
Enhanced RTMP (V2)

Table of Contents
●​ Table of Contents
●​ Document Status
●​ Documentation Versioning
●​ Version Stage Definitions
●​ Release Version Disclaimer for Enhanced RTMP
●​ Usage License
●​ Terminology
●​ Abstract
●​ Introduction
●​ Conventions
●​ Simple Data Types
●​ RTMP Message Format
●​ FLV File Format Overview
●​ Enhancements to RTMP and FLV
●​ Enhancing onMetaData
●​ Reconnect Request
●​ Enhanced Audio
●​ Enhanced Video
●​ Metadata Frame
●​ Multitrack Streaming via Enhanced RTMP
●​ Enhancing NetConnection connect Command
●​ Action Message Format (AMF): AMF0 and AMF3
●​ Protocol Versioning
●​ References

Document Status
Author: Slavik Lozben

1

Affiliation: Veovera Software Organization (VSO)

Contributors: Adobe, Google, Twitch, Jean-Baptiste Kempf (FFmpeg, VideoLAN), pkv (OBS), Dennis Sädtler (OBS), Xavier Hallade (Intel
Corporation), Luxoft, SplitmediaLabs Limited (XSplit), Meta, Michael Thornburgh, Veovera Software Organization

Document Version: v2-2025-11-21-r1

General Disclaimer: The features, enhancements, and specifications described in this document are intended for informational purposes only
and may not reflect the final implementation. Veovera Software Organization (VSO) does not guarantee the accuracy, completeness, or
suitability of this information for any specific purpose. Users are solely responsible for any decisions or implementations based on this
document.

VSO reserves the right to refine, update, or enhance any part of this document at its sole discretion, based on technological feasibility,
market conditions, or community feedback. VSO shall not be liable for any damages, direct or indirect, resulting from the use of this
document.

This document represents a Release Version of the enhanced RTMP (E-RTMP) specifications, which is comprehensively specified and stable
enough for broad implementation. For a detailed explanation of the Release Version, including its purpose, features, and intended use,
please refer to the Release Version Disclaimer for Enhanced RTMP section later in this document.

Documentation Versioning

Overview
This section outlines the versioning strategy for this specification. This standardized versioning system ensures consistency, traceability,
and clarity for implementers by making it easy to determine whether a document introduces new behaviors or includes only editorial updates.

Version identifiers communicate major milestones, publication dates, non-editorial revisions, and the document’s development phase, all in a
human-readable, chronologically sortable format.

File Naming Convention
Documentation files are named with a clear identifier and a major version number.

Example:
enhanced-rtmp-v2.pdf

2

https://veovera.org/

Version Information Inside the Document
Each document includes a version identifier using the following format:

Example:​
Document Version: v2-2025-04-15-r1

This version string reflects the major version milestone, publication date, non-editorial revision number, and development phase.

Version Format Description
The format for versioning documents is structured as follows:

v<major>-<yyyy-mm-dd>-<phase><revision>

Table: Version format description

Component Description

v<major> Major version milestone (e.g. v1, v2). Major versions represent
spec maturity but do not necessarily imply breaking changes.

yyyy-mm-dd The publication date of the document.

<phase> Document maturity level: a = Alpha, b = Beta, r = Release.

<revision>

Non-editorial revision number. Increments only when changes affect
behavior or implementation. Editorial changes (e.g., typo fixes,
rewording, format adjustment) do not increment this number. The
<revision> counter resets to 1 at each phase transition (alpha →
beta → release).

This format supports a clear, linear history. If you're comparing two versions and the revision number (r#) has increased, you can assume
there are non-editorial changes that may affect implementation. Editorial-only changes retain the same r# but update the date.

Commit History in GitHub
The document and its commit history are maintained in the Enhanced RTMP GitHub repository. Although the document version string resets r# at
each phase transition, all underlying commits and commit messages are preserved in GitHub, ensuring a complete and auditable record of all
changes made.

3

https://github.com/veovera/enhanced-rtmp/commits/main/docs/enhanced/enhanced-rtmp-v2.md
https://github.com/veovera/enhanced-rtmp

Version Stage Definitions
We define distinct stages for the development of the E-RTMP protocol specification to indicate its maturity and readiness for
implementation. Each stage serves a different purpose for those implementing the protocol:

Alpha Version
●​ Purpose: The alpha stage represents an early, stable version of the protocol specification. It is intended for real-world

implementation and feedback collection from developers and implementers who are beginning to build solutions based on the protocol.
●​ Features: While the specification is mostly defined, some aspects may still evolve based on implementation feedback. Breaking changes

are possible, but efforts are made to minimize them to ensure stability for early adopters.
●​ Audience: Developers and implementers looking to integrate the protocol in real-world applications who are prepared to adapt to

refinements or changes.
●​ Stability: Moderate. The alpha version is considered stable enough for serious implementation, but it is still subject to potential

changes that could affect backward compatibility.
●​ Documentation Status: Indicated by the version identifier "a" (e.g., v2-2024-02-26-a1).

Beta Version
●​ Purpose: The beta stage indicates that the protocol specification is nearing its final form, with all core features defined and ready

for implementation across diverse environments. This stage focuses on verifying that the protocol works reliably at scale, with
extensive real-world testing.

●​ Features: The protocol is comprehensively specified, and any changes at this stage should ideally be non-breaking. These changes may
involve optimizations or clarifications to ensure smooth, large-scale deployments, but no core elements of the protocol are expected to
be altered.

●​ Audience: Developers and organizations preparing for production use, who are looking to validate their implementations against a
near-final version of the protocol.

●​ Stability: High. The beta version is stable enough for broad implementation with the expectation that no significant breaking changes
will be introduced.

●​ Documentation Status: Indicated by the version identifier "b" (e.g., v2-2024-02-26-b1).

Release Version (General Availability)
●​ Purpose: The release (General Availability) stage is the finalized version of the protocol specification, fully stable and ready for

widespread production use.
●​ Features: The specification is locked, and no breaking changes should occur. Any updates will focus on backward-compatible improvements

or bug fixes.
●​ Audience: Developers, implementers, and end-users who need a reliable, long-term stable version for production deployments.
●​ Stability: Highest. The release version ensures stability for production environments with long-term support.
●​ Documentation Status: Indicated by the version identifier "r" (e.g., v2-2024-02-26-r1).

4

Release Version Disclaimer for Enhanced RTMP
This document represents the Release Version of the enhanced Real-Time Messaging Protocol (E-RTMP) specification. All core features are
finalized and the specification is considered fully stable for broad implementation across diverse environments.

The protocol is not expected to undergo breaking changes. Future updates to this specification are intended to be backward-compatible,
focusing on clarifications, documentation improvements, or optional extensions that do not disrupt existing implementations.

Veovera Software Organization (VSO) provides this document “as is,” without warranties, express or implied, including but not limited to
suitability for a particular purpose. Users should independently validate their implementations to meet the needs of their specific
applications. VSO disclaims all liability for any direct, indirect, incidental, or consequential damages resulting from use of this
document.

We welcome community feedback through GitHub issues or other established channels to guide the evolution of the protocol.

This specification is published under the Apache License, Version 2.0, which governs its use, distribution, and modification. Please refer
to the Usage License section later in this document for full licensing terms.

The version identifier (e.g., v2-2024-02-26-r1) reflects the release stage status.

Usage License
Copyright 2022-2024 Veovera Software Organization

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

<https://www.apache.org/licenses/LICENSE-2.0>

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

5

https://veovera.org/
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here. Definitions below are reproduced from [RFC2119].

●​ MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute requirement of the specification.
●​ MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.
●​ SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a

particular item, but the full implications must be understood and carefully weighed before choosing a different course.
●​ SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular circumstances when the

particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before
implementing any behavior described with this label.

●​ MAY: This word, or the adjective "OPTIONAL", means that an item is truly optional. One vendor may choose to include the item because a
particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same
item. An implementation which does not include a particular option MUST be prepared to interoperate with another implementation which
does include the option, though perhaps with reduced functionality. In the same vein an implementation which does include a particular
option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the
feature the option provides.)

Additionally we add the keyword [DEPRECATED] to the set of keywords above.

●​ DEPRECATED: This word means a discouragement of use of some terminology, feature, design, or practice, typically because it has been
superseded or is no longer considered efficient or safe, without completely removing it or prohibiting its use. Typically, deprecated
materials are not completely removed to ensure legacy compatibility or back-up practice in case new methods are not functional in an
odd scenario. It can also imply that a feature, design, or practice will be removed or discontinued entirely in the future.

Abstract
In the rapidly evolving media streaming landscape, there is a pressing need to update legacy protocols to align with modern technological
standards. The Real-Time Messaging Protocol [RTMP] and Flash Video [FLV] file format, introduced in 2002, have been pivotal and continue to
be vital especially in live broadcasting. Despite RTMP widespread use, it has shown signs of aging, particularly in the lack of support for
contemporary video codecs (e.g., VP8, VP9, HEVC, AV1) and audio codecs (Opus, FLAC, AC-3, E-AC-3). Recognizing this, Veovera Software
Organization (VSO), in collaboration with industry giants like Adobe, YouTube, and Twitch, and other key stakeholders, has embarked on a
mission to rejuvenate RTMP, ensuring it meets the demands of contemporary streaming needs.

This document details the comprehensive enhancements made to the RTMP and FLV specifications, aimed at revitalizing the technology for
current and future media demands. Our strategic approach prioritizes innovation while maintaining backward compatibility, thereby augmenting
RTMP's utility without undermining existing infrastructures. Some of the key advancements include:

6

https://datatracker.ietf.org/doc/html/bcp14

●​ Advanced Audio Codecs: Integration of codecs like AC-3, E-AC-3, Opus, and FLAC to meet diverse audio quality and compression needs,
ensuring compatibility with modern systems.

●​ Multichannel Audio Configurations: Support for multichannel audio to enhance auditory experiences without compromising existing setups.
●​ Advanced Video Codecs: Introduction of codecs such as VP8, VP9, HEVC and AV1 with HDR support to meet modern display and content

standards.
●​ Video Metadata: Expansion of VideoPacketType.Metadata to support a broader range of video metadata types.
●​ FourCC Signaling: Inclusion of FourCC signaling for advanced codecs mentioned above, as well as for legacy codecs such as AVC, AAC, and

MP3.
●​ Multitrack Capabilities: New audio and video multitrack capabilities for concurrent management and processing of multiple media

streams, enhancing media experiences.
●​ Reconnect Request Feature: A new Reconnect Request feature improves connection stability and resilience.
●​ Timestamp Precision: Introduction of nanosecond precision offsets, ensuring enhanced synchronization and compatibility across diverse

media formats such as MP4, M2TS, and Safari's Media Source Extensions, without altering the core RTMP timestamps.
●​ ModEx Signal: A signaling mechanism that lets packets carry modifiers or extensions, enabling precise control over timing, metadata,

and other media stream behaviors.

The additional audio and video codecs supported by enhanced RTMP are summarized in the following table:

Table: Additional audio and video codecs for E-RTMP

Additional Audio Codec Notes

AC-3
AC-3 and E-AC-3 have significantly influenced the surround
sound market by offering versatile and scalable audio
solutions for both physical and streaming media. Their
balance of complexity and performance makes them enduring
standards in multichannel audio technology.

E-AC-3

Opus

Popular in both hardware and software streaming solutions,
the [WebCodecs] audio codec registry also includes support
for these widely used audio formats.

FLAC

AAC (added FOURCC signaling)

MP3 (added FOURCC signaling)

Additional Video Codec

AVC (a.k.a., H.264, added FOURCC signaling)

Popular in both hardware and software streaming solutions,
the [WebCodecs] video codec registry also includes support
for these widely used video formats.

HEVC (a.k.a., H.265)

VP8 (webRTC officially supports this codec)

VP9

7

https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#heading=h.a854yypnicmv
https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#heading=h.a854yypnicmv

AV1

These strategic enhancements position RTMP as a robust, future-proof standard in the streaming technology arena. Veovera is committed to
open collaboration and values community input, believing that protocols and standards should be open and free to foster innovation and
create a thriving ecosystem. Companies can capitalize on solutions built around open standards; the more popular and accessible a protocol
is, the stronger the foundation for developing compelling solutions. A standard’s popularity fuels adoption, allowing companies to leverage
its widespread use. In contrast, fragmentation caused by proprietary protocols hampers industry growth, while open standards empower
everyone to innovate freely, creating a healthier marketplace. E-RTMP’s shift toward openness aligns with the principles of open standards,
emphasizing its potential to become a foundational technology. We encourage participation in the ongoing development process through our
GitHub repository, where you can access detailed documentation, contribute to the project, and share insights to foster a vibrant ecosystem
around enhanced E-RTMP.

Introduction
This document describes enhancements to legacy [RTMP] and legacy [FLV], introducing support for new media codecs, HDR capability, and more.
A primary objective is to ensure these enhancements do not introduce breaking changes for established clients or the content they stream. As
such, legacy RTMP and legacy FLV specifications remain integral to the RTMP ecosystem. While this updated specification aims to minimize
redundancy with previous versions, when combined with previous-generation documentation, it provides a comprehensive overview of the RTMP
solution. We've drawn from several legacy references, which are as follows:

●​ Adobe legacy [RTMP] specification
●​ Adobe legacy [FLV] specification
●​ Additional [LEGACY] specifications

Conventions
This document employs certain conventions to convey particular meanings and requirements. The following section outlines the notation,
terminology, and symbols used throughout to ensure clarity and consistency. These conventions provide insight into the ethos of how the
E-RTMP specification has been crafted and should be interpreted.

●​ E-RTMP: refers to a series of improvements made to the legacy Real-Time Messaging Protocol [RTMP], originally developed by Adobe. While
"enhanced RTMP" may be used descriptively, the preferred and consistent name for the protocol is E-RTMP, which serves as a consistent
identifier that distinguishes the updated protocol from the legacy RTMP specification. Endorsed by Adobe and widely adopted across the
industry, E-RTMP serves as the current standard for RTMP-based solutions and includes enhancements to both RTMP and the legacy [FLV]
formats. The name E-RTMP refers to an evolving protocol and does not correspond to any single release or version. To avoid confusion,
alternate forms such as ERTMP, eRTMP, Enhanced-RTMP, or EnhancedRTMP should be avoided. The lowercase hyphenated form e-rtmp is
acceptable in URLs, folder names, and other technical contexts where lowercase formatting is conventional.

8

https://github.com/veovera/enhanced-rtmp

●​ Pseudocode: Pseudocode has been provided to convey logic on how to interpret the E-RTMP binary format. The code style imitates a cross
between TypeScript and C. The pseudocode was written in TypeScript and validated using VSCode to ensure correct syntax and catch any
minor typographical errors. Below are some further explanations:

○​ Enumerations define valid values for fields that appear in the encoded bitstream. In contrast, script-level may use textual names
or key/value maps, consistent with historical SCRIPTDATA and ActionScript object model.

○​ Pseudo variables are named in a self-descriptive manner. For instance:​
​
`videoCommand = UI8 as VideoCommand`​
​
The line above indicates that an unsigned 8-bit value is read from the bitstream. The legal values correspond to the enumerations
within the VideoCommand set, and the pseudo variable videoCommand now holds that value.

○​ The pseudocode is written from the point of view of reading (a.k.a., parsing) the bitstream. If you are writing the bitstream,
you can swap source with destination variables.

○​ E-RTMP typically employs camelCase naming conventions for variables. In contrast, the naming convention for legacy RTMP
specification is usually preserved as is.

○​ Handshake and Enhancing NetConnection connect command: The E-RTMP specification generally prioritizes the client's perspective
over that of the server. To shift this focus and view the interaction from the server's side, the server should echo back certain
enhancement information.​
​
When the client informs the server of the enhancements it supports via the connect command, the server processes this command and
responds using the same transaction ID. The server's response string will be one of the following: _result, _error, or a specific
method name. A command string of _result or _error indicates a response rather than a new command.​
​
During this response, the server will include an object containing specific properties as one of the arguments to _result. It is
at this point that the server should indicate its support for E-RTMP features. Specifically, the server should denote its
capabilities through attributes such as videoFourCcInfoMap, capsEx, and other defined properties.

○​ The ethos of this pseudocode is to provide a high-level overview of the data structures and operations taking place on the wire.
While it accurately represents the bytes being transmitted, it's important to note that the logic is not exhaustive.
Specifically, this pseudocode does not cover all possible cases, nor does it always include items such as initialization logic,
looping logic or error-handling mechanisms. It serves as a foundational guide that can be implemented in various ways, depending
on specific needs and constraints.

●​ Unrecognized value: If a value in the bitstream is not understood, the logic must fail gracefully in a manner appropriate for the

implementation.
●​ Table naming: Each table in the document is named according to the specific content or subject it is describing.
●​ Bitstream optimization: One of the guiding principles of E-RTMP is to optimize the number of bytes transmitted over the wire. While

minimizing payload overhead is a priority, it is sometimes more important to simplify the logic or enhance extensibility. For example,
although more optimal methods for creating a codec ID than using FOURCC may exist, such approaches could render the enhancement
non-standard and more challenging to extend and maintain in the future.

9

●​ Capitalization rules: Another guiding principle in the E-RTMP is the standardization of capitalization for types. The original
documentation capitalized types such as Number, String, and Boolean, and even included various other spellings. The E-RTMP adopts
lowercase spelling for terms, such as number, string, and boolean. This change emphasizes that these types are simple, not objects.

●​ ECMA Array vs Object: In the world of AMF (Action Message Format), both ECMA Array and Object are used to store collections of
properties. A property is simply a pairing of a name with a value. In enhanced RTMP, the term Object is specifically used to indicate
the Object Type. In the past, people have sometimes used ECMA Array and Object as if they were the same thing. However, for better
coding practices, it's recommended to use Object when you're creating AMF data. When you're reading or decoding AMF data, you should be
prepared to handle either ECMA Array or Object for greater flexibility and robustness.

●​ Default values: Unless explicitly called out, there should be no assumptions made regarding default values, such as null or undefined.
●​ Legacy vs. Enhanced Properties: In the documentation, an effort has been made to distinguish between legacy properties and newly

defined ones through color coding, such as using bold text or different background colors for enhancements. While this color coding is
not guaranteed to be consistent, the distinctions between values defined in E-RTMP should be readily apparent.

●​ Capability flags: The capabilities flags, exchanged during a connect handshake, may not cover all possible functionalities. For
instance, a client might indicate support for multitrack processing without specifying its ability to encode or decode multitrack
streams. In scenarios where a client, capable of issuing a play command, declares multitrack support, it MUST be equipped to handle the
playback of such streams. Similarly, if a client is aware of the server's multitrack capabilities, it MAY opt to publish a multitrack
stream.

●​ Quotation Marks and Emphasis Guidelines: Ultimately, the context should drive the meaning, but we make an effort to leverage quotation
marks and emphasis (i.e., bold) to maintain readability. We aim to avoid syntactic sugar as much as possible to ensure the document
remains straightforward, easy to read, scan, and understand. The conventions for using double quotes ("), back quotes (`), and emphasis
in this document to ensure clarity and consistency are as follows:

○​ Double quotes are used for: direct quotations, titles of short works, and when referencing a specific term or phrase.
○​ Back quotes are used for: code snippets, commands, or technical terms.
○​ Bold is used for: emphasis on important terms or phrases. Sometimes, back quotes and bold can be interchanged for ease of

reading.

Simple Data Types
The following data types are used in [RTMP] bitstreams and [FLV] files. FOURCC was introduced to support E-RTMP.

Table: Simple data types
Type Definition

0x... Hexadecimal value

UB[n]
Bit field with unsigned n-bit integer, where n is in the range 1 to 31,
excluding 8, 16, 24

FOURCC Four-character ASCII code, such as "av01", encoded as UI32

SI8 Signed 8-bit integer

SI16 Signed 16-bit integer

SI24 Signed 24-bit integer

10

SI32 Signed 32-bit integer

UI8 Unsigned 8-bit integer

UI16 Unsigned 16-bit integer

UI24 Unsigned 24-bit integer

UI32 Unsigned 32-bit integer

xxx[] Array of type xxx. Number of elements to be inferred

xxx[n] Array of n elements of type xxx

[xxx] Array of one element of type xxx

^^>
Note: Unless specifically called out, multi-byte integers SHALL be stored in big-endian byte order
^^>

RTMP Message Format
Adobe's Real-Time Messaging Protocol [RTMP] is an application-level protocol designed for the multiplexing and packetizing of multimedia
streams—such as audio, video, and interactive content, for transmission over network protocols like TCP. A fundamental feature of RTMP is
the Chunk Stream, which facilitates the multiplexing, packetizing, and prioritization of messages, integral to the protocol's real-time
capabilities.

The legacy RTMP specification in Section 6.1 elaborates on the RTMP Message Format, providing precise encoding guidelines for the RTMP
message header, inclusive of field widths and byte order. However, this portrayal might be somewhat confusing because RTMP messages, when
transported over the Chunk Stream, don't literally conform to this depicted format. An RTMP Message is divided into two principal
components: a message virtual header and a message payload. The "virtual" descriptor indicates that while RTMP messages are carried within
the RTMP Chunk Stream, their headers are conceptually encoded as Chunk Message Headers. When these are decoded from the RTMP Chunk Stream,
the underlying transport layer, the resulting format is to be understood as a virtual header. This abstract representation aligns with the
structured format and semantics detailed in the legacy RTMP specification. Detailed next is the format of the message virtual header and
some additional related information.

●​ Message virtual header
``` 
 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|MessageType ID |                Payload length                 | 
|    (1 byte)   |                   (3 bytes)                   | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                           Timestamp                           | 
|                           (4 bytes)                           | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                 Stream ID                     | 
|                 (3 bytes)                     | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

11 

https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=22


``` 
●​ There are two message types reserved for media messages:

○​ The message type value of 8 is reserved for audio message
○​ The message type value of 9 is reserved for video messages

●​ The message payload follows the header and may contain various types of content, such as compressed audio or video data. RTMP itself
does not recognize or process the payload's content. If new codec types are to be added, they must be defined where the actual payload
internals are outlined. FLV is a container file format where the specifics of the AV payload, including the codecs, are defined.

●​ Please refer to the legacy RTMP specification (in various locations) and the legacy [FLV] specification (Annex E) for details on the
endianness (a.k.a., byte order) of the data format on the wire.

FLV File Format Overview
An [FLV] file is a container for AV (Audio and Video) data. The file consists of alternating back-pointers and tags, each accompanied by
data related to that tag. Each TagType within an FLV file is unsigned and defined by 5 bits. AUDIODATA has a TagType of 8, and VIDEODATA has
a TagType of 9.
^^>
Note: Each TagType corresponds directly to the same MessageType ID, defined by UI8, in the [RTMP] specification. This alignment is
intentional.
^^>
TagType values of 8 or 9 are accompanied by an AudioTagHeader or VideoTagHeader respectively. While RTMP is commonly associated with FLV, it
is important to note that RTMP is a protocol, whereas FLV is a file container format. This distinction is why they were originally defined
in separate specifications. This enhancement specification aims to improve both RTMP and FLV.

Pre 2023 AudioTagHeader Format
Below is the AudioTagHeader format for the legacy FLV specification:

Table: FLV specification AudioTagHeader
Field Type Comment

SoundFormat UB[4]

Format of SoundData. The following values ​​are defined:
 0 = Linear PCM, platform-endian
 1 = ADPCM
 2 = MP3
 3 = Linear PCM, little-endian
 4 = Nellymoser 16 kHz mono
 5 = Nellymoser 8 kHz mono
 6 = Nellymoser
 7 = G.711 A-law logarithmic PCM
 8 = G.711 mu-law logarithmic PCM
 9 = Reserved
10 = AAC

12

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=76

11 = Speex
12 = Reserved
13 = Reserved
14 = MP3 8 kHz
15 = Device-specific sound
Formats 7, 8, 14, and 15 are reserved.
AAC is supported in Flash Player 9,0,115,0 and higher.
Speex is supported in Flash Player 10 and higher.

SoundRate UB[2]

Sampling rate. The following values ​​are defined:
0 = 5.5 kHz
1 = 11 kHz
2 = 22 kHz
3 = 44 kHz

SoundSize UB[1]

Size of each audio sample. This parameter only pertains to
uncompressed formats. Compressed formats always decode
to 16 bits internally.
0 = 8-bit samples
1 = 16-bit samples

SoundType UB[1] Mono or stereo sound 0 = Mono sound
1 = Stereo sound

AACPacketType IF SoundFormat == 10
UI8

The following values are defined: 0 = AAC sequence header
1 = AAC raw

Pre 2023 VideoTagHeader Format
Below is the VideoTagHeader format for the legacy FLV specification:

Table: FLV specification VideoTagHeader

Field Type Comment

Frame Type UB[4]

Type of video frame. The following values ​​are defined:
1 = key frame (for AVC, a seekable frame)
2 = inter frame (for AVC, a non-seekable frame)
3 = disposable inter frame (H.263 only)
4 = generated key frame (reserved for server use only)
5 = video info/command frame

CodecID UB[4]

Codec Identifier. The following values ​​are defined:
2 = Sorenson H.263
3 = Screen video
4 = On2 VP6
5 = On2 VP6 with alpha channel
6 = Screen video version 2
7 = AVC

AVCPacketType IF CodecID == 7
UI8

The following values ​​are defined:
0 = AVC sequence header
1 = AVC NALU

13

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=78

2 = AVC end of sequence (lower level NALU sequence ender is
not REQUIRED or supported)

CompositionTime IF CodecID == 7
SI24

IF AVCPacketType == 1
 Composition time offset
ELSE
 0
See ISO/IEC 14496-12, 8.15.3 for an explanation of
composition times. The offset in an FLV file is always in
milliseconds.

Enhancements to RTMP and FLV
Within the following sections, this document provides a comprehensive overview of the enhancements made to [RTMP] and [FLV]. Together, these
improvements constitute the enhanced RTMP also known as E-RTMP. These enhancements are discussed in detail, highlighting their impact and
benefits.

Enhancing onMetaData
[FLV] metadata SHALL be encapsulated within a [SCRIPTDATA] segment, which includes a [ScriptTagBody] encoded in the Action Message Format
(AMF). Importantly, this metadata SHALL always remain unencrypted, even when the FLV content itself is encrypted. This design choice is
essential for allowing various FLV parsers to successfully stream the FLV content and for enabling media players to provide contextual
information to the user.

The ScriptTagBody is structured to encapsulate method invocations. It consists of an item containing a method name (e.g., onMetaData) along
with a corresponding set of arguments.

To signal FLV metadata, the item within the ScriptTagBody MUST encapsulate the method name onMetaData, along with a single argument of type
ECMA array. This array holds metadata properties, the availability of which may vary depending on the software used to create the FLV.
Typical onMetaData argument properties include, but are not limited to:

Table: Typical properties found in the onMetaData argument object

Property Type Comment

audiocodecid number Audio codec ID used in the file: See AudioTagHeader of the legacy [FLV]
specification for available CodecID values.

When [FourCC] is used to signal the codec, this property is set to a FOURCC
value. Note: A FOURCC value is big-endian relative to the underlying ASCII
character sequence (e.g., "Opus" == 0x4F707573 == 1332770163.0).

audiodatarate number Audio bitrate, in kilobits per second

14

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=76

audiodelay number Delay introduced by the audio codec, in seconds

audiosamplerate number Frequency at which the audio stream is replayed​

audiosamplesize number Number of bits used to represent each audio sample

canSeekToEnd boolean Indicating the last video frame is a key frame

creationdate string Creation date and time

duration number Total duration of the file, in seconds

filesize number Total size of the file, in bytes

framerate number Number of frames per second

height number Height of the video, in pixels

stereo boolean Indicates stereo audio

videocodecid number Video codec ID used in the file: See VideoTagHeader of the legacy [FLV]
specification for available CodecID values.

When [FourCC] is used to signal the codec, this property is set to a FOURCC
value. Note: A FOURCC value is big-endian relative to the underlying ASCII
character sequence (e.g., "av01" == 0x61763031 == 1635135537.0).

videodatarate number Video bitrate, in kilobits per second

width number Width of the video, in pixels

15

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=78

audioTrackIdInfoMap Object audioTrackIdInfoMap and videoTrackIdInfoMap are objects used to provide
per-track metadata for additional audio and video tracks beyond the default
track. Each object uses a trackId as a key to describe the characteristics of a
specific non-default track. The default track for each media type uses trackId
= 0 and is described by the top-level onMetaData fields for that media type.
Tracks with trackId values 1, 2, 3, … represent additional variants.

●​ Key–Value Structure:
○​ Keys: Each key represents a trackId for a non-default track. Keys

begin at 1, since the default track (trackId 0) is represented by
the top-level onMetaData fields.

○​ Values: Each value is an object containing metadata that
describes the characteristics of that specific track.

●​ Properties of Each Track Object:
These properties describe track-level attributes for each additional
track. These attributes often differ from the top-level onMetaData
fields, for example, a different bitrate, resolution, codec, channel
count, or other media properties. Implementations may choose either
approach:

○​ Provide only the properties that differ from the top-level
defaults (delta-style), or

○​ Repeat shared fields so that each track entry is a complete
per-track descriptor.

Both approaches are valid and interoperable. Typical fields include, but
are not limited to:

○​ For videoTrackIdInfoMap: width, height, videodatarate, codec
identifier, and related video characteristics.

○​ For audioTrackIdInfoMap: audiodatarate, channels, samplerate,
codec identifier, and related audio characteristics.

●​ Purpose:​
The purpose of these maps is to describe the characteristics of
additional tracks so that encoders, servers, and players can distinguish
between variants and, when needed, apply track selection or processing
logic. These maps supplement the top-level onMetaData fields by
providing per-track metadata for multitrack scenarios such as
alternative codecs, different qualities, or configuration variants.

This structure provides a framework for detailed customization and control over
the media tracks, ensuring optimal management and delivery across various types
of content and platforms.

Example:
// TrackId 0 is the default track and is described by the top-level
// onMetaData fields for each media type. Additional tracks begin at TrackId 1.
var videoTrackIdInfoMap = {
 1: {
 width: 1024,
 height: 768,
 videodatarate: 2000,
 videocodecid: makeFourCc("av01"),
 },
 2: {

16

 width: 3840,
 height: 2160,
 videodatarate: 30000,
 videocodecid: makeFourCc("avc1"),
 },
}

var audioTrackIdInfoMap = {
 1: {
 audiodatarate: 256,
 channels: 2,
 samplerate: 44100,
 audiocodecid: makeFourCc("mp4a"),
 },
 2: {
 audiodatarate: 320,
 channels: 2,
 samplerate: 48000,
 audiocodecid: makeFourCc("Opus"),
 },
}

videoTrackIdInfoMap

^^>
Note:

●​ The properties audiocodecid and videocodecid have been enhanced to support FOURCC (Four-byte ASCII code) values. These values are
interpreted as UI32 (e.g., "av01").

●​ The properties audioTrackIdInfoMap and videoTrackIdInfoMap are new.
^^>

Reconnect Request

Objective
[RTMP] packetizes multimedia streams using a suitable transport protocol, typically a persistent TCP connection. There are instances when a
streaming platform may request the streaming client to reconnect, such as:

●​ When live streaming servers undergo updates.
●​ When there's a need to redirect the client to a different server instance, ensuring optimal load balancing and precise geolocation

mapping.

To accommodate these needs, a NetConnection.Connect.ReconnectRequest status event has been introduced as part of the NetConnection onStatus
command.

17

NetConnection Commands
NetConnection establishes a bidirectional link between a client and a server, allowing for asynchronous Remote Procedure Calls (RPCs). The
following commands (a.k.a., predefined RPCs) can be issued via NetConnection:

●​ connect
●​ createStream
●​ deleteStream
●​ onStatus

The onStatus command has been enhanced to include the capability to request a client to reconnect. Servers can issue an onStatus command to
prompt clients to adapt to changes in NetConnection status. The structure of this command, as relayed from the server to the client, is
outlined below:

Table: Server to client, NetConnection onStatus command

Field Name Type Description

Command Name string Name of the command. Set to onStatus

Transaction ID number Transaction ID set to 0. (i.e., no response needed)

Command Object null There is no command object for onStatus command.

Info Object Object An AMF-encoded object, the properties of which are utilized by the onStatus command. The Info
Object provides information about the status of the current connection.

The following is a description of AMF-encoded name-value pairs in the Info Object for the onStatus command when handling reconnect. It MAY
contain other properties as appropriate to the client.

Table: Info Object parameter for onStatus command when handling reconnect

Property Type Description Example Value

tcUrl
(optional)

string Absolute or relative URI reference of the server to which to
reconnect. If not specified, use the tcUrl for the current
connection. A relative URI reference should be resolved
relative to the tcUrl for the current connection.

1. rtmp://foo.mydomain.com:1935/realtimeapp
2. rtmp://127.0.0.1/realtimeapp
3. //192.0.2.0/realtimeapp
4. /realtimeapp

code string A string identifying the event that occurred. To reconnect
code MUST be set to NetConnection.Connect.ReconnectRequest

NetConnection.Connect.ReconnectRequest

description
(optional)

string A string containing human-readable information about the
message. Not every information object includes this
property.

The streaming server is undergoing updates.

level string A string indicating the severity of the event. To reconnect
the level MUST be set to status.

status

18

Message Flow When Handling NetConnection.Connect.ReconnectRequest
1.​Prior to the shutdown of the live streaming server or when the server intends to remap the client to another server instance, it

dispatches an onStatus command to the client with a code of NetConnection.Connect.ReconnectRequest. If the server aims to remap the
client, it MUST set the tcUrl property in the Info Object. In order to avoid a disruption, the server managing the original connection
(commonly referred to as the "old server") SHOULD continue processing messages from the client until the client disconnects.

2.​When the client receives the NetConnection.Connect.ReconnectRequest event, it persists in streaming to/from the current server up to
the next appropriate media boundary, such as a keyframe. Subsequently, it establishes a connection with a new server and disconnects
from the old server. If the Info Object includes the tcUrl property, the client uses this URL for the reconnection process. Absent this
property, the client defaults to the tcUrl for the current connection.

3.​While the client can establish a new connection before severing the original one, it SHOULD exercise caution to ensure the Quality of
Service (QoS) is not compromised.

The capability to support the NetConnection.Connect.ReconnectRequest event becomes evident during the initial connect phase. Detailed
guidelines for signaling reconnect ability can be found in the Enhancing NetConnection connect Command section.

Detailed Overview of the onStatus Command for NetConnection
The server-to-client onStatus command for NetConnection, serves a crucial function within the RTMP framework. Though the legacy RTMP
specification may not have detailed this command, the goal here is to offer an overview for a better understanding.

Both clients and servers can initiate RPCs at the receiving end, with some RPCs being predefined as commands. onStatus stands out as one
such essential command.

When using the onStatus command, the goal is to inform the client about the status of the connection. Each dispatched command message
comprises the following elements:

●​ Command Name: type string
●​ Transaction ID: type number
●​ Command Object (set to null when dispatching an onStatus command): type Object
●​ Info Object (which can be viewed as Optional Arguments): type Object

Both the Command Object and the Info Object offer additional context and details for the command. The onStatus command is triggered whenever
there's a status change or an error concerning the NetConnection. To handle this information, you should define a callback function.
```js 
// Sample pseudocode for the onStatus callback function 
nc.onStatus = function(infoObject) { 
  // Handle the status change or error here. 
} 
``` 

19

infoObject is an AMF-encoded object with properties that provide information about the status of a NetConnection. It contains at least the
following three properties, but MAY contain other properties as appropriate to the client.

Table: infoObject for onStatus command

Property Type Description Example Value

code string A string identifying the event that occurred. NetConnection.Connect.Success

description
(optional)

string A string containing human-readable information about the
message. Not every information object includes this
property.

The connection attempt succeeded.

level string There are three established values for level: status,
warning, and error.

status

The table below provides examples of code, level, and description property values. Please note that this is not an exhaustive list, and not
all entries may apply to every type of client. Additionally, the description property values included are merely illustrative examples;
developers are responsible for conveying the appropriate meaning in their specific solutions.

Table: code, level and description values for infoObject used by onStatus

Code Level Description

NetConnection.Call.Failed error The NetConnection.call() method was not able to invoke the server-side method or command.

NetConnection.Connect.AppShutdown error The application has been shut down (for example, if the application is out of memory resources
and must shut down to prevent the server from crashing) or the server has shut down.

NetConnection.Connect.Closed status The connection was closed successfully.

NetConnection.Connect.Failed error The connection attempt failed.

NetConnection.Connect.Rejected error The client does not have permission to connect to the application.

NetConnection.Connect.Success status The connection attempt succeeded.

NetConnection.Connect.ReconnectRequest status The server is requesting the client to reconnect.

NetConnection.Proxy.NotResponding error The proxy server is not responding. See the ProxyStream class.

Enhanced Audio
The AudioTagHeader has been extended to define additional audio codecs, multichannel audio, multitrack capabilities, signaling support, and
additional miscellaneous enhancements, while ensuring backward compatibility. This extension is termed the ExAudioTagHeader and is designed
to be future-proof, allowing for the definition of additional audio codecs, features, and corresponding signaling.

During the parsing process, the logic MUST handle unexpected or unknown elements gracefully. Specifically, if any critical signaling or
flags (e.g., AudioPacketType and AudioFourCc) are not recognized, the system MUST fail in a controlled and predictable manner.
^^>
Important: A single audio message for a unique timestamp may include a batch of AudioPacketType values (e.g., multiple trackId values). When
parsing an audio message, the bitstream MUST be processed completely to ensure all payload data has been handled.
^^>

20

Table: Extended AudioTagHeader
Description Of Bitstream Enumerated Types

soundFormat = UB[4] as SoundFormat

if (soundFormat != SoundFormat.ExHeader) {
 // See AudioTagHeader of the legacy [FLV] specification for for detailed format
 // of the four bits used for soundRate/soundSize/soundType
 //
 // NOTE: soundRate, soundSize and soundType formats have not changed.
 // if (soundFormat == SoundFormat.ExHeader) we switch into FOURCC audio mode
 // as defined below. This means that soundRate, soundSize and soundType
 // bits are not interpreted, instead the UB[4] bits are interpreted as an
 // AudioPacketType
 soundRate = UB[2]
 soundSize = UB[1]
 soundType = UB[1]
}

enum SoundFormat {
 LPcmPlatformEndian = 0,
 AdPcm = 1,
 Mp3 = 2,
 LPcmLittleEndian = 3,
 Nellymoser16KMono = 4,
 Nellymoser8KMono = 5,
 Nellymoser = 6,
 G711ALaw = 7,
 G711MuLaw = 8,
 ExHeader = 9, // new, used to signal FOURCC mode
 Aac = 10,
 Speex = 11,
 // 12 - reserved
 // 13 - reserved
 Mp3_8K = 14,
 Native = 15, // Device specific sound
}

ExAudioTagHeader Section
Note: ExAudioTagHeader is present if (soundFormat == SoundFormat.ExHeader)

Description Of Bitstream Enumerated Types

///
// process ExAudioTagHeader
//
processAudioBody = false
if (soundFormat == SoundFormat.ExHeader) {
 processAudioBody = true

 // Interpret UB[4] bits as AudioPacketType instead of sound rate, size, and type.
 audioPacketType = UB[4] as AudioPacketType // at byte boundary after this read

 // Process each ModEx data packet
 while (audioPacketType == AudioPacketType.ModEx) {
 // Determine the size of the packet ModEx data (ranging from 1 to 256 bytes)
 modExDataSize = UI8 + 1

 // If maximum 8-bit size is not sufficient, use a 16-bit value
 if (modExDataSize == 256) {
 modExDataSize = UI16 + 1;
 }

 // Fetch the packet ModEx data based on its determined size
 modExData = UI8[modExDataSize]

 // fetch the AudioPacketModExType
 audioPacketModExType = UB[4] as AudioPacketModExType

 // Update audioPacketType

enum AudioPacketType {
 SequenceStart = 0,
 CodedFrames = 1,

 // RTMP includes a previously undocumented "audio silence" message.
 // This silence message is identified when an audio message contains
 // a zero-length payload, or more precisely, an empty audio message
 // without an AudioTagHeader, indicating a period of silence. The
 // action to take after receiving a silence message is system
 // dependent. The semantics of the silence message in the Flash
 // Media playback and timing model are as follows:
 //
 // - Ensure all buffered audio data is played out before entering the
 // silence period:
 // Make sure that any audio data currently in the buffer is fully
 // processed and played. This ensures a clean transition into the
 // silence period without cutting off any audio.
 //
 // - After playing all buffered audio data, flush the audio decoder:
 // Clear the audio decoder to reset its state and prepare it for new
 // input after the silence period.
 //
 // - During the silence period, the audio clock can't be used as the
 // master clock for synchronizing playback:
 // Switch to using the system's wall-clock time to maintain the correct
 // timing for video and other data streams.
 //

21

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=76
https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#heading=h.jpwhvwronaz9

 audioPacketType = UB[4] as AudioPacketType // at byte boundary after this read

 if (audioPacketModExType == AudioPacketModExType.TimestampOffsetNano) {
 // This block processes TimestampOffsetNano to enhance RTMP timescale
 // accuracy and compatibility with formats like MP4, M2TS, and Safari's
 // Media Source Extensions. It ensures precise synchronization without
 // altering core RTMP timestamps, applying only to the current media
 // message. These adjustments enhance synchronization and timing
 // accuracy in media messages while preserving the core RTMP timestamp
 // integrity.
 //
 // NOTE:
 // - 1 millisecond (ms) = 1,000,000 nanoseconds (ns).
 // - Maximum value representable with 20 bits is 1,048,575 ns
 // (just over 1 ms), allowing precise sub-millisecond adjustments.
 // - modExData must be at least 3 bytes, storing values up to 999,999 ns.
 audioTimestampNanoOffset = bytesToUI24(modExData)

 // TODO: Integrate this nanosecond offset into timestamp management
 // to accurately adjust the presentation time.
 }
 }

 if (audioPacketType == AudioPacketType.Multitrack) {
 isAudioMultitrack = true;
 audioMultitrackType = UB[4] as AvMultitrackType

 // Fetch AudioPacketType for all audio tracks in the audio message.
 // This fetch MUST not result in a AudioPacketType.Multitrack
 audioPacketType = UB[4] as AudioPacketType

 if (audioMultitrackType != AvMultitrackType.ManyTracksManyCodecs) {
 // The tracks are encoded with the same codec. Fetch the FOURCC for them
 audioFourCc = FOURCC as AudioFourCc
 }
 } else {
 audioFourCc = FOURCC as AudioFourCc
 }
}

 // - Don't wait for audio frames for synchronized A+V playback:
 // Normally, audio frames drive the synchronization of audio and video
 // (A/V) playback. During the silence period, playback should not stall
 // waiting for audio frames. Video and other data streams should
 // continue to play based on the wall-clock time, ensuring smooth
 // playback without audio.
 //
 // AudioPacketType.SequenceEnd is to have no less than the same meaning as
 // a silence message. While it may seem redundant, we need to introduce
 // this enum to ensure we can signal the end of the audio sequence for any
 // audio track.
 SequenceEnd = 2,

 // 3 - Reserved

 MultichannelConfig = 4,

 // Turns on audio multitrack mode
 Multitrack = 5,

 // 6 - reserved

 // ModEx is a special signal within the AudioPacketType enum that
 // serves to both modify and extend the behavior of the current packet.
 // When this signal is encountered, it indicates the presence of
 // additional modifiers or extensions, requiring further processing to
 // adjust or augment the packet's functionality. ModEx can be used to
 // introduce new capabilities or modify existing ones, such as
 // enabling support for high-precision timestamps or other advanced
 // features that enhance the base packet structure.
 ModEx = 7,

 // ...
 // 14 - reserved
 // 15 - reserved
}

enum AudioPacketModExType {
 TimestampOffsetNano = 0,

 // ...
 // 14 - reserved
 // 15 - reserved
}

enum AudioFourCc {
 //
 // Valid FOURCC values for signaling support of audio codecs
 // in the enhanced FourCC pipeline. In this context, support
 // for a FourCC codec MUST be signaled via the enhanced
 // "connect" command.
 //

22

 // AC-3/E-AC-3 - <https://en.wikipedia.org/wiki/Dolby_Digital>
 Ac3 = makeFourCc("ac-3"),
 Eac3 = makeFourCc("ec-3"),

 // Opus audio - <https://opus-codec.org/>
 Opus = makeFourCc("Opus"),

 // Mp3 audio - <https://en.wikipedia.org/wiki/MP3>
 Mp3 = makeFourCc(".mp3"),

 // Free Lossless Audio Codec - <https://xiph.org/flac/format.html>
 Flac = makeFourCc("fLaC"),

 // Advanced Audio Coding - <https://en.wikipedia.org/wiki/Advanced_Audio_Coding>
 // The following AAC profiles, denoted by their object types, are supported
 // 1 = main profile
 // 2 = low complexity, a.k.a., LC
 // 5 = high efficiency / scale band replication, a.k.a., HE / SBR
 Aac = makeFourCc("mp4a"),
}

enum AvMultitrackType {
 //
 // Used by audio and video pipeline
 //

 OneTrack = 0,
 ManyTracks = 1,
 ManyTracksManyCodecs = 2,

 // 3 - Reserved
 // ...
 // 15 - Reserved
}

ExAudioTagBody Section
Note: This ExAudioTagBody format is signaled by the presence of ExAudioTagHeader

Description Of Bitstream Enumerated Types

//
// process ExAudioTagBody
//
while (processAudioBody) {
 if (isAudioMultitrack) {
 if (audioMultitrackType == AvMultitrackType.ManyTracksManyCodecs) {
 // Each track has a codec assigned to it. Fetch the FOURCC for the next track.
 audioFourCc = FOURCC as AudioFourCc
 }

 // Track Ordering:
 //
 // To provide a consistent convention, it is RECOMMENDED that trackId 0 be

enum AudioChannelOrder {
 //
 // Only the channel count is specified, without any further information
 // about the channel order
 //
 Unspecified = 0,

 //
 // The native channel order (i.e., the channels are in the same order in
 // which as defined in the AudioChannel enum).
 //
 Native = 1,

23

 // used for the default track of a given media type. The default track is
 // the representation that the publisher expects most receivers to select
 // when no additional selection logic is applied, for example the primary
 // or most broadly applicable presentation for the stream.
 //
 // Additional variants, for example different bitrates, resolutions,
 // codecs, languages, or camera angles, SHOULD use distinct positive
 // trackId values (1, 2, 3, ...). These values are identifiers only and do
 // not imply any inherent ordering, priority, or quality ranking.
 //
 // Encoders and ingesters SHOULD provide complete and accurate information
 // in the onMetaData fields for each track. This includes codec identifiers
 // and other descriptive track-level attributes such as bitrate, resolution,
 // sample rate, channel count, language, and similar properties relevant to
 // track selection and processing.
 //
 // The authoritative details for each track are also present within the
 // stream itself, for example through codec configuration records and fully
 // self-describing media packets. These in-stream signals can be used by
 // receivers when determining appropriate processing behavior.
 //
 // The full definition of track selection or priority logic is beyond the
 // scope of the E-RTMP specification. The guidance provided here is intended
 // only to establish a consistent convention for trackId usage and related
 // metadata structure. Individual implementations can use different
 // approaches when combining onMetaData information with in-stream
 // signaling to perform track selection or processing.
 //
 // Implementations MUST NOT infer detailed quality or compatibility
 // characteristics from the trackId alone. Instead, they SHOULD consider
 // the metadata provided via onMetaData together with the information
 // conveyed within the media stream to evaluate characteristics such as
 // bitrate, resolution, codec, language, or device profile alignment when
 // choosing a track.
 audioTrackId = UI8

 if (audioMultitrackType != AvMultitrackType.OneTrack) {
 // The `sizeOfAudioTrack` specifies the size in bytes of the
 // current track that is being processed. This size starts
 // counting immediately after the position where the `sizeOfAudioTrack`
 // value is located. You can use this value as an offset to locate the
 // next audio track in a multitrack system. The data pointer is
 // positioned immediately after this field. Depending on the MultiTrack
 // type, the offset points to either a `fourCc` or a `trackId.`
 sizeOfAudioTrack = UI24
 }
 }

 if (audioPacketType == AudioPacketType.MultichannelConfig) {
 //
 // Specify a speaker for a channel as it appears in the bitstream.
 // This is needed if the codec is not self-describing for channel mapping

 //
 // The channel order does not correspond to any predefined
 // order and is stored as an explicit map.
 //
 Custom = 2

 // 3 - Reserved
 // ...
 // 15 - reserved
}

enum AudioChannelMask {
 //
 // Mask used to indicate which channels are present in the stream.
 //

 // masks for commonly used speaker configurations
 // <https://en.wikipedia.org/wiki/Surround_sound#Standard_speaker_channels>
 FrontLeft = 0x000001,
 FrontRight = 0x000002,
 FrontCenter = 0x000004,
 LowFrequency1 = 0x000008,
 BackLeft = 0x000010,
 BackRight = 0x000020,
 FrontLeftCenter = 0x000040,
 FrontRightCenter = 0x000080,
 BackCenter = 0x000100,
 SideLeft = 0x000200,
 SideRight = 0x000400,
 TopCenter = 0x000800,
 TopFrontLeft = 0x001000,
 TopFrontCenter = 0x002000,
 TopFrontRight = 0x004000,
 TopBackLeft = 0x008000,
 TopBackCenter = 0x010000,
 TopBackRight = 0x020000,

 // Completes 22.2 multichannel audio, as
 // standardized in SMPTE ST2036-2-2008
 // see - <https://en.wikipedia.org/wiki/22.2_surround_sound>
 LowFrequency2 = 0x040000,
 TopSideLeft = 0x080000,
 TopSideRight = 0x100000,
 BottomFrontCenter = 0x200000,
 BottomFrontLeft = 0x400000,
 BottomFrontRight = 0x800000,
}

enum AudioChannel {
 //
 // Channel mappings enums
 //

24

 //

 // set audio channel order
 audioChannelOrder = UI8 as AudioChannelOrder

 // number of channels
 channelCount = UI8

 if (audioChannelOrder == AudioChannelOrder.Custom) {
 // Each entry specifies the speaker layout (see AudioChannel enum above
 // for layout definition) in the order that it appears in the bitstream.
 // First entry (i.e., index 0) specifies the speaker layout for channel 1.
 // Subsequent entries specify the speaker layout for the next channels
 // (e.g., second entry for channel 2, third entry for channel 3, etc.).
 audioChannelMapping = UI8[channelCount] as AudioChannel[]
 }

 if (audioChannelOrder == AudioChannelOrder.Native) {
 // audioChannelFlags indicates which channels are present in the
 // multi-channel stream. You can perform a Bitwise AND
 // (i.e., audioChannelFlags & AudioChannelMask.xxx) to see if a
 // specific audio channel is present
 audioChannelFlags = UI32
 }
 }

 if (audioPacketType == AudioPacketType.SequenceEnd) {
 // signals end of sequence
 }

 if (audioPacketType == AudioPacketType.SequenceStart) {
 if (audioFourCc == AudioFourCc.Aac) {
 // The AAC audio specific config (a.k.a., AacSequenceHeader) is
 // defined in ISO/IEC 14496-3.
 aacHeader = [AacSequenceHeader]
 }

 if (audioFourCc == AudioFourCc.Flac) {
 // FlacSequenceHeader layout is:
 //
 // The bytes 0x66 0x4C 0x61 0x43 ("fLaC" in ASCII) signature
 //
 // Followed by a metadata block (called the STREAMINFO block) as described
 // in section 7 of the FLAC specification. The STREAMINFO block contains
 // information about the whole sequence, such as sample rate, number of
 // channels, total number of samples, etc. It MUST be present as the first
 // metadata block in the sequence. The FLAC audio specific bitstream format
 // is defined at <https://xiph.org/flac/format.html>
 flacHeader = [FlacSequenceHeader]
 }

 if (audioFourCc == AudioFourCc.Opus) {

 // commonly used speaker configurations
 // see - <https://en.wikipedia.org/wiki/Surround_sound#Standard_speaker_channels>
 FrontLeft = 0, // i.e., FrontLeft is assigned to channel zero
 FrontRight,
 FrontCenter,
 LowFrequency1,
 BackLeft,
 BackRight,
 FrontLeftCenter,
 FrontRightCenter,
 BackCenter = 8,
 SideLeft,
 SideRight,
 TopCenter,
 TopFrontLeft,
 TopFrontCenter,
 TopFrontRight,
 TopBackLeft,
 TopBackCenter = 16,
 TopBackRight,

 // mappings to complete 22.2 multichannel audio, as
 // standardized in SMPTE ST2036-2-2008
 // see - <https://en.wikipedia.org/wiki/22.2_surround_sound>
 LowFrequency2 = 18,
 TopSideLeft,
 TopSideRight,
 BottomFrontCenter,
 BottomFrontLeft,
 BottomFrontRight = 23,

 // 24 - Reserved
 // ...
 // 0xfd - reserved

 // Channel is empty and can be safely skipped.
 Unused = 0xfe,

 // Channel contains data, but its speaker configuration is unknown.
 Unknown = 0xff,
}

25

https://xiph.org/flac/format.html

 // Opus Sequence header (a.k.a., ID header):
 // - The Opus sequence start is also known as the ID header.
 // - It contains essential information needed to initialize
 // the decoder and understand the stream format.
 // - For detailed structure, refer to RFC 7845, Section 5.1:
 // <https://datatracker.ietf.org/doc/html/rfc7845#section-5.1>
 //
 // If the Opus sequence start payload is empty, use the
 // AudioPacketType.MultichannelConfig signal for channel
 // mapping when present; otherwise, default to mono/stereo mode.
 opusHeader = [OpusSequenceHeader]
 }
 }

 if (audioPacketType == AudioPacketType.CodedFrames) {
 if (audioFourCc == AudioFourCc.Ac3 || audioFourCc == AudioFourCc.Eac3) {
 // Body contains audio data as defined by the bitstream syntax
 // in the ATSC standard for Digital Audio Compression (AC-3, E-AC-3)
 ac3Data = [Ac3CodedData]
 }

 if (audioFourCc == AudioFourCc.Opus) {
 // Body contains Opus packets. The layout is one Opus
 // packet for each of N different streams, where N is
 // typically one for mono or stereo, but MAY be greater
 // than one for multichannel audio. The value N is
 // specified in the ID header (Opus sequence start) or
 // via the AudioPacketType.MultichannelConfig signal, and
 // is fixed over the entire length of the Opus sequence.
 // The first (N - 1) Opus packets, if any, are packed one
 // after another using the self-delimiting framing from
 // Appendix B of [RFC6716]. The remaining Opus packet is
 // packed at the end of the Ogg packet using the regular,
 // undelimited framing from Section 3 of [RFC6716]. All
 // of the Opus packets in a single audio packet MUST be
 // constrained to have the same duration.
 opusData = [OpusCodedData]
 }

 if (audioFourCc == AudioFourCc.Mp3) {
 // An Mp3 audio stream is built up from a succession of smaller
 // parts called frames. Each frame is a data block with its own header
 // and audio information
 mp3Data = [Mp3CodedData]
 }

 if (audioFourCc == AudioFourCc.Aac) {
 // The AAC audio specific bitstream format is defined in ISO/IEC 14496-3.
 aacData = [AacCodedData]
 }

 if (audioFourCc == AudioFourCc.Flac) {

26

https://datatracker.ietf.org/doc/html/rfc7845#section-5.1

 // The audio data is composed of one or more audio frames. Each frame
 // consists of a frame header, which contains a sync code and information
 // about the frame, such as the block size, sample rate, number of
 // channels, et cetera. The Flac audio specific bitstream format
 // is defined at <https://xiph.org/flac/format.html>
 flacData = [FlacCodedData]
 }
 }

 if (
 isAudioMultitrack &&
 audioMultitrackType != AvMultitrackType.OneTrack &&
 positionDataPtrToNextAudioTrack(sizeOfAudioTrack)
) {
 // TODO: need to implement positionDataPtrToNextAudioTrack()
 continue
 }

 // done processing audio message
 break
}

Enhanced Video
The VideoTagHeader has been extended to define additional video codecs, multitrack capabilities, signaling support, and additional
miscellaneous enhancements, while ensuring backward compatibility. This extension is termed the ExVideoTagHeader and is designed to be
future-proof, allowing for the definition of additional video codecs, features, and corresponding signaling.

During the parsing process, the logic MUST handle unexpected or unknown elements gracefully. Specifically, if any critical signaling or
flags (e.g., VideoFrameType, VideoPacketType, or VideoFourCc) are not recognized, the system MUST fail in a controlled and predictable
manner.
^^>
Important: A single video message for a unique timestamp may include a batch of VideoPacketType values (e.g., multiple trackId values,
Metadata values). When parsing a video message, the bitstream MUST be processed completely to ensure all payload data has been handled.
^^>
Table: Extended VideoTagHeader

Description Of Bitstream Enumerated Types

// Check if isExVideoHeader flag is set to 1, signaling enhanced RTMP
// video mode. In this case, VideoCodecId's 4-bit unsigned binary (UB[4])
// should not be interpreted as a codec identifier. Instead, these
// UB[4] bits should be interpreted as VideoPacketType.
isExVideoHeader = Boolean(UB[1])
videoFrameType = UB[3] as VideoFrameType

if (isExVideoHeader == 0) {

enum VideoFrameType {
 // 0 - reserved
 KeyFrame = 1, // a seekable frame
 InterFrame = 2, // a non - seekable frame
 DisposableInterFrame = 3, // H.263 only
 GeneratedKeyFrame = 4, // reserved for server use only

 // If videoFrameType is not ignored and is set to VideoFrameType.Command,

27

https://xiph.org/flac/format.html

 // Utilize the VideoCodecId values and the bitstream description
 // as defined in the legacy [FLV] specification. Refer to this
 // version for the proper implementation details.
 videoCodecId = UB[4] as VideoCodecId

 if (videoFrameType == VideoFrameType.Command) {
 videoCommand = UI8 as VideoCommand
 }
}

 // the payload will not contain video data. Instead, (Ex)VideoTagHeader
 // will be followed by a UI8, representing the following meanings:
 //
 // 0 = Start of client-side seeking video frame sequence
 // 1 = End of client-side seeking video frame sequence
 //
 // frameType is ignored if videoPacketType is VideoPacketType.MetaData
 Command = 5, // video info / command frame

 // 6 = reserved
 // 7 = reserved
}

enum VideoCommand {
 StartSeek = 0,
 EndSeek = 1,

 // 0x03 = reserved
 // ...
 // 0xff = reserved
}

enum VideoCodecId {
 // These values remain as they were in the legacy [FLV] specification.
 // If the IsExVideoHeader flag is set, we switch into
 // FOURCC video mode defined in the VideoFourCc enumeration.
 // This means that VideoCodecId (UB[4] bits) is not interpreted
 // as a codec identifier. Instead, these UB[4] bits are
 // interpreted as VideoPacketType.

 // 0 - Reserved
 // 1 - Reserved
 SorensonH263 = 2,
 Screen = 3,
 On2VP6 = 4,
 On2VP6A = 5, // with alpha channel
 ScreenV2 = 6,
 Avc = 7,
 // 8 - Reserved
 // ...
 // 15 - Reserved
}

ExVideoTagHeader Section
note: ExVideoTagHeader is present if IsExVideoHeader flag is set.

Description Of Bitstream Enumerated Types

//
// process ExVideoTagHeader
//
processVideoBody = false
if (isExVideoHeader) {

enum VideoPacketType {
 SequenceStart = 0,
 CodedFrames = 1,
 SequenceEnd = 2,

28

 processVideoBody = true

 // Interpret UB[4] bits as VideoPacketType instead of sound rate, size, and type.
 videoPacketType = UB[4] as VideoPacketType // at byte boundary after this read

 // Process each ModEx data packet
 while (videoPacketType == VideoPacketType.ModEx) {
 // Determine the size of the packet ModEx data (ranging from 1 to 256 bytes)
 modExDataSize = UI8 + 1

 // If maximum 8-bit size is not sufficient, use a 16-bit value
 if (modExDataSize == 256) {
 modExDataSize = UI16 + 1;
 }

 // Fetch the packet ModEx data based on its determined size
 modExData = UI8[modExDataSize]

 // fetch the VideoPacketOptionType
 videoPacketModExType = UB[4] as VideoPacketModExType

 // Update videoPacketType
 videoPacketType = UB[4] as VideoPacketType // at byte boundary after this read

 if (videoPacketModExType == VideoPacketModExType.TimestampOffsetNano) {
 // This block processes TimestampOffsetNano to enhance RTMP timescale
 // accuracy and compatibility with formats like MP4, M2TS, and Safari's
 // Media Source Extensions. It ensures precise synchronization without
 // altering core RTMP timestamps, applying only to the current media
 // message. These adjustments enhance synchronization and timing
 // accuracy in media messages while preserving the core RTMP timestamp
 // integrity.
 //
 // NOTE:
 // - 1 millisecond (ms) = 1,000,000 nanoseconds (ns).
 // - Maximum value representable with 20 bits is 1,048,575 ns
 // (just over 1 ms), allowing precise sub-millisecond adjustments.
 // - modExData must be at least 3 bytes, storing values up to 999,999 ns.
 videoTimestampNanoOffset = bytesToUI24(modExData)

 // TODO: Integrate this nanosecond offset into timestamp management
 // to accurately adjust the presentation time.
 }
 }

 if (
 videoPacketType != VideoPacketType.Metadata &&
 videoFrameType == VideoFrameType.Command
) {
 videoCommand = UI8 as VideoCommand

 // ExVideoTagBody has no payload if we got here.

 // CompositionTime Offset is implicitly set to zero. This optimization
 // avoids transmitting an SI24 composition time value of zero over the wire.
 // See the ExVideoTagBody section below for corresponding pseudocode.
 CodedFramesX = 3,

 // ExVideoTagBody does not contain video data. Instead, it contains
 // an AMF-encoded metadata. Refer to the Metadata Frame section for
 // an illustration of its usage. For example, the metadata might include
 // HDR information. This also enables future possibilities for expressing
 // additional metadata meant for subsequent video sequences.
 //
 // If VideoPacketType.Metadata is present, the FrameType flags
 // at the top of this table should be ignored.
 Metadata = 4,

 // Carriage of bitstream in MPEG-2 TS format
 //
 // PacketTypeSequenceStart and PacketTypeMPEG2TSSequenceStart
 // are mutually exclusive
 MPEG2TSSequenceStart = 5,

 // Turns on video multitrack mode
 Multitrack = 6,

 // ModEx is a special signal within the VideoPacketType enum that
 // serves to both modify and extend the behavior of the current packet.
 // When this signal is encountered, it indicates the presence of
 // additional modifiers or extensions, requiring further processing to
 // adjust or augment the packet's functionality. ModEx can be used to
 // introduce new capabilities or modify existing ones, such as
 // enabling support for high-precision timestamps or other advanced
 // features that enhance the base packet structure.
 ModEx = 7,

 // 8 - Reserved
 // ...
 // 14 - reserved
 // 15 - reserved
}

enum VideoPacketModExType {
 TimestampOffsetNano = 0,

 // ...
 // 14 - reserved
 // 15 - reserved
}

enum VideoFourCc {
 //
 // Valid FOURCC values for signaling support of video codecs

29

 // Set boolean to not try to process the video body.
 processVideoBody = false
 } else if (videoPacketType == VideoPacketType.Multitrack) {
 isVideoMultitrack = true;
 videoMultitrackType = UB[4] as AvMultitrackType

 // Fetch VideoPacketType for all video tracks in the video message.
 // This fetch MUST not result in a VideoPacketType.Multitrack
 videoPacketType = UB[4] as VideoPacketType

 if (videoMultitrackType != AvMultitrackType.ManyTracksManyCodecs) {
 // The tracks are encoded with the same codec. Fetch the FOURCC for them
 videoFourCc = FOURCC as VideoFourCc
 }
 } else {
 videoFourCc = FOURCC as VideoFourCc
 }
}

 // in the enhanced FourCC pipeline. In this context, support
 // for a FourCC codec MUST be signaled via the enhanced
 // "connect" command.
 //

 Vp8 = makeFourCc("vp08"),
 Vp9 = makeFourCc("vp09"),
 Av1 = makeFourCc("av01"),
 Avc = makeFourCc("avc1"),
 Hevc = makeFourCc("hvc1"),
}

enum AvMultitrackType {
 //
 // Used by audio and video pipeline
 //

 OneTrack = 0,
 ManyTracks = 1,
 ManyTracksManyCodecs = 2,

 // 3 - Reserved
 // ...
 // 15 - Reserved
}

ExVideoTagBody Section
Note: This ExVideoTagBody format is signaled by the presence of ExVideoTagHeader and if videoCommand has not been set (see VideoFrameType description)

Description Of Bitstream

//
// process ExVideoTagBody
//
while (processVideoBody) {
 if (isVideoMultitrack) {
 if (videoMultitrackType == AvMultitrackType.ManyTracksManyCodecs) {
 // Each track has a codec assigned to it. Fetch the FOURCC for the next track.
 videoFourCc = FOURCC as VideoFourCc
 }

 // Track Ordering:
 //
 // To provide a consistent convention, it is RECOMMENDED that trackId 0 be
 // used for the default track of a given media type. The default track is
 // the representation that the publisher expects most receivers to select
 // when no additional selection logic is applied, for example the primary
 // or most broadly applicable presentation for the stream.
 //
 // Additional variants, for example different bitrates, resolutions,
 // codecs, languages, or camera angles, SHOULD use distinct positive
 // trackId values (1, 2, 3, ...). These values are identifiers only and do
 // not imply any inherent ordering, priority, or quality ranking.
 //

30

https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#bookmark=kix.t5eqxeh83xrg

 // Encoders and ingesters SHOULD provide complete and accurate information
 // in the onMetaData fields for each track. This includes codec identifiers
 // and other descriptive track-level attributes such as bitrate, resolution,
 // sample rate, channel count, language, and similar properties relevant to
 // track selection and processing.
 //
 // The authoritative details for each track are also present within the
 // stream itself, for example through codec configuration records and fully
 // self-describing media packets. These in-stream signals can be used by
 // receivers when determining appropriate processing behavior.
 //
 // The full definition of track selection or priority logic is beyond the
 // scope of the E-RTMP specification. The guidance provided here is intended
 // only to establish a consistent convention for trackId usage and related
 // metadata structure. Individual implementations can use different
 // approaches when combining onMetaData information with in-stream
 // signaling to perform track selection or processing.
 //
 // Implementations MUST NOT infer detailed quality or compatibility
 // characteristics from the trackId alone. Instead, they SHOULD consider
 // the metadata provided via onMetaData together with the information
 // conveyed within the media stream to evaluate characteristics such as
 // bitrate, resolution, codec, language, or device profile alignment when
 // choosing a track.
 videoTrackId = UI8

 if (videoMultitrackType != AvMultitrackType.OneTrack) {
 // The `sizeOfVideoTrack` specifies the size in bytes of the
 // current track that is being processed. This size starts
 // counting immediately after the position where the `sizeOfVideoTrack`
 // value is located. You can use this value as an offset to locate the
 // next video track in a multitrack system. The data pointer is
 // positioned immediately after this field. Depending on the MultiTrack
 // type, the offset points to either a `fourCc` or a `trackId.`
 sizeOfVideoTrack = UI24
 }
 }

 if (videoPacketType == VideoPacketType.Metadata) {
 // The body does not contain video data; instead, it consists of AMF-encoded
 // metadata. The metadata is represented by a series of [name, value] pairs.
 // Currently, the only defined [name, value] pair is ["colorInfo", Object].
 // See the Metadata Frame section for more details on this object.
 //
 // For a deeper understanding of the encoding, please refer to the descriptions
 // of SCRIPTDATA and SCRIPTDATAVALUE in the FLV file specification.
 videoMetadata = [VideoMetadata]
 }

 if (videoPacketType == VideoPacketType.SequenceEnd) {
 // signals end of sequence
 }

31

 if (videoPacketType == VideoPacketType.SequenceStart) {
 if (videoFourCc == VideoFourCc.Vp8) {
 // body contains a VP8 configuration record to start the sequence
 vp8Header = [VPCodecConfigurationRecord]
 }

 if (videoFourCc == VideoFourCc.Vp9) {
 // body contains a VP9 configuration record to start the sequence
 vp9Header = [VPCodecConfigurationRecord]
 }

 if (videoFourCc == VideoFourCc.Av1) {
 // body contains a configuration record to start the sequence
 av1Header = [AV1CodecConfigurationRecord]
 }

 if (videoFourCc == VideoFourCc.Avc) {
 // body contains a configuration record to start the sequence.
 // See ISO/IEC 14496-15:2019, 5.3.4.1 for the description of
 // the AVCDecoderConfigurationRecord.
 avcHeader = [AVCDecoderConfigurationRecord]
 }

 if (videoFourCc == VideoFourCc.Hevc) {
 // body contains a configuration record to start the sequence.
 // See ISO/IEC 14496-15:2022, 8.3.3.2 for the description of
 // the HEVCDecoderConfigurationRecord.
 hevcHeader = [HEVCDecoderConfigurationRecord]
 }
 }

 if (videoPacketType == VideoPacketType.MPEG2TSSequenceStart) {
 if (videoFourCc == VideoFourCc.Av1) {
 // body contains a video descriptor to start the sequence
 av1Header = [AV1VideoDescriptor]
 }
 }

 if (videoPacketType == VideoPacketType.CodedFrames) {
 if (videoFourCc == VideoFourCc.Vp8) {
 // body contains series of coded full frames
 vp8CodedData = [Vp8CodedData]
 }

 if (videoFourCc == VideoFourCc.Vp9) {
 // body contains series of coded full frames
 vp9CodedData = [Vp9CodedData]
 }

 if (videoFourCc == VideoFourCc.Av1) {
 // body contains one or more OBUs representing a single temporal unit

32

 av1CodedData = [Av1CodedData]
 }

 if (videoFourCc == VideoFourCc.Avc) {
 // See ISO/IEC 14496-12:2015, 8.6.1 for the description of the composition
 // time offset. The offset in an FLV file is always in milliseconds.
 compositionTimeOffset = SI24

 // Body contains one or more NALUs; full frames are required
 avcCodedData = [AvcCodedData]
 }

 if (videoFourCc == VideoFourCc.Hevc) {
 // See ISO/IEC 14496-12:2015, 8.6.1 for the description of the composition
 // time offset. The offset in an FLV file is always in milliseconds.
 compositionTimeOffset = SI24

 // Body contains one or more NALUs; full frames are required
 hevcData = [HevcCodedData]
 }
 }

 if (videoPacketType == VideoPacketType.CodedFramesX) {
 // compositionTimeOffset is implied to equal zero. This is
 // an optimization to save putting SI24 value on the wire

 if (videoFourCc == VideoFourCc.Avc) {
 // Body contains one or more NALUs; full frames are required
 avcCodedData = [AvcCodedData]
 }

 if (videoFourCc == VideoFourCc.Hevc) {
 // Body contains one or more NALUs; full frames are required
 hevcData = [HevcCodedData]
 }
 }

 if (
 isVideoMultitrack &&
 videoMultitrackType != AvMultitrackType.OneTrack &&
 positionDataPtrToNextVideoTrack(sizeOfVideoTrack)
) {
 // TODO: need to implement positionDataPtrToNextVideoTrack()
 continue
 }

 // done processing video message
 break
}

33

Metadata Frame
To support various types of video metadata, the legacy [FLV] specification has been enhanced. The VideoTagHeader has been extended to define
a new VideoPacketType.Metadata (see ExVideoTagHeader table in Enhanced Video section) whose payload will contain an AMF-encoded metadata.
The metadata will be represented by a series of [name, value] pairs. For now the only defined [name, value] pair is ["colorInfo", Object].
When leveraging VideoPacketType.Metadata to deliver HDR metadata, the metadata MUST be sent prior to the video sequence, scene, frame or
such that it affects. Each time a new colorInfo object is received it invalidates and replaces the current one. To reset to the original
color state you can send colorInfo with a value of Undefined (the RECOMMENDED approach) or an empty object (i.e., {}).

It is intentional to leverage a video message to deliver VideoPacketType.Metadata instead of other [RTMP] Message types. One benefit of
leveraging a video message is to avoid any racing conditions between video messages and other RTMP message types. Given this, once your
colorInfo object is parsed, the read values MUST be processed in time to affect the first frame of the video section which follows the
colorInfo object.

The colorInfo object provides HDR metadata to enable a higher quality image source conforming to BT.2020 (a.k.a., Rec. 2020) standard. The
properties of the colorInfo object, which are encoded in an AMF message format, are defined below.
^^>
Note:

●​ For content creators: Whenever it behooves to add video hint information via metadata (e.g., HDR) to the FLV container it is
RECOMMENDED to add it via VideoPacketType.Metadata. This may be done in addition (or instead) to encoding the metadata directly into
the codec bitstream.

●​ The object encoding format (i.e., AMF0 or AMF3) is signaled during the connect command.
^^>
```js 
type ColorInfo = { 
  colorConfig: { 
    // number of bits used to record the color channels for each pixel 
    bitDepth:                 number, // SHOULD be 8, 10 or 12 
 
    // 
    // colorPrimaries, transferCharacteristics and matrixCoefficients are defined  
    // in ISO/IEC 23091-4/ITU-T H.273. The values are an index into  
    // respective tables which are described in "Colour primaries",  
    // "Transfer characteristics" and "Matrix coefficients" sections.  
    // It is RECOMMENDED to provide these values. 
    // 
 
    // indicates the chromaticity coordinates of the source color primaries 
    colorPrimaries:           number, // enumeration [0-255] 
 
    // opto-electronic transfer characteristic function (e.g., PQ, HLG) 
    transferCharacteristics:  number, // enumeration [0-255] 
 
    // matrix coefficients used in deriving luma and chroma signals 
    matrixCoefficients:       number, // enumeration [0-255] 
  }, 

34 

https://veovera.github.io/enhanced-rtmp/original-rtmp-related-specs/rtmp-v1-0-spec.pdf#page=29


 
  hdrCll: { 
    // 
    // maximum value of the frame average light level 
    // (in 1 cd/m2) of the entire playback sequence 
    // 
    maxFall:  number,     // [0.0001-10000] 
 
    // 
    // maximum light level of any single pixel (in 1 cd/m2) 
    // of the entire playback sequence 
    // 
    maxCLL:   number,     // [0.0001-10000] 
  }, 
 
  // 
  // The hdrMdcv object defines mastering display (i.e., where 
  // creative work is done during the mastering process) color volume (a.k.a., mdcv) 
  // metadata which describes primaries, white point and min/max luminance. The 
  // hdrMdcv object SHOULD be provided. 
  // 
  // Specification of the metadata along with its ranges adhere to the 
  // ST 2086:2018 - SMPTE Standard (except for minLuminance see 
  // comments below) 
  // 
  hdrMdcv: { 
    // 
    // Mastering display color volume (mdcv) xy Chromaticity Coordinates within CIE 
    // 1931 color space. 
    // 
    // Values SHALL be specified with four decimal places. The x coordinate SHALL 
    // be in the range [0.0001, 0.7400]. The y coordinate SHALL be  
    // in the range [0.0001, 0.8400]. 
    // 
    redX:         number, 
    redY:         number, 
    greenX:       number, 
    greenY:       number, 
    blueX:        number, 
    blueY:        number, 
    whitePointX:  number, 
    whitePointY:  number, 
 
    // 
    // max/min display luminance of the mastering display (in 1 cd/m2 ie. nits) 
    // 
    // note: ST 2086:2018 - SMPTE Standard specifies minimum display mastering 
    // luminance in multiples of 0.0001 cd/m2. 
    //  
    // For consistency we specify all values 
    // in 1 cd/m2. Given that a hypothetical perfect screen has a peak brightness 
    // of 10,000 nits and a black level of .0005 nits we do not need to 

35 



    // switch units to 0.0001 cd/m2 to increase resolution on the lower end of the 
    // minLuminance property. The ranges (in nits) mentioned below suffice 
    // the theoretical limit for Mastering Reference Displays and adhere to the 
    // SMPTE ST 2084 standard (a.k.a., PQ) which is capable of representing full gamut 
    // of luminance level. 
    // 
    maxLuminance: number,     // [5-10000] 
    minLuminance: number,     // [0.0001-5] 
  }, 
} 
``` 
Table: Flag values for the videoFunction property

Function Flag Usage Value

SUPPORT_VID_CLIENT_SEEK Indicates that the client can perform frame-accurate seeks. 0x0001

SUPPORT_VID_CLIENT_HDR Indicates that the client has support for HDR video. Note: Implies
support for colorInfo Object within VideoPacketType.Metadata.

0x0002

SUPPORT_VID_CLIENT_VIDEO_PACKET_TYPE_METADATA Indicates that the client has support for VideoPacketType.Metadata.
See Metadata Frame section for more detail.

0x0004

SUPPORT_VID_CLIENT_LARGE_SCALE_TILE The large-scale tile allows the decoder to extract only an
interesting section in a frame without the need to decompress the
entire frame. Support for this feature is not required and is
assumed to not be implemented by the client unless this property is
present and set to true.

0x0008

Multitrack Streaming via Enhanced RTMP

Introduction to Multitrack Capabilities
E-RTMP has introduced support for multitrack streaming, offering increased flexibility in audio and video streaming through the use of a
track index (i.e., audioTrackId and videoTrackId). This feature allows for the serialization of multiple tracks over a single E-RTMP
connection and stream channel.

It's important to note that multitrack support is designed to augment, not replace, the option of using multiple streams for streaming.
While both multiple streams and multitrack can potentially address the same use cases, the choice between them will depend on the specific
capabilities of your E-RTMP implementation and requirements. In certain cases, multitrack may not be the most efficient option.

Multitrack Sample Use Cases
●​ Adaptive Bitrate Streaming: Multitrack support allows the client to send Adaptive Bitrate (ABR) ladders, thus avoiding the need for

server-side transcoding and reducing quality loss. This also facilitates sending content with multiple codecs like AV1, HEVC, and VP9.
●​ Device Specific Streaming: The feature allows for the streaming of different aspect ratios, tailored for various device profiles,

enabling more dynamic and flexible presentations.
36

●​ Frame-Level Synchronization: For example, you can synchronize multiple camera views in a concert.
●​ Multi-Language Support: Support for multiple audio tracks in a single [FLV] file is now available, eliminating the need for multiple

file versions.
●​ Multi-codec publishing: Allows a publisher to encode media in multiple formats within a single stream and enabling delivery of the

appropriate codec based on platform support

Multitrack Media Message Guidelines
●​ Video Messages: Each video message MUST include a videoTrackId (refer to the videoPacketType.Multitrack entry in the ExVideoTagHeader

table within the Enhanced Video section for video bitstream signaling) as it is not persistent across messages.
●​ Audio Messages: Similarly, each audio message MUST include an audioTrackId (refer to the AudioPacketType.Multitrack in the

ExAudioTagHeader table within the Enhanced Audio section for audio bitstream signaling).
●​ Payload Parsing: All tracks within a single timestamp MUST be processed to ensure comprehensive media handling.
●​ Track Ordering: To provide a consistent convention, it is RECOMMENDED that trackId 0 be used for the default track of a given media

type. The default track is the representation that the publisher expects most receivers to select when no additional selection logic is
applied, for example the primary or most broadly applicable presentation for the stream.​
​
Additional variants, for example different bitrates, resolutions, codecs, languages, or camera angles, SHOULD use distinct positive
trackId values (1, 2, 3, …). These values are identifiers only and do not imply any inherent ordering, priority, or quality ranking.​
​
Encoders and ingesters SHOULD provide complete and accurate information in the onMetaData fields for each track. This includes codec
identifiers and other descriptive track-level attributes such as bitrate, resolution, sample rate, channel count, language, and similar
properties relevant to track selection and processing.

The authoritative details for each track are also present within the stream itself, for example through codec configuration records,
and fully self-describing media packets. These in-stream signals can be used by receivers when determining the appropriate processing
behavior.

The full definition of track selection or priority logic is beyond the scope of the E-RTMP specification. The guidance provided here is
intended only to establish a consistent convention for trackId usage and related metadata structure. Individual implementations can use
different approaches when combining onMetaData information with in-stream signaling to perform track selection or processing.

Implementations MUST NOT infer detailed quality or compatibility characteristics from the trackId alone. Instead, they SHOULD consider
the metadata provided via onMetaData together with the information conveyed within the media stream to evaluate characteristics such as
bitrate, resolution, codec, language, or device profile alignment when choosing a track.

SCRIPTDATA Multitrack Parameter Handling

●​ trackId SHOULD be a Parameter: For methods within RTMP that involve [SCRIPTDATA] messages, the trackId can be a critical parameter for
operations that pertain to specific media tracks. In such cases, the trackId SHOULD be passed in as an argument to the method, ensuring

37

that the action or data manipulation is accurately applied to the correct track. When track namespaces include both audio and video
tracks, the combination of trackId and mediaType uniquely identifies the target track.

●​ Recommended Parameter Passing:
○​ Using a Map or Object Argument: The recommended way to pass the trackId to methods involving SCRIPTDATA is by including it within

a map or as a property of an object argument. This approach aligns with practices such as those used in the Enhancing onMetaData
section, enhancing consistency and scalability across various implementations.

○​ Function Signature Example: This method takes an object arg which contains the properties trackId and mediaType. This structure
is effective for managing multiple parameters and enhances readability and maintainability.

```js 
// Invokes a media-type specific script for a given track. 
function scriptMethodName(arg: { 
  trackId: number, 
  mediaType: "video" | "audio" | "data", 
  // ... additional properties can be added here 
}) { 
  console.log(`Invoking ${arg.mediaType} script for trackId:`, arg.trackId); 
} 
``` 
``>
Note: This example illustrates one possible object structure. Actual SCRIPTDATA payloads may vary depending on the encoder or tooling, and
may use maps or other AMF object forms consistent with historical SCRIPTDATA usage.
``>

●​ Advantages of Parameter Passing Approach:
○​ Clarity and Structure: Using an object or map to pass arguments, including the trackId, organizes the parameters neatly and

reduces the chances of errors or misalignment in parameter order.
○​ Enhanced Maintenance: It becomes easier to add more parameters in the future without altering the method signature drastically,

thereby maintaining compatibility and easing future enhancements. The style of passing the trackId as part of a structured object
or map ensures a robust framework for handling SCRIPTDATA operations in RTMP streams, providing clear, scalable, and error-free
management of track-specific data.

Leveraging Multitrack Features in E-RTMP
Multitrack capabilities in E-RTMP offer a wide range of possibilities, from adaptive bitrate streaming to multi-language support. While this
document doesn't prescribe specific encoding rules or manifest metadata, it aims to guide you through the complexities of leveraging
multitrack features. Consider various parameters like codecs, frame rates, key frames, sampling rates, and resolutions to meet your unique
objectives. Remember, media encoding settings are separate from E-RTMP configurations.

38

Enhancing NetConnection connect Command
When a client connects to an E-RTMP server, it sends a connect command to the server. The command structure sent from the client to the
server contains a Command Object, comprising name-value pairs. This is where the client indicates the audio and video codecs it supports. To
declare support for newly defined codecs or other enhancements supported by the client, this name-value pair list must be extended. Below is
the description of a new name-value pair used in the Command Object of the connect command.

Table: New name-value pair that can be set in the Command Object

Property Type Description Example Value

fourCcList Strict Array of strings Used to declare the enhanced list of supported codecs when
connecting to the server. The fourCcList property is a strict array
of dense ordinal indices. Each entry in the array is of string
type, specifically a [FourCC] value (i.e., a string that is a
sequence of four bytes), representing a supported audio/video
codec.

In the context of E-RTMP, clients capable of receiving any codec
(e.g., recorders or forwarders) may set a FourCC value to the
wildcard value of "*".

Note: The fourCcList property was introduced in the original
E-RTMP. Going forward, it is RECOMMENDED on the client side to
switch to using the [audio|video]FourCcInfoMap properties described
below. On the server side, we RECOMMEND supporting both fourCcList
and [audio|video]FourCcInfoMap properties to handle cases where a
client has not yet transitioned to using the new properties.

e.g., 1
[
 "av01", "vp09", "vp08", "Hvc1",
 "Avc1", "ac-3", "ec-3", "Opus",
 ".mp3", "fLaC", "Aac"
]

e.g., 2
["*"]

videoFourCcInfoMap,
audioFourCcInfoMap

Object The [audio|video]FourCcInfoMap properties are designed to enable
setting capability flags for each supported codec in the context of
E-RTMP streaming. A FourCC key is a four-character code used to
specify a video or audio codec. The names of the object properties
are strings that correspond to these FourCC keys. Each object
property holds a numeric value that represents a set of capability
flags. These flags can be combined using a Bitwise OR operation.

Refer to the enum FourCcInfoMask for the available flags:

enum FourCcInfoMask {
 CanDecode = 0x01,
 CanEncode = 0x02,
 CanForward = 0x04,
}

Capability flags define specific functionalities, such as the
ability to decode, encode, or forward.

A FourCC key set to the wildcard character "*" acts as a catch-all
for any codec. When this wildcard key exists, it overrides the
flags set on properties for specific codecs. For example, if the
flag for the "*" property is set to FourCcInfoMask.CanForward, all

e.g., 1
videoFourCcInfoMap = {
 // can forward any video codec
 "*": FourCcInfoMask.CanForward,

 // can decode, encode, forward (see "*") VP9 codec
 "vp09": FourCcInfoMask.CanDecode |
 FourCcInfoMask.CanEncode,
}

e.g., 2
audioFourCcInfoMap = {
 // can forward any audio codec
 "*": FourCcInfoMask.CanForward,

 // can decode, encode, forward (see "*") Opus codec
 "Opus": FourCcInfoMask.CanDecode |
 FourCcInfoMask.CanEncode,
}

39

https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=29

codecs will be forwarded regardless of individual flags set on
their specific properties.

capsEx number The value represents capability flags which can be combined via a
Bitwise OR to indicate which extended set of capabilities (i.e.,
beyond the legacy [RTMP] specification) are supported via E-RTMP.
See enum CapsExMask for the enumerated values representing the
assigned bits. If the extended capabilities are expressed elsewhere
they will not appear here (e.g., FourCC, HDR or
VideoPacketType.Metadata support is not expressed in this
property).

When a specific flag is encountered:
- The implementation might fully handle the feature by applying the
appropriate logic.
- Alternatively, if full support is not available, the
implementation can still parse the bitstream correctly, ensuring
graceful degradation. This allows continued operation, even with
reduced functionality.

enum CapsExMask {
 Reconnect = 0x01, // Support for reconnection
 Multitrack = 0x02, // Support for multitrack
 ModEx = 0x04, // Can parse ModEx signal
 TimestampNanoOffset = 0x08, // Support for nano offset
}

CapsExMask.Reconnect | CapsExMask.Multitrack

As you can see, the client declares to the server what enhancements it supports. The server responds with a command, either _result or
_error, to indicate whether the response is a result or an error. During the response, the server provides some properties within an Object
as one of the parameters. This is where the server needs to state its support for E-RTMP. The server SHOULD state its support via attributes
such as videoFourCcInfoMap, capsEx, and similar properties.

Action Message Format (AMF): AMF0 and AMF3
Action Message Format (AMF) is a compact binary format used to serialize SCRIPTDATA. It has two specifications: [AMF0] and [AMF3]. AMF3
improves on AMF0 by optimizing the payload size on the wire. To understand the full scope of these optimizations, please refer to the AMF0
and AMF3 specifications.

Supporting AMF3 in the [RTMP] and [FLV] is beneficial due to its optimization over AMF0. Understanding the ecosystem is crucial before
adding AMF3 support to RTMP or FLV.

Enabling AMF3 in RTMP
To enable support for AMF3 in RTMP, the following steps are REQUIRED:

40

https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#heading=h.2x95bq1f401u
https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=80

●​ Adding support for Data Message, Shared Object Message and Command Message and their associated AMF3 message types (i.e., 15, 16 and
17).

●​ Adding support for the AMF3 set of possible type markers (see AMF3 specification section 3.1).
●​ Signaling in the connect command that the AMF3 encoding format is supported in addition to AMF0.

RTMP has had AMF3 as part of its specification for some time now. During the handshake, the client declares whether it has support for AMF3.

Enabling AMF3 in FLV
Prior to Y2023, the FLV file format did not have AMF3 as part of its SCRIPTDATA specification. To ensure support for AMF3 in FLV:

●​ Add a new FLV TagType 15 (i.e., in addition to TagType 18), which supports SCRIPTDATA encoded via AMF3 (i.e., similar to the way Data
Message is handled).

Important AMF3-encoded Historical Specification Clarification
Established, pre E-RTMP, specifications state the following:

●​ Command Messages carry the AMF-encoded commands between the client and the server. Message type values:
○​ 20 for AMF0 encoding.
○​ 17 for AMF3 encoding.

●​ Data Messages are sent by the client or server to send Metadata or user data to the peer, including details such as creation time,
duration, theme, etc. Message type values:

○​ 18 for AMF0 encoding.
○​ 15 for AMF3 encoding.

●​ The message types 19 for AMF0 and 16 for AMF3 are reserved for Shared Object events.
●​ AMF0 was extended to allow an AMF0 encoding context to be switched to AMF3. A new type marker, avmplus-object-marker (byte 0x11), was

added. The presence of this marker signifies that the following value is encoded in AMF3. Legacy AMF0 systems that haven't been updated
to support AMF3 should throw an unknown type error.

Unfortunately, the above is incomplete and may be somewhat unclear. To clarify, in addition to the above:

●​ Object Encoding property in the Command Object of the connect command indicates the type of serialization (a.k.a., encoding) supported
by the client or server:

○​ A value of 0 (default and optional) indicates support for AMF0 encoding and message types of 18, 19 and 20.
○​ A value of 3 indicates support for both AMF0 and AMF3 encoding and message types of (18, 15), (19, 16) and (20, 17).

●​ Message payload for message types of 15, 16 and 17 starts with a format selector byte. Currently, only format 0 is defined to indicate
AMF0-encoded values. It's possible to signal a switch to AMF3 serialization by prefixing an AMF3 value with an AMF0
avmplus-object-marker (byte 0x11). The switch isn't sticky, and parsing MUST return to AMF0 encoding mode once the AMF3 value is
serialized. This means that every AMF3 encoded value MUST be prefixed with an avmplus-object-marker (byte 0x11) as defined in AMF0.

41

https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/amf3-file-format-spec.pdf#page=5
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=29
https://veovera.github.io/enhanced-rtmp/docs/legacy/amf0-file-format-spec.pdf#page=8

Protocol Versioning
There is no need for a version bump within E-RTMP for either the [RTMP] handshake sequence or the FLV header file version field. All of the
enhancements are triggered via the newly defined additions to the bitstream format which don’t break legacy implementations. E-RTMP is self
describing in its capabilities.

References

[AMF0]
Adobe Systems Inc. "Action Message Format – AMF 0", June 2006,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/amf0-file-format-spec.pdf>.

[AMF3]
Adobe Systems Inc. "Action Message Format – AMF 3", June 2006,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/amf3-file-format-spec.pdf>.

[DEPRECATED]
Deprecation,
<https://en.wikipedia.org/wiki/Deprecation>.

[FLV]
"Adobe Flash Video File Format Specification, Version 10.1", August 2010,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf>.

[FourCC]
A sequence of four bytes (typically ASCII) used to uniquely identify data formats,
<https://en.wikipedia.org/wiki/FourCC>.

42

https://veovera.github.io/enhanced-rtmp/docs/legacy/amf0-file-format-spec.pdf
https://veovera.github.io/enhanced-rtmp/docs/legacy/amf3-file-format-spec.pdf
https://en.wikipedia.org/wiki/Deprecation
https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf
https://en.wikipedia.org/wiki/FourCC

[LEGACY]
Legacy specifications for the RTMP solution,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/>.

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.

[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017,
<https://www.rfc-editor.org/info/rfc8174>.

[RTMP]
Parmar, H., Ed. and M. Thornburgh, Ed., "Adobe’s Real Time Messaging Protocol", December 2012,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf>.

[ScriptTagBody]
"Adobe Flash Video File Format Specification, Version 10.1", August 2010,
<https://veovera.org/docs/legacy/video-file-format-v10-1-spec.pdf#page=80>.

[SCRIPTDATA]
"Adobe Flash Video File Format Specification, Version 10.1", August 2010,
<https://veovera.org/docs/legacy/video-file-format-v10-1-spec.pdf#page=80>.

[WebCodecs]
W3C, "WebCodecs"
<https://www.w3.org/TR/webcodecs/>.

43

https://veovera.github.io/enhanced-rtmp/docs/legacy/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf
https://veovera.org/docs/legacy/video-file-format-v10-1-spec.pdf#page=80
https://veovera.org/docs/legacy/video-file-format-v10-1-spec.pdf#page=80
https://www.w3.org/TR/webcodecs/

44

	Enhanced RTMP (V2)
	Table of Contents
	Document Status
	Documentation Versioning
	Overview
	File Naming Convention
	Version Information Inside the Document
	Version Format Description
	Commit History in GitHub

	Version Stage Definitions
	Alpha Version
	Beta Version
	Release Version (General Availability)

	Release Version Disclaimer for Enhanced RTMP
	Usage License
	Terminology
	Abstract
	Introduction
	Conventions
	Simple Data Types
	RTMP Message Format
	FLV File Format Overview
	Pre 2023 AudioTagHeader Format
	Pre 2023 VideoTagHeader Format

	Enhancements to RTMP and FLV
	Enhancing onMetaData
	Reconnect Request
	Objective
	NetConnection Commands
	Message Flow When Handling NetConnection.Connect.ReconnectRequest
	Detailed Overview of the onStatus Command for NetConnection

	Enhanced Audio
	Enhanced Video
	Metadata Frame
	Multitrack Streaming via Enhanced RTMP
	Introduction to Multitrack Capabilities
	Multitrack Sample Use Cases
	Multitrack Media Message Guidelines
	SCRIPTDATA Multitrack Parameter Handling
	Leveraging Multitrack Features in E-RTMP

	Enhancing NetConnection connect Command
	Action Message Format (AMF): AMF0 and AMF3
	Enabling AMF3 in RTMP
	Enabling AMF3 in FLV
	Important AMF3-encoded Historical Specification Clarification

	Protocol Versioning
	References
	[AMF0]
	[AMF3]
	[DEPRECATED]
	[FLV]
	[FourCC]
	[LEGACY]
	[RFC2119]
	[RFC8174]
	[RTMP]
	[ScriptTagBody]
	[SCRIPTDATA]
	[WebCodecs]

