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Introduction 2

[Angelucci et al. 2015] is @ randomized controlled trial (RCT), examining effect of microcredit, in Mexico
If we run MCMC on a Bayesian model, microcredit may be seen as reducing profit (“hurting”)

For policymaking, we want to know if findings generalize beyond our data

Idea: If conclusion changes after removing small data, we might be concerned about generalization
[Broderick et al. 2020]

Our work shows: by removing 16 out of 16560 households, microcredit appears “helpful”
Problem: It is too computationally expensive to check every data subset

Idea: Approximate dropping worst-case data

Problem: Existing approximations e.g. [Broderick et al. 2020] does not apply to MCMC

Our contributions:
No approximation for MCMC

We extend [Broderick et al. 2020] to MCMC-based conclusions
MCMC analyses have Monte Carlo noise We quantify this variability
Experiments analyzing the quality of the approximation in real data




Roadmap

Another reason to care about dropping data

How expensive is brute-force approach?

Setup for dropping data

Our approximation: (linear approximation + MCMC estimate) & confidence interval

— We show it is fast

Experiments from economics and ecology
— Our approximation performs well in a simple model
— Performance is mixed in a complex model



Another reason to care about dropping data 4

Problem: Do conclusions from a data analysis generalize?

Idea: Use standard generalization checks - confidence intervals (Cl), p-values

Example: If Cl is entirely < 0, analyst makes generalization i.e. at large, effect is negative
Problem: Real data deviates from the standard Cl / p-value’s working assumption of i.i.d.-ness

Hope: Deviations are small so that ClI reflects generalization & conclusion holds
Idea: Validate this hope by checking if conclusion holds under deviations

A realistic deviation: a small data fraction « is missing
If removing « fraction changes conclusions, we might be worried about generalization
Definition of small is subjective (like a p-value threshold): our default is a = 1%

How expensive is brute-force approach?

There is a combinatorial explosion in leaving out every possible subset and re-run
An economist might be worried if removing 0.1% could change their conclusion
Dropping every 0.1% of microcredit data means enumerating over 10754 things

If each run takes 1 minute, exhaustive search still takes > 10748 years
Existing works [Broderick et al. 2020, Shiffman et al. 2023, Moitra et al. 2022, Freund et al. 2023] do not apply to MCMC



Setup for dropping data

For data (microcredit access™, profit™)N_

E.g. profit™™ ~ Gaussian(y 4+ 6 x microcredit access™, o2)

Log likelihood of the n-th data point is L,,(3) \PC)S’tiarior density is proportional to
A prior p(3) encodes domain information »p(8) TTo_, exp(Ln(B))

A quantity of interest: ¢.

MCMC draws (1), 32, ... ) E[gy] ~ L35 g

Data weights: (w1, ws,...,wy) = w
Weighted posterior has density proportional to p(3) qujzl exp(wnLn(5))
wy, = 0: n-th observation is dropped

Quantity of interest: ¢(w).

Small-data sensitivity is a constrained optimization problem. WLOG, assume ¢(1) < 0

Feasible setis W, := {w € {0,1}" : " (1 —w,) < Na}

If max,,cw, ¢(w) > 0, we might worry about generalization



Method part I: Taylor series & MCMC estimates :

Goal: Fast approx. of worst-case posterior mean* max,ecw, ¢(w)

For estimating equations, [Broderick et al. 2020] sidesteps brute-force with a linear approximation
Idea to use linear approximation is still relevant beyond estimating equations

We replace posterior mean with a Taylor series: ¢(w) — ¢(1) ~ ij (W, — 1)2 8wn o1

While [Diaconis et al. 1986, Ruggeri et al. 1986, Gustafson 1996, Giordano et al. 2023, etc.] have known that derivatives
are covariances, this relationship has not been used for small-data sensitivity

We know from past works: 5= 0% \ = Covy (B4, Ln)

We estimate covariances:

We estimate linear approximation, ij (wy, — 1)8wn oy Z;:le(wn — 1)4,, , and optimize
maxy SN (w, — 1), = maxy, (_ >0 %) _. Algorithm: Sort; Remove
most extreme values

Our approximation is fast

Time complexity is O(N x S + N x log N) if we do not need to compute log likelihoods
In one analysis, while MCMC takes 12 hours, our approximation takes only two minutes

* Our method applies to other quantities of interest, too



Method part II: Quantify uncertainty

Our approximation encounters a type of error not faced by previous works: Monte Carlo noise
Goal: Estimate variability due to MCMC randomness

Our estimate is a function of random sample A(3("), 32 ... 3(9)

If draws were i.i.d., use Resample from g1 g2 g (=M =@ g
bootstrap [Efron 1979] < Use spread of A(3*, g 39y as confidence interval
Generally, sample has time series dependence & bootstrap is expected to underperform
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We use block bootstrap [Carlstein 1986] to handle time series dependence
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This resampling scheme has one parameter: the block length



On a simple model, our approximation works well g

We consider a variant of analysis from [Meager 2019] & [Meager 2022] *  Microcredit might have a negative

(n) : , , (n) effect, but it is not conclusive
profit'™ ~ Gaussian(u + 6 x microcredit access'™ , o?)

400 - . |
We define wide priors and estimate effect with MCMC " 300 - :
Running MCMC takes 3 minutes § jzz
O-

1
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* [Meager 2022] also analyzes microcredit using different data and a more complex Bayesian model. Our paper contains a sensitivity analysis of that model, too



Performance on a complex model is mixed 9

[Senf et al. 2020] regresses " "tree death” on ~“water balance” Water balance has (-) and sig.

Linear predictor involves many parameters association
Population: u + 6 x water balance™ 1000~ :
Reqi . (region) Q(region) (n) = 7501 :
egional: p + Oy X water balance S 500- |
~ 6000 regional parameters are organized hierarchically ~ ~ 250- !
e — . ; I
Running MCMC takes 12 hours 4 -3 -2 -1 0

Draw of 6

It takes only 2 minutes to assess sensitivity

) ) Prediction (bars) is more extreme than realized by refitting (x
We predict sign change at 0.17% (bars) y 9

Each refit takes 12 hours . sign
Change actually happens at

g 8-
We predict sig. change at 0.10% £ , BRI
e : X
Change does happen g 7&;;&{ Smi)
Our method predicts (+) and sig. link at 0.17% O.Tg?” R

Change actually happens at | | percentage



Confidence interval quality across MCMC randomness 10

Ideal: How often does confidence interval (Cl) contain worst-case quantity of interest?
Partial answer: How often does ClI contain result of linear approx.? — >, .; Covi(B4, Ly)
We estimate CI coverage with another level of Monte Carlo

We run 960 Markov chains < averaging gives high-quality est. of — >, c; Covi (84, Ln)
averaging gives high-quality est. of Cl coverage

In simple model, confidence interval (Cl) contains

. In complex model*, Cl can have very poor
ground truth with adequate frequency

coverage of ground truth
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. I 0
close to nominal 95% very far from nominal 95%

*We subsample 2,000 observations from the original ~80,000 observations



Why is the coverage in the complex model poor? i

We resample blocks from g1, 32 ... 55 to generate (p*(V), g+ . g+ (Recall)
We use interquantile range of A(g*V), 3*2) . 3+(5)) as confidence interval

Calculation of A involves a sorti.e. ¥1) <2 <...<¥x) & A = negative of sum of extremes

Sorting is hon-smooth

Suspicion: sorting creates complex dependencies that cause poor coverage

To test, we consider a version of A that does not involve sorting i.e. > _,.c; wn for fixed [

If Cl from resampling > _,,c; U covers > ner Covi(Ba, Ly) well, we attribute issue to sorting

Cl for ““fixed-indices” is adequate Severe underperformance is due to sorting
sign sig both sign sig both
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Future - Set problem-dependent block length 12
work - Extend to posterior quantiles

- ldentify the source of difficulty in complex models (many params. or hierarchy?)

Summary We have developed & tested a fast approximation for the removal of worst-case
small data in MCMC-based analyses

We will arXiv this work soon!
Thesis theme: Faster methods for Bayesian unsupervised learning

Existing works aim to speed up Bayes through parallelism

Problem: They struggle due to so-called label-switching problem

Solution: | use a representation that evades the problem to derive fast & accurate estimates

Tin Nguyen, Brian L. Trippe, Tamara Broderick (2022). Many processors, little time: MCMC for partitions via optimal
transport couplings. In AISTATS 2022.

Bayesian nonparametrics posit a countable infinity of latent traits
Problem: Computers cannot learn a countable infinity of things
Solution: | derive accurate and easy-to-use finite approximations

Tin Nguyen, Jonathan Huggins, Lorenzo Masoero, Lester Mackey, Tamara Broderick (2023). Independent finite
approximations for Bayesian nonparametric inference. Bayesian Analysis Advance Publication.



https://tinnguyen96.github.io/publication/coupling-crp-chains/
https://tinnguyen96.github.io/publication/coupling-crp-chains/
https://tinnguyen96.github.io/publication/finite-crm-approximations/
https://tinnguyen96.github.io/publication/finite-crm-approximations/
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