About
I currently work as a Data Scientist at Surfer.
I previously worked as a Machine…
Activity
-
Wystartowała u nas na Wrocław University of Science and Technology rekrutacja na kierunku Sztuczna Inteligencja (studia magisterskie, Katedra…
Wystartowała u nas na Wrocław University of Science and Technology rekrutacja na kierunku Sztuczna Inteligencja (studia magisterskie, Katedra…
Liked by Szymon Woźniak
-
Żyjemy w kulturze, która demonizuje dług - od makroekonomicznych przestróg o “drugiej Grecji”, “zadłużamy się na potęgę”, hiperbolicznych “USA ma…
Żyjemy w kulturze, która demonizuje dług - od makroekonomicznych przestróg o “drugiej Grecji”, “zadłużamy się na potęgę”, hiperbolicznych “USA ma…
Liked by Szymon Woźniak
-
📌 Ojejku, serduszko HR-owe pękło, bo kandydaci_tki nie chcą już wysyłać swojej metryki i paszportówki z wakacji do CV. No dramat na miarę „kto…
📌 Ojejku, serduszko HR-owe pękło, bo kandydaci_tki nie chcą już wysyłać swojej metryki i paszportówki z wakacji do CV. No dramat na miarę „kto…
Liked by Szymon Woźniak
Experience
Education
-
Politechnika Wrocławska
5,5 (excellent)
-
While studying I've worked with: deep neural networks, probabilistic models, natural language processing, computer vision, social media analysis, network science, representation learning and DevOps methods for machine learning.
Technologies I worked with:
- Python, Scikit-learn, Pandas, Tensorflow/Keras, PyTorch, PyTorch Lightning, wandb, NetworkX,
- Celery, Docker, Kubernetes, Helm, PySpark
- MongoDB, InfluxDB, Grafana, Redash. -
-
-
Licenses & Certifications
Publications
-
Assessment of Massively Multilingual Sentiment Classifiers
WASSA @ ACL 2022: Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis
Models are increasing in size and complexity in the hunt for SOTA. But what if those 2%increase in performance does not make a difference in a production use case? Maybe benefits from a smaller, faster model outweigh those slight performance gains. Also, equally good performance across languages in multilingual tasks is more important than SOTA results on a single one. We present the biggest, unified, multilingual collection of sentiment analysis datasets. We use these to assess 11 models and…
Models are increasing in size and complexity in the hunt for SOTA. But what if those 2%increase in performance does not make a difference in a production use case? Maybe benefits from a smaller, faster model outweigh those slight performance gains. Also, equally good performance across languages in multilingual tasks is more important than SOTA results on a single one. We present the biggest, unified, multilingual collection of sentiment analysis datasets. We use these to assess 11 models and 80 high-quality sentiment datasets (out of 342 raw datasets collected) in 27 languages and included results on the internally annotated datasets. We deeply evaluate multiple setups, including fine-tuning transformer-based models for measuring performance. We compare results in numerous dimensions addressing the imbalance in both languages coverage and dataset sizes. Finally, we present some best practices for working with such a massive collection of datasets and models for a multi-lingual perspective.
Other authorsSee publication -
Hex2vec -- Context-Aware Embedding H3 Hexagons with OpenStreetMap Tags
4th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery (GEOAI '21)
-
Parameter-Less Population Pyramid for Permutation-Based Problems
Parallel Problem Solving from Nature -- PPSN XVI, Springer International Publishing
Linkage learning is frequently employed in state-of-the-art methods dedicated to discrete optimization domains. Information about linkage identifies a subgroup of genes that are found dependent on each other. If such information is precise and properly used, it may significantly improve a method's effectiveness. The recent research shows that to solve problems with so-called overlapping blocks, it is not enough to use linkage of high quality -- it is also necessary to use many different…
Linkage learning is frequently employed in state-of-the-art methods dedicated to discrete optimization domains. Information about linkage identifies a subgroup of genes that are found dependent on each other. If such information is precise and properly used, it may significantly improve a method's effectiveness. The recent research shows that to solve problems with so-called overlapping blocks, it is not enough to use linkage of high quality -- it is also necessary to use many different linkages that are diverse. Taking into account that the overlapping nature of problem structure is typical for practical problems, it is important to propose methods that are capable of gathering many different linkages (preferably of high quality) to keep them diverse. One of such methods is a Parameter-less Population Pyramid (P3) that was shown highly effective for overlapping problems in binary domains. Since P3 does not apply to permutation optimization problems, we propose a new P3-based method to fill this gap. Our proposition, namely the Parameter-less Population Pyramid for Permutations (P4), is compared with the state-of-the-art methods dedicated to solving permutation optimization problems: Generalized Mallows Estimation of Distribution Algorithm (GM-EDA) and Linkage Tree Gene-pool Optimal Mixing Evolutionary Algorithm (LT-GOMEA) for Permutation Spaces. As a test problem, we use the Permutation Flowshop Scheduling problem (Taillard benchmark). Statistical tests show that P4 significantly outperforms GM-EDA for almost all considered problem instances and is superior compared to LT-GOMEA for large instances of this problem.
Other authors -
Projects
-
Billy
- Present
Billy is an application for bill splitting with support for receipt scanning. It's a group project that took 3rd place in API 2019 competition on Wrocław University of Science and Technology. Front-end is a progressive web app written in Angular framework. Back-end is based on Spring framework, Kotlin language PostgreSQL database.
Other creatorsSee project
Honors & Awards
-
II miejsce w konkursie na najlepszego absolwenta wydziału Informatyki i Zarządzania Politechniki Wrocławskiej
Politechnika Wrocławska
-
I miejsce w Drugim Konkursie Programowania Obiektowego w C++ - Algorytmy Genetyczne
dr Michał Przewoźniczek, mgr Marcin Komarnicki
Konkurs był organizowany na Politechnice Wrocławskiej. Celem było zaprogramowanie metody ewolucyjnej rozwiązującej różne problemy optymalizacyjne kodowane binarnie (np. Ising-Spin Glass, NK-Landscapes). Rozwiązanie musiało zostać zaimplementowane w C++, bez wykorzystania mechanizmów automatycznego zarządzania pamięcią.
-
I Miejsce w Konkursie Programowania Obiektowego 2017 - Programowanie Genetyczne
dr Michał Przewoźniczek, mgr Marcin Komarnicki
Konkurs organizowany na Politechnice Wrocławskiej. Celem było zaprogramowanie algorytmu ewolucyjnego, który znajdował symboliczne wzory funkcji najlepiej opisujące zbiór danych w postaci trójek (x, y, f(x,y)). Całość musiała być zaimplementowana w C++ bez użycia mechanizmów automatycznego zarządzania pamięcią.
Languages
-
angielski
Professional working proficiency
More activity by Szymon
-
ElevenLabs + Meta. We’re excited to partner to bring the best of voice AI to billions. We’re starting with the very use case that inspired…
ElevenLabs + Meta. We’re excited to partner to bring the best of voice AI to billions. We’re starting with the very use case that inspired…
Liked by Szymon Woźniak
-
To duża rzecz. Praca, której współautorem jest Tomasz Trzcinski otrzymała nagrodę za najlepszą pracę na konferencji NeurIPS! Trudno sobie wyobrazić…
To duża rzecz. Praca, której współautorem jest Tomasz Trzcinski otrzymała nagrodę za najlepszą pracę na konferencji NeurIPS! Trudno sobie wyobrazić…
Liked by Szymon Woźniak
-
Today marks two years and one day since I joined Surfer 🏄 as a Product Manager. What a journey! Over this time, I’ve had the privilege of working…
Today marks two years and one day since I joined Surfer 🏄 as a Product Manager. What a journey! Over this time, I’ve had the privilege of working…
Liked by Szymon Woźniak
-
It’s official! 🎉 Surfer has joined the French Positive Group. This means more resources, opportunities, and flexibility to keep building the best AI…
It’s official! 🎉 Surfer has joined the French Positive Group. This means more resources, opportunities, and flexibility to keep building the best AI…
Shared by Szymon Woźniak
-
💥💥BIG NEWS💥💥 Surfer joins Positive! 🚀 After almost one year of intense discussions with Lucjan Suski, we’re thrilled to announce the…
💥💥BIG NEWS💥💥 Surfer joins Positive! 🚀 After almost one year of intense discussions with Lucjan Suski, we’re thrilled to announce the…
Liked by Szymon Woźniak
-
At Surfer, we’ve always built our product with one goal: helping businesses grow and achieve real, measurable visibility in Search. Today, by…
At Surfer, we’ve always built our product with one goal: helping businesses grow and achieve real, measurable visibility in Search. Today, by…
Liked by Szymon Woźniak
-
Surfer was built on one simple idea: scale processes instead of scaling the team size. This is a big moment for me, it brings reward, assurance…
Surfer was built on one simple idea: scale processes instead of scaling the team size. This is a big moment for me, it brings reward, assurance…
Liked by Szymon Woźniak
Explore collaborative articles
We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.
Explore MoreOthers named Szymon Woźniak in Poland
72 others named Szymon Woźniak in Poland are on LinkedIn
See others named Szymon Woźniak