability. Let y € A" (X, B) be
fixed. Right multiplication by y yields a morphism of degree n from the exact
sequence of the pair into the exact sequence of the triple (X, A U B, B). This
means: We have a commutative diagram

W (X) W™ (A) hL(X, A)

[ [ |

W7+ (X, B) —— W™ (AU B, B) —— 141 (X, A U B).
The r), in the middle is defined by multiplication of x € 1" (A) with the restriction of
y along h" (X, B) — h"(A, AN B) and then using /" (A, AN B) = h"(AU B, B).
Let y € h"(X) be fixed. For each pair (4, B) in X we obtain a product
Ty: h*(A, B) — h**7"(A, B) by right multiplication with the restriction of y along
h"(X) — h"(A). The following diagram commutes:

W7 (A) —— h"™(B) —° s pm+1(4, B)

b I
hm+n(A) - hm+n(B) L hm+n+1(A’ B).
If (A, B) is excisive, then the coboundary operators of the MV-sequences

A:h™ Y (ANB,C)—> h(A,ANB) =~ h™(AUB,B) - h™(AU B, (),
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A:h™(X,ANB) - h™(A,ANB) =~ h"™(AUB,B) — h"™t(X, AN B)

commute with r,,. Also in the general case 17.1.4, the boundary operator commutes
with products:

(17.2.1) Proposition. Let (A; Ag, A1) C (X; Xo, X1) be excisive triads. Let X° C
X and assume that also (AU X°; AgU X2, A1 U A%) is excisive for X0 = X, N X°.
Then the diagram

hr(XOI’ AOI) L> hr+|y‘(X()1, A01 U X(())l)

| Lo

hrH1(X, A) r—y>hr+l+|y|(X’A U X%

commutes. Here ry is right multiplication by y € h(X, X°) (bottom) and multipli-
cation with the restriction of y to h(Xo1, X3,) (top).

Proof. The coboundary operators are defined via suspension and appropriate in-
duced morphisms. The commutativity of the diagram then amounts to the naturality
of the cup product and a compatibility (17.2.2) with the suspension. O

(17.2.2) Proposition. The diagram

h(IY,IBUJIY)®h(IY,1Y°) ——= h(IY,I(BUI°) UJIY)

To@pr* Ta

h(Y,B) ® h(Y,Y") = h(Y,BUY")

commutes. (Notation: 1Y =1 xY,0IY =9l xY etc.)

Proof. We use the associated cross product and (17.3.1), (17.3.3) in the computation
e'xx)u(l;xy)=(e' uly) x(xuUy). O

(17.2.3) Example. Let (X, *) be a pointed space. The ring homomorphism
i: h*(X) — h™* has as kernel the two-sided h*-ideal h*(X, *). We have the
isomorphism A*(X, %) & h* =~ h*(X), (a,b) — ja + p*b, see 17.1.3. This
isomorphism transforms the cup product on 2*(X) into the product

(ai1,b1) - (a2,bz) = (a1 v az + biaz + aiby, b1by). <&

(17.2.4) Example. The commutativity x U x = (—1)*I*lx U x has for |x| =
1 mod 2 the consequence 2(x v x) = 0. Hence x v x = 0, if multiplication by 2
is injective. <&
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(17.2.5) Example. Let X = Ay U---U Ag. Suppose a; € h"9(X) are elements
in the kernel of the restriction /*@(X) — h"@(4;). Let b; € "D (X, A;) be
a pre-image of a;. Then a; v --- U a; = 0, because this element is the image
of by u--- U br € h"(X,|J; Ai) = 0. This argument requires that the relative
products are defined.

This simple consequence of the existence of products has interesting geometric
consequences. The projective space C P" has a covering by n + 1 affine (hence
contractible) open sets U; = {[z;] | z; # 0}. Therefore ap v ---va, =0
for elements a; € h"Y)(CP", *). Later we show the existence of an element
c € H*(CP™;Z) with ¢ # 0. Hence C P" cannot be covered by n contractible
open sets (more generally, by open sets U such that U — C P”" is null homotopic).
An analogous result holds for RP”. <

(17.2.6) Example. The argument of the preceding example shows that products in
h*(S", %), n > 1 are trivial, a; v a; = 0.

More generally, let X be a well-pointed space. Then products in £*(Z X, *)
are trivial. It suffices to prove this fact for the unreduced suspension ¥’ X ; but this
space has a covering by two contractible open sets (cones).

Additively, the cohomology groups only depend on the stable homotopy type.
The product structure contains more subtle information. <

(17.2.7) Example. Let p: E — B be any map. Then we make A*(E) into a
graded right 2*(B)- module by the definition y - x = y v p*x for x € h*(B)
and y € h*(E). If f: X — Y is a morphism from p: X — Btog:Y — B
in TOPg, then f*: h*(Y) — h*(X) is h*(B)-linear. The same device works
for pairs of spaces over B. The coboundary operator is then also 4*(B)-linear,

8(y-x) =24y -x. <

17.3 External Products

A multiplicative structure on a cohomology theory i* of external products consists
of a family of R-linear maps (m,n € Z)

h™(X,A) @g h" (Y, B) - W™ ((X,A) x (Y,B)), x®y > x Xy,

defined for a suitable class of pairs (X, A) and (Y, B) and in any case if the pair
(X x B, AxY)isexcisive in X x Y. The products are defined if A or B is empty.
These maps are required to satisfy the following axioms.

(1) Naturality. For continuous maps f: (X, 4) — (X’,A’) and g: (Y,B) —

(Y',B)wehave (f x g)*(x x y) = f*x x g*y.
(2) Stability. Let (X x B, A x Y) be excisive. For x € W(A) and y € h"(Y, B)
the relation 6x x y = §'(x x y) holds. Here &' is the composition of the excision
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isomorphism with § fork =m +n

§: h¥(Ax (Y,B)) =~ h*(Ax Y UX x B, X x B) > K**1((X, A) x (Y, B)).

(3) Stability. Let (X x B, A x Y) be excisive. For x € h"(X, A) and y € h"(B)
the relation x x §y = (—1)*18”(x x y) holds. Here §” is a similar composition of
excision with § fork =m +n

§": K*((X, A) x B) = h*(X x BUA XY, Ax Y) > H*YL((X, A) x (Y, B)).

(4) Unit element. There is given 1 € h%(P) as a further structure datum. It satisfies

I xx=xx1=x(withrespectto P x X = X x P = X).

(5) Associativity. (x x y) Xz = x x (y X z).

(6) Commutativity. Let7: X xY — Y x X, (x,y)  (y,x). Then for x €

h™(X, A) and y € h" (Y, B) the relation t*(x x y) = (—1)*I’ly x x holds.
Also in this case we display the properties in a table and refer to the detailed

explanation above.

(f xg)*(xxy)= fTxxg"y
Sxxy=68((xxy)
x x8y = (=87 (x x y)
Ixx=x=xx1
(xxy)xz=xx(yxz)

*(x x y) = (=)Fly x x

The term “stability” usually refers to compatibility with suspension. We explain this
for the present setup. As afirstapplication we show that the suspension isomorphism
is given by multiplication with a standard element. Lete! € h!(I, dI) be the image
of 1 € h° under

1€ h® = hO(0) «=— hOI, 1) —— h'(1,31) 3 e

(17.3.1) Proposition. ¢! x y = o(y).

Proof. Consider the diagram

W™ (Y, B) — s ym(31Y,9IB) —— 5 h™(0Y, 0B)

| 4; 4;

W1, 91) % (Y, B) «— h™(@31Y U IB,IB) +— h™(IY U IB,1Y U IB).
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Let 1 € h°(dI) be the image of 1 € h°(0) under h°(0) = h°(dI,1) — hO(dI).
Then e! = §(1). Stability (2) of the cross product shows e! x y = §a~ (1 x y).
The maps « and B are isomorphisms by excision and h-equivalence. The outer
diagram path is y +— o (y). O

Suppose we have a cup product. We construct an associated external product.
Let p: (X,A) xY — (X,A)and g: X x (Y,B) — (Y, B) be the projections
onto the factors. We define for x € A" (X, A) and y € h"(Y, B) the product
xxy=p*yuUgqry.

Conversely, suppose an external product is given. We define an associated
w-product. Letd: (X, AU B) — (X, A) x (X, B) be the diagonal. Then we set
xuy=d*(xxy).

(17.3.2) Proposition. The x-product associated to a \u-product satisfies the axioms
of an external product. The w-product associated to a X-product satisfies the axioms
of an internal product. The processes X ~> U and U ~> X are inverse to each
other. O

(17.3.3) Proposition. Let x; € h*(X, A;) and y; € h*(Y, B;). Then

(x1 X 1) U (x2 % y2) = (=Dl U xo) x (01 U ya).

In particular h*(X) @ h*(Y) = h*(X xY), x ® y > x X y is a homomorphism
of unital graded algebras. O

(17.3.4) Proposition. Let s € h"(S", %) C h"(S") be the element which corre-
sponds to 1 € h® under a suspension isomorphism. Then for each space F the
map

W (F) @ h*™(F) > h*(F x §™), (a.b)—~>ax1+bxs

is an isomorphism. These isomorphisms show that h* (F x S™) is a free graded left
h*(F)-module with homogeneous basis 1 x 1, 1 X s.

Proof. We start with the isomorphism
We™(F) > h*(I" x F,1" x F), x> e" xx

where e” = e! x--- x e!, see (17.3.1). Let s € h*(S™, %) correspond to " under

the isomorphism A" (S”, %) = A" (1" /1", %) = h" (1", dI™). Then, by naturality,
W (F) > h*(S" x F,x x F), br>sxb
is an isomorphism. We now use the split exact sequence

0 — h*(S" x F, % x F) > h*(8" x F) - h*(F) - 0
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with splitting W (F) - h*(S" x F),a + 1 xa = pr*(a) in order to see that
(a,b) = 1 xa+ s x b is an isomorphism.

Under this isomorphism we have the following expression of the product struc-
ture

(a + sb)(d' + sb) = ad’ + s(ba’' + (=1)1*"ab")

since 52 = 0.

We use commutativity to show that (a,b) — a x 1 + b X s is an isomorphism
as claimed. If weuse 1 = 1p X 1gn and 5§ = 1p X s as basis elements for the
left A*(F)-module A*(F x S™), then the h*(F) algebra is seen to be the graded
exterior algebra h*(F)[s]/(s?). O

Let B be a CW-complex. The skeleton filtration (F kpi(B) | k € N) on h'(B)
is defined by F¥hi (B) = Ker(h' (B) — h' (B¥™1)).

(17.3.5) Proposition. The skeleton filtration is multiplicative: Ifa € F kni(B) and
b e F'h/(B), thena u b € F¥T hi*/(B).

Proof. Choose pre-images a’ € h'(B, B¥~'), b’ € h*(B, B'"). Thena’ x b’ €
hi*t/(Bx B, B! x BU B x B!~1). The product a U b is the image of a x b under
the diagonal d*. A cellular approximationd’: B — B x B of the diagonal d sends
B*¥*+!=Vinto (B x B)k*!~1 and the latter is contained in B¥~' x B U B x B!~
Naturality of the x-product now shows that a U b is contained in the image of

hi+i(B, B¥H1=1) — pi+/(B). O
(17.3.6) Corollary. Let n € h°(B) be containedin F'h°(B). Then n* € F¥h°(B).
Thus if B is finite-dimensional, n is nilpotent and 1 + n a unit. O
Problems

1. Supply the proofs for (17.3.2) and (17.3.3).
2. Determine the algebras A* (S"() x ... x §7K)) a5 graded h*-algebras (graded exterior
algebra).

17.4 Singular Cohomology

The singular cohomology theory is constructed from the singular chain complexes
by a purely algebraic process. The algebraic dual of the singular chain complex is
again a chain complex, and its homology groups are called cohomology groups. It
is customary to use a “‘co” terminology in this context.

Let Co = (Cy, d,) be a chain complex of R-modules. Let G be another R-
module. We apply the functor Homg(—, G) to C, and obtain a chain complex
C* = (C",§") of R-modules with C" = Homg(C,, G) and the R-linear map

§": C" = Homg(Cy,, G) — Homg(Cpy1,G) = C"1
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defined by §”(¢) = (—=1)"*1¢p 0 9,11 for ¢ € Hom(C,, G).

For the choice of this sign see 11.7.4. The reader will find different choices of
signs in the literature. Other choices will not effect the cohomology functors. But
there seems to be an agreement that our choice is the best one when it comes to
products.

For a pair of spaces (X, A) we have the singular chain complex S¢(X, A). With
an abelian group G we set

S"(X, A: G) = Hom(S,(X, A), G)

and use the coboundary operator above. Here we are using Homz. Elements in
S (X, A; G) are functions which associate to each singular simplex o : A” — X an
element of G and the value 0 to simplices withimage in A. If G is an R-module, then
the set of these functions becomes an R-module by pointwise addition and scalar
multiplication. A continuous map f: (X, A) — (¥, B) induces homomorphisms

fP=8"(f): S"(Y,B;G) — S"(X, 4;G), (f*9)(0) = ¢(fo)

which are compatible with the coboundary operators. In this manner we obtain
a contravariant functor from TOP(2) into the category of cochain complexes of
R-modules. The n-th cohomology group of S°*(X, 4; G) is denoted H" (X, 4; G)
and called the n-th singular cohomology module of (X, A) with coefficients in G.
We often write H"(X, A;Z) = H"(X, A) and talk about integral cohomology,
in this case (G = Z/(p) mod-p cohomology). Dualization of the split exact
sequence 0 — Se¢(A4) — Se(X) — Se(X, A) — 0 yields again an exact sequence
0 - S*°(X,4;:G) - S*°(X;G) — S*(A;G) — 0. It induces a long exact
cohomology sequence

i H™ Y (A:G) = H"(X, 4:G) — H"(X:G) — H"(A:G) — --- .

(17.4.1) Remark. We recall the definition of the coboundary operator § for the
present situation. Let ¢: S,_1(4) — G be a cocycle, i.e., ¢ o d = 0. Extend
@ in an arbitrary manner to a function ¢: S,—;(X) — G. The element §(¢) =
(—=1)"@od: S,(X) — G vanishes on S, (A), since its restriction to S, (A4) is ¢ 0 0.
Therefore §(¢) yields an element ¢ € S”(X, A; G). The coboundary operator is
then defined by the assignment [¢] — [{]. <

So far we have defined the data of a cohomology theory. If we apply Hom(—, G)
to a chain homotopy we obtain a cochain homotopy; this yields the homotopy
invariance. The excision axiom holds, as the chain equivalence S¢ (X ~U, A~U) =~
Se(X, A) induces a chain equivalence S*(X, 4;G) ~ S*(X ~U, A~ U;G).

There exist several algebraic relations among homology and cohomology. The
first one comes from the evaluation of the Hom-complex. Let us use coefficients in
a commutative ring R. The evaluations

Hom(S,(X,A),R) ® Sy(X,A;R) > R, ¢®(c®r)— ¢(c)r
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induces a pairing (sometimes called Kronecker pairing)
H"(X,A;R)® Hy(X,A;R) > R, xQ®ytr> (x,y).
This is due to the fact that the evaluations combine to a chain map, see 11.7.4.

(17.4.2) Proposition. For f: (X,A) — (Y,B), y € H"(Y,B;R), and x €
H,(X, A; R) we have

("), x) = (y, £ ().
Fora € H" Y (A;R), b € H,(X, A; R) we have

(8a,b) + (—=1)""Ya,db) = 0.

Proof. We verify the second relation. Let a = [¢], ¢ € Hom(S,—1(A),Z). Let
¢: Sy—1(X) — Z be an extension of ¢. Then §(a) is represented by the homo-
morphism (—1)"@d: S, (X) — Z (see (17.4.1)). Let y = [c], ¢ € Sy (X). Then
(6x,y) = (—1)"@d(c). From d(c) € S,_1(A) we conclude ¢(d(c)) = ¢(dc) =
(x,0y). O

The canonical generator e; € H; (I, d1) is represented by the singular simplex
s: AV — I, (tg,t1) — t1. Let[x] € H%(X) denote the element represented by the
cochain which assumes the value 1 on x € X and 0 otherwise.

(17.4.3) Proposition. Let e! be the generator which is the image of [0] € H°(0)
§
under H°(0) <~ H°(I,1) — H'(1,dI). Then (e',e;) = 1. O

The singular cohomology groups H” (X, A; G) can be computed from the ho-
mology groups of (X, A). This is done via the universal coefficient formula. We
have developed the relevant algebra in (11.9.2). The application to topology starts
with the chain complex C = S(X, 4; R) = S(X,A) ®z R of singular chains
with coefficients in a principal ideal domain R. It is a complex of free R-modules.
Note that Homg (S, (X, A) ®z R, G) =~ Homz (S, (X, A), G) where in the second
group G is considered as abelian group (= Z-module). Then (11.9.2) yields the
universal coefficient formula for singular cohomology.

(17.4.4) Theorem. For each pair of spaces (X, A) and each R-module G there
exists an exact sequence

0 — Ext(H,—1(X,4;R),G) - H"(X,A;G) - Hom(H,(X, A; R),G) — 0.

The sequence is natural in (X, A) and in G and splits. In particular, we have
isomorphisms H°(X; G) = Hom(Hy(X), G) = Map(mo(X), G). O

The statement that the splitting is not natural means that, although the term
in the middle is the direct sum of the adjacent terms, this is not a direct sum of
functors. There is some additional information that cannot be obtained directly
from the homology functors. The topological version of (11.9.6) is:
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(17.4.5) Theorem. Let R be a principal ideal domain. Assume that either
H. (X, A; R) is of finite type or the R-module G is finitely generated. Then there
is a functorial exact sequence

0—> H"(X,A;:R)® G — H"(X,A;G) — Tor(H"*'(X, A; R),G) — 0.
The sequence splits. O

(17.4.6) Proposition. Let M be a closed, connected, non-orientable n-manifold.
Then H"(M;Z) ~ Z /2.

Proof. Since M is non-orientable, H,(M;Z) = 0. Theorem (17.4.4) for R =
G = Z then shows H"(M; Z) = Ext(H,—1(M;Z), Z). From (16.3.4) we know
that H,—1(M;Z) = Z /2 & F with a finitely generated free abelian group. This is
also a consequence of Poincaré duality, see (18.3.4). O

Problems

1. Let 0 - G; — G2 — Gz — 0 be an exact sequence of abelian groups. It induces a
short exact sequence of cochain complexes

0 — Hom(S(X),G1) - Hom(S(X), G2) — Hom(S(X),G3) — 0
and an associated long exact sequence of cohomology groups. The coboundary operator
B: H"(X;:G3) — H" T (X:Gy)

is a natural transformation of functors H” (—; G3) — H"11(—:; G1) and called a Bockstein
operator. A typical and interesting case arises from the exact sequence 0 — Z/p —
Z/p*>—>Z/p — 0.

2. If the functor Hom(—, G) preserves exact sequences, then no Ext-term appears in the
universal coefficient formula. Examples are

H"(X,A;Q) ~ Homz(H, (X, A), Q) = Homg (H, (X, 4;Q), Q)

and H"(X;Z/p) = Homz,,(H,(X;Z/p), Z/ p) for the prime field Z/ p as coefficient
ring.

17.5 Eilenberg—Mac Lane Spaces and Cohomology

The representability theorem (8.6.10) of Brown can be used to find a natural isomor-
phism A: [—, K(A,n)] = H"(—; A) on the homotopy category of CW-complexes.
In this section we construct this isomorphism and give some applications. A nat-
ural transformation A is determined by its value on the identity of K(A4,n), and
this value can be prescribed arbitrarily. Thus we have to find a suitable element
tn € H"(K(A,n); A).
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Let us begin with the special case n = 0. As a model for K(4,0) we take
the abelian group A with discrete topology. Since A is discrete, a map X — A
is continuous if and only if it is locally constant. Moreover, all homotopies are
constant. Therefore [X, K(A4,0)] = [X, 4] is the group of locally constant maps.
A locally constant map is constant on a path component. Therefore the surjection
q: X — mo(X) induces an injective homomorphism

A0(X): [X, A] = Map(m(X), A) = Hom(Ho(X), A) = H°(X; A).

The last isomorphism is the one that appears in the universal coefficient formula.
If X is locally path connected, then the homomorphism induced by ¢ is an isomor-
phism. Hence we have obtained a natural isomorphism on the category of locally
path connected spaces, in particular on the category of CW-complexes. If X is
connected but not path connected, then A°(X) is not an isomorphism.

Letnow n > 1 and write K = K,, = K(A, n). Consider the composition

tn € H"(K; A) Hom(H (K;Z), A) Hom(nn(A) A) Hom(A A) >id.

The isomorphism (1) is the universal coefficient isomorphism. The isomorphism (2)
is induced by the Hurewicz isomorphism 4 : 7, (K, *) — H,(K;Z), see (20.1.1).
Itsends[f] € [S(n), K]° = m,(K)to fu(z,) where z,, € H,(S(n); Z) is asuitable
generator. The isomorphism (3) is induced by a fixed polarization p: A = m, (K).
We define ¢, as the element which corresponds to the identity of A. Let A" be the
natural transformation which is determined by the condition A"[id] = ¢,. Note
that category theory does not tell us yet that the A" (X): [X, K] - H"(X; A) are
homomorphisms of abelian groups.

Let us compare A”~! and A”. It suffices to consider connected CW-complexes
and pointed homotopy classes. The diagram with the structure mape(n): X K,—1 —
K, of the spectrum

[X, Kp_1]® —=— [SX, DKn_1]® —25 [SX, K]
- s
H"1(X; A) = H™"(£X; A)

is commutative up to sign, provided e(n)*(1,) = A"(e(n)) = £0(tp—1). The
morphism A" (X X) is a homomorphism, since the group structures are also induced
by the cogroup structure of X . In order to check the commutativity one has to
arrange and prove several things: (1) The Hurewicz homomorphisms commute with
suspensions. (2) The structure map e(n) and the polarizations satisfy e(n) o X o
Pn—1 = pn: A = 1, (Ky). (3) The homomorphisms from the universal coefficient
formula commute up to sign with suspension. Since the sign is not important for
the moment, we do not go into details.
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(17.5.1) Theorem. The transformation A" is an isomorphism on the category of
pointed CW-complexes.

Proof. We work with connected pointed CW-complexes. Both functors have value
0 for S, m # n. The reader is asked to trace through the definitions and verify
that A”(S™) is an isomorphism. By additivity, A" (X) is an isomorphism for X a
wedge of spheres. Now one uses the cofibre sequence

\ Sk xk=t o Xk xR/ xR o mxkd

and applies the functors [—, K] and H"(—; A). We use induction on k. Then A"
is an isomorphism for \/ S¥~!, X¥~1 and X*/X*~!. The Five Lemma implies
that A”(X*) and hence also A” (X X*~1) are surjective. By another application
of the Five Lemma we see that A” (X¥) is also injective. This settles the case of
finite-dimensional CW-complexex. The general case follows from the fact that both
functors yield an isomorphism when applied to X"*! C X. O

A CW-complex K(Z,n) canbe obtained by attaching cells of dimension > n + 2
to S”. The cellular approximation theorem (8.5.4) tells us that the inclusion
i": §" C K(Z,n) induces for each CW-complex X of dimension at most n a
bijection

i’ [X,8"] = [X,K(Z.n)].

We combine this with the isomorphism A and obtain a bijection
[X,S"] — H"(X:Z).

Itsendsaclass[f] € [X, S"]totheimageof 1 € H"(S™;Z)under f*: H"(S") —
H"(X). Here we use the isomorphism A = H"(S"; A) which is (for an arbitrary
abelian group A) defined as the composition

H"(S"; A) =~ Hom(H,(S"), A) = Hom(7,(S"), A) =~ Hom(Z, A) = A.
Again we have used universal coefficients and the Hurewicz isomorphism.

(17.5.2) Proposition (Hopf). Let M = X be a closed connected n-manifold which
has an n-dimensional CW-decomposition. Suppose M is oriented by a fundamental
class zpr. Then we have an isomorphism

H"(M:Z) =~ Hom(H,(M),Z) =~ Z

where the second isomorphism sends « to «(zpr). The isomorphism [M, S™] =~
H"(M;7Z) = Z maps the class [ ] to the degree d(f) of f. O

(17.5.3) Proposition (Hopf). Let M be a closed, connected and non-orientable
n-manifold with a CW-decomposition. Then H"(M ; Z) = Z/2; hence we have a
bijection [M, S| = Z /2. It sends [ f] to the degree d>( ) modulo 2 of f.
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Proof. The universal coefficient theorem and H, (M ; Z) = 0 show
Ext(H,—1(M),Z/2) = H"(M;Z/2).

We use again that H,_1 (M ;Z) =~ F & Z/2 with a finitely generated free abelian
group F. This proves H" (M ; Z/2) =~ Z /2. Naturality of the universal coefficient
sequences is used to show that the canonical map H"(M;Z) — H"(M;Z/2) is
an isomorphism. The commutative diagram

HA(S":7/2) r H"(M:Z)2)

J |

Hom(H,(S";Z/2),Z/2) — Hom(H,(M;Z/2),Z/2)

is used to show the assertion about the degree. O

Problems

1. A is not always an isomorphism: A = Z, n = 1 and the pseudo-circle.

17.6 The Cup Product in Singular Cohomology

Let R be a commutative ring. The cup product in singular cohomology with coef-
ficients in R arises from a cup product on the cochain level

SEX;R) ® SU(X; R) — S*TU(X;R), 9@y Ut

It is defined by

M @up) =DVl ... ey (Ollek. ... ex+i))-

Hereo: A¥t! = [eg, ... exy;] — X isasingular (k+/)-simplex. Let [v, . .., v,]
be an affine n-simplex and t: [vg, ..., v,] = X acontinuous map. We denote by
7|[vo, ..., vy] the singular simplex obtained from the composition of t with the
map A" — [vg, ..., v,], e; = v;. This explains the notation in (1).

(17.6.1) Proposition. The cup product is a chain map
S*(X;R)® S*(X;R) - S*(X;R),
i.e., the following relation holds:

Spuy) =8p Uy + (=)Plg U sy.



17.6. The Cup Product in Singular Cohomology 423

Proof. From the definition we compute (§¢ v 1)(0) to be

k

(—DWHEDVIN (1) e o [ep. .. ... ... ek s DV (O [ekr1. - - - Chpi+1])
i=0

and (—1)“!(¢ U §¥)(0) to be

k+1+1

G R W o a2 (| % V4 | At ) §
i=k

If we add the two sums, the last term of the first sum and the first term of the second
sum cancel, the remaining terms yield (—1)/¢!+1¥1+1 (¢ U 4)(30), and this equals

(e v ¥))(0). 0

We extend the cup product to the relative case. Suppose ¢ € S¥(X, A; R)
and ¢ € S!(X, B; R) are given. This means: ¢ vanishes on singular simplices
A*¥ — A and ¥ vanishes on simplices A’ — B. The relation (17.6.1) then shows
that ¢ U ¥ vanishes on the submodule Si4+;(A + B; R) C Sk+1(X; R) generated
by simplices in A and B. The pair (A4, B) is excisive for singular homology if
Se(A+ B) = Se(A) 4+ Se(B) C Se(A U B) is a chain equivalence. The dual maps
S*(AUB;R) > S*(A+ B;R)and S*(X, AU B;R) - S*(X; A+ B;R) are
then chain equivalences. The last module consists of the cochains which vanish on
Se(A + B); let H*(X; A + B; R) denote the corresponding cohomology group.
Thus we obtain a cup product (again a chain map)

S*(X,A:R) ® S*(X,B;R) — S*(X: A+ B:R).

We pass to cohomology, obtain H*(X, A; R)Q H*(X, B; R) - H*(X; A+ B:; R)
and in the case of an excisive pair a cup product

H*(X,A;R)® H*(X,B;R) — H*(X,AU B; R).

We now prove that the cup product satisfies the axioms of Section 2. From
the definition (1) we see that naturality and associativity hold on the cochain level.
The unit element 1y € H°(X; R) is represented by the cochain which assumes the
value 1 on each 0-simplex. Hence it acts as unit element on the cochain level. In
the relative case the associativity holds for the representing cocycles in the group
H*(X; A+ B+ C; R). In order that the products are defined one needs that the
pairs (A4, B), (B,C), (AU B,C) and (A, B U C) are excisive.

Commutativity does not hold on the cochain level. We use: The homomor-
phisms

p:Su(X)— Sp(X), o+ e,0,
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with &, = (—1)®+tD"/2 and 5 = o|[en, en_1. ..., eo] form a natural chain map
which is naturally chain homotopic to the identity (see (9.3.5) and Problem 1 in that
section). The cochain map p* induced by p satisfies

oo upfy = (=Dt U y).

Since p* induces the identity on cohomology, the commutativity relation follows.
The stability relation (2) is a consequence of the commutativity of the next
diagram (which exists without excisiveness). Coefficients are in R.

H(A)®@H/(X,B) — H (A)®@H’/(A,A, AN B) — H'*/(A, AN B)

P@ P/

Hi+1(X,A)®Hj(X,B) Hi+j+1(X;A + B)

where & is the composition of H'*/ (4, AN B) & H'*/(A + B; B), which is
induced by the algebraic isomorphism

Se(A)/Se(AN B) = Se(A+ B)/S.(B),

and §: H'*/(A + B; B) - H'*/*1(X; A + B). In order to verify the commu-
tativity, one has to recall the construction of §, see (17.4.1). Suppose [¢] € H'(A)
and [y] € H/(X, A) are given. Let § € S(X) be an extension of ¢; then §¢
vanishes on S;(A4), and the cochain §¢ € S'T1(X, A) represents §[¢]. The image
of [¢] ® [¥] along the down-right path is represented by 6@ U , and one verifies
that the image along the right-down path is represented by §(¢ U ). Since ¥ is a
cocycle, the representing elements coincide. A similar verification can be carried
out for stability (3).

One can deal with products from the view-point of Eilenberg—Zilber transfor-
mations. We have the tautological chain map

S*(X;R)® S*(Y;R) — Hom(S, ® Se, R ® R).

We compose it with the ring multiplication R ® R — R and an Eilenberg—Zilber
transformation Se(X X ¥Y) — Se(X) ® So(Y) and obtain a chain map

S*(X;R)®S*(Y;R) — S*(X xY:R), f®gr fxg,

a x-product on the cochain level. If the pair (4 x Y, X x B) is excisive, we obtain
a x-product

S*(X,A;R)® S°(Y,B; R) = S*((X,A) x (Y, B); R).

Our previous explicit definition of the cup product arises in this manner from the
Alexander—Whitney equivalence and the related approximation of the diagonal.
We can now apply the algebraic Kiinneth theorem for cohomology to the singular
cochain complexes and obtain:
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(17.6.2) Theorem. Let R be a principal ideal domain and H«(Y, B; R) of finite
type. Assume that the pair (A X Y, X X B) is excisive. Then there exists a natural
short exact sequence

0= @igjmn H' (X, A:R) ® H/ (Y, B: R) — H"((X, 4) x (Y, B); R)
— @t+j=n+1 H'(X,A;R) * H/ (Y, B; R)

and this sequence splits. O

Problems

1. We have defined the cup product for simplicity by explicit formulas. One can use instead
Eilenberg—Zilber morphisms. Let us consider the absolute case. Consider the composition

S1(X;R)® S9(Y; R) = Hom(S, X, R) ® Hom(S4(Y), R)
— Hom(S,(X) ® S¢(Y), R) - Hom(Sy44(X xY),R)

where the first morphism is the tautological map and the second induced by an Eilenberg—
Zilber morphism Se(X X V) — Se(X) ® Se(Y). Then this composition induces the
x-product in cohomology. The cup product in the case X = Y is obtained by composition
with Se(X) — Se(X x X) induced by the diagonal. Instead we can go directly from
Hom(S,(X) ® Sy (X), R) to Hom(S, 44 (X), R) by an approximation of the diagonal. Our
previous definition used the Alexander—Whitney diagonal.

17.7 Fibration over Spheres

Let p: X — S" be a fibration (n > 2). We write as usual §” = D’} U D" and
snl = D% N D™. Let by € S™~1 be a base point. We set X4 = p~1(D%),
Xo = p~1(8" 1), and F = p~'(by). From the homotopy theorem of fibrations
we obtain the following result.

(17.7.1) Proposition. There exist h-equivalences ¢i: D" £ xX — X4 over
D" such that ¢+ (b, y) = y for y € F. The h-inverses Y+ also satisfy Y+(y) =
(bo, y) and the fibrewise homotopies of Y+ ¢+ and ¢+ V4 to the identity are constant
on F. Since Xo C X+ C X are closed cofibrations, we have a Mayer—Vietoris
sequence for (X4, X-). O

We use the data of (17.7.1) in order to rewrite the MV-sequence. We work with a
multiplicative cohomology theory. The embedding j: F — Dt x F, y + (bo, y)
is an h-equivalence. Therefore we have isomorphisms

5 R (Xa) —=s B* (DL X F) = i (F).
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The restriction of ¢ gives us another isomorphism
o K (Xo) S HF (8" x F).
We insert these isomorphisms into the MV-sequence of (X, X_)

WE(X) —— h¥(X4) @ h*(X-) —— h*(Xo)

koxyy Pk kopy P ok qn—1
(X)) ——h(F)® h*“(F) —— h*(S" " x F).
The two components of (1) equal i * where i : F C X. The first component of (2)
is induced by the projection pr: $”~! x F — F. We write ¥_ o ¢ in the form
(s,y) — (s,a(s, y)). Then the second component of (2) is —a*. Both maps yield

the identity when composed with j: F — S""! x F, y + (b, y). The product
structure provides us with an isomorphism

W (F) @ h*"*Y(F) > h*(S" ' x F), (a.b)—~ 1xa+sxb.
We also use this isomorphism to change the MV-sequence. We set
a*(x) = 1xx—sxO(x), O(x)ehF(F).
The relation j*(1 x a —s x b) = a shows that «*(x) has the displayed form.

(17.7.2) Theorem (Wang Sequence). There exists an exact sequence

o WX S W (F) S Ry o R ()
The map © is a derivation, i.e., ©(x U y) = O(x) U y + (—1)*I@=Dx U @y.
Proof. We start with the modified MV—sequence

— 1% xX) ik (F) @ 1* (F) 2 hk(F) @ L (F)

The morphism (1) is as before, and (2) has the form (a, b) — (a — b, ©(b)). Then
we form the quotients with respect to the left h* (F) summands in order to obtain
the stated exact sequence.

Since o* is a homomorphism and s? = 0, we obtain

a*(xy) =1xxy+sx0(xy)
" () (y) = (I xx +s5sxO) (1 xy +5x0(y))
=1xxy+sx0x)-y+ (=DH*Blyx x.0(y).
This proves the derivation property of ®. O

We can, of course, also consider the MV-sequence in homology. It assumes
after an analogous rewriting the form

S Hy(F) 5 Hy(X) = Hyn(F) 25 Hy_1(F) —
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Problems

1. As an example for the use of the Wang sequence compute the integral cohomology ring
H*(25"+1) of the loop space of S7+1. Use the path fibration Q5" +1 — p 25 gn+1
with contractible P.

If n = 0, then QS! is h-equivalent to the discrete space Z. Soletn > 1. Since P
is contractible, the Wang sequence yields H, (Q2S"T!) = H,_, (25" T!) and therefore
Hi(QS"t1) =~ Z for k = 0 mod (n) and = 0 otherwise. Similarly for cohomology
H*(QS"t1) = Z for k = 0 mod (1) and zero otherwise. Using the isomorphism ® we
define inductively elements zg = 1 and ®zx = zx_| fork > 1.

Let n be even. Then k!z;, = zf for k > 1. For the proof use induction over k and the
derivation property of ®.

The relation above yields the multiplication rule

<k +z)
Zrz] = k Zk+1-

A multiplicative structure of this type is called a polynomial ring with divided powers. With
coefficient ring Q one obtains a polynomial ring H* (285" 1T1;: Q) = Q[z1].

Let n be odd. Then z1z2x = zZok 41, Z1Z2k+1 = 0, and 212‘ =klzpg.

Again use induction and the derivation property. Since zf = —Z%, one has Z% = 0.
Then O(z122k) = O(z1)z2k — 210(22k) = z2k — Z1Z2k—1 = Z2k = O(Z2k+41), hence
Z1Z2k = Z2k+1. since ® is an isomorphism. Next compute z1z2x+1 = z1(2122k) =
212sz = 0. For the last formula use that ® o © is a derivation of even degree which maps
Zok to zax—2. The induction runs then as for even n. The elements z>; generate a polynomial
algebra with divided powers and z1 generates an exterior algebra.

17.8 The Theorem of Leray and Hirsch

The theorem of Leray and Hirsch determines the additive structure of the coho-
mology of the total space of a fibration as the tensor product of the cohomology of
the base and the fibre. We work with singular cohomology with coefficients in the
ring R. A relative fibration

(F,F')—> (E,E')— B

consists of a fibration p: E — B such that the restriction p’: E’ — B to the
subspace E’ of E is also a fibration. The fibres of p and p’ over a base point x € B
are F and F’. The case E/ = @ and hence F’ = @ is allowed. We assume that B
is path connected.

(17.8.1) Theorem (Leray—Hirsch). Let (F, F') 4 (E.E) 2 B be a relative
fibration. Assume that H" (F, F') is for each n a finitely generated free R-module.
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Let c; € H*(E, E’) be a family of elements such that the restrictions i *(c;) form
an R-basis of H*(F, F’). Then

L: H*(B)® H*(F.F') > H*(E.E'), b®i*(c;) > p*(b) uc;

is an isomorphism of R-modules. Thus H*(E) is a free graded H*(B)-module
with basis {c; }.

We explain the statement of the theorem. The source of L is a direct sum of mod-
ules H*(B) ® H!(F, F’). The elements i*c,, which are contained in H!(F,F")
are a finite R-basis of the R-module H’(F, F'). A basic property of the tensor
product says that each element has a unique expression of the form

Y by ®i*(cy). by € HE(B).

By the conventions about tensor products of graded modules, L is a map of degree
zero between graded modules.

Proof. Let A C B be a subspace. We have the restricted fibrations (F, F') —
(E|A,E'|A) — A with E|A = p~'(A) and E'|A = E’' N E|A. The elements
¢; yield by restriction elements ¢;|A € H*(E|A, E'|A) which again restrict to a
basis of H*(F, F’).

We first prove the theorem for CW-complexes B by induction over the skeleta
B". If B® = {x}, then L has the form H°(B®) ® H*(F,F’) — H*(F, F') and
it is an isomorphism by the unit element property of the cup product.

Suppose the theorem holds for the (n—1)-skeleton B”~!. We write B = UUV,
where U is obtained from B” by deleting a point in each open n-cell and V' is the
union of the open n-cells. We use the MV-sequence of U, V and E|U, E|V and
obtain a commutative diagram

Lyuv

H*UUV)® M* H*(E|UUV,EUUYV)

H*U)® M* @ H*(V) @ M* 2V i(E\U, E'\U) @ H*(E|V, E'|V)

Lynv

H*UNV) M* H*(ElUNV,E'|\UNYV).

The left column is the tensor product of the MV-sequence for U, V' with the graded
module M* = H*(F, F'). Itis exact, since the tensor product with a free module
preserves exactness. We show that Ly, Ly and Lyny are isomorphisms. The Five
Lemma then shows that Lyyy is an isomorphism. This finishes the induction step.
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Case U. We have the commutative diagram

L
H*(U)® H*(F, F') —=%— H*(E|U, E'|U)

J |

H*(Bn—l) ® H*(F, F/) N H*(E|Bn_1, E/|Bn_1).

Since B""! c U, E|B"! C E|U,and E'|B"~! C E’|U are deformation retracts,
the vertical maps are isomorphisms. We use the induction hypothesis and see that
Ly is an isomorphism.

Case V. The set V is the disjoint union of the open n-cells V' = | |; e}’. We
obtain a commutative diagram

H*V)® H*(F,F)) —— =Y s H*(E|V,E'|V)
1| = (I
(TTH*(") ® H*(F. F) [T H*(Ele?, E'le?)
® -
1L

[T(H*(e}) ® H*(F, F')) ——— 1 H*(Ele}. E'l¢}).

(1) and (2) are isomorphisms by the additivity of cohomology. The map (3) is the
direct sum of homomorphisms of the type ([[M;) ® N — [[(M; ® N) with a
finitely generated free module N and other modules M;. In a situation like this
the tensor product commutes with the product. Hence (3) is an isomorphism. The
homomorphisms L(e}) are isomorphisms, since e}/ is pointed contractible.

Case U NV. We combine the arguments of the two previous cases. By additivity
and finite generation we reduce to the case of U ﬂe}’, acell with a point deleted. This
space has the (n — 1)-sphere as a deformation retract. By induction, the theorem
holds for an (n — 1)-sphere.

From the finite skeleta we now pass to arbitrary CW-complexes via the lim—
lim'-sequence (17.1.6). For general base spaces B we pull back the fibration along
a CW-approximation. O

(17.8.2) Example. Consider the product fibration p = prg: B x (F, F') — B.
Let H*(F, F’) be a free R-module with homogeneous basis (d; | j € J), finite
in each dimension. Let ¢; = pry d;. Theni*c; = d;. Therefore (17.8.1) says in
this case that

H*(B)®@ H*(F,F') > H*(Bx(F,F'), x®yr>xxy
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is an isomorphism (of graded algebras). This is a special case of the Kiinneth
formula. <

(17.8.3) Remark. The methods of proof for (17.8.1) (induction, Mayer—Vietoris
sequences) gives also the following result. Suppose H kK(F,F') = 0fork < n.
Then H¥(E,E’) = 0 fork < n. &

Let now i* be an arbitrary additive and multiplicative cohomology theory and
(F,F') - (E,E’) — B a relative fibration over a CW-complex. We prove a
Leray- Hirsch theorem in this more general situation. We assume now that there
is given a finite number of elements #; € h"U(E, E') such that the restrictions
ti|b € WU (Ey, E}) to each fibre over b are a basis of the graded /#*-module
h*(Ep, E}). Under these assumptions:

(17.8.4) Theorem (Leray—Hirsch). h*(E, E’) is a free left h*(B)-module with
basis (t;).

Proof. Let us denote by A*(C)(t) the free graded 1*(C)-module with (formal)
basis #; in degree n(j). We have the 42*(C )-linear map of degree zero

o(C): h*(C)(t) — h*(E|C, E'|C)

which sends #; to #;|C. These maps are natural in the variable C C B. We view
h*(—)(t) as a cohomology theory, a direct sum of the theories 4*(—) with shifted
degrees. Thus we have Mayer—Vietoris sequences for this theory. If U and V' are
open in B, we have a commutative diagram of MV-sequences.

WU U V(1) AChig) W*(E\U UV,E'|UUV)
) (1) @ (V1) 2L s (B lu, E'U) @ RH(E|V, E'V)

|

B*(U N V){1)

e(UNV) J

WEUNV,ENUNYV)

We use this diagram as in the proof of (17.8.1). We need for the inductive proof
that ¢(e) is an isomorphism for an open cell e. This follows from two facts:

(1) ¢(P) is an isomorphism for a point P = {b} C B, by our assumption about
the 1.

(2) (Ep,Ep) — (Ele, E'le) induces an isomorphism in cohomology, since
Ep C E|e is a homotopy equivalence by the homotopy theorem for fibrations.

The finiteness of the set {#; } is used for the compatibility of products and finite
sums. The passage from the skeleta of B to B uses again (17.1.6). O

There is a similar application of (17.8.4) as we explained in (17.8.2).
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17.9 The Thom Isomorphism

We again work with a cohomology theory which is additive and multiplicative.
Under the obvious finiteness conditions (e.g., finite CW-complexes) additivity is
not needed.

Let (p, p'): (E, E’) — B be arelative fibration over a CW-complex. A Thom
class for pisanelement? = t(p) € h"(E, E’) such that the restriction to each fibre
ty € h"(Fp, F}) is a basis of the #*-module 7*(Fp, F}). We apply the theorem of
Leray—Hirsch (17.8.4) and obtain:

(17.9.1) Theorem (Thom Isomorphism). The Thom homomorphism
®: h*(B) > l**™(E.E"), b p*(b)ut
is an isomorphism. O

Let us further assume that p induces an isomorphism p*: H*(B) — H*(E).
We use the Thom isomorphism and the isomorphism p* in order to rewrite the exact
sequence of the pair (E, E'); we set A = ®~1§,

WE1(ET) —2 hR(E. B~ hE(B) —— iR (E)

e A

hk—n(B) Ji} hk(B)

Lete = e(p) € H"(B) be the image of ¢ under A" (E, E’) EN h”(E) h"(B)
We call e the Euler class of p with respect to ¢. From the definitions we verify that
J is the cup product with e, i.e., J(x) = x Ue.

(17.9.2) Theorem (Gysin Sequence). Let (E, E') — B be a relative fibration as
above such that p*: h*(B) =~ h*(E) with Thom class t and associated Euler class
e € h"(B). Then we have an exact Gysin sequence

S YE) — i (B) 1k (B) B hk(E') > 1 (B) -
(1) is the cup product x — x v e and (2) is induced by p’. O

We discuss the existence of Thom classes for singular cohomology H *(—; R).
In this case it is not necessary to assume that B is a CW-complex (see (17.8.1)). We
have for each path w: I — B from b to c a fibre transport w* defined as follows:
Letg: (X, X’) — I be the pullback of p: (E, E’) — B along w. Then we have
isomorphisms induced by the inclusions

=~

wh: H" (FC,F)<—H”(X X') — H"(Fp, F}).
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The homomorphism w* only depends on the class of w in the fundamental groupoid.
In this manner we obtain a transport functor “fibre cohomology”.

(17.9.3) Proposition. We assume that H*(Fp, Fy; R) is a free R-module with a
basis element in H" (Fp, F ,;; R). A Thom class exists if and only if the transport
Sunctor is trivial.

Proof. Lett beaThomclassand w: I — B apathfrom b to c. Then w oi} = ilj‘,
where i, denotes the inclusion of the fibre over b. Thus w* sends the restricted
Thom class to the restricted Thom class and is therefore independent of the path.
(In general, the transport is trivial on the image of the i}.)

Let now the transport functor be trivial. Then we fix a basis element in a particu-
lar fibre H" (Ep, E l;) and transport it to any other fibre uniquely (B path connected).
A Thom class t¢c € H"(E|C, E'|C) for C C B is called distinguished, if the re-
striction to each fibre is the specified basis element. This requirement determines ¢c .
By aMV-argument and (17.8.3) we prove by induction that H¥ (E|B", E'| B") = 0
for k < n and that a distinguished Thom class exists. Then we pass to the limit and
to general base spaces as in the proof of (17.8.1). O

The preceding considerations can be applied to vector bundles. Let&é: E — B
be a real n-dimensional vector bundle and E° the complement of the zero section.
Then for each fibre H" (Ep, Eg) =~ R and £ is a homotopy equivalence. A Thom
class 1(§) € H™(E, E°; R) is called an R-orientation of £. If it exists, we have
a Thom isomorphism and a Gysin sequence. We discuss the existence of Thom
classes and its relation to the geometric orientations.

(17.9.4) Theorem. There exists a Thom class of & with respect to singular coho-
mology H*(—;Z) if and only if the bundle is orientable. The Thom classes with
respect to H*(—; Z) correspond bijectively to orientations.

Proof. Let us consider bundles over CW-complexes. Let ¢ be a Thom class. Con-
sider a bundle chart ¢: U x R” — £~ 1(U) over a path connected open U. The
image of t|U in H" (U x (R", R"~0)) = H°(U) under ¢* and a canonical suspen-
sion isomorphism is an element ¢(U) which restricts to e(u) = %1 for each point
u € U, and u + e(u) is constant, since U is path connected. We can therefore
change the bundle chart by an automorphism of R” such that e(u) = 1 for each u.
Bundle charts with this property yield an orienting bundle atlas.

Conversely, suppose £ has an orienting atlas. Let ¢: U x R” — £~ 1(U) be a
positive chart. From a canonical Thom class for U x R” we obtain via ¢ a local
Thom class ty for £71(U). Two such local Thom classes restrict to the same Thom
class over the intersection of the basic domains, since the atlas is orienting. We can
now paste these local classes by the Mayer—Vietoris technique in order to obtain a
global Thom class. O
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As a canonical generator of H" (R”, R” ~0; Z) we take the element e™ satisfy-
ing the Kronecker pairing relation (¢, e, ) = 1 where e, € H,(R",R" ~ 0; Z) is
the n-fold product e; x - - - x e of the canonical generator e; € Hy(R!, R! ~0;Z).
If a bundle £ is oriented and ¢p : R” — & a positive isomorphism, then we require
ppt(§) = e™ for its associated Thom class 7 ().

Let t(n) € h"(E, E®) be a Thom class of n: E — B and e(n) € h"(B) the
associated Euler class, defined as the restriction of #(7) to the zero section

t(n) € W"(E, E®) — I"(E) = h"(B) 3 e(1).
Here is a geometric property of the Euler class:

(17.9.5) Proposition. Suppose n has a section which is nowhere zero. Then the
Euler class is zero.

Proof. Lets’: B — E°be amap such that nos’ = id. The section s’ is homotopic
to the zero section by a linear homotopy in each fibre. Therefore ¢(7) is the image
of ¢(n) under a map

W(E, E®) — h"(E) — hW"(E®) > h"(B)
and therefore zero. O

The Thom classes and the Euler classes have certain naturality properties. Let
f*: & — nbeabundle map. If #(n) is a Thom class, then f*z(n) is a Thom class
for £ and f*e(n) is the corresponding Euler class. If £: X — Bandn: Y — C
are bundles with Thom classes, then the x-product #(£) x #(n) is a Thom class for
& x nand e(&) x e(n) is the corresponding Euler class.

In general, Thom classes are not unique. Let us consider the case of a trivial
bundle £ = pr,: R” x B — B. It has a canonical Thom class pr; e”. If ¢(§)
is an arbitrary Thom class, then it corresponds under the suspension isomorphism
h°(B) — h™(R"x B, RE < B) to an element v (&) with the property that its restriction
to each point b € B is the element =1 € 4°%(b). Under reasonable conditions, an
element with this property (call it a point-wise unit) is a (global) unit in the ring
h°(B). We call a Thom class for a numerable bundle strict if the restrictions to
the sets of a numberable covering correspond under bundle charts and suspension
isomorphism to a unit in /°.

(17.9.6) Proposition. Let U be a numerable covering of X. Let ¢ € h°(X) be an
element such that its restriction to each U € U is a unit. Then ¢ is a unit.

Proof. Let X = U U V and assume that (U, V) is excisive. Let ¢|U = ey and
e|V = ey be a unit. Let ny, ny be inverse to ey, ey. Then ny and ny have
the same restriction to U N V. By the exactness of the MV-sequence there exists
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n € h°(X) with n|U = ny,n|V = ny. Then x = en — 1 has restriction 0 in U
and V. Let xy € h°(X,U) be a pre-image of x and similarly xy € h°(X, V).
Then xyxy = 0 and hence x> = 0. The relation 1 = &n(2 — en) shows that ¢ is
a unit. Restrictions of units are units. By additivity, if X is the disjoint union of U
and ¢|U is a unit for each U € U, then ¢ is a unit. We finish the proof as in the
proof of (17.9.7). U

The Thom isomorphism is a generalized (twisted) suspension isomorphism. It
is given by the product with a Thom class. Let £: E — B be an n-dimensional
real vector bundle and ¢(§) € h"(E, E®) a Thom class with respect to a given
multiplicative cohomology theory. The Thom homomorphism is the map

O(&): H(B, A) — WHME®E), E°E) U E(Ea)), x> x-1(8) = " (x) v1(§)

where £*: hK(B, A) — HK(E(), E°(§)) is the homomorphism induced by &.
The Thom homomorphism defines on h*(E, E®) the structure of a left graded
h*(B)-module. The Thom homomorphism is natural with respect to bundle maps.
Let

EE€) L5 E®m)
le
B—C

be a bundle map. Let #(n) be a Thom class. We use 1(§) = F*t(n) as the Thom
class for £. Then the diagram

HE(C, D) 5 W (E (). E°(r) U E(np))

L I
HE(B. A) sk (E (). EO(n) U E(na))

is commutative. We assume that f: (B, A) — (C, D) is a map of pairs.
The Thom homomorphism is also compatible with the boundary operators. Let
t(&4) be the restriction of #(£). Then the diagram

8

hk(A) h*+1(B, A)
fb(m
h*+1(E(£4), E®(84)) (&)

E

B (EO(€) U E ). E°(64)) —— hETTHL(E(€), E°() U E(64))

is commutative.
The Thom homomorphisms are also compatible with the morphisms in the MV-
sequence. We now consider the Thom homomorphism under a different hypothesis.



17.9. The Thom Isomorphism 435

(17.9.7) Theorem. The Thom homomorphism of a numerable bundle with strict
Thom class is an isomorphism.

Proof. Let & be a numerable bundle of finite type. By hypothesis, B has a finite
numerable covering Uy, ..., U; such that the bundle is trivial over each U; and the
Thom class is strict over U;. We prove the assertion by induction over ¢. For ¢ = 1
it holds by the definition of a strict Thom class. For the induction step consider
C =UyU---UU;—q and D = U;. By induction, the Thom homomorphism is an
isomorphism for C, D, and C N D. Now we use that the Thom homomorphism is
compatible with the MV-sequence associated to C, D. By the Five Lemma we see
that ®(£) is an isomorphism over C U D.

Suppose the bundle is numerable over a numerable covering U. Assume that for
each U € U the Thom class ¢ (£y) is strict. In that case ® (&) is an isomorphism.
For each V' C U the Thom class #(£y) is also strict. There exists a numerable
covering (U, | n € N) such that £|U,, is numerable of finite type with strict Thom
class. Let (o, | n € N) be a numeration of (u,). Set f: B — [0,00[, f(x) =
> n0n(x). I x ¢ I, supp(oy), then 1 = ¥, 0;(x) = Y., 07 (x) and
therefore

)=, joi(x)=m+1)> ;. ,0i(x)=n+1

Hence f~'[0,n] is contained in ( J;_, supp(c;). Hence f~']r,s[ is always con-
tained in a finite number of V; and therefore the bundle over such a set is numerable
of finite type. The sets C,, = f~']2n — 1,2n + 1[ are open and disjoint. Over C,,
the bundle is of finite type. By additivity, we have for C = |_J C,, the isomorphism
h*(E|C, E°|C) = [] h*(E|C,, E°|C,). The Thom classes over C,, yield a unique
Thom class over C. Now we use the same argument for D,, = f~!12n,2n + 2],
D =D,and C N D = |Jf'n,n+ 1] and then apply the MV-argument
toC, D. O

(17.9.8) Example. Let y1(n): H(1) — CP" be the canonical line bundle in-
troduced in (14.2.6). A complex vector bundle has a canonical orientation and
an associated Thom class (17.9.4). Let ¢ € H?(CP"™) be the Euler class of
y1(n). The associated sphere bundle is the Hopf fibration $2”*! — CP". Since
H¥(§?"t1) = 0 for 0 < k < 2n + 1 the multiplications by the Euler class
¢ € H?(CP") are isomorphisms

Z =~ H°(CP") =~ H*(CP") = --- = H*"(CP")

and similarly H*(C P™) = 0 for odd k. We obtain the structure of the cohomology
ring

H*(CP") = Z[c]/(c" ).
In the infinite case we obtain H*(C P*°; R) =~ R|c] where R is an arbitrary com-
mutative ring.
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A similar argument for the real projective space yields for the cohomology ring
H*(RP";Z/2) = Z/2[w]/(w"™1) with w € HY(RP"; Z/2) and for the infinite
projective space H*(RP*°;Z/2) =~ Z/2|w]. <&

(17.9.9) Example. The structure of the cohomology ring of RP” can be used to
give another proof of the Borsuk—Ulam theorem: There does not exist an odd map
F: 8" — sn71,

For the proof let n > 3. (We can assume this after suspension.) Suppose
there exists an odd map F. It induces a map f: RP" — RP""! of the orbit
spaces. Let v: I — S” be a path from x to —x. Composed with the orbit map
Pn: S"™ — RP"™ we obtain a loop p,v that generates 71 (RP") = Z /2. The path
u = Fv from F(x) to F(—x) = —F(x) yields a loop that generates 7r; (RP"™!).
Hence fi: m1(RP") — m(RP"1) is an isomorphism. This fact implies (uni-
versal coefficients) that f* is an isomorphism in H!(—;Z/2). Since w"” = 0 in
H*(RP"1;Z/2) but w" # 0in H*(RP";Z/2), we have arrived at a contradic-
tion. <&

Problems

1. A point-wise unit is a unit under one of the following conditions: (1) For singular coho-
mology H*(—; R). (2) B has a numerable null homotopic covering. (3) B is a CW-complex.
2. Prove the Thom isomorphism for vector bundles over general spaces and for singular co-
homology.

3. Let&é: E(§) > Bandn: E(n) — B be vector bundles with Thom classes #(§) and # ().
Define a relative Thom homomorphism as the composition of x — x x ¢(§),

R*(E(n), E°(UEMa)) — W T (EM)x EE). (E°(UE(n4))x E€)UE () x E°(£))

with the map induced by

(EM®E), E°(n @ E) U E(a ® £4))
— (E(n) x E&), (E°(n) U E(n4) x E(§) U E(n) x E°(8)),

akind of diagonal, on each fibre given by (b, v, w) — ((b, v), (b, w)). This is the previously
defined map in the case that dim n = 0. The product #(n) x t(§) is a Thom class and also
its restriction 7 (n @ £) to the diagonal. Using this Thom class one has the transitivity of the
Thom homomorphism ®(n)P(§) = O(n & §).

4. Giveni: X — Y,r: Y — X such that ri = id (aretract). Let §: E — X be a bundle
over X and r*¢& = 5 the induced bundle. Let #(£¢) be a Thom class and 7 (n) its pullback. If
®(n) is an isomorphism, then ®(§) is an isomorphism.

5. Let C;, C S! be the cyclic subgroup of m-th roots of unity. A model for the canonical
map pm : BC,, — BS! is the sphere bundle of the m-fold tensor product " = n® --- Q7
of the canonical (universal) complex line bundle over BS!.

6. Let R be a commutative ring. Then H*(BS'; R) = R][c] where c is the Euler class of 7.
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7. We use coefficients in the ring R. The Gysin sequence of p,, : BC,; — BS! splits into
short exact sequences

0 — H2*=1(BC,,) — H2k2(BS") 225 H2*(BS') 2% H2K(BC,y) — 0.
This implies H2¥(BC,;,) = R/mR, H**=1(BC,,) = ,uR for k > 0, where ,, R is the
m-torsion (x € R | mx = 0) of R. In even dimensions we have the multiplicative isomor-
phism H?2*(BS')/(mc) = H?*(BC,,) induced by py,.
8. The sphere bundle of the canonical bundle EC;;, xc,, C — BC,;, has a contractible
total space. Therefore the Gysin sequence of this bundle shows that the cup product
ut: H/ (BCp; R) — H’T2(BCypy; R) is an isomorphism for j > 0; here t = p}'c.
9. The cup product

H'(BCpy;: R) x H' (BCpy; R) — H?*(BCpy; R)
is the R-bilinear form
mRxXmR— R/mR, (u,v)+— m(@m—1)/2-uv.

Here one has to take the product of u, v € ,, R C R and reduce it modulo m. Thus if m is
odd, this product is zero; and if m is even it is (u, v) — m/2 - uv.



Chapter 18
Duality

We have already given an introduction to duality theory from the view point of
homotopy theory. In this chapter we present the more classical duality theory based
on product structures in homology and cohomology. Since we did not introduce
products for spectral homology and cohomology we will not directly relate the two
approaches of duality in this book.

Duality theory has several aspects. There is, firstly, the classical Poincaré duality
theorem. It states that for a closed orientable n-dimensional manifold the groups
H*(M) and H,_; (M) are isomorphic. A consequence is that the cup product
pairing H*(M) ® H"*(M) — H"(M) is a regular bilinear form (say with
field coefficients). This quadratic structure of a manifold is a basic ingredient in the
classification theory (surgery theory). The cup product pairing for a manifold has in
the context of homology an interpretation as intersection. Therefore the bilinear cup
product form is called the intersection form. In the case of a triangulated manifold
there exists the so-called dual cell decomposition, and the simplicial chain complex
is isomorphic to the cellular cochain complex of dual cells; this is a very strong
form of a combinatorial duality theorem [167].

The second aspect relates the cohomology of a closed subset K C R” with the
homology of the complement R” ~ K (Alexander duality). This type of duality is
in fact a phenomenon of stable homotopy theory as we have explained earlier.

Both types of duality are related. In this chapter we prove in the axiomatic con-
text of generalized cohomology theories a theorem which compares the cohomology
of pairs (K, L) of compact subsets of an oriented manifold M with the homology
of the dual pair (M ~ L, M ~ K). The duality isomorphism is constructed with the
cap product by the fundamental class. We construct the cap product for singular
theory.

18.1 The Cap Product

The cap product relates singular homology and cohomology with coefficients in
the ring R. Let M and N be left R-modules. The cap product consists of a family
of R-linear maps

H¥(X, A;M)® Hy(X,AUB;N) > H, (X, B, M ®g N), x®yr—>xny

and is defined for excisive pairs (4, B) in X. (Compare the definition of the cup
product for singular cohomology.) If a linear map A: M ® N — P is given,
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we compose with the induced map; then x ny € H,_x (X, B; P). This device is
typically appliedinthe cases M = RandA: RQ N — N isan R-module structure,
or M = N = Aisan R-algebraand A: A ® A — A is the multiplication.

We first define a cap product for chains and cochains

SH(X:M)® Sy(X:N) = S,k (X:M QN), ¢®cr>¢nc.
Given ¢ € SP(X; M) ando: AP = [eg, ..., eptq] — X, e set
0 (@ ®@b) = ()P (p(0lleg. .. eprql ® b)olleo, . ]

and extend linearly. (Compare in this context the definition of the cup product.)
From this definition one verifies the following properties.
(1) Let f: X — Y be continuous. Then fu(f*p nc) =@ N fac.
() @ nc)=8pnc+ (=D Aaec.
Q) (pvi)nec=9n (o).
@ 1nc=c.
Case (3) needs conventions about the coefficients. It can be applied in the case that
¢ € SP(X;R), ¢y € S9(X;A) and ¢ € S,(X;A) for an R-algebra A. In case
(4) we assume that 1 € S°(X; R) is the cocycle which send a 0-simplex to 1 and
c € S,(X;N) for an R-module N.
We now extend the definition to relative groups. If ¢ € SP(X,A; M) C
SP(X;M)and ¢ € Sp14(A;N) + Spyq(B;N), thengp nc € S4(B; M ® N).
Thus we have an induced cap product

Sp+q(X:N) _)Sq(X§M®N)
Sp+q(A;N) + Sp4q(B: N) S¢(B;M @ N)'
Let A, B be excisive. We use the chain equivalence Se(A4) + Se(B) — Se(A U B).

After passing to cohomology we obtain the cap product as stated in the beginning.
We list the

SP(X, A, M) ®

18.1.1 Properties of the cap product.
(1) For f: (X;A4,B) — (X";A',B"), xX’ € HP?(X',A'; M), and for u €
Hpiq(X, AU B; N) the relation fi(f*x" nu) = x" n fiu holds.
(2) Let A, B be excisive, jp: (B,AN B) — (X, AU B) the inclusion and
a =
0B: Hyyg(X,AUB) — Hpyg-1(AU B, A) «— Hpiy—1(B, AN B).
Then forx € H? (X, A; M),y € Hy1g(X, AU B; N),

Jgxndgy = (=1)?d(xNy) e Hy_1(B:M ® N).
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(3) Let A, B be excisive, j4: (A, AN B) — (X, B) the inclusion and

a =3
0a: Hpyy(X,AUB) — Hpi 4y 1(AUB,B) <— Hpy_1(A, AN B).
Then forx € HP(A; M),y € Hp14(X, AU B; N),
jax(x ndgy) = (=1)?"'6x ny € Hy 1(X,B;M Q@ N).

@4 1nx=x,1€ H°(X),x € H,(X, B).

O)(xuy)nz=xn(ynz)e Hy_p4(X,C;A) forx € H*(X, A; R),
ye H*(X,B;A),z € H(X, AU BUC;A).

(6) Let e: Hy(X; M ® N) - M ® N denote the augmentation. For x €
HP(X,A; M),y € H)(X,A;N),

e(xny)=(x.y)
where (—, —) is the Kronecker pairing. O

We display again the properties in a table and refer to the detailed description
above.

fe(f*x nu) =x"n feu
jgx ndgy = (=DMa(x A y)
(ja)w(x nday) = (=DM H18x Ay
Ilnx=x
xuy)nz=xn((ynz)

e(xny)=(x,y)

We use the algebra of the cap product and deduce the homological Thom iso-
morphism from the cohomological one.

(18.1.2) Theorem. Let&: E — B be an oriented n-dimensional real vector bundle
with Thom classt € H"(E, E°; Z). Then

tn: Hyyi(E,E°;N) > Hy(E:N)
is an isomorphism.
Proof. Let z € S™(E, E°) be a cocycle which represents ¢. Then the family

Sutik(E,E% N) — Sp(E;N), x+—>znx
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is a chain map of degree —n. This chain map is obtained from the corresponding
one for N = Z by taking the tensor product with N. It suffices to show that
the integral chain map induces an isomorphism of homology groups, and for this
purpose it suffices to show that for coefficients in a field N = [ an isomorphism is
induced (see (11.9.7)). The diagram

Hk(E; F) I LSRN Hk+n(E, E°F)

;la = |o

@n)*

Hom(Hy(E;F),F) —— Hom(Hy,,(E, E°;F),[F)

is commutative (by property (6) in 18.1.1) where « is the isomorphism of the
universal coefficient theorem. Since Ut is an isomorphism, we conclude that  ~ is
an isomorphism. O

Problems

1. The cap product for an excisive pair (4, B) in X is induced by the following chain map
(coefficient group Z):

S*(X, 4) ® Se(X, AU B) <B% S*(X, A) ® Se(X)/(Se(A) + Se(B))

19D, 60(X, A) ® Se(X. B) ® Se(X, A)
19T, §%(X, 4) ® Se(X, A) ® Se(X, B)
£, Z ® Se(X, B) = Se(X, B).

D is an approximation of the diagonal, t the graded interchange map, and ¢ the evaluation.
The explicit form above is obtained from the Alexander—Whitney map D.

2. (x xy)~(axb) =DVl (x ~na)x (y Ab).

3. From the cap product one obtains the slant product x ® u — x\u which makes the
following diagram commutative:

HY(X, A) ® Hy((X, A) x (Y, B)) —— 5 H,_,(Y. B)

pr* ®1 PT*T

HY((X, A) x Y) ® Hy (X, A) x (Y, B)) —=— Hu—q(X x (Y. B)).

The properties (1)—(5) of the cap product can be translated into properties of the slant product,
and the cap product can be deduced from the slant product. (This is analogous to the u- and
Xx-product.)

18.2 Duality Pairings

We use the properties of the cap product in an axiomatic context. Let 42* be a
cohomology theory and k., i« homology theories with values in R-MOD. A
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duality pairing (a cap product) between these theories consists of a family of linear
maps

hP(X,A) @ kp+g(X,AUB) > hg(X,B), x®yr>xny

defined for pairs (A, B) which are excisive for the theories involved. They have the
following properties:

(1) Naturality. For f: (X;A, B) — (X'; A’, B’) the relation fi(f*x' nu) =
x" A fixu holds.
(2) Stability. Let A, B be excisive. Define the mappings jg and dp as in (18.1.1).
Then jzx ndpy = (=D>(x A y).
(3) Stability. Let A, B be excisive. Define the mappings j4 and d4 as in (18.1.1).
Then (ja)«(x N 34y) = (=)*F18x A y.
(4) Unit element. There is given a unit element 1 € ko(P). The homomorphism
h*(P) — h_(P), x = x n 1 is assumed to be an isomorphism (P a point).

(In the following investigations we deal for simplicity of notation only with the
case hyx = k..) Note that we do not assume given a multiplicative structure for the
cohomology and homology theories.

As afirst consequence of the axioms we state the compatibility of the cap product
with the suspension isomorphisms.

(18.2.1) Proposition. The following diagrams are commutative:

h?(X,A) @ hpiq(X, AU B) a hy(X. B)

J{Pr* ®c J(—l)l’a

hP(IX, IA) ® hyygi1(IX.0IX UTAUIB) —" hyy (IX, 31X U IB),

hP (X, A) ® hpyq(X, AU B) a hy(X. B)

lo@o T(—l)” Pry

PV (IX,0IX UTA) ® hpigr1(IX, 01X UTAU IB) —"— hq(IX, IB).

(For the second diagram one should recall our conventions about the suspension
isomorphisms, they were different for homology and cohomology. Again we use
notations like IX = I x X.)

Proof. We consider the first diagram in the case that A = @J. The proof is based on
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the next diagram.

h?(1X) ® hp4+q(1X,1B) ~ hqe(1X,1B)
@it it
h?(@1X UIB) ® hyptq(dIX UIB,IB) —"— hy(dIX U IB,IB)
1®ix i
h?(@IX UIB) ® hp4q(dIX UIB,IB) —"— hy(3IX U IB)
k*®9 ]

h?(IX)® hptg1(IX, 01X UIB) —"— hy11(IX,01X U IB)

The maps i, j, k are inclusions. The first and the second square commute by
naturality. The third square is (—1)”-commutative by stability (2). O

(18.2.2) Proposition. Let e, € h, (R", R" ~ 0) be obtained from 1 € ho(P) under
an iterated suspension isomorphism. Then

W R™) = hp— i (RT,R"~0), x> xNep
isfork € Z and n > 1 an isomorphism.

Proof. This follows by induction on n. One uses the first diagram in (18.2.1) and
an analogous suspension isomorphism with (R, R ~ 0) in place of (/, 7). O

(18.2.3) Proposition. Let (U, V) and (U’, V') be pairs of open subsets in the space
X =UUU' Let§ € h,(UUU’',VUV’) be a fixed element. From it we produce
elements o and B via
E€hy(X,VUV') = ha(X,V UU') <— hy(U,V UUU’) 3 a,
E€hy(X,VUV') = hy(X,UUV') < h,(U',V'UUU’) 3 B.

Then the diagram

WL U, V) ——— LU U, VU —— ik, U

lm J(mﬁ

hy s (U, UU") =2 hy 4/ (UU, UV') — hy (U, V')

is commutative. (We again have used notations like UU' = U NU’.)
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Proof. We use naturality and stability (2) and show that the down-right path of the
diagram is (—1)¥~! times the map

hk_l(U, V) — hk_l(UU/, VU,) ﬂ) hn_k(UU/, UV’) — hn—k(U/’ V’)

and the right-down path (—1)¥ times the analogous map where o, is replaced by
B1; the element «; is obtained from « via the morphism

@ € hy(U,VUUU"Y 2 hyt(VUUU, V) <= by (UU, VU’
s by (UU', UV U (VU)) 5 ay

and B from B via the analogous composition in which the primed and unprimed
spaces are interchanged. Thus it remains to show «; = —pB;. This is essentially
a consequence of the Hexagon Lemma. One of the outer paths in the hexagon is
given by the composition

h,(UUU ., VUV — h,(UUU',UUYV)
S U UV, (VUUNU UV
2 b (U U VYV LU,V UV

and the other path is obtained by interchanging the primed and unprimed objects.
The center of the hexagon is &, (U U U’, (U U V')(V U U’)). We then compose
the outer paths of the hexagon with the excision

Byt (UU,UV' UVU') = hyer (U U V)YV UU'), VUV’

then £ is mapped along the paths to o7 and 1, respectively; this follows from the
original definition of the elements by a little rewriting. The displayed morphism
yields B;. O

18.3 The Duality Theorem

For the statement of the duality theorem we need two ingredients: A homological
orientation of a manifold and a duality homomorphism. We begin with the former.
Let M be an n-dimensional manifold. For K C L C M we write

rE he(M,M ~ L) — he(M, M ~ K)

for the homomorphism induced by the inclusion, and £ in the case that K = {x}.
An element o7, € h, (M, M ~ L) is said to be a homological orientation along L
if for each y € L and each chart ¢: U — R” centered at y the image of oz, under

L
B (M, M ~ L) 2 hp (M, M ~ y) <= hy (U, U ~ )~ by (R, R ~ 0)
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is +e, where e, is the element which arises from 1 € /g under suspension. A
family (ox | K C M compact) is called coherent if for each compact pair K C L
the restriction relation r I% o1, = ok holds. A coherent family (0x) of orientations is
a (homological) orientation of M. If M is compact, then K = M is allowed and
an orientation is determined by the element oy € h, (M), called the fundamental
class of M.

In order to state the duality theorem we need the definition of a duality ho-
momorphism. We fix a homological orientation (0x) of M. Given closed sets
L C K C Mandopensets VC U C M suchthat L C V,K C U. We fix an

element z € h,(M, M ~ K). From og = z we obtain z}(]}j via

z€hy(M,M~K) ——— hy(M,(M ~K)U V)

-

28V €hy(USNL,(U~K)U(V ~L)).
The morphism (#) is an excision, since M ~ (U ~ L) = (M ~U) U L (closed) is

contained in (M ~ K) U V (open).

U V . . U V . . .
From zg; we obtain the homomorphism Dg; via the commutative diagram

Www, vy —— hk(U~L,V~L)
juszz jmzz
Byt (M ~L,M ~K)+——hy_3(U~L,U ~K).

We state some naturality properties of these data. They are easy consequences
of the naturality of the cap product.

(18.3.1) Lemma. Ler (K, L) C (U', V') C (U,V) and
it (U~LUSNKV ~LyC(U~L,U~K,V~L).
Thenixz¥,”" = 2%} and DY} = DYV oi*. O
(18.3.2) Lemma. Let (K', L") C (K,L) C (U,V) and
J:(USNLUSNKVS~LYCWUSNL ,U~K VL.
Then ]*Zgg = Z%,‘Z, and j* o Dg,‘i, = D%Z O

The naturality (18.3.1) allows us to pass to the colimit over the neighbourhoods
(U, V) of (K, L) in M. We obtain a duality homomorphism

Dxr: h*(K, L) = colimygy h*(U, V) = hp_x (M ~ L, M ~ K).
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We explain this with some remarks about colimits. An element x € WU, V) rep-
resents an element of the colimit. Two elements x € % (U, V) and x' € WX (U, V")
represent the same element if and only if there exists a neighbourhood (U”, V")
with U” Cc UNU’', V" € V NV’ such that x and x’ have the same restric-
tion in A¥(U”, V""). Thus we have canonical homomorphisms lyy : h*(U, V) —
hk (K, L). Via these homomorphisms the colimit is characterized by a univer-
sal property: If Ayy: h*¥(U,V) — h is a family of homomorphisms such that
Ayryr oi = Ayy for the restrictions i : h*(U, V) — h¥(U’, V'), then there ex-
ists a unique homomorphism A : i;k(K, L) — h such that AMlyy = Ayy. The
restrictions 7K (U, V) — h*(K, L) are compatible in this sense, and we obtain a
canonical homomorphism hk (K, L) — h*(K, L). Insufficiently regular situations
this homomorphism is an isomorphism; we explain this later.

(18.3.3) Duality Theorem. Let M be an oriented manifold. Then the duality
homomorphism Dk, is, for each compact pair (K, L) in M, an isomorphism.

We postpone the proof and discuss some of its applications. Let M be compact
and [M] € h,(M) a fundamental class. In the case (K, L) = (M, @) we have

hk (M, %) = h*(M) and Dk is the cap product with [M]. Thus we obtain as a
special case:

(18.3.4) Poincaré Duality Theorem. Suppose the compact n-manifoldis oriented
by the fundamental class [M] € h,(M). Then

(M) = hy_p (M), x> xn[M]
is an isomorphism. O
A duality pairing exists for the singular theory
H?(X,A;G)® Hp4q(X, AU B;R) - Hy (X, B:G)

for commutative rings R and R-modules G. The Euclidean space R” is orientable
for Hy(—; Z). Thus we have:

(18.3.5) Alexander Duality Theorem. For a compact pair (K, L) in R"
H¥(K,L:G) =~ H,_x(R" ~K,R" ~ L; G).

A similar isomorphism exists for S™ in place of R". O

(18.3.6) Example. We generalize the Jordan separation theorem. Let M be a

connected and orientable (with respect to Hx«(—; Z)) n-manifold. Suppose that

H{(M:R) = 0. Let A C M be compact, A # M. Then H" Y(A;R) is a free
R-module, and |wo(M ~ A)| = 1 + rank H"~!(4; R).



18.4. Euclidean Neighbourhood Retracts 447
By duality H"~'(A; R) = H{(M, M ~ A; R). The hypothesis shows
d: Hi(M,M ~ A;R) =~ Ho(M ~ A; R),
and the latter is a free R-module of rank |7o(M ~ A)| — 1. &

(18.3.7) Example. H?>(RP2;7Z) = Z /2. This is not a free Z-module. Hence the
projective plane cannot be embedded into S3. (A similar proof shows that R P2"
has no embedding into S2"*1.) <&

(18.3.8) Remark. From Alexander duality and the Thom isomorphism one can
deduce Poincaré duality. Let M C R"*’ be a smooth closed submanifold of
dimension n. Suppose we have an Alexander duality isomorphism hz(M) =
prtiok (e RPTE M), Let v E(v) — U be a tubular map. We use t and
excision and obtain A" TK(R"H RATE N M) = h"MK(E(v), EO(v)). Sup-
pose the normal bundle v is oriented by a Thom class. Then we have a Thom-
isomorphism A"t 7% (E(v), E®(v)) = h"%(M). Altogether we obtain an iso-
morphism A (M) 2 h" K (M) of Poincaré duality type. A similar device works
if we start from an isomorphism A% (M) 2 h,_,(R"**, R"** < M) and use a
homological Thom isomorphism. This approach would be used if one starts with
homotopical duality as a foundation stone. <

Problems

1. Let D C R? be connected and open. The following are equivalent: (1) D is homeomor-
phic to R2. (2) D is simply connected. (3) H{(D;Z) =0. (4 H'(D;Z) =0. (5)R>~ D
is connected. (6) The boundary of D is connected. (7) If / C D is a Jordan curve, then D
contains the interior of J. [44, p. 394 ]

2. Leti: §" — K(Z,n) be an inclusion of a subcomplex which induces an isomorphism
of ;. For each compact subset K C Rt the induced map i : [K,S"] — [K, K(Z,n)]
is bijective.

3. Use cohomology H"(X;Z) = [X, K(Z,n)] defined with an Eilenberg—Mac Lane com-
plex K(Z,n). Then for a compact subset X in a Euclidean space H" (X;Z2)= H'(X;Z).
Similar isomorphisms hold for the stable cohomotopy groups.

4. R is orientable for each homology theory. Let K C D(r) = {x | ||x|| < r} be compact.
Define 0 g as the image of the canonical class under /1, (R”, R”~0) < h,, (R",R"*~D(r)) —
hy (R, R < K).

18.4 Euclidean Neighbourhood Retracts

For applications it is interesting to compare H* with H*.
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A space X is called a Euclidean neighbourhood retract (ENR ) if there exists an
embedding j : X — R”, an open neighbourhood U of j(X) in R” and a retraction
r:U — X,ie., jr=id(X).

Let X C R” be a retract of an open set U, then X is closed in U and hence
locally compact: Let r: U — X be a retraction; then X is the coincidence set of
r:U — Uandid: U — U. Recall that a locally compact set Y in a Hausdorff
space Z is locally closed, i.e., has the form ¥ = ¥ N W for an open set W in Z.

(18.4.1) Proposition. Let X C R” be a retract of an open neighbourhood. Let Z

be a metric space and Y C Z homeomorphicto X. Then Y is a retract of an open
neighbourhood V of Y in Z.

Proof. Let f: X — Y be ahomeomorphism and r: U — X aretraction. Then ¥

is locally compact and we can write Y = Y N W with an open W C Z. Then Y is
-1

closed in W. Since W is a normal space, the map Y f—> X — R has a continuous

extension h: W — R” by the Tietze extension theorem. Let V = A~ !(U). Then

frh:V — Y isaretractionof Y C V. O

(18.4.2) Proposition. Ler X C R” be locally compact. Then there exists an em-
bedding of X into R"*! as a closed subset.

Proof. Let U C R” be open (U # R"). Then
jiU—=>R"XR, x+ (x,dx,R*~U)"YH
is an embedding. The image of j is closed , since
JWU)={(x.0)|1-dx.R"~U) =1}.

We can assume that X C U is closed; then j(X) is closed in j(U), hence closed
in R"*1, O

(18.4.3) Proposition. Let X be an ENR. Suppose fo, f1: Y — X are maps which
coincide on a subset B C Y. Then there exists a neighbourhood W of B in Y and
a homotopy h: folW ~ fi|W relative to B.

i r . .
Proof. Let X — U — X be a presentation as a retract with U C R” open. Let

W={y|0-=0)ifo(y)+tifi(y) eU forallt € I}.

Then certainly B C W. Since

AY xI =R, (y,1) > (1=0)ifo(y)+tifi(y)

is continuous, A1 (U) is open. If {y} x I C A~!(U), then there exists an open
neighbourhood U, of y such that U, x I C A~'(U). Hence W is openin Y. A
suitable homotopy / is now obtained as the restriction of A to W x [I. O
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(18.4.4) Remark. Suppose B C X are Euclidean neighbourhood retracts. Then
there exists a retraction r: V' — B from an open neighbourhood V' of B in X.
There further exists a neighbourhood W C V of B in X suchthat j: W C V and
io(r|W): W — B C V are homotopic relative to B.

An ENR is locally contractible: Each neighbourhood V' of x contains a neigh-
bourhood W of x such that W C V is homotopic to W — {x} C V relative
to {x}. &

(18.4.5) Lemma. Let the Hausdorff space X = X1 U---U X, be a union of locally
compact open subsets X ; which are homeomorphic to a subset of a Euclidean space.
Then X is homeomorphic to a closed subset of a Euclidean space.

Proof. There exist embeddings 4; : X; — R™®) as a closed subset. We extend 4;
to a continuous map k; : X — S™@ = R™® U {co} by k; (X ~ X;) = {oo} (if
X # X;). The product (k;): X — []/_, §™0) is an embedding. The product of
the spheres can be embedded into [; R™®+1 and then we can apply (18.4.2) if
necessary. O

(18.4.6) Theorem. Let the Hausdorff space X = X1 U---U X, be a union of open
subsets X; which are ENR’s. Then X is an ENR.

Proof. Induction on r. It suffices to consider X = Xy U X;. By (18.4.5) we can
assume that X is a closed subset of some R”. Let r; : U; — X; be retractions (see
(18.4.1)). Set

U()1 = I'O_I(XO n X]) n rl_l(XO n X])

Then rg, r1: Upr — Xo N X, are retractions of a neighbourhood. The open subset
Xo N X; of the ENR X is an ENR. Hence there exists Xo N X1 C Vo1 C Up;
such that rg, r; are homotopic on Vj; relative to Xo N X; by a homotopy r; (see
(18.4.3)). Let Vy C Uy, V1 C U be open neighbourhoods of X ~ X1, X ~ X
such that Vo N V; = @. Choose a continuous function 7: R” — [0, 1] such that
t(Vo) =0and t(Vq) = 1. Let V = Vo U Vo1 U V. Then p: V — X, defined as
plVo = ro|Vo, p|V1i = r1|V1, p(x) = ryx)(x) for x € Vp is a suitable retraction.

O

(18.4.7) Corollary. A compact manifold is an ENR. O

(18.4.8) Remark. Since an ENR is dominated by a CW-complex it has the homo-
topy type of a CW-complex. A compact ENR is dominated by a finite CW-complex;
therefore its singular homology groups with coefficients in Z are finitely generated
abelian groups. This holds in particular for compact manifolds. <&

(18.4.9) Proposition. Let K be a compact ENR in an n-manifold M. Then the
canonical map p: H*(K) — H*(K) is an isomorphism.
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Proof. We use that M is a metrizable space or, at least, that open subsets are normal.
Then K is aretract r: U — K of an open neighbourhood U of K in M. Suppose
x € H¥(K); then r*(x) represents an element ¥ € H¥(K) with p(¥) = x. This
shows that p is surjective. Let xy € H¥(U) represent an element in the kernel
of p.

Suppose there exists a neighbourhood V' C U of K and a homotopy from
j:VcUtoir: V — K — U. Then we have the situation

Xy Hk(U) J*
R

J* H*(K) ——— HE (V).

e

Xy H*(V)

Since i *(xy) = 0, by assumption, we see that x;y = 0; but x represents the same
element as xg .

The homotopy exists by (18.4.3) if also U is an ENR. If we choose U as the
union of a finite number of sets which are homeomorphic to open subsets of R”,
then we can apply (18.4.6). O

Let X be an ENR and X C R”. Since the canonical homomorphism l;*(X ) —>
h*(X) is an isomorphism, h* (X)) does not depend on the embedding X C R”.

Let M be a compact n-manifold. Then Hy (M:Z) and H¥(M; Z) are finitely
generated abelian groups. For each field F the groups Hy (M ; ) are finite-dimen-
sional vector spaces. The Euler characteristic y(M;[F) is independent of F and
equal to the Euler characteristic y(M ).

Let K C M be a compact ENR. Then

H"(K: ) = H"(K; Fa) = Hy(M, M ~ K; )
and these are finite-dimensional vector spaces over the prime field [,.

(18.4.10) Proposition. H.(K; [;) is finite-dimensional if and only if the same holds
for Hy(M ~ K; ). If finiteness holds, then for the Euler characteristic y, the
relation

12(M) = y2(M ~ K) + (=1)" x2(K)
holds. (Note that y>(K) = x(K).)

Proof. The first statement follows from the exact homology sequence of the pair
(M, M ~ K). It also yields y2(M) = y2(M ~ K) + y2(M,M ~ K). The
equality yo2(M, M ~ K) = (—1)" y2(K) is obtained, if we insert the consequence
dim H;(M, M ~ K;[F,) = dim H"7/(K;F,) of the duality into the homological
definition of the Euler characteristic. O
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(18.4.11) Corollary. Let M be a closed manifold of odd dimension. Then
x(M)=0.If K C M is a compact ENR, then y(K) = y(M ~ K). O

Problems

1. Let F be a compact, connected, non-orientable surface. The universal coefficient formula
and H1(F;Z) = Z%~' @7 /2 show H?(F;Z) = Z /2. Therefore F cannot be embedded
into §3.
2. Let S C R? be the pseudo-circle. Show, heuristically, that the pseudo-circle has a system
of neighbourhoods Uy D Uy D --- with U; = St x[0,1]and NU, = S.
Then

HY(S:Z) ~ HI(R®>,R*>~ S:Z) =~ Hy(R~ S;Z) = Z
the last isomorphism because R? ~ S has two path components. By the universal coefficient
formula H1(S;Z) =~ Hom(H/(S),Z). The singular homology group H;(S; Z) is zero,
a singular 1-chain is always contained in a contractible subset. In fact, S has the weak
homotopy type of a point. This shows that singular theory is the wrong one for spaces like
S.
3. Let F C R3 be a connected orientable compact surface. Then R3 ~ F has two path
components (interior and exterior).
4. Let M = R"T! and S ¢ R*t! be homeomorphic to S”. Then S is an ENR and
H"(S;Z) =~ H"(S;Z) =~ Z. From the duality theorem one obtains that R”T! < S has
two path components.

18.5 Proof of the Duality Theorem

We have to collect some formal properties of the groups h and of the duality ho-
momorphisms D. We want the h* (K, L) to be part of functors from the category
K (M) of compact pairs in M and inclusions.

Let (K',L') C (K,L). The induced map h*(K,L) — h¥(K’,L’) sends
an element represented by x € h*(U, V) to the element which is represented
by the same x. This makes the i into functors on K (M) and the canoni-
cal maps h¥ — h* into natural transformations. We define a coboundary op-
erator §: h¥(L) — h*t1(K,L) as follows. Let V O L be open. Choose
U D V as an open neighbourhood of K. Then we map representmg elements
via§: h*(V) — h*¥T1(U, V). This process yields a well- defined § and the diagram

hvk(L) L) hvk-i-l(K’ L)

| |

Wk (K) —2— Bk (K, L)

is commutative. From (18.3.2) we obtain by passage to the colimit:
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(18.5.1) Lemma. The Dk yield a natural transformation, i.e., the diagram

h%(K, L) %hn—k(M ~L,M~K)
v l Dygryy i
WK L) =55 hy g (M ~ L', M ~ K')

is commutative for each inclusion (K', L") C (K, L). O

(18.5.2) Lemma. The sequence

. . i
coo > h¥(K) —— hR(L) —— hF (K L) — -
is exact. Similarly for triples of compact subsets.

Proof. This is a special case of the general fact that a colimit over a directed set of
exact sequences is again exact. A direct verification from the definitions and the
exact sequences for the representing elements is not difficult. An example should

suffice. Suppose S(x) = 0 and let x be represented by x; € h¥(V). We use
the representing element §(x;) € A*T1(U, V) for §(x). Since §(x) is zero, x; is
contained in the kernel of some restriction h**t1(U, V) — h**1(U’, V’). Another
representative of x is the restriction x, € hk(V’ ) of x1. By exactness, x, has a
pre-image in A% (U’), and it represents a pre-image of x in 7% (K). O
(18.5.3) Lemma. Each compact pair K, L is excisive for }Vzk, ie.,
WM(KUL,K)— h5(L,KNL)
is an isomorphism.

Proof. This is a consequence of the isomorphisms #/¥ (U UV, U) = hk(V, U N V)
for open neighbourhoods U D K,V D L. O

(18.5.4) Corollary. For each compact pair there exist an exact MV-sequence
. . . . 8
o> MK U L) > K @ hF (L) > IF (KN L) — -

Proof. The MV-sequence is constructed by algebra from suitable exact sequences
using (18.5.2) and (18.5.3). O

(18.5.5) Lemma. For each pair (K, L) the diagram

Ek(L) L} hy_x(M,M ~ L)

lg Ja

R*H(K, L) L okt (M ~ L. M ~ K)

is commutative.
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Proof. By passage to the colimit this is a consequence of the commutativity of the
diagrams

=) WU, V)

1 4% uv
lDL(/) J/DKL

Bpteir (M, M ~ L) —2 hy_ o (M ~ L, M ~ K).

In order to verify this commutativity we apply (18.2.3) to the sets
o, v,u',vy=(V,0,U ~L,U ~ K).

The element & arises from ok via the excision 4, (U,U ~ K) = h,(M, M ~ K).
One now verifies from the definitions that the element « is ZZQ? and B becomes

z}(]}j These data yield the commutative diagram

W1 (1) g WU, V)
WU V) ————— BN L) — S RFU ~ L,V ~ L)
mz‘L/V()’} ”ZIIZIZ

h”_k+1(V, V<L) L>hn_k(V ~LV~K)—h,x(U~L,U~NK)

hyp—fr1(M, M ~ L) hypx(M ~L, M~ K).

The upper and lower rectangles commute by naturality of d and 8. O

For the proof of the duality theorem we note that it suffices to consider the special

case Dk : hk (K) = hy—x (M, M ~K), by the Five Lemma and the previous results.
The proof is based on the following principle.

(18.5.6) Theorem. Let D(K) be an assertion about compact subsets in M. Sup-
pose:

(1) D(K) holds for sets K in a chart domain which are mapped onto a convex
subset of R"™ under the coordinate map.

(2) If D(K), D(L), and D(K N L) hold, then also D(K U L) holds.
(3) Let K1 D Ky D ---, K = (K;. If D(K;) holds for each i, then D(K)
holds.
Under these assumptions, D(K) holds for all compact K.
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Proof. Since an intersection of convex sets is convex, (1) and (2) yield by induction
on ¢t that D(K; U --- U K;) holds for compact subsets K; of type (1) which are
contained in the same chart domain.

If K is a compact set in a chart domain, then K is the intersection of a sequence
K1 D K3 D --- where each K; is a finite union of compact convex sets.

Each compact set K is a finite union of compact sets in chart domains. Again
D(K) follows by induction from (2). O

We now verify (1)—(3) of (18.5.6) in the case that D(K) is the assertion: Dg is
an isomorphism.

(2) The duality homomorphisms D yield a morphism of the MV-sequence for
K, L into the MV-sequence of the complements; this follows from the fact that the
(co-)boundary operators of the MV-sequences are defined from induced morphisms
and ordinary (co-)boundary operators. Now use the Five Lemma.

(1) Let¢: U — R"™ be achart, K C U and ¢(K) convex. We begin with the
special case of a point K and ¢(K) = {0}. We have a commutative diagram

hk([Rn) L hk(U) = il'k(K)

lm(p* (z%) J{nz% lDK

Ik (R, R" ~ 0) 4—— Iy (U.U ~ K) —— hy_ (M. M ~ K).

The right square commutes by definition of Dg; here Z% is the image of the
orientation under the restriction h,(M,M ~ K) — h,(U,U ~ K). The left
square commutes by naturality of the cap product. By definition of the orien-
tation, @ (ZI[(]) = =e,. The fact that ne, is an isomorphism follows from the
compatibility with suspension and the unit element axiom of the pairing. Hence
D(K) holds for a point K.

Let now K be arbitrary and P C K a point. From naturality we see that
D(K) holds, if h¥(K) — h*(P) and hy_x (M, M ~ K) = hy_i (M, M ~ P) are
isomorphisms.

The set X = ¢(K), being compact convex, is the intersection of a sequence
of open neighbourhoods U; D U, D --- which are contractible onto P, and each
neighbourhood of X contains eventually all U;. Hence the restriction h* ;) —
h¥*(U; +1) are isomorphisms, and we see h*(U;) = hk (X) = h*(X). This shows
the first isomorphism. The second isomorphism is verified by standard methods
(excision, h-equivalence).

(3) We show that the canonical maps

colim; #¥(K;) — h*(K), colim; hp_i(M, M ~ K;) — hy_i(M, M ~ K)

are isomorphisms.
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The first isomorphism is an immediate consequence of the colim-definition.
Given x € h* (K) represented by y € h¥(U). There exists i such that K; C U.
Hence y represents an element in ¥ (K;). This shows surjectivity, and injectivity
is shown by a similar argument.

The second isomorphism is easily seen for singular homology, if one uses that
singular chains have compact carrier. In the general case one uses that additive
homology theories commute with colimits.

18.6 Manifolds with Boundary

We now treat duality for manifolds with boundary.

(18.6.1) Theorem. Let M be a compact n-manifold with boundary OM, oriented
by a fundamental class [M]| € H,(M, oM ;Z). Then

H?(M;G) - Hy—p(M,0M;G), x+ xn[M],
H?(M,0M;G) - H,—p(M:;G), X xn[M],
are isomorphisms for each coefficient group G.
Proof. By naturality and stability of the cap product the following diagram com-

mutes up to sign (coefficients are G); [0M] = d[M] is a fundamental class:

HP (M, 0M) ——— HP(M) — 5 HP (M) —°—5 HP+ (M, 9M)

Jm [M] J/m [M] Jm [0M] lm [M]

Hyp(M) —2— H,_ (M, M) —2— H,_, 1 (0M) —>— H,_,_(M).

We know already that ~ [dM] is an isomorphism. Therefore it suffices to show that
the left-most vertical map is an isomorphism. We reduce the problem to the duality
already proved. We use the non-compact auxiliary manifold

P=MU@M x[0,1]),

which is obtained by the identification x ~ (x,0) for x € dM. We also use the
subspaces

M(t) = M U@OM x[0,1]), 0<t<1,
P(ty=MU@GOM x[0,7]), 0<t<1.

The P(t) are a cofinal system of open neighbourhoods of M = M(0) in P. The
M(t) are a compact exhaustion of P. The inclusions M C P(t) C M(t) are
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h-equivalences. Leti(¢): (M,0M) C (P(t), P(t) ~ M°). The diagram

HP (M) A

lﬂ[M] J/ni(t)* (M]
Hoep (M. 0M) “2% H,_,(P(1). P(t) ~ M°)

HP(P())

is commutative (naturality of the cap product). The map i (¢)* is an isomorphism,
since i (¢) is an h-equivalence; the map i (¢ )« is an excision. Thus it suffices to show
that i (¢)«[M] is an isomorphism. We use the duality theorem for P. We have
isomorphisms

Hu(P,P~M(t)) =~ H,(P,P ~ M) =~ H,(P,P ~M°) =~ H,(M,0M).

Let z(t) € H,(P, P ~ M(t)) correspond to the fundamental class [M]. One
verifies that z(¢) is an orientation along M(¢). Since the M(¢) form a com-
pact exhaustion, the coherent family of the z(¢) yields an orientation of P. Let
w(t) € Hy(P(t), P(t) ~M)and v(t) € H,(P(t), P(t) ~ M°) correspond to the
fundamental class under

Ha(P(t), P(t) ~ M) = H,(P(t), P(t) ~ M°) =~ H,(M,IM).

By definition of the duality homomorphism, Dy : I:II’(M) — H,_,(P,P~M)
is the colimit of the maps

HP(P(0) "2 Hyp(P(1). P()) ~ M) = Hy_p(P. P~ M).
Since H? (P (t)) — HP? (M) is an isomorphism, the canonical maps H? (P(t)) —

HP(M) — HP?(M)are isomorphisms. Since Dy is anisomorphism, sois Nw ().
The diagram

HP(P(1)) i HP(P(1))

lmw([) va(t)

Hu_p(P(t), P(t) ~ M) —"— H,_,(P(t), P(t) ~ M°)

is commutative by naturality of the cap product and v(¢) = i,w(¢). Since v(¢) =
i(t)«[M], the map ni(t)«[M] is an isomorphism.
O

(18.6.2) Proposition. Let B be a compact (n + 1)-manifold with boundary 0B =
M. Then y(M) = (1 + (=1)")x(B). In particular y(M) is always even.
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Proof. Let M = B U (0B x [0,1]). Then B is a compact deformation retract
of M and M ~ B = dBx]0, 1[~ dB. Hence y(B) = y(M) = y(M ~ B) +
(=D"*'x(B) = x(3B) — (=1)" x(B). O
(18.6.3) Example. R P 2" is not the boundary of acompact manifold, since y (R P2")

is odd. The same holds for an arbitrary finite product of even-dimensional real pro-
jective spaces.

Problems

1. Suppose M = A + B is a decomposition into two closed submanifolds. The diagram

i S HP(M,A) —— HP(M) H?(A)

JN[M] JM[M] lm[aM]

o —— Hy_p(M,B) — Hy_ (M, 0M) — Hy_ 1 (0M, A) — -+

is commutative up to sign. Hence n[M]: H?” (M, A) — H,— (M, B) is an isomorphism.

18.7 The Intersection Form. Signature

Let M be a closed n-manifold oriented by a fundamental class [M] € H, (M ; K),
coefficients in a field K. The evaluation on the fundamental class is H" (M) —
K, x> x[M] = (x,[M]). We can also write this as the composition H" (M) =~
Hom(H,(M), K) — K where we evaluate a homomorphism on [M ]. The canonical
map e: Ho(M) — K allows us to write (x, [M]) = e(x N [M]).

(18.7.1) Proposition. The bilinear form

v —,[M
H*(M) x H" k(M) ——— H"(M) Ao, K

is regular. We write this form also as (x,y) +— x © y.

Proof. Weusetherule (x uy)n[M] = xn(y n[M]). It gives us the commutative
diagram
HK(M)x H" * ——~—— H™(M)

%lid xXN[M] JA[M]

H*¥(M) x Hy(M) —"— Ho(M)
glaxid Js
Hom(Hg (M), K) x Hi(M) —2— K.

The bilinear form in question is isomorphic to the Hom-evaluation, and the latter is
for each finite-dimensional vector space a regular form. O
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We take now R = K as coefficients and assume n = 4¢. In that case
H»(M)x H*(M) - R, (x,y)—>xQy

is a regular symmetric bilinear form. Recall from linear algebra: Let (V, §) be
a real vector space together with a symmetric bilinear form 8. Then V has a
decomposition V = Vi @ V_ 4 V} such that the form is positive definite on V.,
negative definite on V_ and zero on V. By Sylvester’s theorem the dimensions
of V4 and V_ are determined by B. The integer dim V1 — dim V_ is called the
signature of . We apply this to the intersection form and call

o(M) = dim H* (M) —dim H* (M)_

the signature of the closed oriented 4¢-manifold M. We also set 6(M) = 0, if
the dimension of M is not divisible by 4. If —M denotes the manifold with the
opposite orientation, then one has 6 (—=M) = —a(M). If M = M; + M, then
H? (M) = H? (M) + H? (M,), the forms on M, and M, are orthogonal, hence
o(My + Mz) = o(My) + o(M>).

(18.7.2) Proposition. The signature of C P" with its natural orientation induced
by the complex structure is 1.

Proof. Since H?"(C P?";7)) is the free abelian group generated by ¢”, the claim
follows from (c¢",[CP"]) = 1. For n = 1 this holds by the definition of the
first Chern class (see (19.1.2)). Consider the map p: (CP')" — CP" that sends
(lar,b1],..., [anbn]) to[co, ..., ca] where [T7_ (ajx +bjy) = 3 [_gc;x/ y" /.
Note that H2((CP')"; Z) is the free abelian group with basis 71, . .., , where t;
is the first Chern class of pr;'.‘ (n). One verifies that p*(c) = t1 + -+ + t,. This
implies p*c™ = n!-t1t,...t,. The map p has degree n!. These facts imply

nl = (p*c", [CP']") = (c", p«[CP']") = (c",n!-[CP"]) = n!-(c",[CP"]),
hence {c¢",[CP"]) = 1. O

(18.7.3) Proposition. Let M and N be closed oriented manifolds. Give M x N
the product orientation. Then (M x N) = o(M)o(N).

Proof. Letm = dimM andn = dim M. If m 4+ n #£ mod4 then o (M x N) =
0 = o(M)o(N) by definition. In the case that m + n = 4p we use the Kiinneth
isomorphism and consider the decomposition
H?”(M x N) = H™?*(M) ® H"?*(N)
Daicm (H' (M) ® H>P~/(N) & H™ (M) @ H" 2P (N)).

The first summand on the right-hand side is zero if m or n is odd. The form
on H??(M x N) is transformed via the Kiinneth isomorphism by the formula
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x®y) oK ®y) = (D)x o x)(y ®)y). Products of elements in
different summands never contribute to the top dimension m + n. Therefore the
signature to be computed is the sum of the signatures of the forms on the summands.

Consider the first summand. If m/2 and n/2 are odd, then the form is zero. In
the other case let A be a basis of H™/?(M ) such that the form has a diagonal matrix
with respect to this basis and let B be a basis of H”/2(N) with a similar property.
Then (a ® b | a € A,b € B) is a basis of H™/2(M) ® H"/?(N) for which the
form has a diagonal matrix. Then

o(M)o(N) = (Y geaa ©a)(Ypepb Ob)
=Y (abeaxp@®b) O (a ®b) =0 (M x N).

Now qonsider the summand for 2i < m. Choose bglses Aof H (M ) and B of
H?P~I(N) and let A*, B* be the dual bases of H™ (M), H" 2P/ (N) respec-
tively. Then

@®b+a*®@b*,a®b—a*®b*|ac Abe B)

is a basis of the summand under consideration. The product of different basis
elements is zero, and (@ ® b + a* ® b*)?> = —(a ® b — a* ® b*)? shows that
the number of positive squares equals the number of negative squares. Hence these
summands do not contribute to the signature. O

There exists a version of the intersection form for cohomology with integral
coefficients. We begin again with the bilinear form

s: HK(M) > H" *(M) > Z, (x.y) — (x U y)[M].

We denote by A¢ the quotient of the abelian group A by the subgroup of elements
of finite order. We obtain an induced bilinear form

sor HE(M)o x H" (M) — Z.

(18.7.4) Proposition. The form s¢ is regular, i.e., the adjoint homomorphism
H*(M)o — Hom(H" % (M), Z) is an isomorphism (and not just injective).

Proof. We use the fact that the evaluation H*(M;Z)o x Hy(M;Z)¢ — Z is
a regular bilinear form over Z. By the universal coefficient formula, the kernel
of H¥(M:;7Z) — Hom(Hy(M:;Z),Z) is a finite abelian group; hence we have
isomorphisms

Hk(M; Z)o ~Hom(H(M;Z),Z) ~ Hom(H(M;Z)¢, 7).

Now the proof is finished as before. O
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We return to field coefficients. Let M be the oriented boundary of the compact
oriented manifold B. We set A¥ = Im(i*: H¥(B) — H¥(M)) with the inclusion
i: M CB.

(18.7.5) Proposition. The kernel of
H*(M) S Hom(H" (M), K) — Hom(A"*, K)

is AX. The isomorphismis x + (y — (yux,[M])); the second map is the restric-
tionto A" Inparticulardim H* (M) = dim A¥+dim A" ¥, andinthe casen =
2t we have dim H* (M) = 2dim A¥ and dim H,(M) = 2dim Ker(ix: H,(M) —
H;(B)).

Proof. Consider the diagram

Hk(B)L)Hk(M) L)Hk-l-l(B’M)

;J{n [M] z[n [B]

Hy_ (M) —2— H, (M),

By stability of the cap product, the square commutes up to the sign (—1)¥. By
commutativity and duality

xedb & §(x)=0 & §(x)N[B]=0 < ix(x n[M]) =0.

The regularity of the pairing H/ (M) x Hi(M) — K, (x,y) = (x,y) says that
ix(x N [M]) = 0 is equivalent to ( H" ¥(B),ix(x n [M])) = 0. Properties of
pairings yield

(H" ™ (B).ix(x A [M]) = (i H"*(B).x n [M])
(A"F x A [M])
(A" 0 x [M])

and we see that x € A* is equivalent to (A"~% U x,[M]) = 0, and the latter
describes the kernel of the map in the proposition. O

(18.7.6) Example. If n = 2¢ and dim H' (M) is odd, then M is not a boundary of
a K-orientable compact manifold. This can be applied to R P?" (for K = Z/2) and
to CP2" (for K = R). <&

(18.7.7) Proposition. Let M be the boundary of a compact oriented (4k + 1)-
manifold B. Then the signature of M is zero.
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Proof. It follows from Proposition (18.7.5) that the orthogonal complement of 4%
with respect to the intersection form on H2*(M;R) is A%*, and 2dim A% =
dim H2K(M; R). Linear algebra tells us that a symmetric bilinear form with these
properties has signature 0. O

We generalize the preceding by taking advantage of the general duality isomor-
phism (coefficients in K). Let M be an n-manifold and K O L a compact pair in
M . Assume that M is K-oriented along K. We define a bilinear form

(%) H (K, Lyx H (M ~L,M~K)—> H'"/ (M,M <~ K)

as follows: Let (V, W) be a neighbourhood of (K, L). We fix an element y €
H/(M ~L,M ~ K) and restrictit to H/(V ~ L,V ~ K). Then we have
H WV, W) > HV~LW~L) 2 HY WV <~LW~KUV~K)
HY (M, W UM ~K))— H (M, M~ K).
The colimit over the neighbourhoods (V, W) yields Uy in ().
(18.7.8) Proposition. Let M be an n-manifold and K O L compact ENR in M.
Then

HI(K,L) x H"_i(M\L’M\K)%H”(M,M\K)ﬂm
is a regular bilinear form. O

(18.7.9) Example. Let M be a compact oriented n-manifold for n = 2 mod (4).
Then the Euler characteristic y (M) is even.

The intersection form H"/2(M) x H"?(M) — @ with coefficients in Q is
skew-symmetric and regular, since n/2 is odd. By linear algebra, a form of this
type only exists on even-dimensional vector spaces.

x(M) =377 (=1)" dim H; (M)
= —dim H"?2(M) +2Y,,_,(=1)! dim H (M);
we have used dim H' (M) = dim H"~' (M), and this holds because of H' (M) =
Hom(H; (M), Q) and hence dim H' (M) = dim H;(M) = dim H"~ (M). &

18.8 The Euler Number

Leté: E(§) — M be an n-dimensional real vector bundle over the closed connected
orientable manifold M. The manifold is oriented by a fundamental class [M] €
H,(M:Z) and the bundle by a Thom class #(§) € H"(E, E®;Z). Lets: M —
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E (&) be a section of £ and assume that the zero set N (s) is contained in the disjoint
sum D = Dy U---U D, of disks D;. The aim of this section is to determine the
Euler number e(§) = (s*z(§), [M]) by local data. We assume given positive charts
@j: R" — U; with disjoint images of M such that ¢;(D") = D;. The bundle is
trivial over U;. Let

q).
D" x R" —— E(§|D;)

o,

D" ————D;

be atrivialization. We assume that ®; is positive with respect to the given orientation
of £&. These data yield a commutative diagram

H™(E(§), E°()) s H™(M)
H"(E(§|D) U E°(E|M ~ D°, E°(§| D)) —— H"(,M ~ D°)
~ | B*
H™(E(£|D), E°(£| D)) = H™(D,S)

@, H"(E(E|D;). E°(E|D;)) —— €, H" (D}, 5)).

Here S; is the boundary of D; and S = | J; S;. The restriction of s to D is s;. The
image of #(£) in H"(E(€|D;), E°(§|D;)) is the Thom class 7 (£|D;). The vertical
maps have their counterpart in homology

Ho(M) =2 Ho(M, M ~ D°) <2 H, (D, §) —— @; Ha(D;. ).

and [M] is mapped to ([D;]). By commutativity and naturality
{s71(8), [M]) = X_;(s71(§1D;), [D)]).
The bundle isomorphism (®;, ¢;) transports s; into a section

ti: D" — D" x R", x> (x,uj(x))
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of pr. Note that u;(S"~!) C R" ~ 0. We have another commutative diagram

H"(E(£|D;). E(§|D;)) —2— H™(D;.S))

* *
J(‘I’j l"’j
t *

H"(D" x R", D" x Rf) —— H™(D", §"1)

Tpr* /
uj

H"(R", RE).

The evaluation (s7(§[D;). [D;]) is the degree of u;: S§"=1 — RZ if we choose
the correct orientations. We explain this now and use the following computation:

(s71(€1D)).[D;]) = (s71(EI1D)). jx) = (@] s;1(E|D)). en)
= (17 ®71(E|Dj). en) = (uje", en)
=d(uj){e”. en).

The cohomological degree of u; is u]’.‘e” = d(u;)e". With these definitions we
obtain:

(18.8.1) Proposition. e(§) = (3.7, d(u;)){e", en). O

If s has in D; an isolated zero, then d(u;) is called the index of this zero.

Problems

1. There always exists a section with a single zero.
2. The index can be computed for transverse zeros of a smooth section s: M — E of a
smooth bundle. Consider the differential

Txs: TxM — TyE=TyM & Ey.

Transversality means that the composition with the projection proTxs: TxM — E, is an
isomorphism between oriented vector spaces. This isomorphism has a sign e(x) € {£1},
+1 if the orientation is preserved. Show that £(x) is the local index.

3. The section

518" > TS" CS" xR x =(x0,....xp) > (x,(xg— 1, x0X1,...,X0Xn))

has the transverse zeros (1,0,...,0) with index 1 and (—1,0, ..., 0) with index (—1)".
4. Find a vector field on S2” with a single zero (of index 2).
5. There exists a section without zeros if and only if the Euler number is zero.
We know already that the Euler number is zero, if there exists a non-vanishing section.
For the converse one has to use two facts: (1) There always exist sections with isolated zeros.
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(2) There exists a cell D which contains every zero. Hence one has to consider a single local
index. This index is zero, and the corresponding map u: S — Ry is null homotopic. Thus
there exists an extension u: D — R{j. We use this extension to extend the section s over the
interior of D without zeros. ) )

6. Consider the bundle £(k): H(k) — CP'. Let P(z9,z1) = Z?:o axzd Z]f_’ be a
homogeneous polynomial of degree k. Then

o:CP' - H(k), [z0.z1] (z0,21: P(20.21))

isasection of (k). If P(zp,z1) =[] j(a;z1—bjz0) is the factorization into linear factors,
then the [a;,b;] € CP! are the zeros of o, with multiplicities.

7. Consider the bundle £: S” xz/2 R" — RP”, (x,z) > [x]. Theno: [x0,...,Xx] —
((x0,---,xn), (x1,...,X,))is asection with a single zero. The sections correspond to maps
f: 8" — R” such that f(—x) = — f(x). One form of the theorem of Borsuk—Ulam says
that maps of this type always have a zero. We would reprove this result, if we show that the
Euler class mod (2) is non-zero. The tautological bundle n over R P'* has as Euler class the
non-zero element w of H'(RP";Z/2). The Euler classes are multiplicative and £ = nn.
Hence e(§) = w” # 0.

18.9 Euler Class and Euler Characteristic

Let M be a closed orientable n-manifold. We define in a new manner the Thom
class of the tangent bundle. 1t is an element t(M) € H"(M x M, M x M ~ D)
such that for each x € M the restriction of (M) along

H'M xM, M xM~D)— H"'(x x M,x x (M ~ x))

is a generator (integral coefficients, D the diagonal). The image of (M) under the
composition

d*
H"(M x M,M x M ~ D) — H"(M x M) = H"(M)

(where d is the diagonal map) is now called the associated Euler class e(M) of M .
Let us use coefficients in a field K. We still denote the image of the fundamental
class [M] € H,(M;Z) in H,(M;K) by [M]. We use the product orientation
[M x M] = [M] x[M]. Letv: E(v) — M be the normal bundle of the diagonal
d: M — M x M with disk- and sphere bundle D(v) and S(v) and tubular map
j: D) = M x M. The fundamental class of [M x M| € Hp,(M x M) induces
a fundamental class [D(v)] € Ha,(D(v), S(v)) via

Hon(M x M) = Han(M x M, M x M ~ D) < Han(D(v), S(v)).
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Let z = j*([D(v)]. The diagram

H"(M x M) +—— H"(M x M.M x M ~ D) —— H"(D(v), S(v))

Jr\ [MxM] lnz lm [DW)]

H(MxM) —— s H,MxM)«+—— H,(D())

commutes (naturality of the cap product). Suppose M is connected. From the
isomorphisms

N [D(V)]

Hu(M) = Hy(DO) <22 H" (D). S(1v)

we obtain an element #(v) that satisfies ix[M] = t(v) n [D(v)]. It is a generator
and therefore a Thom class. We define t(M) € H*(M x M,M x M ~ D) by
j*t(M) = t(v). The image (M) € H"(M x M) of t(M) is characterized by
the relation Tt " [M x M| = d.[M]. From the deﬁmtlons we see that d* 1 is the

image of #(v) under H*(D(v), S(v)) — H"(D(v)) 5oH" (M), hence the Euler
class e(v) of v.

Let B = {a} be a basis of H*(M) and {«°} the dual basis in H*(M) with
respect to the intersection form (a® U B, [M]) = 8up, [¢°| = n — |a].

(18.9.1) Proposition. The image t(M) € H*(M x M) of t(M) is given by
=Y ,ep(—D¥a® xa e H"(M x M).
A consequence is
eM)=d*t =Y ,cpg(-D)a® Ua,

{e(M),[M]) = 3o (=1){a® v, [M]) = X (=D)* = y(M).

Proof. The Kiinneth isomorphism
H*" MY H* (M)~ H*(M xM), u®uvr—uxuv,

tells us that there exists a relation of the form 7 = Zy, seg A, 8)y° x 8. The
following computations determine the coefficient A(y, ). Let @ and B be basis
elements of degree p. Then
((ax B U, [Mx M])
=(ax B 1AM xM]) = (axp° diM])
= (d*(a x %), [M]) = {a v B° [M])
= (=P U, [M]) = (—1)PT PG,
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A second computation gives
((ax %) v, [M x M])
= ((@x B U X Ay, 8)y° x 8,[M x M])
= L A@ DI (@ 0 y®) x (B0 8). [M] x [M])
= X AQ. (DI 1y WD (o U 0, [M]) (B0 L 8. [M]).
Only summands with y = « and § = B are non-zero. Thus this evaluation has the

value A(a, ) = (—1)P" (collect the signs and compute modulo 2). We compare
the two results and obtain A(c, B) = (—1)?4p. O



Chapter 19
Characteristic Classes

Characteristic classes are cohomological invariants of bundles which are compatible
with bundle maps. Let 1*(—) be a cohomology theory. An h¥-valued characteristic
class for numerable n-dimensional complex vector bundles, say, assigns to each
such bundle £: E(§) — B an element ¢(§) € h¥(B) such that for a bundle map
& —> nover f: B — C the naturality property f*c(n) = c(£) holds.

An assignment which has these properties is determined by its value c(y,) €
h*(BU(n)) on the universal bundle y,, and this value can be prescribed in an
arbitrary manner (Yoneda lemma). In other words, the elements of 4% (BU(n))
correspond to this type of characteristic classes.

It turns out that in important cases characteristic classes are generated by a
few of them with distinguished properties, essentially a set of generators of the
cohomology of classifying spaces.

We work with a multiplicative and additive cohomology theory #* and bundles
are assumed to be numerable. A C-orientation of the theory assigns to each n-dimen-
sional complex vector bundle (numerable, over a CW-complex,...) £: E(§) — B
a Thom class 7(§) € h?"(E(£), E°(£)) such that for a bundle map f: E(§) —
E(n) the naturality f*f(n) = t(£) holds and the Thom classes are multiplicative
t(&) xt(n) = t(§ x n). If an assignment of this type is given, then the theory is
called C-oriented. In a similar manner we call a theory R-oriented, if for each n-
dimensional real vectorbundle £ : E(£) — B aThomclass?(£) € h"(E(§), E°(§))
is given which is natural and multiplicative. It is a remarkable fact that structures
of this type are determined by 1-dimensional bundles.

(19.0.1) Theorem. A C-orientation is determined by its value

t(y1) € B*(E(y1), E°(y1))

on the universal 1-dimensional bundle y; over CP*°. Each Thom class t of y1
determines a C-orientation. A similar bijection exists between Thom classes of the
universal 1-dimensional real vector bundle over R P*° and R-orientations.

An example of a C-oriented theory is H*(—; Z); a complex vector bundle has
a canonical Thom class and these Thom classes are natural and multiplicative. One
can use an arbitrary commutative ring as coefficient ring.

An example of an R-oriented theory is H*(—; Z /2); a real vector bundle has a
unique Thom class in this theory. One can use any commutative ring of character-
istic 2 as coefficient ring.
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Suppose the theory is C-oriented. Then an n-dimensional complex vector bun-
dle £ over B has an Euler class e(£) € h?"(B) associated to ¢(£). Euler classes are
natural, f*e(n) = e(f*n), and multiplicative, e(§ @ n) = e(§) v e(n).

The Thom classes have associated Thom homomorphisms. They are defined as
before by cup product with the Thom class

O(&): h*(B, A) — W*(E(€), E€)° U E(El4), x> £ (x) vi(§).

These Thom homomorphisms are natural and multiplicative as we have explained
earlier.

For an R-oriented theory we have natural and multiplicative Euler classes for
real vector bundles.

A proof of (19.0.1) is based on a determination of characteristic classes. We
present a construction of characteristic classes based on the cohomology of projec-
tive bundles. For this purpose, classifying spaces are not used. But they will of
course appear and they are necessary for a more global view-point.

19.1 Projective Spaces
Let n,: E, — CP"! be the canonical bundle with total space
E,=C"~0xc+C, (z,u)~ (Az,Au).

We have the embedding v, : E, — CP”", (z,u) — [z,u]. The image is the
complement of the point * = [0,...,0,1]. Let #(n,) € h?(Ey, E?) be a Thom
class. The Thom class yields the element #, € h?(C P™) as the image under

h*(En, EQ) < R2(CP",CP" ~CP" ') = h2(CP", *) — h*(CP™).

The first isomorphism is induced by v,. Note that v, sends the zero section
to CP"!, the image under the embedding ¢: [x1,...,X,] — [X1....,Xs.0].
The total space E, of n, was denoted H(1) in (14.2.6). The bundle 7, is the
(complex) normal bundle of the embedding (: CP"~! — CP". The embedding
vy, is a tubular map; it also shows that C P” is the one-point compactification of E,,
(see the definition of a Thom space in the final chapter). The complement
CP" ~ CP"!is the affine subset U471 = {[X1,...,Xn+1] | Xnt1 # 0}. We
obtain a homomorphism /*[t,] — h*(C P") of graded h*-algebras; it sends 77!
to zero (see (17.2.5)) and induces a homomorphism of the quotient by the principal
ideal (¢711).

(19.1.1) Lemma. Lett(ny—1) € h*(En—1, EX_,) be the Thom class obtained from
t(nn) by restriction along t. Let t,—1 € h>(CP""') be obtained from t (n,—1) as
explained above. Then:



19.1. Projective Spaces 469

1) *t, = t,—1.
(2) ty—1 is the Euler class associated to t(ny).

Proof. (1) The embedding ¢ is homotopic to the embedding ¢; : [x1,...,Xx,] —
[0, x1,...,x,]. Thus it suffices to show tj#, = f,—;. We have a bundle map
tp: Ey—1 — E, which is compatible with the embeddings, i.e., v,to = (1V,—1.
We apply cohomology to this commutativity and obtain the desired result.

(2) With the zero section s the diagram

h2(CP",CP" ~ CP""'y — h2(CP")

* *
EJ/Vn J{L

h2(Ey, E,?) S—*> h2(C P
commutes. The definition of the Euler class and (1) now yield the result. O

(19.1.2) Lemma. For singular homology and cohomology the Kronecker pairing
relation (t, [CP']) = 1 holds. The element t, is by (19.1.1) also the Euler class
of Ny and this is, by definition, the first Chern class.

Proof. 11 is a bundle over a point. We have the isomorphism ¢: C — Eq, z >
(1,z). By definition of the canonical Thom class of a complex vector bundle
the Thom class (n;) € H2(Ey, EY) is mapped to the generator ¢® under ¢*,
where ¢® is defined by the relation (e®,e,) = 1 (Kronecker pairing). The
element #; is the image of e®® under H2(C,C~0) — H*(CP!,CP'~CP?) —
H?(CP') and the fundamental class [C P '] is mapped to e, under H,(CP') —
Hy(CP!,CP'~CP% — H,(C,C ~ 0). Naturality of the Kronecker pairing
now gives the desired result. O

(19.1.3) Theorem. The homomorphism just constructed is an isomorphism
h*(CP™) = h*[ty]/(tTY) of graded h*-algebras. In particular h*(CP") is a

free h*-module with basis 1, t,, t,%, RO A

Proof. Induction on n. We have the Thom isomorphism
WECP"™) = WFF2(Ep B, x = mix Ut() = x - 1(n).

By induction, 2*(CP"~1) is a free h*-module with basis 1,7,—1,...,2"~] and
therefore h*(E,, E?) is a free module with basis

Lo t(n), tae1 - t(n), - 221 -t ().

We apply the isomorphism 7* (E,, E?) = h*(C P", x) constructed above and claim
that it sends z,’;_l -t(ny) to t,’f +1. Unraveling the definitions one shows that this
claim is a consequence of the naturality of the cup product and the fact (19.1.1) that
tn—1 is the Euler class of #(7,). O
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We denote by #2*[[T]] the ring of homogeneous formal power series in T over
the graded ring 2*. If T has the degree 2, then the power series in 2*[[T']] of degree
k consist of the series ) a; T/ with a; € h*=27. 1If h* is concentrated in degree
zero, then this coincides with the polynomial ring h°[T].

Let 1(No) € h*(Eoo, EY) be a Thom class and 7(1;,) its restriction. Let foo €
h?>(CP*®) and t, € h?>(CP") be the corresponding elements. Since 1, is the
restriction of 7o, let us write just ¢ for all these elements. We have a surjective
restriction homomorphism /#* (C P"+1) — h*(C P™). Thus the restrictions induce
an isomorphism (see (17.1.6)and (17.1.7))

h*(CP*®) = lim, h*(CP") = lim, h*[t]/ (" 1).
The algebraic limit is £*[[¢]]. This shows:
(19.1.4) Theorem. 1*(CP>°) = h*[[t]]. O

We extend the previous results by a formal trick to products X x CP". Let
p: X x CP" — CP" be the projection. We set u = u, = p*(t,).

(19.1.5) Proposition. Consider h* (X x CP") as a graded h*(X)-algebra. Then
h*(X x CP™) == h*(X)[u]/ "t and h* (X x CP>®) = h*(X)[[u]].

Proof. The cohomology theory k*(—) = h*(X x —) is additive and multiplicative,
and the coefficient algebra is A2*(X). The multiplicative structure in k*(—) is
induced by the x-product of 2*(—) and the diagonal of X. The element © s, now
plays the role of 7. O

Let p; : (CP*)" — C P be the projection onto the i -th factor, and set 7; =
P} (tso). Then (19.1.5) implies:

(19.1.6) Proposition. 1*((CP*°)®) =~ h*[[Ty,..., T4]]. O

This statement uses algebraic identities of the type 2*[[x, y]] = (A*[[x]DI[¥]]
for graded formal power series rings.

Problems

1. Anelement Y/ _a; l,{ € hO(C P"™) is a unit if and only if ag € h° is a unit.

2. Anelementu =) 7, b; t,’; € h?(CP") is a Thom class of 1,,+1 if and only if by is a
unit, and this holds if and only if u = &t;, for a unit & € h°(CP").

3. Lett,,—1 be a Thom class for 1,,—1 and u, a Thom class for 1,,. Then there exists a Thom
class t, for n,, such that its restriction is #,—1.
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19.2 Projective Bundles

Let £: E(§) — B be an n-dimensional complex vector bundle. (For the moment
we work with bundles over spaces of the homotopy type of a CW-complex.) The
group C* acts fibrewise on E°(§) by scalar multiplication. Let P(§) be the orbit
space. The projection ¢ induces a projection pg: P(§) — B. The fibre pgl(b)
is the projective space P(&p) of the vector space §1(h) = &,. We call pg the
projective bundle associated to £.

There exists a canonical line bundle Q(§) — P (&) over P(§). Its total space is
defined as E%(£) xc+ C with respect to the relation (x,u) ~ (xA, Au). Thus over
each fibre P (&) we have a bundle canonically isomorphic to 7,,.

The construction of the projective bundle is compatible with bundle maps. Let
n: E(n) — C be a further bundle and ¢ : § — 7 a bundle map over f: B — C.
These data yield an induced bundle map

0 22 o(n)

L s,

P(§) —— P().

We now assume that we are given a Thom class fo, € h?(C P ) of the universal
line bundle o, over CP*°. A classifyingmap kg : P(§) — C P of the line bundle
0 (&) — P(&) provides us with the element

te = ki (too) € H*(P(£)).

We consider 2*(P(§)) in the standard manner as left 2*(B)-module, x - y =
pi(x)wy.

(19.2.1) Example. Let & = ny4+1: Eppq — CP". Then Q(§) — P(§) is canon-
ically isomorphic to 7,41 and tg = 1. &

(19.2.2) Theorem. The h*(B)-module h*(P(§)) is free with basis
Lotg, tf, 7
In particular pg‘: h*(B) — h*(P(§)) is injective.

Proof. This is a consequence of the Leray—Hirsch theorem (17.8.4) and the com-
putation (19.1.3). O

(19.2.3) Corollary. There exist uniquely determined elements c; (§) € h*/ (B) such
that

Yo~ e Ent T =0,

since tg’ is a linear combination of the basis (co(§) = 1). O
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(19.2.4) Remark. Here is a justification for the choice of the signs. Let £ = 1,,41.
Then tg — 1, = 0 and hence ¢{(Np4+1) = tn. &

(19.2.5) Proposition. Let ¢: &€ — n be a bundle map over f: B — C. Then the
naturality relation f*(c;(n)) = c; (&) holds.

Proof. The homotopy relation k; o P(¢) =~ k¢ implies P(¢)*t, = t¢. This yields

0=P@)"(X,(=D¢;(miy ) = Zj(_l)jf*(cf'(’?))tg_j'

Comparing coefficients gives the claim. We have used the rule P(p)*(a - x) =
f*@) - P(p)*(x),a € h*(C), x € h*(P(n)) for the module structure; it is a
consequence of the naturality of the cup product. O

(19.2.6) Proposition. Let £ and 1 be bundles over B. Then the sum formula

cr(E®n) = Zi-g-j:r ci(§)c;(n).
holds. We set c;(§) = 0, if i > dimé&.

Proof. Consider the subspaces P(§) C P(£ & n) D P(n) and their open comple-
mentsU = P(EPn)~P(np)andV = P(E@n)~ P(§). Theinclusions P(§) C U
and P(n) C V are deformation retracts. Let s: P(§) — P& & n) ~ P(n),
[x] = [x,0]and r: P(§ ®n) ~ P(n) — P(&), [x,y] — [x]. Then ws = id and
s =~ id by the homotopy ([x, y], L) — [x, Ay].

Let t = t¢g,. Consider the elements (k = dim &,/ = dimn)

x = Yo~ a@®rf T,y =Y o= e (.

Under the restriction 2* (P (€ ® 1)) — h*(U) = h*(P(§)) the element x is sent to
zero; this is a consequence of the definition of the ¢; (£), the deformation retraction
and the naturality ¢| P(€) = t¢. Hence x comes from an x" € h*(P(¢£ @ n),U).
Similarly y comes from an element y’ € h*(P(§ & n), V). Since U, V is an open
covering of P(§ @ n), we see that x’y’ = 0 and therefore xy = 0. We use the
definition of the ¢, (§ @ n) in the relation

k+l
xy =3 20D (g j=r i ©)e; ()"
and arrive at the desired sum formula by comparing coefficients. O
19.3 Chern Classes
Let 1*(—) be a cohomology theory with universal element ¢ = to, € h2(CP>®).

Our first aim is the computation of #*(BU(n)). Recall that BU(1) = CP°. The
space BU(n) is the basis of the universal n-dimensional complex vector bundle y;,



19.3. Chern Classes 473

and Y1 = N)eo. We use that #*(BU(1)") = h*[[T1, ..., T,]], see (19.1.6). Let us
recall the ring of formal graded power series A*[[c1, ..., cy]]. The indeterminate
c; has degree 2j. The degree of a monomial in the ¢; is the sum of the degrees of
the factors

degree(cf(l)c;c(z) L) =2k(1) +4k@2) +---.
A homogeneous power series of degree k is the formal sum of terms of the form

A;jM; where M; is a monomial of degree m and A; € h*~™. Thus we assign the
degree k to the elements in the coefficient group /#¥.

(19.3.1) Lemma. A classifying map B: BU(n — 1) x BU(1) — BU(n) of the
product y,_1 X Yy is the projective bundle of yy,.

Proof. Let U(n — 1) x U(1) C U(n) be the subgroup of block diagonal matrices.
We obtain a map

a: B(Un—1)xU(1)) = EU(n)/(Umn —1) x U(1))
= EU(n) xue (U(n)/U(n — 1) x U(1))
— BU(®n).

A model for the universal vector bundle is y, : EU(n) xy) C* — BU(n). The
U(n)-matrix multiplication on C” induces a U(n)-action on the corresponding
projective space P (C"). The projective bundle associated to the universal bundle y,,
is EU(n) Xy P(C") — BU(n). We now use the U(n)-isomorphism P(C") =~
U(n)/U(n — 1) x U(1). Hence « is the projective bundle of y,,. We compose with
a canonical h-equivalence j: BU(n — 1) x BU(1) - B(U(n — 1) x U(1)).

It remains to show that 8 = « o j is a classifying map for y,,_; X y1.

Let EU(n — 1) x EU(1) - EU(n) be a U(n — 1) x U(1)-map. From it we
obtain a bundle map

E(yn—1) X E(y1) = (EU(n — 1) x EU(1)) xym-1=u@) (C"' xCh)
— EU(n) XU(n—-1)xU(1) c"
— EU(n) xym) C" = E(yn).

It is a bundle map over w o j. O

(19.3.2) Theorem. Let k: BU(1)" — BU(n) be a classifying map of the n-fold
Cartesian product of the universal line bundle. Then the following holds: The
inducedmap k*: h*(BU(n)) — h*(BU(1)") isinjective. The image consists of the
power series which are symmetric in the variables T\, . . ., Ty. Letc; € h* (BU(n))
be the element such that k*(c;) is the i-th elementary symmetric polynomial in
Ti,...,T,. Then

h*(BU(n)) = h*[[c1, ..., cnll.

The elements cy, . . ., c, are those which were obtained from the projective bundle
associated to y, by the methods of the previous section.
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Proof. Let 0 € S, be a permutation and also the corresponding permutation of
the factors of BU(1)". Then o is covered by a bundle automorphism of the n-fold
product y' = y1x---xy;. Hence koo is another classifying map of y{ and therefore
homotopic to k. The permutation ¢ induces on 2*(BU(1)*) = h*[[Ty,..., T4]]
the corresponding permutation of the 7;. Hence the image of k* is contained in the
symmetric subring, since k oo > k. Let pr; : BU(1)" — BU(1) be the projection
onto the j-th factor. We write y(j) = pr;‘(yl) sothaty! = y(1)@--- @ y(n) and
T; = c1(y(j)). We have the relation (naturality)

K*ci(yn) = ci(™yn) = ci(yf) = ci(y(1) & --- ® y(n)).

By the sum formula (19.2.6) this equals

a(yei-1(y2) @---dyn) +ci(y(2) &--- & yn).

This is used to show by induction that this element is the i -th elementary symmetric
polynomial o; in the variables 7. We now use the algebraic fact that the symmetric
part of A*[[Ty, ..., T,]] equals the ring of graded power series A*[[07, ..., 0,]] in
the elementary symmetric polynomials o;. This shows that the image of «* is as
claimed.

It remains to show that «* is injective. From (19.3.1), (19.2.2) and (19.1.5) we
obtain an injective map

B*: h*(BU(n)) — h*(BU(n — 1) x BU(1)) = h*(BU(n — 1))[[y(n)]].
This fact yields, by induction on 7, the claimed injectivity. O

Elements of 4*(BU(n)) are called universal h* (—)-valued characteristic classes
for n-dimensional complex vector bundles. Given ¢ € h*(BU(n)) and a classifying
map f: B — BU(n) of the bundle & over B we set ¢(§) = f*(c) and call c(§)
a characteristic class. With this definition, the naturality ¢*c(n) = c (&) holds for
each bundle map ¢: § — 1. Theorem (19.3.2) shows that it suffices to work with
¢i. The corresponding characteristic class c; (§) is called the i -th Chern class of &
with respect to the chosen Thom class 7. It is sometimes useful to consider the
total Chern class c(§) = 1 4+ ¢1(§) + c2(§) +--- € h*(B) of a bundle over B; the
sum formula then reads c¢(§ & n) = c(§) v c(n).

The preceding results can in particular be applied to integral singular coho-
mology. Complex vector bundles have a canonical orientation and a canonical
Thom class. There are two choices for the element /o, they differ by a sign.
We use the element that satisfies (#;,[CP!]) = 1 (Kronecker pairing), where
[CP'] € Hy(CP';Z) denotes the canonical fundamental class determined by the
complex structure.

Chern classes are stable characteristic classes, ie., c;(§) = c;(E @ ¢) if ¢
denotes the trivial 1-dimensional bundle; this follows from the sum formula (19.2.6)
and ¢;(¢) = 0 fori > 0. This fact suggests that we pass to the limit n — oco.
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(19.3.3) Example. The complex tangent bundle 7C P” of the complex manifold
CP" satisfies TCP" @ & = (n 4+ 1)ny+1, see (15.6.6). Therefore the total Chern
class of this bundle is (1 + ¢1(7,+1))" L. &

Letw: BU(n) — BU(n + 1) be a classifying map for y, @ e. Thenw*c; = ¢;
fori <nand w*c,+1 = 0. Let U = colim, U(n), with respect to the inclusions

Un)—-Umn+1), A- (g (1))

be the stable unitary group. The classifying space BU is called the classifying
space for stable complex vector bundles. We think of this space as a homotopy
colimit (telescope) over the maps BU(n) — BU(n + 1). By passage to the limit
we obtain (since the lim'-term vanishes by (17.1.7)):

(19.3.4) Theorem. 1*(BU) = limh*BU(n) = h*[[c1,c2,...]] O

(19.3.5) Example. Let «,, ,: BU(m) x BU(n) — BU(m + n) be a classifying
map for ¥, X Yp = pry Ym @ prs y». We use the elements cj’- = ¢;(pr] Ym) and
¢/ = ¢;(pr3 yn) and obtain

(1) h*(BU(m) x BU(n)) = h*[[c},....cp, ¢l oscnll-

m’ n
Moreover, by the sum formula,

(2) Ko nCk = ZH—j:k CI{C]/'/-
The map «, ,, is continuous in the sense that the effect on a formal power series in
the variables cy, . .., C;+5 1 Obtained by inserting for ¢y the value (2).

For the proof of (1) one can use the theory A*(BU(m) x —) and proceed as
for (19.3.2). In the case of integral singular cohomology one has the Kiinneth
isomorphism and «,, ,, becomes the homomorphism of algebras

(3) Z[c1,¢2s vy Cmtn] = Z[C1s o Cm] ® Zcq, ..., Chl

determined by cx > } ;4 ¢i ®c;. Since formal power series are not compatible
with tensor products, one has to use a suitably completed tensor product for general
theories if one wants a similar statement.

The maps «,,,, combine in the colimit to a map «: BU x BU — BU. Itis
associative and commutative up to homotopy and there exists a unit element. A
classifying map for the “inverse bundle” yields a homotopy inverse for k. With
these structures BU becomes a group object in h-TOP. The precise definition and
the detailed verification of these topological results are not entirely trivial. We
are content with the analogous algebraic result that we have a homomorphism
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h*(BU) — h*(BU x BU) determined by the sum formula and continuity. The
inverse (*: h*(BU) — h*(BU) is determined by the formal relation

(I+er+eat-- )1+ (er) + () +--0) = 1.

It allows for an inductive computation t*c; = —cy,t*c; = cf—cz etc. We also have
the homomorphism of algebras (3) for BU. It will be important for the discussion
of the Hopf algebra structure. <

(19.3.6) Example. We know already K(Z,2) = CP*® = BS' = BU(l) ~
BGL;(C). A numerable complex line bundle £ over X is determined by its classi-
fying map in

H?*(X;Z) = [X,CP*] = [X, BU(1)].

The corresponding element in ¢1(§) € H?(X; Z) is the first Chern class of £. <

(19.3.7) Proposition. The relation c1(E®n) = c1(§)+c1(n) holds for line bundles
& and .

Proof. We begin with the universal situation. We know that H2(CP®°;Z) = Z is
generated by the first Chern class ¢ of the universal bundle y = y;. Letk: CP*° x
C P> — C P be the classifying map of y®y. Let prj: CP®xCP>® - CP>
be the projection onto the j -th factor. Then H?(C P> x C P®; Z) has the Z-basis
T, T, with T; = pr}‘f(c). There exists a relation k*cy(y) = aye; + azep with
certaing; € Z. Leti;: CP>® — CP® x CP*, x — (x, xg) for fixed xo. Then
ifer = ci(y), since pr; i1 = id, and i{e, = 0 holds, since pr, iy is constant. We
compute

arci(y) = itk*ei(y) = c1(ifk™y) = e1(if (pr} y @ pr3 y)) = c1(y),

since i} pri y = y and i} pr3 y is the trivial bundle. Hence a; = I, and similarly
we see dp, = 1.

We continue with the proof. Let k¢, k,: B — CP> be classifying maps of
& and n. Then c1(§) = kg‘cl()/) and similarly for n. With the diagonal d the

equalities £ ® n = d*(E®n) = d* (ke x ky)*(y®y) hold. This yields

1l ®n) = c1(d* (ke x ky)* (y®y))
=d* (kg x ky)*(e1 + €2)
= d" (kg x kn)* pri c1(y) + d* (kg x ky)* prj c1(y)
— kzer(y) + kg1 ()
=c1(§) + c2(n),

since kg = pr; (kg X ky)d holds. O
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(19.3.8) Proposition. Let £: E(§) — B be an n-dimensional vector bundle and
pe: P(§) — B the associated projective bundle. The induced bundle splits
pg(é) = & @ & into the canonical line bundle &, over the projective bundle

and another (n — 1)-dimensional bundle &'.

Proof. Think of & as associated bundle E xy,) C* — B. Let H be the subgroup
U — 1) x U(1) of U(n). We obtain the pullback

E xpg C" ' x C = E xy) (Un) xg C") —— E Xy C”

! |

E/H ~ F XU(n) (U(n)/H) B

and this implies the assertion. O

We now iterate this process: We consider over P (§) the projective bundle P (§’),
et cetera. Finally we arrive at a map f(§): F(§) — B with the properties:
(1) f(&)*& splits into a sum of line bundles.
(2) The induced map f(§)*: h*(B) — h*(F(£)) is injective.
Assertion (2) is a consequence of (19.2.2).
A model for f(§) is the flag bundle. The flag space F (V) of the n-dimensional
vector space V consists of the sequences (= flags)

Oy=l1VycWhc---CcV,=V

of subspaces V; of dimension i. Let V carry a Hermitian form. Each flag has
an orthonormal basis by, ..., b, such that V; is spanned by by, ..., b;. The basis
vectors b; are determined by the flag up to scalars of norm 1. The group U(n)
acts transitively on the set of flags. The isotropy group of the standard flag is the
maximal torus T(n) of diagonal matrices. Hence we can view F (V') as U(n)/T(n).
The flag bundle associated to E xy(,) C" is then

f(§): F(§) = E xym) U(n)/T(n) = E/T(n) - B.
We can apply this construction to a finite number of bundles.

(19.3.9) Theorem (Splitting Principle). Let &1, ..., & be complex vector bundles
over B. Then there exists amap f: X — B such that f*: h*(B) — h*(X) is
injective and f*(&;) is for each §; a sum of line bundles. O

We now prove (19.0.1). Consider the exact cohomology sequence of the pair
(E(yn), E°(yn)). We can use E°(y,) as a model for BU(n — 1). The projection
E(yn) — BU(n) is an h-equivalence. Our computation of 2*(BU(n)) shows that
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we have a short exact sequence

0 — W2 (E(ya). E®(y) — h>" (E(yn)) —— W (E®(y) — 0

L

h2"(BU(n)) — h2"(BU(n — 1)).

The element ¢, lies in the kernel of i*. It therefore has a unique pre-image
t(yn) € h*"(E(yn), E°(y,)). For an n-dimensional numerable bundle £ : E(§) —
B we define 1 (£) € h?"(E(§) E°(£)) to be the element k*(y,) with a classifying
map k: £ — y,. Then the elements ¢ (§) are natural with respect to bundle maps.
From the relation iy, , (Cim4n) = c,,cn we conclude (by naturality) £ (ym) Xt (yn) =
t(Ym X Yn) and then t(§) x t(n) = t(§ x n) for arbitrary numerable bundles.
The element 7(y;) € h2(E(y1), E°(y1)) corresponds to the chosen element 7o, €
h?(C P°). The restriction of #(y,,) to y1 X -++ x y1 yields #(y1) x - -+ x t(y1). This
is a Thom class, since products of Thom classes are Thom classes. This shows that
t(yn) is a Thom class.

19.4 Stiefel-Whitney Classes

The theory of Chern classes has a parallel theory for real vector bundles. Suppose
given an element to, € h!(RP®, x) C h!(RP) such that its restriction to #; €
h'(RP', %) is a generator of this 4°-module. Then there exists an isomorphism

h*[T]/(T" 1) = h*(RP")
which sends T to the restriction #; of #o. This is then used to derive isomorphisms

B*(X x RP™) 2 h*(X)[u]/ ("),
B*(X x RP®) 2 h*(X)[[u]],
R*((RP®YY) = h*[[Ty,. .., Ty]].

The projective bundle P () of a real vector bundle & over B yields a free 1*(B)-
module 2*(P(§)) with basis 1,7, ..., tg’_l, and there exists a relation

Yo (1w €)™ =0
with elements w; (£) € h’/ (B) which satisfy the sum formula
wr(§dn) = ZH—j:r wi (§)w; (1)

where wo(§) = 1 and w;(§) = 0 for j > dim§. These elements are natural
with respect to bundle maps, hence characteristic classes. We obtain an injective
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map «*: h*(BO(n)) — h*(BO(1)"). The classes wy, . . . , w;, which belong to the
universal n-dimensional bundle over BO(n) yield

h*(BO(n)) = h*[[wi, ..., ws]].

The image of w; under «* is the j-th elementary symmetric polynomial in the
Ti,...,T,. We pass to the limit n — oo and obtain 2* BO as a ring of graded
power series in wi, wa, ... with w; of degree j. The w; are the universal Stiefel—
Whitney classes. The Stiefel-Whitney classes are natural, stable, and satisfy the
sum formula. There holds a splitting principle for real bundles. We write w(§) =
1+ wi(§) + wa(§) + --- for the total Stiefel-Whitney class of &; then the sum
formula reads w(§ ® n) = w(€) v w(n).

The existence of the universal element has the consequence that the unit element
1 € k0 is of order 2, so that the cohomology groups consist of Z /2-vector spaces
and signs can be ignored. This result is due to the fact that multiplication by —1 in
the fibres of vector bundles is a bundle map. If we apply this to the universal one-
dimensional bundle, then we see that this bundle map preserves the Thom class 7.
On the other hand, if we restrictto?; € h!(RP 1 %), this bundle map is of degree —1
and changes the sign of #1. Since ; corresponds under suspension to a unit of /%,
we conclude that 1 = —1 € A°.

One shows as in the complex case that the theory is R-oriented. One can apply
these results to singular cohomology with coefficients in Z /2. There is a unique
choice for the universal element to, € H'(RP°; Z/2). The resulting characteristic
classes are the classical Stiefel-Whitney classes.

(19.4.1) Example. The tangent bundle 7 of RP” satisfies t @ ¢ = (n + 1)n
with the canonical line bundle 5. The total Stiefel-Whitney class of 7 is therefore
1+ w)"*! € H*(RP") = Z/2[w]/(w)"*!. Suppose RP" has an immersion
into R" X, Then 7 has an inverse bundle of dimension k, the normal bundle of this
immersion. Suppose n = 2". Properties of binomial numbers modulo 2 show that
w(t) =14+ w + w". If visinverse to 7, then w(r)w(v) = 1, and this implies in
our case w(v) = 1 +w + w? + --- + w1, This shows that an inverse bundle
must have dimension at least n — 1. Therefore R P" has for n of the form 2% no
immersion into R2"~2. <&

19.5 Pontrjagin Classes

We now discuss characteristic classes for oriented bundles. Suppose £: E(§) — B
is an oriented n-dimensional real vector bundle. The orientation determines a Thom
class t(§) € H"(E(§), E°(£)) by the requirement that a positive isomorphism
ip: R" — E(&) sends ¢ (£) to the generator ™ e H”(R", R" ~ 0) which is dual
to the generator ¢, = e; X --- X e; € H,(R*,R" ~ 0), i.e., (e(”),e,,) = 1. This
definition implies e ™ xe™ = (—1)™" ¢+ and has the following consequences:
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(19.5.1) Lemma. Let & and n be oriented bundles and give & X 1) the sum orientation.

Then 1(§ x ) = (=D¥IM2(&) x 1(n) and e(€ & n) = (—=D)EWle(&)e(n). Here
|&| = dim&. O

Let&: E — B be areal vector bundle. It has a complexification éc = &£ Qg C.
We take £ @ & with complex structure J(x, y) = (—y, x) on each fibres as a model

for &c.
Let ¢ be a complex n-dimensional bundle and ¢ the underlying 2n-dimensional
real bundle. If vy, ..., v, is a basis of a fibre, then vy, ivy, ..., vy, v, is a basis of

the fibre of (R, and it defines the canonical orientation.

(19.5.2) Lemma. Let £ be an oriented n-dimensional real bundle. Then (Ec)Rr
in our model for £c above is isomorphic to (—1)""=V/2¢ @ £ as an oriented
bundle. The factor indicates the change of orientation, and & @ & carries the sum
orientation. O

(19.5.3) Proposition. Let £: E — B be a complex n-dimensional bundle. Con-
sider it as a real bundle with orientation and canonical Thom class induced by the
complex structure. Then c,(§) = e(§) € H*"(B; Z).

Proof. This holds for 1-dimensional bundles by definition of ¢;. The general case
follows by an application of the splitting principle and the sum formula. O

We set . ‘
pi(€) = (=1)'c2i(Ec) € H* (B Z)
and call this characteristic class the i -th Pontrjagin class of &. The bundle £c is
isomorphic to the conjugate bundle £c. The relation ¢; (¢) = (—1)7¢; () holds in
general for conjugate bundles. Hence the odd Chern classes of ¢ are elements
of order 2. This is a reason why we ignore them for the moment. The Pontrjagin
classes are by definition compatible with bundle maps (naturality) and they do not
change by the addition of a trivial bundle (stability). The next proposition justifies
the choice of signs in the definition of the p;.

(19.5.4) Proposition. Let ¢ be an oriented 2k-dimensional real bundle. Then

pe(®) = e(§)>.

Proof. We compute

Pr(®) = (=DFearEe) = (—DFerc((bc)r) = (—D)FTHCD2 e g £)
=e(E ®E) = (—)F%e()? = e(6)>
We have used (19.5.1), (19.5.2), and (19.5.3). O

One can remove elements of order 2 if one uses the coefficient ring R = Z [%]
of rational numbers with 2-power denominator (or, more generally, assumes that
% € R). The next theorem shows the universal nature of the Pontrjagin classes.
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(19.5.5) Theorem. Let p; denote the Pontrjagin classes of the universal bundle
and e its Euler class. Then

H*(BSO@2n+1); R) = R[p1,... pn]l, H*(BSOQ2n); R) = R[p1,..., pu—1.€].

Proof. Induction over n. Let &, : ESO(n) Xsom) R" — BSO(n) be the universal
oriented n-bundle and p: BSO(n—1) — BSO(n) the classifying map of §,,—; D e.
As model for p we take the sphere bundle of &,. Then we have a Gysin sequence
at our disposal. Write B,, = BSO(n) for short.

Suppose n is even. Then, by induction, H *(B,,—) is generated by the Pontrjagin
classes, and p* is surjective since the classes are stable. Hence the Gysin sequence
decomposes into short exact sequences. Let H,' denote the algebra which is claimed
to be isomorphic to H*(B,). And let u,: H; — H*(B,) be the homomorphism
which sends the formal elements p;, e onto the cohomology classes with the same
name. We obtain a commutative diagram

0 >Hi(Bn) € >Hi+n(Bn) 4 >Hi+n(B,,_1) s 0

T T T

0 H} HJt" —————— H*? ———0.

By induction, pt,—1 is an isomorphism. By a second induction over i the left arrow
is an isomorphism. Now we apply the Five Lemma. In order to start the induction,
we note that by the Gysin sequence p,: H) — H'(B,) is an isomorphism for
I <n.

Suppose n = 2m + 1. The Euler class is zero, since we use the coefficient
ring R. Hence the Gysin sequence yields a short exact sequence

0— H'(By) 2> H/(B,_y) — H/™2™(B,) — 0.

Therefore H*(B,) is a subring of H*(B,—1) via p*. The image of p* contains the
subring P* generated by p1,..., pm. We use pp, = e2. The induction hypothesis
implies

rank H/ (B,_1) = rank P/ + rank P/ 2™,

The Gysin sequence yields
rank H/ (B,_1) = rank H (B,) + rank H’/~2™(B,,).

The equality rank P/ = rank H/(B,) is a consequence. If p*H/(B,) # P/
then the image would contain elements of the form x + ey, x € P/, y € P/=2™,
Such an element would be linearly independent of the basis elements of P*. This
contradicts the equality of ranks. O
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(19.5.6) Example. Let ¢ be a complex bundle. Then (¢g)c is isomorphic to & @ ¢.
An isomorphism from (g @ (g with the complex structure (x,y) — (—y,x) is
given by

x y)}_)(x—f—iy ix—l—y)

NN

Hence the p; ({R) = (=1)/c2i(C @ §) = (=1)" X4 pmsi (—1D)Pca(§)ep (). Since
SO(2) = U(1), an oriented plane bundle & has a unique complex structure ¢ such
that {g = £. The total Pontrjagin class of £ is therefore 1 + ¢1(¢)2. <

(19.5.7) Example. Let t = TCP” denote the complex tangent bundle of C P".
Then tp is the real tangent bundle. In order to determine the Pontrjagin classes we
use (Tr)c = T @ T. The total Chern class of this bundle is (1 +¢)"T1(1 —¢)"+! =
(1—=c®)"*lifwe write H*(CP") = Z[c]/(c" ) withe = ¢1(u41), see (19.3.3).
Hence the total Pontrjagin class of C P”, i.e., of its tangent bundle with the canonical
orientation, is (1 + ¢2)"*1. &

Problems

1. The Pontrjagin classes are stable. Under the hypothesis of (19.5.5) we obtain in the limit

H*(BSO; R) = R[p1, p2,...]. The sum formula px(§ @ n) = > ;4 i —x Pi(®)pj(n)
holds (pg = 1).

19.6 Hopf Algebras

We fix a commutative ring R and work in the category R-MOD of left R-modules.
The tensor product of R-modules M and N is denoted by M @ N. The natural
isomorphismt: M @ N - N @ M, m @ n — n @ m expresses the commutativity
of the tensor product. We have canonical isomorphisms/: RQM — M, A®@m +—
Amandr: M ® R - M, m ® A — Am. Co-homology will have coefficients in
R, if nothing else is specified.

An algebra (A, m,e) in R-MOD consists of an R-module A and linear maps
m: A® A — A (multiplication), e: R — A (unit) such that m(e ® 1) = I,
m(l®e) =r. ifm(m® 1) = m(1 ® m) holds, then the algebra is associative,
and if mt = m holds, the algebra is commutative. Usually we write m(a ® b) =
a-b = ab. We use similar definitions in the category of Z-graded R-modules (with
its tensor product and interchange map).

(19.6.1) Example. Let X be a topological space. Then the graded R-module
H*(X) becomes a (graded) associative and commutative algebra with multiplica-
tion

m: H*(X) @ H*(X) - H*(X x X) - H*(X),
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where the first map is the x-product and the second map is induced by the diagonal
d: X — X x X. The unit is the map induced by the projection X — P onto a
point P. &

A coalgebra (C, |1, ¢) in R-MOD consists of an R-module C and linear maps
w: C — C ®C (comultiplication), e: C — R (counit) such that (¢ ® 1)y = [~1,
(1@ =r"1. If(n® Hu = (1 ® n)u holds, the coalgebra is coassociative,
and if T = p holds, the coalgebra is cocommutative.

(19.6.2) Example. Let X be a topological space. Suppose Hi(X) is a free
R-module. The graded R-module H.(X) becomes a (graded) coassociative and
cocommutative coalgebra with comultiplication

i Ho(X) > Hyo(X x X) = Ho(X) ® Hy(X)

where the first map is induced by the diagonal d and the isomorphism is the Kiinneth
isomorphism. The counit is induced by X — P. <&

A homomorphism of algebras ¢: (4,m,e) — (A',m’,¢’) is a linear map
¢: A — A’ such that pm = m(p ® ¢) and ¢/ = ge. A homomorphism of
coalgebras ¥ : (C,u,e) — (C’, i/, ¢') is a linear map : C — C’ such that
(Y @ Y)u = 'y and &'y = €. A continuous map f: X — Y induces a homo-
morphism f*: H*(Y) — H*(X) of the algebras (19.6.1) and a homomorphism
fx: Ho(X) > Hy(Y) of the coalgebras (19.6.2).

The tensor product of algebras (A;,m;, e;) is the algebra (A, m,e) with A =
Ai®Arandm = (m;®@m»y)(1®t®1)ande = ¢1 ®e2: R~ ROR — AR A,.
The multiplication m is determined by (a1 ® az)(b; ® b)) = a1by ® ab, (with
the appropriate signs in the case of graded algebras). The tensor product of co-
algebras (C;, i, &) is the coalgebra (C, i, ¢) with C = C; ® C,, comultiplication
U=01®7t®1)(u; ® uz) and counite = £16: C; ® C; > RQ R = R.

Let (C, u, ¢) be a coalgebra. Let C* = Hom(C, R) denote the dual module.
The data

m:C*®C* > (C®C)* L c*

ande: R =~ R* = C* define the dual algebra (C*, m, e) of the coalgebra. (The
first map is the tautological homomorphism. It is an isomorphism if C is a finitely
generated, projective R-module.)

Let (A, m, e) be an algebra with A a finitely generated, projective R-module.
The data

p: A* 2 (A A)* ~ A* ® A*

and e: A* <> R* =~ R define the dual coalgebra (A*, |, €) of the algebra.
In the case of graded modules we take the graded dual; if A = (A4, | n € Ny),
then the dual is (A" = Hom(A4,, R) | n € Ny).
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(19.6.3) Example. Let«: H*(X) — Hom(H«(X), R) be the map in the universal
coefficient sequence. Then k is an isomorphism of the algebra (19.6.1) onto the
dual algebra of the coalgebra (19.6.2). <&

(19.6.4) Proposition. Let C be a coalgebra and A an algebra. Then Hom(C, A)
carries the structure of an algebra with product o x p = m(x @ B)u, for o, B €
Hom(C, A), and unit es. The product * is called convolution.

Proof. The map («, f) — « ® B is bilinear by construction. The (co-)associativity
of m and p is used to verify that * is associative. The unit and counit axioms yield

ax(ege) =ma@®@es)u=m(1®e) a1 @) = a.
Hence ec¢ is a right unit. O

A bialgebra (H,m, e, i, ¢) is an algebra (H,m, e¢) and a coalgebra (H, u, €)
such that ¢ and e are homomorphisms of algebras. (Here H ® H carries the tensor
product structure of algebras.) The equality um = (m @ m)(1 @t ® 1)(u ® )
expresses the fact that u is compatible with multiplication. The same equality says
that m is compatible with comultiplication. This and a similar interpretation of the
identities id = e, ue = (e @ e)u, m(e ® €) = em is used to show that a bialgebra
can, equivalently, be defined by requiring that m and e are homomorphisms of
coalgebras. A homomorphism of bialgebras is an R-linear map which is at the
same time a homomorphism of the underlying algebras and coalgebras.

An antipode for a bialgebra H is an s € Hom(H, H) such that s is a two-
sided inverse of id(H) € Hom(H, H) in the convolution algebra. A bialgebra with
antipode is called Hopf algebra.

(19.6.5) Example. Let X be an H -space with multiplication p: X x X — X and
neutral element x. Then

m: Ho(X) ® Ho(X) — Ho(X x X) 25 Ho(X)

is an algebra structure on H, (X ) with unitinduced by {x} C X. Suppose H.(X) is
a free R-module. Then the algebra structure m and the coalgebra structure (19.6.2)
define on H,.(X) the structure of a bialgebra. An inverse for the multiplication p
induces an antipode.

Suppose H*(X) is finitely generated and free in each dimension. Then

wi H*(X) 2 H*(X x X) = H*(X) ® H*(X)

is a coalgebra structure and together with the algebra structure (19.6.1) we obtain
a bialgebra. Again an inverse for p induces an antipode. The duality isomorphism
H*(X) — Hom(H«(X), R) is an isomorphism of the bialgebra onto the dual
bialgebra of H.(X).
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This situation was studied by Heinz Hopf [91]. The letter A for the comultipli-
cation (and even the term “diagonal”) has its origin in this topological context. For
background on Hopf algebras see [1], [182], [142], [138]. &

(19.6.6) Example. The space CP*° is an H -space with multiplication the clas-
sifying map of the tensor product of the universal line bundle. The algebra struc-
ture is H*(CP%;Z) = Z|c] with ¢ the universal Chern class c;. Let [CP!] €
H,;(CP%;Z) denote the image of the fundamental class of C P’ under the ho-
momorphism induced by the embedding C P’ — C P*°. The coalgebra structure
is determined by u(c) = c ® 1 + 1 ® ¢, see (19.3.7). Since (c",[CP"]) =1
(see the proof of (18.7.2)), the dual Hopf algebra H,.(C P°°; Z) has an additive
basis x; = [CP!],i € Ny; by dualization of the cohomological coalgebra struc-

ture we obtain the multiplicative structure x; - x; = (i, j)x;4+; with (i, j) =
(i + j)!/@'j"). Geometrically this means that the map CP’ x CP/ — CP!*/,
([x0, ... xil. [Vos - ¥;]) = [20, ... Zigj] with zg = D, ) _x Xayp has degree
(i, j). The comultiplication in H,(C P*°) is u(x,) = Ziﬂ-:n Xi ® x;j. <&

We generalize the Hom-duality of Hopf algebras and define pairings. Let A and
B be Hopf algebras. A pairing of Hopf algebras is a bilinear map A x B — R,
(a,b) — (a,b) with the properties: For x,y € Aandu,v € B

(xy,u) =(x®y. p@)), (x.uv)={(ux),u®v),
(1,u) = e(u), (x,1) = e(x).

The bilinear form (—,—) on A x B induces a bilinear formon A ® A x B ® B
by (x @y, u®v) = (=D)PM(x u)(y,v). This is used in the first two axioms.
A pairing is called a duality between A, B, if (x,u) = 0 for all u € B implies
x =0, and (x,u) = 0forall x € A implies ¥ = 0. An example of a pairing is the
Kronecker pairing H*(X) x H«(X) — R in the case of an H-space X.

An element x of a bialgebra H is called primitive, if u(x) = x® 1+ 1 ® x.
Let P(H) C H be the R-module of the primitive elements of H. The bracket
(x,y) = [x,y] = xy — yx defines the structure of a Lie algebra on P(H). The
inclusion P(H) C H yields, by the universal property of the universal enveloping
algebra, a homomorphism ¢: U(P(H)) — H. For cocommutative Hopf algebras
over a field of characteristic zero with an additional technical condition, ¢ is an
isomorphism [1, p. 110].

(19.6.7) Example. A coalgebra structure on the algebra of formal powers series
R[[x]] is, by definition, a (continuous) homomorphism w: R[[x]] = R[[x1,x2]]
with (u ® D = (1 ® w)p and e(x) = 0. Here R[[xy, x2]] is interpreted as a
completed tensor product R[[x;]]®R[[x2]]. Then 1 is given by the power series
u(x) = F(x1, x3) with the properties

F(x,0) =0= F(0,x), F(F(x,y),z) = F(x,F(y,z2)).

Such power series F are called formal group laws. &
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Problems

1. The Group algebra. Let G be a group and RG the group algebra. The R-module RG
is the free R-module on the set G, and the multiplication RG ® RG =~ R(G x G) — RG
is the linear extension of the group multiplication. This algebra becomes a Hopf algebra, if
we define the comultiplication by p(g) = g ® g for g € G, the counit by e(g) = 1, and the
antipode by s(g) = g~ L.

Let G be a finite group and O (G) the R-algebra of all maps G — R with pointwise
addition and multiplication. Identify O(G x G) with O(G) ® O(G). Show that the group
multiplication m induces a comultiplication u = m*: O(G) — O(G x G). The data
e(f) = f(1) and s(f)(g) = f(g~') complete O(G) to a Hopf algebra. Evaluation
at g € G defines an algebra homomorphism @(G) — R. Show that G is canonically
isomorphic to the group A Hom(O(G), R) of Problem 2.

An element g in a Hopf algebra H is called group-like if 1(g) = g ® g and ¢(g) = 1.
The set of group-like elements in H is a group under multiplication. The inverse of g is s(g).
2. Let D be a Hopf algebra and A a commutative algebra. The convolution product induces
on the set A Hom(D, A) of algebra homomorphisms D — A the structure of a group.

3. Let H be a Hopf algebra with antipode s. Then s is an anti-homomorphism of algebras and
coalgebras, i.e., s(xy) = s(¥)s(x), se = e, es =5, (s ® s)u = us. If H is commutative
or cocommutative, then s2 = id.

4. Let H; and H, be Hopf algebras and o: H; — H> a homomorphism of bialgebras.
Then o commutes with the antipodes.

5. Let R be a field of characteristic p > 0. Let A = R[x]/(x?). The following data define
a Hopf algebra structureon A: u(x) =x ® 1 + 1 ® x, e(x) = 0, s(x) = —x.

19.7 Hopf Algebras and Classifying Spaces

The homology and cohomology of classifying spaces BU, BO, BSO lead to a Hopf
algebra which we will study from the algebraic view-point in this section. The poly-
nomial algebra R[a] = R[aj,as,...] becomes a Hopf algebra with coassociative
and cocommutative comultiplication determined by A(a,) = Zp +q=ndp ® dq
and ap = 1. We consider the algebra as a graded algebra with a; of degree i.
(In the following we disregard the signs which appear in graded situations. An-
other device would be to assume that the a; have even degree, say degree 2i, or
that R has characteristic 2.) Let p = (p1,...,pr) € Nj be a multi-index with r
components. We use the notation a? = af U'...a?". The monomials of type a”
(for arbitrary r) form an R-basis of R[a]. The homogeneous component R[a]* of
degree n is spanned by the monomials a” with || p|| = p1 + 202 + -+ + rp, = n.

We have an embedding R[ay, ..., ax] SN Rlay, ..., 0] where a; is the j-th
elementary symmetric polynomial in the ay, ..., ®,. The embedding respects the
grading if we give o; the degree 1. The image is the subalgebra of symmetric
functions. The a” with p € N§ form an R-basis of the symmetric polynomials.

Another, more obvious, R-basis is obtained by starting with a monomial
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ol = ai‘ ...ai,” and sum over the S,-orbit of I = (iy,...,i,). Let us write

I ~ Jif (ji,..., jn) is a permutation of (i1, ..., i,). The polynomials

Sr(og, ... o) = ZJ~I o’

form an R-basis of the symmetric polynomials in Ry, ..., a,]. The family I =
(i1,...,iy) is called a partition of |/ | = i1 + iy + --- 4 iy; inthe case that I ~ J,
we say that / and J yield the same unordered partition. We can write ¥; as a
polynomial in the a1, ...,a, and denote it by o7(ay,...,a,). The monomials
aP which are summands of o; have degree ||p|| = |I|. Thus o7(ay,...,a,) =
or(ay,...,an—1,0) =o0yr(ay,...,ay—1) forn > |I|.

(19.7.1) Lemma. If I is a partition of k and n > k, then oy(ay,...,ax) is in-
dependent of n. We consider it as a polynomial in R[a]. In this way we obtain
another R-basis of R[a] which consists of the polynomials o7. The homogeneous
component of degree n is spanned by the oy with I an (unordered) partition of n.

O
Consider the formal power series
Un =[1j=1(1 + a1Bj +azp? +--+) € Rla][Bi.- ... Bull.
The series has the form > pa B,(,") (B1,...,Bn) where the sum is taken over the
multi-indices p = (p1,..., p;) With [p| = 3~; p; < n. The polynomial B,(,") is
symmetric in the 81, ..., B,. Hence we can write it as polynomial bl()") (b1, ....by)
where by, is the k-th elementary symmetric polynomial in the variables 81, ..., B;.

For p = (p1,...,pr) let I(p) denote the multi-index (iy,...,i,) withi, = j
forpy + -+ pj—1 <v < p1 +---+ pj, i.e., we begin with py entries 1, then p,
entries 2 and so on; hence m = p; + -+ p, = |pland Y _jy—, ix = [I(p)| = |lpl,
i.e., I(p) is a partition of || p|| with (weakly) increasing components. In the notation
introduced above

B (Bro- o Br) = Z1) B Br)s bSP(bis .. bn) = 0100y (b1, - . bn).

The polynomial bf,n) only involves the variables by, ..., bjj(,) and is independent
of n forn > |I(p)|. We denote this stable version by b,. The b, form an R-basis
of the symmetric polynomials in R[B]. In this sense we can write formally

H?il(l +ai1B; + 61213]2 +-) = Zpapbp = ano Uln]

where U [n] is the finite partial sum over the p with ||p|| = n (although the infinite
product itself is not defined). The reader may verify

U[]] = a1b1
U[2] = a%bz + azb% — 2612[72
U[3] = afb3 + a3bf' + a1b1a2b2 + 3(13[)3 — 3a1a2b3 — 3a3b1b2.
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The polynomials U [n] are symmetric in the a’s and the b’s
U[n](al,...,an;bl,...,bn) = U[n](bl,...,bn;al,...,an).

In order to see this note that U = lim,, ,, Uy, » with

Um,n = H,r'n=1 n;l=1(1 + aiﬁj)
=LA +aiB; + -+ amB]) = [T{21 (1 + brai + -+ + bpa).

(19.7.2) Lemma. Let us write A(a”) =Y, a5.a’° ®a* and by -b; = PR b :b,.
Then a, = bl..

Proof. The definition of the b5, implies the relation pu . pM — > bgrbg'). We
compute

Y, (Yo abea® ®a® )by =3, A(a?)by"”
=[10 + Aan)Bi + Aa2)B? + )
=11+ (@1 ® DB + (@2 ® DBZ +--+)
JIA+ (0 ®anNBi + 1 ®@ax)B? +-+-)

= (X, (@ ® D) (X,(1 ®a)b™) =Y, . (a® ® a®)bd b
=Y 0@’ @ bY) Y, bEbS".

Now we compare coefficients and obtain ), ag,b,()”) =Y, bgrbf,”). The sum is
finite in each degree. We pass to the stable values b, and compare again coefficients.
O

Let Hom(R[a], R) be the graded dual of R[a]. We can view this as the module
of R-linear maps R[a] — R which have non-zero value only at a finite number of
monomials. Letay be the dual of a, i.e., a;(a®) = §7. The Hopf algebra structure
of R[a] induces a Hopf algebra structure on Hom(R[a], R). The basic algebraic
result of this section is that the dual Hopf algebra is isomorphic to the original Hopf
algebra.

(19.7.3) Theorem. The homomorphism

o«: Hom(R[a], R) — R[p], [+ Zp f(@®)b,

is an isomorphism of Hopf algebras. The generator b; is dual to a{ , that is,
a((al)*) = b;.

Proof. The dual basis element of a” is mapped to b,. Therefore « is an R-linear
isomorphism. It remains to show that « is compatible with the multiplication and
the comultiplication.
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We verify that « is a homomorphism of algebras.

a(fag) = (X, f(@)bo) (X, g@)be) = 3, . f(a®)g(a") (X, bo,cbp)-
The coefficient of b, in a(f - g) is (f - g)(a®) and

(f-&)af)=(f ®g)(Aa®)=(f ®E) (Yo agea® ®a%) =3, . age f(a®)g(ar).

Now we use the equality (19.7.2).
The definition of the comultiplication in Hom(R[a], R) gives for the element
ay, which is dual to a” the relation

1, o+t=p

Aa*(a° ® a®) = a*(@°*") = ’
ol ) ol ) 0, otherwise.

This means that A(ay) = > ;. ,_,a5; ® a;. Since a((at)*) = b;, the gen-

erators of the algebras Hom(R[a], R) and R[b] have the same coproduct. Since

we know already that « is a homomorphism of algebras, we conclude that o pre-

serves the comultiplication. In particular we also have for the b, the formula

ABp) = Yyt rmpbo ® br. 0

The Hopf algebras which we have discussed have other interesting applications,
e.g., to the representation theory of symmetric groups, see [113].

(19.7.4) Remark. If we define @ in (19.7.3) on the R-module of all R-linear maps,
then the image is the algebra R[[p]] of formal power series. The homogeneous
components of degree n in R[b] and R[[b]] coincide. <

(19.7.5) Remark. The duality isomorphism (19.7.3) can be converted into a sym-
metric pairing @ : R[b]® R[a] — R. The pairing is defined by & (¢*¢ ® y) = ¢(y)
and satisfies (b, ® a”) = §7. &

Let ¢: R[a] — R be a homomorphism of R-algebras. We restrict ¢ to the
component of degree n and obtain ¢, : R[a]® — R. We identify ¢ with the family
(¢n). The duality theorem sets up an isomorphism «: Hom(R[a]", R) = R[],
with the homogeneous part R[b], of R[b].

A graded group-like element K of R[b] is defined to be a sequence of polyno-
mials (K, (b1,...,b,) | n € Ng) with Ko = 1 and K,, € R[b], of degree n such
that

(1 AKn =2 iy;—n Ki ® Kj.
Since A is a homomorphism of algebras, the relation

AKy(bis....by) = Kn(Ab1,. .., Aby)
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holds. The comultiplication has the form Ab, =}, , j=n bi ® bj (with by = 1).
If we use two independent sets (b]) and (b!') of formal variables, we can write the
condition (1) in the form

Kb + b by + BB 4+ Yoo Yy i b))

= itj=n K,-(b’,...blf)Kj(bg’,...,bj’-’.)
The simplest example is K, = by,.

(19.7.6) Proposition. The sequence () is an R-algebra homomorphism if and
only if the sequence (Ky) with K, = a(¢y) is a graded group-like element.

Proof. We use the duality pairing (19.7.5), now with the notation &(x ® y) =
(x, ). Let (Ky) be group-like and define alinear map ¢, : R[a]" — Rby ¢,(y) =
(Kyu,y). Then for x € R[a]* and y € R[a]’ withi + j =n

Pn(xy) = (Kn,xy) = (AKy, x ® y) = (Ki, x)(Kj,y) = @i (x)p; ().

Hence (¢;,) is an algebra homomorphism.

Conversely, let ¢: R[a] — R be an algebra homomorphism with restriction
¢n: Rla]® — Rindegree n. We set K,, = o(¢,). A similar computation as above
shows that (K} ) is a group-like element. O

(19.7.7) Remark. The algebra homomorphisms ¢: R[a] — R correspond to fam-
ilies of elements (A; € R |i € N) via ¢ — (¢(a;) = A;). Given a family (4;) the
corresponding group-like element is obtained as follows. From

L+ At + Aot +--0) = D oAby =3, 0(af)by = a*(p)
we see that K, (b1, ..., by,) is the component of degree n in Zp APb,. &

We now return to classifying spaces and apply the duality theorem (19.7.3). We
have the Kronecker pairing k : H*(BO; F,) @ H«(BO; ;) — F2, x®y — (x,y)
and the duality pairing (19.7.5) a: Fo[w] ® F2[u] — [, now with variables w, u
in place of a, b. We also have the isomorphism (*: F[w] = H*(BO;[F;) from
the determination of the Stiefel-Whitney classes. We obtain an isomorphism of
Hopf algebras {x: F2[u] — H«(BO;[F;) determined via algebraic duality by the
compatibility relation ({*x,Cxy) = @(x ® y). The generators of a polynomial
algebra are not uniquely determined. Our algebraic considerations produce from the
universal Stiefel-Whitney classes as canonical generators of H*(BO; [,) canonical
generators of H«(BO; [F,) via .

In a similar manner we obtain isomorphisms H.(BU; Z) = Z[d, d>, . . .] (vari-
ables ¢, d) and H.(BSO; R) = R[q1,q>, . - .] (variables p, q).
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Problems

1. Verify the following polynomials b,, for || p|| = 4 = |I(p)|:

b©0.0.0.1) = bf — 4b3bs 4 2b3 + 4b1b3 — 4by, 1(p) = (4);
b1.0.1) = biba —2b3 — bi1b3 + 4ba, I(p) = (1,3);
b,2) = b3 —2b1b3 + 2ba, I(p) = (2.2);
b1y = bi1b3 —4by, I(p) = (1,1,2);
by = ba, I(p) = (1,1,1,1).

These b, are the coefficients of a” in U[4] = ), a”b,. Check that U[4] is symmetric in
the a’s and b’s.

2. The assignment R[a] ® R[p] — R,a® @by > (a®)*(bp) = 87 is a symmetric pairing.
(The formal element U = ) 0 a”b,, could be called a symmetric copairing.)

19.8 Characteristic Numbers

Let kg: X — BO(n) be a classifying map of an n-dimensional bundle. It induces
a ring homomorphism H*(BO(n);F;) — H*(X;[F,). We can also pass to the
stable classifying map X — BO and obtain Kg‘: H*(BO;[F,) — H*(X;[).
This homomorphism codifies the information which is obtainable from the Stiefel—
Whitney classes. We use the isomorphism F,[w] =~ H*(BO;[F;) and the duality
theorem (19.7.3). We use a slightly more general form. Let S* be a graded R-
algebra; the grading should correspond to the grading of R[a], there are no signs.
We obtain a graded algebra Homg (R[a], S*) where the component of degree k
consists of the homomorphisms of degree k. The product in this algebra is defined
by convolution. Then we have:

(19.8.1) Theorem. There exists a canonical isomorphism
a: Homg(R[a], S*) = S*[[b]]

of graded R-algebras. Here S*[[b]] = S*[[b1, b2, ...]] is the algebra of graded
Sformal power series in the b; of degree —i. The isomorphism o sends the R-homo-
morphism ¢: Rla] — S™* to the series Zp @(a®)by. O

In our example we obtain from K; : H*(BO; ) > H*(X; [F,) aseriesv(§) €
H*(X; [F2)[[u]] of degree zero. The constant term is 1, the multiplicativity relation
v(E ®n) = v(§)v(n) and the naturality v( f*n) = f*v(n) hold. For a line bundle
n we have v(n) = 1 + wy(nuy + wi(n)®us + ---. These properties characterize
the assignment & +— v(§).

We can apply a similar process to oriented or complex bundles. In the case of
a complex oriented theory i*(—) we obtain series v(§) € h*(X)[[d]] which are
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natural, multiplicative and assign to a complex line bundle 7 the series v(n) =
L+ ci(ndy +ci(n)?da+---.

Interesting applications arise if we apply the process to the tangent bundle of
a manifold. Let us consider oriented closed n-manifolds M with classifying map
kym : M — BSO of the stable oriented tangent bundle. We evaluate the homomor-
phism «y, on the fundamental class [M]

H"(BSO;R) - H"(M;R) — R, x> ky(x)[M].

By the Kronecker pairing duality H,(BSO; R) = Homg(H"(BSO; R), R) this
homomorphism corresponds to an element in H,(BSO; R), and this element is
Kkpr«[M], the image of the fundamental class [M ] € H,, (M ; R) under (kps)«, by the
naturality (x5, (p), [M]) = (p, (kar)«[M]) of the pairing. Under the isomorphism
l«: R[q1,92,...] = H«(BSO; R) the element k[ M ] corresponds to an element
that we denote yso(M) € Rl[q1,qz. . ..]. From the definitions we obtain:

(19.8.2) Proposition. Let tjs denote the oriented tangent bundle of M. Then

xso(M) = (v(zar). [M]).
the evaluation of the series v(tyr) on the fundamental class. O

If p € H*(M) is a polynomial of degree n in the Pontrjagin classes, then
the element (number) p[M] is called the corresponding Pontrjagin number. In a
similar manner one defines a Stiefel-Whitney number by evaluating a polynomial
in the Stiefel-Whitney classes on the fundamental class. A closed n-manifold M
has an associated element yo(M) € [Falui,us,...] = H,(BO;[F,), again the
image of the fundamental class under the map induced by the stable classifying
map kpr: M — BO of the tangent bundle.

(19.8.3) Example. Let us consider M = CP2k. The stable tangent bundle is
n?k*+1 where is 7 is the canonical complex line bundle, now considered as oriented
bundle; see (15.6.6). By the multiplicativity of the v-classes, we have for the tangent
bundle 7,4 of C P2 the relation

v(tar) = v = (1 + pi(qr + pr()?qa + - )T
= (14 c2qy + c*qy + -+ )2

where as usual H*(C P?*; R) = R[c]/(c?**1). Note that p; (1) = c2,by (19.5.6).
The evaluation on the fundamental class yields the coefficient of ¢2* in this series,
since (¢2*,[CP?¥]) = 1 (see (18.7.2)). Modulo decomposable elements in the
indeterminates ¢;, i.e., modulo polynomials in the ¢; with j < k, this value is

2k + 1)gx. o

When we pass to rational coefficients R = Q we can divide by 2k + 1 and
obtain:
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(19.8.4) Proposition. The elements yso(CP2¥),k € N are polynomial generators
of Qlq]. O

In bordism theory it will be shown that the signature of an oriented 4k-manifold
only depends on its image in H.(BSO; Q) = Q[g]. And from the multiplica-
tivity of the signature it then follows that there exists an algebra homomorphism
s: H«(BSO; Q) — Q such that the signature o (M) is obtained as the image of
this homomorphism o/(M) = s(ky)«[M]). We know that the generators C P2¥
have signature 1; see 18.7.2. The ring homomorphism s is determined by the val-
ues A; = s(q;) € Q. Via the duality Q[p] = Hom(QJg], Q) the homomorphism
s corresponds to a group-like element (L, (p1,...,pn) | n € N) where L, is a
polynomial in the Pontrjagin classes of degree 4n such that the evaluation on the
fundamental class is the signature, (L,, [M*k]) = o(M*"). If we expand the for-
mal product [];(1 + A1#; + A»¢7 + - -+) and assume that py is the k-th elementary
symmetric polynomial in the #; (of degree 4), then L, is the component of degree 4n.
The t; are obtained if we split the total Pontrjagin class (formally) into linear factors,
1+ pix + pox2 4+ = [1; (1 + t;x). Fortunately, nature has already split for us
the stable tangent bundle of C P2", the total Pontrjagin class is (1 + ¢2)?"*1;ie.,
we can take #; = ¢ in order to evaluate L, on C P?". This allows us to determine
the coefficients A;: The power series H(c) = 1 + Ajc? + Ayc* + --- has the
property that the coefficient of ¢2” in H(c)?"*! is 1. Hirzebruch [81, p. 14] has
found this power series

¢ 2 B B, , B . Bs .
H(e)= =7 tc=1+4 570207 = 720"+ Q)" -

where the B; are the so-called Bernoulli numbers. The first four values are
1 1 1 1

6 30° 02 T30
The corresponding coefficients in the power series are
1 1 2 1
M==, Ay=——55—, =) =
PT3 T oy BT T 352

From these data we obtain the polynomials L, if we insert in the universal polyno-
mials U [n](p1,.... pniqi.....qn) for g; the value A;. We have already listed the
polynomials U [1], U[2], U[3], U[4]. The result is

1

L= -p1,
13P1

1
L, = 4—5(7172 - pD).

1
Ly=—(62p; — 13 2p3),
3 945( P3 p2p1 +2p7)

1
Ls=——(381ps—71 —19p2 + 22p,p% —3pH.
4 14175( Da DP3p1 p5 +22papy —3p7)
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The polynomials L, are called the Hirzebruch L-polynomials.

Problems

1. Show that yso(M x N) = yso(M)xso(N).

2. Let M be the oriented boundary of a compact manifold. Then yso(M) = 0. (See the
bordism invariance of the degree.)

3. Show that yo(RP3") = u», modulo decomposable elements. Therefore these elements
can serve as polynomial generators of H.(BO; [F2) = [F2[u] in even dimensions.

4. The convolution product of the homomorphisms defined at the beginning of the section
satisfies k7 * Ky = kg,

5. Determine xso(CP?2) and yso(CP%).



Chapter 20
Homology and Homotopy

We begin this chapter with the theorem of Hurewicz which says in its simplest form
that for a simply connected space the first non-zero homotopy group is isomorphic
to the first non-zero integral homology group. In the case of the sphere S” this is
essentially the Hopf degree theorem. In our proof we use this theorem and other
consequences of the homotopy excision theorem. We indicate an independent proof
which only uses methods from homology theory and the Eilenberg subcomplexes
introduced earlier. The theorem of Hurewicz has the important consequence that
a map between simply connected CW-complexes is a homotopy equivalence if it
induces an isomorphism of the integral homology groups (theorem of Whitehead).
Another application is to the geometric realization of algebraic chain complexes as
cellular chain complexes. We will see that under suitable hypotheses we do not
need more cells in a homotopy type than the homology groups predict.

Since homotopy groups are difficult to compute it is desirable to have at least
some qualitative information about them. One of the striking results is the famous
theorem of Serre that the homotopy groups of spheres are finite groups, except in
the few cases already known to Hopf; in particular the stable homotopy groups of
spheres are finite (except 7, (S")). Since for a finite abelian group A the tensor
product A ® Q = 0 and since homology theories are objects of stable homotopy,
this theorem has the remarkable consequence that rationalized homology theories
h«(—) ® Q can be reduced to ordinary rational homology.

Along the way we obtain qualitative results in general. They concern, for in-
stance, statements about finiteness or finite generation and are based on qualitative
generalizations of the theorem of Hurewicz. For the expert we point out that we do
not use the theory of spectral sequences for the proofs. Only elementary methods
like induction over skeleta enter. A basic technical theorem relates in a qualitative
manner the homology of the total space, fibre and base of a fibration. On the alge-
braic side we use so-called Serre classes of abelian groups: Properties like “finite
generation” are formalized. (In the long run this leads to localization of spaces and
categories.)

20.1 The Theorem of Hurewicz

The theorem of Hurewicz relates the homotopy and the homology groups of a space.
In this section H, denotes integral singular homology. Let (X, A4, *) be a pointed
pair of spaces.
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We define natural homomorphisms, called Hurewicz homomorphisms,

hix,ax) =h: mp(X, A, %) - Hy (X, A), n=>2,
hix = h: mn(X, %) — Hp(X), n>1,

such that the diagrams

Tn(X, %) —— 0 (X, A, %) —2 s 01 (A, %)

L L s

Hu(X) —— Ha(X, A) —— Hy—1(4)
commute (compatibility with exact sequences). For this purpose we use the def-
inition 7, (X, *) = [S(n), X]° and 7, (X, A,%) = [(D(n),S(n — 1)), (X, A)]°
of the homotopy groups (see (6.1.4)). We choose generators z, € H,(S(n))
and Z, € H,(D(n),S(n — 1)) such that 0z, = z,—, and ¢«(Z,) = z,, where
q: D(n) - Dm)/S(n — 1) = S(n) is the quotient map. If we fix z;, then
the other generators are determined inductively by these conditions. We define
h: mp(X, A, %) = Hy(X,A) by [f] = f«(Zy) and h: 7,(X, %) — H,(X) by
[f]1+ f«(zn). With our choice of generators the diagram above is then commuta-
tive. From (10.4.4) and the analogous result for the relative homotopy groups we see
that the maps 4 are homomorphisms. The singular simplex A — /9] = S(1),
(to,11) > t; represents a generator z; € H;(S(1)). If we use this generator, then
h: m1(X, %) = Hi(X) becomes the homomorphism which was shown in (9.2.1)
to induce an isomorphism 771 (X, %)% =~ H;(X) for O-connected X .
Recall that we have a right action of the fundamental group

ma (X, A, %) xm1(A, %) > 1, (X, A, %), (x,a)~>x- -«

via transport. We denote by (X, A, ) the quotient of 7, (X, A, *) by the normal
subgroup generated by all elements of the form x — x - o (additive notation in 7).
Recall from (6.2.6) that ng is abelian. Representative elements in 7, which differ
by transport are freely homotopic, i.e., homotopic disregarding the base point.
Therefore the Hurewicz homomorphism induces a homomorphism

'l (X, A, %) — Hy(X, A).

The transport homomorphism 7, (X, A,a;) — m,(X, A, az) along a path from
a; to ap induces an isomorphism of the nﬁ-groups, and this isomorphism is in-
dependent of the choice of the path. We can use this remark: An unpointed map
(D(n), S(n—1)) — (X, A) yields in each of the groups 7/ (X, A, a) a well-defined
element (A path connected). Thus, if 771 (A) is trivial, we can regard 7 (X, A) as
the homotopy set [(D(n), S(n — 1)), (X, A)]. The group 7¥(X, %) is defined to
be the abelianized group 71 (X, %), i.e., the quotient by the commutator sub-
group. We set 7/ (X, %) = m,(X, ) for n > 2 and again we have the Hurewicz
homomorphism /% 7 (X, x) — H,(X).
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(20.1.1) Theorem (Hurewicz). Let the space X be (n — 1)-connected (n > 1).
Then h*: 7l (X, %) — Hy(X) is an isomorphism.

Proof. We have already proved the theorem in the case thatn = 1. Soletn > 2
and then 7/ = m,. Since weak homotopy equivalences induce isomorphisms in
homotopy and homology, we only need to prove the theorem for CW-complexes X .
We can assume that X has a single O-cell and no i-cells for 1 <i <n — 1, see
(8.6.2). The inclusion X"*! C X induces isomorphisms 7#(X) =~ #/f(X"*1)
and H,(X) = H,(X"*!). Since the Hurewicz homomorphisms /4 form a natural
transformation of functors, it suffices to prove the theorem for (n + 1)-dimensional
complexes. In this case X is h-equivalent to the mapping cone of a map of the form
p: A=\S'—>B=\S

For X = S the theorem holds by (10.5.1). By naturality and additivity it then
holds for pointed sums \/ S J” We have a commutative diagram

7w (A) — 1y (B) — 1 (X) — 0

l l l

H,(A) — H,(B) — H,(X) —0

with exact rows. The exactness of the top row is a consequence of the homotopy
excision theorem. O

(20.1.2) Corollary. Let X be simply connected and suppose that H; (X) = 0 for
i <n. Thenmi(X,*)=0fori <nandh: m,(X,*) = H,(X).

Proof. (20.1.1) says, in different wording, that 4 : 7;(X) = H;(X) for the smallest
j suchthat mp (X) =0forl1 <k < j. O

(20.1.3) Theorem. Let (X, A) be a pair of simply connected CW-complexes. Sup-
pose Hi(X,A) = 0 fori < n, n > 2. Then mj(X,A) = 0 fori < n and
h: m,(X, A) - H,(X, A) is an isomorphism.

Proof. Induction over n > 2. We use a consequence of the homotopy excision
theorem: Let A be simply connected and 7; (X, A, *) = 0 for 0 < i < n. Then
(X, A, %) = m,(X/A, %) is an isomorphism. The theorem of Seifert and van
Kampen shows 771(X/A) = {e}. From H;(X,A) = H;(X/A) and (20.1.2) we
conclude 7;(X/A) = 0 fori < n.

Let n = 2. Since X and A are simply connected, 71 (X, 4, %) = 0 and the
diagram

(X, A, %) —— ma(X /A, %)

I |=

Hy(X, A) —=— H,(X/A)

shows that 4 is an isomorphism.
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By induction we know that 7; (X, A,*) = 0 for 0 < j < n. Then a similar
diagram shows that /i : 7, (X, A, x) = H,(X, A) is an isomorphism. O

(20.1.4) Theorem. Let f: X — Y be a map between simply connected spaces.
Suppose fi: Hi(X) — H;(Y) is bijective for i < n and surjective for i = n
(n = 2). Then fy: 7 (X) — 7; (Y) is bijective for i < n and surjective fori = n.

Proof. We pass to the mapping cylinder and assume that f is an inclusion. The hy-
pothesis is then equivalent to H; (Y, X) = 0 and the claim equivalent to 77; (¥, X)) =
0 fori < n. Now we use (20.1.3). O

Recall: A map f: X — Y between CW-complexes is an h-equivalence if
and only if fi: m;(X) = 7;(Y) for each i. Together with (20.1.4) we obtain a
homological version of this result:

(20.1.5) Theorem (Whitehead). Let f: X — Y be a map between simply con-
nected CW-complexes, which induces isomorphisms of homology groups. Then f
is a homotopy equivalence. O

In (20.1.5) one cannot dispense with the hypothesis that the spaces are simply
connected. There exist, e.g., so-called acyclic complexes X withreduced homology
groups vanishing but with non-trivial fundamental group. Moreover it is important
that the isomorphism is induced by a map.

(20.1.6) Proposition. Let X be a simply connected CW-complex with integral ho-
mology of a sphere, Hy(X) =~ Hy(S"), n > 2. Then X is h-equivalent to S".

Proof. By (20.1.2), m,(X) = H,(X), and this group is assumed to be isomorphic
to Z. Let f: 8" — X represent a generator. Then f: 7,(S") — m,(X) is an
isomorphism and also fx: H,(S") - H,(X). Now we use (20.1.5). O

The preceding proposition has interesting applications. It is known that a closed
connected n-manifold of the homotopy type of the n-sphere is actually homeomor-
phic to the n-sphere. Therefore these spheres are characterized by invariants of
algebraic topology.

(20.1.7) Example. The spaces S” v S v §2" and S" x S™ are for n > 2 simply
connected and have isomorphic homology groups. But they are not h-equivalent,
since their cohomology rings are different. <

The homological theorem of Whitehead (20.1.5) no longer holds for spaces
which are not simply connected, even in the case when the map induces an isomor-
phism of the fundamental groups. But it suffices to consider the universal covering,
as the next theorem shows.
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(20.1.8) Theorem. Let f: X — Y be a map between connected CW-complexes
which induces an isomorphism fi: m1(X) — m(Y). Let p: X — X and
q: Y — Y be the universal coverings. There exists a lifting F : X >7Y of f,
i.e, qF = fp. Suppose F induces an isomorphism of the homology groups. Then

f is a homotopy equivalence.

Proof. We choose isomorphisms 71(X) =~ G =~ 71(Y) which transform f into
the identity of G. We then consider p and g as G-principal bundles with left action
and F: X — Y asa G-map. We obtain a morphism of the associated fibre bundles.

X ——EGxg X —BG

[

Y — EGxgY — BG

From the assumption and (20.1.5) we see that F is an h-equivalence. The exact
homotopy sequence and the Five Lemma show that EG X F induces isomorphisms
of the homotopy groups.

We now consider the second associated fibre bundles P : EG X¢g X — X and
0: EG xg Y — Y. A section s of P arises from a map o: X — EG such
that o0(gx) = o(x)g~! forx € X and g € G, see (14.1.4). A map of this type
is essentially the same thing as a classifying map of p. Since the fibre of P is
contractible, P induces isomorphisms of the homotopy groups, and the same holds
then for a section s of P. We see that f = Q o(EG X¢g F') os induces isomorphisms
of homotopy groups; hence f is a homotopy equivalence. O

(20.1.9) Corollary. In the situation of (20.1.8) F is a G-homotopy equivalence.

Proof. Leth: Y — X be h-inverse to f and H : Y > X a lifting of H which is a
G-map. A homotopy of 4 f can be lifted to a G-homotopy of HF. The end of this
homotopy is a bundle automorphism. O

Let G be a discrete group which acts on the pair (Y, B). The induced maps
of the left translations by group elements yield a left action of G on H, (Y, B) via
homomorphisms, i.e., H,(Y, B) becomes a module over the integral group ring
ZG of G.

Suppose X is obtained from A by attaching n-cells (n > 3). Let p: ¥ — X
be a universal covering and B = p~!(A). Then Y is obtained from B by attaching
n-cells. The group w = m1(X) of deck transformations acts freely on the set
of n-cells in Y ~ B. Hence H,(Y, B) is a free Zm-module, the basis elements
correspond bijectively to the n-cells of X ~ A. Theorem (20.1.3) now yields:

(20.1.10) Theorem. Let X be a connected CW-complex and let n > 3. Then
Tn (X", X" VY is afree Zmi (X" V)-module. A basis of this module consists of the
characteristic maps of the n-cells. The map h*: (X", X" 1) — H,(X", X" 1)
is an isomorphism. O
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The exact sequence
Tne1 (X" X" = 1, (X", X" = my (XML X =0

is for n > 3 a sequence of Zm (X" ') = Zm;(X")-modules. Because of the
isomorphism 7, (X, X"7!) 2 m,(X" !, X*~1) the sequence is a presentation of
the Zm; (X" !)-module 7, (X, X"~!). The induced sequence of the *-groups is
also exact. This gives the following theorem for n > 3.

(20.1.11) Theorem (Hurewicz). Let (X, A) be a CW-pair with connected X and A.
Let (X, A) be (n — 1)-connected (n > 2). Then h*: #(X, A, ) = H,(X, A).

Proof. We now give a purely homological proof of the Hurewicz theorems which
also covers the relative case n = 2 for spaces which are not simply connected. The
proof is by induction. The induction starts with (9.2.1). We assume the absolute
theorem for 1 <i < n — 1 and prove the relative theorem for n. We consider the
standard simplex A[k] = [eo, ..., ex] as the usual simplicial complex and denote
its /-skeleton by A[k]’. Let S ,?_1 (X, A, %) be the chain group spanned by simplices
o: A[k] — X such that o(A[k]"™!) C A4 and o(A[k]®) = {*}, modulo Si(A).
Let H,g”_l) (X, A, x) be the n-th homology group of the resulting chain complex.
The inclusion of chain complexes induces an isomorphism H,E"_l) (X, A, %) =~
H, (X, A) for an (n — 1)-connected pair (X, A) with path connected A, see (9.5.4).

We have to adapt the homotopy groups to the simplicial setup. We consider
elements of 7, (X, A, *) as homotopy classes of maps f: (A[n], d0A[n],eq) —
(X, A, x). For this purpose we fix a homeomorphism «: (D(n), S(n — 1), x) —
(A[n], 0A[n], eg) which sends the generator Z, defined at the beginning to the
standard generator [id(A[n])] € H, (A[n], 0A[n)).

The Hurewicz homomorphism then sends the homotopy class of f to fi[id],
and this class is an element in H,g”_l) (X, A,*). We now construct an inverse

(/8 H,f"_l)(X, A, %) — 7 (X, A, *) of h. We assign to a singular simplex
o: (An],dA[n], Aln]®) — (X, A, %)

the element in 7/ (X, A, *) represented by o. If o(A[n]) C A, then the cor-
responding homotopy class is zero. Since the 7/-group is abelian, we obtain a
well-defined homomorphism v : S”~1(X, A, *) — 7#(X, A, *). The simplices o
are cycles (since S~} (X, A, *) = 0), and thus it remains to show that the com-
posite ¥ o d: S,’Z;%(X, A, x) — n,’f(X, A, =) is trivial, in order to obtain . We
reduce the problem to a universal situation. For this purpose we define elements
by € mu(0A[n + 1], Aln + 1171, e),

by = ([d3] - [ereoD)[d31[d7] 3],
n+1
by = [dg*'] - lereo] + Y (=1 [d]*"], n =3,

i=1
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where [vw] denotes the affine path class in A[n + 1] from v to w, and we use
the transport along this path. (Multiplicative notation in 5, additive notation for
n > 3. This definition corresponds to the homological boundary operator, but we
have to transport the face maps to the base point eg. For b, we have to pay attention
to the order of the factors, since the group is non-abelian.)

Let us write K = A[n + 1] and let 7: (K, K"!, K% — (X, A, %) be a basis
element of S771(X, A, x). Then

yo[el = 3, (=1 [vd '] = f[ba]* = <L jE[bal®

where j denotes the inclusion dA[n + 1] C A[n + 1]. Thus it remains to show that
Jx[bn] = 0.

The skeleton K”~! is (n — 2)-connected (use e.g., the induction hypothe-
sis). Hence, by the inductive assumption, 7f_ (K", e9) — H,_1(K"™!) is
an isomorphism. The commutativity 0h = hd now shows that d[b,] = 0, since
oh[b,] = 0 by the fundamental boundary relation for singular homology. We have
the factorization

e o’
8: ﬂn(Kn’ Kn_l,e()) ]—> ﬂn(K9 Kn_l’e()) — JTn_l(Kn_l,e()),

and 9’ is an isomorphism, since K is contractible. This finishes the inductive step
for the relative Hurewicz theorem. For n > 2 the absolute theorem is a special case
of the relative theorem. O

An interesting consequence of the homological proof of the Hurewicz theorem
is a new proof of the Brouwer—Hopf degree theorem 7, (S") = Z.

20.2 Realization of Chain Complexes

The computation of homology groups from the cellular chain complex shows that
one needs enough cells to realize the homology groups algebraically as the homol-
ogy groups of a chain complex. It is interesting to know that in certain cases a
converse holds. We work with integral homology.

(20.2.1) Theorem (Cell Theorem). Let Y be a 1-connected CW-complex. Suppose
H;(Y) is finitely generated for j < n. Then Y is homotopy-equivalent to a CW-
complex Z with finitely many j-cells for j < n.

The proof of this theorem is based on a theorem which says that under suitable
hypotheses an algebraic chain complex can be realized as a cellular chain complex.
We describe the inductive construction of a realization. We start with the following:

20.2.2 Data and notation.
(1) Y is a CW-complex with i -skeleton Y;.
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(2) Z, is an r-dimensional CW-complex.

3) f:Z, — Y is acellular map.

@) Ci(Z) = Hi(Z;, Zi_1; Z) is the i -th cellular chain group.

(5) f induces a chain map @e: Co(Z) — Co(Y).

(6) We attach (r + 1)-cells to Z, such that f can be extended to F:

f
s’ Z, Y,

I

r+1 F
HDj *>Zr+1 *>Yr+1.

(7) From this diagram we obtain a resulting diagram of chain groups

A1 —— C(2) = Cm1(2)

J{W J{‘Pr l(or—l
iy dy

Cri1(Y) —— Cr(Y) —— Cr1(Y)

with A, 41 = Hy41(Z;+1, Z;) afree abelian group with a basis given by the
(r + 1)-cells, and v induced by (F, f). &

We now start from a diagram in which A, 4; is a free abelian group with basis
(aj | j € J). The horizontal parts should be chain complexes, i.e., d§ = 0. Can
this diagram be realized geometrically?

(20.2.3) Proposition. A realization exists, if the following holds:
(1) f«: Hi(Z,) — H;(Y) is bijective for i <r — 1 and surjective fori = r;
2) r=2;
3) Z, and Y are 1-connected.

Proof. Suppose we are given for each j € J a diagram

bj
ST —Z,

L, b

J
Dl —— Y41,

We attach (r + 1)-cells to Z, with attaching maps b; to obtain Z, 1 and use the B;
toextend f to fr41: Zy+1 — Yrq1. Then A, 41 = Hy41(Z, 41, Z,) canonically
and basis preserving.

We consider f as an inclusion. The assumption (1) is then equivalent to
H;(Y,Z,) =0fori <r.Sincer >2andm;(Y) = Owealsohave 71 (Y, 4+1) = 0.
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Therefore we have the relative Hurewicz isomorphism A: 7,41 (Yr41,2Z,) =
H,1(Yr41.Z,), since Hi(Yy41,2Z,) = H;(Y,Z,) = 0 fori < r. The diagram
represents anelementin 7, 41 (Y, 41, Z,). Letx; = h([B;,b;]) € Hr41(Yr41, Z;)
be its image under the relative Hurewicz homomorphism. This element can be de-
termined by homological conditions. The correct maps 6 and y are obtained, if x;
has the following properties:

(1) The image of x; under 0: H,41(Y,41,Z,) — H(Z;) - H(Z,, Z;_1)

is 8(a;).

(2) The image of Xj under y: Hr41(Yr41.Z;) = Hrp1(Yr41,Yr) is 1ﬁ(al)
We show that there exists a unique element x; with these properties. We know
H (Y, r,Z,) = 0and H;(Y,—1Z,—1) = 0, j > r for reasons of dimension.
The exact sequence of the triple (Y;+1, Yr, Z) shows that y is injective. Hence
there exists at most one x; with the desired properties. The existence follows if we
show that Im(d, y) = Ker(¢, —d; ;). This follows by diagram chasing in the next
diagram with exact rows

d
Hyp1(Yr41.Zr—1) — Hr1(Yr41, Zy) — Hy(Zy, Zr—1) — Hy (Yr 41, Zr—1)

t P e :

r+
Hr—H(Yr-H, Yr—l) — Hr-H(Yr-‘rlv Yr) *; Hr(Yrv Yr—l) — Hr(Yr-Hv Yr—l)-

One uses that « is surjective and § injective. O

Proof. Since Y is simply connected, we can assume that Y has a single 0-cell and
no 1-cells. We construct Z inductively with Zy = {*} and Z; = {*}. We choose a
finite number of generators for 75(Y) = H,(Y) and representing maps S2 — Y5.
They yield a cellular map f>: Z, = \/ $? — Y, and the induced map is surjective
in H, and bijective in H;, j < 2. This starts the inductive construction.

Suppose fr: Z, — Y is given such that f..: H;(Z,) — H;(Y) is bijective
for i < r — 1 and surjective for i = r. We construct a diagram of type (7) in
20.2.2 as follows. We have H,(Z,) = Ker(d) and H,(Y) = Ker(d})/Im(d] ;)
and the map (f)«: H-(Z;) = Ker(d) — H,(Y) is surjective. Let A,4+; be the
kernel of (f;)« and §: H,.(Z,) C C,(Z,). As a subgroup of C,(Z,) it is free
abelian. Since Z, has, by induction, a finite number of r-cells, the group 4,4+
is finitely generated. By definition of A, ., the image of ¢, 8 is contained in the
image of d; ;. Hence there exists y making the diagram commutative. We now
apply (20.2.3) in order to attach an (r + 1)-cell for each basis element of A,4; and
to extend f, to f/ ,: Z, ., — Y. By construction, (f,, )« is now bijective on
H,. If this map is not yet surjective on H, 11 we can achieve this by attaching more
(r 4+ 1)-cells with trivial attaching maps; if H,1(Y) is finitely generated, we only
need a finite number of cells for this purpose. We continue in this manner as long as
H.(Y) is finitely generated. After that point we do not care about finite generation.
The final map f: Z — Y is a homotopy equivalence by (20.1.5). O



504 Chapter 20. Homology and Homotopy

20.3 Serre Classes

Typical qualitative results in algebraic topology are statements of the type that the
homotopy or homology groups of a space are (in a certain range) finite or finitely
generated or that induced maps have finite or finitely generated kernel and cokernel.
A famous result of Serre [170] says that the homotopy groups of spheres are finite,
except in the cases already known to Hopf.

Here are three basic ideas of Serre’s approach:

(1) Properties like ‘finite’ or ‘finitely generated’ or ‘rational isomorphism’ have
a formal structure. Only this structure matters — and it is axiomatized in the
notion of a Serre class of abelian groups or modules.

(2) One has to relate homotopy groups and homology groups, since qualitative
results about homology groups are more accessible. The connection is based
on the Hurewicz homomorphism.

(3) For inductive proofs one has to relate the homology groups of the basis, fibre,
and total space of a (Serre-)fibration. This is the point where Serre uses the
method of spectral sequences.

A non-empty class € of modules over acommutative ring R is a Serre class if the
following holds: Let0 —- A — B — C — 0 be an exact sequence of R-modules.
Then B € € if and only if A,C € €. We call € saturated if A € € implies that
arbitrary direct sums €9 ; A of copies of A4 are contained in €. The class consisting
of the trivial module alone is saturated. A morphism f: M — N between R-
modules is a €-epimorphism (€-monomorphism) if the cokernel (kernel) of f isin
€, and a €-isomorphism if it is a €-epi- and -monomorphism. We use certain facts
about these notions, especially the €-Five Lemma. The idea is to neglect modules
in €, or, as one says, to work modulo €; so, instead of €-isomorphism, we say
isomorphism modulo €. Here are some examples of Serre classes.

(1) The class containing only the trivial group.
(2) The class ¥ of finite abelian groups.
(3) The class § of finitely generated abelian groups.

(4) Let R be a principal ideal domain. The class € consists of the (finitely
generated) R-modules. If R is a field, then we are considering the class of
(finite-dimensional) vector spaces.

(5) Let R be a principal ideal domain. The class € consists of the (finitely
generated) R-torsion modules. A module M is a torsion module, if for each
X € M there exists 0 % A € R such that Ax = 0.

(6) Let P C N be a set of prime numbers. Let Zp C Q denote the subring
of rational numbers with denominators not divisible by an element of P. If
P =0,thenZ = Q. If P = {p}, then Zp = Z,) is the localization
of Z at p. If P contains the primes except p, then Zp = Z[p~'] is the
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ring of rational numbers with denominators only p-powers. The rings Zp
are principal ideal domains. Let P’ be the complementary set of primes. An
abelian group A is a P’-torsion group if and only if A ®z Zp = 0.

Let €p be the class of P’-torsion groups. Then a homomorphism ¢: A — B
is a €p-isomorphism if and only if ¢ ®z Zp is an ordinary isomorphism.
Similarly for epi- and monomorphism. This remark reduces the €p Five
Lemma to the ordinary Five Lemma after tensoring with Z p. This simplifies
working with this class'.

(20.3.1) Proposition (Five Lemma mod €). In the next proposition we use the
same notation as in (11.2.7). The considerations of that section then yield directly
a proof of the following assertions.

(1) b €-epimorphism = b €-epimorphism.

(2) d €-epimorphism, e €-monomorphism = d €-epimorphism.

(3) The hypotheses of (1) and (2) imply: ¢ €-epimorphism.

(4) d €-monomorphism = d ‘€-monomorphism.

(5) a €-epimorphism, b €-monomorphism = b €-monomorphism.

(6) The hypotheses of (4) and (5) imply: ¢ €-monomorphism. O

The kernel-cokernel-sequence shows other properties of €-notions.

(20.3.2) Proposition. Given homomorphisms f: A — Bandg: B — C between
R-modules.
(1) If f and g are €-monomorphisms (-epimorphisms), then g f is a €-mono-
morphism (-epimorphism).
(2) Iftwo of the morphisms [, g, and g f are €-isomorphisms so is the third. [

20.4 Qualitative Homology of Fibrations

In this section we work with singular homology with coefficients in the R-mo-
dule M.

(20.4.1) Theorem (Fibration Theorem). Let p: E — B be a (Serre-) fibration with
0-connected fibres. Let (B, A) be a relative CW-complex with t-skeleton B'. We
assume that A = B™! = B® = ... = B5~! foran s > 0 and that there are only
a finite number of t-cells for t < e. Finally we assume that H;(F; M) € € for
0 < i < r and all fibres F of p. We write E' = p~'(B"). Then the following
holds:

(1) Let € be saturated. Then py: H;(E,E~';M) — H;(B,B™'; M) isa €-

isomorphism fori <r + s — 1 = o« and a €-epimorphism fori = a + 1.

'In a more abstract setting one can construct localizations of categories so that €-isomorphisms
become isomorphisms in the localized category, etc.
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(2) Let € be arbitrary. Then py is a €-isomorphism for i < o and a €-epi-
morphism fori = « + 1 where now o = min(e + 1,r +s — 1).

We remark that r > 1. For r = 1 we make no further assumptions about F.

Since a weak homotopy equivalence induces isomorphisms in singular homo-
logy, we can assume without essential restriction that B is a CW-complex (pull
back the fibration along a CW-approximation). We reduce the proof of the theorem
by a Five Lemma argument to the attaching of ¢-cells. We consider the following
situation. Let

(@.9): Uq (Dg, S5 ") — (B, B))

be an attaching of z-cells. Let p: E — B be a fibration and set E' = p~!(B’).
We assume that the fibres are 0-connected and homotopy equivalent. We pull back
the fibration along ® and obtain two pullback diagrams.

ue, Y- g LE/ LN
lupa P al; lp’
up, —2+pB st —2 pr

We apply homology (always with coefficients in M) and obtain the diagram

H{(E.E')) —2 5 H;(B. B

T\P* <I>*T

@a as* p—
@aHi(EavEé)*p>®a Hl'(Dt Si=1.

a’~a

We already know that @, is an isomorphism. In order to show that W, is an
isomorphism, we attach a single #-cell, to simplify the notation. Let By be obtained
from B by deleting the center ®(0) of the cell.

(20.4.2) Lemma. Let p: X — B be afibration with restrictions p': X' — B’ and
po: Xo — Bo. Letq: Y — D' be the pullback of p, and similarlyq': Y’ — S'~!
and qo: Yo — D' ~ 0. Then

W, : h,‘(Y, Y/) — hi(X, X/)
is an isomorphism for each homology theory.
Proof. We have a commutative diagram

W

hi (Y, Y) hi(X,X’)
l‘” l(z)
hi (Y, Yo) i hi (X, Xo)
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Since B’ is a deformation retract and p a fibration, also X’ is a deformation retract
of Xgy. Therefore (2) is an isomorphism by homotopy invariance. The map (4) is
an isomorphism by excision. For similar reasons (1) and (3) are isomorphisms.
Finally (5) is induced by a homeomorphism. O

By the homotopy theorem for fibrations, a fibration over D! is fibre-homotopy
equivalent to a product projection D! x F — D!. We use such equivalences and a
suspension isomorphism H; (D? x F, S'~! x F) =~ H;_,;(F) and obtain altogether
a commutative diagram (P, a point and F, the fibre over P,):

Hi(E,E') —2 5 H;(B, B

] ]

D, Hi—1(Fs) —— D, Hi—t(Pa).

(20.4.3) Note. The considerations so far show that the bottom map has the following
properties:
(1) Isomorphism fori <t (since fibres are 0-connected).
(2) Epimorphism always.
(3) Suppose H;(F,) € € for0 < i < r. Then each particular map H;_;(F,) —
H;_;(Py) is a €-isomorphism for 0 < i —t < r. Thus the total map is
a €-isomorphism if either € is saturated or if we attach a finite number of

cells. o

We apply these considerations to a fibration p: E — B over a relative CW-
complex (B, A) as in the statement of the theorem. In this situation the previous
considerations yield:

Let € be saturated. Then p.: H;(E', E'"') — H;(B', B'™!) is a €-iso-
morphism for each t > 0, if i < r + 5. We only have to consider ¢ > s. By
(20.4.3), we have a €-isomorphism in the cases i < ¢ andi > ¢t > i —r. These
conditions hold for each ¢, if s > i —r. If, in addition, there are only finitely many
t-cells for ¢t < e, then we have a €-isomorphism for arbitrary € and each ¢, if
i <min(e + 1,7 + s — 1), by the same argument.

We finish the proof of theorem (20.4.1) with:

(20.4.4) Lemma. Let (B, A) be a relative CW-complex with t-skeleton B'. Let
p: E — B beafibration and E' = p~!'(B"). Suppose p«: H;(E', E'"\; M) —
H;(B', B'='; M) is a €-isomorphism for each t > 0 and each 0 < i < «, then
px: Hi(E,E7'; M) — H;(B, B~'; M) is a €-isomorphism for0 < i < « and a
€-epimorphism fori = a + 1.

Proof. We show by induction on k > 0 that p,: H;(E*, E™') — H;(B*, B™1)
is a €-isomorphism (k > 0). For the induction step one uses the exact homology
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sequence for the triple (EX, EX~!, E~1), and similarly for B, and applies the €-
Five Lemma to the resulting diagram induced by the various morphisms p.. For
the epimorphism statement we also use part (2) in (20.4.3). The colimit k — oo
causes no problem for singular homology. O

The statement of (20.4.1) is adapted to the method of proof. The hypotheses
can be weakened as follows.

(20.4.5) Remark. Let (X, A) be an (s — 1)-connected pair of spaces. Then there
exists a weak relative homotopy equivalence (B, A) — (X, A) from a relative CW-
complex (B, A) with A = B*~!. We pull back a fibration over ¢: £ — X along
this equivalence and use the fact that weak equivalences induce isomorphisms in
singular homology. Then part (1) of (20.4.1) yields that g« : H;(E,q ' (A); M) —
Hj(X,A; M) is a €- isomorphism for j < r 4+ s — 1 and a €-epimorphism for
i=r+s. <

(20.4.6) Remark. Let X be a 1-connected space such that H;(X;Z) is finitely
generated for i < e. Then there exists a weak equivalence B — X such that B has
only a finite number of z-cells for # < e. We use this result in the next section. <

Problems

1. Suppose that H; (F; M) = 0for 0 < j < r. Let B be (s — 1)-connected. Then
px: Hi(E,F;M) — H;(B,*; M) is an isomorphism for j < r + s — 1. We can now
insert this isomorphism into the exact homology sequence of the pair (E, F) and obtain an
exact sequence

Hyys—1(FiM) — Hy41-1(E: M) — Hyy5—1(B; M) — -
— H{(F:M) — H{(E:M) — H{(B; M) — 0

which is analogous to the exact sequence of homotopy groups. Compare these sequences
via the Hurewicz homomorphism (M = Z).

20.5 Consequences of the Fibration Theorem

We use exact sequences and the fibration theorem to derive a number of results.
We consider a fibration p: E — B and assume that B and F = p~!(x) are
0-connected; then E is O-connected too. We use the notation

ZeC(r, M) & Hi(Z;:M)e€for0<j <r <oo.

(M an R-module. In the case that M = Z we write €(r). For r = 1 there is no
condition.) Let ¥, § denote the class of finite, finitely generated abelian groups,
respectively. We use homology with coefficients in the R-module M if nothing
else is specified.
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(20.5.1) Remark. The homomorphism p«: H;(E, F; M) — H;(B,*; M) is al-
ways an isomorphism for j < 1 and an epimorphism for j = 2 (see (20.4.1)). The
homomorphism ps: H;(E; M) — H;(B; M) is an isomorphism for j = 0 and
an epimorphism for j = 1. O
(20.5.2) Theorem. Suppose F € €(r, M). Let € be saturated. Suppose B is
s-connected. Then py: H;(E, F) — H;(B, %) is a €-isomorphism fori <r + s
and a €-epimorphism fori = r + s + 1. Moreover py: H;(E) — H;(B) is a
€-isomorphism fori < r and a €-epimorphism fori =r.

Proof. The first statement is (20.4.1). For the second statement we use in addition
the exact homology sequence of the pair (E, F). O

(20.5.3) Theorem. Let € be saturated.
(1) F,Be€(r,M)= E c€(r,M).
2) Fe€(r,M), EcC€r+1,M)=BecC(r+1,M).
(B3) Be€(r+1,M), Ee€€(r,M), B l-connected = F € €(r,M).
Proof. (1)and (2) are consequences of the fibration theorem and the exact homology

sequence of the pair (E, F). (3) is proved by induction on r. For r = 1 there is
nothing to prove. For the induction step consider

Hy (B s M)+ H.(E.F: M) —— H,_(F; M) —— H,_\(E: M)

(1) is a € isomorphismforr — 1 +s—1 =r,sinces =2and F € €(r — 1, M)
by induction. From the hypotheses H,(B;*; M), H,_1(E; M) € € we conclude
H,_(F;:M)et€. O

(20.5.4) Theorem. Let € be arbitrary and assume that B is 1-connected.
(1) F,Be€(r,M), Beg(r—1)= E e€€(r,M).
Q) Fe€(r,M), Ec€(r+1,M), Be§(r)=Bec€r+1,M).
B)Be€r+1,M), Ec€(r,M), Beg(r)= F €€, M).

Proof. As for (20.5.3). The 1-connectedness of B is needed in order to apply the
cell theorem (see (20.4.6)). O

(20.5.5) Corollary. Suppose E is contractible (path fibration over B). Then
F >~ QB, the loop space of B. Let B be simply connected. Let € be saturated.
Then B € €(r + 1, M) ifand only if QB € €(r, M'). Moreover B € §(r + 1) if
and only if QB € §(r). Similarly for ¥ instead of '§. O

(20.5.6) Proposition. Let A be a finitely generated abelian group. Then the
Eilenberg—Mac Lane spaces K(A,n) are contained in §(00). If A is finite, then
K(A,n) € F(0c0). Moreover K(A,1) € §(c0), K(A,1) € €(co, M) implies
K(A,n) € €(oco,M). If € is saturated, then K(A,1) € €(co, M) implies
K(A,n) € €(co, M).
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Proof. We use the path fibration K(A4,n — 1) - P — K(A, n) with contractible
P and induction with (20.5.3) and (20.5.4). In the case that n = 1, standard
constructions yield models for K(A, 1) with a finite number of cells in each di-
mension. One uses K(A1,1) x K(A3,1) = K(A; x A,,1), K(Z,1) = S, and
K(Z/m,1) = S®/(Z]m). O

Let X be a (k — 1)-connected space (k > 2). We attach cells of dimension
J = k 4+ 2to X in order to kill the homotopy groups 7;(X) for j > k + 1. The
resulting space in an Eilenberg—Mac Lane space K(m, k), m = m;(X), and the
inclusion ¢: X — K(m, k) induces an isomorphism 5% (¢). We pull back the path
fibration over K (7, k) and obtain a fibration

K(mk—1)—>Y > X

with k-connected Y, and ¢: ¥ — X induces isomorphisms 7;(q), j > k. This
follows from the exact homotopy sequence. If 7 € € and € is saturated, then
qg«: Hij(Y; M) — H;(X;M) is a €-isomorphism for j > 0, by the fibration
theorem, since K (7, k — 1) € €(00). Similarly for arbitrary € when X is of finite
type.

20.6 Hurewicz and Whitehead Theorems modulo Serre classes

Let € be a Serre class of abelian groups with the additional property: The groups
Hy(K(A,1)) € € whenever A € € and k > 0. In this section we work with
integral singular homology.

(20.6.1) Theorem (Hurewicz Theorem mod €). Suppose X is 1-connected and
n > 2. Assume that either € is saturated or H; (X) is finitely generated for i < n
and € is arbitrary. Then the following assertions are equivalent:

(1) I(n): mi(X,*x)e€forl <i <n.

(2) H(n): Hi(X)eCforl <i <n.
If TI(n) or H(n) holds, the Hurewicz homomorphism hy, : 7w, (X, %) — H,(X) is
a C-isomorphism.

Proof. The proof is by induction on 7.

(1) Let QX — PX l> X be the path fibration with contractible PX. It
provides us with a commutative diagram

D (PX, QX %) — s 1 (QX, %)

7Tn(X7 *)

| | |
Hy (f) d

Hy(X, %) 22 H(PX,QX) —2— Hp_1(2X).
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The boundary maps d are isomorphisms, since PX is contractible. By a basic
property of fibrations 7, () is an isomorphism.

By the ordinary Hurewicz theorem A5 : 72 (X, %) — H>(X) is an isomorphism.
(The method of the following proof can also be used to prove the classical Hurewicz
theorem.)

(2) Letn > 2. Assume that the theorem holds for n — 1 and that IT(n) holds. We
want to show that H (n) holds and that /1, : 7w (X, %) — H,(X) is a €-isomorphism.
We first consider the special (3) case that 72 (X) = 0 and then reduce the general
case (4) to this special.

(3) Thus let m2(X) = 0. Then 7; (RX) = w1 (X) e €forl <i <n—1,
and QX is 1-connected. If € is saturated, then h,—1: 7,1 (RX) - Hp—1(2X)
is a €-isomorphism by induction. If H;(X) is finitely generated for i < n, then
by (20.5.3) H;(2X) is finitely generated for i < n — 1 so that by induction 4,4
is also an isomorphism in this case. The fibration theorem shows that H,(f)
in the diagram is a €-isomorphism. From the diagram we now see that &, is a
€-isomorphism. Also H,—_1(X) € € by induction.

(4) Let now 72(X) = 7, be arbitrary. By assumption, this group is contained
in €. There exists a map y: X — K(m2,2) which induces an isomorphism 7.
We pull back the path fibration along y

X2 E— PK(T[2,2)

l‘p 1

X —— K(2,2).

Since n, € €, we have H;(K(m,,1)) € € fori > 0, by the general assumption
in this section. Note that K = K(m,, 1) is the fibre of ¢ and f. The exact
homotopy sequence of y is used to show that ¢, : 7;(X2) = 72(X) fori > 2 and
that 71 (X2) = 0 = m,(X2). We can therefore apply the special case (3) to X5.
Consider the diagram

Tn(X2) —— mp(X)
lhn(xz) lhn (X)
Cx
H, (X)) —— Hy(X).

In order to show that /1, (X) is a €-isomorphism we show two things:

(i) hy (X>) is a €-isomorphism.

(ii) ¢« : H,(X2) = H,(X) is a €-isomorphism.
Part (i) follows from case (3) if we know that H;(X>) is finitely generated for
i < n. This follows from (20.5.3) applied to the fibration K — X, — X, since X
is 1-connected and since 71 (K) = m, = H»(X) is finitely generated.

For the proof of (ii) we first observe that the canonical map 8: H;(X,) —
H; (X5, K) is a €-isomorphism for i > 0, since H;(K) € € fori > 0 by the
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general assumption of this section. The fibration theorem and (20.4.6) show that
©«: Hi(X2, K) — H;(X, %) is a €-isomorphism for 0 < i < n. We now compose
with 8 and obtain (ii).

(5) Now assume that H(k) holds for 2 < k < n. Since H;(X) € € for
2 <i < k + 1 the Hurewicz map m; (X) — H;(X) is a €-isomorphism fori < k
by H(k), hence 7;(X) € € fori < k. By the first part of the proof, hz4; is a
€-isomorphism, hence I1(k + 1) holds. O

We list some consequences of the Hurewicz theorem. Note that the general
assumption of this section holds for the classes § and ¥ .

(20.6.2) Theorem. Let X be a 1-connected space.
(1) 7; (X) is finitely generated for i < n if and only if H;(X;Z) is finitely
generated fori < n.
(2) 7;(X) is finite for i < n if and only if H;(X; Z) is finite fori < n.
(3) If X is a finite CW-complex, then its homotopy groups are finitely generated.
O

(20.6.3) Theorem. Let € be a saturated Serre class. Let f: X — Y be a map
between 1-connected spaces with 1-connected homotopy fibre F. Then the following
are equivalent:
(1) 7 (f): (X)) — 7, (Y) is a €-isomorphism for k < n and a €-epimor-
phism for k = n.
(2) Hi(f): Hi(X) — Hi(Y) is a €-isomorphism for k < n and a €-epimor-
phism for k = n.

Proof. The statement (1) is equivalent to 7z (F) € € for k < n (exact homotopy
sequence). Suppose this holds. Then Hy (X, F) — Hy(Y) is a € isomorphism for
k < n, by the fibration theorem (20.4.1). From the exact homology sequence of
the pair (X, F') we now conclude that (2) holds, since H; () € € by the Hurewicz
theorem. Here we use that 71 (F) = 0.

Suppose (2) holds. We show by induction that Hy (F') € € fork < n. Then we
apply again the Hurewicz theorem. The induction starts with n = 3. Since ¥ and
F are simply connected, the fibration theorem shows that H; (X, F) — H; (Y, %)
is a €-isomorphism for j < 3. The assumption (2) and the homology sequence
of the pair then show H,(F) € €. The general induction step is of the same type.

o

Problems

1. Let T C Q be a subring. Let X be a simply connected space such that H, (X;T) =
H,,(S™; T). Then there exists a map S” — X which induces an isomorphism in 7 -homo-

logy.
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2. The finite CW-complex X = SV §2 has 71 (X) = Z. The group 2 (X) is free abelian
with a countably infinite number of generators. (Study the universal covering of X.)

3. Use the fibration theorem and deduce for each O-connected space a natural exact sequence
72(X) — Ha(X) = H2(K(m1(X), 1);Z) — 0.

20.7 Cohomology of Eilenberg—Mac Lane Spaces

We compute the cohomology ring H*(K(Z,n); Q). Let f: S" — K(Z,n) =
K(n) induce an isomorphism 7, (f) of the n-th homotopy groups. Then also
f*: H*"(K(Z,n);Q) — H"(S";Q) is an isomorphism and ¢, is defined such
that f*(t,) € H"(S™; Q) is a generator.

(20.7.1) Theorem. Ifn > 2 is even, then H*(K(Z,n); Q) = Q|t,] (polynomial
ring). If n is odd, then f*: H*(K(Z,n);Q) = H*(S"; Q).

Proof. We work with rational cohomology. Since K(Z,1) ~ S! and K(Z,2) ~
C P*° we know already the cohomology ring for these spaces with coefficients in
Z and this implies (20.7.1) in these cases. We prove the theorem by induction on 7,
and for this purpose we analyze the path-fibration K(Z,n — 1) - P — K(Z,n)
with contractible P. There are two cases for the induction step, depending on the
parity of n.

2k — 1 = 2k. We have a relative fibration p: (E, E’) — K(n) with E =
K@), p(w) = w(l),P = E' = p~'(x). Themap p: E — K(n) is a homotopy
equivalence and E’ is contractible. Therefore

() H"(E,E') = H"(E) = H"(K(n)),

the latter induced by p. The fibres (F, F’) of p have a contractible F and F' =
QK(n) = K(n — 1) is by induction a rational cohomology (n — 1)-sphere (i.e.,
has the rational cohomology of S”~1). Hence H*(F, F') = H* ' (F'") = Q for
k = nand = 0 for k # n. Since K(n) is simply connected, we have a Thom class
tn € H"(E, E’). We can assume that f,, is mapped under (1) to ¢, hence ¢, is the
Euler class e associated to ,. The Gysin sequence has the form (n = 2k)

coo > HI(K(n)) —> HI*"(K(n)) - H/"(P) > --- .

Since P is contractible and H/(K(n)) = 0 for 0 < j < n, we see induc-
tively that the cup product with the Euler class e is an isomorphism H/ (K (n)) —
H/+2K(K(n)). Hence H*(K(n)) = Q[in].
2k = 2k 4 1. We reduce the problem to a Wang sequence. Let n = 2k + 1.
We consider a pullback
Y——P
l« s

sn—L s K(n),
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where f induces an isomorphism 7, (/). The Wang sequence for ¢ has the form

S HIY) S B (K@ - 1) - HIPK (= 1) > -

We use H*(K(n — 1)) =~ Qty—1] and the fact that 6 is a derivation. From the
definition of Y and the exact sequence of homotopy groups we see

7 (Y)=0, j<n, mY)=mnx(S"), j>n.

From the Hurewicz theorem and the universal coefficient theorem we conclude
that H/(Y) = 0 for j < n. Hence §: H*(K(n — 1)) — H°K(n — 1))
is an isomorphism. Using the derivation property of 6 we see inductively that
0: H*"(K(n — 1)) - H*U=D(K(n — 1)) is an isomorphism, and the Wang
sequence then shows us that H*(Y) = 0; and this implies Hy(Y) = 0. Since Y
is the homotopy fibre of f, we conclude that fi: H«(S") — H.«(K(n)) is an
isomorphism (by (20.4.1) say), and similarly for cohomology. This finishes the
induction. O

20.8 Homotopy Groups of Spheres

Letn > 1be anoddinteger. Let f': S" — K(Z,n) induce an isomorphism 7, ( 1)
and denote by Y the homotopy fibre of f. In the previous section we have shown
that H;(Y; Q) = 0 for j > 0. The Hurewicz theorem modulo the class of torsion
groups (= the rational Hurewicz theorem) shows us that the groups ; (Y) ® Q are
zerofor j € N. From r;(S") = n;(Y) for j > n wesee thatalso 7, (S")@Q =0
for j > n and odd n. Since we already know that the homotopy groups of spheres
are finitely generated we see:

(20.8.1) Theorem. Let n be an odd integer. Then the groups m; (S™) are finite for
j > n. O

We now investigate the homotopy groups of S2”. Let V = V,(R?"*!) denote
the Stiefel manifold of orthonormal pairs (x, y) in R?”*1. We have a fibre bundle
S§27=1 vV — 8§27 and V is the unit-sphere bundle of the tangent bundle of S2”.
Recall from 14.2.4 the integral homology of V'

Z, q=0,4n—1,
H,(V)={Z/2, ¢g=2n—1,
0, otherwise.

Let g: V — S*~1 be a map of degree 1. Then g induces an isomorphism in
rational homology. Let F be the homotopy fibre of g; it is simply connected.
From (20.6.3) we see that g« ® Q: 7; (V) ® Q — 7,;(S* 1) ® Q is always an
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isomorphism. We use (20.8.1) and see that the homotopy groups of V' are finite,
except m4n—1(V) = Z @ E, E finite. Now we go back to the fibration V — §2"
and its homotopy sequence. It shows:

(20.8.2) Theorem. 7;(S2") is finitefor j # 2n,4n—1and wan—1(S*") =~ ZSE,
E finite. O

The results about the homotopy groups of spheres enable us to prove a refined
rational Hurewicz theorem.

(20.8.3) Theorem. Let X be 1-connected. Suppose H;(X;Z) is finite fori < k
and finitely generated fori < 2k — 2 (k > 2). Then the Hurewicz homomorphism
h: n,(X) —> Hy(X:Z) has finite kernel (cokernel) forr <2k — 1 (r <2k —1).

Proof. The case k = 2 causes no particular problem, since the Hurewicz homo-
morphism % : 7wy,41(X) — Hpyy1(X; Z) is surjective for each (m — 1)-connected
space (m > 2). Soletk > 3. Since X is 1-connected, the Hurewicz theorem shows
that 7, (X) is finite for r < k and finitely generated for r < 2k — 2. We write
m,.(X) = F, & T, F; free, and T, finite. We choose basis elements for F, and
representing maps. These representing elements provide us with a map of the form

fi8=8Wv...vs®_x
with k < r(j) < 2k — 2. The canonical map

) 7, (8T — (V) NED)

is an isomorphism for 7 < 2k — 2 and an epimorphism for r = 2k — 1. We can now
conclude that fi: 7,(S) — 7,(X) has finite kernel and cokernel for r < 2k — 2
and finite cokernel for r = 2k — 1, since the homotopy groups of spheres are finite
in the relevant range. The homotopy fibre F' of f has finite homotopy groups
7;(F) for j <2k —2. If, moreover, F is 1-connected, then H; (F; Z) is finite in
the same range, by the Hurewicz theorem. The fibration theorem then yields that
fx: H (S) = Hp(X) is an F -isomorphism (¥ -epimorphism) for r < 2k — 2
(r = 2k —1). From our knowledge of the homotopy groups of spheres we see
directly that the theorem holds for S. The naturality of the Hurewicz theorem
applied to f is now used to see that the desired result also holds for X .

We have used that F is 1-connected. This holds if 7 (X) = 0. Since 72 (X) is
finite by assumption (k > 3), we can pass to the 2-connected cover g: X (2) — X
of X. The map ¢ induces ¥ -isomorphisms in homology and homotopy. Therefore
it suffices to prove the theorem for X (2) to which the reasoning above applies.

O

If one is not interested in finite generation one obtains by a similar reasoning
(see also [103]):
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(20.8.4) Theorem. Let X be a 1-connected space. Suppose H.(X; Q) = 0 for
r < k. Then the Hurewicz map 7; (X) ® Q — H;(X; Q) is an isomorphism for
Jj < 2k — 2 and an epimorphism for j = 2k — 1. O

This theorem indicates that homotopy theory becomes simpler “over the ratio-
nals”. In the so-called rational homotopy theory one constructs algebraic models
for the rationalized homotopy theory. For an exposition see [65].

We discuss an example. Consider the path fibration

K(Z,2) ~ QK(Z,3) > X - K(Z,3) = K;
with contractible X. Let f: S 3 - Kj; induce an isomorphism in 73 and let

K> —l> Y -2 S3 be the induced fibration. The homotopy groups 7x (Y') are zero
for k < 3 and p. induces an isomorphism 7y (Y) == 7 (S3) for k > 4.

(20.8.5) Proposition. 73(S?) =~ Z and n,+1(S™) = Z /2 forn > 3.

Proof. We know already that m3(S?) = Z, generated by the Hopf map S3 —
CP' = S2. From the Freudenthal suspension theorem we know that the suspension
Sy Tpe1(S™) = mu42(S™TY) is surjective for n = 2 and bijective for n > 3.
Therefore it suffices to determine 74(S?). By the Hurewicz theorem, m4(S?) =
w4(Y) = H4(Y). Thus it remains to compute H4(Y). We first determine the
cohomology.

(20.8.6) Proposition. The cohomology groups H*(Y) of Y are: Z for k = 0,
0fork =0mod 2, and Z /n fork =2n + 1.

Proof. We use K, = K(Z,2) = CP*® and H*(K,) = Z|[c] with ¢ € H?. The
Wang sequence of ¥ — §3 shows that

H?*"(Y) =~ Ker®, H?*"T(Y) = Coker®,

since H*(K,) = 0 for odd *. The group H?"(K,) == Z is generated by ¢”*. By the
universal coefficient formula H/(Y) = 0 for j = 1,2,3. Hence ©: H*(K,) —
H°(K>) is an isomorphism. We can choose ¢ such that ®(c) = 1. The derivation
property of @ yields then inductively ®(c”) = nc" 1. O

The Wang sequence in homology yields in a similar manner
Hy,(Y) =~ Coker ®, Hpy+1(Y) = Ker O,.
From the universal coefficient sequence
0 — Ext(Hp,(Y),Z) - H*"t1(Y) - Hom(Hp4+1(Y),Z) — 0
and the fact that H,,(Y) is a quotient of Z we obtain
Hyy(Y)=Z/n, Hapt1(Y)=0.
The special case H4(Y) = Z /2 now proves m4(S>) = Z /2. O
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We apply the Hurewicz theorem modulo the class of abelian p-torsion groups
(p prime) and see that the p-primary component of 7; (S3) is zero for 3 <i < 2p
and isomorphic to Z/p fori = 2p. In particular an infinite number of homotopy
groups 1, (S?) is non-zero.

The determination of the homotopy groups of spheres is a difficult problem. You
can get an impression by looking into [163]. Individual computations are no longer
so interesting; general structural insight is still missing. Since the groups 7,4 (S”)
do not change after suspension for k > n — 2, by the Freudenthal theorem, they are
called the stable homotopy groups n,f.

We copy a table from [185]; a denotes a cyclic group of order a, and a x b is
the product of cyclic groups of order @ and b, and a’ the j-fold product of cyclic
groups of order a.

kol 1 ]2[3[4| 5 |[6|7]| 8 9
i oo 2 | 2(24] 0| 0 |2]|240]| 22 23

10 11 [ 12|13 | 14 15 16 | 17 18 19

7S || 6 [504| 0| 3 |22 480x2 |22 | 2% |8x2|264x2

20.8.7 The Hopf invariant. The exceptional case m4,_1(S?") is interesting in
many respects. Already Hopf constructed a homomorphism £ : m4,_1(S?") — Z,
now called the Hopfinvariant, and gave a geometric interpretation in the simplicial
setting [88]. Let f: S#~1 — $27 be a smooth map; and let a, b be two regular
values. The pre-images M, = f~'(a) and M, = f~1(b) are closed orientable
(2n — 1)-manifolds, they have a linking number, and this number is the Hopf
invariant of f. It is easy to define A( f), using cohomology. Let f: §2k—1 — gk
be given (k > 2). Attach a 2k-cell to S¥ by f and call the result X = X(f).
The inclusion i : S¥ — X induces an isomorphism H k(X) =~ H*(S*), and we
also have an isomorphism H2*(D?¢ §2k—1) ~ H2k(x Sk) - H?¢(X). The
integral cohomology groups H/ (X) for j # 0, k, 2k are zero. Choose generators
x € H¥(X) and y € H?*(X). Then there holds a relation x U x = h(f)y in the
cohomology ring. The graded commutativity of the cup product is used to show
that 4( f) = 0 for odd k. In the case k = 2n the integer A ( f) is the Hopf invariant.
Since X(f) depends up to h-equivalence only on the homotopy class of f, the
integer i( f) is a homotopy invariant. One shows the elementary properties of this
invariant:

(1) h is a homomorphism.
(2) If g: S4"~1 — §4=1 has degree d, then h( fg) = dh(f).
(3) Ifk: S?* — S$2" has degree d, then h(kf) = d?h(f).
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Note that a map of degree d does not induce the multiplication by d, as opposed to
the general situation for cohomology theories.

It is an important problem to determine the image of 4. Already Hopf showed
by an explicit construction that 27 is always contained in the image. Here is the
Hopf construction. Start with amap u: S k x Sk — §*. From it we obtain a map
1 8%+ 5 §k+1 yia the diagram

id
SkakxI&Skxl

l l

Sk x Sk —L =Sk,

where g is the projection onto the suspension and p the projection onto the join. The
map u has a bi-degree (a, b). Hopf shows that (with suitable orientations chosen)
h(f) = ab. The map S?"~1 x §2"=1 — §27=1 (x &) > £ — (x,£)x has bi-
degree (2,—1). If a: R” x R” — R” is a bilinear map without zero divisors (i.e.,
a(x,y) = 0 implies that x or y is zero), then (R”, «) is called an n-dimensional
real division algebra. The induced map B: S"! x §" 1 — §"71 (x,y) —
a(x, y)/|la(x, y)| satisfies B(ex, ny) = enB(x, y) for e, n € {£1}. Hence B has
a bi-degree (d;, d») with odd d;. If there exist maps with odd Hopf invariant, then
there also exist maps with invariant 1, since 2Z is contained in the image of A. It
is a famous result of Adams [2] that maps f: S#*~! — §2" of Hopf invariant 1
only exist for n = 1,2, 4. Hence there exist n-dimensional real division algebras
only forn = 1,2,4,8. See [55] for this topic and the classical algebra related to
it. Once complex K-theory is established as a cohomology theory, it is fairly easy
to solve the Hopf invariant 1 problem [5]. <

20.9 Rational Homology Theories

Recall the n-th stable homotopy group w, (X) = colimg 7, +x (X A S(k)) of the
pointed space X. The Hurewicz homomorphisms are compatible with suspension,
i.e., the diagram

Ta(Y) ——— {,(Y)

lz* lz*

Tn41(SY) — H, 1 (SY)

is commutative for each well-pointed space Y. This follows from the inductive
definition of the Hurewicz homomorphisms; one has to use the same definition of
>« in homotopy and homology via the boundary operator of the pair (CY, Y) and
the quotient map CY — CY/Y = XY. We pass to the colimit and obtain the
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stable Hurewicz homomorphism
Bt 0a(X) = Hy(X).

The h;, are natural transformations of homology theories (on well-pointed spaces).
In order to see this one has to verify that the diagram

wn(X)#ﬁn(X)

J° |
thrl

Onp1 (X A S(1) —— Hyi1 (X A S(1))

is commutative. The commutativity of this diagram is a reason for introducing the
sign in the definition 0 = (—1)"1.0; of the suspension isomorphism for spectral
homology.

The coefficients of the theory w4 (—) are the stable homotopy groups of spheres
wn(S®) = colimy 7, 1% (S¥). These groups are finite for n > 0. Finite abelian
groups become zero when tensored with the rational numbers. We thus obtain a
natural transformation of homology theories

ha: 04(X) @7 Q — Ho(X) ®2 Q = Ho(X; Q)

which are isomorphisms on the coefficients and therefore in general for pointed
CW-complexes.
_ This basic rational isomorphism is now used to show that any homology theory
h+ with values in Q- MOD can be reduced to ordinary homology. We define natural
maps

wp(X) @z hg(S°) = hp1q(X).

Let x € wp(X) be represented by f: S(p + k) — X A S(k). The image of
y € hy(S?) under

Fa(S®) 2 g pik(S(p +K)) L5 hg s (X A SU)) = ipg (X)

is independent of the chosen representative f of x. We combine these homomor-
phisms
@p—‘,—q:n a)p (X) ®Z hq (SO) - hn (X)

and obtain a natural transformation of homology theories. Now assume that the
coefficients h,4(S?) are Q-vector spaces. Then for X = S° only the groups
wo(S°) ®z s (S°) are non-zero; and the induced map to /2, (S°) is an isomor-
phism, since wy(S°) = Z by the degree and a map of degree k induces on 4, (S?)
the multiplication by k. We thus have shown:
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(20.9.1) Theorem. Let hy be an additive homology theory for pointed CW-com-
plexes with values in Q-vector spaces. Then we have an isomorphism

DB prqgn Hp(X:1g(S%) +=— D gn Hp(X) ® hq(S°)

F %

fin(X) " D g @p (X) ® hg(5°)

of homology theories. O

If kv (—) is an arbitrary additive homology theory we can apply the foregoing
0 1 (=) = ku(—) ®Z Q.

Problems

1. The Eilenberg—Mac Lane spectrum (K(Z,n) | n € Ng) yields a homology theory which
is isomorphic to singular homology with integral coefficients.

2. One can define the stable Hurewicz transformation from a morphism of the sphere spec-
trum into the Eilenberg—Mac Lane spectrum which is obtained from maps S” — K(Z,n)
that induce isomorphisms of ;.

3. Define a stable Hurewicz homomorphism A" : " (X) — H" (X ;Z) either from a map
of spectra or by an application of cohomology to representing maps of elements in @” (X).
Construct a natural commutative diagram

" (X) - A" (X)

| !

Hom(wn (X). Z) — 2 s Hom(H,, (X). Z).

4. Give a proof of the (absolute) Hurewicz theorem by using the K(Z,n)-definition of
homology. The proof uses: Let 7; (X) = 0 for j <n > 2;then 7;(X A K(Z,k)) = 0 for
J=<n+k—Tlandm,x(X A K(Z,k)) = nn(X)

5. Derive an isomorphism 2" (X) = [[,4,—, HP”(X;h9(S°)) for cohomology theories
with values in Q-vector spaces (X a finite pointed CW-complex).

6. Use a fibration K(Z,n) — K(Z,n) — K(Z/k,n) and derive a universal coefficient
sequence for homology with Z / k-coefficients.

7. An interesting example of a rational cohomology isomorphism is given by the Chern
character. 1t is a natural isomorphism of -algebras

ch: K(X)® Q — [, H*"(X; Q),

for finite complexes X, say, and which sends a complex line bundle n over X to the power
series ‘
ec1(77) — Zfio %01(77)1 € Hz*(X;(D).
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Bordism

We begin with the definition of bordism homology. The geometric idea of homol-
ogy is perhaps best understood from the view-point of bordism and manifolds. A
“singular” cycle is a map from a closed manifold to a space, and the boundary rela-
tion is induced by manifolds with boundary. Several of our earlier applications of
homology and homotopy can easily be obtained just from the existence of bordism
homology, e.g., the Brouwer fixed point theorem, the generalized Jordan separation
theorem and the component theorem, and the theorem of Borsuk—Ulam.

Bordism theory began with the fundamental work of Thom [184]. He deter-
mined the bordism ring of unoriented manifolds (the coefficient ring of the asso-
ciated bordism homology theory). This computation was based on a fundamental
relation between bordism and homotopy theory, the theorem of Pontrjagin—Thom.
In the chapter on smooth manifolds we developed the material which we need for
the present proof of this theorem. One application of this theorem is the isomor-
phism between the geometric bordism theory and a spectral homology theory via
the Thom spectrum. From this reduction to homotopy we compute the rational
oriented bordism. Hirzebruch used this computation in the proof of his signature
theorem. This proof uses almost everything that we developed in this text.

21.1 Bordism Homology

We define the bordism relation and construct the bordism homology theory. Mani-
folds are smooth.

Let X be atopological space. An n-dimensional singular manifold in X is a pair
(B, F) which consists of a compact n-dimensional manifold B and a continuous
map F: B — X. The singular manifold d(B, F) = (3B, F|0B) is the boundary
of (B, F). If 0B = @, then (B, F) is closed.

A null bordism of the closed singular manifold (M, f)in X is atriple (B, F, ¢)
which consists of a singular manifold (B, F) in X and a diffeomorphism ¢: M —
0B such that (F|0B)og = f. If anull bordism exists, then (M, f') is null bordant.

Let (My, f1) and (M3, f>) be singular manifolds in X of the same dimension.
We denote by (M1, f1) + (M>, f>) the singular manifold { f, f2): M; + M, —
X. We say (My, f1) and (M>, f>) are bordant, if (M1, f1) + (M3, f2) is null
bordant. A nullbordism of (M1, f1)+(M>, f>)iscalled bordism between (M1, f1)
and (M3, f>). The boundary dB of a bordism (B, F, ¢) between (M, f1) and
(M3, f>) thus consists of a disjoint sum d; B + d, B, and ¢ decomposes into two
diffeomorphisms ¢; : M; — 0; B.
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(21.1.1) Propeosition. “Bordant” is an equivalence relation.

Proof. Let (M, f)begiven. Set B = M xIand F = fopr: MxI - M — X.
Then 0B = M x 0 + M x 1 is canonically diffeomorphic to M + M and (B, F)
is a bordism between (M, f) and (M, f). The symmetry of the relation is a direct
consequence of the definition. Let (B, F, ¢; : M; — 0; B) be a bordism between
(M., f1) and (M3, f2) and (C, G, ¥;: M; — 0;C) a bordism between (M», f2)
and (M3, f3). We identify in B + C the subset 9, B with 9,C via x ~ Y295 ' (x)
for x € d, B. The result D carries a smooth structure, and the canonical maps B —
D <« C are smooth embeddings (15.10.1). We can factor (F,G): B+ C — X
over the quotient map B + C — D andget H: D — X, and (D, H, (@1, ¥3)) is
a bordism between (M1, f1) and (M3, f3). O

We denote by [M, f] the bordism class of (M, f) and by N,(X) the set
of bordism classes of n-dimensional closed singular manifolds in X. The set
Ny (X) carries an associative and commutative composition law [M, f]+[N, g] =
[M + N, ({f, g)]- The reader may check that this is well-defined.

(21.1.2) Proposition. (N, (X), +) is an abelian group. Each element has order at
most 2.

Proof. The class of a null bordant manifold serves as neutral element, for ex-
ample the constant map S” — X. (For the purpose at hand it is convenient to
think of the empty set as an n-dimensional manifold.) For each (M, f) the sum
(M + M., ( f, f))is null bordant, hence [M, f] + [M, f] = 0. O

A continuous map f: X — Y induces a homomorphism

Nu(f) = fa: No(X) = Nu(Y),  [M.g]+— [M, fg].

In this way N, (—) becomes a functor from TOP to ABEL. Homotopic maps induce
the same homomorphism: If F: X x I — Y, f ~ g is a homotopy, then (M x I,
Fo(hxid))isabordismbetween (M, fh)and (M, gh). If X is empty, we consider
Ny (X) as the trivial group.

(21.1.3) Example. A 0-dimensional compact manifold M is a finite discrete set.
Hence (M, f) can be viewed as a family (xi,...,x,) of points in X. Points
X,y € X are bordant if and only if they are contained in the same path component.
(Here you have to know 1-dimensional compact manifolds.) One concludes that
No(X) is isomorphic to the Z /2-vector space over o (X). <&

(21.1.4) Proposition. Leth: K — L be a diffeomorphism. Then [L, g] = [K, gh].

Proof. Consider the bordism g opr: L x I — X; on the boundary piece L x 1
we use the canonical diffeomorphism to L, on the boundary piece we L x 0 we
compose the canonical diffeomorphism to L with 4. O
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We now make the functors N, (—) part of a homology theory. But this time, for
variety, we do not begin with the definition of relative homology groups. The exact
homology sequence and the excision axiom are now replaced by a Mayer—Vietoris
sequence.

Suppose X is the union of open sets X and X;. We construct the boundary
operator

0: Nn(X) — Nn—l(XO N X])

of the Mayer—Vietoris sequence. Let [M, f] € N,(X) be given. The sets M; =
7YX ~ X;) are disjoint closed subsets of M.

(21.1.5) Lemma. There exists a smooth function o.: M — [0, 1] such that:
(1) M; C o 1(i) fori € {0,1}.

2) % is a regular value of a. O

We call « in (21.1.5) a separating function. If « is a separating function, then
M, = o:_l(%) is a closed submanifold of M of dimension n — 1 (or empty), and
f induces by restriction fy: My — Xo N X;.

If t # 0,1 is another regular value of o, then @~!(z) and o™} (%) are bordant
via a_l[%, t]. The choice of % is therefore immaterial. We think of [M,, f,] as
being given by any choice of a regular value ¢ €]0, 1] of o with My = o~ (¢).

(21.1.6) Lemma. Let [K, f] = [L,g] € Ny(X) and let o, B be separating func-
tions for (K, f), (L, g). Then [Kq, fo] = [Lg. ggl.

Proof. We take advantage of (21.1.4). Let (B, F) be a bordism between (K, f)
and (L, g) with dB = K + L. There exists a smooth function y: B — [0, 1] such
that

yIK=a, ylL=8, F'(X~X;)Cy ().

We choose a regular value ¢ for y and y|dB and obtain a bordism y~!(¢) between
some K, and some Lg. O

From (21.1.6) we obtain a well-defined boundary homomorphism
0: Np(X) = Ny—1(Xo N X1), M, fl [My, fol-

(21.1.7) Proposition. Let X be the union of open subspaces X and X1. Then the
sequence

d j k d
e 5 Na(Xo N X1) =5 Np(Xo) ® Np(X1) —> Np(X) —> -

is exact. Here j(x) = (j2(x), j}(x)) and k(y,z) = k®y —k}z with the inclusions
k
J': XoN X1 = Xy and k¥ : X, — X. The sequence ends with — No(X) — 0.
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Proof. (1) Exactness at N,—1(Xo N X1). Suppose [M, f] € N,(X) is given. Then
M is decomposed by M, into the parts By = «~'[0, 1] and By = o~ ![1, 1] with
common boundary M,. Since f(Bg) C X, we see via By that j1d[M, f]is in
Ny,—1(X7) the zero element. This shows j o d = 0.

Suppose, conversely, that j[K, f] = 0. Then there exist singular manifolds
(B;, F;)in X; suchthat 0By = K = 0B; and Fy|K = f = F;|K. We identify By
and B; along K and obtain M ; the maps Fjy and F; canbe combinedto F: M — X.
There exists a separating function @ on M such that My, = K: With collars of K
in Bp and B; one obtains an embedding K x [0, 1] C M which is the identity on
K x {%}; then one chooses « such that a(k,7) = ¢ for k € K, % <t < %. By
construction, d[M, F] = [K, f].

(2) Exactness at N,(Xo) & N,(X;1). By definition, k o j = 0. Suppose
xi = [M;, fi] € Nu(X;) are given. If k(xo,x;) = O there exists a bordism
(B, F) in X between (Mg, k° fo) and (M;,k' f;). Choose a smooth function
Y : B — [0, 1] such that:

() FFU X ~X1_))UM; Ccy~ 1) fori =0,1.
(2) ¢ has regular value %

Let (N, f) = (v~ 1(2). Fly1(3)). Then (¥ 1[0, 1]. F]y¥ [0, 1]) is a bordism
between (N, f) and (M, fo) in Xo; similarly for (M1, f1). This shows j[N, f] =
(x0, x1).

(3) Exactness at N, (X). The relation d o k = 0 holds, since we can choose on
(Mo, k° fo) + (My, k! f1) a separating function o: Moy + M; — [0, 1] such that
a~1(3) is empty.

Conversely, let « be a separating function for (M, f) in X and (B, F) a null
bordism of (M, fy) in Xo N X;. We decompose M along M, into the manifolds
By =a710,1]and By = [, 1] with 9By = My = 3Bo. Then we identify B
and By along M, = K and obtain a singular manifold (Mg, fo) = (Bo Ux B,
(f|Bo) Uk F) in Xy, and similarly (M7, f1) in X;. Once we have shown that
in N, (X) the equality [My, fo] + [M1, fi] = [M, f] holds, we have verified the
exactness. We identify in Mo x I + M; x I the parts B x11in Myx1and M; x 1. The
resulting manifold L. = (Mo x1)Upx; (M7 x 1) has the boundary (My+ M)+ M.
A suitable map F: L — X is induced by (fo, f1) opr;: (Mo + M) x I — X.
For the smooth structure on L see 15.10.3. O

We now define relative bordism groups N, (X, A) for pairs (X, A). Elements
of N,(X, A) are represented by maps f: (M,IM) — (X, A) from a compact n-
manifold M. Again we call (M, f) = (M, dM; f) a singular manifold in (X, A).
The bordism relation is a little more complicated. A bordism between (My, fo)
and (M, f1) is a pair (B, F') with the following properties:

(1) B is acompact (n + 1)-manifold with boundary.
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(2) 0B is the union of three submanifolds with boundary My, My and M’, where
oM’ = OMy + oMy, M; "N M’ = M,;.

(3) FIM; = f;.

@ F(M') C A.
We call (My, fo) and (M1, f1) bordant, if there exists a bordism between them.
Again “bordant” is an equivalence relation. For the proof one uses 15.10.3. The
sum in N, (X, A) is again induced by disjoint union. Each element in N, (X, A)
has order at most 2. A continuous map f: (X, A) — (Y, B) induces a homo-
morphism N, (f) = f«: Ny(X, A) — N, (Y, B) by composition with f. If fy
and f; are homotopic as maps between pairs, then N,(fo) = N,(f1). The as-
signment [M, f] — [0M, f|dM] induces a homomorphism (boundary operator)
d: Ny(X, A) - N,—_1(A). For A = @ the equality N, (X, ) = N,(X) holds.

(21.1.8) Lemma. Let M be a closed n-manifold and V. C M an n-dimensional
submanifold with boundary. If f: M — X is a map which sends M ~ 'V into A,
then [M’ f] = [Va f|V] in Nn(X’ A)

Proof. Consider F: M x1 — X, (x,t) — f(x). Thend(M x 1) = M x 9l and
V x1U M x 0 is a submanifold of (M x ') whose complement is mapped under
F into A. The definition of the bordism relation now yields the claim. O

(21.1.9) Proposition. Leti: A C X and j: X = (X,0) C (X, A). Then the
sequence

) [ sk a
D N (A) 25 Ny(X) L5 Na(X, A) - -
is exact. The sequence ends with AN No(X, A) — 0.

Proof. (1) Exactness at N, (A). The relation i, o d = 0 is a direct consequence
of the definitions. Let (B, F') be a null bordism of f: M — A in X. Then
Jd[B,Fl=[M, f].

(2) Exactness at N,(X). Let [M, f] € N,(A) be given. Choose V = @ in
(21.1.8). Then [M, ] = 0in N, (X, A), and this shows j.ix = O.

Let j«[M, f] = 0. Anull bordism of [M, f]in (X, A) is abordism of (M, f)in
X to (K, g) such that g(K) C A. A bordism of this type shows i[K, g] = [M, f].

(3) Exactness at N, (X, A). The relation doi, = 0is adirect consequence of the
definitions. Let d[M, f] = 0. Choose a null bordism [B, F] of (0M, f|dM). We
identify (M, f) and (B, f) along dM and obtain (C, g). Lemma (21.1.8) shows
Jx[C.gl =M, f]. O

A basic property of the relative groups is the excision property. 1t is possible to
give a proof with singular manifolds.

(21.1.10) Proposition. The inclusion i: (X ~ U, A~ U) — (X, A) induces an
isomorphism iy: Ny(X ~U, A~ U) = N,(X, A), provided U C A°. O
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The bordism notion can be adapted to manifolds with additional structure. Inter-
esting are oriented manifolds. Let My and M be closed oriented n-manifolds. An
oriented bordism between My, M1 is a smooth compact oriented (n + 1)-manifold
B with oriented boundary dB together with an orientation preserving diffeomor-
phism ¢ : M; — My — dB. Here we have to use the convention about the boundary
orientation, and M; — My denotes the disjoint sum of the manifolds M; and M,
where M carries the given and — M the opposite orientation. Again this notion of
bordism is an equivalence relation. Singular manifolds are defined as before, and
we have bordism groups 2, (X) of oriented bordism classes of singular 7z-manifolds
in X. But now elements in the bordism group no longer have order at most 2. For
a point P we have Q¢(P) = Z, 2;(P) = 0for 1 <i < 3. The assertion about
21 follows from the fact that .S 1 is an oriented boundary; the known classification
of orientable surfaces as a sphere with handles shows that these surfaces are ori-
ented boundaries. It is a remarkable result that Q23(P) = 0: Each oriented closed
3-manifold is an oriented boundary; for a proof of this theorem of Rohlin see [77].

The exact sequences (21.1.7) and (21.1.9) as well as (21.1.10) still hold for
the Q2-groups. The definition of the boundary operator d: ,(X, A) — Q,_1(4)
uses the boundary orientation. In order to define the boundary operator of the
MV-sequence we have to orient M,. There exists an open neighbourhood U of
My, in M and a diffeomorphism ¢: V =]1/2 —¢,1/2 + ¢[ XMy — U such that
(x@)(t,x) = t. If M is oriented, we have the induced orientation of U, and we
orient V' such that ¢ preserves the orientation. We orient M, such that V' carries
the product orientation.

The idea of bordism can be used to acquire an intuitive understanding of homol-
ogy. A compact n-manifold M has a fundamental class zps € H,(M, M ; [F,) and
dzy € H,—1(0M; ) is again a fundamental class. Let f: (M, M) — (X, A)
be a singular n-manifold. We set u(f) = fizym € Hu(X, A; F). In this manner
we obtain a well-defined homomorphism

1 Nu(X, A) — Hp(X, A:F2).

The morphisms p constitute a natural transformation of homology theories. One
of the basic results of bordism theory says that y is always surjective. This allows
us to view homology classes as being represented by singular manifolds. If, in
particular, f is an embedding of manifolds, then we view the image of f as a cycle
or a homology class. In bordism theory, the fundamental class of M is M itself,
1.e., the identity of M considered as a singular manifold.

The transformation u can be improved if we take tangent bundle information
into account. Let M be a compact n-manifold and denote by kpy: M — BO
the classifying map of the stable tangent bundle of M. For a singular manifold
f:(M,dM) — (X, A) we then have (f,kpr): (M,dM) — (X, A) x BO. Again
we take the image of the fundamental class

plf1= (fkm)xzy € Ho((X, A) X BO: ).
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We now obtain a natural transformation of homology theories
w=pu(X,A): Nu(X,A) - H.((X, A) x BO; F»),

and in particular for the coefficient ring, the Thom bordism ring N, of unoriented
manifolds,
w: N« = Hy(BO; ).

A fundamental result says that (X, A) is always injective [28, p. 185].

This transformation is also compatible with the multiplicative structures. The
algebra structure of H,(X x BO;[,) is induced by the homology product and the
H -space structure m: BO x BO — BO which comes from the Whitney sum of
bundles. We obtain a natural homomorphism of graded algebras,

H.(X x BO;F,) ® Hi(Y x BO;[F,) > Hi(X x BOXY x BO; F,)
— H.(X xY x BO; [F);

the first map is the homology product and the second is induced by the permutation
of factors and m.

Thom [184] determined the structure of the ring N,: It is a graded algebra
Fa[uz, U4, us,...] with a generator uy in each dimension k which does not have the
form k = 2’ — 1. One can take u,, = [RP?"] as generators in even dimensions.
The ring H«(BO;[F3) is isomorphic to [F[aq,az,as,...] with a generator a; in
dimension i .

Another basic result says that there exists a natural isomorphism N, (X) =
Ny« ®F, H«(X; [F») of multiplicative homology theories [160], [28, p. 185]. Thus
the homology theory N.(—) can be reduced to the determination of the coefficient
ring N, and singular homology with [F,-coefficients.

For oriented manifolds the situation is more complicated. One can still define
a multiplicative natural transformation of homology theories

1 Q. (X, A) > H.((X, A) x BSO;Z)

from the fundamental classes of oriented manifolds as above. But this time the
transformation is no longer injective and Q2. (X, A) — H«(X, A; Z) in general not
surjective. Also the theory €2.(—) cannot be reduced to ordinary homology. But the
transformation still carries a lot of information. It induces a natural isomorphism

Qu(X,A) @ Q = Hi((X, A) x BSO; Q),
and, in particular,
(1) Q+« ® Q = H«(BSO; Q)

by the stable classifying map of the tangent bundle (see (21.4.2)). The ring Q2. ® Q
is isomorphic to Q[x4, xs, ...] with a generator x, for each n = 0(4). One can
take the x4, = [C P?"] as polynomial generators (see (21.4.4)).
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We have seen that the signature of oriented smooth manifolds defines a homo-
morphism o : Q4 ® Q — Q of Q-algebras with [C P?"] = 1. The isomorphism
(1) tells us that this homomorphism can be determined from the stable tangent bun-
dle. A famous formula of Hirzebruch [81], the so-called Hirzebruch L-genus, gives
apolynomial L, (p1, p2,-.., pn) in the Pontrjagin classes p1, ..., p, such that the
evaluation on the fundamental class of an oriented 4n-manifold is the signature

(La(pr(M).....pn). [M]) = o(M).

It is a remarkable fact that the polynomials L, have rational coefficients with large
denominators, but nevertheless the evaluation on the fundamental class is an integer.
Such integrality theorems have found a conceptual interpretation in the index theory
of Atiyah and Singer [16].

The homomorphisms N, — H,(BO;[F;) and 2,, — H,(BSO; Z) have an in-
terpretation in terms of characteristic numbers and can be determined by evaluating
polynomials in the Stiefel-Whitney classes or Pontrjagin classes on the fundamental
class.

In order to prove some of the results above one starts from the fundamen-
tal results of Thom [184], the reduction of bordism to homotopy theory via the
Pontrjagin-Thom construction.

Problems

1. Qo(X) is naturally isomorphic to the free abelian group over 7o (X).

2. Give a proof of (21.1.10) with singular manifolds.

3. We had defined formally a boundary operator for the MV-sequence from the axioms of a
homology theory. Show that the boundary operator defined with separating functions coin-
cides with this formal boundary operator. Pay attention to signs in the oriented case.

4. The homology theories €24 and N have a product structure. Products of singular mani-
folds induce a bilinear map

Qun (X, A) X (Y, B) = Qunan(X x Y. X x BUAXY).

Verify the formal properties of a multiplicative structure, in particular the stability axiom.
5. Let M and M> be oriented d-manifolds which are glued together along a component
N; C dM; with a diffeomorphism ¢: N; — N». Let M be the result. There exists an
orientation of M such that the canonical embeddings M; — M are orientation preserving,
provided ¢ reverses the boundary orientations of the N;.

A collar k: R— x dM — M of an oriented manifold M is orientation preserving, if
R_ C R carries the standard orientation, dM the boundary orientation and R— x dM the
product orientation.

In order to verify the transitivity of the oriented bordism relation one has to define the
orientation of the bordism which is obtained by gluing the given bordisms in such a way that
the given bordisms are oriented submanifolds of the glued bordism.

6. The construction of the bordism MV-sequence suggests another set of axioms for a ho-
mology theory. A one-space homology theory consists of a family 4, : TOP — R-MOD of
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covariant homotopy invariant functors and a family of boundary operators 9: 4, (XoUX;) —
hn—1(Xo N X1) for each triad (X; Xo. X1) in which the X; are open in X. The bound-
ary operators are assumed to be natural with respect to maps of triads and the usual exact
MV-sequence should hold for each such triad.

Given these data, one defines relative groups for a pair (X, A) by

(X, A) = Coker(h,(CA) — hyp (X U CA))

where as usual CA is the cone on A. The relative groups are homotopy-invariant functors
on TOP(2). Define a boundary operator d: h, (X, A) — h,—1(A) and show that the usual
sequence of a pair is exact. In order to derive this sequence, consider the M V-sequence for the
triad (X UCA; X UCA~ X, X UCA~ x). The excision isomorphism £, (X ~U, A~NU) =
hn (X, A) holds, provided there exists a function 7: X — [0,1] with U C 77'(0) and
710, 1] C A, since under this assumption the canonical map (X ~U)UC(A~U) — XUCA
is a pointed h-equivalence.

21.2 The Theorem of Pontrjagin and Thom

The theorem of Pontrjagin and Thom relates homotopy theory and manifold theory.
It describes sets of bordism classes as homotopy sets. We begin by defining the
ingredients of the theorem.

Let Q be a smooth manifold without boundary. We denote by Q¢ = Q U {oo}
its one-point compactification. Let £: E(§) — B be a smooth real vector bundle
over a closed manifold B. The one-point compactification M (&) = E(£) U {oo} is
called the Thom space of £. The points at infinity serve as base points. The pointed
homotopy set [Q€, M (£)]° will be described as a bordism set.

A &-submanifold of Q is a closed submanifold M together with a smooth bundle
map F: E(v) — E(£) from its normal bundle

v=vy =v(M,0): EQv) > M

into the given bundle £. A bordism between two & submanifolds (Mg, Fy) and
(M, F1) is a compact submanifold W of Q x I (of type I) such that

W N(Q x[0,1/3]) = Mg x [0,1/3[, W N(0x]2/3.1]) = Myx]2/3,1]

and 0W = My x 0 U M; x 1 together with a bundle map F: v(W,Q x I) — &
which extends Fy and F;. Note that v(W, Q x I)|M x 0 can be identified with
v(My, Q). The relation of &-bordism is an equivalence relation. We denote by
L(Q, &) the set of £-bordism classes.

We define amap P: L(Q,§) — [0¢, M(£)]°, and the main theorem then as-
serts that P is abijection. We choose an embedding of Q into some Euclidean space.
Then Q inherits a Riemannian metric. The normal bundle v(M, Q): E(v) — M is
the orthogonal complement of TM C TQ|M . From these data we had constructed
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a tubular map 7: E(v) — Q. The bundle v inherits a Riemannian metric, and
D.(v), E¢(§), Se(v) are the subsets of vectors v of norm ||v|| < ¢, |[v]| < &, ||v| =
&, respectively. There exists an & > 0 such that¢ embeds E.(£) onto an open neigh-
bourhood U, of M in Q. We have a fibrewise diffeomorphism /.: E.(§) = E(§)

defined on each fibre by
ex

Va2 —Ix?

From these data we construct from a &£-submanifold (M, F') a map

ge: Q° = Q°/(Q° ~Ue) = De(v)/Se(v) > M(v) — M(§).

The first map is the quotient map, the second a homeomorphism induced by the
inclusion D,(v) C Q (note that D,/ S, is a one-point compactification of E;), the
third induced by /., and the fourth induced by the bundle map F (a proper map).
The pointed homotopy class of g, is independent of the chosen (sufficiently small)
e, by a linear homotopy in the fibre. Let us set P(M, F) = [g¢] € [Q¢, M(§)]°.
We say that a map g, is obtained by a Pontrjagin—-Thom construction.

hs(x) =

(21.2.1) Lemma. For §-bordant manifolds (M;, F;) the classes P(M;, F;) are
equal. Therefore we obtain a well-defined map P: L(Q,§) — [Q€, M(§)]°.

Proof. We apply a Pontrjagin—-Thom construction to a £-bordism. For this purpose
we use for Q x I the product embedding. Let (W, F) be a £-bordism. We obtain
a tubular map 7: E(vy) — Q x I which is over My x [0, 1/3] the product of the
tubular map for My with [0, 1/3[, and similarly for the other end. For sufficiently
small ¢, again T embeds E».(vy) onto a neighbourhood of W and we define as
above a Pontrjagin—-Thom map

Q¢ x I — Q° x1/(Q° xI~Us) > De(vw)/Se(vw) = M(vw) — M(§),

and this map is a homotopy between the Pontrjagin—Thom maps for (M, Fp) and
(M, Fy). O

(21.2.2) Theorem (Pontrjagin, Thom). The Pontrjagin—Thom map

P:L(Q.§) — [0°, M(©®)]
is a bijection.

Proof. We construct a map in the other direction. Let us observe that the maps
f: Q¢ — M(§) obtained by the Pontrjagin—-Thom construction are of a very
special type. They have the following properties:

(1) The map f: f~YE()) — E(§) is proper, smooth and transverse to the
zero section B C E(§).
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(2) There exists a tubular neighbourhood Uy of M = f~1(B) in Q such that
f(x) =00 x ¢ U,.
(3) Themap fotoh,!: E(vy) — Es(vy) — Us — E(£) is asmooth bundle
map.
So we have to deform an arbitrary map into one having these three properties.

(i) Let g: Q¢ — M(&) be given and set A = g~ !(E(£)). Then A is open
in Q and g: A — E(§) is a proper map. By the approximation theorem (15.8.4)
there exists a proper homotopy of g to a smooth map g;: A — E(§). Restrict
g1 to a compact neighbourhood V' of gl_1 (B) in A such that V' is a manifold and
g1(0V) C E(§) ~ B. By the transversality theorem (15.9.8) we find a smooth
homotopy of g1|V to a map which is transverse to B and such that the homotopy
is constant in a neighbourhood of 9. We can therefore extend this homotopy
to a smooth proper homotopy of g; by a constant homotopy in the complement
of V. Since both homotopies are proper, they can be extended continuously to Q¢
by mapping the complement of A to the base point. The result is a smooth map
g2: O°¢ — M(&) which has property (1) above.

(ii) Let M = g5'(B). Let now & be small enough such that the tubular neigh-
bourhood U,. of M is contained in A. Let §: Q¢ — [0, 1] be a continuous function
which is smooth on Q and such that 71(0) = D,/ and 1[0, 1[= U,. We define
a homotopy of g, by

(1—tB(x)7" - g2(x), xed 1 <lixeUs,1=1,
Hi(x) = .
00, otherwise.
The map g3 = H; has properties (1) and (2) above with U = U,.
(iii) Let f = g3 be a map obtained in step (ii). Consider the composition

fTh;' = h: E(wy) — Ec(vy) — Us — E(§).

This map is proper, smooth, and transverse to B C E(§). The homotopy H;(x) =
t~Yh(tx), defined for t > 0 can be extended to t = 0 by a bundle map ®: vy — £
such that the resulting homotopy is smooth and proper. The map @ is the derivative
in the direction of the fibres. In order to see what happens in the limit 1 — 0, we
express A in local coordinates. Then £ has the form

XxR"—>Y xR*, (x,v) (a(x,v),b(x,v))

with open sets X C M, Y C B and a(x,0) = f(x),b(x,0) = 0. Then
H;(x,v) = (a(x,tv),t7'b(x,tv)). The map v + lim, ot 'h(x,tv) is the
differential of by : v — B(x,v) at v = 0. It is a bijective linear map, because f is
transverse to the zero section.

(iv) We now construct amap Q which is inverse to P. Suppose g: Q¢ — M (&)
is a map such that g: g7 E(§) — E(£) is proper, smooth, and transverse to the
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zero section. Let M = g~!(B). Then the differential of g induces a smooth bundle
map F: vyy — &. The map Q sends [g] to the bordism class of the &-submanifold
(M, F). By (i) we know that each homotopy class has a representative g with
the properties just used. If go and g; are two such representatives, we choose a
homotopy between them which is constant on [0, 1/3[ and on ]2/3, 1] and apply the
method of (i) in order to obtain a homotopy #: Q¢ x 1 — M(§), go =~ g1 such that
h: h=VE(§) — E(§) is proper, smooth, transverse to the zero section, and constant
on [0, n[ and ]1 — 7, 1]. The pre-image of the zero section and the differential of &
yield a £-bordism. This argument shows that Q is well-defined. By construction,
QP is the identity. The arguments of (i)—(iii) show that P is surjective. O

(21.2.3) Example. Let Q = M be a closed connected n-manifold and & the n-
dimensional bundle over a point. Then E(§) = R” and M (§) = S” = R"U{oco}. A
&-submanifold of Q is a finite subset X together with an isomorphism Fy: TxyM —
R" for each x € X. In the present situation [Q¢, M(£)°] = [M, S"]. We are
therefore in the situation of the Hopf degree theorem.

Let M be oriented. If Fy is orientation preserving, we set e(x) = 1, and
e(x) = —1 otherwise. Let (X, F) = )  .ye(x) € Z. The integer (X, F)
characterizes the £-bordism class. If we represent a homotopy class in [M, S"] by
a smooth map f: M — S” with regular value 0 € R?, then X = f~1(0) and
F, =Ty f ande(X, F)isthe degree of f, as we have explained earlier. If we show
that (X, F') characterizes the bordism class, then the Pontrjagin—-Thom theorem
gives a proof of the Hopf degree theorem for smooth manifolds.

If M is non-orientable, we have a similar situation, but this time we have to
consider ¢(X, F) modulo 2. &

(21.2.4) Example. Let 0 = R"*¥ and E(§) = R”. Then [Q¢, M(§)]° =
Tn+x(S™), but we disregard the group structure for the moment. A &-submani-
fold is in this case a closed k-manifold M C R¥*” together with a trivialization
of the normal bundle. A trivialization of a vector bundle is also called a framing
of the bundle. Since the normal bundle v is inverse to the tangent bundle 7 we see
that the tangent bundle is stably trivial and a framing v — ne of the normal bundle
induces TM ® ne — TM @ v — (n + k)e, a stable framing of M.

We denote by wy (k) the bordism set of a closed n-manifold with framing
™ & ke — (n + k)e. The bordism relation is defined as follows. Let W be
a bordism between My and M; and let ®: TW & (k — 1)e — (n + k)e be a
framing. Let (o: TW|M, = TMy & ¢ where the positive part of & corresponds
to an inwards pointing vector. Similarly (;: TW|M; = TM & & where now the
positive part corresponds to an outwards pointing vector. We obtain a framing

goi:TMi@EEB(k—l)g—)TWlMiEB(k—l)ei)(n—i—k)s

of M;. We say in this case: (W, ®) is a framed bordism between (My, ¢g) and
(Ml ’ ()01)'
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The assignment [M,¢,] — [M,¢,] is a well-defined map L(R"*X ke) —
wy (k). It is bijective for k > n + 1. <

In the Pontrjagin—Thom theorem it is not necessary to assume that £ is a smooth
bundle over a closed manifold. In fact, £ can be an arbitrary bundle. In this case
we have to define the Thom space in a different manner. Let £ have a Riemannian
metric; then we have the unit disk bundle D (§) and the unit sphere bundle S(£). We
define the Thom space now as the quotient space M (§) = D(§)/S(€). A definition
that does not use the Riemannian metric runs as follows. The multiplicative group
R% of positive real numbers acts on the subset £ 0(£) of non-zero vectors fibre-
wise by scalar multiplication. Let S(§) be the orbit space with induced projection
sg: S(§) — B. The mapping cylinder of s¢ is a space dg: D(§) — B over B and
M (&) is defined to be the (unpointed) mapping cone of s¢. From this definition we
see that abundle map f : &€ — 7 induces a pointed map M(f): M(§) - M(n). In
the category of compactly generated spaces we have a canonical homeomorphism
M(E xn) = M(&) A M(n). If n is the trivial one-dimensional bundle over a point,
this homeomorphism amounts to M(£ @ &) = M(§) A SM with SV = R U {oo}.

We can now define as before £-submanifolds of Q and &-bordisms. Also the
Pontrjagin-Thom construction can be applied in this situation, and we obtain a
well-defined map

P = Pg: L(Q.§) — [0°. M(®)]".

These maps constitute a natural transformation between functors from the category
of n-dimensional bundles and bundle maps.

(21.2.5) Theorem (Pontrjagin, Thom). The Pontrjagin-Thom map Py is for each
bundle & a bijection.

Proof. The proof is essentially a formal consequence of the special case (21.2.2),
based on the general techniques developed so far.

(i) In the proof of (21.2.2) we used smooth bundles £. A bundle over a closed
manifold B is induced from a tautological bundle over some Grassmannian G, (R")
by some map f. The map f is homotopic to a smooth map g and the bundle induced
by g is therefore smooth and isomorphic to £. This fact allows us to work with
arbitrary bundles in (21.2.2). The Pontrjagin—Thom construction itself does not use
a smooth bundle map.

(i1) Supposei: X — Y andr: Y — X are maps with ri = id (aretraction). If
P is bijective for bundles over Y and £ is a bundle over X, we pull back this bundle
to 7 = r*&. From the naturality of P and the fact that P, is bijective, we conclude
that P is bijective.

(iii) Let C be a compact smooth manifold with boundary. Let B denote the
double D(C) of C. Then C is a retract of B. Hence P is bijective for bundles
over C.
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(iv) Let X be a finite CW-complex. A finite CW-complex is a retract of some
open set U C R™. Choose a proper smooth function r: U — Ry such that
t(X) = {0}. Let ¢ > 0 be a regular value of ¢. Then X is a retract of the compact
smooth manifold [0, ¢] with boundary. Therefore the theorem holds for bundles
over finite CW-complexes.

(v) Suppose £ is a bundle over a CW-complex. By compactness of Q¢ we see
that a map Q¢ — M (£) has an image in the Thom space of the restriction of the
bundle to a finite subcomplex. This shows, using (iv), that Pg is surjective. An
analogous argument shows the injectivity.

(vi) If B is an arbitrary space we choose a CW-approximation f: C — B
and let n = f*&. One shows that the bundle map n — & induces a bijection
L(C,§) — L(B,n). This is due to the fact that a bundle map v — £ is up to
homotopy the composition of a bundle map v — 5 with the bundle map n — £
(manifolds have the homotopy type of a CW-complex), and homotopic bundle maps
yield, via the Pontrjagin—Thom construction, homotopic maps. A similar argument
shows that a bijective map [Q€¢, M (1)]® — [Q€, M (£)]° is induced. O

Problems

1. Work out the classification of the £-bordism classes in (21.2.3), thus completing the
sketched proof of the Hopf degree theorem.
2. Give a proof of (21.2.4). The source of the map in question uses embedded manifolds,
the range abstract manifolds. Thus one has to use the Whitney embedding theorem.
3. We use w1 (k) to interpret the isomorphism 7541 (S¥) = Z/2 for k > 3. Let (4, ¢)
represent an element of w; (k). The manifold A is a disjoint sum of manifolds A; diffeo-
morphic to S1. Let @; be the framing of A; induced by ¢. We assign to (4, ¢) an element
d(Aj,¢;) € Z/2. Leth: A — S! be a diffeomorphism. We think of S! as boundary of
D? and give D? C R? the standard framing. This induces a standard framing o of TS ' @ ¢
in which 1 € ¢ points outwards. This provides us with a framing

y: TA@keMTsl @gﬂ(k‘i‘ De.
If A is framed by ¢, then ¢: TA ® ke — (k + 1)e orients the bundle TA. We choose the
diffeomorphism / such that the composition with y is orientation preserving. The homotopy
class of y is independent of the chosen 4. The framing ¢ differs from the standard framing
by a map

A GL{ | (R) = SO(k + 1).

Composed with 1 ~! we obtain a well-defined element in
[S1,S0(k + 1)] = mSO(k + 1) = Z/2, k >2,

denoted by d(A, ¢) € Z/2. If A consists of the components (4; | j € J) wesetd(A4,¢) =
Show that (4, ¢) — d(A, ¢)induces fork > 2 awell-defined isomorphismd : w; (k) —
Z)/2.
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4. Give a similar interpretation of 3(S?) 2 Z. The difference to the case of the previous
problem is due to 71 SO(2) = Z.

21.3 Bordism and Thom Spectra

The theorem of Pontrjagin—-Thom allows us to describe the bordism group N, (X)
as a homotopy group.

Let y,: E(yy) — BO(n) be a universal n-dimensional real vector bundle and
MO(n) = M(y,) its Thom space. A classifying map y, & &€ — y,+1 induces a
pointed map e, : XM (y,) = M(yn & €) > M(yYn+1). The Thom spectrum MO
consists of the family (M O(n), e,). The associated homology and cohomology
groups of a pointed space Y are denoted M O, (Y) and MO"(Y).

(21.3.1) Theorem. There exists a natural isomorphism
T(X): Ny(X) = MO, (XT).

We will see that the isomorphism 7'(X) is obtained by a stable version of the
Pontrjagin-Thom construction.
For each space X we denote by &, (X) the product bundle idy xy,,. We define
a map
M (X): LR™* &(X)) —> Na(X).

Let [M, F] be an n-dimensional & (X )-submanifold of R”**. The first component
F; of the & (X)-structure F = (F1, F»): E(vyr) — X x E(y) gives us the element
[z (X)[M, F] = [M, F1] € N,(X). It is obvious that we obtain a well-defined
map ITg. There is a kind of suspension map

o LR™* (X)) — LR g4, (X)).

For [M, F] consider M’ = M x {0} C R**¥ x {0} c R**k+!  The normal
bundle of M’ is E(vas) ® e. We compose E(vy) @ ¢ — E(yr) @ ¢ with the
classifying map E(yx) ® ¢ — E(yx+1). From F we thus obtain a new struc-
ture F' = (F1, Fy): E(vmr) = X X E(yk+1). Weset o[M, F] = [M', F'].
The commutativity ITx+10 = Il holds. Let L,(X) denote the colimit over
the maps o: L(R"T* & (X)) — L(R" **1 & _,(X)). Altogether we obtain
(X): L,(X) > Ny(X).

(21.3.2) Proposition. The map T1(X): L,(X) — N, (X) is bijective.

Proof. Surjective. Let [M, f] € N, (X) be given. We can assume M C R"** for
some k, by the Whitney embedding theorem. Let kps: vpr — i be a classifying
map of the normal bundle. Then we have the & (X)-structure F = (f o vpr, kar),
and [ (X)[M, F] = [M, f] holds by construction.
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Injective. Suppose [My, Fy] and [M1, F;] have the same image under TT(X).
We can assume that M; C R"*¥ for a suitable k. There exists a bordism B with
0B = My + M, and an extension f: B — X of { fo, f1) where f; is the first
component of F;. There exists an embedding B C R"+k+2 5% [0, 1] such that

BN (R"™* x R x [0,1/3[) = My x 0% [0,1/3],
BN (R"™F x R'x]2/3,1]) = My x 0x]2/3,1].

By use of collars we can find a bordism B such that
0: C=Myx|[0,1/2[+]1/2,1] C B

and 0B = Myx0+M;x1. Weembed C — R"T* xR %[0, 1], (m, s) — (m,0, s).
Then we choose a continuous function ®: B — R"tk+? x [0, 1] such that ®
extends ¢ on D = My x [0,n] + M; x [1 — n, 1] for some 1/3 < n < 1/2
and such that ®(B ~ D) is contained in R"*K+?x]1/3,2/3[ (Tietze extension
theorem). Suppose k + ¢t > n + 1. We now approximate ® by an embedding
J: B — R"k+1 5[0, 1] such that J(B ~ D) C R*t%*x]1/3,2/3[ and such
that J equals ¢ on My x [0, 1/3[+M;1x]2/3,1].

The bundle maps vyr; — yk yield bundle maps vy; @ 1& — yk4,. Since these
classifying maps are unique up to homotopy and since B C B is a cofibration,
we can extend these maps to a bundle map vg — yr4,. We thus see that the
[M;, F;] € L(R"*+% £ (X)) have the same image in L(R" %+ &,,(X)). O

The Pontrjagin—Thom maps
P: LR, (X)) — [S"H, M(E(X)])° = ma (X A MO(K))

are compatible with suspension P oo = ¢ o P. We obtain a bijection of the colimits
P: L,(X) = MO,(X™") and hence a natural bijection

T=Poll™': Ny(X) = MO, (X™).

It remains to verify that 7' is a homomorphism. Let [M;, f;] € N,(X) be given.
Choose embeddings

My C Ay ={x | xp4r >0} C [Rn+k, My, C Ay ={x | xp4r <0} C Rtk

and choose tubular neighbourhoods U; C A; of M;. The Pontrjagin—-Thom con-
struction applied to M + M, yields a map which factors over the comultiplication
§ntk . gntk \, g1tk The restrictions to the summands are representatives of
P[M;, fi].

For more details on bordism homology and cohomology theories see [37], [181],
[160], [28].
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Problems

1. Given fo, f1: Q¢ — M(§). Let U C M(§) be an open neighbourhood of B. Suppose
V= fo_l(U) = fl_l(U) and fo|V = f1|V. Then fo and f; are pointed homotopic.

21.4 Oriented Bordism

The oriented bordism homology theory is isomorphic to the spectral homology
theory of the Thom spectrum M SO = (M SO(n), e,) where M SO(n) is the Thom
space of the universal n-dimensional orientable vector bundle over BSO(n). The
isomorphism

Q,(X) = MSO,(X™)

is established as in the case of unoriented bordism. The Pontrjagin—Thom con-
struction uses in this case an orientation of the normal bundle. An embedding
M" c R"tk induces a canonical isomorphism t(M) & v(M) = (n + k)¢ in
which the normal bundle v(M) is the orthogonal complement of the tangent bun-
dle. An orientation of t(M) induces an orientation of v(M) such that fibrewise
T2 (M) @ vy (M) = R"** is orientation preserving.

(21.4.1) Lemma. M SO(k) is (k — 1)-connected.

Proof. The canonical map s: BSO(k — 1) — BSO(k) can be taken as the sphere
bundle of the universal oriented k-dimensional bundle. From the homotopy se-
quence of this fibration we see that s is (k — 1)-connected. The homotopy se-
quence of s is isomorphic to the sequence of the pair (Dg, Si) of the universal
(disk,sphere)-bundle over BSO(k). Hence (Dg, Sg) is (k — 1)-connected. Since
BSO(k) is simply connected, we can apply (6.10.2) and see that 7; (Dg, Sg) —
7; (Dg/Sk) = wj(MSO(k)) is an isomorphism for j <k — 1. O

The suspension isomorphism 7, 4+% (M SO(k)) = my1+5+1(ZEMSO(k)) is an
isomorphism for k > n + 2, since M SO(k) is (k — 1)-connected (see (6.10.4)).
The spectral map 7; (XM SO(k)) — n;(MSO(k + 1)) is an isomorphism for
j < 2k — 1. In order to see this, we use the Whitehead theorem (20.1.4): The
spaces in question are simply connected. Thus it suffices to see that we have a
homology isomorphism in the same range.

H; (SMSO(k)) — H;(MSO(k + 1))

JThom J{Thom

H;_(BSO(k)) — H;_;(BSO(k + 1))

The map BSO(k) — BSO(k + 1) is (k — 1)-connected, hence the vertical maps
are isomorphisms for j — k < k — 1. These arguments show that we need
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not pass to the colimit, colimg 7,4+ M SO(k); we already have an isomorphism
Q, = w4 MSO(k) for k > n + 2. (The geometric reason for this stability result
is the strong form of the Whitney embedding theorem which we had not used in
(21.3.1).)

The assignment [M] — (kpr)«[M] € H,(BSO; Q) of Section 19.8 induces a
ring homomorphism Q. — H,(BSO; Q) which we extend to a homomorphism
of Q-algebras 74: Q« ® Q — H«(BSO; Q). We can define in a similar manner a
homomorphism v, : Q. ® Q — H«(BSO; Q) if we use classifying maps of stable
normal bundles.

(21.4.2) Theorem. The homomorphisms
Vi: Qe ® Q > Hi(BSO; Q) and t«: Q2+« ® Q > H«(BSO; Q)
are isomorphisms of graded algebras.

Proof. Lemma (21.4.1) and (20.8.3) imply that the Hurewicz homomorphism
7, (MSO(k)) — Hp(MSO(k))

has for r < 2k — 1 both a finite kernel and a finite cokernel; hence it induces
an isomorphism 7, (M SO(k)) ® Q — H,(MSO(k); Q) in this range. We also
have the homological Thom isomorphism H, (M SO(k); Q) =~ H,_;(BSO(k); Q).
The previous considerations now show that we have an isomorphism 2, ® Q =
H,(BSO(k); Q). The computation of H,(BSO(k); Q) = H,(BSO; Q) for k >
n + 2 shows that the Q-vector space 4, ® Q has dimension 7 (n), the number of
partitions of 7. From our computation of 7,(C P2%) we see that 7, : Q4, ® Q —
H4,(BSO; Q) is a surjective map between vector spaces of the same dimension,
hence an isomorphism.

The homomorphism v, is obtained from 7, by composition with the antipode ¢
of the Hopf algebra H.«(BSO; Q). It is determined by the formal relation

I+g1+q+--)A+uqr) +uga) +---) =1

which expresses the relation between the Pontrjagin classes of a bundle and its
inverse. O

Together with our previous computations (19.8.4) we obtain:

(21.4.3) Theorem. The algebra Q« ® Q is a polynomial Q-algebra in the gener-
ators [CP?"], n € N. O

We now collect various results and prove the Hirzebruch signature theorem.

(21.4.4) Theorem. The signature 6 (M) of an oriented closed 4n-manifold is ob-
tained by evaluating the Hirzebruch polynomial Ly, in the Pontrjagin classes of M
on the fundamental class.
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Proof. From (18.7.3) and (18.7.7) we see that M + o(M) induces a ring homo-
morphism 2, — Z. We extend it to a homomorphism of Q-algebraso: Q. — Q.
Via the isomorphism 7, of Theorem (21.4.2) it corresponds to a homomorphism
s: Hy(BSO;Q) — Q such that ¢ = s o 4. The homomorphism s was used
at the end of Section 19.8 to determine polynomials L, € H*"(BSO; Q) in the
Pontrjagin classes such that (L, (p), [M]) = o (M). O

Problems

1. It is not necessary to use the computation of 74(CP>2%) in the proof of (21.4.2). The
reader is asked to check that the diagram

Qu — Tk (MSO(K)) —— Hyy 1 (MSO(K))

2 2

H,,(BSO) H,,(BSO(k))

%

commutes (at least up to sign if one does not care about specific orientations). P is the
Pontrjagin—-Thom map, /4 is the Hurewicz homomorphism, ¢~ is the homological Thom
isomorphism, the bottom map is induced by the stabilization.
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2-category, 60
1-morphism, 61
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2-morphism, 61

horizontal composition, 61

vertical composition, 61
cell, 203

attaching, 203, 204

k-dimensional, 199
cellular chains, 302

cellular approximation theorem, 210

cellular chain complex, 302
chain, 283
singular, 224
with coefficients, 237
chain complex, 283
acyclic, 287
cellular, 302
contractible, 287
exact sequence, 284
singular, 224
chain equivalence, 285
chain homotopic, 285
chain homotopy, 285
chain map, 283
characteristic class, 474
stable, 474
characteristic map, 199
characteristic subgroup, 75
chart, 358, 369
adapted, 337, 359, 366, 370
centered at a point, 358
Ck-related, 358
domain, 358
positive, 336, 372, 400
positively related, 372
Chern class, 474
total, 474
chromatic number, 264
classification II, 75
classifying map, 344
stable, 356
classifying space, 344
closed simplex, 198
closure, 2

clutching datum, 9
coalgebra, 483
dual, 483
cobase change, 104
coboundary, 285
coboundary operator, 285, 406
cochain, 285
cochain complex, 285
cocycle, 285
codimension, 359
coefficient groups, 245, 406
cofibration, 102
homotopy theorem, 106
induced, 104
cofibre, 111
cofibre sequence, 95
cogroup, 91
coherent, 445
cohomology
additive, 180
C-oriented, 467
for pointed spaces, 180
limits, 408
R-oriented, 467
singular, 417
cohomology group, 406
cohomology module, 285
cohomology theory, 405
additive, 406
multiplicative, 409
suspension, 406
cohomotopy group, 181
coincidence set, 11
colimit, 12
colimit topology, 10
collar, 382
commutation rule, 61, 88
commutator group, 227
comonoid, 90
compact, 11
locally, 12
compact-open topology, 37



compactification, 12
Alexandroff, 12
one-point, 12
point at infinity, 12

compactly generated, 187

complex
Whitehead, 199

complex structure, 342

component, 27

compressible, 143

comultiplication, 91

cone, 92, 107

cone construction, 228

connected sum, 390

connecting morphism, 280

connectivity
oo-connected, 143
n-connected, 143

continuous, 2

contractible, 28, 287

contraction, 28

convergence
uniform, 4

convex, 29

convolution, 484

coordinate change, 358

copairing, 491

covering, 11
closed, 11
countable, 11
e-covering, 140
finite, 11
locally finite, 11
n-connective, 214
nerve, 197
null homotopic, 325
numerable, 318
numeration, 318
open, 11
order, 140
point-finite, 11
refinement, 11
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shrinking, 15
universal, 66
covering dimension, 140
covering space, 63
associated, 65
characteristic subgroup, 75
classification I, 70
classification II, 75
classification III, 78
deck transformation, 65
path lifting, 69
principal, 64, 329
regular, 75
transport functor, 67
trivial, 63
universal, 78
cup product, 409
CW-approximation, 215
CW-complex, 205
cellular dimension, 205
finite, 205
relative, 205
skeleton, 205
CW-decomposition, 205
CW-space, 205
cycle, 283
cylinder, 92

deck transformation, 65
decomposable, 253
decomposition of a space, 27
deformation retract, 32
degree, 49, 136

bordism invariance, 403

homological, 257

local, 259

modulo 2, 401
diagonal action, 17
diameter, 4
diffeomorphism, 359
differential, 283, 362
differential structure, 359
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dimension axiom, 245, 406
directed set, 4
distance, 3, 4
divided powers, 427
division algebra, 518
domination, 215
double mapping cylinder, 84
duality, 175
coevaluation, 175
evaluation, 175
duality pairing, 442
duality theorem, 446

edge, 197
Eilenberg subcomplex, 235
Eilenberg—Mac Lane morphism, 240
Eilenberg—Mac Lane space, 217
polarized, 218
product, 220
rational cohomology, 513
Eilenberg—Mac Lane spectrum, 221
Eilenberg—Zilber morphism, 238
elementary surgery, 390
embedding, 5
smooth, 359
universal property, 5
ENR, 448
equivariant, 17
Euclidean neighbourhood retract, 176,
448
Euclidean space
with two origins, 80
Euler characteristic, 179, 310
combinatorial, 308
relative homological, 310
Euler class, 431, 464
evaluation, 37
on the fundamental class, 457
evenly covered, 63
exact homology sequence, 225
exact sequence, 68
exact sequence of a triple, 225

excision map, 133
excision property, 525
excisive, 166, 239, 265, 407
extension, 101

initial condition, 101
extension of modules, 294
external product, 413

face, 197

fibration, 66
homotopy theorem, 118
Hurewicz, 115
induced, 117
Serre, 115

fibration theorem, 505

fibre, 32
typical, 63

fibre bundle, 62

fibre sequence, 99

fibre transport, 118

fibrewise, 32

final, 4

five lemma, 278, 282
mod €, 505

fixed point set, 17

flag bundle, 477

flag space, 477

formal group law, 485

free group, 53

free product, 53

free resolution, 292

fundamental class, 399, 402, 445

fundamental group, 42
fundamental groupoid, 42
fundamental lemma, 287

Gauss map, 352
genus, 312
geometric realization, 198, 321
graded module, 283
graph, 197, 264

chromatic number, 264



colouring, 264
Grassmann manifold, 23, 362
Grothendieck ring, 356
group

discrete, 15

free, 53

general linear, 16

normalizer, 21

orthogonal, 16

special linear, 16

special orthogonal, 16

special unitary, 16

topological, 15

topological subgroup, 16

torus, 16

unitary, 16

Weyl, 21
group algebra, 486
group object, 90
group-like, 486
groupoid, 42

topological, 335
Gysin sequence, 431

h-fibration, 118
half-space, 369
Hausdorff space, 3
h-coexact, 92
h-cofibration, 118

HEP, 101
h-equivalence, 28
h-exact, 97

hexagon lemma, 277
Hirzebruch L-polynomials, 494
HLP, 66, 115
homeomorphism, 2
homogeneous space, 18

homological orientation, 444, 445

homologous, 283
homology
additive, 180
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additivity axiom, 245
coefficient groups, 245
dimension axiom, 245
for pointed spaces, 179
group, 283
integral, rational, mod(p), 237
module, 283
homology product, 242
homology group, 283
local, 392
reduced, 252
relative, 225
singular, 224
homology module, 283
homology theory, 244
one-space, 528
homotopic, 27
homotopy, 27, 38
constant, 28
equivariant, 17
G-homotopy, 17
inverse, 28
linear, 29
product, 28
relative, 28
homotopy category, 28
homotopy class, 28
homotopy cocartesian, 85
homotopy colimit, 270
homotopy equivalence, 28
weak, 144
homotopy equivalent, 28
homotopy extension property, 101
homotopy fibre, 120
homotopy functor, 215
homotopy inverse, 28
homotopy lifting property = HLP, 66
homotopy pushout, 85
homotopy type, 28
Hopf algebra, 484
primitive element, 485
duality, 485
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group-like element, 486
pairing, 485

Hopf fibration, 332

Hopf invariant, 517

Hopf space, 90

H-space, 90

Hurewicz fibration, 115

Hurewicz homomorphism, 496

identification, 6
immersion, 363
incidence number, 301
index, 463
initial condition, 115
interior, 2
interior point, 2
Invariance of dimension, 252
Invariance of domain, 251
invariant scalar product, 19
involution

antipodal, 21
isotropy group, 17

join, 86, 345
Jordan curve, 250

Kiinneth formula, 298
homology, 242

Kernel-Cokernel Lemma, 281

Klein bottle, 58

Kneser graph, 264

Kronecker pairing, 418

k-space, 187

Lebesgue lemma, 47
Lebesgue number, 47
Lefschetz fixed point index, 179
left action, 17
left translation, 15, 17
lens space, 368
Lie group, 361
lifting, 50, 63, 101
initial condition, 50, 66

linking number, 404

local coordinate system, 358
local degree, 259

local parametrization, 358
local section, 332, 364
locally Euclidean, 358
locally finite, 318

locally trivial, 62, 332

loop, 42

loop space, 89

manifold, 358
boundary, 369
closed, 369
double, 391
interior, 369
orientable, 372
product, 359
smooth, 359
Stiefel, 365
manifold with boundary, 369
map
antipodal, 261
attaching, 203, 204
cellular, 210
characteristic, 199, 203, 204
closed, 2
continuous, 2
continuous at a point, 2
differentiable, 358, 369
n-equivalence, 144
odd, 261
open, 2
proper, 14
quotient, 6
regular point, 363
regular value, 363
singular value, 363
smooth, 358, 359, 370
transverse, 385
uniformly continuous, 4
weak equivalence, 144



mapping cone, 93, 111, 287
mapping cylinder, 81, 110

Mayer—Vietoris sequence, 266, 407

measure zero, 365
metric, 3
metric space, 3

Mittag-Leffler condition (= ML), 409

ML, 409
module

graded, 283
monoid, 90

in h-TOP, 49
Moore space, 256
morphism

connecting, 284
multiplicative structure, 409
MVS, 266

NDR, 114
NDR-presentation, 114
neighbourhood, 2

basis, 2

&3

open, 2

neighbourhood deformation retract, 114

nerve, 197
net, 4

convergent, 4
normal bundle, 376
normalizer, 21
null bordant, 521
null bordism, 521
null homotopic, 28
null homotopy, 28
numerable, 86, 318
numeration, 318

obstruction, 205
omega-spectrum, 181
open simplex, 198
orbit, 17

orbit category, 19, 75
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orbit space, 17

orbit type
finite, 17

orientation, 372, 394
along a subset, 394
boundary, 373
complex structure, 372
C-oriented, 467
local, 393
opposite, 372
pre-image, 374
product, 372
R-oriented, 467
standard, 372
sum, 372

orientation covering, 342, 394

orthogonal group, 16

paracompact, 15
partition of unity, 318

generalized, 320

subordinate, 318
path, 25

constant, 25

homotopy, 41

inverse, 25

product, 25
path component, 26
path connected, 26
Pliicker coordinates, 366
Poincaré duality, 446
point finite, 318
pointed

homotopy, 31

homotopy equivalence, 31

map, 31

product, 31

space, 31

sum, 31
polyhedron, 199
Pontrjagin class, 480
Pontrjagin number, 492
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Pontrjagin—-Thom construction, 530

pre-spectrum, 181
preparation theorem, 149
primitive, 485
principal bundle, 328
principal covering, 64
product orientation, 401
products
cap product, 438, 442
cup product, 409
cup product in singular
cohomology, 422
external, 413
Kronecker pairing, 418
projective bundle, 471
projective plane, 58
projective resolution, 287
projective space, 21, 22
homogeneous coordinates, 21
proper, 14
properly discontinuous, 64
pseudo-circle, 27
pullback, 8
Puppe-sequence, 95
pushout, 9

quasi-compact, 11

quotient map, 6
universal property, 6

quotient space, 6

ramification index, 313
ramification point, 313
ramified covering, 313
rank theorem, 363
reduced cohomology groups, 407
reduced homology, 252
regular point, 363
regular value, 363
representation, 19
orthogonal, 19
unitary, 19

retract, 6, 32

retraction, 6, 32
Riemann—Hurwitz formula, 314
Riemannian metric, 351

right action, 17

saturated, 6
scaling function, 169
section, 6, 32
local, 332, 364
Segre embedding, 366
semi-locally simply connected, 70
separating function, 523
separation axiom, 3
Serre class, 504
saturated, 504
Serre fibration, 115
exact sequence, 130
set
bounded, 4
closed, 2
dense, 2
nowhere dense, 2
open, 2
set map, 2
sheet, 63
short exact, 275
shrinkable, 32
shuffle, 240
shuffle morphism, 240
signature, 458
simplex, 197
combinatorial boundary, 198
dimension, 197
face, 197, 224
singular, 224
standard simplex, 224
simplicial complex
barycentric subdivision, 197
geometric realization, 198
simplicial complex, 197, 307
finite, 197



locally finite, 197
g-simplex, 307
subcomplex, 197
vertex, 307

simplicial diagram, 321

simply connected, 43
1-connected, 43

singular value, 363

skeleton, 205

skeleton filtration, 205, 416

slant product, 441

smash product, 31, 193

smooth manifold, 359

space
weakly hausdorff, 187
adjunction, 7
A-simple, 110
comb space, 33
compact, 11
compactly generated, 187
completely regular, 3
component, 27
connected, 27
covering, 63
decomposition, 27
discrete, 2
Eilenberg—Mac Lane, 217
G-space, 17
Hausdorff, 3
homeomorphic, 2
homogeneous, 18
k-closed subset, 187
k-open subset, 187
locally compact, 12
locally connected, 64
locally path connected, 64
metric, 3
metrizable, 4
n-connected, 143
normal, 3
n-simple, 110
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over, 32
paracompact, 15
pointed, 31
quasi-compact, 11
quotient, 6
regular, 3
separated, 3
simple, 110
topological, 2
totally disconnected, 27
transport-local, 70
under, 32
well-pointed, 102
spaces
triple of, 32
pair of, 31
spectrum, 181
FEilenberg—Mac Lane, 221
spheres, 181
suspension, 182
sphere
stable homotopy groups, 517
sphere spectrum, 181
splitting, 276
splitting lemma, 276
splitting principle, 477
stabilizer, 17
stable unitary group, 475
stably homotopic, 159
stably homotopy equivalent, 159
standard resolution, 292
star, 198
star-shaped, 29
stereographic projection, 35
Stiefel manifold, 22, 365
Stiefel-Whitney class, 479
Stiefel-Whitney number, 492
structure group, 334
reduction, 334
subbasis of a topology, 2
subcomplex, 197, 199



566 Index

submanifold, 359 Poincaré duality, 446
of type I, 370 Sard, 365
of type II, 370 Schoenflies, 251
smooth, 359 Thom isomorphism, 431
submersion, 363 Tietze, 3
subnet, 4 Tychonoff, 12
subspace, 5 Urysohn, 3
G- 17 Whitehead, 498
G-invariant, 17 Thom class, 431
G-stable, 17 strict, 433

locally closed, 13
relatively compact, 11
sum-lemma, 277
support of a function, 318
surface, 358

tangent bundle, 464
Thom homomorphism, 434
Thom isomorphism, 431
topological group, 15
topological product, 8

genus, 312

hyper-elliptic, 316 topological subgroup, 16

hyper-elliptic involution, 316 topological sum, 9
suspension, 87, 107, 288 topology, 1

homological, 249 basis, 2
suspension spectrum, 182 coarser, 2

colimit, 12

tangent bundle, 374 compact open, 37
tangent space, 362 discrete, 2
tangent vector, 362 finer, 2

pointing inwards, 370 product, 8

pointing outwards, 370 quotient, 6
telescope, 270 relative, 5
test map, 187 subbasis, 2

test space, 187 subspace topology, 5

theorem torsion product, 292
Alexander duality, 446 ’
Blakers—Massey, 133, 148 torus, 16
Borsuk—Ulam, 464 total space, 32

transition function, 358

Bott periodicity, 357 o
transition map, 336

cellular approximation, 210 X
E. H. Brown representability, 216 translation map, 329

Ehresmann, 382 transport, 107

Freudenthal suspension, 154 transport category, 70
Hurewicz, 497 transport functor, 67, 107, 119
Leray—Hirsch, 427, 430 transport space, 70

M. Brown, 251 transport-local, 70



transport-simple, 70
transverse, 385

to a submanifold, 385
tree, 209
triangulation, 198
trivial G-space, 332
trivial over, 62
trivialization, 62
tubular map, 376
tubular neighbourhood, 377
typical fibre, 63

unitary group, 16

universal coefficients, 295, 296
cohomology, 418
homology, 238

universal covering, 78

universal group, 355

vector bundle, 336
finite type, 336

Index

inverse, 351
numerable, 336
orientable, 336
orientation, 336
subbundle, 337
tautological, 339
vector bundles
stably equivalent, 356
vector field, 136
vertex, 197

Wang sequence, 426

weak equivalence, 144

wedge, 31

well-pointed, 102

Weyl group, 21

Whitehead complex, 199
subcomplex, 199

Whitney sum, 351

winding number, 50, 258, 403
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