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Dense Passage Retrieval
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REALM QA Finetuning
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REALM QA Finetuning
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Training = 12 GB GPU, 1 BS
Pre-Training = CC-News



Bottlenecks in REALM

Metric NQ wQ CT
Test EM (Guu et al) 40.4 407 429

Test EM (Ours) 394 40.8 39.3
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Bottlenecks in REALM
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Training Scaling

e 112GB GPU =» 8 TPU v3 core
e Batch Size =1 Batch Size » 16 Batch Size

e TPU MIPS
o TPU Exact Top-K
o Efficient TPU Top-K - Binned Approximate

® Reader: k=5 =+ k=10



Training Scaling

Experiments Test Acc Dev Acc R@10
REALM 394 35.6 68.8

+Scale 42.8 379 69.5



Supervision

® Supervision in REALM

o Reader - Span Match - Gold Label Supervision
o Retriever - Has Answer - Distant Supervision

e Has Answer - Simple Match if document has target answer
o Ambiguous and Noisy Signal

o Unrelated Documents get positive signal

e Gold Supervision - expensive to obtain

e Weak Supervision - cheap and easily applicable to large datasets



Supervision

Q = Which president supported the creation of the Environmental Protection
Agency(EPA)?

Ret Passage = Some historians say that President Richard Nixon’s southern
strategy turned the southern United States into a republican stronghold, while
others deem economic factors more important in the change.

Gold Passage = The Environmental Protection Agency (EPA) is an agency of the
federal government of the United States created for the purpose of protecting
human health and the environment. President Richard Nixon proposed the
establishment of EPA and it began operation on December 2, 1970, after Nixon
signed an executive order.



Supervision

e Gold Label Supervision for Retriever
o Human Annotated Evidence Passages

e Natural Questions

o Annotations for Candidate Passages - Long Answer
o Relevant Passage with Answer Span

e Passages have small differences - Exact Match is restrictive
o Passage with 50% word overlap with target passage is considered gold label



Supervision
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Inference Scaling

e Scaling Reader to Process More Documents

o Memory Constraints
o Expensive - More Resources
o Dedicated Architecture

® Read More Documents - Inference

o Use extra memory from Optimization Storage
o Increase No: Documents processed parallely by reader



Inference Scaling

Experiments Test Acc Dev Acc R@10
REALM 394 35.6 68.8
+Scale 42.8 379 69.5
+Scale+PS 43.2 38.6 69.9

+Scale+PS - 100 docs 44.8 38.6 69.9



Inference Scaling
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Cross-Document Passage Reranking
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Cross-Document Passage Reranking

Experiments Test Acc Dev Acc R@10
REALM 39.4 35.6 68.8
+Scale 42.8 379 69.5
+Scale+PS 43.2 38.6 69.9
+Scale+PS - 100 docs 44.8 38.6 69.9

+ScaletRerank 42.3 374 67.5



Cross-Document Passage Reranking

Model R@10 Dev EM
REALM 68.8 35.6
+Scale (Fixed Ret) 59.6 331
+Scale +Rerank (Fixed Ret) 67.9 35.8
+Scale +Rerank +PS (Fixed Ret) 67.5 371




Cross-Document Passage Reranking

Model R@10 Dev EM
REALM 68.8 35.6
+Scale (Fixed Ret) 59.6 331
+Scale +Rerank (Fixed Ret) 67.9 35.8
+Scale +Rerank +PS (Fixed Ret) 67.5 371
+Scale (Trained Ret) 69.5 379
+Scale +Rerank (Trained Ret) 67.5 374



REALM++

e Training Setup Scaling
o  Distributed Training on TPUs

o Increased Batch Size
o Exact MIPS

e Gold Passage Supervision
o Human Annotations on Evidence Passages

e Increased Reader Documents during Inference
o  Train with 10 docs, Predict with 100 docs



REALM++ v/s Same size models

Model NQ wQ CT

BM25+BERT (Lee et al., 2019) 26.5 177 21.3
ORQA (Lee et al., 2019) 333 36.4 301

REALM (Guu et al., 2019) 39.2 40.2 46.8
REALM,_ . (Guu et al., 2019) 40.4 40.7 42.9
DPR (Karpukhin et al., 2020) 41.5 42.4 49.4
REALM++ (10 doc) 43.2 445 47.2

REALM++ (100 doc) 44.8 45.6 49.7



REALM++ v/s Large models

Model Model Size NQ waQ CT
REALM Base 39.2 40.2 46.8
REALM, ... Base 40.4 40.7 42.9
DPR Base 41.5 42.4 49.4
REALM++ (10 doc) | Base 43.2 44.5 47.2
REALM++ (100 Base 44.8 45.6 497
doc)

RAGLarge Large 445 45/5 52.2
ReConsiderLarge Large 45.5 45.9 55.3



Speed and Memory Usage

e Increased Speed

o TPU Efficiency + Larger Batch Training
o 4x more examples per second wrt REALM

e Training Time
o Reduces from 48 hours to 12 hours for same epochs

e Memory utilization

o Increases ~5GB due to loading the index in memory
o Fits within 12GB ~ Dragonfish



Summary!
e REALM was significantly undertrained - Works better than previously known

e Scale - plays an important role, accounts for large gains

o  Better training, optimization
o Larger batch-size

e Dense Retrieval systems should be compared by normalizing training factors
like batch size to understand the actual benefit of a method

e Reading more documents during inference is a quick easy way to boost
performance!



Directions for Future Work

e Reader Bottleneck
o Span ldentification is problematic
o Better Readers - improved reasoning
o Incorporating more context - Routing Transformer, Longformer, etc

e Incorporating reranking modules
o Reranking - cheap method for cross-document interaction
o  Optimization problems with retriever - currently doesn’t improve
o Better methods to optimize pre-trained retriever and untrained reranker needed



Thank You!

Questions?

vbalacha@cs.cmu.edu,
Contact - nikip@google.com,
avaswani@google.com
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