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Abstract—We introduce CRISP, a Causal Research and In-
ference Search Platform. It is designed to assist biological and
medical research by applying a variety of causal discovery
methods to heterogeneous and high-dimensional observational
data. CRISP aims to identify a small set of input variables which
are most likely to have a causal effect on a target variable. The
output of CRISP, thus, highlights the most promising candidates
for further targeted research. We illustrate the utility of CRISP
with a case study in oncology, using a multi-omic colorectal
cancer data set to identify causal drivers differentiating two
subtypes of colorectal cancer.

Index Terms—Causal Discovery, causal inference, colorectal
cancer

I. INTRODUCTION

Cancer is a heterogeneous disease with many factors con-
tributing to its development and progression. A lack of knowl-
edge about cancer aetiology in addition to the inter-tumor and
intra-tumor heterogeneity observed among tumors have posed
significant challenges in the discovery of new therapeutics and
preventative countermeasures. As a consequence, cancer still
takes more than 600,000 lives every year in the US alone.
[1]. While there has been a continued effort to apply machine
learning to cancer research, ranging from melanoma detection
[2] to survival prediction [3], the application of such methods

Frontier Development Lab, Mayo Clinic, NASA, SETI
§Equal contribution

has been mostly restricted to identifying associations in the
data. However, in order to fully understand, treat, and prevent

Fig. 1. Schematic diagram of CRISP applied to multi-omic colorectal cancer
data

cancer, a causal understanding of the mechanisms driving the
disease is necessary.

In the causal inference literature, a number of methods have
been developed and adopted for observational data (cf. [4] and
references therein). However, their application to biological
data poses significant challenges. First, each of these methods
requires specific data assumptions, many of which are hard
to verify in practice (e.g., non-confoundedness). Second, only
some of them can cope computationally with high-dimensional
data.

We aim to overcome these challenges in order to enable the
use of causal discovery methods in cancer research, and more



broadly facilitate the adoption and application of machine
learning assisted causal research in biomedicine. As a first step
towards this goal, we introduce CRISP (Causal Research and
Inference Search Platform). A summary of our contributions
is listed below:
• We combine six different causal discovery methods into

a single causal discovery platform that together provide a
more holistic picture of causal relationships in biological
data.

• We illustrate the benefits of the resulting platform by
applying it to a heterogeneous, multi-omic colorectal
cancer dataset.

• We enable the application of causal discovery methods
to high-dimensional data by combining expert guidance
and automated dimensionality reduction.

II. RELATED WORK

Applications of machine learning to cancer research are
numerous. Prominent recent examples include [5] who classify
brain tumors better than human experts using random forest
based methods, [6] who beat human experts in breast cancer
diagnosis using deep learning models, as well as [7] who
predict lung cancer risk using deep learning models. A good
review of earlier work is provided in [8]. Unlike all these
impressive works, our work goes beyond prediction and classi-
fication by using causal inference to generate an understanding
of the causal drivers of cancer.
In causal machine learning methods, we are only aware of
one work applied to cancer research ( [9]), which uses inverse
reinforcement learning to understand the development and
progression of colon cancer. Our approach is orthogonal to
this work in that we use a different set of causal inference
methods to achieve a similar goal.
The causal inference methods we use are described in Meth-
ods. They are mainly based on [10], [11], [12], and [13], as
well as earlier works contributing to them. Compared to these
works, we apply their methods to cancer data that is high-
dimensional and low in sample size.

III. METHODS

CRISP combines six different methods for causal discovery,
described below. We provide further details on how these are
integrated as well as describe the automated dimensionality re-
duction routine that enables CRISP to run on high dimensional
data.

A. The components of CRISP

The causal and/or invariant prediction methods used in
CRISP are: linear and non-linear Invariant Causal Prediction
(ICP) [13], [14], linear and non-linear Invariant Risk Minimi-
sation (IRM) [10], Average Treatment Effect (ATE) [12], and
the Deconfounder (DCF) [11].

Both ICP and IRM are methods that search for input vari-
ables that invariantly predict a target variable across different
environments. Environments are defined as subsets of the
data that do not share the same underlying data generating

distribution, but are expected to share the same causal rela-
tionships. While the non-linear versions can naturally cope
better with potential non-linear relationships in the data, the
linear versions are less affected by the combination of low
sample size and high dimensionality.

Methods for estimating the ATE seek to understand the
strength of the effect of an input variable (’treatment’) on
a target variable. To use such methods for causal discovery,
we sequentially estimate the ATE for all input variables and
include those with significant ATE in CRISP.

ICP, IRM, and ATE all assume that there are no unobserved
confounding variables to the data. The DCF is an approach
designed to cope with such variables. DCF first fits a
factor model to the observed data, and then augments
this data by the mean latent values of the fitted model as
surrogate confounders. Based on this augmented data set,
an unconfounded model (e.g., a linear model) is trained to
predict the outcome.

1) Invariant Causal Prediction: Invariant Causal Prediction
(ICP) is a causal inference approach that searches for a
combination of features in an input feature set that invariantly
predicts a target variable across environments. That is, a model
is fit to predict a target variable from the combination of
features being tested; the data is split into environment groups
according to an ’environment’ feature supplied by the user; and
a statistical test is applied to evaluate whether the residuals of
the predictions are invariant across environments, returning a
p-value. It can be applied to both linear ( [14]) and nonlinear (
[13]) model settings, with the difference being in the statistical
test that is applied to the residuals.

In a linear setting, a two-sided t-test is applied to test
whether the mean of the residuals between the two environ-
ment groups are equal; and a cumulative distribution function
of the ratio of the variances between the two environments
is used to test whether the variance of the residuals across
environments are equal. Finally, the minimum of these two
p-values is accepted, and a bonferroni corrected final p-value
is returned.

In the nonlinear setting, nonparametric tests are used to test
the invariance of residuals across environments. A wilcoxon
rank sums test is applied to evaluate that residuals from
different environments are drawn from the same distribution.
A Levene test is applied to evaluate whether residuals across
environments have equal variances. As in linear ICP, the
bonferroni-corrected minimum of the two p-values returned
by these tests is accepted.

A p-value threshold is supplied by the user, and any
combination of features that is above the p-value threshold is
considered to have equal residuals across environments and
is accepted. From the accepted combinations of features that
invariantly predict the target variable, the intersection of these
sets is accepted as the final feature set. If no intersection
exists, a ’defining set’ is determined (as in [13]) as the
subset of features such that each accepted set has at least
one feature that is contained in every defining set. This



defining set approach is more flexible to highly correlated
features, which can be difficult to distinguish in practice.
Environment variables are chosen by the user, and the only
requirement is that the environmental variable should not
directly affect the target variable. Additionally, while every
combination set of every possible size from 1..N , where N
is the number of features in a dataset, is tested in the original
ICP implementations, this can result in a very high number
of combinations which takes considerable time to compute.
CRISP enables users to specify the maximum number of
features in a set to test.

2) Invariant Risk Minimization: Invariant Risk Minimiza-
tion (IRM) is a method that is designed to discover invariant
relationships from empirical data. In particular, IRM is a
learning method that seeks to identify classifiers that are
optimal across different environments. More precisely, IRM
is expressed as a constrained optimization of the following
form

min
Φ:X→H
w:H→Y

∑
e∈Etr

Re (w ◦ Φ) (1)

subject to w ∈ argmin
w̃:H→Y

Re (w̃ ◦ Φ) , ∀e ∈ Etr, (2)

where Etr is the set of training environments, and Re de-
notes the risk under environment e. Notice that removing the
constraint in optimization problem (2) recovers the classical
empirical risk minimization problem. Incorporating this con-
straint results in a bi-leveled optimization problem, which is
computationally challenging. Arjovsky et al. [10] proposes a
variant of IRM that is more practical.

min
Φ:X→H

∑
e∈Etr

Re (w0 ◦ Φ) + λ
∥∥∇w|w=w0

Re (w ◦ Φ)
∥∥2

(3)

where w0 is a user specified vector with a user specified
dimension (e.g., a scalar).

3) Average Treatment Effect for causal discovery:
Methods for estimating the average treatment effect often
seek to understand the strength of a causal effect on an
outcome. While this only aims to understand the relationship
between one specific variable and the outcome, the CRISP
framework extends this approach so that it can be applied
in causal discovery. Specifically, the average treatment effect
is iteratively estimated for all potential causes, including
any significant causal effect found into our framework. The
implementation follows Gelman ( [12], Chapter 9 and 10)
and uses a linear regression model to estimate the effect and
significance of a cause on the outcome after first binarizing
the cause under inspection. Binarizing is usually done by
setting all values which are greater than 0 to 1 and leaving
the remaining ones at 0.

4) Deconfounder: All of the methods presented so far share
the implicit assumption that all confounding variables are
part of the observed data. One recent approach to cope with

situations when this is not the case is the Deconfounder (DCF).
This method was developed by Wang & Blei ( [11]) as a
causal approach that can cope with unobserved confounding
variables that have an effect on at least two observed variables.
While its potential to accurately identify causal effects has
been questioned in a theoretical discussion ( [15], [16]),
it has exhibited empirical potential in applications where
unobserved confounders are present. Since the presence of
such unobserved confounders is very much likely in complex
biological data, we have decided to include DCF into CRISP.
The main elements of the DCF are as follows.

1) An assignment model: in order to account for unobserved
multi-cause confounding variables, DCF fits a proba-
bilistic factor model (e.g. probabilistic principal com-
ponents analysis (PPCA), mixture models, variational
autoencoders) to the observed causes in order to infer
substitute confounders from the data as given by the
latent space distribution of the model conditioned on
the observed causes. In the current implementation of
the framework, the probabilistic PCA is used.

2) An outcome model: Augmenting the observed data by
the inferred conditional mean of the substitute con-
founders given the observed data points, DCF fits an
outcome model that links the augmented data to the
observed outcomes. In theory, different models can be
used here, including models that establish environment
invariance. However, in practice, it is often found that
a simple linear model works well ( [11]) and hence a
linear outcome model is currently implemented.

B. Combining the Components

Each of the methods described above relies on different
assumptions (e.g. regarding confoundedness) and their outputs
can be sensitive to the training routine. For these two reasons,
combining these approaches may improve their individual
performances. We first compute the causal impact attributed to
each input variable k ∈ {1, . . . , d} for each individual method
m ∈ {1, . . . ,M} via sensitivity analysis. For linear models
such as linear ICP, linear IRM, ATE, and our implementation
of DCF, this is straightforward as it is given by the correspond-
ing linear coefficient. For the non-linear models, we evaluate
this impact as the difference between the outputs of the method
derived from setting the corresponding input variable to its
minimum and maximum values. We then combine the obtained
sensitivity coefficients sm(k) of each individual method into
a single value that indicates the causal potential CP(k). This
metric reflects the likelihood assigned by CRISP that input
variable k has a causal effect on the target variable (as well
as the direction of that effect), as follows.

We sort the d input variables for each method m by largest
absolute values |sm(k)|, and calculate the fraction of methods
for which an input variable k is in the top T as pk1. For
each method, the predictive accuracy on unseen test data is

1We suggest selecting T in relation to total number of input variables d



calculated as am. Based on these, we define the heuristic for
the combined input variable causal potential CP(k) as

CP(k) = pk ·
1

M

M∑
m

am ·
sm(k)

maxk |sm(k)|
. (4)

Thus, for an input variable k, CP(k) = 1, if and only if every
method in CRISP achieves predictive accuracy of 1, and every
method in CRISP selects that input variable with its highest
absolute sensitivity coefficient. In this way we up-weight the
causal potential of an input variable if it is selected by multiple
methods, but down-weight the contribution of a method if its
predictive accuracy is low.

C. Automated dimensionality reduction

A common problem in oncological data is that it is typically
very high-dimensional (order of millions to billions), but low
in sample size (order of tens to hundreds). This makes expert
guided dimensionality reduction necessary, but its extent may
not be sufficient to apply some causal inference methods.
For example, ICP has a computational complexity that is
exponential in the number of input variables. Therefore, it is
vital that CRISP has an additional automated dimensionality
reduction subroutine which does not omit crucial causal input
variables. This is an open challenge, but CRISP currently
uses non-linear IRM to select the most important 100 input
variables before running the full causal analysis.

IV. DATA

To illustrate the efficacy of CRISP for causal inference in
medicine, we use a multi-omic colorectal cancer (CRC) data
set provided by Anonymous. It consists of tumor samples
collected via surgical resection from 100 CRC patients. It
consists of heterogeneous data types: data describing genomic
and methylation variants of cancer cells relative to surrounding
noncancerous cells, gut microbiome community composition
from the area surrounding the tumor, and clinical metadata
describing the patient. The anonymized clinical metadata con-
tains the age group, BMI group, sex, location of the tumor in
the colon, and cancer stage of the patient at the time the tumor
sample was taken. Age and BMI were grouped into categories
from 1-5 to further preserve patient privacy. Genomic and
methylation variant data included the location of the variant,
the original and altered sequences (in the case of genomic vari-
ants), and the type of region affected (e.g. ’intergenic region’,
’disruptive inframe deletion’, ’intron variant’). For privacy
reasons, the data was provided in standard variant call format
(vcf) describing the nature and location of the difference
between the tumor genome to the healthy cell genome, without
including the full original genome sequence of the patient.
Microbiome data consisted of abundance counts of the 8471
most abundant operational taxonomic units (OTUs), based on
16S ribosomal DNA profiling of the microbial community sur-
rounding the tumor. These OTUs were further classified into
predicted taxonomies which ranged in specificity from family
to species level depending on the OTU. The classification of
the cancer type into Mismatch Repair Deficient (DMMR) or

Mismatch Repair Proficient (PMMR) was also provided, based
on an immunohistochemistry (IHC) test. IHC distinguishes the
two types based on tumor sample loss of the protein product
of the affected mismatch repair (MMR) genes [17].

V. EXPERIMENT - CRC SUBTYPE PREDICTION

In this experiment, we employ CRISP to extract causal
variables from the CRC data set and compare this result to
analyses based on correlation or other non-causal measures of
association. The aim is to determine causal drivers that explain
the difference in the sub-type of CRC - PMMR vs. DMMR -
from a combination of clinical metadata and somatic mutation
data. To this end, we formed environments based on age group
of patients, as we suspect the true causal drivers of CRC
subtype should not vary significantly by age, whereas other
factors that are only correlated with it might differ. Figure 2

Fig. 2. Top 20 most explaining variables selected by CRISP as likely to be
causal.

shows the features that CRISP selects as most likely to be
causal. Notably, three explaining variables have been selected
by half the methods we include in CRISP – ADCK5 and
LZTR1 gene modifications by non-linear IRM, non-linear ICP
and DCF, and KRTAP9-9 gene modifications by non-linear
IRM, non-linear ICP and linear IRM. All three of these are
modifications of protein coding genes, which is interesting in
light of the nature of the IHC test (measuring loss of protein
product). Furthermore, LZTR1 is a known tumor suppressor
gene [18]. Yet, none of these three genes have been previously
linked to a specific CRC subtype, thus this result calls for
further investigation in clinical research. Importantly, none of
these three input variables were selected by all six methods,
highlighting the utility of CRISP in identifying potential causal
variables that analyses based on only one method may miss.
Lastly, in Figure 3 it can be seen that these three variables are
neither found by a correlation analysis nor by inspecting the
feature importances of a strongly predictive, but non-causal
model (random forest with test accuracy 1). This highlights
the necessity of causal inference methods when looking for
causal explanations.



Fig. 3. Top 20 features for non-causal methods. Values are normed by largest
feature importance for random forest.

VI. FUTURE WORK

To assess the efficacy of CRISP and the aggregation
heuristic in 4 more thoroughly, we aim to develop a set of
three comprehensive validation protocols. The first procedure
will use synthetic data with a biologically appropriate causal
structure to validate and calibrate the default settings of CRISP.
The second procedure will use real-world data with known
causal structure to verify CRISP’s performance in a real-world
setting. The final procedure will provide theoretical statistical
guarantees for the results provided by CRISP, which will
be vital for building trust in safety critical domains such as
healthcare.

VII. CONCLUSION

We have presented CRISP, a platform of causal discovery
methods applicable to high-dimensional biological data with
low sample size. CRISP is an ideal tool to test biological
hypotheses of causal drivers and to identify causal mechanisms
with high potential for further investigation. Future validation
work seeks to further improve the performance and utility
of the platform to guide clinical prevention and treatment in
practice.
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