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Abstract—To ensure high availability in large scale distributed
systems, Conflict-free Replicated Data Types (CRDTS) relax con-
sistency by allowing immediate query and update operations
at the local replica, with no need for remote synchronization.
State-based CRDTs synchronize replicas by periodically sending
their full state to other replicas, which can become extremely
costly as the CRDT state grows. Delta-based CRDTs address
this problem by producing small incremental states (deltas) to
be used in synchronization instead of the full state. However,
current synchronization algorithms for delta-based CRDTs in-
duce redundant wasteful delta propagation, performing worse
than expected, and surprisingly, no better than state-based.
In this paper we: 1) identify two sources of inefficiency in
current synchronization algorithms for delta-based CRDTs; 2)
bring the concept of join decomposition to state-based CRDTs;
3) exploit join decompositions to obtain optimal deltas and 4)
improve the efficiency of synchronization algorithms; and finally,
5) experimentally evaluate the improved algorithms.
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1. INTRODUCTION

Large-scale distributed systems often resort to replication
techniques to achieve fault-tolerance and load distribution.
These systems have to make a choice between availability
and low latency or strong consistency [1]-[4], many times
opting for the first [5], [6]. A common approach is to allow
replicas of some data type to temporarily diverge, making
sure these replicas will eventually converge to the same state
in a deterministic way. Conflict-free Replicated Data Types
(CRDTs) [7], [8] can be used to achieve this. They are
key components in modern geo-replicated systems, such as
Riak [9], Redis [10], and Microsoft Azure Cosmos DB [11].

CRDTs come mainly in two flavors: operation-based and
state-based. In both, queries and updates can be executed
immediately at each replica, which ensures availability (as
it never needs to coordinate beforehand with remote replicas
to execute operations). In operation-based CRDTs [7], [12],
operations are disseminated assuming a reliable dissemination
layer that ensures exactly-once causal delivery of operations.

State-based CRDTs need fewer guarantees from the com-
munication channel: messages can be dropped, duplicated, and
reordered. When an update operation occurs, the local state is
updated through a mutator, and from time to time (since we
can disseminate the state at a lower rate than the rate of the
updates) the full (local) state is propagated to other replicas.

Although state-based CRDTs can be disseminated over
unreliable communication channels, as the state grows, send-
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Fig. 1: Experiment setup: 15 nodes in a partial mesh topology
replicating an always-growing set. The left plot depicts the
number of elements being sent throughout the experiment,
while the right plot shows the CPU processing time ratio with
respect to state-based. Not only does delta-based synchroniza-
tion not improve state-based in terms of state transmission, it
even incurs a substantial processing overhead.

ing the full state becomes unacceptably costly. Delta-based
CRDTs [13], [14] address this issue by defining delta-mutators
that return a delta (J), typically much smaller than the full
state of the replica, to be merged with the local state. The
same ¢ is also added to an outbound §-buffer, to be periodi-
cally propagated to remote replicas. Delta-based CRDTs have
been adopted in industry as part of Akka Distributed Data
framework [15] and IPFS [16], [17].

However, and somewhat unexpectedly, we have observed
(Figure 1) that current delta-propagation algorithms can still
disseminate much redundant state between replicas, perform-
ing worse than envisioned, and no better than the state-based
approach. This anomaly becomes noticeable when concur-
rent update operations always occur between synchronization
rounds, and it is partially justified due to inefficient redundancy
detection in delta-propagation.

In this paper we identify two sources of redundancy in
current algorithms, and introduce the concept of join decompo-
sition of a state-based CRDT, showing how it can be used to
derive optimal deltas (“differences”) between states, as well
as optimal delta-mutators. By exploiting these concepts, we
also introduce an improved synchronization algorithm, and
experimentally evaluate it, confirming that it outperforms cur-
rent approaches by reducing the amount of state transmission,
memory consumption, and processing time required for delta-
based synchronization.
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II. BACKGROUND ON STATE-BASED CRDTS

A state-based CRDT can be defined as a triple (£,C, L)
where L is a join-semilattice (lattice for short, from now on),
C is a partial order, and LI is a binary join operator that derives
the least upper bound for any two elements of L. State-based
CRDTs are updated through a set of mutators designed to
be inflations, i.e. for mutator m and state x € £, we have
z C m(z).

Synchronization of replicas is achieved by having each
replica periodically propagate its local state to other neighbour
replicas. When a remote state is received, a replica updates its
state to reflect the join of its local state and the received state.
As the local state grows, more state needs to be sent, which
might affect the usage of system resources (such as network)
with a negative impact on the overall system performance.
Ideally, each replica should only propagate the most recent
modifications executed over its local state.

Delta-based CRDTs can be used to achieve this, by defining
delta-mutators that return a smaller state which, when merged
with the current state, generates the same result as applying
the standard mutators, i.e. each mutator m has in delta-CRDTs
a corresponding §-mutator m® such that:

m(z) =z Um’(x)

In this model, the deltas resulting from §-mutators are added
to a 0-buffer, in order to be propagated to neighbor replicas, as
a d-group, at the next synchronization step. When a §-group
is received from a neighbor, it is also added to the buffer for
further propagation.

A. CRDT examples

In Figure 2 we present the specification of two simple
state-based CRDTs, defining their lattice states, mutators,
corresponding J-mutators, and the binary join operator LI
These lattices are typically bounded and thus a bottom value
L is also defined. (Note that the specifications do not define
the partial order C since it can always be defined, for any
lattice £, interms of L: x Cy < ax Uy =y.)

A CRDT counter that only allows increments is known as
a grow-only counter (Figure 2a). In this data type, the set of
replica identifiers I is mapped to the set of natural numbers IN.
Increments are tracked per replica i, individually, and stored
in a map entry p(¢). The value of the counter is the sum of
each entry’s value in the map. Mutator inc returns the updated
map (the notation p{k — v} indicates that only entry k in the
map p is updated to a new value v, the remaining entries left
unchanged), while the J-mutator inc® only returns the updated
entry. The join of two GCounters computes, for each key, the
maximum of the associated values.

The lattice state evolution (either by mutation or join of two
states) can also be understood by looking at the corresponding
Hasse diagram (Figure 3). For example, state {A;,B;} in
Figure 3a (where A; represents entry {A +— 1} in the map,
i.e. one increment registered by replica A), can result from an
increment on {A;} by B, from an increment on {B;} by A,
or from the join of these two states.
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GCounter =T — IN
1l=g
inc;(p) = p{i — p(i) + 1}
incd (p) = {i — p(i) + 1}
value(p) = Z{” | k=o€ p}
pUp = {k+— max(pk),p'(k)) | k €1}
where | = dom(p) U dom(p’)

(a) Grow-only Counter.

GSet(E) = P(E)
1l=g
add(e, s) = sU{e}
add’(e, s) = {{6} if e ¢s
1 otherwise

value(s) = s

slUs =sUs
(b) Grow-only Set.

Fig. 2: Specifications of two data types, replica ¢ € I.

{AZa BZ}

PN
{A2,B1} {A1,B2}
SN N

{A2} {A1,B1} {B2}
~ N
{AL} {B1}
NS
1

(a) GCounter, with two replicas I = {A, B}.

{a,b,c}

P N
{a,b} {a,c} {b,c}
> ]

{o} {c}

I

(b) GSet({a, b, c}).

{a}

Fig. 3: Hasse diagram of two data types.

A grow-only set, Figures 2b and Figure 3b, is a set data
type that only allows element additions. Mutator add returns
the updated set, while add® returns a singleton set with the
added element (in case it was not in the set already). The join
of two GSets simply computes the set union.
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Fig. 4: Delta-based synchronization of a GSet with 2 replicas A, B € I. Underlined elements represent the BP optimization.
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Fig. 5: Delta-based synchronization of a GSet with 4 replicas A,B,C,D € I. The overlined element represents the RR

optimization.

Although we have chosen as running examples very simple
CRDTs, the results in this paper can be extended to more com-
plex ones, as we show in Appendix B. For further coverage
of delta-based CRDTs see [14].

B. Synchronization Cost Problem

Figures 4 and 5 illustrate possible distributed executions of
the classic delta-based synchronization algorithm [14], with
replicas of a grow-only-set, all starting with a bottom value
1 . (This classic algorithm is captured in Algorithm
1, covered in Section IV.) Synchronization with neighbors is
represented by e and synchronization arrows are labeled with
the state sent, where we overline or underline elements that are
being redundantly sent and can be removed (thus improving
network bandwidth consumption) by employing two simple
and novel optimizations that we introduce next.

In Figure 4, we have two replicas A, B € I and each adds an
element to the replicated set. At o!, B propagates the content
of the d-buffer, i.e. {b}, to neighbour A. At 2, A sends to
B {a,b}, i.e. the join of {a} from a local mutation, and the
received {b} from B, even though {b} came from B itself.
By simply tracking the origin of each J-group in the J-buffer,
replicas can avoid back-propagation of j-groups (BP).

Before receiving {a,b}, B adds a new element ¢ to the set,
also adding {c} to the d-buffer. Upon receiving {a,b}, and
since what was received produces changes in the local state,
B adds it to the d-buffer. At o3, B propagates all new changes
since last synchronization with A: {c} from a local mutation,
and {a,b} from B, even though {a,b} came from replica B.
When A receives {a,b,c}, it will also add it to the buffer
to be further propagated. Note that as long as this pattern
keeps repeating (i.e. there’s always a state change between
synchronizations), delta-based synchronization will propagate
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the same amount of state as state-based synchronization would,
representing no improvement. This is illustrated in Figure 4,
and demonstrated empirically in Section V.

In Figure 5, we have four replicas A,B,C,D € I, and
replicas A, B add an element to the set. At o4, B propagates
the content of the J-buffer to neighbours A and C. At e
propagates the received {b} to D. At 5, A sends the join of
{a} from a local mutation and the received {b} to C. Upon
receiving the d-group {a,b}, C adds it to the d-buffer and
sends it to D at e7. However, part of this §-group has already
been in the J-buffer (namely b), and thus, has already been
propagated. This observation hints for another optimization:
remove redundant state in received J-groups (RR), before
adding them to the J-buffer.

Both BP and RR optimizations are detailed in Section IV,
where we incorporate them into the delta-based synchroniza-
tion algorithm with few changes.

III. JOIN DECOMPOSITIONS AND OPTIMAL DELTAS

In this section we introduce state decomposition in state-
based CRDTs, by exploiting the mathematical concept of irre-
dundant join decompositions in lattices. We then demonstrate
how this concept can be used to derive deltas and delta-
mutators that are optimal, in the sense that they produce the
smallest delta-state possible. In Section IV we show how this
same concept plays a key role in the RR optimization briefly
described in the previous section.

A. Join Decomposition of a State-based CRDT

Definition 1 (Join-irreducible state). State x € L is join-
irreducible if it cannot result from the join of any finite set
of states F C L not containing x:

x:|_|F:>as€F



Example 1. Ler the following pi, p2 and ps be GCounter
states, and si, So and s3 be GSet states.

v p1={As} X s1=1
v p2 = {Bg} vV sy =1{a}
X p3 = {As5,Br} X s3={a,b}

States ps and s3 are not join-irreducible states, since they
can be decomposed into (i.e. result from the join of) two states
different from themselves: {As} and {Bz} for ps, {a} and {b}
for s3. Bottom (e.g., s1) is never join-irreducible, as it is the
join over an empty set | | @.

In a Hasse diagram of a finite lattice (e.g., in Figure 3)
the join-irreducibles are those elements with exactly one link
below. Given lattice £, we use J (L) for the set of all join-
irreducible elements of L.

Definition 2 (Join Decomposition). Given a lattice state x €
L, a set of join-irreducibles D is a join decomposition [18]
of x if its join produces x:

DCJL)A| |D==

Definition 3 (Irredundant Join Decomposition). A join decom-
position D is irredundant if no element in it is redundant:

UCDﬁUD[UD

Example 2. Let p = {A;,B7} be a GCounter state, s =
{a,b,c} a GSet state, and consider the following sets of states
as tentative decompositions of p and s.

X Py ={{As},{Bs}} X Sy ={{b},{c}}

X Py ={{As},{Bs},{Br}} X S2={{a,b},{b},{c}}
X P3={{A5,Be},{Br}} X S3={{a, b} {c}}

v P4 = {{AB}a {87}} 4 54 = {{a’}7 {b}7 {C}}

Only Py and Sy are irredundant join decompositions of p and
s. Py and Sy are not decompositions since their join does not
result in p and s, respectively; Py and So are decompositions
but contain redundant elements, {Bg} and {b}, respectively;
P; and Ss do not have redundancy, but contain reducible
elements (Ss fails to be an irredundant join decomposition for
the same reason, since its element {a,b} is also reducible).

As we show in Appendix A and B, these irredundant de-
compositions exist, are unique, and can be obtained for CRDTs
used in practice. Let = denote the unique decomposition of
element z. From the Birkhoff’s Representation Theorem [19],
decomposition |}z is given by the maximals of the join-
irreducibles below x:

Jr=max{re J(L)|r Cz}

As two examples, given a GCounter state p and a GSet state
s, their (quite trivial) irredundant decomposition is given by:

bp={k—v}kmvep} lUs={{e}|eces}

We argue that these techniques can be applied to most
(practical) implementations of CRDTs found in industry. The
interested reader can find generic decomposition rules in
Appendix C.
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B. Optimal deltas and §-mutators

Having a unique irredundant join decomposition, we can de-
fine a function which gives the minimum delta, or “difference”
in analogy to set difference, between two states a,b € L:

A(a,b) =| {yela|yZb}

which when joined with b gives allb, i.e. A(a,b)Ub = allb. It
is minimum (and thus, optimal) in the sense that it is smaller
than any other ¢ which produces the same result: ¢ Ll b =
alb= Aa,b) Cec

If not carefully designed, J-mutators can be a source of
redundancy when the resulting J-state contains information
that has already been incorporated in the lattice state. As an
example, the original d-mutator add® of GSet presented in [13]
always returns a singleton set with the element to be added,
even if the element is already in the set (in Figure 2b we have
presented a definition of add® that is optimal). By resorting to
function A, minimum delta-mutators can be trivially derived
from a given mutator:

m’(z) = A(m(z), z)
IV. REVISITING DELTA-BASED SYNCHRONIZATION

Algorithm 1 formally describes delta-based synchroniza-
tion at replica ¢. The algorithm contains lines that belong
to classic delta-based synchronization [13], [14], and lines
with | BP and RR optimizations, while non-highlighted lines
belong to both. In classic delta-based synchronization, each
replica ¢ maintains a lattice state z; € £ (line 4), and a J-
buffer B; € P(L) as a set of lattice states (line 5). When an
update operation occurs (line 6), the resulting § is merged with
the local state x; (line 19) and added to the buffer (line 20),
resorting to function store. Periodically, the whole content of
the d-buffer (line 11) is propagated to neighbors (line 12).

For simplicity of presentation, we assume that commu-
nication channels between replicas cannot drop messages
(reordering and duplication is considered), and that is why
the buffer is cleared after each synchronization step (line
13). This assumption can be removed by simply tagging each
entry in the §-buffer with a unique sequence number, and by
exchanging acks between replicas: once an entry has been
acknowledged by every neighbour, it is removed from the -
buffer, as originally proposed in [13].

When a J-group is received (line 14), then it is checked
whether it will induce an inflation in the local state (line 16).
If this is the case, the J-group is merged with the local state
and added to the buffer (for further propagation), resorting to
the same function store. The precondition in line 16 appears to
be harmless, but it is in fact, the source of most redundant state
propagated in this synchronization algorithm. Detecting an
inflation is not enough, since almost always there’s something
new to incorporate. Instead, synchronization algorithms must
extract from the received J-group the lattice state responsible
for the inflation, as done by the RR optimization.

Few changes are required in order to incorporate this and
the BP optimization in the classic algorithm, as we show



1 inputs:

2 n; € P(I), set of neighbors
3 state:
4 mel,al=1

5 BieP(L),Bl=90 B,eP(LxI),B =g

6 on operation;(m?)
76 =md(x;)
8 store(d, 1)

9 periodically // synchronize

10 for j € n;

u d=||B; d=||{s|(s,0) e BiANo#j}
12 send; j(delta,d)

B Bl=0

14 on receive; ;(delta, d)

15 d=A(d,z;)

6 ifdZ itd+£ L

17 store(d, )

18 fun store(s, o)
v zi=x;Us
B} = B; U{s}

20 Bl = B;U{(s,0)}

Algorithm 1: Delta-based synchronization algorithms at
replica ¢ € I: classic version and version with BP and
RR optimizations.

next. This happens because our approach encapsulates most
of its complexity in the computation of join decompositions
and function A. The fact that few changes are required to
the classic synchronization algorithm is a benefit, that will
minimize the efforts in incorporating these techniques in
existing implementations.

Avoiding back-propagation of §-groups: For BP, each
entry in the J-buffer is tagged with its origin (line 5 and line
20), and at each synchronization step with neighbour j, entries
tagged with j are filtered out (line 11).

Removing redundant state in received J-groups: A re-
ceived d-group can contain redundant state, i.e. state that has
already been propagated to neighbors, or state that is in the
d-buffer B; still to be propagated. This occurs in topologies
where the underlying graph has cycles, and thus, nodes can
receive the same information through different paths in the
graph. In order to detect if a 6-group has redundant state, nodes
do not need to keep everything in the J-buffer or even inspect
the d-buffer: it is enough to compare the received J-group with
the local lattice state ;. In classic delta-based synchronization,
received d-groups were added to d-buffer only if they would
strictly inflate the local state (line 16). For RR, we extract
from the J-group what strictly inflates the local state z; (line
15), and store it if it is different from bottom (line 16). This
extraction is achieved by selecting which irreducible states
from the decomposition of the received J-group strictly inflate
the local state, resorting to function A presented in Section III.

152

Fig. 6: Network topologies employed: a 15-node partial-mesh
(to the left) and a 15-node tree (to the right).

V. EVALUATION

In this Section we evaluate the proposed solutions and show

the following:

o Classic delta-based synchronization can be as inefficient
as state-based synchronization in terms of transmission
bandwidth, while incurring an overhead in terms of mem-
ory usage required for synchronization (Section V-B).

« In acyclic topologies, BP is enough to attain the best
results, while in topologies with cycles, only RR can
greatly reduce the synchronization cost (Section V-B).

« Alternative synchronization techniques (such as Scuttle-
butt [20] and operation-based synchronization [7], [8])
are metadata-heavy; this metadata represents a large
fraction of all the data required for synchronization (over
75%) while for delta-based synchronization the metadata
overhead can be as low as 7. 7% (Section V-B).

« In moderate-to-high contention workloads, BP + RR can
reduce transmission bandwidth and memory consumption
by several GBs; when comparing with BP + RR, classic
delta-based synchronization has an unnecessary CPU
overhead of up-to 7.9x (Section V-C).

Instructions on how to reproduce all experiments can be

found in our public repository!.

A. Experimental Setup

The evaluation was conducted in a Kubernetes cluster
deployed in Emulab [21]. Each machine has a Quad Core Intel
Xeon 2.4 GHz and 12GB of RAM. The number of machines
in the cluster is set such that two replicas are never scheduled
to run in the same machine, i.e. there is at least one machine
available for each replica in the experiment.

Network Topologies: Figure 6 depicts the two network
topologies employed in the experiments: a partial-mesh, in
which each node has 4 neighbors; and a tree, with 3 neighbors
per node, with the exception of the root node (2 neighbors) and
leaf nodes (1 neighbor). The first topology exhibits redundancy
in the links and tests the effect of cycles in the synchronization,
while the second represents an optimal propagation scenario
over a spanning tree.

B. Micro-Benchmarks

We have designed a set of micro-benchmarks, in which each
node periodically (every second) synchronizes with neigh-
bors and executes an update operation over a CRDT. The

Uhttps://github.com/vitorenesduarte/exp



TABLE I: Description of micro-benchmarks.

Type Periodic event Measurement
GCount single increment number of entries in
ounter g the map

addition of unique number of elements in
GSet

element the set

change the value of number of entries in
GMap K%

%% keys the map

update operation depends on the CRDT type. In GSet, the
update event is the addition of a globally unique element to
the set; in GCounter, an increment on the counter; and in
GMap K% each node updates %% keys (N being the number
of nodes/replicas), such that globally K% of all the keys in
the grow-only map are modified within each synchronization
interval. Note how the GCounter benchmark is a particular
case of GMap K%, in which K = 100. For GMap K% we set
the total number of keys to 1000, and for all benchmarks, the
number of events per replica is set to 100.

These micro-benchmarks are summarized in Table I, along
with the metric (to be used in transmission and memory
measurements) we have defined: for GCounter and GMap K%
we count the number of map entries, while for GSet, the
number of set elements. We setup this part of the evaluation
with 15-node topologies (as in Figure 6). As baselines, we
have state-based synchronization, classic delta-based synchro-
nization, Scuttlebutt, a variation of Scuttlebutt, and operation-
based synchronization.

Scuttlebutt: Scuttlebutt [20] is an anti-entropy protocol
used to reconcile changes in values of a key-value store. Each
value is uniquely identified with a version (i,s) € I x NN,
where the first component 7 € I is the identifier of the replica
responsible for the new value, and s € IN a sequence number,
incremented on each local update, thus being unique. With
this, the updates known locally can be summarized by a vector
I — IN, mapping each replica to the highest sequence number
it knows. When a node wants to reconcile with a neighbor
replica, it sends the summary vector, and the neighbor replies
with all the key-value pairs it has locally that have versions not
summarized in the received vector. This strategy is performed
in both directions, and in the end, both replicas have the same
key-value pairs in their local key-value store (assuming no new
updates occurred).

Scuttlebutt can be used to synchronize state-based CRDTSs
with few modifications. Using as values the CRDT state
would be inefficient, since changes to the CRDT wouldn’t
be propagated incrementally, i.e. a small change in the CRDT
would require sending the whole new state, as in state-based
synchronization. Therefore, we use as values the optimal deltas
resulting from J-mutators. As keys, we can simply resort to
the version pairs. When reconciling two replicas, a replica
receiving new key-delta pairs, merges all the deltas with the
local CRDT. If CRDT updates stop, eventually all replicas
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Fig. 7: Transmission of GSet and GCounter with respect to
delta-based BP + RR — tree and mesh topologies.

converge to the same CRDT state. We label this approach
Scuttlebutt.

This strategy is potentially inefficient in terms of memory:
a replica has to keep in the Scuttlebutt key-value store all the
deltas it has ever seen, since a neighbor replica can at any point
in time send a summary vector asking for any delta. Since
the original Scuttlebutt algorithm does not support deleting
keys from the key-value store, we add support for safe deletes
of deltas, in order to reduce its memory footprint. If each
node keeps track of what each node in the system has seen
(in amap I — (I — IN) from replica identifiers to the
last seen summary vector), once a delta has been seen by
all nodes, it can be safely deleted from the local Scuttlebutt
store. We compare with this improved Scuttlebutt variant
(labeled Scuttlebutt-GC) that allows nodes to only be
connected to a subset of all nodes, not requiring all-to-all
connectivity, while supporting safe deletes. For completeness,
we also compare with the original Scuttlebutt design that is
unable to garbage-collect unnecessary key-delta pairs.

Operation-based: Operation-based CRDTs [7], [8] re-
sort to a causal broadcast middleware [22] that is used to
disseminate CRDT operations. This middleware tags each
operation with a vector clock that summarizes the causal past
of the operation. Such vector is then used by the recipient
to ensure causal delivery of operations, i.e. each operation is
only delivered when every operation in its causal past has been
delivered as well.

In topologies with all-to-all connectivity, each node is only
responsible for disseminating its own operations. In order to
relax this requirement, we have implemented a middleware
that stores-and-forwards operations: when an operation is seen
for the first time, it is added to a transmission buffer to be
further propagated in the next synchronization step; if the
same operation is received from different incoming neighbors,
the middleware simply updates which nodes have seen this
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Fig. 8: Transmission of GMap 10%, 30%, 60% and 100% - tree and mesh topologies.

operation so that unnecessary transmissions are avoided. To the
best of our knowledge, this is the best possible implementation
of such a middleware. We label this approach Op-based.

1) Transmission bandwidth: Figure 7 shows, for GSet
and GCounter, the transmission ratio (of all synchronization
mechanisms previously mentioned) with respect to delta-based
synchronization with BP and RR optimizations enabled. The
first observation is that classic delta-based synchronization
presents almost no improvement, when compared to state-
based synchronization. In the tree topology, BP is enough to
attain the best result, because the underlying topology does
not have cycles, and thus, BP is sufficient to prevent redundant
state to be propagated. With a partial-mesh, BP has little effect,
and RR contributes most to the overall improvement. Given
that the underlying topology leads to redundant communica-
tion (desired for fault-tolerance), and classic delta-based can
never extract that redundancy, its transmission bandwidth is
effectively similar to that of state-based synchronization.

Scuttlebutt and Scuttlebutt-GC are more efficient than clas-
sic delta-based for GSet since both can precisely identify
state changes between synchronization rounds. However, the
results for GCounter reveal a limitation of this approach. Since
Scuttlebutt treats propagated values as opaque, and does not
understand that the changes in a GCounter compress naturally
under lattice joins (only the highest sequence for each replica
needs to be kept), it effectively behaves worse than state-
based and classic delta-based in this case. Operation-based
synchronization follows the same trend for the same reason:
it improves state-based and classic delta-based for GSet but
not for GCounter since the middleware is unable to compress
multiple operations into a single, equivalent, operation. Sup-
porting generic operation-compression at the middleware level
in operation-based CRDTs is an open research problem. The
difference between these three approaches is related with the
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metadata cost associated to each, as we show in Section V-B2.

Even with the optimizations BP 4+ RR proposed, the best
result for GCounter is not much better than state-based. This
is expected since most entries of the underlying map are being
updated between each synchronization step: each node has
almost always something new from every other node in the
system to propagate (thus being similar to state-based in some
cases). This pattern represents a special case of a map in which
100% of its keys are updated between state synchronizations.

In Figure 8 we study other update patterns, by measuring
the transmission of GMap 10%, 30%, 60%, and 100%. These
results are further evidence of what we have observed in the
case of GSet: BP suffices if the network graph is acyclic, but
RR is crucial in the more general case.

As seen previously, Scuttlebutt and Scuttlebutt-GC behave
much better than state-based synchronization, yielding a reduc-
tion in the transmission cost between 46% and 91%, and 20%
and 65%, respectively. This is due to the underlying precise
reconciliation mechanism of Scuttlebutt. Operation-based syn-
chronization leads to a transmission reduction between 35%
and 80% since it is able to represent incremental changes to
the CRDT as small operations. Finally, delta-based BP + RR
is able reduce the transmission costs by up-to 94%.

In the extreme case of GMap 100% (every key in the map
is updated between synchronization rounds, which is a less
likely workload in practical systems) and considering a partial-
mesh, delta-based BP + RR provides a modest improvement in
relation to state-based of about 18% less transmission, and its
performance is below Scuttlebutt variants and operation-based
synchronization.

Vector-based protocols (Scuttlebutt and operation-based)
however, have an inherent scalability problem. When increas-
ing the number of nodes in the system, the transmission costs
may become dominated by the size of metadata required for
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synchronization, as we show next.

2) Metadata Cost: Figure 9 shows the size of metadata
required for synchronization per node while varying the total
number of replicas (i.e. nodes). The results show a linear
and quadratic cost (in terms of number of nodes) for Scut-
tlebutt and Scuttlebutt-GC (respectively), and a linear cost for
operation-based synchronization (in terms of both number of
nodes and pending updates still to be propagated). Given N
nodes, P neighbors, and U pending updates, the metadata cost
per node is:

« Scuttlebutt: NP (a vector per neighbor)

« Scuttlebutt-GC: N2 P (a map of vectors per neighbor)

¢ Operation-based: NPU (a vector per neighbor per pend-

ing update)

o Delta-based: P (a sequence number per neighbor)

This cost may represent a large fraction of all data prop-
agated during synchronization. For example, in our measure-
ments with 32 nodes, this metadata represents 75%, 99%, and
97% of the transmission costs for Scuttlebutt, Scuttlebutt-GC
and operation-based, respectively, while the overhead of delta-
based synchronization is only 7.7%.
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TABLE II: Retwis workload characterization: for each opera-
tion, the number of CRDT updates performed and its workload
percentage.

Operation #Updates Workload %
Follow 1 15%
Post Tweet 1 + #Followers 35%
Timeline 0 50%

3) Memory footprint: In delta-based synchronization, the
size of §-groups being propagated not only affects the network
bandwidth consumption, but also the memory required to
store them in the J-buffer for further propagation. During
the experiments, we periodically measure the amount of state
(both CRDT state and metadata required for synchronization)
stored in memory for each node.

Figure 10 reports the average memory ratio with respect
to BP 4+ RR. State-based does not require synchronization
metadata, and thus it is optimal in terms of memory usage.
Classic delta-based and delta-based BP have an overhead of
1.1x-3.9x since the size of J-groups in the §-buffer is larger
for these techniques. For GSet and GMap 10%, Scuttlebutt-
GC is close to BP + RR since deltas are removed from the
key-value store as soon as they are seen by all replicas. Key-
delta pairs are never pruned in the original Scuttlebutt, leading
to an increasing memory usage. As long as new updates exist,
the memory consumption for Scuttlebutt can only deteriorate,
ultimately to a point where it will disrupt the system operation.
Operation-based has a higher memory cost than Scuttlebutt-
GC, since each operation in the transmission buffer is tagged
with a vector, while in Scuttlebutt and Scuttlebutt-GC each
delta is simply tagged with a version pair.

Considering the results for GCounter, the three vector-
based algorithms exhibit the highest memory consumption.
This is justified by the same reason they perform poorly in
terms of transmission bandwidth in this case (Figure 7): these
protocols are unable to compress incremental changes. Overall,
and ignoring state-based which doesn’t present any metadata
memory costs, BP + RR attains the best results.

C. Retwis Application

We now compare classic delta-based with delta-based
BP + RR using Retwis [23], a popular [24]-[26] open-source
Twitter clone. In Table II we describe the application work-
load, similar to the one used in [24]: user a can follow user
b by updating the set of followers of user b; users can post a
new tweet, by writing it in their wall and in the timeline of
all their followers; and finally, users can read their timeline,
fetching the 10 most recent tweets.

Each user has 3 objects associated with it: 1) a set of
followers stored in a GSet; 2) a wall stored in a GMap mapping
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the experiment (respectively).

tweet identifiers to their content; and 3) a timeline stored in
a GMap mapping tweet timestamps to tweet identifiers. We
run this benchmark with 10K users, and thus, 30K CRDT
objects overall. The size of tweet identifiers and content is
31B and 270B, respectively. These sizes are representative of
real workloads, as shown in an analysis of Facebook’s general-
purpose key-value store [27]. The topology is a partial-mesh,
with 50 nodes, each with 4 neighbors, as in Figure 6, and
updates on objects follow a Zipf distribution, with coefficients
ranging from 0.5 (low contention) to 1.5 (high contention)
[24].

Figure 11 shows the transmission bandwidth and memory
footprint of both algorithms, for different Zipf coefficient
values. We can observe that in low contention workloads,
classic delta-based behaves almost optimally when compared
to BP 4+ RR. Since updates are distributed almost evenly across
all objects, there are few concurrent updates to the same object
between synchronization rounds, and thus, the simple and
naive inflation check in line 16 suffices. This phenomena was
not observed in the previous set of benchmarks, since we had
a single object, and thus, maximum contention.

As we increase contention, a more sophisticated approach
like BP 4+ RR is required, in order to avoid redundant state
propagation. For example, with a 1.25 coefficient, bandwidth
is reduced from 1. 46GB/s to 0. 06GB/s per node, and memory
footprint per node drops from 1.58GB to 0.62GB (right side
of the plots). Also, as we increase the Zipf coefficient, we note
that the bandwidth consumption continues to rise, leading to
an unsustainable situation in the case of classic delta-based,
as it can never reduce the size of §-groups being transmitted.

During the experiment we also measured the CPU time
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spent in processing CRDT updates, both producing and pro-
cessing synchronization messages. Figure 12 reports the CPU
overhead of classic delta-based, when considering BP + RR as
baseline. Since classic delta-based produces/processes larger
messages than BP + RR, this results in a higher CPU cost: for
the 1, 1.25 and 1.5 Zipf coefficients, classic delta-based incurs
an overhead of 0.4x, 5.5x, and 7.9x respectively.

VI. RELATED WORK

In the context of remote file synchronization, rsync [28] syn-
chronizes two files placed on different machines, by generating
file block signatures, and using these signatures to identify
the missing blocks on the backup file. In this strategy, there’s
a trade-off between the size of the blocks to be signed, the
number of signatures to be sent, and the size of the blocks to be
received: bigger blocks to be signed implies fewer signatures
to be sent, but the blocks received (deltas) can be bigger than
necessary. Inspired by rsync, Xdelta [29] computes a difference
between two files, taking advantage of the fact that both files
are present. Consequently the cost of sending signatures can
be ignored and the produced deltas are optimized.

In [30], we propose two techniques that can be used to
synchronize two state-based CRDTs after a network partition,
avoiding bidirectional full state transmission. Let A and B
be two replicas. In state-driven synchronization, A starts by
sending its local lattice state to B, and given this state, B is
able to compute a delta that reflects the updates missed by A.
In digest-driven synchronization, A starts by sending a digest
(signature) of its local state (smaller than the local state), that
still allows B to compute the delta. B then sends the computed
delta along with a digest of its local state, allowing A to
compute a delta for B. Convergence is achieved after 2 and 3
messages in state-driven and digest-driven, respectively. These
two techniques also exploit the concept of join decomposition
presented in this paper.

Similarly to digest-driven synchronization, A-CRDTs [31]
exchange metadata used to compute a delta that reflects
missing updates. In this approach, CRDTs need to be extended
to maintain additional metadata for delta derivation, and if this
metadata needs to be garbage collected, the mechanism falls-
back to standard bidirectional full state transmission.

In the context of anti-entropy gossip protocols, Scuttlebutt
[20] proposes a push-pull algorithm to be used to synchronize



a set of values between participants, but considers each value
as opaque, and does not try to represent recent changes to these
values as deltas. Other solutions try to minimize the com-
munication overhead of anti-entropy gossip-based protocols
by exploiting either hash functions [32] or a combination of
Bloom filters, Merkle trees, and Patricia tries [33]. Still, these
solutions require a significant number of message exchanges
to identify the source of divergence between the state of two
processes. Additionally, these solutions might incur significant
processing overhead due to the need of computing hash
functions and manipulating complex data structures, such as
Merkle trees.

With the exception of Xdelta, all these techniques do not
assume knowledge prior to synchronization, and thus delay
reconciliation, by always exchanging state digests in order to
detect state divergence.

VII. CONCLUSION

Under geo-replication there is a significant availability and
latency impact [1] when aiming for strong consistency criteria
such as linearizability [34]. Strong consistency guarantees
greatly simplify the programmers view of the system and
are still required for operations that do demand global syn-
chronization. However, several other system’s components do
not need that same level of coordination and can reap the
benefits of fast local operation and strong eventual consistency.
This requires capturing more information on each data type
semantics, since a read/write abstraction becomes limiting for
the purpose of data reconciliation. CRDTSs can provide a sound
approach to these highly available solutions and support the
existing industry solutions for geo-replication, which are still
mostly grounded on state-based CRDTs.

State-based CRDT solutions quickly become prohibitive in
practice, if there is no support for treatment of small incre-
mental state deltas. In this paper we advance the foundations
of state-based CRDTs by introducing minimal deltas that
precisely track state changes. We also present and micro-
benchmark two optimizations, avoid back-propagation of 0-
groups and remove redundant state in received &-groups,
that solve inefficiencies in classic delta-based synchronization
algorithms. Further evaluation shows the improvement our
solution can bring to a small scale Twitter clone deployed
in a 50-node cluster, a relevant application scenario.
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APPENDIX
A. Existence of Unique Irredundant Decompositions

In this section we present sufficient conditions for the
existence of unique irredundant join decompositions, and show
how they can be obtained.

Definition 4 (Descending chain condition). A lattice L sat-
isfies the descending chain condition (DCC) if any sequence
xry J xo J -+ 3 xpy 3 -+ of elements in L has finite
length [19].

Proposition 1. In a distributive lattice L satisfying DCC every
element © € L has a unique irredundant join decomposition.

Proof: Trivial, as corollary of the dual of Theorem 6
from [18]: a distributive lattice is modular; if it also satis-
fies DCC, then each element has a unique irredundant join
decomposition. |

For almost all CRDTs used in practice, the state is not
merely a join-semilattice, but a distributive lattice satisfying
DCC (Appendix B). Therefore, from Proposition 1, we have a
unique irredundant join decomposition for each CRDT state.
Let |z denote this unique decomposition of an element z.

Proposition 2. If L is a finite distributive lattice, then |z is
given by the maximals of the join-irreducibles below x:

Yz =max{re J(L)|r Cz}

Proof: From the Birkhoft’s Representation Theorem (see,

e.g., [19]), each element x is isomorphic to {r € J(L) | r C

x}, the set of join-irreducibles below it, which is isomorphic

to the set of its maximals, containing no redundant element.

|

Although Proposition 2 is stated for finite lattices, it can be

applied to typical CRDTs defined over infinite lattices, as we
show next.

B. Lattice Compositions in CRDTs

We now show that unique irredundant join decompositions
(and therefore, optimal deltas and delta-mutators) can be
obtained for almost all state-based CRDTSs used in practice.
Most CRDT designs define the lattice state starting from lattice
chains (booleans and natural numbers), unordered sets, partial
orders, and obtain more complex states by lattice composition
through: cartesian product x, lexicographic product X, linear
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Fig. 13: Hasse diagram of P({a,b}) X P({a,b}), a non-
distributive lattice.

sum ¢, finite functions < from a set to a lattice, powersets P,
and sets of maximal elements M (in a partial order). Note that
two of the constructs, < and P, were used in Section II-A
to define GCounter and GSet, respectively. The use of these
composition techniques and a catalog of CRDTs is presented
in [35] but that presentation (as well as CRDT designs in
general) simply considers building join-semilattices (typically
with bottom) from join-semilattices, never examining whether
the result is more than a join-semilattice.

In fact, all those constructs yield lattices with bottom when
starting from lattices with bottom. Moreover, all these con-
structs yield lattices satisfying DCC, when starting from lat-
tices satisfying DCC (such as booleans and naturals). Also, it
is easily seen that most yield distributive lattices when applied
to distributive lattices, with the exception of the lexicographic
product with an arbitrary first component. As an example, in
Figure 13 we depict the Hasse diagram of a non-distributive
lexicographic pair. This lattice is non-distributive since, e.g.,
for = ({a}, {a}), y = ({a}, D) and z = ({b}, T), we have
x=xMN(yUz) # (zNy)U(zMz) = y. For the join-reducible
({a,b}, @), the set of the maximals of the join-irreducibles
below it (i.e. {({a},{a}), ({a},{0}), ({b}, {a}), ({0}, {O1)})
is a redundant decomposition (as well as some of its subsets),
and there are several alternative irredundant decompositions:

« {({a},2), ({b},2)} o {({a},{a}), ({b},2)}
« {({a},2), ({0}, {a})} o ...
« {({a}, @), ({b}, {01} o {{a}, {0}), ({b}, {b})}

Fortunately, the typical use of lexicographic products to
design CRDTs is with a chain (total order) as the first
component, to allow an actor which is “owner” of part of
the state (the single-writer principle [36]) to either inflate the
second component, or to change it to some arbitrary value,
while increasing a “version number” (first component). This
principle is followed by Cassandra counters [37]. In such
typical usages of the lexicographic product, with a chain as
first component, the distributivity of the second component
is propagated to the resulting construct. Table III summarizes
these remarks about how almost always these CRDT compo-
sition techniques yield lattices satisfying DCC and distributive
lattices, and thus, have unique irredundant decompositions, by
Proposition 1.



TABLE III: Composition techniques that yield lattices satisfying DCC and distributive lattices, given lattices A and B, chain

C, partial order P and (unordered) set U.

L
AXxB [ AXB | CXNA | A@B | U=A | P(U) | M(P)
A, B, P has DCC = £ has DCC v v v v v v v
A, B distributive = £ distributive v X v v/ v v v

TABLE IV: Composition techniques that yield finite ideals or quotients, given lattices A and B, chain C, partial order P, all

satisfying DCC, and (unordered) set U.

L
AXxB | ANB [ CWA | A® B | USA | P(U) | M(P)
Vz € L - z/L finite 7 X X X 7 4 v
Y{(z,y) € L (x,y)/{x, L) finite - v v v - - -
Having DCC and distributivity, even if it always occurs in

practice, is not enough to directly apply Proposition 2, as it .<n7 {a}) (n,{b}) (n, {C}> _
holds for finite lattices. However if the sublattice given by T \ ‘ / e
the ideal | = {y | y C =z} is finite, then we can apply (n, D)

that proposition to this finite lattice (for which x is now the
top element) to compute |}x. Again, finiteness yields from all
constructs, with the exception of the lexicographic product and
linear sum. For these two constructs, a similar reasoning can
be applied, but focusing on a quotient sublattice in order to
achieve finiteness.

Definition 5 (Quotient sublattice). Given elements a T b € L,
the quotient sublattice b/a is given by:

bja={zxeL]alxCb}

Quotients generalize ideals, as we have |z = x/L. As an
example, given some infinite set U and the lattice N X P(U),
for each © = (n, s), the ideal J« is still infinite when n > 0, as
depicted in Figure 14. However, for each (n,s), the quotient
(n,s)/(n, L) is a finite lattice, and moreover, the elements
given by |(n,s) are the same either when considering the
original lattice or the quotient sublattice. Therefore, we can use
the formula for |}z in Proposition 2. A similar reasoning can be
used for linear sums. Table IV summarizes these remarks; the
second row applies only to lexicographic products and linear

sums?.

C. Decomposing Compositions

In this section we show that for each composition technique
there is a corresponding decomposition rule. As the lattice join
U of a composite CRDT is defined in terms of the lattice join
of its components [35], decomposition rules of a composite
CRDT follow the same idea and resort to the decomposition
of its smaller parts. We now present such rules for all lattice
compositions covered in Tables III and IV.

21n order to have a common notation for instances of X and @, @ instances
are presented as pairs. For example, Lefta € A @ B becomes (Left, a).
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(0,{a,0}) (0, {a, c}) (0, {b, c})
| > ]
(0,{a}) (0,{0}) (0,{ch

(0,9)

Fig. 14: Hasse diagram of IN X P(U), for an infinite set U,
where most ideals are infinite.

ce C: Je={c}

(a,by € Ax B: J{a,b) =Jax {LTU{L} x{b

(c,a) e CK A: Y{c,a) = e x la

Leftac A® B: || Lefta = {Leftv | v € {a}

Rightb € A® B: | Rightb = {Rightv | v € b}
feU=A: Jf={k—v|kedom(f)Avelf(v)}
sePU): Js={{e}|eecs}

se M(P): Js={{e}|ecs}

Note how the decompositions of GCounter and GSet pre-
sented in Section III-A are an application of these rules.
As a further example, consider a positive-negative counter —
PNCounter — a CRDT counter that allows both increments and
decrements. In this CRDT, each replica identifier is mapped
to a pair where the first component tracks the number of
increments, and the second the number of decrements, i.e.
PNCounter = T < (IN x IN). Given a PNCounter state
p={A—(2,3),B—(5,5)} (2 increments by A, 3 decrements
by A, and an equal number of increments and decrements
by B), the irredundant join decomposition of p is {p =
{{A= (2,00}, {A(0,3]}, {B(5,0)}, {B(0,5)}}.



