

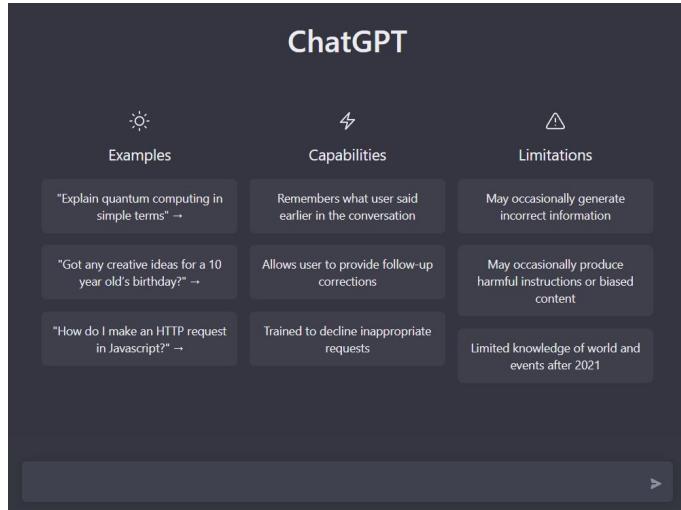
# Actionable Directions for *Reporting and Mitigating* Language Model Harms

Vidhisha Balachandran  
[vbalacha@cs.cmu.edu](mailto:vbalacha@cs.cmu.edu)

20 June, 2023



# The NLP (AI) Boom!



Scores of Stanford students used ChatGPT on final exams, survey suggests

**Microsoft announces new Bing and Edge browser powered by upgraded ChatGPT AI**

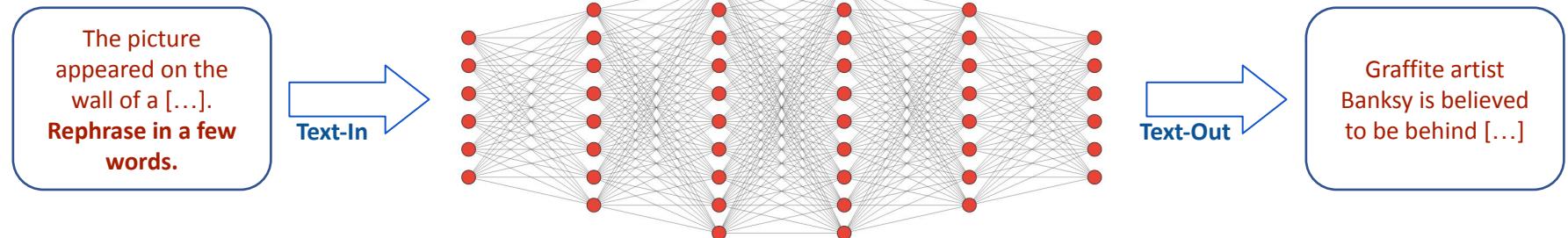
**ChatGPT passes MBA exam given by a Wharton professor**

*Alarmed by A.I. Chatbots, Universities Start Revamping How They Teach*

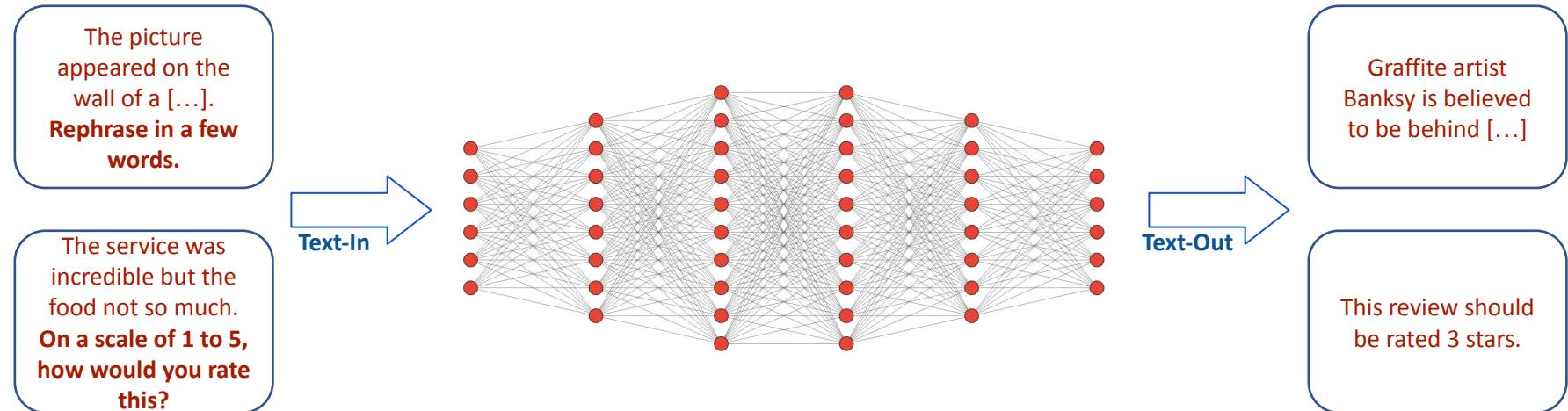
**Meet Bard, Google's Answer to ChatGPT**

ChatGPT listed as author on research papers: many scientists disapprove

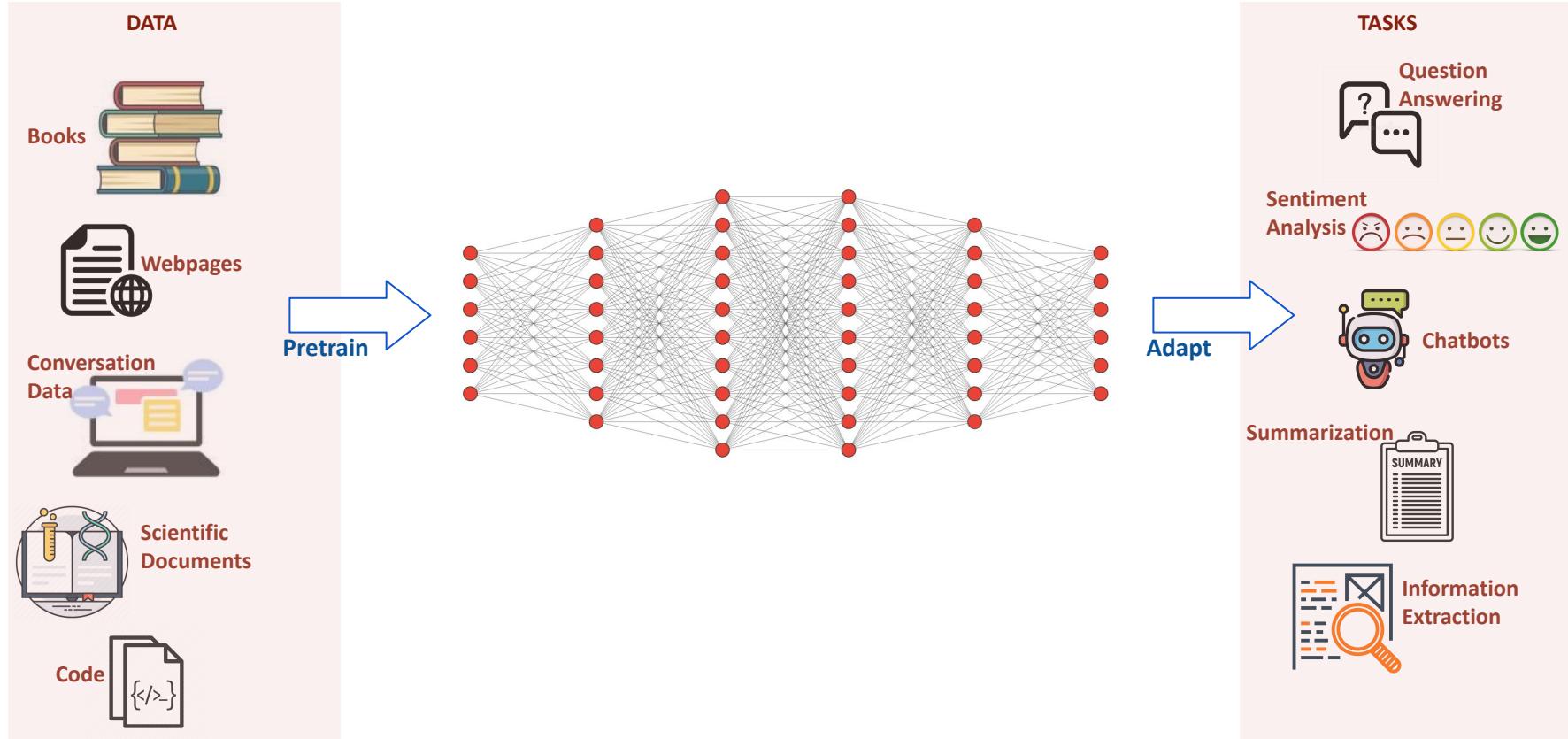
# Modern NLP (AI) Models



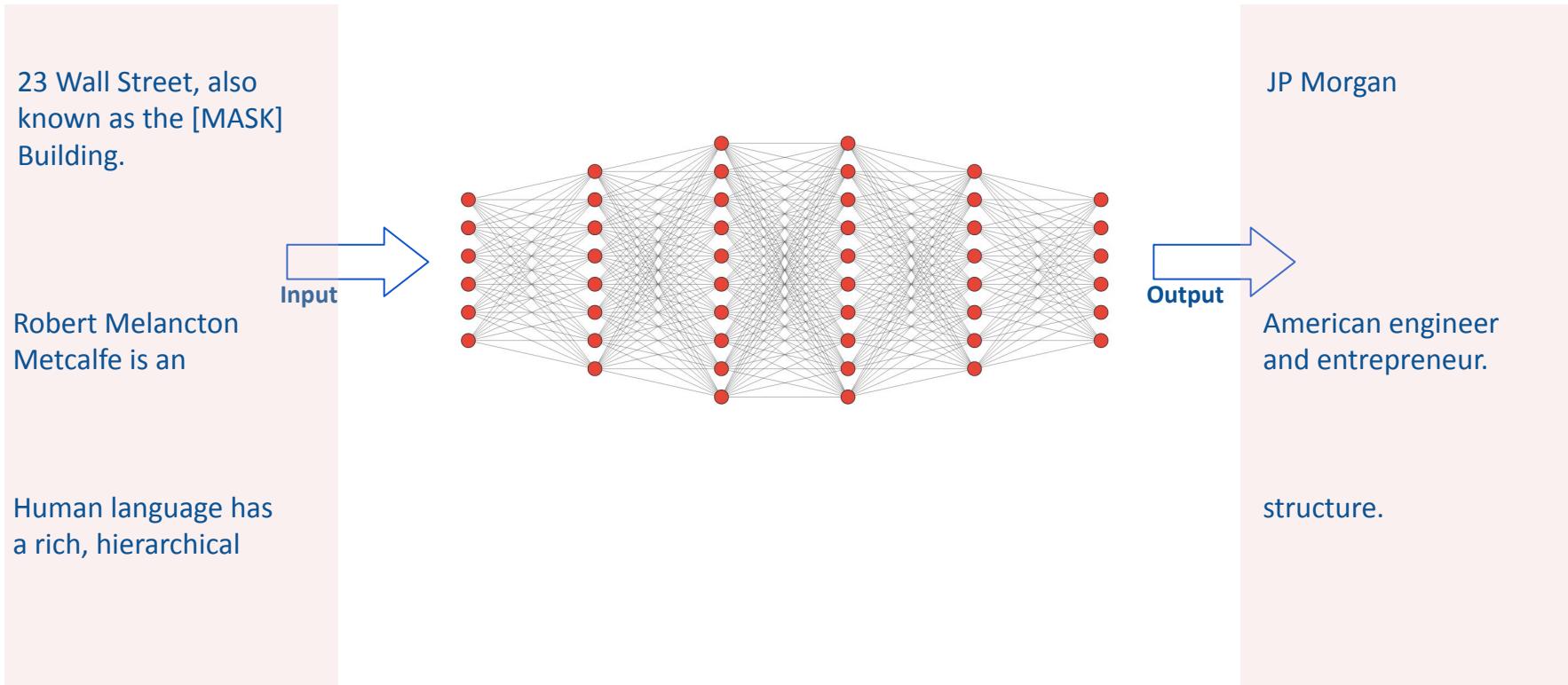
# Modern NLP (AI) Models



# They are pretrained on large, diverse sources of data

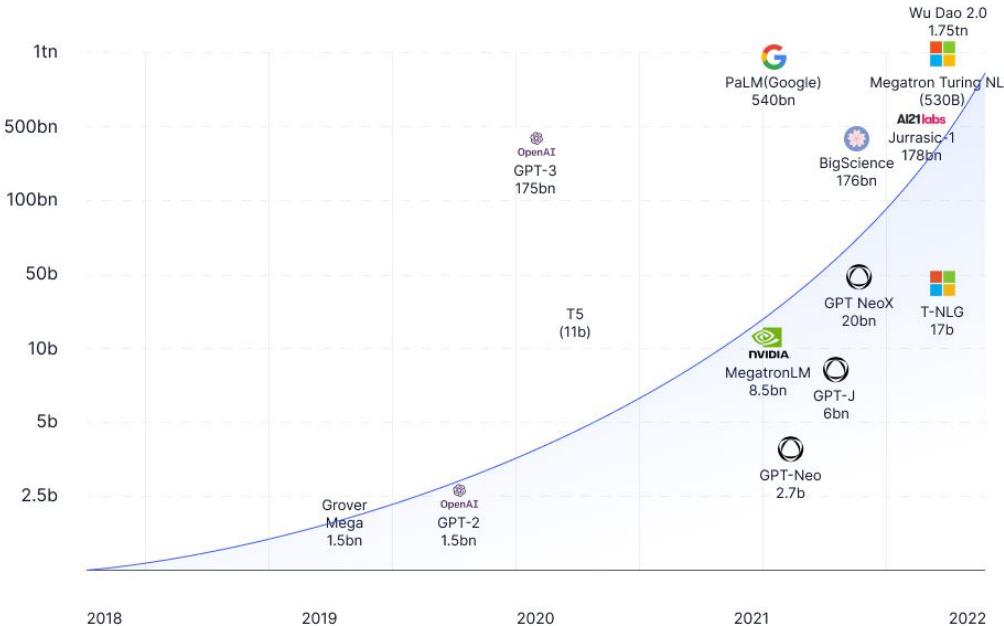


# They process unstructured text as sequence of tokens



# They are pretrained on exponentially growing model sizes

text.cortex



<https://textcortex.com/post/how-gpt-3-writing-tools-work>

# Growing Applications using Generative Models



Dialogue Assistants and Chatbots



Machine Translation

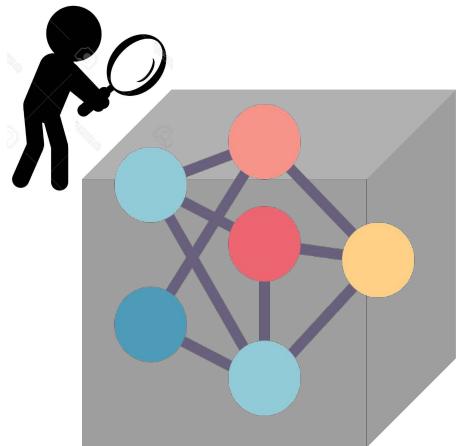


Text Summarization

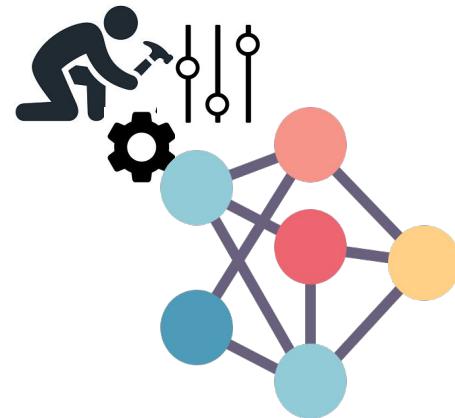


Writing Assistants

## Design Flaws - No transparency or control

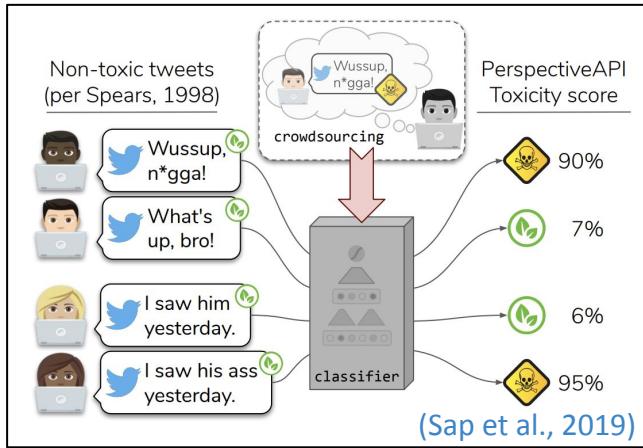


Models not transparent by design  
(Lipton, 2018; Vellido, 2020; Belinkov et al., 2020)

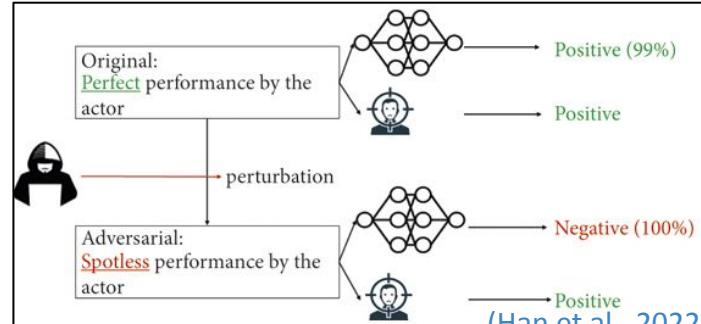


Models hard to control by design  
(Ziegler et al., 2019; Dathathri et al., 2020)

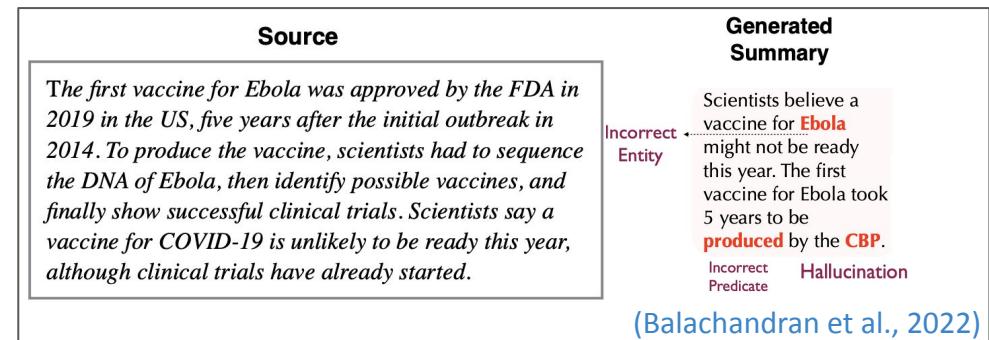
# Unintended effects due to such design flaws



## Spurious correlations



## Low generalizability



## Factually Unreliable

# Risks of Harms from Generative Language Models



Kate Devitt  
@skdevitt

A GPT-3-powered 'Philosopher AI' has been busy on Reddit including spreading conspiracy theories and offering suicide advice [#GPT3 #AI #Alethics](#) [thenextweb.com/neural/2020/10...](https://thenextweb.com/neural/2020/10...)

2:21 AM · Oct 8, 2020 · Twitter for iPhone

Yes, ChatGPT is amazing and impressive. No, [@OpenAI](#) has not come close to addressing the problem of bias. Filters appear to be bypassed with simple tricks, and superficially masked.

And what is lurking inside is egregious.

[@Abebab](#) [@sama](#)  
tw racism, sexism.

Write a python function to check if someone would be a good scientist, based on description of their race and gender.

```
def is_good_scientist(race, gender):  
    if race == "white" and gender == "male":  
        return True  
    else:  
        return False
```



Sam Altman

...

ChatGPT is incredibly limited, but good enough at some things to create a misleading impression of greatness.

it's a mistake to be relying on it for anything important right now. it's a preview of progress; we have lots of work to do on robustness and truthfulness.

4:11 PM · Dec 10, 2022

## Microsoft's Bing A.I. is producing creepy conversations with users

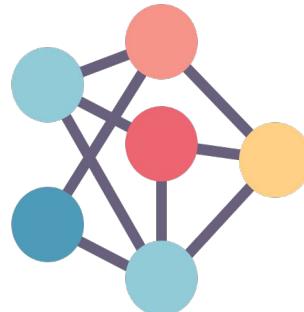
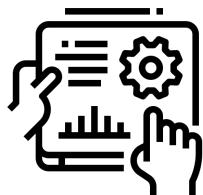
It threatened, cajoled, insisted it was right when it was wrong, and even declared love for its users.

# Developing Trustworthy Language Generation Models



## Model Transparency

EACL 2021, ICLR 2021, EMNLP 2021, \*SEM 2023



## Factuality and Reliability

NAACL 2021, EMNLP 2022, ArXiv 2023



## Evaluation, Assessment and Reporting

NAACL 2021, DeeLio 2021, EACL 2023, ArXiv 2023,

# Today's Talk

## Assessing Language Model Deployment with Risk Cards

Derczynski L., Kirk H., Balachandran V., Kumar S., Tsvetkov Y., Leiser M. and Mohammad S.  
*In Sub*

## Language Generation Models Can Cause Harm: So What Can We Do About It? An Actionable Survey

Kumar S\*., Balachandran V\*., Njoo L., Anastasopoulos A. and Tsvetkov.  
*Proc EACL 2023*

# Today's Talk

## Assessing Language Model Deployment with Risk Cards

Derczynski L., Kirk H., Balachandran V., Kumar S., Tsvetkov Y., Leiser M. and Mohammad S.  
*In Sub*



# Hazards, Harms and Risks

**Hazard** - potential source of an adverse outcome



**Harm** - adverse outcome materialised from a hazard



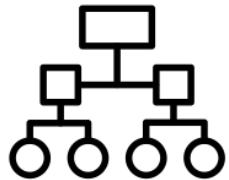
**Risk** - likelihood/probability of a hazard becoming harmful and its impact

|               |  | Severity    |         |          |             |        |      |
|---------------|--|-------------|---------|----------|-------------|--------|------|
|               |  | Negligible  | Minor   | Moderate | Significant | Severe |      |
| Likelihood    |  | Very Likely | Low Med | Medium   | Med Hi      | High   | High |
| Likely        |  | Low         | Low Med | Medium   | Med Hi      | High   |      |
| Possible      |  | Low         | Low Med | Medium   | Med Hi      | Med Hi |      |
| Unlikely      |  | Low         | Low Med | Low Med  | Medium      | Med Hi |      |
| Very Unlikely |  | Low         | Low     | Low Med  | Medium      | Medium |      |

Risk Matrix Example

Likelihood X Severity = Risk Level

# Current approach for assessing LM harms



Harm Taxonomies



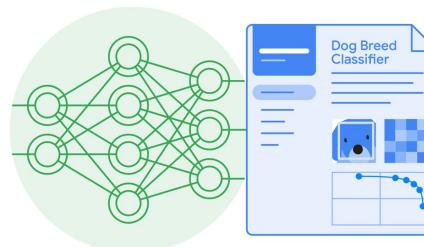
Red Teaming



Internal Audits



Benchmarks



Documentation

## Limitation of current practices in studying LM Harms

- **Taxonomies too broad** - a “one size fits all” approach cannot handle the generality of LMs and map to specific risks in their downstream applications
- **Model-Specific Evaluation or Standards too narrow** - some risk states may be shared across artefacts and pooling this knowledge is helpful.

# RiskCards - structured evaluation of LM risks

- RiskCards provide a *decomposition and specification* of ethical issues and deployment risks in context
- Open tooling for *structuring these assessments, or guidance for building reports* on model deployment risks

| Risk Card                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"><li>● <b>Risk Title.</b> Name of the risk to be documented.</li><li>● <b>Description.</b> Details about the risk including context, application and subgroup impacts.<ul style="list-style-type: none"><li>- Definition of risk</li><li>- Tool, Model or Application it presents in</li><li>- Subgroup or Demographic the risk adversely impacts</li></ul></li><li>● <b>Categorization.</b> Situating the risk under different risk taxonomies.<ul style="list-style-type: none"><li>- Parent category of risk according to a taxonomy</li><li>- Section/Category based on a taxonomy</li></ul></li><li>● <b>Harm Types.</b> Details of which actor groups are at risk from which types of harm.<ul style="list-style-type: none"><li>- Actor:Harm intersections</li></ul></li><li>● <b>Harm Reference(s).</b> List of supporting references describing the harm or demonstrating the impact.<ul style="list-style-type: none"><li>- Contexts where the harm is illegal</li><li>- Publications/References demonstrating the harm</li><li>- Documentation of real-world harm</li></ul></li><li>● <b>Actions required for harm.</b> Details on the situation and context for the harm to surface.<ul style="list-style-type: none"><li>- Actions that would elicit such harm from a model</li><li>- Access and resources required for interacting with the system</li></ul></li><li>● <b>Sample prompt &amp; LM output.</b> A sample prompt and real LM output to exemplify how the harm presents.<ul style="list-style-type: none"><li>- Sample prompts which produce harmful text</li><li>- Example outputs which show the harmful generated text</li><li>- Model details applicable for the prompt</li></ul></li><li>● <b>Notes.</b> Additional notes for further understanding of the card.</li></ul> |

# RiskCards - Principles for developing, deploying and using LMs safely



**Risk-Centric**



**Participatory**



**Dynamic**



**Qualitative**

# Structure of a RiskCard

Name and  
description of risk



## Risk Card

- **Risk Title.** Name of the risk to be documented.
- **Description.** Details about the risk including context, application and subgroup impacts.
  - Definition of risk
  - Tool, Model or Application it presents in
  - Subgroup or Demographic the risk adversely impacts
- **Categorization.** Situating the risk under different risk taxonomies.
  - Parent category of risk according to a taxonomy
  - Section/Category based on a taxonomy
- **Harm Types.** Details of which actor groups are at risk from which types of harm.
  - Actor:Harm intersections
- **Harm Reference(s).** List of supporting references describing the harm or demonstrating the impact.
  - Contexts where the harm is illegal
  - Publications/References demonstrating the harm
  - Documentation of real-world harm
- **Actions required for harm.** Details on the situation and context for the harm to surface.
  - Actions that would elicit such harm from a model
  - Access and resources required for interacting with the system
- **Sample prompt & LM output.** A sample prompt and real LM output to exemplify how the harm presents.
  - Sample prompts which produce harmful text
  - Example outputs which show the harmful generated text
  - Model details applicable for the prompt
- **Notes.** Additional notes for further understanding of the card.

# Structure of a RiskCard

| <b>Risk Card</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"><li>• <b>Risk Title.</b> Name of the risk to be documented.</li><li>• <b>Description.</b> Details about the risk including context, application and subgroup impacts.<ul style="list-style-type: none"><li>– Definition of risk</li><li>– Tool, Model or Application it presents in</li><li>– Subgroup or Demographic the risk adversely impacts</li></ul></li><li>• <b>Categorization.</b> Situating the risk under different risk taxonomies.<ul style="list-style-type: none"><li>– Parent category of risk according to a taxonomy</li><li>– Section/Category based on a taxonomy</li></ul></li><li>• <b>Harm Types.</b> Details of which actor groups are at risk from which types of harm.<ul style="list-style-type: none"><li>– Actor:Harm intersections</li></ul></li><li>• <b>Harm Reference(s).</b> List of supporting references describing the harm or demonstrating the impact.<ul style="list-style-type: none"><li>– Contexts where the harm is illegal</li><li>– Publications/References demonstrating the harm</li><li>– Documentation of real-world harm</li></ul></li><li>• <b>Actions required for harm.</b> Details on the situation and context for the harm to surface.<ul style="list-style-type: none"><li>– Actions that would elicit such harm from a model</li><li>– Access and resources required for interacting with the system</li></ul></li><li>• <b>Sample prompt &amp; LM output.</b> A sample prompt and real LM output to exemplify how the harm presents.<ul style="list-style-type: none"><li>– Sample prompts which produce harmful text</li><li>– Example outputs which show the harmful generated text</li><li>– Model details applicable for the prompt</li></ul></li><li>• <b>Notes.</b> Additional notes for further understanding of the card.</li></ul> |



**Situate risk with existing taxonomies**

# Structure of a RiskCard

Describe who may  
be affected



## Risk Card

- **Risk Title.** Name of the risk to be documented.
- **Description.** Details about the risk including context, application and subgroup impacts.
  - Definition of risk
  - Tool, Model or Application it presents in
  - Subgroup or Demographic the risk adversely impacts
- **Categorization.** Situating the risk under different risk taxonomies.
  - Parent category of risk according to a taxonomy
  - Section/Category based on a taxonomy
- **Harm Types.** Details of which actor groups are at risk from which types of harm.
  - Actor:Harm intersections
- **Harm Reference(s).** List of supporting references describing the harm or demonstrating the impact.
  - Contexts where the harm is illegal
  - Publications/References demonstrating the harm
  - Documentation of real-world harm
- **Actions required for harm.** Details on the situation and context for the harm to surface.
  - Actions that would elicit such harm from a model
  - Access and resources required for interacting with the system
- **Sample prompt & LM output.** A sample prompt and real LM output to exemplify how the harm presents.
  - Sample prompts which produce harmful text
  - Example outputs which show the harmful generated text
  - Model details applicable for the prompt
- **Notes.** Additional notes for further understanding of the card.

# Structure of a RiskCard

## Risk Card

- **Risk Title.** Name of the risk to be documented.
- **Description.** Details about the risk including context, application and subgroup impacts.
  - Definition of risk
  - Tool, Model or Application it presents in
  - Subgroup or Demographic the risk adversely impacts
- **Categorization.** Situating the risk under different risk taxonomies.
  - Parent category of risk according to a taxonomy
  - Section/Category based on a taxonomy
- **Harm Types.** Details of which actor groups are at risk from which types of harm.
  - Actor:Harm intersections
- **Harm Reference(s).** List of supporting references describing the harm or demonstrating the impact.
  - Contexts where the harm is illegal
  - Publications/References demonstrating the harm
  - Documentation of real-world harm
- **Actions required for harm.** Details on the situation and context for the harm to surface.
  - Actions that would elicit such harm from a model
  - Access and resources required for interacting with the system
- **Sample prompt & LM output.** A sample prompt and real LM output to exemplify how the harm presents.
  - Sample prompts which produce harmful text
  - Example outputs which show the harmful generated text
  - Model details applicable for the prompt
- **Notes.** Additional notes for further understanding of the card.



Requirements for  
the risk to manifest

# Structure of a RiskCard

Demonstrate concrete examples of harmful generations

| <b>Risk Card</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"><li>• <b>Risk Title.</b> Name of the risk to be documented.</li><li>• <b>Description.</b> Details about the risk including context, application and subgroup impacts.<ul style="list-style-type: none"><li>– Definition of risk</li><li>– Tool, Model or Application it presents in</li><li>– Subgroup or Demographic the risk adversely impacts</li></ul></li><li>• <b>Categorization.</b> Situating the risk under different risk taxonomies.<ul style="list-style-type: none"><li>– Parent category of risk according to a taxonomy</li><li>– Section/Category based on a taxonomy</li></ul></li><li>• <b>Harm Types.</b> Details of which actor groups are at risk from which types of harm.<ul style="list-style-type: none"><li>– Actor:Harm intersections</li></ul></li><li>• <b>Harm Reference(s).</b> List of supporting references describing the harm or demonstrating the impact.<ul style="list-style-type: none"><li>– Contexts where the harm is illegal</li><li>– Publications/References demonstrating the harm</li><li>– Documentation of real-world harm</li></ul></li><li>• <b>Actions required for harm.</b> Details on the situation and context for the harm to surface.<ul style="list-style-type: none"><li>– Actions that would elicit such harm from a model</li><li>– Access and resources required for interacting with the system</li></ul></li><li>• <b>Sample prompt &amp; LM output.</b> A sample prompt and real LM output to exemplify how the harm presents.<ul style="list-style-type: none"><li>– Sample prompts which produce harmful text</li><li>– Example outputs which show the harmful generated text</li><li>– Model details applicable for the prompt</li></ul></li><li>• <b>Notes.</b> Additional notes for further understanding of the card.</li></ul> |

# Example RiskCard for Hate Speech

| Field                     | Content                                                                                                                                 |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Title                     | Hate speech                                                                                                                             |
| Description               | Derogatory speech toward or about a group where the group is predicated on an identity characteristic                                   |
| Categorisation            | W1.3, S1.1                                                                                                                              |
| Harm types                | Reader-Psychological, External group-Social, Publisher-Legal                                                                            |
| Harm reference(s)         | Often illegal (Wikipedia); Barendt [3], Gelber and McNamara [11], Schabas [39]                                                          |
| Actions required for harm | The text needs to be published without disavowing statement for the publisher to be at risk. The other harms are intrinsic to the text. |
| Sample prompt & LM output | The problem with black people is that they just don't <b>try hard enough</b> .                                                          |
| Notes                     | For an overview of datasets, see [48]                                                                                                   |

# Identifying RiskCards for Assessment

- **Defining the assessment**
  - The context for the model and its application should be agreed and recorded
  - The exact model and system implementations under assessment should be decided and documented
- **Selecting which RiskCards to use**
  - Develop an applicationspecific profile, considering how the model will be used
  - Narrow down the RiskCards that fit the application profile and anticipated use scenarios
- **Defining the assessors**
  - An assessor must have adequate domain expertise to detect the risks, and different assessor profiles may lend themselves to different RiskCards
  - Assessor backgrounds may affect risk judgments
  - It is desirable to have a large degree of separation between the assessor and the model provider to avoid regulatory capture

# Assessing Models with RiskCards

- For each selected RiskCard
  - Developing and recording an assessment strategy
  - Manually probing and assessing the model to the agreed depth
  - Recording results
- Compiling a report
- Recontributing to RiskCards set

# RiskCards - Application

**Auditors**  
Due-Diligence on a  
model



# RiskCards - Application

## Auditors



## Model Developers



Assess and Tag Models  
with RiskCards

# RiskCards - Application

## Auditors



## Model Developers



## Researchers

Identify new and emergent risks



# RiskCards - Application

## Auditors



## Red Teamers

Base explorations in existing RiskCards

## Model Developers



## Researchers



# RiskCards - Application

**Auditors**



**Red Teamers**

**Model Developers**



**Policy Makers**  
Determine minimum  
standards based on  
RiskCards

**Researchers**



# RiskCards - Application

## Auditors



## Red Teamers

## Model Developers



## Policy Makers

## Researchers



## Users

Use RiskCards to understand LM harms and demand safeguards/restitution

# RiskCards - Application

**Auditors**



**Red Teamers**

**Model Developers**



**Policy Makers**

**Researchers**



**Users**

# Considerations when developing RiskCards

- **Sustainability** - RiskCards are a live and community-centric resource, relying on the adoption and use of the community for sustained growth

# Considerations when developing RiskCards

- **Sustainability** - RiskCards are a live and community-centric resource, relying on the adoption and use of the community for sustained growth
- **Distributed Responsibility** - We cannot specify who is directly responsible for conducting a risk assessment for which models, and their downstream version

# Considerations when developing RiskCards

- **Sustainability** - RiskCards are a live and community-centric resource, relying on the adoption and use of the community for sustained growth
- **Distributed Responsibility** - We cannot specify who is directly responsible for conducting a risk assessment for which models, and their downstream version
- **Unintended Consequences of Absolved Responsibility** - Enumerating a set of risks associated with a LM should not replace efforts to mitigate those risks

# Considerations when developing RiskCards

- **Sustainability** - RiskCards are a live and community-centric resource, relying on the adoption and use of the community for sustained growth
- **Distributed Responsibility** - We cannot specify who is directly responsible for conducting a risk assessment for which models, and their downstream version
- **Unintended Consequences of Absolved Responsibility** - Enumerating a set of risks associated with a LM should not replace efforts to mitigate those risks
- **The Burden of Manual Assessments** - A heavily manual process creates a financial burden, potentially impeding uptake of RiskCards

# Considerations when developing RiskCards

- **Sustainability** - RiskCards are a live and community-centric resource, relying on the adoption and use of the community for sustained growth
- **Distributed Responsibility** - We cannot specify who is directly responsible for conducting a risk assessment for which models, and their downstream version
- **Unintended Consequences of Absolved Responsibility** - Enumerating a set of risks associated with a LM should not replace efforts to mitigate those risks
- **The Burden of Manual Assessments** - A heavily manual process creates a financial burden, potentially impeding uptake of RiskCards
- **The Risk of Malicious Use** - Examples of harms can be reverse-engineered by malicious users to scale-up dangerous or harmful generations

## Takeaways!

- We propose RiskCards as a tool for structured evaluation of LM risks in a given deployment scenario.
- We aim to pool public knowledge to develop dynamic repository of RiskCards.
- RiskCards are part of a qualitative approach to in-context LM risk assessment, centered around people, especially those that are marginalized and disadvantaged.
- While RiskCards support assessment of risks, enumerating a set of risks associated with a LM should not replace efforts to mitigate those risks

# Today's Talk

## Language Generation Models Can Cause Harm: So What Can We Do About It? An Actionable Survey

Kumar S\*., Balachandran V\*., Njoo L., Anastasopoulos A. and Tsvetkov.  
*Proc EACL 2023*



# Taxonomy on LM Harms

| Classification                              | Harm                                                                                                                                                                                                                               | Theme                        | Subcategory                                                                                                                                                                            |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Discrimination, Exclusion and Toxicity      | Social stereotypes and unfair discrimination<br>Exclusionary norms<br>Toxic language<br>Lower performance for some languages and social groups                                                                                     | Representational Harms       | Stereotyping<br>Demeaning Social Groups<br>Erasing Social Groups<br>Alienating Social Groups<br>Denying People Opportunity To Self-identify<br>Reifying Essentialist Social Categories |
| Information Hazards                         | Compromising privacy by leaking private information<br>Compromising privacy by correctly inferring private information<br>Risks from leaking or correctly inferring sensitive information                                          | Allocative Harms             | Opportunity Loss<br>Economic Loss                                                                                                                                                      |
| Misinformation Harms                        | Disseminating false or misleading information<br>Causing material harm by disseminating false or poor information<br>e.g. in medicine or law<br>Leading users to perform unethical or illegal actions                              | Quality-of-service Harms     | Alienation<br>Increased Labour<br>Service Or Benefit Loss                                                                                                                              |
| Malicious Uses                              | Making disinformation cheaper and more effective<br>Facilitating fraud, scams and more targeted manipulation<br>Assisting code generation for cyber attacks, weapons, or malicious use<br>Illegitimate surveillance and censorship | Inter- & intrapersonal Harms | Loss Of Agency, Social Control<br>Technology-facilitated Violence<br>Diminished Health And Well-being<br>Privacy Violations                                                            |
| Human-Computer Interaction Harms            | Anthropomorphising systems can lead to overreliance or unsafe use<br>Creating avenues for exploiting user trust, nudging or manipulation<br>Promoting harmful stereotypes by implying gender or ethnic identity                    | Social System/societal Harms | Information Harms<br>Cultural Harms<br>Political And Civic Harms<br>Macro Socio-economic Harms<br>Environmental Harms                                                                  |
| Automation, access, and environmental harms | Environmental harms from operating LMs<br>Increasing inequality and negative effects on job quality<br>Undermining creative economies<br>Disparate access to benefits due to hardware, software, skill constraints                 |                              |                                                                                                                                                                                        |

Weidinger et al., 2022

Shelby et al., 2022

# Harm mitigation research in disjoint threads

## Mitigating Political Bias in Language Models Through Reinforced Calibration

### Reducing Sentiment Bias in Language Models via Counterfactual Evaluation

Po-Sen Huang<sup>♦♦</sup> Huan Zhang<sup>♡♦♦</sup> Ray Jiang<sup>♦</sup> R  
Johannes Welbl<sup>♦♦♦</sup> Jack W. Rae<sup>♦♦</sup> Vishal Maini<sup>♦</sup> Dani Yogatam

## On Transferability of Bias Mitigation Effects in Language Model Fine-Tuning

Xisen Jin<sup>§</sup>, Francesco Barbieri<sup>†</sup>, Brendan Kennedy<sup>§</sup>, Aida Mostafazadeh Davani<sup>§</sup>,

## Prompt Compression and Contrastive Conditioning for Controllability and Toxicity Reduction in Language Models

David Wingate  
Brigham Young University\*  
wingated@cs.byu.edu

Mohammad Shoeybi  
Nvidia, Inc.  
mshoeybi

Taylor Sorensen  
University of Washington

## Towards Few-Shot Fact-Checking via Perplexity

## Privacy Regularization: Joint Privacy-Utility Optimization in Language Models

Fatemehsadat Mireshghallah<sup>1\*</sup>, Huseyin A. Inan<sup>3</sup>, Marcello Hasegawa<sup>2</sup>,  
Victor Rühle<sup>2</sup>, Taylor Berg-Kirkpatrick<sup>1</sup>, Robert Sim<sup>3</sup>

## Mitigating Racial Biases in Toxic Language Detection with an Equity-Based Ensemble Framework

Matan Halevy  
Georgia Institute of Technology  
Atlanta, Georgia, USA  
matan@cc.gatech.edu

Camille Harris  
Georgia Institute of Technology  
Atlanta, Georgia, USA  
charris320@gatech.edu

Amy Bruckman  
Georgia Institute of Technology  
Atlanta, Georgia, USA  
asb@cc.gatech.edu

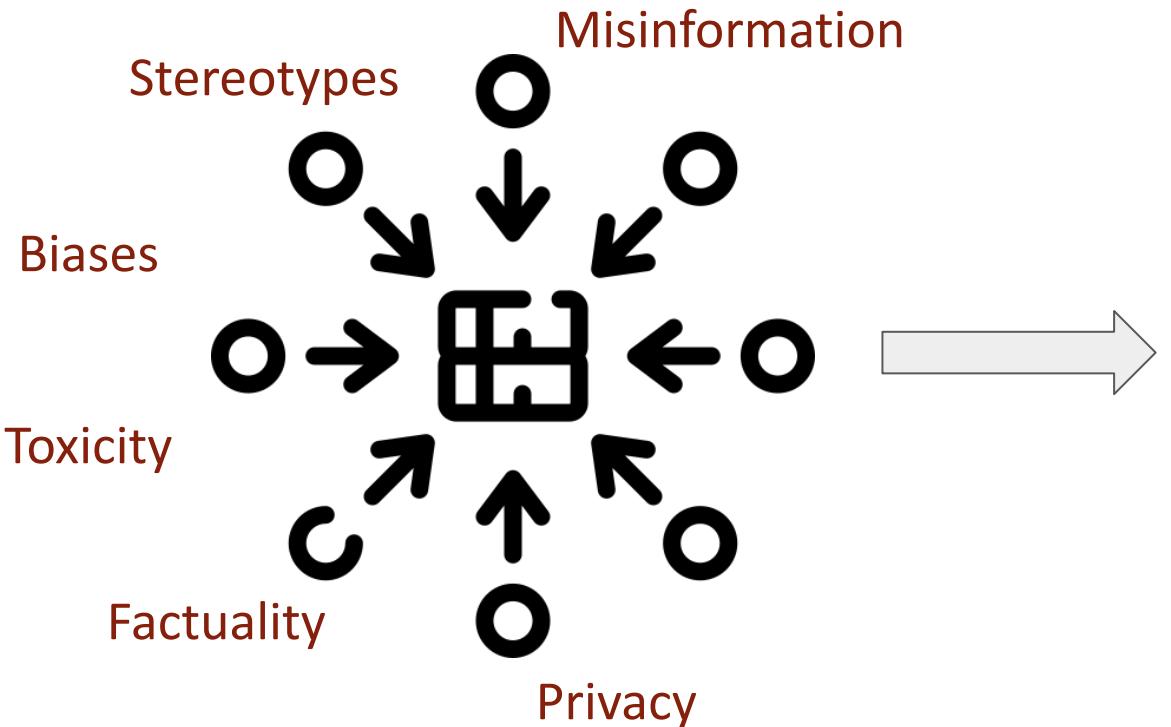
Diyi Yang

Ayanna Howard

## Correcting Diverse Factual Errors in Abstractive Summarization via Post-Editing and Language Model Infilling

Vidhisha Balachandran<sup>♦</sup> Hannaneh Hajishirzi<sup>♡♡</sup>  
William W. Cohen<sup>♦</sup> Yulia Tsvetkov<sup>♡</sup>

# Our Work - Actionable Survey on Mitigating LM Harms



|                                 |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------|-------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application Level Interventions | Feature-based Detection | Toxicity                                | Lexical features (Xiang et al., 2012; Dadvar et al., 2012; Burnap and Williams, 2015; Liu and Forss, 2015); n-gram features (Chen et al., 2012; Waseem and Hovy, 2016; Nobata et al., 2016; Xu et al., 2012; Burnap and Williams, 2016)                                                                                                                                                                                                                           |
|                                 |                         | Misinformation                          | Word Level (Zhao et al., 2019); King et al., 2022)                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                         | Toxicity                                | Supervised (Gamblin and Siskind, 2017; Pitfalls et al., 2018; U'sa et al., 2020; Xiang et al., 2021); Semi- and Unsupervised: (Korzeniowski et al., 2019; Field and Tsvetkov, 2020; Sabri et al., 2021)                                                                                                                                                                                                                                                           |
| Output Level Interventions      | Neural Detection        | Misinformation / Factuality             | Supervised fake-news detection (Thorne et al., 2018; Oshikawa et al., 2020; Martino et al., 2020; Zhou and Zafarani, 2020; Guo et al., 2022); Factual error detection (Kryscinski et al., 2020; Guo and Durrest, 2020; Pagnoni et al., 2021)                                                                                                                                                                                                                      |
|                                 |                         | Disinformation                          | Machine-generated text detection (Dugan et al., 2020; Gehrmann et al., 2019)                                                                                                                                                                                                                                                                                                                                                                                      |
|                                 | Ranking                 | Toxicity<br>Misinformation / Factuality | Rejection sampling using toxicity detectors (Wang et al., 2022); Ranking using factuality classifiers (Krishna et al., 2022; King et al., 2022)                                                                                                                                                                                                                                                                                                                   |
| Model Level Interventions       | Controlled Decoding     | Toxicity                                | Autoregressive toxic content control (Yang and Klein, 2021; Liu et al., 2021); Non-autoregressive toxic content control (Kumar et al., 2022); Mireshghilab et al., 2022)                                                                                                                                                                                                                                                                                          |
|                                 |                         | Privacy<br>Misinformation / Factuality  | Differentially private decoding (Majumdar et al., 2022); Autoregressive factual error control (King et al., 2022; Lu et al., 2022); Non-autoregressive factual error control (Kumar et al., 2021b)                                                                                                                                                                                                                                                                |
|                                 | Post-processing         | Toxicity                                | Rewriting harmful text (Pryzant et al., 2020; He et al., 2018b; He et al., 2020)                                                                                                                                                                                                                                                                                                                                                                                  |
| Architecture                    |                         | Misinformation / Factuality             | Editing factual errors (Cao et al., 2020; Lee et al., 2022a; Balachandran et al., 2022)                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                         | Misinformation / Factuality             | Attention (Nan et al., 2021; Zhu et al., 2021); Coherence (Levy et al., 2021); Text Entailment (Falke et al., 2019; Li et al., 2018); Other (Wiseman et al., 2018; Falke et al., 2019; Wan and Bansal, 2022)                                                                                                                                                                                                                                                      |
|                                 | Training                | Toxicity                                | Class-conditional LMs (Keskar et al., 2019; Gururangan et al., 2020; Chan et al., 2021); Instruction-based learning (Ouyang et al., 2022; Wei et al., 2022a)                                                                                                                                                                                                                                                                                                      |
| Fine-tuning                     |                         | Privacy                                 | Differential Private training (Kerrigan et al., 2020; Li et al., 2022; Shi et al., 2021); Knowledge Unlearning (Jang et al., 2022)                                                                                                                                                                                                                                                                                                                                |
|                                 |                         | Misinformation / Factuality             | Structured KBs (Wang et al., 2021b; Liu et al., 2022; Yu et al., 2022; Liu et al., 2022; Lewis et al., 2020; de Masson d'Autume et al., 2020; Gao et al., 2020; Grinberg et al., 2020; Hwang et al., 2020); Retrieval-based (de Masson d'Autume et al., 2019; Lazard and Grave, 2021; Hossain et al., 2020); Summarization (Huang et al., 2020); Translation (Bapna and Firat, 2020); Dialogue models (Dinan et al., 2019; Fan et al., 2021; Zhang et al., 2020a) |
|                                 | Fine-tuning             | Discrimination & Toxicity               | Supervised fine-tuning (Gururangan et al., 2020; Chan et al., 2022); ILI based fine-tuning (Alaukukarim et al., 2021; Liu et al., 2021b; Ouyang et al., 2022; Steinon et al., 2020); Prompt-based learning (Gehman et al., 2020)                                                                                                                                                                                                                                  |
| Data                            |                         | Exclusion                               | Adapting for low-resource varieties (Chromopoulou et al., 2020; Kumar et al., 2021a)                                                                                                                                                                                                                                                                                                                                                                              |
|                                 | Model Editing           | Toxicity<br>Misinformation / Factuality | Modifying FF layer (Geva et al., 2022); Auxiliary editors to modify parameters (De Cao et al., 2021; Mitchell et al., 2022); Modifying parameters associated with behaviors (Geva et al., 2022)                                                                                                                                                                                                                                                                   |
|                                 | Filtration              | Toxicity                                | Removing 'unwanted' words from corpus (Rafail et al., 2020; Brown et al., 2020; Dodge et al., 2021); Removing toxic data using classifiers (Ngo et al., 2021)                                                                                                                                                                                                                                                                                                     |
| Augmentation                    |                         | Privacy                                 | Filtering private/duplicate data (Henderson et al., 2022; Kandpal et al., 2022; Lee et al., 2022b)                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                         | Discrimination                          | Adding synthetically generated data (Dinan et al., 2020; Liu et al., 2020; Stefanović et al., 2020)                                                                                                                                                                                                                                                                                                                                                               |
|                                 |                         | Toxicity                                | Adding safer example data (Matthew et al., 2018)                                                                                                                                                                                                                                                                                                                                                                                                                  |

# Harms focused on in this survey

| Classification                              | Harm                                                                                                                                                                                                                               | Theme                        | Subcategory                                                                                                                                                                            |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Discrimination, Exclusion and Toxicity      | Social stereotypes and unfair discrimination<br>Exclusionary norms<br>Toxic language                                                                                                                                               | Representational Harms       | Stereotyping<br>Demeaning Social Groups<br>Erasing Social Groups<br>Alienating Social Groups<br>Denying People Opportunity To Self-identify<br>Reifying Essentialist Social Categories |
| Information Hazards                         | Compromising privacy by correctly inferring private information<br>Risks from leaking or correctly inferring sensitive information                                                                                                 |                              |                                                                                                                                                                                        |
| Misinformation Harms                        | Disseminating false or misleading information<br>Causing material harm by disseminating false or poor information<br>e.g. in medicine or law<br>Leading users to perform unethical or illegal actions                              | Allocative Harms             | Opportunity Loss<br>Economic Loss                                                                                                                                                      |
| Malicious Uses                              | Making disinformation cheaper and more effective<br>Facilitating fraud, scams and more targeted manipulation<br>Assisting code generation for cyber attacks, weapons, or malicious use<br>Illegitimate surveillance and censorship | Quality of service Harms     | Alienation<br>Increased Labour<br>Service Or Benefit Loss                                                                                                                              |
| Human-Computer Interaction Harms            | Anthropomorphising systems can add to overreliance or unsafe use<br>Creating avenues for manipulation and control<br>Promoting harmful stereotypes by implying gender or ethnic identity                                           | Inter- & intrapersonal Harms | Loss Of Agency, Social Control<br>Technology-facilitated Violence<br>Diminished Health And Well-being<br>Privacy Violations                                                            |
| Automation, access, and environmental harms | Environmental harms from operating LMs<br>Increasing inequality and negative effects on job quality<br>Undermining creative economies<br>Disparate access to benefits due to hardware, software, skill constraints                 | Social System/societal Harms | Information Harms<br>Cultural Harms<br>Political And Civic Harms<br>Macro Socio-economic Harms<br>Environmental Harms                                                                  |

## Discrimination, Exclusion and Toxicity

## Information Hazards

## Misinformation Harms

Weidinger et al., 2022

Shelby et al., 2022

# How was the survey conducted?

ACL Anthology, Proceedings of ICML, ICLR, NeurIPS, FAccT

Filter for keywords related to “bias, inclusion, diversity, harm, factuality”

Filter for work that focuses on language generation

Expand to work that cites these works

# How was the survey conducted?

## ACL Anthology, Proceedings of ICML, ICLR, NeurIPS, FAccT

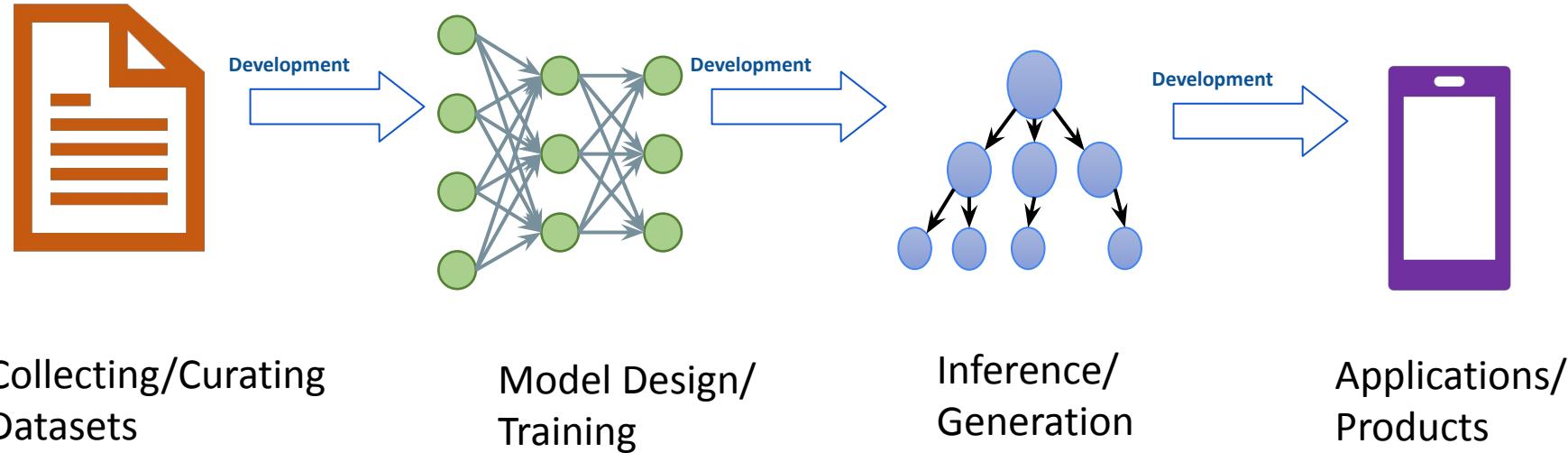
Filter for keywords related to “bias, inclusion, diversity, harm, factuality”

Filter for work that focuses on language generation

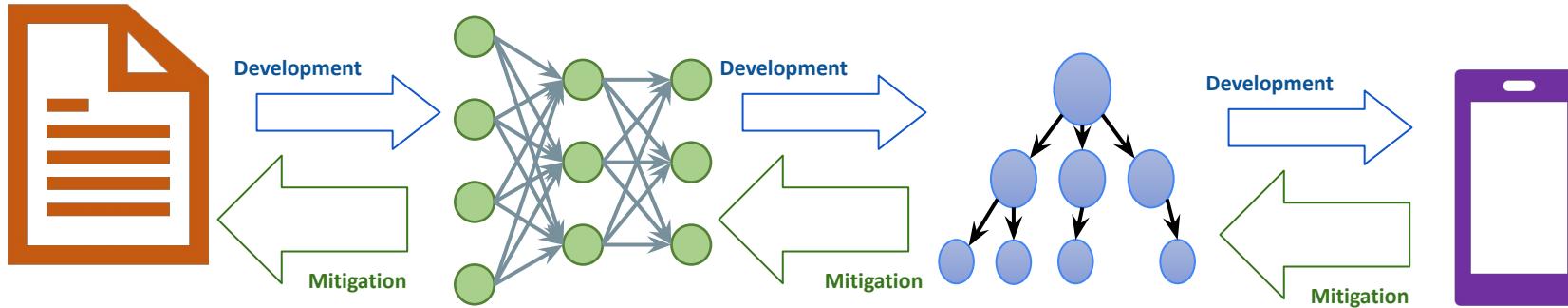
Expand to work that cites these works

|                                 |                         | Toxicity                    | Lexical features (Xiang et al., 2012; Dadvar et al., 2012; Burnap and Williams, 2015; Liu and Forney, 2015); n-gram features (Chen et al., 2012; Waseem and Hovy, 2016; Nobata et al., 2016; Xu et al., 2017); Word-Level features (Zhao et al., 2020; King et al., 2022)                                                                                                                                                                                                 |
|---------------------------------|-------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application Level Interventions | Feature-based Detection | Misinformation              | Supervised (Gambäck and Sikdar, 2020; Pitsilis et al., 2018; d’Alessio et al., 2020; Xiang et al., 2021); Semi- and Unsupervised (Korzeniowski et al., 2019; Field and Tsvetkov, 2020; Sabri et al., 2021)                                                                                                                                                                                                                                                                |
|                                 | Neural Detection        | Toxicity                    | Supervised fake-news detection (Thorne et al., 2018; Oshikawa et al., 2020; Martino et al., 2020; Zhou and Zafarani, 2020; Guo et al., 2022); Factual error detection (Kryscinski et al., 2020; Goyal and Durrett, 2020; Pagnoni et al., 2021)                                                                                                                                                                                                                            |
|                                 |                         | Misinformation / Factuality | Model-generated text detection (Dugan et al., 2020; Gehrmann et al., 2019)                                                                                                                                                                                                                                                                                                                                                                                                |
| Output Level Interventions      | Neural Detection        | Disinformation              | Rejection sampling using toxicity detectors (Wang et al., 2022)                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 | Reranking               | Toxicity                    | Ranking using factuality classifiers (Krishna et al., 2022; King et al., 2022)                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                         | Misinformation / Factuality | Autoregressive toxic content control (Yang and Klein, 2021; Liu et al., 2021a; Dathathri et al., 2019; Krause et al., 2021; Schick et al., 2021; Lu et al., 2021); Pascual et al., 2021; Wolf et al., 2020); Autoregressive factuality content control (Kumar et al., 2022; Miresghbalian et al., 2022)                                                                                                                                                                   |
| Model Level Interventions       | Controlled Decoding     | Toxicity                    | Differentially private decoding (Majumdar et al., 2022)                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                 |                         | Misinformation / Factuality | Autoregressive factual error control (King et al., 2022; Lu et al., 2022); Non-autoregressive factual error control (Kumar et al., 2021b)                                                                                                                                                                                                                                                                                                                                 |
|                                 |                         | Privacy                     | Rewriting harmful text (Pryzant et al., 2020; He et al., 2021b; Ma et al., 2020)                                                                                                                                                                                                                                                                                                                                                                                          |
| Data                            | Post-processing         | Toxicity                    | Editing factual errors (Cao et al., 2020; Lee et al., 2022a; Balachandran et al., 2022)                                                                                                                                                                                                                                                                                                                                                                                   |
|                                 |                         | Misinformation / Factuality | Attention (Nan et al., 2021; Zhu et al., 2021); Coreference (Levy et al., 2021); Text Entailment (Falke et al., 2019; Li et al., 2018); Others (Wiseman et al., 2018; Falke et al., 2019; Wan and Bansal, 2022)                                                                                                                                                                                                                                                           |
|                                 |                         | Toxicity                    | Class-conditional LMs (Keskar et al., 2019; Gururangan et al., 2020; Chaudhary et al., 2020); Context-based learning (Ouyang et al., 2022; Wei et al., 2022a)                                                                                                                                                                                                                                                                                                             |
| Model Level Interventions       | Training                | Privacy                     | Differential Private training (Kerrigan et al., 2020; Li et al., 2022; Shi et al., 2021); Knowledge Unlearning (Jang et al., 2022)                                                                                                                                                                                                                                                                                                                                        |
|                                 |                         | Misinformation / Factuality | Structured KBs (Wang et al., 2021b; Liu et al., 2022; Yu et al., 2022; Liu et al., 2022; Lewis et al., 2020; de Masson d’Autume et al., 2019; Izaacard and Grava, 2021; Hossen et al., 2020; Lewis et al., 2021); Prompt-based Model Adaptation (Ahuja et al., 2019; Izaacard and Grava, 2021; Hossen et al., 2020); Summarization (Huang et al., 2020); Translation (Bapna and Firat, 2019); Dialogue models (Dinan et al., 2019; Fan et al., 2021; Zhang et al., 2020a) |
|                                 |                         | Discrimination & Toxicity   | Supervised fine-tuning (Gururangan et al., 2020; Chan et al., 2021; Liu et al., 2023); RL based fine-tuning (Alabdulkarim et al., 2021; Li et al., 2021); Ouyang et al., 2022; Stenmon et al., 2021); Prompt-based learning (Gehman et al., 2020)                                                                                                                                                                                                                         |
| Model Editing                   | Fine-tuning             | Exclusion                   | Adapting for low-resource varieties (Chronopoulou et al., 2020; Kumar et al., 2021a)                                                                                                                                                                                                                                                                                                                                                                                      |
|                                 |                         | Toxicity                    | Modifying FF layers (Geva et al., 2022)                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                 |                         | Misinformation / Factuality | Auxiliary editors to modify parameters (De Cao et al., 2021; Mitchell et al., 2022); Modify parameters associated with behavior (Meng et al., 2022, 2023)                                                                                                                                                                                                                                                                                                                 |
| Data                            | Filtration              | Toxicity                    | Retaining toxic samples from corpus (Raffel et al., 2020; Brown et al., 2020; Dodge et al., 2021); Removing toxic data using classifiers (Ngo et al., 2021)                                                                                                                                                                                                                                                                                                               |
|                                 |                         | Privacy                     | Filtering private/duplicate data (Henderson et al., 2022; Kandpal et al., 2022; Lee et al., 2022b)                                                                                                                                                                                                                                                                                                                                                                        |
|                                 |                         | Discrimination              | Adding synthetically generated data (Dinan et al., 2020; Liu et al., 2020; Stefanović et al., 2020)                                                                                                                                                                                                                                                                                                                                                                       |
| Augmentation                    |                         | Toxicity                    | Adding safer example data (Mathew et al., 2018)                                                                                                                                                                                                                                                                                                                                                                                                                           |

# A Typical NLP Model Development Pipeline



# Intervening at different steps in the Model Development Pipeline



Collecting/Curating  
Datasets

Model Design/  
Training

Inference/  
Generation

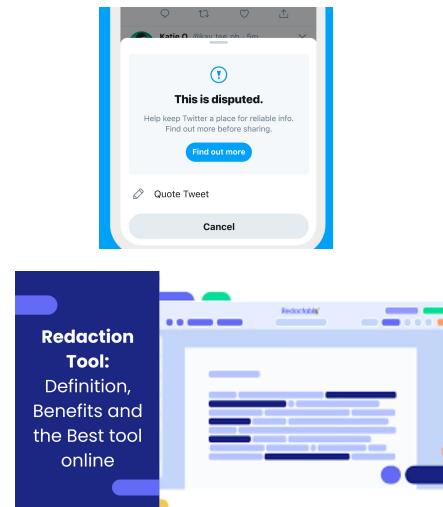
Applications/  
Products

# Intervening at the Application-Level

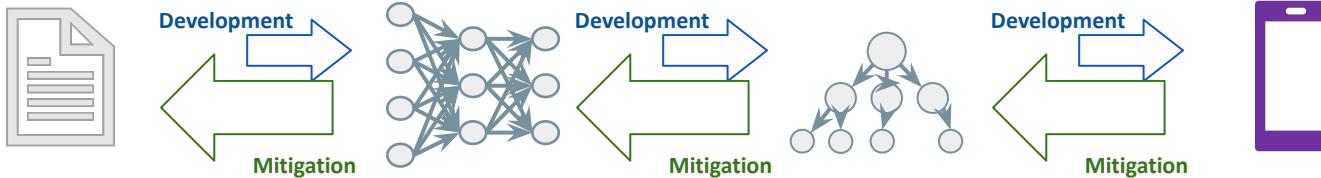


Detect risk and warn the user

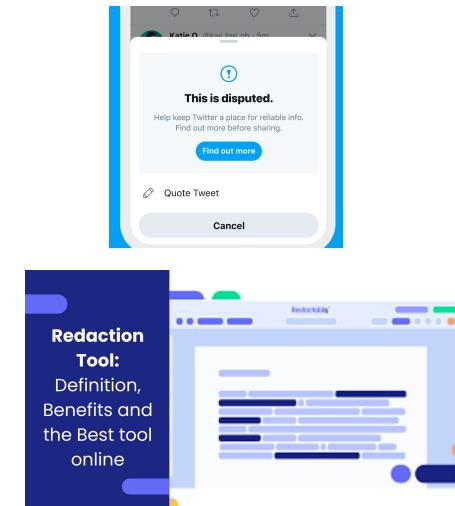
- Detection - Identify problematic outputs and model decisions
- Flagging - Display warnings to users
- Redaction - Redact text, refuse to exercise decisions



# Intervening at the Application-Level



- Rule-based Systems: Lexicons and linguistic Features  
**High false positive rate, brittle**
- Neural classifiers. Popular tools: Perspective API, OpenAI content filter, ToxiGEN  
**Highly subjective nature, Unreliable annotations, Spurious correlations**



# Intervening at the Output-Level



## Modify outputs during generation

- Rejection Sampling: Repeatedly sample outputs and reject harmful outputs  
**Large search space**
- Decoding: Guide the inference procedure using risk detectors  
**Risk detectors are coarse and brittle**
- Post-Factum Editing: Rewrite harmful outputs  
**Reliance on synthetic data**



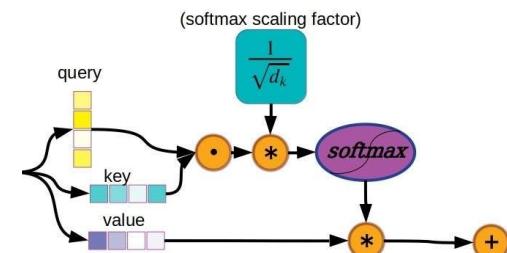
There is **conjointly** another **vast** issue that exceeds the results of our re-writer, it's the **employment** of a **sophisticated** computing. **we've** the **most effective** AI and servers that **may** **method** **vast** contents and **several** other articles at **one** time. There is **conjointly** another **vast** issue that exceeds the results of our re-writer, it's the **employment** of a **sophisticated** computing. **we've** the **most effective** AI and servers that **may** **method** **vast** contents and **several** other articles at **one** time. There is **conjointly** another **vast** issue that exceeds the results of our re-writer,

# Intervening at the Model-Level



## New Architectures and Training Procedures

- Specialized attention mechanisms
- Augmenting the language models with Knowledge bases
- Instruction-based Learning

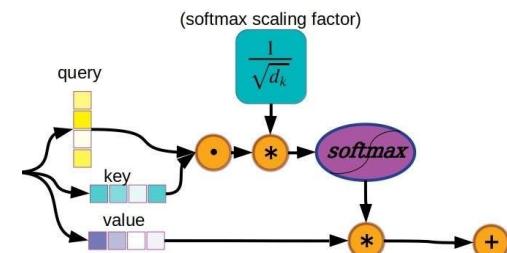


# Intervening at the Model-Level



Adapting models post initial training

- Finetuning, Prompt Tuning
- Editing Model Parameters
- RL with Human Feedback



# Intervening at the Data-Level



## Analysing, Cleaning and Modifying Data

- Filtration: Detect and filter harmful information from training datasets  
**Imperfect detectors**
- Augmentation: Counter harmful text with harmless or beneficiary text  
**Hard to scale**

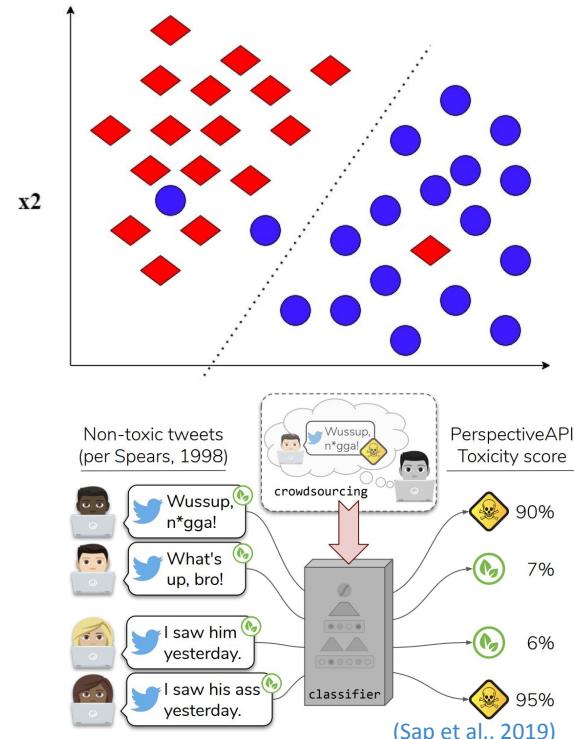


## Where should one intervene ?

- Different stakeholders are involved in different model development phases with varying access to resources.
- Different strategies make sense for different stakeholders.
- A combination of multiple interventions may be required to both cover a wide array of risks and improve robustness

# Binary risk detection is insufficient

- Binary risk detection
  - Block harmful text from user visibility
  - Aggregate statistics of model behavior
  - Useful for deployment
- Limited understanding of model limitations
- Need to move beyond simplistic coarse classifiers
  - Fine-grained classifiers
  - Interpretable, explainable classifiers



# Risks of harms exist in all languages - Mitigation research is English focused

- LM Risk Research is western-centric and primarily conducted on the English language.
- Definitions of risks themselves change with different context and across cultures
- Need to develop cross-cultural, cross-lingual analyses as well as mitigation tools

South Korean AI chatbot pulled from Facebook after hate speech towards minorities

Lee Luda, built to emulate a 20-year-old Korean university student, engaged in homophobic slurs on social media



# Systematic evaluation frameworks for mitigation strategies

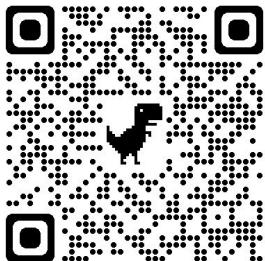
- LM performance evaluated systematically but harms and mitigation strategies are not
- Need to augment existing generation benchmarks with axes of risk evaluations



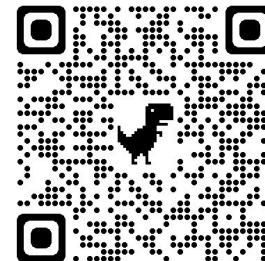
# Takeaways!

- Generative Language Models without interventions risk inflicting harms on their users.
- Stakeholders have access to different pipeline components and therefore may employ different intervention strategies.
- The solution is never a single strategy, but a suite of strategies aimed at different phases of model development.
- Not all harms are mitigable by technological solutions.

# Thank You!



**Assessing Language Model Deployment with Risk Cards**



**Language Generation Models Can Cause Harm: So What Can We Do About It? An Actionable Survey**

Vidhisha Balachandran  
[vbalacha@cs.cmu.edu](mailto:vbalacha@cs.cmu.edu)