Shape-Inspired Architectural Design

Weidan Xiong
Hong Kong UST
wxiongab@connect.ust.hk

Pengbo Zhang
Hong Kong UST
pzhangag@connect.ust.hk

Pedro V. Sander Ajay Joneja
Hong Kong UST Hong Kong UST
psander@cse.ust.hk joneja@ust.hk

Total Volume

Front Shape Integrity

Side Shape Integrity

Top Shape Integrity

Structural Integrity

Floater Volume

0 005 01 015 02 025 03

Figure 1: Design of a museum based on three binary images shown as insets with the corresponding rendered views in the top
row. The second row shows the voxel grid of an initial design, a visualization of its structural and topological integrity, and
an optimized design and its respective visualization. The values of the parameters controlling the shape before (red) and after

(green) optimization are shown in the bar chart on top right.

ABSTRACT

We introduce a method to design architectural buildings that are
inspired by shapes of non-architectural forms. The user inputs a few
binary images, each providing an indicative shape for the building
from a different viewpoint. A discrete visual hull corresponding to
each binary image is generated. A voxel model is then constructed
by intersecting the hulls corresponding to the images. The shape
of the voxel model depends on the parameters of the projections.
Real buildings must also obey some topological and structural con-
straints. We develop a shape metric to evaluate a given design in
terms of topological, functional and structural requirements of the
building. This allows us to optimize the building shape as a function
of the parameters of the projection. The optimization problem is
solved by means of an improved cuckoo search metaheuristic. The
resulting voxel model is converted into a mesh. Finally, we apply a
novel smoothing algorithm that produces a smooth surface while
preserving sharp creases and roof structures. Several examples are
presented in the paper to illustrate the methodology and results.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

I3D ’18, May 4-6, 2018, Montreal, QC, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5705-0/18/05... $15.00
https://doi.org/10.1145/3190834.3198034

ACM Reference Format:

Weidan Xiong, Pengbo Zhang, Pedro V. Sander, and Ajay Joneja. 2018. Shape-
Inspired Architectural Design. In I3D ’18: I3D ’18: Symposium on Interactive
3D Graphics and Games, May 4-6, 2018, Montreal, QC, Canada. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3190834.3198034

1 INTRODUCTION

Several modern architects use non-architectural shapes as an inspi-
ration for the design of landmark buildings (see figure 2). Notable
examples in recent years include the CCW building in Sydney (archi-
tect: Frank Gehry), the wood art museum in Harbin (architect: Ma
Yansong) and the Birds nest stadium in Beijing (architects: Jacques
Herzog and Pierre de Meuron). The process of converting a shape
idea into an initial 3D design model is cumbersome. We introduce
a methodology to provide good initial designs based on a small
number of input images. In the system described here, the user
provides three binary images as the input. Our approach can be
extended to use an arbitrary set of two or more such images.

Our approach is guided foremost by the idea that the generated
model should faithfully mimic each input image from some view-
point. One of the inputs is typically (although not necessarily) used
as the plan view, and represents the footprint of the building. The
range of viewpoints can be constrained during the optimization in
order to properly account for suitable viewing locations imposed
by the city landscape. There are also several other constraints that
guide the design of buildings. These may be categorized as topo-
logical, physical or functional constraints. Some examples of such

https://doi.org/10.1145/3190834.3198034
https://doi.org/10.1145/3190834.3198034

13D ’18, May 4-6, 2018, Montreal, QC, Canada

i =
©Peellden 2005 ©JesseW
(a) Taipei 101

5
900 2014

©Joi Ito 2007

" ; :" Bt =
©Andre Lage Freitas 2012 ©Cassandra Tiensivu 2006
(b) Burj Al Arab

Xiong et. al.

©Rmashhadi 2011

©Azerbaijan Republic 2012

©Korrigan 2004
(d) Heydar Aliyev Center

(c) Olympic Pavilion

Figure 2: Building designs inspired by non-architectural shapes (shown to the right or below).

constraints include structural stability (e.g. preventing long can-
tilever arms, middle-heavy arched shapes etc.), floor area, window
area, etc. We encode several such constraints into the function
evaluating quality of a given design. This function can then be
optimized via a search process to generate low energy optimized
designs. Again, our approach is extensible in the sense that addi-
tional constraints can be encoded to enrich the objective function,
and existing constraint functions or their domains can be changed
easily.

Contributions. We introduce a new approach to assist archi-
tects to quickly generate new designs inspired by images of non-
architectural forms. We develop a model to find low energy opti-
mized locations that yield faithful silhouettes of the images. The
model allows encoding of physical as well as functional constraints.
In achieving this main objective, we introduce:

o A modified cuckoo search algorithm that more efficiently
solves our shape design problem. We hope that these modifi-
cations will find practical uses in other domains.

e A novel iterative mesh smoothing algorithm that yields a
smooth surface while preserving sharp creases and roof struc-
tures. We show how this new technique generalizes well and
is competitive with generic mesh smoothing techniques.

1.1 Relation to previous work

Automatic generation of architectural forms from image input has
been explored in a few previous works. One approach is through
the use of procedural modeling [Smelik et al. 2012]. Users can
also construct a valid description of the building based on a set of
grammatical rules with block units such as windows, walls, roof
structures [Schwarz and Miiller 2015]. The model geometry may
be inferred via images of the building with machine learning tech-
niques [Fan and Wonka 2016].

Structural integrity of a design is an important criterion in archi-
tecture. But it is difficult to explore designs by detailed structural
analysis in early stages of the design, because (i) the structural
model has not been determined at the early stages of shape design
and, as observed by Jiang et al. [2014], (ii) even if a sufficiently
detailed structural model may be inferred from a shape, solving
for integrity requires very slow and complex numerical analysis

which is not conducive to searching over a large space of shapes.
A fast evaluation of the structural stability is preferable, even if
it sacrifices some accuracy. One approach is by modeling the sur-
face as a mesh and applying a simplified mechanics model, e.g. the
thrust network method [Block and Lachauer 2011]. Efficient and
robust techniques for statics-driven interactive mesh design have
also been developed [Jiang et al. 2014; Tang et al. 2014]. An alter-
nate approach is to integrate structural stability into a procedural
modeling framework [Whiting et al. 2009]. Another approach is
employing efficient physics engines. Our implementation uses a
voxel-based solver that uses a simplified finite difference model for
dynamic simulation of soft objects [Hiller and Lipson 2012]. This
model uses several simplifying assumptions for computing dynamic
distortions of a model. In our case, the only external forces on the
model are gravity and the ground reaction (we neglect effects of
wind loads), and the dynamic model is run long enough until each
voxel has nearly zero velocity and acceleration.

Generating 3D models from 2D shapes has been of interest for a
long time. Several approaches have been proposed to recreate a 3D
model from 2D sketches [Grimstead and Martin 1995] or engineer-
ing drawings [Dutta and Srinivas 1992]. This has been extended
even to models of assembled parts (each with its assigned sketch-
lines in each view) [Rivers et al. 2010]. Our approach borrows more
from the visual hull introduced by Laurentini [1994]. In general
multiple images from a given (or any) view may not be compatible
with a single solid object. This problem was studied by Trager et al.
[2016]. The shadow art technique allows minimal rigid deformation
of the 2D silhouettes such that the generated visual hull would
cast a set of shadows from given light sources, matching the de-
formed silhouettes as accurately as possible [Mitra and Pauly 2009].
However, none of these approach consider the structural integrity
of generated models, nor other architectural needs, such as the
roof flattening addressed by our smoothing algorithm which was
tailored to this problem.

Our optimization explores ranges of viewing positions based on
constraints of both silhouettes and architectural requirements. By
allowing the changes on image ratio of silhouettes instead of rigid
deformation, our method attempts to preserve the input shape as
accurately as possible. We use a voxel model for shape optimization
in order to improve computational efficiency. The optimization

Shape-Inspired Architectural Design

a '
m el
@ []

Figure 3: The user interface of our system with the camera
and images of the ACM example in their initial default po-
sitions.

Figure 4: The perspective projections of the Sphinx and pyra-
mids (left) are used to construct the visual hull (right).

model we face is non-linear, non-convex and discontinuous. We
developed a search metaheuristic based on a modification of cuckoo
search [Yang and Deb 2009] because of the effectiveness of this tech-
nique in solving problems of a similar nature. Finally, we employ a
novel smoothing algorithm to create a plausible design.

2 INTERACTIVE DESIGN PROCESS

This section introduces our interactive architecture design system.
We start with the three shape templates Iy, Iy, I3 (e.g., “A", “C", and
“M" in figure 3). We seek to design a building such that when viewed
from three different locations, or cameras, each building silhouette
matches a corresponding input shape template. Initially the three
cameras are placed in orthogonal positions, with two at ground
level and one as the top view. The user is then able to manipulate
several camera and image parameters interactively to fine-tune this
shape. At any point of the design session, the user can invoke the
optimization algorithm (section 3) using the current configuration
as the input.

2.1 Discrete visual hull

By projecting the three shape templates from their respective cam-
era positions, a visual hull [Laurentini 1994] can be constructed
from the intersection of their silhouette cones (see figure 4). There
are many algorithms for computing visual hulls in real time for
different applications. Some are based on geometric computations
or voxel representations [Loop et al. 2013], while others are image-
based [Matusik et al. 2000]. For simplicity and efficiency, we use a
voxel representation for the visual hull.

Optimizations. As we adjust and fine-tune the structure, we must
update the voxel grid in real-time. Therefore, to improve efficiency
during active user interaction, the system downsamples the voxel
grid by 2 x 2 X 2 for all computations except for the more expensive
structural integrity computation which is downsampled by 4 x
4 X 4. The results are upscaled based on nearest neighbors for the
visualization. When the user stops manipulating the parameters,

13D ’18, May 4-6, 2018, Montreal, QC, Canada

the computation is updated using the full resolution grid. Table 1
lists all the resolutions used in our examples.

2.2 Objectives

When designing a building, there are several aesthetic, structural,
and practical considerations. These are described below, with a
description of how we measure its quality. The first two objectives
seek to measure the aesthetic and structural properties of the design:

o Shape template integrity measures how faithfully the resulting
building silhouettes match those of the shape templates. For
each shape template j, we compute a new binary image I}f
representing projection of the current voxel grid onto the
image plane of camera j. We accomplish this by tracing a ray
for each image pixel and setting it to 1 if it intersects an active
voxel. We define the error as the Frobenius-norm between the
desired shape template I; and the current shape I;f integrated
over all three images:

3 * 1.1
&Gy
= -

Wj

1)

Jj=1

where wj is the number of pixels in binary image I;.
Structural integrity measures the ability of the structure to be
able to support itself without breaking or collapsing. There
are several methods for structural analysis that could be em-
ployed in this setting. For efficiency and simplicity, we use a
simple physical simulation. We assign each voxel a fixed mass,
connect it to its six direct neighbors, constrain the position of
the ground voxels, and simulate the system under the force of
gravity until convergence. Areas of the building that undergo
significant displacement indicate structural problems. For sim-
plicity, the magnitude of a voxel’s displacement is used as a
proxy for structural instability within its neighborhood. In
mechanics, the level of stress is not necessarily related to the
absolute displacement. E.g., the maximum principal stress is
felt at the fixed end of a cantilever under bending moment.
However, the voxels at the free end (which experience the
largest displacement) contribute the most to the stress at the
fixed end, and thus serve as an indicator of a stress point in
the neighborhood. Voxel displacements larger than €5, voxel
units denote moderate stress contributors (color coded in yel-
low in figure 5), whereas those larger than e denote severe
stress contributors (color coded in red). We measure structural
integrity as the fraction of active voxels that contribute to
severe stress:

Es = gred/9a (2

where g, 4 is the number of “red” voxels and ¢, is the number
of active voxels (i.e., a one voxel thick surface layer of the
downsampled visual hull solid). In our results, we use weight
w = 50kg, s = 0.62, €, = 0.5. These parameters can be
adjusted should the designer want to be more conservative.

In addition to the above criteria, we also consider the following
practical considerations:

o Total volume V; = g4 /D? measures the overall size of the
building. It is the number of active voxels g, normalized by

13D ’18, May 4-6, 2018, Montreal, QC, Canada

"Sa F

Figure 5: Different shapes generated by varying the model
parameters, with voxel colors indicating the structural and
topological measures. The stress intensity is denoted from
yellow (light) to red (heavy).

total cubic dimensions of the voxel space D* in number of
voxels.

Floater volume Vg = g /g measures the volume of floater
objects, where gy is the total number of voxels in the build-
ing components that are disconnected from the ground, and
Jw is the total number of external voxels. Such disconnected
regions are undesirable as they would require additional sup-
port. Our implementation uses a flood fill algorithm starting
at the ground voxels to identify floater voxels gr. Such floaters
are visualized in black (see the first model on left in figure 5).

2.3 Parameters

To optimize the building shape, the system interface provides the
user with a number of adjustable camera and image parameters.
Both orthographic x, and perspective xp projection are supported.
The parameter vector for orthographic projection is:

Xo = (t1,51, 01, t2, 52,02, t3,83) (3

where t}, 5, 0; are the 2D image space translation, scale, and camera
rotation about the y-axis of shape template j. Note that the third
camera is overhead and does not include a y-axis rotation parameter.

In perspective projection mode, we also incorporate a distance
parameter d; that allows camera j to be moved toward or away
from the building:

Xp = X0 (d1,d2,d3) (4)

Given the distance, the field of view of each camera is then com-
puted so as to fit the entire structure in the image plane.

At any stage, the user may render the model to get a better
visualization of the shape. To implement this, we use a standard
marching cubes library to create a faceted approximation of the
model to which we can apply a user-selected texture.

3 OPTIMIZATION

In this section, we describe our optimization algorithm to automat-
ically adjust the parameters in order to achieve a result that better
addresses the desired objectives.

Parameters. If an orthographic projection is desired our opti-
mization has dim(x,) = 11 parameters, whereas for a perspective
projection there are dim(xp) = 14 parameters.

Objective function. We seek to minimize a function based on the
objectives of section 2.2. The relative importance of these objectives
is subjective. For the results in the paper, we considered a weighted
combination of template integrity, structural integrity, total volume,
and floater volume. Our energy function is

fx) = wiE; + wsEs + wi(1 - V) + Wfo (5)

Xiong et. al.

ALGORITHM 1: Modified Cuckoo Search

Generate initial population of n host nests (section 3.2)

while termination condition not met do

for each nest n; do
Get a cuckoo egg x’ by Lévy flights from x; (section 3.3)
Choose random nest n; to lay the egg
if f(x') < f(x;) then
replace x; by x’

end

end
for each nest n; do
Get a cuckoo egg x’ by mutation from x; (section 3.4)
if f(x') < f(x;) then
replace x; by x’
end
end
end
return Xp5;

where E;, Eg, V; and Vi are the energy terms described above and
computed based on parameters x. In our results, we use the weights
w; = 0.1, ws = 5, w; = 0.75, and wg =5, which we found to be
a good compromise between the objectives. The weights can be
easily adjusted before or during the design session based on the
needs of the designer.

3.1 Modified cuckoo search

Since the energy function f(x) is highly non-linear, we investi-
gated different probabilistic techniques to achieve an approximate
global minimum. We have found a novel adaptation of the cuckoo
search metaheuristic to be a suitable choice due to its simplicity
and flexibility in exploring different candidate solutions.

A simple cuckoo search maintains a set of n nests, each with
a potential solution, or egg. In each iteration, a new solution, or
cuckoo egg, is generated from a randomly selected egg via a Lévy
flight. The cuckoo egg replaces the egg in a randomly selected
nest if it improves upon the latter. At then end of each iteration,
the algorithm stores the current best solution and drops a fraction
pa of the nests, replacing them by new random solutions. In our
new modified cuckoo search, instead of randomizing all of the
parameters in a candidate solution, we only modify selectively a
fraction of the parameters. This modification, which is described in
section 3.4, significantly improves the results.

Our modified cuckoo search is summarized in algorithm 1. In our
experiments we let the number of nests n = 25. The convergence
behavior of the algorithm can be seen in the graphs in figure 9.
The following sections describe how we generate new candidate
solutions in the different stages of our algorithm.

3.2 Generating initial candidate solutions

One candidate solution is initialized with the default parameters,
having equidistant orthogonal cameras. Another candidate solution
starts with the parameters currently set in the user interface by
the designer. The parameters of the remaining candidate solutions
are then randomly generated using a uniform distribution over the
range of valid parameter values.

Shape-Inspired Architectural Design

We found that we achieve faster convergence if we initialize
some of the key parameters in a small fraction of the random can-
didate solutions. More specifically, we set camera angles (01, ;)
in six of the solutions to (0, 7 * 3/4), (& * 3/4, 0), (0,), (x,0),
(0, r/4), (r/4,0), and in the case of perspective projection, we fur-
ther set camera distances dj, dz, d3 of seven solutions to uniformly
distributed values within the parameter range (all three cameras
with matching distance in each egg).

3.3 Generating solutions via Lévy flights

We follow the original cuckoo search strategy of Yang and Deb
[2009] which uses Lévy flights when generating a cuckoo x” based
on a solution x; from nest n;.

x' =x; + ayLvy(B) 6)

The Lévy flight is equivalent to a random walk, but with a step
size that is based on a Lévy distribution. In our experiments, the
coefficient ff# = 1.5, which is standard in literature. The step size a;
= 0.5 was determined empirically (see results section). Finally, select
a random nest j and replace its solution x; with the new solution
x’, if it has lower energy (i.e., if f(x) < f(x;)).

3.4 Generating solutions by mutation

Instead of replacing the fraction p, of the n nests at the end of
each iteration as in the original cuckoo search strategy (ORIG), we
explored mutating only a fraction of our parameters. We refer to
this modification as fixed likelihood parameter replacement (FLPR).
More specifically, when mutating the solution x;, we first let the
new candidate solution x” = x; and then update it based on the pa-
rameter differences between two random nests x; and x;.. Formally,
each parameter v in x’, with probability p,, is adjusted as follows:

x'[v] = x'[v] + am * (xj[v] - x¢[v]) * rand(0, 1) (7)

where the step size coefficient ay, is set as 0.5 empirically, and
rand(0, 1) denotes a random number drawn from the uniform dis-
tribution over (0, 1). This approach tends to reduce the step size
over time as the solutions converge.

We improve the results considerably by fine-tuning the values of
pq for different parameters. This variant is refered as adaptive like-
lihood parameter replacement, or ALPR (see section 5). Empirically,
we found that the following values give best results:

0.75 if v is a camera angle 6;

Pa =140.6 if v is a camera distance d; or image scale s; 8)

0.5 otherwise

After processing all parameters, we then replace x; by x’ if it
has lower energy, that is, if f(x”) < f(x;). Otherwise, we retain the
old solution.

4 MESH SMOOTHING

We use the marching cubes algorithm [Lorensen and Cline 1987]
to extract a surface mesh from our final low energy solution. The
resulting mesh often exhibits significant noise and features that
are not suitable for architectural shapes. We considered several
approaches for post-processing the mesh. We explored the rolling
guidance filter (RGF) [Wang et al. 2015], however due to the nature

13D ’18, May 4-6, 2018, Montreal, QC, Canada

ALGORITHM 2: Mesh smoothing

Input mesh My, number of iterations k
for s=1to k do
Compute face normals {n; } of mesh Ms_;
Compute {g; } by applying DMF to {n;} (eq. 10)
Compute {g; } by roof flattening on {g; } (eq. 14)
Compute {fn; } by applying bilateral filter to {g; } (eq. 15)
Generate M by updating vertices of Ms_; based on {n;} (eq. 18)
end
Output mesh M

of our voxelized structure it cannot produce satisfactory results. We
also considered the joint bilateral filter [Zhang et al. 2015], which
uses the normal field to iteratively guide the smoothing process.
However, the output cannot satisfy the architectural requirements.

Inspired by architectural designs, we propose an iterative smooth-
ing method that yields a mostly smooth surface while preserving
sharp creases. Common architectural designs often exhibit mostly
smooth surfaces with a few shape-defining sharp creases (figure 2d).
Oftentimes, nearly horizontal regions at the top are flattened to
serve as a balcony or roof. Our approach can consider adjusting
the surface at the top of the structure to allow for a flat roof, which
may be desirable for most buildings.

In each iteration, we first apply the deformable mean filter to
generate a smooth normal field {g;} (section 4.1). We then adjust
normals of nearly horizontal surface regions which are candidate
roof structures and apply a bilateral filter to further smooth small-
scale features, generating {ni;} which is used to update the mesh
(section 4.2). Algorithm 2 outlines this process, where the number
of iterations is determined by the user as described in section5.2.
Next, we describe each of the stages.

4.1 Deformable mean filter

The traditional fixed-shape filter traverses a 1-ring neighborhood of
facet f; (see figure 6) and takes the average normal {n;} weighted
by triangle area:

_ 2ZfeN, Ajny
8 S T ens Ayl
where N; is the set of faces that share a common edge or vertex
with f;, and Aj, n; are the area and normal of face f;.

Results are improved by considering a wider neighborhood be-
yond the 1-ring of f;. Zhang et al. [2015] consider all 1-ring neigh-
borhoods of all f; adjacent to f;, and set g; to be the average normal
of the f; neighborhood with least normal variation. We propose an
efficient approximation that does not need to consider the entire 2-
ring neighborhood of f;. We adapt the notion of deformable kernel
proposed in [Dai et al. 2017] to area weighted mean filtering. While
traversing the neighbor f; of f;, instead of computing its 1-ring
average normal, we simply interpolate its normal with the normal
of just one randomly selected neighbor of f;, as shown in figure 6.
Note that a different random neighbor is drawn for each f; in each
iteration.

Using a mean filter with a larger neighborhood may have the
undesirable effect of smoothing out details and creases [Yagou
et al. 2002]. In order to address that, we introduce a weight w; to
the deformable mean filter, which considers normal similarity in

©)

13D ’18, May 4-6, 2018, Montreal, QC, Canada

Figure 6: Traversing the 1-ring neighborhood of n; to attain
gi (left). Instead of directly computing the average normal n;
using n;, the deformable neighbor filter interpolates n; with
the normal of a random neighbor (right).

order to reduce the impact of normals with significantly different
orientation. Formally,

 ZfeNufieN; WiAjAKGm), ng) 10)
TS v e, wiATALG .]

wj = max(n; - G(nj,ng), 0) (11)

Gl) = adymy + (1 - Ang 12
0.5 k=i

_ o 13

a llex — cill otherwise 13)

llek —cill + llej = cill
where c; is the centroid of face f;,. Note that G(n;j, ny) is the in-
terpolated normal between f; and f according to their relative
Euclidean distances to f;.

The combination of weights w and a results higher influence to
faces that are both closer in Euclidean distance as well as normal
orientation to f;. The effects of introducing each of these modifica-
tions separately are shown in figure 10 and discussed in the results
section.

4.2 Bilateral filtering with roof flattening

From figure 10, we can see that some undesirable small-scale fea-
tures still remain. To further address this issue while preserving the
large-scale structure, we apply a bilateral filter [Zheng et al. 2011]
in each iteration. Prior to applying the bilateral filter, we adjust the
resulting normals {g; } from the the deformable mean filter, to yield
flatter roof structures.

Roof flattening. To satisfy the need of creating a balcony or flat
roof, we introduce a normal adjustment step for triangles that
are nearly horizontal. The agressiveness of the adjustment is deter-
mined by two parameters: §;, which determines an angular distance
threshold to the vertical direction (z-axis), and 8; which prevents
the adjustment if the neighborhood is not sufficiently flat. Formally
the updated normal is given by

gi = (14)

zZ gi-z>cosb, & gi-gj<cosly Vj
gi otherwise

Xiong et. al.

ism

o

o

8

IS

&

P

g
Energy

Figure 7: (a) The result of using different 6,, and 6, for roof
flattening; (b) The performance of cuckoo search with dif-
ferent o; and oy,

As illustrated in figure 7(a), note that by increasing the angular
threshold 6,,, the flattened region generally increases. Meanwhile,
by increasing 0, only regions that exhibit lower normal variation
are considered, and thus the flattened region generally decreases.

Bilateral filtering. Given the normal field {g;}, we apply the
bilateral filter, resulting in an updated set of normals {f; }:

. 2 en; AjKs(ci, ¢j)Kr(8i, 8))8;
f; = ———— (15)
[l 2 en; AjKs(cir cj)Kr(8ir 8))8;ll

[lei — cjl|?
K (ci, ¢j) = exp(-————) (16)
205
o llg: - &1l°
Ky (8i, &) = exp(-———"—) a7
207

After applying the bilateral filter, we update each vertex position
according to {n; }:

1
t+1 t — t t _
vt =] +m an[(cj—vi)-nj] (18)
where F;j is the set of faces incident on vertex v;.

Results discriminating the contributions of each of these steps
are discussed in section 5.

5 RESULTS

We first explored the parameter space of the coefficients «; and
am as well as the number of iterations. We estimated these by an
empirical study over a set of examples, with an expectation that the
convergence speed and result do not change significantly for small
variations. We achieved best performance with higher parameter
values (> 0.5) (see figure 7(b)). For the results in the paper, we used
a; = am = 0.5.

The other important parameter is the termination condition. The
objective function is discontinuous, non-linear, and each iteration
is expensive since it requires solving the deformation model multi-
ple times. A series of trial runs across the range of our examples
all converged after approximately 30 iterations. This is shown in
figure 9. No significant drop in the energy was observed beyond 30
iterations.

Shape-Inspired Architectural Design

A i ™ f—*

¢
a & o~ n
~x W e

) g ‘.l AA Q @

Figure 8: Shadow Art for our architectural designs. The de-
sired shapes are shown on the left. The three columns to
the right show the results, with inset figures depicting the
amount of deformation from the original shape (in red).

5.1 Verifying the modified cuckoo search

Next we compare the performance of our modified cuckoo algo-
rithm. Six sets of experiments were conducted. Initially, all examples
were run by using ORIG in figure 9. Next, we ran a modified cuckoo
search with a fixed likelihood parameter replacement (FLPR) ap-
proach. Then, we ran a different variation of the search in which
each parameter is dropped based on an adaptive probability (ALPR).
Finally, we also compared with strategies using simulated anneal-
ing (SA), genetic algorithm (GA), and particle swarm optimization
(PSO). We explored parameter space of these other strategies using
the same amount of potential solutions so as to best minimize our
energy function.

Notice that the original cuckoo search could get trapped in a local
minimum for a large number of iterations, making it less viable in
our application due to the relatively high cost per iteration. Refer
to table 1 for processing times, and figure 9 for the convergence
results. In all experiments, our ALPR approach outperformed the
other techniques.

5.2 Mesh smoothing

Next, we present results of our smoothing algorithm. Recall that
the goal of our method is to smooth the surface preserving large
scale sharp creases while also favoring a flat roof structures where
applicable. Figure 10 shows the progression of the results after
including each of our proposed modifications. It starts with the
classical mean filter, then includes the crease preserving weight w
from equation 11, the deformable mean filter without and with w,
the bilateral filter approach, and finally our combined two-stage
approach that includes the deformable mean filter with w and the
bilateral filter. This approach yields a smoother surface with sharper
creases. Figure 11 compares our results with different techniques ap-
plied to our Egypt museum building design. Note again the sharper
well-defined creases and smoother surfaces from our approach.
The processing times of all techniques are shown in table 1. Fi-
nally, figure 12 shows results applied to standard meshes used in
literature for benchmarking denoising techniques. We chose the pa-
rameters for each denoising techniques which produce visually the
best results. The Dyean, Dmax and Drpss in table 2 is measured

13D ’18, May 4-6, 2018, Montreal, QC, Canada

by Hausdorff distance to the original noise free mesh [Cignoni et al.
1998]. Note that for this last comparison, we do not perform roof
flattening. The supplemental material contains additional compar-
isons of our smoothing method.

5.3 Example designs

Table 1 shows the statistics of using our system to design four
examples. Figures 1 and 13 illustrate their designs and rendered
results. In each figure, the top row shows three views of the op-
timized model with their corresponding binary images shown as
insets. The bar chart on the top right shows the statistics of key
parameters before (in red) and after (in green) optimization. Note
the significant improvement in these statistics after performing the
optimization. The second row shows the voxel grid of an initial
design, a visualization of its structural and topological integrity,
and an optimized design with its respective visualization.

Figure 8 show the examples generated by the shadow art algo-
rithm [Mitra and Pauly 2009]. Since shadow art targets a different
application, it does not directly consider architectural objectives
such as structural integrity, floaters, ground area, a flat roof struc-
ture, and overall shape smoothness. Thus, results are not directly
applicable to our domain.

6 CONCLUSION

We propose a new technique for initial design of architectural build-
ings from images. Such a tool is of interest to architects who use, for
example, organic forms as an inspiration. The 3D shape is derived
from the visual hull of the images. The parameters controlling the
size and location of the images control the shape of the building.
An evaluation of the building is made as a weighted sum over sev-
eral factors, including topological factors, structural stability, input
conformance, and other functional requirements. Using this objec-
tive function, we run a modified cuckoo search to find low energy
optimized initial design, followed by a novel smoothing algorithm
to produce an plausible final building shape. Several examples were
created to indicate that our approach can produce viable shapes
for projects including buildings, theme park structures and even
artificial landscaping forms.

ACKNOWLEDGEMENTS
This work was partly supported by Hong Kong GRF grant #618513.

REFERENCES

P. Block and L. Lachauer. 2011. Closest-Fit, Compression-Only Solutions for Free Form
Shells. In Proceedings of the IABSE-IASS Symposium 2011, Vol. 2011. London, UK.

Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. 1998. Metro: Measuring error
on simplified surfaces. In Computer Graphics Forum, Vol. 17. Wiley Online Library,
167-174.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei.
2017. Deformable Convolutional Networks. arXiv preprint arXiv:1703.06211 (2017).

D Dutta and Y L Srinivas. 1992. Reconstruction of curved solids from two polygonal
orthographic views. Computer-Aided Design 24, 3 (1992), 149-159.

Lubin Fan and Peter Wonka. 2016. A Probabilistic Model for Exteriors of Residential
Buildings. ACM Trans. Graph. 35, 5, Article 155 (July 2016), 13 pages. https:
//doi.org/10.1145/2910578

Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. 2003. Bilateral mesh denoising.
In ACM transactions on graphics (TOG), Vol. 22. ACM, 950-953.

1. J. Grimstead and R. R. Martin. 1995. Creating Solid Models from Single 2D Sketches.
In Proceedings of the Third ACM Symposium on Solid Modeling and Applications (SMA
’95). ACM, New York, NY, USA, 323-337. https://doi.org/10.1145/218013.218082

https://doi.org/10.1145/2910578
https://doi.org/10.1145/2910578
https://doi.org/10.1145/218013.218082

13D ’18, May 4-6, 2018, Montreal, QC, Canada Xiong et. al.

ACM Bird Aquarium

Energy

Oy

5 10 15 20 25 30 35 40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 55 60
Iterations Iterations Iterations Iterations

Figure 9: Convergence of the different optimization strategies after 60 iterations.

Table 1: Processing time of all methods with 60 iterations used in the comparison. The timings were measured on an Intel
i5-4590.

Input Optimization Methods and Time(min) Smoothing Methods and Time(s) statistic
Building SA PSO GA ORIG FLPR ALPR BMD NIFP FEFP BNF L0 GMN Ours Voxel Grid Res |F|
ACM 63 64 79 171 207 224 388 5994 149 1.69 10421 26.80 30.18 123X 123X50 12396
Bird 46 43 65 76 85 119 8.17 180.89 1.67 1.84 105.01 37.40 1279 154X 154x22 11736
Egypt 127 133 250 300 325 415 3.21 70.67 1.26 140 17145 3435 1393 123x123x45 13320

Aquarium 141 162 243 423 490 545 295 6246 144 134 146.80 26.29 1450 174X174%x37 12568

Table 2: Error of all methods used in the comparison relative to the original noise-free mesh.

Model Error(x107%) BMD NIFP FEFP BNF L0 GMN Ours
Twelve Dmean 1.425 1.252 0.894 0.955 1.681 0.479 0.551
|F| = 9216 Dpax 13.567 10.733 5.715 7.047 10.150 3.446 2.912
|V| = 4610 Drms 1.946 1.622 1.186 1.278 2.204 0.645 0.710

Time(s) 2.8 1.0 17.8 2.2 252.8 86.4 114.6
Sphere Dmean 9.848 6.201 6.978 6.873 10.308 4.827 4.399
|F| = 20882 Diax 70314 44.603 47.070 39.756 32.715 28.711 22.319
|V] = 10443 Drpms 13.031 7.861 8.614 8.410 12.271 6.173 5.520

Time(s) 11.1 3.8 114.5 2.0 304.9 90.5 66.8

€

7 2 2
A A e
o000

Noisy input Mean filter Mean filter with w D-mean filter D-mean filter with w Bilateral filter Our approach

€

iyl

Figure 10: Progression of smoothing results using each of our proposed modifications. D-mean filter is the deformable mean
filter from section 4.

Shape-Inspired Architectural Design 13D ’18, May 4-6, 2018, Montreal, QC, Canada

NIFP

Figure 11: Comparison of different methods applied on Egypt building model. BMD: Bilateral mesh denoising [Fleishman et al.
2003]; NIFP: Non-iterative, feature preserving mesh denoising [Jones et al. 2003]; FEFP: Fast and effective feature preserving
mesh denoising [Sun et al. 2007]; BNF: Bilateral normal filtering for mesh denoising [Zheng et al. 2011]; L0: Mesh denoising

via LO minimization [He and Schaefer 2013]; GMD: Guided mesh normal filtering [Zhang et al. 2015].

Ground truth Noisy input

Figure 12: Comparison of the same methods from figure 11 applied on a 3D noisy model.

Lei He and Scott Schaefer. 2013. Mesh denoising via L 0 minimization. ACM Transactions
on Graphics (TOG) 32, 4 (2013), 64.

Jonathan D. Hiller and Hod Lipson. 2012. Dynamic Simulation of Soft Heterogeneous
Objects. CoRR abs/1212.2845 (2012). http://arxiv.org/abs/1212.2845

Caigui Jiang, Chengcheng Tang, Marko Tomicic, Johannes Wallner, and Helmut
Pottmann. 2014. Interactive modeling of architectural freeform structures - combin-
ing geometry with fabrication and statics. In Advances in Architectural Geometry,
P. Block, J. Knippers, and W. Wang (Eds.). Springer.

Thouis R Jones, Frédo Durand, and Mathieu Desbrun. 2003. Non-iterative, feature-
preserving mesh smoothing. In ACM Transactions on Graphics (TOG), Vol. 22. ACM,
943-949.

A. Laurentini. 1994. The Visual Hull Concept for Silhouette-Based Image Under-
standing. IEEE Trans. Pattern Anal. Mach. Intell. 16, 2 (Feb. 1994), 150-162.
https://doi.org/10.1109/34.273735

Charles Loop, Cha Zhang, and Zhengyou Zhang. 2013. Real-time high-resolution
sparse voxelization with application to image-based modeling. In Proceedings of the
5th High-Performance Graphics Conference. ACM, 73-79.

William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution 3D
surface construction algorithm. In ACM siggraph computer graphics, Vol. 21. ACM,
163-169.

Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven] Gortler, and Leonard McMil-
lan. 2000. Image-based visual hulls. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publish-
ing Co., 369-374.

Niloy J Mitra and Mark Pauly. 2009. Shadow art. In ACM Transactions on Graphics,
Vol. 28. 156-1.

Alec Rivers, Frédo Durand, and Takeo Igarashi. 2010. 3D Modeling with Silhouettes.
ACM Trans. Graph. 29, 4, Article 109 (July 2010), 8 pages. https://doi.org/10.1145/
1778765.1778846

Michael Schwarz and Pascal Miiller. 2015. Advanced Procedural Modeling of Ar-
chitecture. ACM Trans. Graph. 34, 4, Article 107 (July 2015), 12 pages. https:

//doi.org/10.1145/2766956

Ruben M. Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2012. A Survey
on Procedural Modelling for Virtual Worlds. Computer Graphics Forum (2012).
https://doi.org/10.1111/cgf.12276

Xianfang Sun, Paul Rosin, Ralph Martin, and Frank Langbein. 2007. Fast and effective
feature-preserving mesh denoising. IEEE transactions on visualization and computer
graphics 13, 5 (2007).

Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut
Pottmann. 2014. Form-finding with Polyhedral Meshes Made Simple. ACM Trans.
Graph. 33, 4, Article 70 (jul 2014), 9 pages. https://doi.org/10.1145/2601097.2601213

Matthew Trager, Martial Hebert, and Jean Ponce. 2016. Consistency of Silhouettes and
Their Duals. In Proceedings of the CVPR (CVPR 2016). IEEE, 10.

Peng-Shuai Wang, Xiao-Ming Fu, Yang Liu, Xin Tong, Shi-Lin Liu, and Baining Guo.
2015. Rolling guidance normal filter for geometric processing. ACM Transactions
on Graphics (TOG) 34, 6 (2015), 173.

Emily Whiting, John Ochsendorf, and Frédo Durand. 2009. Procedural Modeling
of Structurally-sound Masonry Buildings. In ACM SIGGRAPH Asia 2009 Papers
(SIGGRAPH Asia "09). ACM, New York, NY, USA, Article 112, 9 pages. https:
//doi.org/10.1145/1661412.1618458

Hirokazu Yagou, Yutaka Ohtake, and Alexander Belyaev. 2002. Mesh smoothing via
mean and median filtering applied to face normals. In Geometric Modeling and
Processing, 2002. Proceedings. IEEE, 124-131.

Xin-She Yang and Suash Deb. 2009. Cuckoo search via Lévy flights. In Nature &
Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on. IEEE, 210—
214.

Wangyu Zhang, Bailin Deng, Juyong Zhang, Sofien Bouaziz, and Ligang Liu. 2015.
Guided mesh normal filtering. In Computer Graphics Forum, Vol. 34. Wiley Online
Library, 23-34.

Youyi Zheng, Hongbo Fu, Oscar Kin-Chung Au, and Chiew-Lan Tai. 2011. Bilateral nor-
mal filtering for mesh denoising. IEEE Transactions on Visualization and Computer
Graphics 17, 10 (2011), 1521-1530.

http://arxiv.org/abs/1212.2845
https://doi.org/10.1109/34.273735
https://doi.org/10.1145/1778765.1778846
https://doi.org/10.1145/1778765.1778846
https://doi.org/10.1145/2766956
https://doi.org/10.1145/2766956
https://doi.org/10.1111/cgf.12276
https://doi.org/10.1145/2601097.2601213
https://doi.org/10.1145/1661412.1618458
https://doi.org/10.1145/1661412.1618458

13D ’18, May 4-6, 2018, Montreal, QC, Canada Xiong et. al.

m
Total Volume
Front Shape Integrity
* Side Shape Integrity
p Top Shape Integrity
: Structural Integrity
3 Floater Volume

0 005 01 015 02 025

%;x X \\\h.m,i{;‘z; (ﬂi% » g:\
. % ‘ﬁiﬁmmmum ﬁ'l

hinmn
Total Volume
Front Shape Integrity
Side Shape Integrity
Top Shape Integrity
Structural Integrity
Floater Volume

Total Volume

Q|

"
e
ppe e
it x’dnu""' %

A LIV

)

Front Shape Integrity

Side Shape Integrity

Top Shape Integrity

Structural Integrity

Floater Volume

-

-

A
R

Figure 13: Design of an aquarium building inspired by marine creatures (top), a potential future ACM headquarters (middle)
and a bird shaped building (bottom). Each example is based on three binary images shown as insets with the corresponding
rendered views in the top row. The second row shows the voxel grid of an initial design, a visualization of its structural and
topological integrity, and an optimized design and its respective visualization. The values of the parameters controlling the
shape before (red) and after (green) optimization are shown in the bar chart on top right.

	Abstract
	1 Introduction
	1.1 Relation to previous work

	2 Interactive design process
	2.1 Discrete visual hull
	2.2 Objectives
	2.3 Parameters

	3 Optimization
	3.1 Modified cuckoo search
	3.2 Generating initial candidate solutions
	3.3 Generating solutions via Lévy flights
	3.4 Generating solutions by mutation

	4 Mesh Smoothing
	4.1 Deformable mean filter
	4.2 Bilateral filtering with roof flattening

	5 Results
	5.1 Verifying the modified cuckoo search
	5.2 Mesh smoothing
	5.3 Example designs

	6 Conclusion
	References

