FSPOOL: LEARNING SET REPRESENTATIONS WITH FEATUREWISE SORT POOLING

Southampton

Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Code available a https://github.com/Cyanogenoid/fspoo

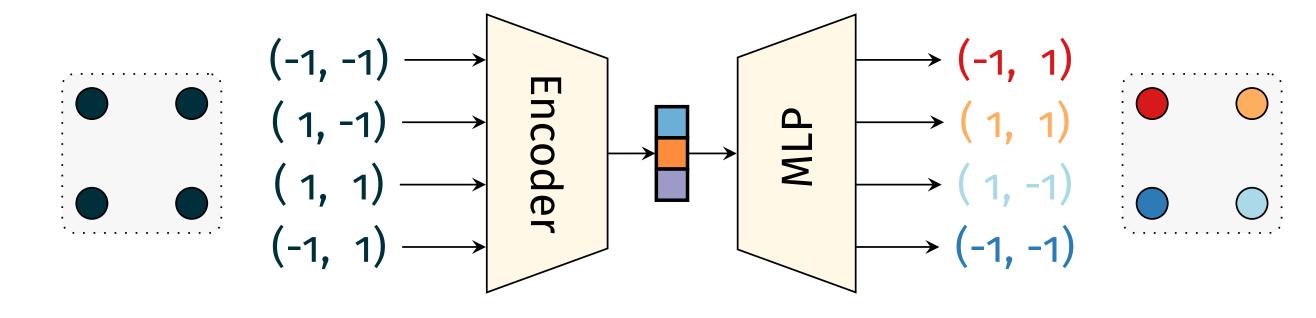
Predicting sets with MLPs or RNNs results in **discontinuities** due to the **responsibility problem**.

To pool a set into a vector,

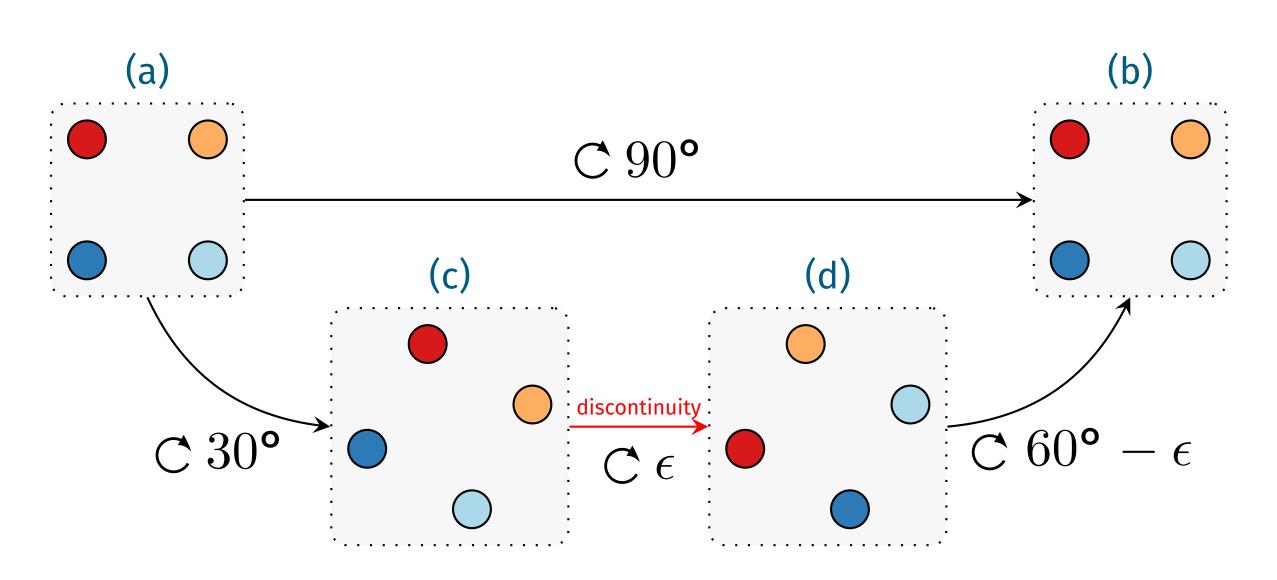
sort each feature independently

to learn about their distribution.

- Sets are unordered, but MLP and RNN outputs are ordered.
- > **Discontinuities** from responsibility problem.
- In a normal set auto-encoder, each output is **responsible** for a set element.



• What happens when we auto-encode a rotating square?



The responsibility problem

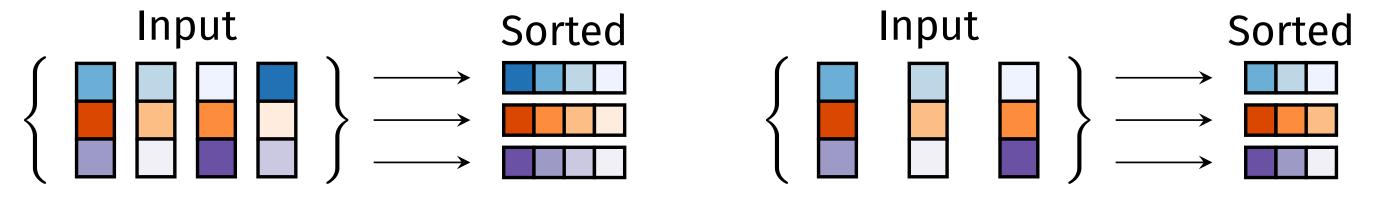
- •(a) and (b) are the same set.
- >(a) and (b) encode to the same vector.
- >(a) and (b) have the same MLP output.
- (a) is turned into (b) by rotating 90°.
- > Rotation starts and ends with the same set.
- > MLP outputs can't just follow the 90° rotation!
- > There must be a discontinuity between (c) and (d)!
 All the outputs have to jump 90° anti-clockwise.
- Smooth change of set requires discontinuous change of MLP outputs.
- Neural networks don't like learning discontinuities.
- Present in every dataset where two points can be smoothly exchanged like this.

FSPool

- Pooling (set-to-vector) is used in lots of set tasks, but we want a **learnable**, **fast**, **permutation-invariant** alternative to sum and max.
- Numerical **sorting** is invariant, so let's use that! To handle variable-size sets, we can use "continuous" weights.

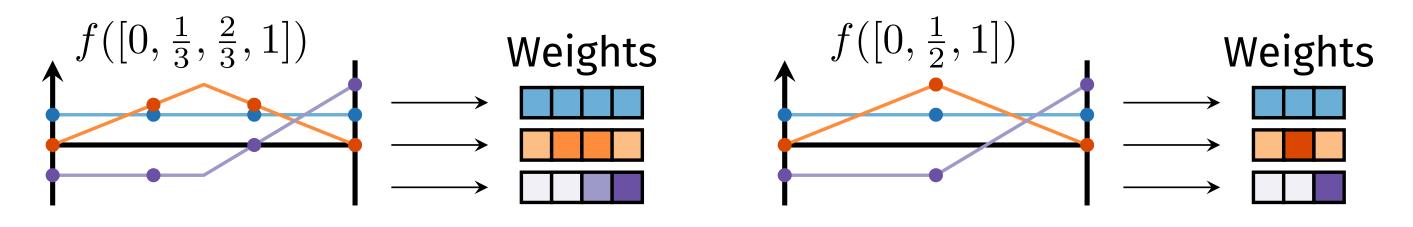
Step 1:

Sort each feature across the elements of the set.



Step 2:

Define continuous weights with piecewise linear functions. Evaluate at four positions for set of size four, three positions for set of size three, and so on.



Step 3:Dot product to pool into single feature vector.

Sorted Weights Output Sorted Weights Output

The second of the single reductive vectors.

Output Sorted Weights Output

The second of the single reductive vectors.

Output Sorted Weights Output

The second of the single reductive vectors.

FSUnpool

- To avoid the responsibility problem, we can make the auto-encoder **permutation-equivariant**. Rotating the square should rotate the outputs too.
- Store the permutation of the sort in FSPool, then **invert** permutation to restore the same order as the input \implies permutation-equivariant.
- FSUnpool (vector-to-set): "Unpool" by doing Step 3 in reverse, then "unsort" by doing Step 1 in reverse (invert permutation).

Auto-encoding sets

Rotating polygons Eval: Chamfer loss	•	•		
FSPool & FSUnpool	0.001	0.001	0.001	0.000
MLP + Chamfer loss	1.189	1.771	0.274	1.272
MLP + Hungarian loss	1.517	0.400	0.251	1.266
Random	72.848	19.866	5.112	1.271

Denoising auto-encoder for different noise levels

Dŧ	:11015	ilig a	uto-e	HCOU	er io	ruiii	erem	. 11015	e lev	E12		
_	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05
Input	G	9						igaris Tistiya -igaris				
Target	0	9		65	3	3	8	5	2	M		9
Ours					17 (A) 17 (A) 18 (A)	25°55 1366°5 1866°5		Archive Archive Archive				
MLP												

Encoding sets

MNIST set classification	1	epoch of tr	aining	10	epochs of t	raining
Weights from auto-encoder:	Frozen	Unfrozen	Random init	Frozen	Unfrozen	Random init
FSPool	82.2% _{±2.1}	86.9% _{±1.3}	84.7% _{±1.9}	84.3% ± 1.8	91.5% _{±0.5}	91.9% _{±0.5}
Sum	76.6% _{±1.3}	$68.7\%_{\pm 3.5}$	30.3% _{±5.6}	79.0% _{±1.0}	77.7% _{±2.3}	72.7% _{±3.4}
Mean	25.7% _{±3.6}	32.2% _{±10.5}	30.1% _{±1.6}	36.8% _{±5.0}	75.0% _{±2.7}	73.0% _{±1.7}
Max	73.6% _{±1.3}	73.0% _{±3.5}	56.1% _{±5.6}	77.3%±0.9	80.4% _{±1.8}	76.9% _{±1.3}

CLEVR		Epochs	Time for		
	Accuracy	98.00%	98.50%	99.00%	350 epochs
FSPool	99.27% _{±0.18}	141 _{± 5}	166 _{±16}	209 _{±33}	8.8 h
RN	98.98% _{±0.25}	144 ± 6	$189_{\pm 29}$	*268 _{±46}	15.5 h
Janossy	97.00%±0.54	_	_	_	11.5 h
Sum	99.05% _{±0.17}	$146_{\pm 13}$	191 _{±40}	$281_{\pm 56}$	8.0 h
Mean	98.96% _{±0.27}	169 _{± 6}	225 _{±31}	273 ±33	8.0 h
Max	96.99% _{±0.26}	_	_	_	8.0 h

- Replace sum or max with FSPool for consistent improvements.
- Also improves Relation Networks and a top graph classifier.
- **FSUnpool** avoids the responsibility problem, but only in auto-encoders.
- > See Deep Set Prediction Networks poster at this workshop for general solution.