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Idea: If conclusion changes after removing small data, we might be concerned about generalization 
[Broderick et al. 2020]
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[Angelucci et al. 2015] is a randomized controlled trial (RCT), examining effect of microcredit, in Mexico

Problem: It is too computationally expensive to check every data subset

For policymaking, we want to know if findings generalize beyond our data

If we run MCMC on a Bayesian model, microcredit may be seen as reducing profit (“hurting”)

Our work shows: by removing 16 out of 16560 households, microcredit appears “helpful”

Problem: Existing approximations e.g. [Broderick et al. 2020] does not apply to MCMC

Our contributions:
No approximation for MCMC We extend [Broderick et al. 2020] to MCMC-based conclusions
MCMC analyses have Monte Carlo noise We quantify this variability
Experiments analyzing the quality of the approximation in real data

Introduction

Idea: Approximate dropping worst-case data
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Another reason to care about dropping data

Setup for dropping data

Our approximation: (linear approximation + MCMC estimate) & confidence interval
– We show it is fast

Experiments from economics and ecology
– Our approximation performs well in a simple model
– Performance is mixed in a complex model

How expensive is brute-force approach?
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Idea: Use standard generalization checks - confidence intervals (CI), p-values

Another reason to care about dropping data
Problem: Do conclusions from a data analysis generalize? 

Problem: Real data deviates from the standard CI / p-value’s working assumption of i.i.d.-ness
Hope: Deviations are small so that CI reflects generalization & conclusion holds 

How expensive is brute-force approach?
There is a combinatorial explosion in leaving out every possible subset and re-run 

An economist might be worried if removing 0.1% could change their conclusion
Dropping every 0.1% of microcredit data means enumerating over 10^54 things
If each run takes 1 minute, exhaustive search still takes > 10^48 years

Existing works [Broderick et al. 2020, Shiffman et al. 2023, Moitra et al. 2022, Freund et al. 2023] do not apply to MCMC

Idea: Validate this hope by checking if conclusion holds under deviations

Example: If CI is entirely < 0, analyst makes generalization i.e. at large, effect is negative 

A realistic deviation: a small data fraction     is missing
If removing     fraction changes conclusions, we might be worried about generalization
Definition of small is subjective (like a p-value threshold): our default is     = 1% 



Quantity of interest:        . E.g. mean of    under the weighted posterior

5Setup for dropping data

Data weights:

For data    , a Bayesian model might be:

Log likelihood of the n-th data point is 

A prior     encodes domain information

Posterior density is proportional to

MCMC draws (     ):

Weighted posterior has density proportional to

           : n-th observation is dropped & regular posterior:

Small-data sensitivity is a constrained optimization problem. WLOG, assume 
Feasible set is 

If                                , we might worry about generalization

A quantity of interest:    . E.g.                 or    

E.g.                                                                                   . Parameters are 



6Method part I: Taylor series & MCMC estimates
Goal: Fast approx. of worst-case posterior mean*

Idea to use linear approximation is still relevant beyond estimating equations

While [Diaconis et al. 1986, Ruggeri et al. 1986, Gustafson 1996, Giordano et al. 2023, etc.] have known that derivatives 
are covariances, this relationship has not been used for small-data sensitivity

Algorithm: Sort; Remove 
most extreme values

Our approximation is fast

In one analysis, while MCMC takes 12 hours, our approximation takes only two minutes
Time complexity is O(N x S + N x log N) if we do not need to compute log likelihoods

For estimating equations, [Broderick et al. 2020] sidesteps brute-force with a linear approximation

* Our method applies to other quantities of interest, too

We replace posterior mean with a Taylor series:

We know from past works:

We estimate covariances:                                where 

We estimate linear approximation,                                                                      , and optimize 



Our estimate is a function of random sample

7Method part II: Quantify uncertainty

Goal: Estimate variability due to MCMC randomness

If draws were i.i.d., use 
bootstrap [Efron 1979]

Generally, sample has time series dependence & bootstrap is expected to underperform

We use block bootstrap [Carlstein 1986] to handle time series dependence

Original

Original

Bootstrap

Block 
bootstrap

(1) (2) (3) (4) (1) (1)(4) (3)

This resampling scheme has one parameter: the block length

Our approximation encounters a type of error not faced by previous works: Monte Carlo noise

Resample from                             : 
Use spread of                                         as confidence interval



8On a simple model, our approximation works well
We consider a variant of analysis from [Meager 2019] & [Meager 2022] *

We define wide priors and estimate effect with MCMC

Microcredit might have a negative 
effect, but it is not conclusive

We predict sign change after removing 0.10%
Refit confirms prediction

We predict sig. change after removing 0.36%
Refit confirms prediction

We are not able to predict if a positive and 
sig. effect is possible

It takes 2 seconds to assess sensitivity
Prediction range (bars) contain the refit (x)

* [Meager 2022] also analyzes microcredit using different data and a more complex Bayesian model. Our paper contains a sensitivity analysis of that model, too

Running MCMC takes 3 minutes

Each refit takes 3 minutes 

.10 .36
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[Senf et al. 2020] regresses ``tree death’’ on ``water balance’’
Performance on a complex model is mixed

Water balance has (-) and sig. 
associationLinear predictor involves many parameters

Running MCMC takes 12 hours

Prediction (bars) is more extreme than realized by refitting (x)
We predict sign change at 0.17%

Change actually happens at 0.22%

We predict sig. change at 0.10%
Change does happen

Our method predicts (+) and sig. link at 0.17% 
Change actually happens at 1%

It takes only 2 minutes to assess sensitivity

Each refit takes 12 hours

~ 6000 regional parameters are organized hierarchically 

.10

.17 1.00

.17 .22

Population: 

Regional: 



10Confidence interval quality across MCMC randomness

Partial answer: How often does CI contain result of linear approx.?

In simple model, confidence interval (CI) contains 
ground truth with adequate frequency

In complex model*, CI can have very poor 
coverage of ground truth

Ideal: How often does confidence interval (CI) contain worst-case quantity of interest?

We run 960 Markov chains

*We subsample 2,000 observations from the original ~80,000 observations

Estimate of coverage is very 
close to nominal 95%

Estimate of coverage can be 
very far from nominal 95%

We estimate CI coverage with another level of Monte Carlo

averaging gives high-quality est. of CI coverage

averaging gives high-quality est. of



11Why is the coverage in the complex model poor?

Sorting is non-smooth & we are not aware of (block) bootstrap guarantees in non-smooth case
Suspicion: sorting creates complex dependencies that cause poor coverage

(Recall)

CI for ``fixed-indices’’ is adequate Severe underperformance is due to sorting

We resample blocks from                              to generate 
We use interquantile range of                                         as confidence interval

To test, we consider a version of      that does not involve sorting i.e.    for fixed 

If CI from resampling   covers                                  well, we attribute issue to sorting

Calculation of     involves a sort i.e.                                         &      = negative of sum of extremes
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Thesis theme: Faster methods for Bayesian unsupervised learning

We have developed & tested a fast approximation for the removal of worst-case 
small data in MCMC-based analyses

Existing works aim to speed up Bayes through parallelism
Problem: They struggle due to so-called label-switching problem
Solution: I use a representation that evades the problem to derive fast & accurate estimates 

Tin Nguyen, Brian L. Trippe, Tamara Broderick (2022). Many processors, little time: MCMC for partitions via optimal 
transport couplings. In AISTATS 2022. 

Bayesian nonparametrics posit a countable infinity of latent traits

Tin Nguyen, Jonathan Huggins, Lorenzo Masoero, Lester Mackey, Tamara Broderick (2023). Independent finite 
approximations for Bayesian nonparametric inference. Bayesian Analysis Advance Publication.

Problem: Computers cannot learn a countable infinity of things
Solution: I derive accurate and easy-to-use finite approximations

- Set problem-dependent block length
- Extend to posterior quantiles
- Identify the source of difficulty in complex models (many params. or hierarchy?)

Summary

Future 
work 

We will arXiv this work soon!

https://tinnguyen96.github.io/publication/coupling-crp-chains/
https://tinnguyen96.github.io/publication/coupling-crp-chains/
https://tinnguyen96.github.io/publication/finite-crm-approximations/
https://tinnguyen96.github.io/publication/finite-crm-approximations/
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