
Efficient Synchronization of State-based CRDTs

Vitor Enes

HASLab / INESC TEC and

Universidade do Minho
Portugal

Paulo Sérgio Almeida

HASLab / INESC TEC and

Universidade do Minho
Portugal

Carlos Baquero

HASLab / INESC TEC and

Universidade do Minho
Portugal

João Leitão

NOVA LINCS, FCT and

Universidade NOVA de Lisbon
Portugal

Abstract—To ensure high availability in large scale distributed
systems, Conflict-free Replicated Data Types (CRDTs) relax con-
sistency by allowing immediate query and update operations
at the local replica, with no need for remote synchronization.
State-based CRDTs synchronize replicas by periodically sending
their full state to other replicas, which can become extremely
costly as the CRDT state grows. Delta-based CRDTs address
this problem by producing small incremental states (deltas) to
be used in synchronization instead of the full state. However,
current synchronization algorithms for delta-based CRDTs in-
duce redundant wasteful delta propagation, performing worse
than expected, and surprisingly, no better than state-based.
In this paper we: 1) identify two sources of inefficiency in
current synchronization algorithms for delta-based CRDTs; 2)
bring the concept of join decomposition to state-based CRDTs;
3) exploit join decompositions to obtain optimal deltas and 4)
improve the efficiency of synchronization algorithms; and finally,
5) experimentally evaluate the improved algorithms.

Keywords-CRDTs; Optimal Deltas; Join Decomposition;

I. INTRODUCTION

Large-scale distributed systems often resort to replication

techniques to achieve fault-tolerance and load distribution.

These systems have to make a choice between availability

and low latency or strong consistency [1]–[4], many times

opting for the first [5], [6]. A common approach is to allow

replicas of some data type to temporarily diverge, making

sure these replicas will eventually converge to the same state

in a deterministic way. Conflict-free Replicated Data Types
(CRDTs) [7], [8] can be used to achieve this. They are

key components in modern geo-replicated systems, such as

Riak [9], Redis [10], and Microsoft Azure Cosmos DB [11].

CRDTs come mainly in two flavors: operation-based and

state-based. In both, queries and updates can be executed

immediately at each replica, which ensures availability (as

it never needs to coordinate beforehand with remote replicas

to execute operations). In operation-based CRDTs [7], [12],

operations are disseminated assuming a reliable dissemination

layer that ensures exactly-once causal delivery of operations.

State-based CRDTs need fewer guarantees from the com-

munication channel: messages can be dropped, duplicated, and

reordered. When an update operation occurs, the local state is

updated through a mutator, and from time to time (since we

can disseminate the state at a lower rate than the rate of the

updates) the full (local) state is propagated to other replicas.

Although state-based CRDTs can be disseminated over

unreliable communication channels, as the state grows, send-

Fig. 1: Experiment setup: 15 nodes in a partial mesh topology

replicating an always-growing set. The left plot depicts the

number of elements being sent throughout the experiment,

while the right plot shows the CPU processing time ratio with

respect to state-based. Not only does delta-based synchroniza-

tion not improve state-based in terms of state transmission, it

even incurs a substantial processing overhead.

ing the full state becomes unacceptably costly. Delta-based

CRDTs [13], [14] address this issue by defining delta-mutators

that return a delta (δ), typically much smaller than the full

state of the replica, to be merged with the local state. The

same δ is also added to an outbound δ-buffer, to be periodi-

cally propagated to remote replicas. Delta-based CRDTs have

been adopted in industry as part of Akka Distributed Data

framework [15] and IPFS [16], [17].

However, and somewhat unexpectedly, we have observed

(Figure 1) that current delta-propagation algorithms can still

disseminate much redundant state between replicas, perform-

ing worse than envisioned, and no better than the state-based

approach. This anomaly becomes noticeable when concur-

rent update operations always occur between synchronization

rounds, and it is partially justified due to inefficient redundancy

detection in delta-propagation.

In this paper we identify two sources of redundancy in

current algorithms, and introduce the concept of join decompo-

sition of a state-based CRDT, showing how it can be used to

derive optimal deltas (“differences”) between states, as well

as optimal delta-mutators. By exploiting these concepts, we

also introduce an improved synchronization algorithm, and

experimentally evaluate it, confirming that it outperforms cur-

rent approaches by reducing the amount of state transmission,

memory consumption, and processing time required for delta-

based synchronization.

148

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00022

II. BACKGROUND ON STATE-BASED CRDTS

A state-based CRDT can be defined as a triple (L,�,�)
where L is a join-semilattice (lattice for short, from now on),

� is a partial order, and � is a binary join operator that derives

the least upper bound for any two elements of L. State-based

CRDTs are updated through a set of mutators designed to

be inflations, i.e. for mutator m and state x ∈ L, we have

x � m(x).
Synchronization of replicas is achieved by having each

replica periodically propagate its local state to other neighbour

replicas. When a remote state is received, a replica updates its

state to reflect the join of its local state and the received state.

As the local state grows, more state needs to be sent, which

might affect the usage of system resources (such as network)

with a negative impact on the overall system performance.

Ideally, each replica should only propagate the most recent

modifications executed over its local state.

Delta-based CRDTs can be used to achieve this, by defining

delta-mutators that return a smaller state which, when merged

with the current state, generates the same result as applying

the standard mutators, i.e. each mutator m has in delta-CRDTs

a corresponding δ-mutator mδ such that:

m(x) = x �mδ(x)

In this model, the deltas resulting from δ-mutators are added

to a δ-buffer, in order to be propagated to neighbor replicas, as

a δ-group, at the next synchronization step. When a δ-group

is received from a neighbor, it is also added to the buffer for

further propagation.

A. CRDT examples

In Figure 2 we present the specification of two simple

state-based CRDTs, defining their lattice states, mutators,

corresponding δ-mutators, and the binary join operator �.

These lattices are typically bounded and thus a bottom value

⊥ is also defined. (Note that the specifications do not define

the partial order � since it can always be defined, for any

lattice L, in terms of �: x � y ⇔ x � y = y.)

A CRDT counter that only allows increments is known as

a grow-only counter (Figure 2a). In this data type, the set of

replica identifiers I is mapped to the set of natural numbers N.

Increments are tracked per replica i, individually, and stored

in a map entry p(i). The value of the counter is the sum of

each entry’s value in the map. Mutator inc returns the updated

map (the notation p{k �→ v} indicates that only entry k in the

map p is updated to a new value v, the remaining entries left

unchanged), while the δ-mutator incδ only returns the updated

entry. The join of two GCounters computes, for each key, the

maximum of the associated values.

The lattice state evolution (either by mutation or join of two

states) can also be understood by looking at the corresponding

Hasse diagram (Figure 3). For example, state {A1,B1} in

Figure 3a (where A1 represents entry {A �→ 1} in the map,

i.e. one increment registered by replica A), can result from an

increment on {A1} by B, from an increment on {B1} by A,

or from the join of these two states.

GCounter = I ↪→ N

⊥ = ∅

inci(p) = p{i �→ p(i) + 1}
incδi (p) = {i �→ p(i) + 1}

value(p) =
∑

{v | k �→ v ∈ p}
p � p′ = {k �→ max(p(k), p′(k)) | k ∈ l}

where l = dom(p) ∪ dom(p′)

(a) Grow-only Counter.

GSet〈E〉 = P(E)

⊥ = ∅

add(e, s) = s ∪ {e}

addδ(e, s) =

{
{e} if e �∈ s

⊥ otherwise

value(s) = s

s � s′ = s ∪ s′

(b) Grow-only Set.

Fig. 2: Specifications of two data types, replica i ∈ I.

{A2,B2}
{A2,B1} {A1,B2}

{A2} {A1,B1} {B2}
{A1} {B1}

⊥

(a) GCounter, with two replicas I = {A,B}.

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

⊥

(b) GSet〈{a, b, c}〉.

Fig. 3: Hasse diagram of two data types.

A grow-only set, Figures 2b and Figure 3b, is a set data

type that only allows element additions. Mutator add returns

the updated set, while addδ returns a singleton set with the

added element (in case it was not in the set already). The join

of two GSets simply computes the set union.

149

A ∅
adda �� {a} {a, b} •2

{a,b}
��

{a, b, c}

B ∅
addb �� {b} •1

{b}
��

addc �� {b, c} {a, b, c} •3
{a,b,c}
��

Fig. 4: Delta-based synchronization of a GSet with 2 replicas A,B ∈ I. Underlined elements represent the BP optimization.

A ∅
adda �� {a} {a, b} •6

{a,b}
��

B ∅
addb �� {b} •4

{b}
��

{b}
��

C ∅ {b} •5

{b} ��

{a, b} •7

{a,b} ��
D ∅ {b} {a, b}

Fig. 5: Delta-based synchronization of a GSet with 4 replicas A,B,C,D ∈ I. The overlined element represents the RR
optimization.

Although we have chosen as running examples very simple

CRDTs, the results in this paper can be extended to more com-

plex ones, as we show in Appendix B. For further coverage

of delta-based CRDTs see [14].

B. Synchronization Cost Problem

Figures 4 and 5 illustrate possible distributed executions of

the classic delta-based synchronization algorithm [14], with

replicas of a grow-only-set, all starting with a bottom value

⊥ = ∅. (This classic algorithm is captured in Algorithm

1, covered in Section IV.) Synchronization with neighbors is

represented by • and synchronization arrows are labeled with

the state sent, where we overline or underline elements that are

being redundantly sent and can be removed (thus improving

network bandwidth consumption) by employing two simple

and novel optimizations that we introduce next.

In Figure 4, we have two replicas A,B ∈ I and each adds an

element to the replicated set. At •1, B propagates the content

of the δ-buffer, i.e. {b}, to neighbour A. At •2, A sends to

B {a, b}, i.e. the join of {a} from a local mutation, and the

received {b} from B, even though {b} came from B itself.

By simply tracking the origin of each δ-group in the δ-buffer,

replicas can avoid back-propagation of δ-groups (BP).

Before receiving {a, b}, B adds a new element c to the set,

also adding {c} to the δ-buffer. Upon receiving {a, b}, and

since what was received produces changes in the local state,

B adds it to the δ-buffer. At •3, B propagates all new changes

since last synchronization with A: {c} from a local mutation,

and {a, b} from B, even though {a, b} came from replica B.

When A receives {a, b, c}, it will also add it to the buffer

to be further propagated. Note that as long as this pattern

keeps repeating (i.e. there’s always a state change between

synchronizations), delta-based synchronization will propagate

the same amount of state as state-based synchronization would,

representing no improvement. This is illustrated in Figure 4,

and demonstrated empirically in Section V.
In Figure 5, we have four replicas A,B,C,D ∈ I, and

replicas A,B add an element to the set. At •4, B propagates

the content of the δ-buffer to neighbours A and C. At •5, C
propagates the received {b} to D. At •6, A sends the join of

{a} from a local mutation and the received {b} to C. Upon

receiving the δ-group {a, b}, C adds it to the δ-buffer and

sends it to D at •7. However, part of this δ-group has already

been in the δ-buffer (namely b), and thus, has already been

propagated. This observation hints for another optimization:

remove redundant state in received δ-groups (RR), before

adding them to the δ-buffer.
Both BP and RR optimizations are detailed in Section IV,

where we incorporate them into the delta-based synchroniza-

tion algorithm with few changes.

III. JOIN DECOMPOSITIONS AND OPTIMAL DELTAS

In this section we introduce state decomposition in state-

based CRDTs, by exploiting the mathematical concept of irre-
dundant join decompositions in lattices. We then demonstrate

how this concept can be used to derive deltas and delta-

mutators that are optimal, in the sense that they produce the

smallest delta-state possible. In Section IV we show how this

same concept plays a key role in the RR optimization briefly

described in the previous section.

A. Join Decomposition of a State-based CRDT
Definition 1 (Join-irreducible state). State x ∈ L is join-
irreducible if it cannot result from the join of any finite set
of states F ⊆ L not containing x:

x =
⊔

F ⇒ x ∈ F

150

Example 1. Let the following p1, p2 and p3 be GCounter
states, and s1, s2 and s3 be GSet states.

� p1 = {A5}
� p2 = {B6}
� p3 = {A5,B7}

� s1 = ⊥
� s2 = {a}
� s3 = {a, b}

States p3 and s3 are not join-irreducible states, since they
can be decomposed into (i.e. result from the join of) two states
different from themselves: {A5} and {B7} for p3, {a} and {b}
for s3. Bottom (e.g., s1) is never join-irreducible, as it is the
join over an empty set

⊔
∅.

In a Hasse diagram of a finite lattice (e.g., in Figure 3)

the join-irreducibles are those elements with exactly one link

below. Given lattice L, we use J (L) for the set of all join-

irreducible elements of L.

Definition 2 (Join Decomposition). Given a lattice state x ∈
L, a set of join-irreducibles D is a join decomposition [18]
of x if its join produces x:

D ⊆ J (L) ∧
⊔

D = x

Definition 3 (Irredundant Join Decomposition). A join decom-
position D is irredundant if no element in it is redundant:

D′ ⊂ D ⇒
⊔

D′ �
⊔

D

Example 2. Let p = {A5,B7} be a GCounter state, s =
{a, b, c} a GSet state, and consider the following sets of states
as tentative decompositions of p and s.

� P1 = {{A5}, {B6}}
� P2 = {{A5}, {B6}, {B7}}
� P3 = {{A5,B6}, {B7}}
� P4 = {{A5}, {B7}}

� S1 = {{b}, {c}}
� S2 = {{a, b}, {b}, {c}}
� S3 = {{a, b}, {c}}
� S4 = {{a}, {b}, {c}}

Only P4 and S4 are irredundant join decompositions of p and
s. P1 and S1 are not decompositions since their join does not
result in p and s, respectively; P2 and S2 are decompositions
but contain redundant elements, {B6} and {b}, respectively;
P3 and S3 do not have redundancy, but contain reducible
elements (S2 fails to be an irredundant join decomposition for
the same reason, since its element {a, b} is also reducible).

As we show in Appendix A and B, these irredundant de-

compositions exist, are unique, and can be obtained for CRDTs

used in practice. Let ⇓x denote the unique decomposition of

element x. From the Birkhoff’s Representation Theorem [19],

decomposition ⇓x is given by the maximals of the join-

irreducibles below x:

⇓x = max{r ∈ J (L) | r � x}
As two examples, given a GCounter state p and a GSet state

s, their (quite trivial) irredundant decomposition is given by:

⇓p = {{k �→ v} | k �→ v ∈ p} ⇓s = {{e} | e ∈ s}
We argue that these techniques can be applied to most

(practical) implementations of CRDTs found in industry. The

interested reader can find generic decomposition rules in

Appendix C.

B. Optimal deltas and δ-mutators

Having a unique irredundant join decomposition, we can de-

fine a function which gives the minimum delta, or “difference”

in analogy to set difference, between two states a, b ∈ L:

Δ(a, b) =
⊔

{y ∈ ⇓a | y �� b}
which when joined with b gives a�b, i.e. Δ(a, b)�b = a�b. It

is minimum (and thus, optimal) in the sense that it is smaller

than any other c which produces the same result: c � b =
a � b ⇒ Δ(a, b) � c.

If not carefully designed, δ-mutators can be a source of

redundancy when the resulting δ-state contains information

that has already been incorporated in the lattice state. As an

example, the original δ-mutator addδ of GSet presented in [13]

always returns a singleton set with the element to be added,

even if the element is already in the set (in Figure 2b we have

presented a definition of addδ that is optimal). By resorting to

function Δ, minimum delta-mutators can be trivially derived

from a given mutator:

mδ(x) = Δ(m(x), x)

IV. REVISITING DELTA-BASED SYNCHRONIZATION

Algorithm 1 formally describes delta-based synchroniza-

tion at replica i. The algorithm contains lines that belong

to classic delta-based synchronization [13], [14], and lines

with BP and RR optimizations, while non-highlighted lines

belong to both. In classic delta-based synchronization, each

replica i maintains a lattice state xi ∈ L (line 4), and a δ-

buffer Bi ∈ P(L) as a set of lattice states (line 5). When an

update operation occurs (line 6), the resulting δ is merged with

the local state xi (line 19) and added to the buffer (line 20),

resorting to function store. Periodically, the whole content of

the δ-buffer (line 11) is propagated to neighbors (line 12).

For simplicity of presentation, we assume that commu-

nication channels between replicas cannot drop messages

(reordering and duplication is considered), and that is why

the buffer is cleared after each synchronization step (line
13). This assumption can be removed by simply tagging each

entry in the δ-buffer with a unique sequence number, and by

exchanging acks between replicas: once an entry has been

acknowledged by every neighbour, it is removed from the δ-

buffer, as originally proposed in [13].

When a δ-group is received (line 14), then it is checked

whether it will induce an inflation in the local state (line 16).

If this is the case, the δ-group is merged with the local state

and added to the buffer (for further propagation), resorting to

the same function store. The precondition in line 16 appears to

be harmless, but it is in fact, the source of most redundant state

propagated in this synchronization algorithm. Detecting an

inflation is not enough, since almost always there’s something

new to incorporate. Instead, synchronization algorithms must

extract from the received δ-group the lattice state responsible

for the inflation, as done by the RR optimization.

Few changes are required in order to incorporate this and

the BP optimization in the classic algorithm, as we show

151

1 inputs:
2 ni ∈ P(I), set of neighbors

3 state:
4 xi ∈ L, x0

i = ⊥
5 Bi ∈ P(L), B0

i = ∅ Bi ∈ P(L × I), B0
i = ∅

6 on operationi(m
δ)

7 δ = mδ(xi)
8 store(δ, i)

9 periodically // synchronize

10 for j ∈ ni

11 d =
⊔
Bi d =

⊔{s | 〈s, o〉 ∈ Bi ∧ o �= j}
12 sendi,j(delta, d)
13 B′

i = ∅

14 on receivej,i(delta, d)

15 d = Δ(d, xi)

16 if d �� xi if d �= ⊥
17 store(d, j)

18 fun store(s, o)
19 x′

i = xi � s

20 B′
i = Bi ∪ {s} B′

i = Bi ∪ {〈s, o〉}
Algorithm 1: Delta-based synchronization algorithms at

replica i ∈ I: classic version and version with BP and

RR optimizations.

next. This happens because our approach encapsulates most

of its complexity in the computation of join decompositions

and function Δ. The fact that few changes are required to

the classic synchronization algorithm is a benefit, that will

minimize the efforts in incorporating these techniques in

existing implementations.

Avoiding back-propagation of δ-groups: For BP, each

entry in the δ-buffer is tagged with its origin (line 5 and line
20), and at each synchronization step with neighbour j, entries

tagged with j are filtered out (line 11).

Removing redundant state in received δ-groups: A re-

ceived δ-group can contain redundant state, i.e. state that has

already been propagated to neighbors, or state that is in the

δ-buffer Bi still to be propagated. This occurs in topologies

where the underlying graph has cycles, and thus, nodes can

receive the same information through different paths in the

graph. In order to detect if a δ-group has redundant state, nodes

do not need to keep everything in the δ-buffer or even inspect

the δ-buffer: it is enough to compare the received δ-group with

the local lattice state xi. In classic delta-based synchronization,

received δ-groups were added to δ-buffer only if they would

strictly inflate the local state (line 16). For RR, we extract

from the δ-group what strictly inflates the local state xi (line
15), and store it if it is different from bottom (line 16). This

extraction is achieved by selecting which irreducible states

from the decomposition of the received δ-group strictly inflate

the local state, resorting to function Δ presented in Section III.

•

•

•
••

•
•

•

•

•
•

• •
•

•

•

•

•• •

•

•

•

•

•

•

• •

•

•

Fig. 6: Network topologies employed: a 15-node partial-mesh

(to the left) and a 15-node tree (to the right).

V. EVALUATION

In this Section we evaluate the proposed solutions and show

the following:

• Classic delta-based synchronization can be as inefficient

as state-based synchronization in terms of transmission

bandwidth, while incurring an overhead in terms of mem-

ory usage required for synchronization (Section V-B).

• In acyclic topologies, BP is enough to attain the best

results, while in topologies with cycles, only RR can

greatly reduce the synchronization cost (Section V-B).

• Alternative synchronization techniques (such as Scuttle-

butt [20] and operation-based synchronization [7], [8])

are metadata-heavy; this metadata represents a large

fraction of all the data required for synchronization (over

75%) while for delta-based synchronization the metadata

overhead can be as low as 7. 7% (Section V-B).

• In moderate-to-high contention workloads, BP + RR can

reduce transmission bandwidth and memory consumption

by several GBs; when comparing with BP + RR, classic

delta-based synchronization has an unnecessary CPU

overhead of up-to 7.9x (Section V-C).

Instructions on how to reproduce all experiments can be

found in our public repository1.

A. Experimental Setup

The evaluation was conducted in a Kubernetes cluster

deployed in Emulab [21]. Each machine has a Quad Core Intel

Xeon 2.4 GHz and 12GB of RAM. The number of machines

in the cluster is set such that two replicas are never scheduled

to run in the same machine, i.e. there is at least one machine

available for each replica in the experiment.
Network Topologies: Figure 6 depicts the two network

topologies employed in the experiments: a partial-mesh, in

which each node has 4 neighbors; and a tree, with 3 neighbors

per node, with the exception of the root node (2 neighbors) and

leaf nodes (1 neighbor). The first topology exhibits redundancy

in the links and tests the effect of cycles in the synchronization,

while the second represents an optimal propagation scenario

over a spanning tree.

B. Micro-Benchmarks

We have designed a set of micro-benchmarks, in which each

node periodically (every second) synchronizes with neigh-

bors and executes an update operation over a CRDT. The

1https://github.com/vitorenesduarte/exp

152

TABLE I: Description of micro-benchmarks.

Type Periodic event Measurement

GCounter single increment
number of entries in
the map

GSet
addition of unique
element

number of elements in
the set

GMap K%
change the value of
K
N
% keys

number of entries in
the map

update operation depends on the CRDT type. In GSet, the

update event is the addition of a globally unique element to

the set; in GCounter, an increment on the counter; and in

GMap K% each node updates K
N% keys (N being the number

of nodes/replicas), such that globally K% of all the keys in

the grow-only map are modified within each synchronization

interval. Note how the GCounter benchmark is a particular

case of GMap K%, in which K = 100. For GMap K% we set

the total number of keys to 1000, and for all benchmarks, the

number of events per replica is set to 100.

These micro-benchmarks are summarized in Table I, along

with the metric (to be used in transmission and memory

measurements) we have defined: for GCounter and GMap K%
we count the number of map entries, while for GSet, the

number of set elements. We setup this part of the evaluation

with 15-node topologies (as in Figure 6). As baselines, we

have state-based synchronization, classic delta-based synchro-

nization, Scuttlebutt, a variation of Scuttlebutt, and operation-

based synchronization.

Scuttlebutt: Scuttlebutt [20] is an anti-entropy protocol

used to reconcile changes in values of a key-value store. Each

value is uniquely identified with a version 〈i, s〉 ∈ I × N,

where the first component i ∈ I is the identifier of the replica

responsible for the new value, and s ∈ N a sequence number,

incremented on each local update, thus being unique. With

this, the updates known locally can be summarized by a vector

I ↪→ N, mapping each replica to the highest sequence number

it knows. When a node wants to reconcile with a neighbor

replica, it sends the summary vector, and the neighbor replies

with all the key-value pairs it has locally that have versions not

summarized in the received vector. This strategy is performed

in both directions, and in the end, both replicas have the same

key-value pairs in their local key-value store (assuming no new

updates occurred).

Scuttlebutt can be used to synchronize state-based CRDTs

with few modifications. Using as values the CRDT state

would be inefficient, since changes to the CRDT wouldn’t

be propagated incrementally, i.e. a small change in the CRDT

would require sending the whole new state, as in state-based

synchronization. Therefore, we use as values the optimal deltas

resulting from δ-mutators. As keys, we can simply resort to

the version pairs. When reconciling two replicas, a replica

receiving new key-delta pairs, merges all the deltas with the

local CRDT. If CRDT updates stop, eventually all replicas

Fig. 7: Transmission of GSet and GCounter with respect to

delta-based BP+RR – tree and mesh topologies.

converge to the same CRDT state. We label this approach

Scuttlebutt.

This strategy is potentially inefficient in terms of memory:

a replica has to keep in the Scuttlebutt key-value store all the

deltas it has ever seen, since a neighbor replica can at any point

in time send a summary vector asking for any delta. Since

the original Scuttlebutt algorithm does not support deleting

keys from the key-value store, we add support for safe deletes

of deltas, in order to reduce its memory footprint. If each

node keeps track of what each node in the system has seen

(in a map I ↪→ (I ↪→ N) from replica identifiers to the

last seen summary vector), once a delta has been seen by

all nodes, it can be safely deleted from the local Scuttlebutt

store. We compare with this improved Scuttlebutt variant

(labeled Scuttlebutt-GC) that allows nodes to only be

connected to a subset of all nodes, not requiring all-to-all

connectivity, while supporting safe deletes. For completeness,

we also compare with the original Scuttlebutt design that is

unable to garbage-collect unnecessary key-delta pairs.

Operation-based: Operation-based CRDTs [7], [8] re-

sort to a causal broadcast middleware [22] that is used to

disseminate CRDT operations. This middleware tags each

operation with a vector clock that summarizes the causal past

of the operation. Such vector is then used by the recipient

to ensure causal delivery of operations, i.e. each operation is

only delivered when every operation in its causal past has been

delivered as well.

In topologies with all-to-all connectivity, each node is only

responsible for disseminating its own operations. In order to

relax this requirement, we have implemented a middleware

that stores-and-forwards operations: when an operation is seen

for the first time, it is added to a transmission buffer to be

further propagated in the next synchronization step; if the

same operation is received from different incoming neighbors,

the middleware simply updates which nodes have seen this

153

Fig. 8: Transmission of GMap 10%, 30%, 60% and 100% – tree and mesh topologies.

operation so that unnecessary transmissions are avoided. To the

best of our knowledge, this is the best possible implementation

of such a middleware. We label this approach Op-based.

1) Transmission bandwidth: Figure 7 shows, for GSet
and GCounter, the transmission ratio (of all synchronization

mechanisms previously mentioned) with respect to delta-based

synchronization with BP and RR optimizations enabled. The

first observation is that classic delta-based synchronization

presents almost no improvement, when compared to state-

based synchronization. In the tree topology, BP is enough to

attain the best result, because the underlying topology does

not have cycles, and thus, BP is sufficient to prevent redundant

state to be propagated. With a partial-mesh, BP has little effect,

and RR contributes most to the overall improvement. Given

that the underlying topology leads to redundant communica-

tion (desired for fault-tolerance), and classic delta-based can

never extract that redundancy, its transmission bandwidth is

effectively similar to that of state-based synchronization.

Scuttlebutt and Scuttlebutt-GC are more efficient than clas-

sic delta-based for GSet since both can precisely identify

state changes between synchronization rounds. However, the

results for GCounter reveal a limitation of this approach. Since

Scuttlebutt treats propagated values as opaque, and does not

understand that the changes in a GCounter compress naturally

under lattice joins (only the highest sequence for each replica

needs to be kept), it effectively behaves worse than state-

based and classic delta-based in this case. Operation-based

synchronization follows the same trend for the same reason:

it improves state-based and classic delta-based for GSet but

not for GCounter since the middleware is unable to compress

multiple operations into a single, equivalent, operation. Sup-

porting generic operation-compression at the middleware level

in operation-based CRDTs is an open research problem. The

difference between these three approaches is related with the

metadata cost associated to each, as we show in Section V-B2.

Even with the optimizations BP+RR proposed, the best

result for GCounter is not much better than state-based. This

is expected since most entries of the underlying map are being

updated between each synchronization step: each node has

almost always something new from every other node in the

system to propagate (thus being similar to state-based in some

cases). This pattern represents a special case of a map in which

100% of its keys are updated between state synchronizations.

In Figure 8 we study other update patterns, by measuring

the transmission of GMap 10%, 30%, 60%, and 100%. These

results are further evidence of what we have observed in the

case of GSet: BP suffices if the network graph is acyclic, but

RR is crucial in the more general case.

As seen previously, Scuttlebutt and Scuttlebutt-GC behave

much better than state-based synchronization, yielding a reduc-

tion in the transmission cost between 46% and 91%, and 20%
and 65%, respectively. This is due to the underlying precise

reconciliation mechanism of Scuttlebutt. Operation-based syn-

chronization leads to a transmission reduction between 35%
and 80% since it is able to represent incremental changes to

the CRDT as small operations. Finally, delta-based BP+RR
is able reduce the transmission costs by up-to 94%.

In the extreme case of GMap 100% (every key in the map

is updated between synchronization rounds, which is a less

likely workload in practical systems) and considering a partial-

mesh, delta-based BP+RR provides a modest improvement in

relation to state-based of about 18% less transmission, and its

performance is below Scuttlebutt variants and operation-based

synchronization.

Vector-based protocols (Scuttlebutt and operation-based)

however, have an inherent scalability problem. When increas-

ing the number of nodes in the system, the transmission costs

may become dominated by the size of metadata required for

154

Fig. 9: Metadata required per node when synchronizing a GSet
in a mesh topology. Each node has 4 neighbours (as in Figure

6) and each node identifier has size 20B.

Fig. 10: Average memory ratio with respect to BP+RR for

GCounter, GSet, GMap 10% and 100% – mesh topology

synchronization, as we show next.

2) Metadata Cost: Figure 9 shows the size of metadata

required for synchronization per node while varying the total

number of replicas (i.e. nodes). The results show a linear

and quadratic cost (in terms of number of nodes) for Scut-

tlebutt and Scuttlebutt-GC (respectively), and a linear cost for

operation-based synchronization (in terms of both number of

nodes and pending updates still to be propagated). Given N
nodes, P neighbors, and U pending updates, the metadata cost

per node is:

• Scuttlebutt: NP (a vector per neighbor)

• Scuttlebutt-GC: N2P (a map of vectors per neighbor)

• Operation-based: NPU (a vector per neighbor per pend-

ing update)

• Delta-based: P (a sequence number per neighbor)

This cost may represent a large fraction of all data prop-

agated during synchronization. For example, in our measure-

ments with 32 nodes, this metadata represents 75%, 99%, and

97% of the transmission costs for Scuttlebutt, Scuttlebutt-GC

and operation-based, respectively, while the overhead of delta-

based synchronization is only 7. 7%.

TABLE II: Retwis workload characterization: for each opera-

tion, the number of CRDT updates performed and its workload

percentage.

Operation #Updates Workload %

Follow 1 15%

Post Tweet 1 + #Followers 35%

Timeline 0 50%

3) Memory footprint: In delta-based synchronization, the

size of δ-groups being propagated not only affects the network

bandwidth consumption, but also the memory required to

store them in the δ-buffer for further propagation. During

the experiments, we periodically measure the amount of state

(both CRDT state and metadata required for synchronization)

stored in memory for each node.

Figure 10 reports the average memory ratio with respect

to BP+RR. State-based does not require synchronization

metadata, and thus it is optimal in terms of memory usage.

Classic delta-based and delta-based BP have an overhead of

1.1x-3.9x since the size of δ-groups in the δ-buffer is larger

for these techniques. For GSet and GMap 10%, Scuttlebutt-

GC is close to BP+RR since deltas are removed from the

key-value store as soon as they are seen by all replicas. Key-

delta pairs are never pruned in the original Scuttlebutt, leading

to an increasing memory usage. As long as new updates exist,

the memory consumption for Scuttlebutt can only deteriorate,

ultimately to a point where it will disrupt the system operation.

Operation-based has a higher memory cost than Scuttlebutt-

GC, since each operation in the transmission buffer is tagged

with a vector, while in Scuttlebutt and Scuttlebutt-GC each

delta is simply tagged with a version pair.

Considering the results for GCounter, the three vector-

based algorithms exhibit the highest memory consumption.

This is justified by the same reason they perform poorly in

terms of transmission bandwidth in this case (Figure 7): these

protocols are unable to compress incremental changes. Overall,

and ignoring state-based which doesn’t present any metadata

memory costs, BP+RR attains the best results.

C. Retwis Application

We now compare classic delta-based with delta-based

BP+RR using Retwis [23], a popular [24]–[26] open-source

Twitter clone. In Table II we describe the application work-

load, similar to the one used in [24]: user a can follow user

b by updating the set of followers of user b; users can post a

new tweet, by writing it in their wall and in the timeline of

all their followers; and finally, users can read their timeline,

fetching the 10 most recent tweets.

Each user has 3 objects associated with it: 1) a set of

followers stored in a GSet; 2) a wall stored in a GMap mapping

155

Fig. 11: Transmission bandwidth per node (top) and average

memory per node (bottom) of classic delta-based and BP+RR
for different Zipf coefficient values (log scale). The left and

right side show these values for the first and second half of

the experiment (respectively).

tweet identifiers to their content; and 3) a timeline stored in

a GMap mapping tweet timestamps to tweet identifiers. We

run this benchmark with 10K users, and thus, 30K CRDT

objects overall. The size of tweet identifiers and content is

31B and 270B, respectively. These sizes are representative of

real workloads, as shown in an analysis of Facebook’s general-

purpose key-value store [27]. The topology is a partial-mesh,

with 50 nodes, each with 4 neighbors, as in Figure 6, and

updates on objects follow a Zipf distribution, with coefficients

ranging from 0.5 (low contention) to 1.5 (high contention)

[24].

Figure 11 shows the transmission bandwidth and memory

footprint of both algorithms, for different Zipf coefficient

values. We can observe that in low contention workloads,

classic delta-based behaves almost optimally when compared

to BP+RR. Since updates are distributed almost evenly across

all objects, there are few concurrent updates to the same object

between synchronization rounds, and thus, the simple and

naive inflation check in line 16 suffices. This phenomena was

not observed in the previous set of benchmarks, since we had

a single object, and thus, maximum contention.

As we increase contention, a more sophisticated approach

like BP+RR is required, in order to avoid redundant state

propagation. For example, with a 1.25 coefficient, bandwidth

is reduced from 1. 46GB/s to 0. 06GB/s per node, and memory

footprint per node drops from 1. 58GB to 0. 62GB (right side

of the plots). Also, as we increase the Zipf coefficient, we note

that the bandwidth consumption continues to rise, leading to

an unsustainable situation in the case of classic delta-based,

as it can never reduce the size of δ-groups being transmitted.

During the experiment we also measured the CPU time

Fig. 12: CPU overhead of classic delta-based when compared

to delta-based BP+RR.

spent in processing CRDT updates, both producing and pro-

cessing synchronization messages. Figure 12 reports the CPU

overhead of classic delta-based, when considering BP+RR as

baseline. Since classic delta-based produces/processes larger

messages than BP+RR, this results in a higher CPU cost: for

the 1, 1.25 and 1.5 Zipf coefficients, classic delta-based incurs

an overhead of 0.4x, 5.5x, and 7.9x respectively.

VI. RELATED WORK

In the context of remote file synchronization, rsync [28] syn-

chronizes two files placed on different machines, by generating

file block signatures, and using these signatures to identify

the missing blocks on the backup file. In this strategy, there’s

a trade-off between the size of the blocks to be signed, the

number of signatures to be sent, and the size of the blocks to be

received: bigger blocks to be signed implies fewer signatures

to be sent, but the blocks received (deltas) can be bigger than

necessary. Inspired by rsync, Xdelta [29] computes a difference

between two files, taking advantage of the fact that both files

are present. Consequently the cost of sending signatures can

be ignored and the produced deltas are optimized.

In [30], we propose two techniques that can be used to

synchronize two state-based CRDTs after a network partition,

avoiding bidirectional full state transmission. Let A and B
be two replicas. In state-driven synchronization, A starts by

sending its local lattice state to B, and given this state, B is

able to compute a delta that reflects the updates missed by A.

In digest-driven synchronization, A starts by sending a digest

(signature) of its local state (smaller than the local state), that

still allows B to compute the delta. B then sends the computed

delta along with a digest of its local state, allowing A to

compute a delta for B. Convergence is achieved after 2 and 3

messages in state-driven and digest-driven, respectively. These

two techniques also exploit the concept of join decomposition

presented in this paper.

Similarly to digest-driven synchronization, Δ-CRDTs [31]

exchange metadata used to compute a delta that reflects

missing updates. In this approach, CRDTs need to be extended

to maintain additional metadata for delta derivation, and if this

metadata needs to be garbage collected, the mechanism falls-

back to standard bidirectional full state transmission.

In the context of anti-entropy gossip protocols, Scuttlebutt
[20] proposes a push-pull algorithm to be used to synchronize

156

a set of values between participants, but considers each value

as opaque, and does not try to represent recent changes to these

values as deltas. Other solutions try to minimize the com-

munication overhead of anti-entropy gossip-based protocols

by exploiting either hash functions [32] or a combination of

Bloom filters, Merkle trees, and Patricia tries [33]. Still, these

solutions require a significant number of message exchanges

to identify the source of divergence between the state of two

processes. Additionally, these solutions might incur significant

processing overhead due to the need of computing hash

functions and manipulating complex data structures, such as

Merkle trees.

With the exception of Xdelta, all these techniques do not

assume knowledge prior to synchronization, and thus delay

reconciliation, by always exchanging state digests in order to

detect state divergence.

VII. CONCLUSION

Under geo-replication there is a significant availability and

latency impact [1] when aiming for strong consistency criteria

such as linearizability [34]. Strong consistency guarantees

greatly simplify the programmers view of the system and

are still required for operations that do demand global syn-

chronization. However, several other system’s components do

not need that same level of coordination and can reap the

benefits of fast local operation and strong eventual consistency.

This requires capturing more information on each data type

semantics, since a read/write abstraction becomes limiting for

the purpose of data reconciliation. CRDTs can provide a sound

approach to these highly available solutions and support the

existing industry solutions for geo-replication, which are still

mostly grounded on state-based CRDTs.

State-based CRDT solutions quickly become prohibitive in

practice, if there is no support for treatment of small incre-

mental state deltas. In this paper we advance the foundations

of state-based CRDTs by introducing minimal deltas that

precisely track state changes. We also present and micro-

benchmark two optimizations, avoid back-propagation of δ-
groups and remove redundant state in received δ-groups,

that solve inefficiencies in classic delta-based synchronization

algorithms. Further evaluation shows the improvement our

solution can bring to a small scale Twitter clone deployed

in a 50-node cluster, a relevant application scenario.

ACKNOWLEDGMENTS

We would like to thank Ricardo Macedo, Georges Younes,

Marc Shapiro and the anonymous reviewers for their valuable

feedback on earlier drafts of this work. Vitor Enes was

supported by EU H2020 LightKone project (732505) and by

a FCT - Fundação para a Ciência e a Tecnologia - PhD Fel-

lowship (PD/BD/142927/2018). Carlos Baquero was partially

supported by SMILES within TEC4Growth project (NORTE-

01-0145-FEDER-000020). João Leitão was partially supported

by project NG-STORAGE through FCT grant PTDC/CCI-

INF/32038/2017, and by NOVA LINCS through the FCT grant

UID/CEC/04516/2013.

REFERENCES

[1] D. Abadi, “Consistency Tradeoffs in Modern Distributed Database
System Design: CAP is Only Part of the Story,” in Computer, 2012.

[2] E. Brewer, “A Certain Freedom: Thoughts on the CAP Theorem,” in
PODC, 2010.

[3] S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Feasibility
of Consistent, Available, Partition-tolerant Web Services,” in SIGACT
News, 2002.

[4] W. Golab, “Proving PACELC,” in SIGACT News, 2018.
[5] P. Ajoux, N. Bronson, S. Kumar, W. Lloyd, and K. Veeraraghavan,

“Challenges to Adopting Stronger Consistency at Scale,” in HOTOS,
2015.

[6] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Tobagus,
S. Kumar, and W. Lloyd, “Existential Consistency: Measuring and
Understanding Consistency at Facebook,” in SOSP, 2015.

[7] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
Free Replicated Data Types,” in SSS, 2011.

[8] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski, “Convergent
and Commutative Replicated Data Types,” in Bulletin of the EATCS,
2011.

[9] Basho, “Riak KV Concepts: Data Types.” [Online]. Available:
http://docs.basho.com/riak/kv/2.2.3/learn/concepts/crdts/

[10] R. Labs, “Under the Hood: Redis CRDTs.” [Online]. Available:
https://redislabs.com/docs/active-active-whitepaper/

[11] M. Azure, “Multi-master at global scale with Azure Cosmos DB.”
[Online]. Available: https://docs.microsoft.com/en-us/azure/cosmos-db/
multi-region-writers

[12] C. Baquero, P. S. Almeida, and A. Shoker, “Pure Operation-
Based Replicated Data Types,” CoRR, 2017. [Online]. Available:
http://arxiv.org/abs/1710.04469

[13] P. S. Almeida, A. Shoker, and C. Baquero, “Efficient State-Based CRDTs
by Delta-Mutation,” in NETYS, 2015.

[14] P. S. Almeida, A. Shoker, and C. Baquero, “Delta State Replicated Data
Types,” in J. Parallel Distrib. Comput., 2018.

[15] Akka, “Distributed Data.” [Online]. Available: https://doc.akka.io/docs/
akka/2.5/scala/distributed-data.html

[16] IPFS, “Decentralized Real-Time Collaborative Documents.” [Online].
Available: https://ipfs.io/blog/30-js-ipfs-crdts.md

[17] IPFS, “CRDT Research Repository.” [Online]. Available: https:
//github.com/ipfs/research-CRDT/issues/31

[18] G. Birkhoff, “Rings of sets,” in Duke Mathematical Journal, 1937.
[19] B. A. Davey and H. A. Priestley, “Introduction to Lattices and Order.”

Cambridge University Press, 1990.
[20] R. van Renesse, D. Dumitriu, V. Gough, and C. Thomas, “Efficient

Reconciliation and Flow Control for Anti-entropy Protocols,” in LADIS,
2008.

[21] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” in SIGOPS Oper.
Syst. Rev., 2002.

[22] R. Juan-Marı́n, H. Decker, J. E. Armendáriz-Íñigo, J. M. Bernabéu-
Aubán, and F. D. Muñoz Escoı́, “Scalability Approaches for Causal
Multicast: A Survey,” in Distributed Computing, 2016.

[23] Retwis. [Online]. Available: http://retwis.antirez.com
[24] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K.

Ports, “Building Consistent Transactions with Inconsistent Replication,”
in SOSP, 2015.

[25] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage
for geo-replicated systems,” in SOSP, 2011.

[26] N. Crooks, Y. Pu, N. Estrada, T. Gupta, L. Alvisi, and A. Clement,
“TARDiS: A Branch-and-Merge Approach To Weak Consistency,” in
SIGMOD, 2016.

[27] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Work-
load Analysis of a Large-Scale Key-Value Store,” in SIGMETRICS,
2012.

[28] A. Tridgell and P. Mackerras, “The rsync algorithm,” Australian National
University, Tech. Rep., 1998.

[29] J. Macdonald, “Xdelta.” [Online]. Available: http://xdelta.org
[30] V. Enes, C. Baquero, P. S. Almeida, and A. Shoker, “Join Decomposi-

tions for Efficient Synchronization of CRDTs after a Network Partition:
Work in progress report,” in PMLDC@ECOOP, 2016.

[31] A. van der Linde, J. Leitão, and N. Preguiça, “Δ-CRDTs: Making Δ-
CRDTs Delta-based,” in PaPoC@EuroSys, 2016.

157

[32] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic Algorithms for
Replicated Database Maintenance,” in PODC, 1987.

[33] J. Byers, J. Considine, and M. Mitzenmacher, “Fast Approximate
Reconciliation of Set Differences,” CS Dept., Boston University, Tech.
Rep., 2002.

[34] M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition
for Concurrent Objects,” in Trans. Program. Lang. Syst., 1990.

[35] C. Baquero, P. S. Almeida, A. Cunha, and C. Ferreira, “Composition in
State-based Replicated Data Types,” in Bulletin of the EATCS, 2017.

[36] V. Enes, P. S. Almeida, and C. Baquero, “The Single-Writer Principle
in CRDT Composition,” in PMLDC@ECOOP, 2017.

[37] DataStax, “What’s New in Cassandra 2.1: Better Implementation
of Counters.” [Online]. Available: https://www.datastax.com/dev/blog/
whats-new-in-cassandra-2-1-a-better-implementation-of-counters

APPENDIX

A. Existence of Unique Irredundant Decompositions

In this section we present sufficient conditions for the

existence of unique irredundant join decompositions, and show

how they can be obtained.

Definition 4 (Descending chain condition). A lattice L sat-
isfies the descending chain condition (DCC) if any sequence
x1 � x2 � · · · � xn � · · · of elements in L has finite
length [19].

Proposition 1. In a distributive lattice L satisfying DCC every
element x ∈ L has a unique irredundant join decomposition.

Proof: Trivial, as corollary of the dual of Theorem 6

from [18]: a distributive lattice is modular; if it also satis-

fies DCC, then each element has a unique irredundant join

decomposition.

For almost all CRDTs used in practice, the state is not

merely a join-semilattice, but a distributive lattice satisfying

DCC (Appendix B). Therefore, from Proposition 1, we have a

unique irredundant join decomposition for each CRDT state.

Let ⇓x denote this unique decomposition of an element x.

Proposition 2. If L is a finite distributive lattice, then ⇓x is
given by the maximals of the join-irreducibles below x:

⇓x = max{r ∈ J (L) | r � x}
Proof: From the Birkhoff’s Representation Theorem (see,

e.g., [19]), each element x is isomorphic to {r ∈ J (L) | r �
x}, the set of join-irreducibles below it, which is isomorphic

to the set of its maximals, containing no redundant element.

Although Proposition 2 is stated for finite lattices, it can be

applied to typical CRDTs defined over infinite lattices, as we

show next.

B. Lattice Compositions in CRDTs

We now show that unique irredundant join decompositions

(and therefore, optimal deltas and delta-mutators) can be

obtained for almost all state-based CRDTs used in practice.

Most CRDT designs define the lattice state starting from lattice

chains (booleans and natural numbers), unordered sets, partial

orders, and obtain more complex states by lattice composition

through: cartesian product ×, lexicographic product �, linear

〈{a, b},∅〉
〈{a}, {a, b}〉 〈{b}, {a, b}〉

〈{a}, {a}〉 〈{a}, {b}〉 〈{b}, {a}〉 〈{b}, {b}〉
〈{a},∅〉 〈{b},∅〉

〈∅,∅〉

Fig. 13: Hasse diagram of P({a, b}) � P({a, b}), a non-

distributive lattice.

sum ⊕, finite functions ↪→ from a set to a lattice, powersets P ,

and sets of maximal elements M (in a partial order). Note that

two of the constructs, ↪→ and P , were used in Section II-A

to define GCounter and GSet, respectively. The use of these

composition techniques and a catalog of CRDTs is presented

in [35] but that presentation (as well as CRDT designs in

general) simply considers building join-semilattices (typically

with bottom) from join-semilattices, never examining whether

the result is more than a join-semilattice.

In fact, all those constructs yield lattices with bottom when

starting from lattices with bottom. Moreover, all these con-

structs yield lattices satisfying DCC, when starting from lat-

tices satisfying DCC (such as booleans and naturals). Also, it

is easily seen that most yield distributive lattices when applied

to distributive lattices, with the exception of the lexicographic

product with an arbitrary first component. As an example, in

Figure 13 we depict the Hasse diagram of a non-distributive

lexicographic pair. This lattice is non-distributive since, e.g.,

for x = 〈{a}, {a}〉, y = 〈{a},∅〉 and z = 〈{b},∅〉, we have

x = x� (y�z) �= (x�y)� (x�z) = y. For the join-reducible

〈{a, b},∅〉, the set of the maximals of the join-irreducibles

below it (i.e. {〈{a}, {a}〉, 〈{a}, {b}〉, 〈{b}, {a}〉, 〈{b}, {b}〉})

is a redundant decomposition (as well as some of its subsets),

and there are several alternative irredundant decompositions:

• {〈{a},∅〉, 〈{b},∅〉}
• {〈{a},∅〉, 〈{b}, {a}〉}
• {〈{a},∅〉, 〈{b}, {b}〉}

• {〈{a}, {a}〉, 〈{b},∅〉}
• . . .
• {〈{a}, {b}〉, 〈{b}, {b}〉}

Fortunately, the typical use of lexicographic products to

design CRDTs is with a chain (total order) as the first

component, to allow an actor which is “owner” of part of

the state (the single-writer principle [36]) to either inflate the

second component, or to change it to some arbitrary value,

while increasing a “version number” (first component). This

principle is followed by Cassandra counters [37]. In such

typical usages of the lexicographic product, with a chain as

first component, the distributivity of the second component

is propagated to the resulting construct. Table III summarizes

these remarks about how almost always these CRDT compo-

sition techniques yield lattices satisfying DCC and distributive

lattices, and thus, have unique irredundant decompositions, by

Proposition 1.

158

TABLE III: Composition techniques that yield lattices satisfying DCC and distributive lattices, given lattices A and B, chain

C, partial order P and (unordered) set U .

L
A×B A �B C �A A⊕B U↪→A P(U) M(P)

A,B, P has DCC ⇒ L has DCC � � � � � � �
A,B distributive ⇒ L distributive � � � � � � �

TABLE IV: Composition techniques that yield finite ideals or quotients, given lattices A and B, chain C, partial order P , all

satisfying DCC, and (unordered) set U .

L
A×B A �B C �A A⊕B U↪→A P(U) M(P)

∀x ∈ L · x/⊥ finite � � � � � � �
∀〈x, y〉 ∈ L · 〈x, y〉/〈x,⊥〉 finite – � � � – – –

Having DCC and distributivity, even if it always occurs in

practice, is not enough to directly apply Proposition 2, as it

holds for finite lattices. However if the sublattice given by

the ideal ↓x = {y | y � x} is finite, then we can apply

that proposition to this finite lattice (for which x is now the

top element) to compute ⇓x. Again, finiteness yields from all

constructs, with the exception of the lexicographic product and

linear sum. For these two constructs, a similar reasoning can

be applied, but focusing on a quotient sublattice in order to

achieve finiteness.

Definition 5 (Quotient sublattice). Given elements a � b ∈ L,
the quotient sublattice b/a is given by:

b/a = {x ∈ L | a � x � b}

Quotients generalize ideals, as we have ↓x = x/⊥. As an

example, given some infinite set U and the lattice N�P(U),
for each x = 〈n, s〉, the ideal ↓x is still infinite when n > 0, as

depicted in Figure 14. However, for each 〈n, s〉, the quotient

〈n, s〉/〈n,⊥〉 is a finite lattice, and moreover, the elements

given by ⇓〈n, s〉 are the same either when considering the

original lattice or the quotient sublattice. Therefore, we can use

the formula for ⇓x in Proposition 2. A similar reasoning can be

used for linear sums. Table IV summarizes these remarks; the

second row applies only to lexicographic products and linear

sums2.

C. Decomposing Compositions

In this section we show that for each composition technique

there is a corresponding decomposition rule. As the lattice join

� of a composite CRDT is defined in terms of the lattice join

of its components [35], decomposition rules of a composite

CRDT follow the same idea and resort to the decomposition

of its smaller parts. We now present such rules for all lattice

compositions covered in Tables III and IV.

2In order to have a common notation for instances of � and ⊕, ⊕ instances
are presented as pairs. For example, Left a ∈ A⊕B becomes 〈Left, a〉.

〈n, {a}〉 〈n, {b}〉 〈n, {c}〉

〈n,∅〉

〈0, {a, b}〉 〈0, {a, c}〉 〈0, {b, c}〉

〈0, {a}〉 〈0, {b}〉 〈0, {c}〉

〈0,∅〉

Fig. 14: Hasse diagram of N � P(U), for an infinite set U ,

where most ideals are infinite.

c ∈ C: ⇓c = {c}
〈a, b〉 ∈ A×B: ⇓〈a, b〉 = ⇓a× {⊥} ∪ {⊥} × ⇓b
〈c, a〉 ∈ C �A: ⇓〈c, a〉 = ⇓c× ⇓a
Left a ∈ A⊕B: ⇓ Left a = {Left v | v ∈ ⇓a}

Right b ∈ A⊕B: ⇓Right b = {Right v | v ∈ ⇓b}
f ∈ U↪→A: ⇓f = {k �→ v | k ∈ dom(f) ∧ v ∈ ⇓f(v)}
s ∈ P(U): ⇓s = {{e} | e ∈ s}
s ∈ M(P): ⇓s = {{e} | e ∈ s}

Note how the decompositions of GCounter and GSet pre-

sented in Section III-A are an application of these rules.

As a further example, consider a positive-negative counter –

PNCounter – a CRDT counter that allows both increments and

decrements. In this CRDT, each replica identifier is mapped

to a pair where the first component tracks the number of

increments, and the second the number of decrements, i.e.

PNCounter = I ↪→ (N × N). Given a PNCounter state

p = {A �→〈2, 3〉,B �→〈5, 5〉} (2 increments by A, 3 decrements

by A, and an equal number of increments and decrements

by B), the irredundant join decomposition of p is ⇓p =
{{A �→〈2, 0〉}, {A �→〈0, 3〉}, {B �→〈5, 0〉}, {B �→〈0, 5〉}}.

159

