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Abstract
ShadowModels is an incremental transformation framework
for MPS. The name is motivated by the realization that many
analyses are easier to do on an model whose structure is
different from what the user edits. To be able to run such
analyses interactively in an IDE, these “shadows” of the user-
facing model must be maintained in realtime, and incremen-
tality can deliver the needed short response times. Shadow
Models is an incremental model transformation engine for
MPS. In the paper we motivate the system through example
use cases, and outline the transformation framework.

CCS Concepts • Software and its engineering → Ap-
plication specific development environments; Domain
specific languages.

Keywords domain-specific languages, model transforma-
tions, incrementality, language workbenches, MPS
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1 Introduction
A problem when representing information formally with
models is that different tasks suggest different representa-
tions of the same information: one particular abstract syntax
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might be useful for the user when editing the model, a second
representation might be more suitable for a particular analy-
sis, and a third one might suit execution. It is a well-known
approach in any number of tools, including compilers, to
transform a source model into several intermediate repre-
sentations for particular kinds of analyses, and ultimaltely,
execution.
To be maximally useful, the results of analysis should be

available to the user while she edits the model. This is useful
to interactively guide the editing process (through realtime
analysis feedback) or by executing the program directly (live
programming [11]). This requires that the representation
that suits the particular analysis is maintained as the user
edits the program. For all but the computationally cheap-
est transformations and analyses, this requires incremental
maintenance (and ideally, analysis) of the derived representa-
tions: the user makes an edit to the input model, the change
is propagated to the transformation engine, the target model
is updated incrementally, the analysis is performed, and then
the (incrementally updated) analysis results are piped back
up to the user. This can potentially be done in multiple steps
(to form a pipeline), and one might also want to maintain
several shadow models from a single source.

Shadow models is an incremental model transformation
language and engine, fully integrated into MPS.

The paper gives an overview of the framework, prototypical
use cases and for future evolution.

2 Use Cases
2.1 Growing Domain-Specific Languages
An important approach for developing languages is to grow
a specialized language from a more general one ([6, 13]. The
semantics of extensions is defined through reduction to the
base language.
Because of MPS’ rich support for language modularity,

this approach is idiomatic. For example, mbeddr extends
C with domain-specific concepts for embedded software
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Figure 1. Example transformation from a multi-case
switch-style expression to nested if expressions.

development [20] and KernelF [17] has been used as a base
language for DSLs in finance and healthcare [18].

In the case of mbeddr, the reduction to the base language
happens on demand when the user invokes Make in the IDE.
However, in addition to compilation to Java, KernelF is also
executed with an in-IDE interpreter to shorten the feedback
cycle and reduce the need for external build and execution
infrastructure. So for every DSL language construct, the
language engineer has to develop both a code generator
to Java and an interpreter. This duplication is tedious and
error-prone.
Why Realtime KernelF2 is a minimal functional language
with an interpreter and a code generator. When extending
KernelF2, the semantics of the extension is defined through a
single Shadow Model-based transformation to KernelF2. We
define the semantics once and get a generator as well as an
interactive interpreter. Our vision also includes various veri-
fiers as backends for the language. Fig. 1 shows an example
transformation.

2.2 Code Weaving for Safety
A consequence of using separation of concerns to reduce
code complexity and increase modularity is that for the final
system, the previously separated concerns have to be rein-
tegrated. In the context of SAFE4I 1 we use Shadow Models
to incrementally weave safety concerns into C programs
written in mbeddr [19].

Separating the safety concern is feasible because most
safety measures rely on a limited number of established
patterns such as checksums or redundant computation with
subsequent voting [8]. This way, the core logic and the safety
patterns can evolve independently and can be rewoven on
demand. In addition, the same pattern can potentially be ap-
plied to many different target locations. It also fits well with a
development process that distinguishes between safety engi-
neers and (regular) embedded developers: each can maintain
their own artifact.

Safety engineers use a DSL to specify safety patterns mod-
ularly. The pattern describes the constraints regarding a
potential weaving site (in terms of structure, type system and

1https://www.edacentrum.de/safe4i/, BMBF FKZ 01|S17032

data flow), plus the modifications to the core code. The em-
bedded software engineers mark the locations in their code
where a particular safety pattern will be woven in. Finally,
a weaver, implemented as a Shadow Model transformation
merges the two concerns.
Why Realtime A drawback of SoC is that it requires re-
assembling the overall system from the separated artifacts.
To minimize this drawback, it is useful to show the weaving
result to the user. The shorter the feedback, and the lower the
requirements on the build infrastructure the better. This is
especially true because some of the weavings are non-trivial;
it is useful to show the result and give the safety engineer
the opportunity to fix potential problems.

2.3 Incremental Staging of Feature Models
Feature modeling is well-established for modeling variabil-
ity in product lines [9]: a feature model specifies the set
of possible products by defining identifiable features and
the constraints between them; configurations specify indi-
vidual products by selecting features while respecting the
constraints. The formalism comes with a set of predefined
constraints (such as mandatory, optional, n-of-m and
1-of-m) but also allows custom constraints using Boolean
expressions.
Sometimes the product is configured in steps, each step

making additional selections; only the final step defines a
concrete product. Such staged configurations [2] are typically
used along a supply chain or to distinguish between build-
time and runtime configuration decisions.
We implemented feature models in MPS as a building

block for customer-specific modeling environments. In addi-
tion to staged configuration, the tool also supports attributes,
modularity via instantiation, and cardinalities [3]. The tool
uses the Z3 SMT solver [4] to check consistency of feature
models, and interactively guide the user towards valid con-
figurations.
Creating a partial configuration C of feature model M im-

plicitly defines [2] a specialized feature model M’ by remov-
ing all features, attributes and constraints that became re-
dundant due to the user’s decisions in C; it also leads to
specialization of constraints, for example, F1 ⇒ F2 ∨ F3 will
be specialized to F1 ⇒ F3, if F2 has been deselected in C. In
the next stage, a more specific configuration C’ is derived
from the specialized feature model M’. The creation of the
derived feature models is implemented via Shadow Models.
Why Realtime The specialized feature model becomes
available right after each user decision. This has several ben-
efits for the user: (i) for each user decision the impact on the
resulting feature model is immediately visible; (ii) the user
understands at all times which downstream decisions are
still open; and (iii) the solver checks on the derived feature
model provide additional insights, e.g., if the specialization
leads to redundant constraints.
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3 Framework
3.1 The Core Transformation Framework
The framework consists of five components: the transfor-
mation DSL, an engine for incremental computations, the
transformation engine itself, an integration with MPS’ model
repository and various IDE integrations.
Transformation DSL The language is functional: each
function takes one or more source nodes as input and pro-
duces one or more output nodes. Functions are polymor-
phic in all arguments and support multimethod-style dis-
patch [12]. The DSL exploits MPS’ strength regarding lan-
guage extension and composition: queries and low-level ex-
pressions reuse MPS’ Java implementation and model access
APIs. They need not be declarative, because dependency
analysis happens dynamically at runtime. Reference reso-
lution is based on (cached) re-invocation of transformation
rules or explicitly defined labels; we cover this in more detail
in Section 3.2. Finally, there is syntax to help with lifting
analysis results from the target model back to the source(s).
These are functions implemented as part of a transformation
rule that attach error messages to the input of a rule when
particular errors are present on the output.
Incremental Computation Engine The core engine is
similar to Adapton [7]: the engine caches the result of func-
tion calls and records dependencies on other functions and
mutable data for invalidation after a change. Computations
are lazy: a transformation is only executed if the particu-
lar (part of the) result is accessed. This makes it suitable
for IDE services where only the currently edited part of
the input model is relevant to the user. Essentially, Shadow
Models map the domain of graph transformations to the
general notion of incremental computations as implemented
by Adapton.
Transformation Engine The core engine expects compu-
tations to be expressed as pure functions whose results can
be cached. Thus, each transformation rule expressed with
the DSL is generated into a function that returns a fragment
of the final output graph. Each fragment is connected to
other fragments by a specification of the transformation rule
and the parameter values.
The engine works on an internal data structure that is

independent of MPS and uses a dynamically-maintained de-
pendency graph to detect changes; a change to a dependency
triggers a retransformation.
MPS Adapter The model data structure in MPS requires
transactions for read and write access. The projectional edi-
tor of MPS directly writes user input to the model and up-
dates the UI by rendering the updated model. Long running
transactions, such as transformations, will block the editor’s
write transaction, resulting in an unresponsive UI.

To decouple the transformations from the repository (and
hence the editor), the first step in the transformation chain

mirrors theMPSmodel into a persistent copy-on-write (COW)
data structure [5] that allows reads without blocking writes.
Because theMPS projectional editor broadcasts change events
anyway, maintaining this copy is computationally cheap; no
expensive diffs are required.
The result of the transformation can either be analyzed

directly on the INode structure or after materializion to
an MPS AST (through another COW). The latter is slower,
but has the advantage that existing MPS analyses (such as
type checks) can be used unchanged; it is also the basis for
visualization in the editor.
IDE Integration Shadow Models is fully integrated into
MPS. The DSL comes with editor support and type checking
and is available as a language aspect (similar to the native
MPS generators or type system specifications). The target
models can be opened in MPS editors; editing is not possible,
because this would require some form of bidirectionality,
which Shadow Models do not support.

A new entry in the MPS project view, called the Shadow
Repository, shows all the incrementally maintained models.
Results of analyses on the target nodes can, after lifting, be
annotated to the source nodes (red squigglies, markers in the
gutter). Finally, there is a debugger that shows which trans-
formation operated on which input nodes, created which
outputs and ran in which forks (explained next).

3.2 References, Forks and Eagerness
MPS models are trees with cross-references (or: graphs with
a single containment hierarchy). Those cross-references are
particularly challenging: a reference of some type P between
input nodes A and B must be mapped to a reference of some
type Q between the corresponding output nodes A’ and B’.
To obtain B’ from B in the transformation that transforms
A, one can invoke the transformation T that maps B to B’
again; because of caching, B’ is not created a second time.
Labels However, for reasons of modularity, you might
not want to know T. To achieve this, the language supports
transformation labels, named mappings between nodes. The
transformation T:B->B’would populate a label L, and other
transformations can find B’ knowing B and L. This way,
labels are a kind of interface.
Laziness While this approach enables transformation mod-
ularity, it conflicts with laziness: to be able to retrieve B’
from L, the label must already be filled; lazy computation
will not work because L cannot know the transformation
that fills it – ignorance of this dependency was the reason
for labels in the first place. A static analysis might reveal the
transformation, but not the (runtime) input parameters.

More generally, the research roadmap byKolovos et al. [10]
identifies laziness as a core challenge in the context of graph
transformations. The problem is that in a lazy system, less
information is available at runtime because some parts of a
transformation have not yet been executed; the issue with
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labels is an example. Another example is that the parent of a
node in the output model might not yet be available when a
node is accessed via a reference. Consider this graph:

If we follow the path A.C.D.parent, the node B will not
yet be available because it is lazily computed when follow-
ing the A.B; the transformation describes the parent-child
relationship only from the parent to the child.
Forks Our solution is to compute results eagerly, but only
in demarcated regions called forks. The transformations in-
side a fork are executed eagerly; labels can be used to look
up targets, the parent can be retrieved. From the outside,
the whole fork is lazy and when referencing nodes inside
a fork from the outside, the lookup has to specify the fork.
Effectively, the fork becomes part of the identify of the nodes
created inside the fork.
Another consequence of the approach is that it is now

possible to run a transformation multiple times, creating out-
puts with different identities, without adding an additional
parameter to all involved transformation rules. This require-
ment was driven by the code weaving use case Section 2.2,
where the same pattern has to be woven into target locations,
and references must be resolved “locally” at each weaving
site.

Finally, a fork can be marked as fixpoint, which means
that transformations are eagerly executed until no more
rules apply; this requirement was driven by the KernelF2
use case (Section 2.1), which requires that extensions are
reduced stepwise, until only base language concepts remain,
similar to a term rewriting system [1].

Summing up, we do not solve the general problem of ref-
erences and laziness: we revert to eager transformations.
However, using forks, we limit the eagerness to well-defined
scopes, and retaining the lazy nature of the overall trans-
formation. Initial exerpience suggests that this compromise
works in terms of performance and scalability, but further
evalution is necessary.

4 Related Work
For space reasons, we compare only superficially to a few re-
lated approaches. TheMPSBuild Pipelines, although using
model-to-model-transformations, is not incremental. Unsuc-
cessful experiments with running it interactively prompted
the development of Shadow Models. Incremental transfor-
mations are not a new idea; for example, VIATRA2 [16]
supports incrementality based on the IncQuery [15] incre-
mental graph pattern matching engine. Dclare for MPS is
another incremental transformation engine that relies on
contraints instead of functional transformations. Shadow
Models is not bidirectional [14]; it supports unidirectional

transformations that maintain a trace back, as well as spe-
cific APIs to propagate analysis results back to the source.
Our use cases do not require true bidirectionality, and we
decided to go with the simpler specifications that come with
unidirectional transformatioms.

5 Future Directions
Based on experience from the projects described in Section
2, we have identified several areas of improvement.
Scalability Incremental transformations are useful espe-
cially for large models; for small ones, rerunning transforma-
tions from scratch is feasible. Although our initial experience
is promising, we will have to characterize the scalability in
terms of shadow update time and memory use more thor-
oughly, and then identify strategies for optimization of the
engine. A comparison with Dclare and IncQuery is part of
this.
Scope of Change Tracking Right now, all models in the
MPS workspace that use languages with Shadow Model
transformations are tracked and transformed, even though
the user might only be interested in a subset. This can lead
to unnecessary memory consumption. We will add a way to
define a scope within which change tracking and transfor-
mation should be active.
Language Abstractions The current language exposes
several engine internals (such as forks) that are hard to un-
derstand for users. We will abstract them into concepts that
are less technically motivated and easier to explain.
Improved Lifting Currently, lifting of results to the input
model is expressed using generic callback functions; a more
concise, more declarative syntax will be provided.
Extract the Tracking Engine The incremental compu-
tation capabilities of the core engine can be used for other
purposes. In particular, we plan to implement an incremental
interpreter based on the same framework. This will allow
clients such as KernelF2 to not just incrementally maintain
the desugared shadow model, but then also run this model
incrementally (as long as it is functional), achieving a fully
interactive, Excel-style reactive programming environment.

6 Conclusions
At itemis we have had this situation for a few years now:
whenever we start to talk about some new end-user relevant
feature, it takes only a few minutes until we end up with
ShadowModels as an important part of the solution; we have
several additional concrete use cases in mind beyond those
described in Section 2. And as we have outlined in Section
5 there is still work to do. However, our initial experience
is promising, and we see many of the benefits of Shadow
Models that we had hoped for.
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