
An Interview with Tom Zimmer: Forth System Developer 

Originally published on: Thu, 06 May 2010 23:36:45 +0000
If you've ever used a Forth compiler, chances are you've heard the 
name Tom Zimmer. Tom's been a staple in the Forth community for a 
few decades. Tom developed a number of Forth systems for popular 
8-bit microcomputers that dominated the home-computer market in 
the 80's.
Tom is the creator of the freeware Win32Forth system.
�
What's your educational background?
I received no formal programming training.
I graduated from high school in 1968, long ago and far away. I was 
interested in electronics at the time, and I had a friend Dick Cappels 
who bought me the components for a computer, and told me to go 
down to Wiley Elmar in Sunnyvale CA., and pick up my new computer. 
The CPU was an RCA CDP-1802, a static processor. It was something 
of an oddity at the time, most processors were dynamic, and wouldn't 
run below about 500 kHz. The 1802, being static, would run all the 
way down to 0 Hz. I had wired the 1802 with 1k of static memory into 
a simple computer, and programmed it in machine language. It had 
three clock rates, single step, 10 Hz, and about 500 kHz.
My first exposure to computers. After high school, I worked for Pacific 
Telephone as a COEM (central office equipment man). That was in the 
days when job names could specify a gender. After a stint in the 
military, as a communications controller, my same friend hired me as 
an electronic tech for a small company that built the first video disk 
recorders. They were nothing like you might imagine today, being 
much larger, with many custom mechanical parts. The video recorders 
contained a micro controller, that was programmed in Forth by Mike 
O'malley at Berkeley. He did this work on a consulting basis. He would 
bring us an eprom, we would plug it in, and it would work. We were 
always amazed when his code worked, because he didn't have any 
hardware to develop the code on, he claimed to have some sort of 
simulator that he used for testing. Later Dick had me design a 
hardware controller for a video disk recorder that was not processor 
based, because Mike charged us around one or two dollars a byte for 



code, and we thought that was expensive. So I designed the controller. 
My first big hardware design project. I didn't have any formal hardware 
education either, unless you count a course in electronics in high 
school. Anyway, the controller worked, and was even shipped in a 
product, but it wasn't nearly as trouble free as Mike's Forth coded 
controller version, so we abandoned the idea of using hardware alone 
to control the recorder.
Anyway my life in electronics and computers was sealed at that point, 
and I have never looked back.
How did you first encounter Forth?
I already mentioned my first Forth exposure, but the first time I tried 
to use it, was later when I worked for Calma. They built CAD 
workstations, and I was hired to work in the hardware diagnostics 
area. I obtained a barely readable photocopy listing of Forth for the 
8080 processor. I typed it into an Intel MDS (Micro controller 
Development System), assembled it, and got it to run. I had no idea 
what Forth was supposed to be, but I had heard that it was good for 
interactive debugging, and I was interested. It had within it the concept 
of virtual memory, but that was far beyond me at that point, so I just 
stubbed that all out. At this time, in the later 1970's, I hadn't even 
heard of the Forth Interest Group (FIG), so I had no contact with that 
group, or anyone else in the Forth community. I was just exploring this 
interesting concept of an interactive computer language. Toward the 
end of my time at Calma, I got a FIG listing of Forth for the VAX, and 
got that to run. We used Forth to write hardware diagnostics. VAX 
Forth was quite a challenge, because I could assemble it, but I couldn't 
(or didn't know how to) link it into the VAX operating system, so I had 
to dig into some of the system files, to extract system call locations so 
I could interface with VMS, the VAX operating system.
According to what I've seen on comp.lang.forth, you had developed 
( or co-developed ) Forth software for a variety of microcomputers 
in the 80's. What events led to your involvmenet in the 
development of these products?
I was certainly excited about Forth after my experience at Calma. I 
bought a Ohio Scientific computer, which was 6502 based. I took the 
8085 Forth I had evolved at Calma and hand translated it to the 6502 
assembly language, so I could run Forth on my Ohio Scientific. I was 
very young at the time, and I don't know why my wife even put up with 



all the time I spent in my work room, but I was so excited about Forth 
and computers, she just couldn't squash me I guess.
Around 1979, I heard about FIG, and Robert Reiling passed along a FIG 
listing for the 6502. It looked interesting, and seemed to be accepted 
by more people than my own Forth was ever likely to be, so Bob and I 
worked to get it working on the Ohio Scientific. I think Bob typed it in, 
then turned me loose to get it running on the hardware.
So, I transitioned from my own Forth to FIG around 1979, and moved 
forward. As various manufacturers were releasing personal computers 
in those days, I would buy one, and dig into it and develop a Forth for 
it. It was a way to have fun, and to make a little money at the same 
time. The next personal computer Forth I worked on was VIC Forth, for 
the Commodore Vic-20. I can't remember which was next, 64Forth for 
the Commodore 64, or Color Forth for the Radio Shack Color 
Computer. Vic-Forth was an 8k cartridge, Color Forth ws a 12k 
cartridge and 64Forth was a 16k cartridge. Each successive system had 
more capability.
Why did you implement each as a cartridge?
These computers didn't have disk drives, so the only real alternative as 
cassette. I had to use cassette to do the development, but I was 
interested in creating a Forth that would be easy to learn and use, so 
didn't want the user to have to deal with cassette, except for data 
storage. Later, in 64Forth, there were also concerns about security, 
because there were vendors selling cartridge rippers. 64Forth included 
limited copy protection, that precluded running it out or RAM. It had to 
reside in ROM, or it would overwrite itself. Cruel, but that was in the 
days before I switched to making only public domain systems.
Color Forth was a 6809 processor, and was based on a Forth from the 
only copyrighted FIG listing. It came from a vendor in Southern 
california, but I can't remember his name. Anyway, I made a contract 
with him, to split royalties on Color Forth, and it was released. 64Forth 
was actually the most profitable, it was distributed by HES (Human 
Engineered Software) in Burlingame Ca. I personally made about 
25,000 dollars in royalties from 64Forth, before HES collapsed 
financially, still owing me almost 9,000 dollars in back royalties. I 
didn't really care, I was very pleased that 64Forth had sold so well. I 
believe that they had a lot of inventory that was passed around for 
several years after that to various Forth vendors, 'til there wasn't any 



more interest. Each of these products had a fairly reasonable manual 
that I wrote, and HES spent a significant amount of money on the 
packaging for 64Forth and VicForth, so they were very attractive. I'm 
sure that contributed significantly to their popularity.
How did you go about publicizing / marketing each Forth product? 
Did you have contacts in the industry at this time?
I didn't have any contacts, but in those days, there was much less 
software available, so I would just contact a software publisher, and 
ask them if they wanted to distribute my software with their line. There 
was a huge hunger for software. Human Engineered Software (HES) was 
a real developer, they actually invested money into packaging and 
advertising. They also had contact with cartridge producers that could 
do "Chip On Board", which eliminated the need for ROM packaging, 
keeping the production cost low. They produced a very nice package 
that was used for both VicForth and 64Forth. I am sure that the 
package alone was responsible for some of the sales.
Had you mastered the assembly languages for the variety of 
microprocessors at the time? ( 6502, 6809, etc. )
Assembly language is assembly language, is assembly language. If you 
have seen one, you have seen them all, with the possible exception of 
the 1802, which was very different from all the others. I learned 
assembly language as I went along. Just buy another book, and 
translate it's instructions mentally to the ones I already knew.
Later at Maxtor, I was employed as a diagnostics programmer for 
testing their disk drives.
We used 8086s there, we started with Laxen and Perry Forth, we 
developed Forths for running diagnostics on the high capacity disk 
drives that Maxtor produced. Forth based software was used in a 
custom networked environment, to burn-in disk drives for 48 hours, 
and print burn-in results. I worked there for about three years, and 
developed several public domain forth, with names like zforth, tforth, 
hforth, HF, ZF, and F-PC.
Have you written commercial systems other than Forth compilers?
Good question. For a while there it seemed that all I was good at was 
making Forth systems, and not writing applications. I guess, to me, 
Forth was an application. Over the years, I have worked on several 
applications, but they always seem to be based on having to write a 
Forth system first. I know that many people disagree with this 



philosophy, but at the time, I felt I needed to have control of the 
development system. Now that Visual C++ is so prevalent, we can 
trust Microsoft to provide the development system (I'm kidding).
That's an interesting statement, though. Do you think that the 
younger programmers are missing something in their education 
by not being exposed to Forth?
Absolutely. Most people that are not very familiar with Forth, think it is 
just a forgotten language of the past. The same thing could be said 
about our heritage, no matter which country we were born in.
History is important for several reasons, not the least of which is what 
it teaches us about how to deal with the future. Forth's most important 
feature has little to do with the fact that it is a stack language, it has 
instead to do with the way it interacts as a whole with the user. Forths 
extensibility, structure, modularity and very simple syntax are key 
attributes that give the programmer freedom to structure solutions for 
problems in ways that programmers of other languages cannot 
understand or attempt.
Having access to the full source for your development system gives 
you the freedom to enhance, or correct problems that the vendor 
didn't consider. Freedom is very important to me, as it should be to 
everyone, you just have to remember, that along with freedom, comes 
responsibility. Forth gives you the freedom, and the power to mold 
solutions that match the problem. It also gives you the power to shoot 
yourself in the foot, or in some other even more sensitive area, so if 
you can't handle the freedom, and the power, then you better stay 
away from Forth.
Do you presently develop software for a living? If so, what kind of 
software?
Yes, I work at ThermoQuest, as a programmer. I was hired by Andrew 
McKewan to assist in porting a very large DOS based Forth application 
into the WindowsNT environment. We looked at, and even bought the 
only commercial Forth for WindowsNT available at the time. 
Unfortunately it wasn't very mature at the time, and we did not have 
access to the kernel source code, so when we ran into bugs, and 
philosophy differences, Andrew implemented his own 32 bit Forth 
kernel one weekend. We got it running using the commercial vendors 
assembler, which we had a license to use, but we never used any of 
their source code. I am sure we are guilty of using several of their 



ideas though. Anyway, Andrew brought the Forth kernel into work and 
turned it over to me for "expansion". The kernel started in the public 
domain, and I never took it out of the public domain during 
development. I was always careful to separate the code that was 
proprietary to my employer, from the public domain general purpose 
Forth system code. An example of this, is that since Win32Forth was a 
32 bit Forth system, we were faced with the question of whether to 
convert all the application source from 16 bits, to 32 bits. Since the 
application was several megabytes, and we wanted it to be reliable, we 
chose to leave it 16 bits, and to write a 16 bit to 32 bit translation 
layer between the Forth and the application. This kept the problems we 
had to face, down to compatibility issues, and allowed easy porting. 
We also added a Windows GUI to the application to make it acceptable 
to the Windows market. The port was completed from start to actual 
product release in about 9 months, with an average of four 
programmers working during that time. Still, a large task, but the 
application proved to be very reliable in the field.
One interesting note, is that the translation layer had within it a lot of 
debugging code to do range checking on memory operations. When 
we shipped the product, we left the debugging code active, because 
we weren't confident enough that we had gotten out all the bugs. Then 
a year later, when we release the next version of the application, we 
removed the range checking, and suddenly the application was 
amazingly faster, and still as reliable, since we had worked out most of 
the problem during that year. So marketing used that as a new feature, 
"much faster".
Andrew McKewan, Robert Smith and I were the primary contributors, 
followed by Y.T. Lin, and Andy Corsack. Later I talked Jim Schneider 
into writing a full 486 assembler, which he donated, completing the 
system. Andrew added object oriented programming fairly early, 
modeled after the MOPS OOP Forth system for the Macintosh. OOP was 
very valuable in handling the complexity of the Windows API. Over the 
years several people have donated bug reports, fixes and 
enhancements to Win32Forth. It was even sold to a commercial vendor 
for a year, but it proved to complex for their purposes.
Today I program mostly in Visual C++. Originally I hated 'C', but after 
five years, it is bearable. When programming in 'C' I miss the power of 
Forth, to create compile-time solutions for difficult problems.



I think I may be burned out to, Forth system development, but who 
knows what the future will bring. If another interesting computer and 
OS come along, perhaps I will jump ship and dive into another Forth 
system development project.
What about BeOS? I saw a post recently in comp.lang.forth asking 
about Forth systems for BeOS.
I am a Macintosh advocate, and I was interested in the BeOS when it 
was going to run on the Mac, but now that won't happen, so I really 
haven't looked at it much lately.
Have you ever entertained the idea of making a Forth compiler for 
a console gaming system?
No, but I might be interested in writing a Forth for a PDA style device, 
though there are already Forths for the Palm. I think that market is just 
starting, and more interesting devices will come along. Perhaps then.
Have you thought about actually sellig Win32Forth?
I have thought of it, but my experience has been that it is very hard to 
make money selling development systems. Win32Forth is public 
domain, so others can benefit from it, but also so I can benefit from 
other peoples contributions. I prefer public domain, over GPL, because 
it places less restrictions on use. True, anyone can take Win32Forth 
and turn it into a commercial system, or write a commercial program 
without giving me or the other contributors credit, but I am also free 
to use contributors code in commercial applications I write, so while I 
always try to give credit where credit is due, being able to solve 
applications problems is what drives me, not receiving credit for some 
segment of code I wrote several years ago.
Interestingly Win32Forth was purchased a couple of years ago by a 
commercial vendor for a token fee. They were to document it, and 
release it as a commercial product. Problem was, Win32Forth is so big, 
that it didn't really fit within their philosophy of development tools, so 
it languishes and was ultimately returned to me.
How many copies had been sold of each of your commercial 
compilers?
I don't have good access to that information, but my recollection is 
that about 10,000 copies of 64Forth were produced, and I got royalties 
on about 7000 or those, before HES went out of business. There were 



probably 3,000 or 4,000 copies of VicForth sold, and much smaller 
numbers of ColorForth and OSI Forth.
What prompted you do develop a DOS Forth with an IDE 
resembling other compilers of the time rather than a traditional 
Forth IDE?
I am guessing you are talking about TCOM here, since that is the only 
Forth system I wrote that has a real IDE. TCOM was developed, to make 
writing an application for DOS easier. One of the problems with all my 
Forth systems, was their size. They were always big and fat, with lots 
of tools and libraries of utilities. All that stuff results in large 
executables.
TCOM was designed from the start, to only include the parts of the 
language that were needed to support the application being built. The 
result was very small executables. Of course you still want to debug 
your programs, so I needed a debugger. Since TCOM produced .COM 
executables, that didn't contain any debugging information, and I 
didn't want to burden the target application with any overhead, I chose 
to produce additional data files that could tell the debugger where the 
various source lines connected to the target application. This allowed 
me to create standard assembly style listing files from TCOM 
executable, and to debug them symbolically. It worked very well.
TCOM eventually included a bunch of target processors, including at 
least; 8086, 8096, 8080, 68hc11, 6805 and the Samsung Super8, 
56000, and 57000 processors. It included a bunch of examples 
applications for the 8086 target, more than 70 I think. I even wrote a 
simple basic compiler for the 8086 target of TCOM. TCOM included all 
the source for all of the compiler, the examples, the debugger, and all 
the listing generators for each target. TCOM was built on F-PC.
Did you attend industry trade shows in the 80's?
Oh, yes. But only the Forth related ones.
There was a lot of activity in Forth in the 80's. There were several 
hardware vendors, and a bunch of software vendors. Things are a little 
quieter now, but I think Forth has just moved underground. It won't 
ever be a general replacement for Visual C, but it still has wonderful 
applicability in limited resource environments.
As we see faster and faster computers, with soon to be gigabytes of 
RAM, and terabytes of harddisk storage, we might think that limited 
resource environments will pass away, but in the consumer product 



area, and pretty much any high volume product area, Forth is a viable 
alternative. It provides rapid development and debugging, at low cost. 
I think it will always be the secret weapon of the small developer 
breaking into the market of the large developer with hundreds of 
programmers.
How does Forth fit into your future?
Well, I describe myself as a C programmer, who is really a Forth 
programmer. C has provided employment, and Forth provides tools for 
hardware and software debugging.
When I work with other C programmers on large projects, I always 
build in a Forth interpreter into the application, for debugging 
purposes. The hardware guys love it, because it gives them so much 
power to figure out what is going on with the hardware. For software 
debugging, it is great because it gives you an interactive method of 
figuring out how to talk to the hardware before going off and writing a 
driver in C.
I think most C programmers look at Forth, and don't really understand 
why they should be interested in it, and they never bother to spend the 
time to find out.
I think of Forth like a fine set of hand tools. Microsoft on the other 
hand, provides the ultimate power tool, Visual C++ with MFC. It's the 
computer controlled mill, that you need three PHDs to operate. Then 
you can get your job done really fast, but you hate doing it, because 
the tool is such a monster, and so unforgiving of mistakes.
MFC provides wonderful information hiding, to solve common 
problems, but unfortunately you have to know alot about the 
information that is being hidden, or it won't work properly in many 
situations. It is like a house built on sand, rather than a house built on 
rock.
Forth on the other hand, is more like the foundation of rock that you 
can build your house on. It is simple to understand, and completely 
bug free. Of course Win32Forth has fallen into the Microsoft trap, in 
attempting to deal with all the complexity of Windows, it adds huge 
complexity to what could otherwise be a relatively simple Forth 
system. The whole OOP thing was added just to help deal with the 
complexity, and it does help, but at a price. Sometimes I think the 
price of increased complexity is just too high.



Well, I guess I better get off my soap box, and get back to 
programming in Visual C++, MFC and my latest project in Java, a 
whole new adventure.
Thanks for the interview, Tom!
Unless otherwise noted, all code and text entries are Copyright ©2000, 
2010 by James K. Lawless


