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ABSTRACT

This paper explores the problem of learning transforms for
image compression via autoencoders. Usually, the rate-
distortion performances of image compression are tuned by
varying the quantization step size. In the case of autoen-
coders, this in principle would require learning one trans-
form per rate-distortion point at a given quantization step size.
Here, we show that comparable performances can be obtained
with a unique learned transform. The different rate-distortion
points are then reached by varying the quantization step size
at test time. This approach saves a lot of training time.

Index Terms— Image compression, deep autoencoders,
quantization.

1. INTRODUCTION

Image coding standards all use linear and invertible trans-
forms to convert an image into coefficients with low statistical
dependencies, i.e suited for scalar quantization. Notably, the
discrete cosine transform (DCT) is the most commonly used
for two reasons: (7) it is image-independent, implying that
the DCT does not need to be transmitted, (¢7) it approaches
the optimal orthogonal transform in terms of rate-distortion,
assuming that natural images can be modeled by zero-mean
Gaussian-Markov processes with high correlation [1]. Deep
autoencoders have been shown as promising tools for find-
ing alternative transforms [2, 3, 4]. Autoencoders learn the
encoder-decoder non-linear transform from natural images.
In the best image compression algorithms based on au-
toencoders [5, 6, 7], one transform is learned per rate-
distortion point at a given quantization step size. Then, the
quantization step size remains unchanged at test time so that
the training and test conditions are identical. By contrast, im-
age coding standards implement adaptive quantizations [8, 9].
Should the quantization be imposed during the training? To
answer this, we propose an approach where the transform
and the quantization are learned jointly. Then, we investigate
whether, at test time, the compression falls apart when the co-
efficients obtained with the learned transform are quantized
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using quantization step sizes which differ from those in the
training stage. The code to reproduce our numerical results
and train the autoencoders is available online'.

Matrices and tensors are denoted by bold letters. || X|| . is
the Frobenius norm of X. X ® Z is the elementwise multipli-
cation between X and Z.

2. JOINT LEARNING OF THE TRANSFORM AND
THE QUANTIZATION

Section 2 introduces an efficient autoencoder for image com-
pression. Then, it details our proposal for learning jointly this
autoencoder transform and the quantization.

2.1. Autoencoder for image compression

An autoencoder is a neural network with an encoder g.,
parametrized by 6, that computes a representation Y from the
data X, and a decoder g4, parametrized by ¢, that gives a re-
construction X of X, see Figure 1. Autoencoders can be used
for denoising or dimensionality reduction. When it is used
for compression, the representation is also quantized, leading
to the new quantized representation Y = Q(Y). If an au-
toencoder has fully-connected layers [10, 11, 12], the number
of parameters depends on the image size. This implies that
one autoencoder has to be trained per image size. To avoid
this, an architecture without fully-connected layer is chosen.
It exclusively comprises convolutional layers and non-linear
operators. In this case, Y € RhXwxm s a set of m feature
maps of size n = h x w, see Figure 1.

The basic autoencoder training minimizes the image re-
construction error [13]. In order to create a rate-distortion
optimization, the authors in [6] add the minimization of the
entropy of the quantized representation. Moreover, a bit al-
location is performed by learning a normalization for each
feature map of Y. The encoder followed by the normaliza-
tions at the encoder side, parametrized by ¢, are denoted
7. (.;0,¢.). Similarly, the normalizations at the decoder
side, parametrized by ¢, followed by the decoder are de-
noted G, ( . ; @ 4, ¢). Finally, this leads to (1).
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Fig. 1: Illustration of an autoencoder for image compression.
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p; is the probability mass function of the i quantized fea-
ture map coefficients {;;} j—1...,. The expectation E[.] is ap-
proximated by averaging over a training set of images. Un-
fortunately, Q makes minimization (1) unusable. Indeed, the
derivative of any quantization with respect to its input is 0
at any point. Consequently, 8 and ¢, cannot be learned via
gradient-based methods [14]. To get around this issue, [6]
fixes the quantization step size to 1 and approximates the uni-
form scalar quantization with the addition of a uniform noise
of support [-0.5, 0.5]. Note that, even though the quantization
step size is fixed, the bit allocation varies over the different
feature maps via the normalizations. In the next section, we
consider instead to remove the normalizations and learn ex-
plicitly the quantization step size for each feature map of Y.

7 €RY (1)

2.2. Learning the quantization step sizes

We address the problem of optimizing the quantization step
size for each feature map of Y. Because of the quantization,
the function to be minimized is an implicit function of the
quantization step sizes {d; };—1...m. The target is to make it an
explicit function of {8; };=1. m. Forq € {..., =0;,0,;, ...},

q+0.56;
pi(q) = /
q—0.55;

Pi = p; * l; where p; is the probability density function of
the i feature map coefficients {yi;}j=1..n and [; denotes the
probability density function of the continuous uniform dis-
tribution of support [—0.50;,0.50;]. The normalizations are
removed from (1) and, using (2), (1) becomes (3).

pi (t) dt = 0;p; (q) )

win B X — ga (9. (X;60) + & )| + Z: 3)
B 10g2 ( Z 10g2 Di (yzj + €7J))

] 1

The i matrix of & € R"*®X™ contains n realizations
{€ij}j=1..n of &, &; being a continuous random variable of
probability density function /;. In (3), the function to be mini-
mized is differentiable with respect to 8. @ can thus be learned
via gradient-based methods. However, {J; };—1..» cannot yet
be learned as the function to be minimized in (3) is not dif-
ferentiable with respect to {;};—1...,n. This is resolved using
the change of variable & = 9;7 where T is a random vari-
able following the continuous uniform distribution of support
[—0.5,0.5]. Now, the minimization over {J; };—1.. . is feasi-
ble, see (4).
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The ™ matrix of T € R">“X™ contains n realizations
{7ij}j=1..n of T. All the coefficients in the it matrix of
A € R wXm are equal to §;. A detail has been left out so
far: p; is unknown. In a similar manner to [5 6] Di can be
replaced by a function fi, parametrized by 1/: , and 1/)
learned such that fl fits p;.

In the end, we end up with three groups of parameters:
{0, ¢}, {0:}i=1..m and {’l,b(i)}i:lmm. These three groups
are learned by alternating three different stochastic gradient
descents. All the training heuristics are detailed in the code'.

Section 2 has developped an approach for learning ex-
plictly the transform and a quantization step size for each fea-
ture map of Y. Before evaluating this approach in Section
4, Section 3 studies what would happen if, at test time, the
coefficients in Y are quantized using quantization step sizes
that differ from those in the training stage. This first requires
understanding the internal structure of Y after the training.

3. INSIDE THE LEARNED REPRESENTATION

This section studies the different feature maps of Y after the
training. To this end, a deep convolutional autoencoder must
first be built and trained. g, is the composition of a con-
volutional layer, a generalized divisive normalization (GDN)
[15], a convolutional layer, a GDN and a convolutional layer.
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Fig. 2: Normed histogram of the i feature map of Y.
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Fig. 3: Histogram of the m — 1 scales provided by the fitting.

ga 18 the reverse composition, replacing each GDN with an
inverse generalized divisive normalization (IGDN) [15] and
each convolutional layer with a transpose convolutional layer
[16]. It is important to stress that m = 128, X has one
channel and the convolutional strides and paddings are chosen
such that & and w are 16 times smaller than respectively the
height and the width of X. Therefore, the number of pixels
in X is twice the number of coefficients in Y. The train-
ing set contains 24000 luminance images of size 256 x 256
that are extracted from ImageNet [17]. The minimization is
(4), v = 10000.0. Note that, if a GDN was placed imme-
diately after g., a IGDN was placed immediately before g4
and, Vi € [|1,m|],§; = 1.0 was not learned, the autoencoder
architecture and the training would correspond to [6].

3.1. Distribution of the learned representation

After the training, a test set of 24 luminance images of size
512 x 768 is created from the Kodak suite?. Here, X refers to
a test luminance image. Figure 2 shows the normed histogram
of the 50" feature map of Y = g. (X; 0) and that of its 125"
feature map, averaged over the test set. Every feature map of
Y, except the 90", has a normed histogram similar to those
displayed. To be more precise, let’s write the probability den-
sity function of the Laplace distribution with mean i € R and
scale A € R*, denoted f (. ;pu, ).
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Fig. 4: 64 x 64 crop at the top-left of X. j = 50 in (a) and
(b). 7 =1251n (c) and (d).

fwip,A) = %eXp (—Ix /\ul)
Vi € [|1,m]], i # 90, there exists y; € R and \; € RY
such that f (. ;pu;, A;) fits well the normed histogram of the
i feature map of Y. Note that most of the m — 1 scales be-
long to [0.5,2.0], see Figure 3. For transformed coefficients
having a zero-mean Laplace distribution, [18] proves that a
uniform reconstruction quantizer (URQ) with constant deci-
sion offsets approaches the optimal scalar quantizer in terms
of squared-error distortion for any quantization step size. Yet,
in our case, (i) the m—1 Laplace probability density functions
are not zero-mean, (4¢) uniform scalar quantizers are used in-
stead of this URQ. The point () is not problematic as an extra
set of luminance images is used to compute an approximation
7i; € R of the mean of the ith feature map of Y, then, at test
time, the i" feature map of Y is centered via 7z, before be-
ing quantized. Note that {iz; };—1...,, does not depend on the
test luminance images, thus incurring no transmission cost.
Regarding the point (i), it must be noted that the decoder
mapping of the URQ is exactly the decoder mapping of the
uniform scalar quantization with same quantization step size.
Since our case comes close to the requirements of the proof in
[18], at test time, the rate-distortion trade-off should not col-
lapse as the quantization step sizes deviate from the learned
values. This will be verified in Section 4.

3.2. Internal structure of the learned representation

The shortcoming of the previous fitting is that it does not
reveal what information each matrix of Y encodes. To dis-
cover it, further visualizations are needed. The most common
way of exploring a deep convolutional neural network (CNN)
trained for image recognition is to look at the image, at the
CNN input, resulting from the maximization over its pixels of
a given neural activation in the CNN [19, 20, 21]. Precisely,
[19, 20] maximize over the image pixels a given neural acti-
vation at the CNN output, i.e a class probability. This shows
what image features characterize this class according to the
CNN. In our case, the maximization over the image pixels of
a given coefficient in Y does not yield interpretable images.
Indeed, the coefficients in Y are not bounded. This may ex-
plain why the maximization often returns saturated images.
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Fig. 5: Rate-distortion curves averaged over the 24 luminance
images from the Kodak suite.

Alternatively, the information the j™ feature map of Y
encodes, j € [|1,m|], can be seen as follows. Vi € [|1,m]],
all the coefficients in the i feature map of Y are set to fi;.
This way, the feature maps of Y contains no significant infor-
mation. Then, a single coefficient in the ;" feature map of Y
issettoa € Rand X = g4 (Q(Y); ¢) is displayed. « is
selected such that it is near one of the two tails of the Laplace
distribution of the j™ feature map of Y. Figure 4 shows the
64 x 64 crop at the top-left of X when the single coefficient
is located at the top-left corner of the ;" feature map of Y,
j € {50,125}. We see that the 50 feature map of Y encodes
a spatially localized image feature whereas its 250" feature
map encodes a spatially extended image feature. Moreover,
the image feature is turned into its symmetrical feature, with
respect to the mean pixel intensity, by moving « from the
right tail of the Laplace distribution of the j" feature map of
Y to the left tail. This linear behaviour is observed for each
feature map of Y.

It is interesting to see that, given the fitting in Section 3.1,
Y is similar to the DCT coefficients for blocks of prediction
error samples in H.265 [9] in terms of distribution. However,
when looking at the information each feature map of Y en-
codes, Y has nothing to do with these DCT coefficients.

4. EXPERIMENTS

We now evaluate in terms of rate-distortion performances:
(7) whether the way of learning the quantization matters, (4%)
whether, at test time, it is efficient to quantize the coefficients
obtained with the learned transform using quantization step
sizes which differ from those in the training stage. This is
done by comparing three cases.

The 1% case follows the approach in [6]. One transform
is learned per rate-distortion point, the bit allocation being
learned via the normalizations. In details, an autoencoder
is trained for each v € S = {10000.0, 12000.0, 16000.0,
24000.0, 40000.0, 72000.0,96000.0}. During the training
and at test time, the quantization step size is fixed to 1.0.

In the 2" case, a unique transform is learned, the bit al-
location being done by learning a quantization step size per
feature map. More precisely, a single autoencoder is trained
for v = 10000.0 and {0;};=1.. . is learned, see Section 2.
At test time, the rate varies as the quantization step sizes
are equal to the learned quantization step sizes multiplied by
g€ B=1{1.0,1.25,1.5,2.0,3.0,4.0,6.0, 8.0, 10.0}.

In the 3" case, a unique transform is learned, the bit al-
location being learned via the normalizations. In details, a
single autoencoder is trained for v = 10000.0 and, during the
training, the quantization step size is 1.0. At test time, the rate
varies as the quantization step size spans B.

In the 2" case, the autoencoder has the architecture de-
scribed at the beginning of Section 3. In the 1% and 3 case, a
GDN is also placed after g, and a IGDN is placed before g,.
The autoencoders are trained on 24000 luminance images of
size 256 x 256 that are extracted from ImageNet. Then, at test
time, the 24 luminance images from the Kodak suite are in-
serted into the autoencoders. The rate is estimated via the em-
pirical entropy of the quantized coefficients, assuming that the
quantized coefficients are i.i.d. Note that, for the 2 and the
3 case, we have also implemented a binarizer and a binary
arithmetic coder to compress the quantized coefficients loss-
lessly, see the code!. The difference between the estimated
rate and the exact rate via the lossless coding is always smaller
than 0.04 bbp. Figure 5 shows the rate-distortion curves aver-
aged over the 24 luminance images. The JPEG2000 curve is
obtained using ImageMagick. The H.265 [22] curve is com-
puted via the version HM-16.15. There is hardly any differ-
ence between the 2" and the 3" case. This means that the ex-
plicit learning of the transform and the quantization step sizes
is equivalent to learning the transform and the normalizations
while the quantization step size is imposed. Note that, in the
2 case, the learning of {&; }i—1....m involves 128 parameters
whereas, in the 3" case, that of {,, .} involves 33024 pa-
rameters. The 2" and the 3™ case perform as well as the 1%
case. The minimization (4) and the training in [6] provide
learned transforms which can be used with various quantiza-
tion step sizes at test time. It is convenient not to train one
autoencoder per compression rate as a single training takes
4 days on a NVIDIA GTX 1080. Finally, we see that the
learned transforms yield better rate-distortion performances
than JPEG2000. The quality of image reconstruction for the
experiment in Figure 5 and another experiment on luminance
images created from the BSDS300 [23] can be seen online'.

5. CONCLUSION

Using a unique transform learned via autoencoders and var-
ious quantization step sizes at test time, it is possible to
compress as well as when learning one transform per rate-
distortion point at a given quantization step size. Moreover,
the learned transformed outperform other image compression
algorithms based on transforms.
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