LO)IONE st

COMMUNICATING WITH
THE LOXONE MINISERVER

Date 2025.06.03

LOXONE

Create
Automation

In order to modernize our interface, we improved our Miniserver, allowing it to communicate with
WebSocket clients that conform to the RFC6455. This document explains what is to be done, in
order to communicate with our Miniserver on the basis of an RFC6455 websocket. Parts of this
document will cover communicating via HTTP-Requests too (e.g. Secured Commands, Hashing or

the Structure File).

Arguments in commands are wrapped in curly brackets, e.g.: “jdev/test/{the argument}”. So when
{the argument} is “yeah” it will look like this: “jdev/test/yeah” - no more curly brackets here.

16.0

Communicating with the Miniserver Page 2 of 36

LOXONE e

Important Notes

Since May 2021 Remote Connect supports globally distributed datacenters.
' Adoption to getlp-Handling may be required. See Support for distributed data
centers

Since Version 11.2 application layer encryption is no longer mandatory if TLS is

used (on Miniservers of the new generation). This allows for clients to be
implemented without the hassle of having to implement our application layer
[) encryption.

Since November 2019, our new generation of the Miniserver has been
' introduced. The new generation supports TLS Protocols such as WSS and HTTPS.
For details see chapter Using HTTPS/WSS

[]
As of Loxone Config 10.3 new hashing algorithms for passwords have been
introduced. Starting with future versions, passwords will be hashed using
SHA256. In order to ensure compatibility for future versions, please make sure to
[) follow the updated instructions listed here.

16.0

Communicating with the Miniserver Page 3 of 36

LOXONE e

As of Loxone Config 10.2 JSON Web Tokens (https.//jwt.io/) have been

introduced. Using legacy tokens is still supported, but deprecated in version 10.2
and will be removed in future versions. In order to ensure compatibility for future
[) versions, please make sure to follow the updated instructions listed here.

As of Loxone Config 9.3 password based authentication has been removed in
favor of token based authentication. Token based authentication has been
introduced in Loxone Config 9.0.

debugging and testing purposes. Since credentials passed along using basic
authentication may be intercepted and compromised, it is strongly recommended
to use token based authentication.

' Note: Using HTTP Basic Authentication for HTTP Requests is still available for

This document has been revised and only contains info on token based
authentication. Please make sure your implementation is ready for tokens.

16.0

Communicating with the Miniserver Page 4 of 36

https://jwt.io/

LOXONE e

Table of contents

Important Notes 3
Table of contents 5
Setting up a connection 8
What do we need? 8
Step-by-step guide 8
What can go wrong? 9
Using HTTPS/WSS 10
Basic Info on HTTPS/WSS 10
What needs to be done to use HTTPS/WSS 10
How to determine if the Miniserver supports HTTPS/WSS? 10
What hostname to use with CloudDNS? 11
How can | connect locally with TLS? 11
General Info 12
CloudDNS 12
Remote Connect Service 12
Support for distributed data centers 13
Controls 13
Commands 13
Encryption 13
Miniserver Generation 2 & Miniserver Compact 14
Miniserver Generation 1 14
Secured Commands 14
Hashing 14
Tokens 15
Permissions 16

16.0

Communicating with the Miniserver Page 5 of 36

LOXONE e

List of permission bit-flags 16
States 18
Understanding the messages 19
Message Header 19
Structure of the Message Header 19
1st Byte: fix 0x03 19
2nd Byte: Identifier 19
3rd Byte: Info 20
4rd Byte: reserved 20
5th-8th Byte: length of payload 20
The actual messages 21
Text-Messages 21
Binary Files 21
Event-Tables 21
The UUID 23
Icons 23
SVG 24
Where to get them, where to put them 24
Caching 24
Structure-File: LoxAPP3.json 24
Download and caching 24
More info 25
Command Encryption 26
Step-by-step Guide HTTP Requests 26
Sending encrypted commands over the websocket 27
Tokens 29
Acquiring tokens 29
16.0

Communicating with the Miniserver Page 6 of 36

LO).ONE s:Secen

Authenticating using tokens 30
Refreshing tokens 31
Checking if tokens are valid 31
Killing tokens 32
Handling an active connection 32
Keeping the connection alive 32
Detecting issues 32
Error-Codes 34
General Info 34
Returned Error-Codes 34
Websocket Close Codes 35
General Info 35
Revision History 35
16.0 35
15.2 35
14.5 35
14.2 35
16.0

Communicating with the Miniserver Page 7 of 36

LO)IONE scctaen

Setting up a connection

What do we need?
e a websocket client implementation conforming to the RFEC6455
e the IP or URL of the Miniserver (including the port)
o beware, if the Miniserver is using the Loxone CloudDNS service, you need to resolve
it first. The websocket-redirect won't work. (see CloudDNS)
e valid credentials (user & password)

Step-by-step guide
Earlier versions of this document did cover password based authentication and authentication
without making use of encryption. This guide, however, is based on using encryption and tokens.

1. ensure the Miniserver is reachable
a. our apps are using an HTTP(s)-Request that returns both the Miniservers Mac-
Address and it’s config version: “{ipOrUrl}:{port}/jdev/cfg/apiKey”
b. Miniservers of our new generation will have an attribute “httpsStatus” in the

response, see chapter Using HTTPS/WSS for details.

c. Since 12.1 the response will contain a local-Attribute, providing insight on whether
or not the Miniserver deems this connection “local” (important for access
restrictions)

2. Acquire the Miniservers certificate via “jdev/sys/getcertificate”
a. Verify the certificate chain, and make sure it originates from the Loxone Root
Certificate
i. The root certificate is always the first certificate in the chain, but it should
be verified against a stored certificate on the client side!
b. Extract the Public Key from the last certificate -> {publicKey}
i. Store on the client
ii. X.509 encoded key in PEM format
3. open a WebSocket connection
a. use the following path: “ws://{ipOrUrl}:{port}/ws/rfc6455”
i. Note: WSS is supported for Miniservers of the second generation. See Using
HTTPS/WSS
b. specify “remotecontrol” as Sec-WebSocket-Protocol.
4. Generate a AES256-CBC key -> {key} (Hex)
5. Generate a random AES iv (16 byte) -> {iv} (Hex)
16.0

Communicating with the Miniserver Page 8 of 36

http://tools.ietf.org/html/rfc6455

LOXONE &her

6. RSA Encrypt the AES key+iv with the {publicKey} -> {encrypted-session-key} (Base64)
a. “{key}{iv}" is the payload that needs to be encrypted using RSA
b. This key and iv will be used to AES-encrypt messages on the websocket (e.g. for
authentication or token acquisition). More info on encrypted commands.
7. Pass encrypted session-key to Miniserver via “jdev/sys/keyexchange/{encrypted-session-
key}’
8. Generate a random salt, hex string (length may vary, e.g. 2 bytes) -> {salt}
a. This salt will be used to AES-encrypt messages on the websocket (e.g. for
authentication or token acquisition). More info on encrypted commands.

9. There are two options now:
a. If a token exists, then authenticate as described in Authenticating using tokens
b. If a token needs to be acquired, proceed as described in Acquiring tokens
10. After either successful token based authentication or acquiring a new token, the socket is

authenticated and ready to go.

Update the {salt} on your behalf, eg. After every sent command. This prevents replay attacks on
compromised websocket connections.

e {cipher}: “nextSalt/{prevSalt}/{nextSalt}/{cmd}” encrypted with the session key (AES)

What can go wrong?

e If you provide invalid credentials you'll receive a message with the response code 401.

e [f you don’t authenticate within the first few seconds after establishing the socket
connection, you'll receive a message with the response code 420 and the socket will close.

e If you do not authenticate, but try to send any other command but the command required
to authenticate or acquire a token, you will receive a response with code 400.

e If you are blocked due too many failed login attempts, the Miniserver will block you for a
certain time. The WebSocket closes right after it opens with a Close Code of 4003

e Up to 31 concurrent clients can receive live status updates. The “hasEventSlots” attribute of
the jdev/cfg/api request indicates whether or not slots are available.

e The connection attempt is made from an external connection, while only local ones are
allowed. Since 12.1 the jdev/cfg/api or jdev/cfg/apiKey responses will contain a “local”
attribute.

e First generation Miniservers can serve up to 48 http connections, the new generation is
capable of serving up to 256 http connections. See Error-Code Section for details.

16.0

Communicating with the Miniserver Page 9 of 36

LOXONE &her

Using HTTPS/WSS

Since November 2019 the new generation of the Miniserver is available. Unlike our Miniserver
Generation 1, the new generation allows for using TLS protocols such as WSS or HTTPS.

Basic Info on HTTPS/WSS

HTTPS basically is HTTP, but TLS (Transport Layer Security) is used for communication. The same
is true for WSS and WS. For using TLS, servers must provide a certificate using which the client can
both verify the authenticity of the server and encrypt all communication transferred between them.

Our Miniservers use a certificate that is automatically obtained when using our CloudDNS service
(referred to as CloudDNS-Certificate here). Alternatively, you can upload your own certificate onto
your Miniserver using Loxone Config (referred to as custom-certificate here).

What needs to be done to use HTTPS/WSS

This document goes into detail on how to set up a connection using WS or HTTP, which is still
supported by Miniservers of the new Generation. Only little needs to be changed for making use of
HTTPS & WSS.

e Use the TLS protocols HTTPS and WSS instead of HTTP and WS
e Use the Hostname instead of an IP-Address
o Certificates cannot be created for IP-Addresses, only for hostnames such as
“loxone.com”.
o Connecting to an IP using TLS will result in certificate errors, as the authenticity
cannot be verified.

How to determine if the Miniserver supports HTTPS/WSS?

Especially when connecting to a Miniserver for the first time, it may not be known whether or not
TLS-Protocols are supported. There are different ways to find out, depending on whether or not
you are trying to connect locally or from the internet.

Ask the Miniserver itself

When connected locally, try a reachability check request such as
“http://{miniserverIP}/jdev/cfg/apiKey”. This request won't transfer any confidential data, but will
contain an attribute “httpsStatus” which has the value 1 if TLS protocols are available, and a value
of 2 if the Miniserver has a certificate but its expired.

Ask our CloudDNS service

16.0

Communicating with the Miniserver Page 10 of 36

https://en.wikipedia.org/wiki/Transport_Layer_Security

LO)IONE scctaen

If a Miniserver supports WSS/HTTPS, the response described in the CloudDNS-Section will contain
two additional attributes “IPHTTPS” and “PortOpenHTTPS”. These attributes are the counterpart for
“IP” and “PortOpen” for using HTTPS/WSS and are only available for Miniservers supporting TLS.

Trial & Error

If the Miniserver isn’t in the local network and the only info is it’'s hostname (e.g.
my.smarthome.com:7777), the only option is trial & error. Launch a reachability check request
“https://my.smarthome.com:7777/jdev/cfg/apiKey” - if it succeeds, the Miniserver supports TLS-
Protocols.

What hostname to use with CloudDNS?
As mentioned, certificates can only be created for hostnames and not IP addresses. To make a
connection using TLS the following steps need to be taken:

1. Request the current IP & Port from the CloudDNS
2. Create a hostname containing the IP and port returned by the IPHTTPS attribute of the
response.
a. Split up IPHTTPS into the {ip} and {port}

b. Clean up the {ip} - {cleaned-ip}

i. IPv4:Replace dots (“.”) with minuses (“-")

6 9 6 9

ii. IPv6: Replace colons (“”) with minuses (“-”) and remove the brackets (‘[&
“1") at the beginning and end.
c. Create hostname “{cleaned-ip}.{snr}.dyndns.loxonecloud.com:{port}’
i. {snr}is your Miniservers Serial-Number.

ii. E.g.:“200-12-14-24.{snr}.dyndns.loxonecloud.com:4523”

How can | connect locally with TLS?

As long as your Miniserver is capable of TLS and is using our CloudDNS-Certificate, you can. You
need to create a hostname just like if you would connect from the internet, but use your
Miniservers local IP and port. E.g. “192-168-1-47 {snr}.dyndns.loxonecloud.com:443”

If the Miniserver is using a custom certificate, connecting with it via it's local IP will result in
certificate verification errors.

16.0

Communicating with the Miniserver Page 11 of 36

LOXONE &iten

General Info

In order to communicate with the Miniserver, a few things have to be known. This is a short textual
explanation of the communication, details can be found further below.

CloudDNS

You can request the current IP Address of your Miniserver using an HTTP Request:
“dns.loxonecloud.com/?getip&snr={ SNR of Miniserver }&json=true”. The Request returns the current
IP Address and Port of the Miniserver represented as JSON. Here is a list of the important attributes
in that response.

e (ode
o 200 = everything okay
o 403 = Miniserver is not registered with Loxone, CloudDNS disabled
o 405 = Miniserver not reporting to CloudDNS
o 409 = Unsecure Password in place, external access blocked.
o 412 = port not opened
o 418 = Denied, see response)]SON-Attribute for details
o 481 = Miniserver could not connect to the remote connect service
o 482 = Miniserver connection via remote connect was aborted due to a timeout
o 483 = Miniserver makes a scheduled restart
e |P
o Current IP & port reported by the Miniserver (for WS or HTTP)
e PortOpen

o Indicates whether or not the port reported is open, indicates configuration issues on
the Miniserver
e lastUpdated
o Date & Time of the last IP update made by the Miniserver
e |PHTTPS & PortOpenHTTPS
o Not available for Miniserver Generation 1
o See chapter Using HTTPS/WSS for details

Remote Connect Service
Since Version 11.0 Miniservers may be reachable externally via our Remote Connect Service. This
service does NOT work for Miniservers Generation 1, as it requires encryption.

Those miniservers will be accessible via our Cloud DNS service, on client side no changes are

16.0

Communicating with the Miniserver Page 12 of 36

LO)IONE scctaen

necessary. Remote Connect only supports using HTTPS/WSS.

Support for distributed data centers

Since May 2021 the remote connect service supports distributed datacenters, allowing for faster
connection establishment on other continents, especially mainland china. The response to the
getlP-request (just like for CloudDNS) will contain the info on which data center to use for the
requested Minserver.

1. dns.loxonecloud.com/?getip &snr={msserial}
2. Retrieve “DataCenter”-attribute value
a. E.g. “loxonecloud.cn”
3. Retrieve resolved IP
a. E.g.“123.123.123.123:12345”
4. Establish connection using the data center retrieved in step #2
a. E.g.“httpsy//123-123-123-123 {serial}.dyndns.loxonecloud.cn:12345/”
5. In future requests, make use of the retrieved data for faster connection establishment.
a. E.g. “dns.loxonecloud.cn/?getip &snr={msserial}”
6. Should a Miniserver unknown by a previously datacenter (Code 405), fall back to step #1

Controls
In the following document a “Control” is a Function/Block-Function like “Virtual Input

9

, Virtual

y G y 66

State”, “Intelligent Room Controller”, “Sauna” etc.

Commands

The Miniserver will answer every command it receives, it will return a TextMessage as
confirmation. This message contains the command it has received, an HTTP-Status-Code as success
indicator and a value. The value is the info that was requested or the state after a control-
command was executed - but beware, these are not fully implemented, so instead rely on the state
updates.

e a control command looks like
o “jdev/sps/io/{uuid}/fcommand}”

e all commands can either start with “jdev/’ or just “dev/”
o ‘“jdev/” in JSON-Format (Beware, the answer will contain ‘dev’ instead of ‘jdev’)
o “dev/” delivers responses in XML-Format and is deprecated

Encryption

16.0

Communicating with the Miniserver Page 13 of 36

LO)IONE scctaen

Available since 7.4.4.14

Miniserver Generation 2 & Miniserver Compact
Miniservers of our most recent generation are now capable of using HTTPS/WSS, so every

information transferred between the Miniserver and the client is encrypted without further steps.

Versions prior to 11.2.10.22: Please note, that some commands (e.g. GetToken, RefreshToken, ..)
require application layer encryption, even though TLS is in place.

Miniserver Generation 1

The hardware specifications of the Miniserver do not allow full featured SSL encryption, it would
put the CPU under too much pressure leading to delayed responses to events. In order to still be

able to send data to the Miniserver in a secure way (in addition to hashing), Command Encryption
was introduced.

Secured Commands
We have the possibility to use a “visualization password” for Controls (set in Loxone Config), those
passwords are added to the commands as described below:

1. request the visualization password from the user - {visuPw}
2. request a {key}, {salt} and the used hashing algorithm {hashAlg} from the Miniserver
(‘jdev/sys/getvisusalt/{user}’)
a. {user} = the user whos visu password has been entered
3. Create an {hashAlg} hash (SHA1, SHA256,.)) of “{visuPw}:{salt}" -> {visuPwHash}
Create an HMAC-SHA1 or HMAC-SHA256 hash using the uppercase {visuPwHash} and the
{key} (see Hashing) - {hash}
5. send “jdev/sps/ios/{hash}/fuuid}/{command}”
a. response has Code 200 if password was correct and command could be executed
b. a response with Code 500 means the password was incorrect

To check the entered visualization password without triggering a function the webservice
“jdev/sps/checkuservisupwd/{hash}” can be used.

Hashing

Login information is not sent as plain text, even across encrypted connections, but as hash. The
Miniserver also only stores a hashed version of the information, to ensure the raw information can
never be retrieved.

16.0

Communicating with the Miniserver Page 14 of 36

LO).ONE s:Secen

1. the key from the “jdev/sys/getkey”, “jdev/sys/getkey2” or “jdev/sys/getvisusalt” responses are
hex-encoded and might need to be converted to ASCII before being used to create a hash.
2. create a hash from the desired text (user:passHash, visuPwHash, token) using HMAC-SHA1
or HMAC-SHA256 with the {key} received in the answer
a. To create ‘passHash’ & ‘visuPwHash’ use the hashing algorithm {hashAlg} that is
defined in the answer of the corresponding requests
3. encode the hash back to hex

Tokens

Tokens have been introduced in Loxone Config 9. They are used for authentication instead of
passwords. Tokens can expire, be revoked without changing the password - and they allow for a
much more refined permission handling. See separate section for details on how to handle tokens.

16.0

Communicating with the Miniserver Page 15 of 36

Create
Automation

LOXONE

Permissions

Along with the introduction of tokens, a refined permission handling has been implemented. When
requesting a token, the desired permission is to be specified. For establishing connections, only
two permissions are important: the permission for the web (ID = 2) and the permission for the app

(ID = 4).

One of these two permissions must be specified when acquiring a token for communication

(opening a websocket or sending HTTP-Requests).

List of permission bit-flags

Bit Title Description

0x00000000 None Token used to authenticate with the Intercom Gen. 2

0x00000001 Admin Administrative Right

0x00000002 Web Short lived token, used for Web Interface

0x00000004 App Long lived token, used for Apps

0x00000008 Config Right to login to Loxone Config

0x00000010 FTP Right to use via FTP

0x00000020 Change-PWD Right to change own password

0x00000040 Expert-mode Right to use expert mode

0x00000080 Op-Modes Right to change operating mode schedule

0x00000100 Sys-WS Right to use system-level web services (e.g. reboot)

0x00000200 AD Right to create/edit automatic designer rules / scenes

0x00000400 | Adopt-UlI Expert Mode Light, edit non-logic properties (name/icon)

0x00000800 User-Mgmt Right to add/remove/edit other users

0x00001000 Device-Mgmt Right to use Air/Tree Device Search

0x00002000 Plugin-Mgmt Right to manage Miniserver-Plugins (e.g. HomeKit)
16.0

Communicating with the Miniserver

Page 16 of 36

LOXONE e

0x00004000 Trust-JWT-Auth Right to login using JWT on a trusted MS (since 14.5.11.3)

0x00008000 Trigger Update Right to trigger a Miniserver update

0x00010000 Trigger Backup Right to trigger a Miniserver backup

16.0

Communicating with the Miniserver Page 17 of 36

LO).ONE s:Secen

States

In order to receive the states of sensors and actuators, state-updates need to be enabled on the
socket. This is done by sending “jdev/sps/enablebinstatusupdate” to the Miniserver. The Miniserver
will only publish the states of sensors and actuators that are used in the user interface.

After this command is sent, the client will receive large initial Event-Tables containing Value-,
Text-, Daytimer- and Weather-States. These Event-Tables contain the current states of all sensors
and actuators.

The client needs to store these infos for the time the connection is active, because further on the
Miniserver will only inform the client on changes to these states.

These states are always sent out as an UUID paired with some sort of value, using the Structure-
File (see LoxAPP3.json) and the UUID you can find out what value belongs to which control.

16.0

Communicating with the Miniserver Page 18 of 36

LO)IONE scctaen

Understanding the messages

As mentioned in the chapter on how to setup a connection, messages sent by the Miniserver are
always prequeled by a binary message that contains a MessageHeader. So at first you'll receive the
binary Message-Header and then the payload follows in a separate message.

Message Header

The message header is used to distinguish what kind of data is going to be sent next and how
large the payload is going to be. In some cases, the Miniserver might not know yet how large the
payload is going to be. For these cases a flag indicates that the size is estimated (see Estimated).
The header is sent as a separate data packet before the actual payload is transmitted. This way the
clients know ahead how large the payload is going to be. Based on this info, clients know how long
it's going to take and respond accordingly (Ul or timeouts).

Structure of the Message Header

The Message Header is an 8-byte binary message. It always starts with 0x03 as first byte, the
second one is the identifier byte, which gives info on what kind of data is received next. The third
byte is used for information flags and the fourth byte is reserved and not used right now. The last 4
bytes represent an unsigned integer that tells how large the payload is going to be.

1st Byte 2nd Byte 3rd Byte 4th Byte 5th Byte 6th Byte 7th Byte 8th Byte

0x03 Identifier InfoFlags rsvd len len len len

typedef struct {

BYTE cBinType; // fix 0x03
BYTE cIdentifier; // 8-Bit Unsigned Integer (little endian)
BYTE cInfo; // Info
BYTE cReserved; // reserved
UINT nLen; // 32-Bit Unsigned Integer (little endian)
} PACKED WsBinHdr;
1st Byte: fix 0x03

2nd Byte: Identifier
8-bit Unsigned Integer (little endian)

The identifier byte is used to distinguish between the different kinds of messages

Identifer | Message-Type

16.0

Communicating with the Miniserver Page 19 of 36

LO)IONE scctaen

0 Text-Message

1 Binary File

2 Event-Table of Value-States

3 Event-Table of Text-States

4 Event-Table of Daytimer-States

5 Out-Of-Service Indicator - presumably due to an Firmware-Update. No message is

going to follow this header, the Miniserver closes the connection afterwards, the
client may try to reconnect.

6 Keepalive response (after sending “keepalive”, the Miniserver will respond with this
identifier - therefore the connection is up and running!)

7 Event-Table of Weather-States

3rd Byte: Info
The 3rd Byte of the Header is used to provide additional information regarding the incoming

message.
1st Bit 2nd Bit 3rd Bit 4th Bit 5th Bit 6th Bit 7th Bit 8th Bit
Estimated rsvd rsvd rsvd rsvd rsvd rsvd rsvd

1st Bit: Estimated
In order to get fast info of how big the next incoming data will be, a Header with the Estimated-Bit
set, tells, that the given size is only estimated (eg. Gateway Miniservers, ..)

An Estimated-Header is always followed by an exact Header to be able to read the data correctly!
4rd Byte: reserved

5th-8th Byte: length of payload
32-bit Unsigned Interger (little endian)
The size of the payload, may be estimated. This info can be used to adopt timeouts etc.

16.0

Communicating with the Miniserver Page 20 of 36

LOXONE &iten

The actual messages

Text-Messages

Text-Messages are supported since day one of WebSockets. They are handled by all WebSocket
implementations out there - so having a separate message-header telling there will be a Text-
Message wouldn’t be necessary. But in order to stay consistent in our application protocol, we did
add it for those messages as well.

Text-messages are received as responses to commands, but our Structure-File and other XML- or
JSON-Files are sent as Text-Messages too.

Binary Files

If you download files (e.g. images, statistic-data) from the Miniserver, you will receive a binary file.
As mentioned before, files with text-content (e.g. the LoxAPP3.json) will be be delivered as a text-
message, so you don’t have to decode it.

Event-Tables

Incoming events are always grouped as tables according to their type (Value, Text, Daytimer,
Weather). Each Event-Entry in these tables has it's own UUID, so you can assign the values to the
correct Controls.

e ->0One actual message can contain multiple events!

Event-Table of Value-States
Value-States are the simplest form of a state update, they consist of one UUID and one double
value each, so their size is always 24 Bytes.

Binary-Structure of a Value-Event

typedef struct {

PUUID uuid; // 128-Bit uuid

double dval; // 64-Bit Float (little endian) value
} PACKED EvData;

Event-Table of Text-States

Text-States are more complex since their size varies based on the text they contain. That is why they
do not only consist of an UUID and the text, but also an unsigned int that specifies how long the text

is.

e The UUID-Icon is used by the “Status”-Control (see Icons)

e |f textLength is not a multiple of 4 then padding bytes are appended, that are to be ignored.
16.0

Communicating with the Miniserver Page 21 of 36

LO).ONE s:Secen

Binary-Structure of a Text-Event

typedef struct { // starts at multiple of 4
PUUID uuid; // 128-Bit uuid
PUUID uuidIcon; // 128-Bit uuid of icon
unsigned long textLength; // 32-Bit Unsigned Integer (little endian)

// text follows here
} PACKED EvDataText;

Event-Table of Daytimer-States
Like Text-States, Daytimer-States do not have a fixed size, it varies on how many Daytimer-Entries
there are per Daytimer.

“nEntries” tells the number of daytimer-entries which the package contains.

Analog Daytimer: each entry does have it’s value
Digital Daytimer: an existing entry means “on”, no entry means “off”

Binary-Structure of a Daytimer-Event-Table
typedef struct {

PUUID uuid; // 128-Bit uuid
double dDefValue; // 64-Bit Float (little endian) default value
int nrEntries; // 32-Bit Integer (little endian)

// entries (EvDataDaytimerEntry) follows here
} PACKED EvDataDaytimer;

Binary-Structure of a Daytimer-Entry
typedef struct {
int nMode; // 32-Bit Integer (little endian) number of mode
int nFrom; // 32-Bit Integer (little endian) from-time in minutes since midnight

int nTo; // 32-Bit Integer (little endian) to-time in minutes since midnight
int bNeedActivate; // 32-Bit Integer (little endian) need activate (trigger)
double dValue; // 64-Bit Float (little endian) value (if analog daytimer)

} PACKED EvDataDaytimerEntry;

Event-Table of Weather-States
If an active Weather-Abo is up and running, we also get Weather-State Updates.

Each Weather-Event-Table contains info about the up-to-dateness (in Seconds since 2009, UTC) of
the Weather-Information, the number of entries and the entries itself.

Binary-Structure of a Weather-Event-Table
typedef struct {
PUUID uuid; // 128-Bit uuid
unsigned int lastUpdate; // 32-Bit Unsigned Integer (little endian)

16.0

Communicating with the Miniserver Page 22 of 36

LOXONE

int nrEntries; // 32-Bit Integer (little endian)
// entries (EvDataWeatherEntry) follows here
} PACKED EvDataWeather;

Binary-Structure of a Weather-Entry
typedef struct {

int timestamp; // 32-Bit Integer (little endian)
int weatherType; // 32-Bit Integer (little endian)
int windDirection; // 32-Bit Integer (little endian)
int solarRadiation; // 32-Bit Integer (little endian)
int relativeHumidity; // 32-Bit Integer (little endian)
double temperature; // 64-Bit Float (little endian)
double perceivedTemperature; // 64-Bit Float (little endian)
double dewPoint; // 64-Bit Float (little endian)
double precipitation; // 64-Bit Float (little endian)
double windSpeed; // 64-Bit Float (little endian)
double barometicPressure; // 64-Bit Float (little endian)

} PACKED EvDataWeatherEntry;

The UUID

The Miniserver uses UUIDs in order to uniquely identify controls, in- or outputs. That is why the
states that are published using Event-Tables have one UUID for each state, so that the values can
be linked to their controls. Each UUID has a fixed size of 128 Bit.

Structure-Files such as “LoxAPP2.xml” (deprecated) or the new, tidied up “LoxAPP3.json” are
providing the information on what UUID is related to what control, or to what in- or output. They
can be acquired by sending “data/LoxAPP2.xml” or “data/LoxAPP3.json” to the Miniserver.

Binary-Structure of a UUID
typedef struct UUID {

unsigned long Datal; // 32-Bit Unsigned Integer (little endian)
unsigned short DataZ2; // 16-Bit Unsigned Integer (little endian)
unsigned short Data3; // 16-Bit Unsigned Integer (little endian)
unsigned char Data4[8]; // 8-Bit Uint8Array [8] (little endian)

} PACKED PUUID;

Converting a UUID to a string

CStringA str;

str.Format ("$08x-%04x-%04x-%02x%02x%02x%02x%02x%02x%02x%02x",
uuid.Datal,uuid.Data2,uuid.Data3,uuid.Datad4[0],uuid.Datad4[1],uuid.Datad[2],
uuid.Datad4 [3],uuid.Datad4[4],uuid.Datad4[5],uuid.Datad[6],uuid.Datad[7])

Icons
In general, icons are used for rooms and categories, but also for displaying states, as in the

“Status”-Control. UUIDs are already used to link states to controls and furthermore they are also
used to identify icons and link them to groups (rooms or categories), or “Status”-Controls.

Create
Automation

16.0

Communicating with the Miniserver Page 23 of 36

LOXONE &her

SVG

Along with the release of Loxone Config 6.0 a new format for icons was introduced: “Scalable
Vector Graphics”, short “svg”. Previously the only image format supported was “Portable Network
Graphics”, short “png”. SVGs are image descriptions in XML-Format, they are not only scaleable
losslessly, but they can also be modified and animated.

Where to get them, where to put them

The structure file gives info what icon is to be used where. In new configurations you will mostly
find “svg”-Icons (e.g.: “00000000-0000-0020-2000000000000000.svg”). Since some Miniservers
might make use of customized icons, there will still be some PNGs out there, even with newer
Config-Versions. Those can be identified either by “.png” or the file appendix is simply missing (e.q.
“00000000-0000-0020-20000000000000007).

Images can be downloaded over the WebSocket by simply sending the UUID plus the type to the
Miniserver. So “00000000-0000-0020-2000000000000000.svg” will return the SVG-File of this
image, while “00000000-0000-0020-2000000000000000.png” will return the same image as PNG.

Text-States only contain UUIDs for icons without specifying the format. The only way to identify
whether it is a PNG or an SVG is the response type given in the Message-Header when
downloading the Icon. If it's an Text-Message, then it's an SVG (since it’s basically an XML-File),
otherwise it's an PNG and the Message-Header will indicate that it’s a binary file. So for all
“Status”-Controls try to download an SVG and later decide based on the response whether it is PNG
or SVG.

Caching

Anicon is identified by an UUID per Miniserver. This UUID doesn’t change as long as the icon
remains the same, regardless if you're connected locally or remote. So you can reuse the
downloaded icons locally and remote.

Structure-File: LoxAPP3.json

The Structure-File was mentioned a few times before in this document, it is the central element for
creating a visualisation. It contains almost everything you need to know about the Miniserver.

Download and caching
The new structure-file can be downloaded by sending “data/LoxAPP3.json” to the Miniserver. Since

16.0

Communicating with the Miniserver Page 24 of 36

LO).ONE s:Secen

it's a text-file, the Miniserver will respond with a Message-Header on the websocket accordingly.

The Structure-File has got a field “lastModified that contains a timestamp, this is the date when
the configuration of the Miniserver was last changed. So every time a connection to a Miniserver is
established, the first thing to do after the WebSocket is up and running is to check if your cached
version of the Structure-File is up to date. This is achieved by sending “jdev/sps/LoxAPPversion3”
to the Miniserver and comparing its response to the value of the “lastModified” field of your cached
Structure-File.

More info
For detailed information on the Structure File & the controls within please see the separate
document on the Structure File.

16.0

Communicating with the Miniserver Page 25 of 36

LOXONE

Create
Automation

Command Encryption

Available since 8.1

As mentioned in the introduction section on encryption, Command Encryption is a technique that
allows clients to encrypt commands that would usually be sent via plain text. It is based on
AES256 and Public-key cryptography for the AES session key exchange.

A few commands aren’t supported:

e Images/Icons (.svg, .png, camimage)
e Files (LoxAPP3.json*, fsget/fslist)
o LoxAPP3.json is available - but only “enc” is supported, as encrypting the response
would cause a heavy CPU load on Miniserver Gen 1.
e Statistic Files and Data

RSA AES
e ECB e (BC
PKCS1 e ZeroBytePadding
e Base64 with NoWrap o Base64 with NoWrap
e 16BytelV
e 16 Byte Block size
e 32 Byte Key length

Step-by-step Guide HTTP Requests
1. Acquire the Miniservers public key via “jdev/sys/getPublicKey” -> {publicKey}
a. Store on the client
b. Format: X.509 encoded key in ANS.1
2. Prepare your command -> {cmd}
a. If authentication is required, append it to the {cmd} as described in Authenticating
using tokens
3. Generate a random salt, hex string (length may vary, e.g. 2 bytes) -> {salt}
a. Note: This is not the {userSalt} retrieved using the getkey2-command.
4. Prepend the salt to the actual message “salt/{salt}/{cmd}” ->{plaintext}
a. Example for {cmd}: “jdev/sps/io/All/on”
5. Generate a AES256 key -> {key} (Hex)

16.0

Communicating with the Miniserver Page 26 of 36

https://en.wikipedia.org/wiki/Public-key_cryptography

LO)IONE scctaen

Generate a random AES iv (16 byte) -> {iv} (Hex)
Encrypt the {plaintext} with AES {key} + {iv} -> {cipher} (Base64)
URI-Component-Encode the {cipher} -> {enc-cipher}

o 2N o

Prepare the command-> {encrypted-command}
a. “jdev/sys/enc/{enc-cipher}’
i. only the command itself is encrypted
b. “jdev/sys/fenc/{enc-cipher}’
i. The Miniserver also AES Encrypts the response (Base64)
ii. The mime-type is the one from the decrypted response
10. RSA Encrypt the AES key+iv with the {publicKey} -> {session-key} (Base64)
a. “{key}{ivy
11. URI-Component-Encode the {session-key} -> {enc-session-key}
12. Append the session key to the {encrypted-command} -> {encrypted-command}
a. “{encrypted-command}?sk={enc-session-key}’
13. Send the request!
a. This request doesn’t require credentials itself, the {cmd} may contain the
credentials if needed
14. The Miniserver will decrypt and process the command.
a. If it cannot be decrypted (invalid public key, unexpected salt change) it will return
401
15. The Miniserver will respond after the decrypted command was processed and return the
value & status code as with a regular command.

Sending encrypted commands over the websocket
1. AES-Encrypt the command using the key, iv and salt negotiated during the websocket
connection establishment “salt/{salt}/{cmd}” -> {cipher} (Base64)
URI-Component-Encode the {cipher} -> {enc-cipher}

3. Prepare the command-> {encrypted-command}
a. ‘“jdev/sys/enc/{enc-cipher}’
i. only the command itself is encrypted
b. “jdev/sys/fenc/{enc-cipher}’
i. The Miniserver also AES Encrypts the response (Base64)
ii. ~ The mime-type is the one from the decrypted response
4. Send the command & if needed (fenc) AES-decrypt the response using the {key} and {iv}
created when the connection was established.

16.0

Communicating with the Miniserver Page 27 of 36

LOYONE st

16.0

Communicating with the Miniserver Page 28 of 36

LO)IONE scctaen

Tokens
Available since 9.0, Updated in 10.2

Clients initially acquire a token using the users password. This token is stored and used instead of
the password for authentication. The following section will go into detail on how to work with
tokens.

In order to simplify authentication/verification throughout the Loxone Smart Home, JSON Web
Tokens have been introduced in version 10.2. In order to avoid breaking changes, version 10.2
introduces new web services for acquiring and refreshing JSON Web Tokens and a separate web
service allowing to check if tokens are valid.

Acquiring, refreshing and authenticating with legacy tokens is still supported, but deprecated.
Support for legacy tokens will be removed in future versions. It is highly recommended to move to
JSON Web Tokens as soon as possible. Legacy tokens may be converted to JSON Web Tokens using
the new refresh token command.

Starting with version 11.2 it is not mandatory anymore to use Encryption when acquiring tokens.
But it is highly recommended when communicating with a Miniserver without a transport layer
encryption!

Acquiring tokens
Updated in 10.2

Acquiring a token is similar to password authentication in previous versions. Additionally to the
“key”, a “salt” is needed for acquiring a token. A token can be either acquired via HTTP requests or
via a websocket.

&

e Acquire the “key”, “salt” & “hashAlg” at once using “jdev/sys/getkey2/{user}”’
o {user} is the username for whom to acquire the token.
o The “salt” retrieved will be referred to as {userSalt}
o “hashAlg” is the hashing algorithm that should be used
e Hash the password including the user specific salt
o {pwHash} is the uppercase result of hashing the string “{password}:{userSalt}” using
the in the getkey2 command specified hashing algorithm (‘hashAlg’, e.g. SHA1,
SHA256).
o {userSalt} is part of the result of the getkey2-Request.

16.0

Communicating with the Miniserver Page 29 of 36

https://jwt.io/
https://jwt.io/

LOXONE &her

e (Create the hash that includes the user name
o {hash} is the string “{user}:{pwHash}” hashed with the key returned by the getkey2-
Request using HMAC-SHA1 or HMAC-SHA256.
Do not convert the result to upper or lower case, leave it unchanged. For details on
the hashing process see Hashing
o If you want to use a hashed token instead, the getparameter ‘tokenHash=true’ has
to be appended to the request. (Supported since version 12.2.10.6)
e Request a JSON Web Token “jdev/sys/getjwt/{hash}/{user}/{permission}/{uuid}/{info}”
o This request must be encrypted. Unencrypted getjwt requests will be declined with
400 Bad Request. See command encryption for more details.
o {permission} specifies the permission this token needs to grant. This integer

impacts the tokens lifespan, e.g. a token with the web-permission (2) will last for a
short period of time, while a token with the app-permission (4) will last for weeks.

o The {uuid} identifies the client who is requesting the token on the Miniserver. It
allows to look up all tokens a client has been granted. This is why the UUID should
either be derived from your devices identity information or generated automatically
and stored within the app. It has to be in the following format as this one:
“098802e1-02b4-603c-ffffeee000d80cfd”.

o The {info} contains a (Url-Encoded) text describing the client, e.g.
“Thomas%20iPhone%20X”

o As of version 12.2 you may use a token to acquire a new token. Required:

m {hash} will then be a token-Hash instead of a password hash.
m Append “?authHash=True” to the command
e Tells the MS to check token hashes instead of password hashes.
e Store the response, it contains info on the lifespan, the permissions granted with that token
and the JSON Web Token itself.

o {token} is the JSON Web Token itself, it needs to be stored for authenticating.

o {validUntil} represents the end of the tokens lifespan in seconds since 1.1.2009

o {tokenRights} holds a bitmap, where a flag is set for each granted permission.

o {unsecurePass} is set to true if a weak password is in place, it should result in a
prominent warning for the user, asking to immediately change the password.

o {key} can be used for subsequent commands, just like a getkey-Result.

e A websocket connection on which a token was acquired successfully is considered
authenticated.

Authenticating using tokens

16.0

Communicating with the Miniserver Page 30 of 36

LO)IONE scctaen

e Prepare the {hash}
o {hash} is the outcome of hashing “{token}” along with the result of a getkey-
Request using the HMAC-SHA1 or HMAC-SHA256 algorithm. (see Hashing)
o As of version 10.0 both JSON Web Tokens and legacy tokens may be used for
authentication.
o Starting with version 11.2 the token can also be sent in plaintext instead of a hash
e Prepare the {authCmd}
o “authwithtoken/{hash}/{user}” for websockets
o For HTTP-Requests “?autht={hash}&user={user}” is appended to the existing cmd.
e Encrypt and send the {authCmd}
o Details on encrypted commands via Websocket
o Details on encrypted commands via HTTP-Requests

Refreshing tokens
Updated in 10.2

Tokens have a limited lifespan, depending on the permissions granted with them. When this
lifespan expires, tokens will no longer be valid. Refreshing a token will return a new token with the
same permissions and an extended lifespan.

When passing a legacy token to the new refresh token command, a JSON Web Token will be
returned instead.

e Send “jdev/sys/refreshjwt/{tokenHash}/{user}” via websocket (HTTP support not verified)
o {tokenHash} is the outcome of hashing the {token} with the result of a getkey-
Request. (see Hashing)
o {user}is the user whose token is to be refreshed
o Starting with version 11.2 the token can also be sent in plaintext instead of a hash

This request will only succeed if the token is valid. If successful, the response will contain an
updated {validUntil}-value, an updated {unsecurePass}-flag and a new {token} attribute.

Checking if tokens are valid
Available since 10.0

This request was introduced to allow verifying a that a token is still valid, without renewing it as in
“refreshToken”.

16.0

Communicating with the Miniserver Page 31 of 36

LOXONE &her

e Send “jdev/sys/checktoken/{tokenHash}/{user}” via websocket (HTTP support not verified)
o {tokenHash} is the outcome of hashing the {token} with the result of a getkey-
Request. (see Hashing)
o {user} is the user whose token is to be refreshed
o Starting with version 11.2 the token can also be sent in plaintext instead of a hash

This request will only succeed if the token is valid. If successful, the response will contain an
{validUntil}-value and an updated {unsecurePass}-flag. When changing passwords, this request can
be used to determine if the new password is secure, by checking the {unsecurePass}-flag of a
refresh-request afterwards

Killing tokens
Tokens can be explicitly invalidated (= “killed”) too. It is recommended to kill a token as soon as it
is no longer needed, as it helps keeping the Miniservers token storage clean.

e Send “jdev/sys/killtoken/{tokenHash}/{user}’
o {tokenHash} is the outcome of hashing the {token} with the result of a getkey-
Request. (see Hashing) {user} is the user whose token is to be killed
o Starting with version 11.2 the token can also be sent in plaintext instead of a hash

A killed token will no longer be usable.

Handling an active connection

Keeping the connection alive

The Miniserver has to watch over it’s clients and has to keep them all informed on everything that’s
changed. In order to prevent sending updates to clients that aren’t listening anymore, it will close
the connection if the client doesn’t send anything for more than 5 minutes.

To prevent this, while not having to constantly query a control or alike, there is a special command
called “keepalive”. Whenever a client sends this command to the Miniserver, it will respond with a
Message Header with the identifier 0x06. This command can be used to tell the Miniserver that the
client is still there and listens on the WebSocket.

Detecting issues
Our websocket is used for remote control. Mostly this is being done by apps running on smartphones

16.0

Communicating with the Miniserver Page 32 of 36

LOXONE e

that don’'t always enjoy the best connection quality (poor carrier network, WiFi almost out of reach).
A poor or broken connection might cause that the user looks at old outdated data. E.g.: the app could
show that your garage door is closed, while it’s fully open.

By repeatedly sending out the keepalive-Request, the time between request and response (8 byte
Message-Header) can be used as an indicator for the connection quality. When the Miniserver
sends large messages this might lead to mistakenly detecting a connection problem, since

receiving the response might take a while. The payload size in the Message-Headers can be used
to adopt timeouts accordingly.

16.0

Communicating with the Miniserver Page 33 of 36

LO).ONE s:Secen

Error-Codes
..Work in Progress

General Info
Error-Codes may be returned via HTTP-Header or as field “Code” in Results for a Requests.

Returned Error-Codes

- 401
- Unauthorized: the requesting user was not authorized (invalid username/password)
- Processing an encrypted request failed
- 403
- The requesting user has not enough rights for the request
- 404
- Unrecognized command
- 423
- The requesting user is disabled
- 503
- Service Unavailable; The Miniserver is restarting and not ready for requests
- 901

- Maximum number of allowed concurrent connections reached

Changing User-Access-Codes

- 409
- This code is already in use
- 406
- Invalid code
- 403
- Insufficient rights to change the code for the requested user
- 429

- Brute force detected. To many requests.
Creating or editing an user

- 400

16.0

Communicating with the Miniserver Page 34 of 36

LOXONE e

- Username is already taken

- 404

- Requested user or user group not found
- 405

- Edit of last available administrator is not allowed
- 500

- Malformed Json: the request is not in the expected format
Websocket Close Codes

General Info

Close codes give further information why the Miniserver closed the Websocket session

- 4004
- Some user has been changed
- 4005
- The user currently connected has been changed either by them self, or by another
user
- 4006
- The user trying to establish a connection has been disabled
- 4007
- The Miniserver is currently performing an update
- 4008

- The Miniserver don’t have any event slots for the initiated Websocket session
Revision History

16.0

o Webservice to check user visualization password

15.2

o Updated information on how to get the public key from the Miniserver

14.5
e Added information on permission flags used with JWT

14.2

16.0

Communicating with the Miniserver Page 35 of 36

LOXONE &isiteen

e Added clarification to hashing section on login information

16.0

Communicating with the Miniserver Page 36 of 36

	Important Notes
	Table of contents
	Setting up a connection
	What do we need?
	Step-by-step guide
	What can go wrong?

	Using HTTPS/WSS
	Basic Info on HTTPS/WSS
	What needs to be done to use HTTPS/WSS
	How to determine if the Miniserver supports HTTPS/WSS?
	Ask the Miniserver itself
	Ask our CloudDNS service
	Trial & Error

	What hostname to use with CloudDNS?
	How can I connect locally with TLS?

	General Info
	CloudDNS
	Remote Connect Service
	Support for distributed data centers

	Controls
	Commands
	Encryption
	Miniserver Generation 2 & Miniserver Compact
	Miniserver Generation 1

	Secured Commands
	Hashing
	Tokens
	Permissions
	List of permission bit-flags

	States

	Understanding the messages
	Message Header
	Structure of the Message Header
	1st Byte: fix 0x03
	2nd Byte: Identifier
	3rd Byte: Info
	1st Bit: Estimated

	4rd Byte: reserved
	5th-8th Byte: length of payload

	The actual messages
	Text-Messages
	Binary Files
	Event-Tables
	Event-Table of Value-States
	Binary-Structure of a Value-Event
	Event-Table of Text-States
	Binary-Structure of a Text-Event

	Event-Table of Daytimer-States
	Binary-Structure of a Daytimer-Event-Table
	Binary-Structure of a Daytimer-Entry

	Event-Table of Weather-States
	Binary-Structure of a Weather-Event-Table
	Binary-Structure of a Weather-Entry

	The UUID
	Binary-Structure of a UUID
	Converting a UUID to a string

	Icons
	SVG
	Where to get them, where to put them
	Caching

	Structure-File: LoxAPP3.json
	Download and caching
	More info

	Command Encryption
	Step-by-step Guide HTTP Requests
	Sending encrypted commands over the websocket

	Tokens
	Acquiring tokens
	Authenticating using tokens
	Refreshing tokens
	Checking if tokens are valid
	Killing tokens

	Handling an active connection
	Keeping the connection alive
	Detecting issues

	Error-Codes
	General Info
	Returned Error-Codes

	Websocket Close Codes
	General Info

	Revision History
	16.0
	15.2
	14.5
	14.2

