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Abstract

The present thesis is a contribution to the debate on the applicability of
mathematics; it examines the interplay between mathematics and the world,
using historical case studies.

The first part of the thesis consists of four small case studies. In chap-
ter 1, I criticize “ante rem structuralism”, proposed by Stewart Shapiro, by
showing that his so-called “finite cardinal structures” are in conflict with
mathematical practice. In chapter 2, I discuss Leonhard Euler’s solution
to the Königsberg bridges problem. I propose interpreting Euler’s solution
both as an explanation within mathematics and as a scientific explanation. I
put the insights from the historical case to work against recent philosophical
accounts of the Königsberg case. In chapter 3, I analyze the predator-prey
model, proposed by Lotka and Volterra. I extract some interesting philosoph-
ical lessons from Volterra’s original account of the model, such as: Volterra’s
remarks on mathematical methodology; the relation between mathematics
and idealization in the construction of the model; some relevant details in the
derivation of the Third Law, and; notions of intervention that are motivated
by one of Volterra’s main mathematical tools, phase spaces. In chapter 4, I
discuss scientific and mathematical attempts to explain the structure of the
bee’s honeycomb. In the first part, I discuss a candidate explanation, based
on the mathematical Honeycomb Conjecture, presented in Lyon and Coly-
van (2008). I argue that this explanation is not scientifically adequate. In
the second part, I discuss other mathematical, physical and biological stud-
ies that could contribute to an explanation of the bee’s honeycomb. The
upshot is that most of the relevant mathematics is not yet sufficiently un-
derstood, and there is also an ongoing debate as to the biological details of
the construction of the bee’s honeycomb.

The second part of the thesis is a bigger case study from physics: the
genesis of GR. Chapter 5 is a short introduction to the history, physics
and mathematics that is relevant to the genesis of general relativity (GR).
Chapter 6 discusses the historical question as to what Marcel Grossmann
contributed to the genesis of GR. I will examine the so-called “Entwurf” pa-
per, an important joint publication by Einstein and Grossmann, containing
the first tensorial formulation of GR. By comparing Grossmann’s part with
the mathematical theories he used, we can gain a better understanding of
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what is involved in the first steps of assimilating a mathematical theory to
a physical question. In chapter 7, I introduce, and discuss, a recent account
of the applicability of mathematics to the world, the Inferential Conception
(IC), proposed by Bueno and Colyvan (2011). I give a short exposition of
the IC, offer some critical remarks on the account, discuss potential philo-
sophical objections, and I propose some extensions of the IC. In chapter 8,
I put the Inferential Conception (IC) to work in the historical case study:
the genesis of GR. I analyze three historical episodes, using the conceptual
apparatus provided by the IC. In episode one, I investigate how the starting
point of the application process, the “assumed structure”, is chosen. Then
I analyze two small application cycles that led to revisions of the initial as-
sumed structure. In episode two, I examine how the application of “new”
mathematics – the application of the Absolute Differential Calculus (ADC)
to gravitational theory – meshes with the IC. In episode three, I take a closer
look at two of Einstein’s failed attempts to find a suitable differential oper-
ator for the field equations, and apply the conceptual tools provided by the
IC so as to better understand why he erroneously rejected both the Ricci
tensor and the November tensor in the Zurich Notebook.



Contents

Abstract ii

Introduction vii

Acknowledgements xix

I Small Case Studies 1

1 Against Ante Rem Structuralism 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Ante Rem Structuralism . . . . . . . . . . . . . . . . . . . . . 4
1.3 An Objection from Group Theory . . . . . . . . . . . . . . . . 7
1.4 Set Theory and Discernibility . . . . . . . . . . . . . . . . . . 13
1.5 Structures as Isomorphism Types . . . . . . . . . . . . . . . . 19

2 The Bridges of Königsberg 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Euler’s Königsberg . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Königsberg Within Mathematics . . . . . . . . . . . . . . . . 32
2.4 Philosophers on the Transmission View . . . . . . . . . . . . . 40
2.5 Königsberg in Application . . . . . . . . . . . . . . . . . . . . 43
2.6 Philosophers on Königsberg in Application . . . . . . . . . . . 47
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 The Lotka-Volterra Predator-Prey Model 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 The Predator-Prey Model in 1928 . . . . . . . . . . . . . . . . 57
3.3 Contemporary Voices on Lotka-Volterra . . . . . . . . . . . . 66
3.4 Volterra and d’Ancona 1935: Methodological Reflections . . . 68
3.5 The Predator-Prey Model Today . . . . . . . . . . . . . . . . 70
3.6 Philosophical Lessons from History . . . . . . . . . . . . . . . 72
3.7 The Predator-Prey Model in the Philosophical Discussion . . 78
3.8 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . 85

iii



iv CONTENTS

4 The Bee’s Honeycomb 87
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Lyon’s and Colyvan’s Explanation . . . . . . . . . . . . . . . 88
4.3 Baker: A Philosophical Motivation . . . . . . . . . . . . . . . 89
4.4 Why the Explanation Fails . . . . . . . . . . . . . . . . . . . . 90
4.5 Fejes Tóth: A Mathematical Proposal . . . . . . . . . . . . . 95
4.6 Biological Stories And An Alternative Explanation . . . . . . 99
4.7 Dry Foams, Wet Foams, Honeycombs . . . . . . . . . . . . . . 104
4.8 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . 106

II The Application of Mathematics
in the Genesis of General Relativity 111

5 The Genesis of General Relativity:
A Short Introduction 113
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Protagonists and Motives . . . . . . . . . . . . . . . . . . . . 114
5.3 From the Beginning to the Entwurf Stage (1907 – 1912) . . . 129
5.4 Act III, Scene 2: Progress in a Loop (1912 – 1913) . . . . . . 137
5.5 Act III, Scene 3: Resolution (1913 –1916) . . . . . . . . . . . 145

6 Grossmann’s Sources 149
6.1 Introduction: Motivations, Questions, Methods . . . . . . . . 149
6.2 Grossmann’s Sources . . . . . . . . . . . . . . . . . . . . . . . 152
6.3 The Curious Case of Riemann . . . . . . . . . . . . . . . . . . 154
6.4 Introduction to Part II . . . . . . . . . . . . . . . . . . . . . . 157
6.5 Interlude: Manifolds in the Entwurf . . . . . . . . . . . . . . . 160
6.6 Paragraph 1: General Tensors . . . . . . . . . . . . . . . . . . 164
6.7 Paragraph 2: Differential Operators on Tensors . . . . . . . . 167
6.8 Paragraph 3: Special Tensors (Vectors) . . . . . . . . . . . . . 172
6.9 Paragraph 4: Mathematical Supplement to Part I . . . . . . . 172
6.10 Grossmann and the Mathematicians: Main Lessons . . . . . . 184

7 Introducing the Inferential Conception 191
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.2 Mapping Account and Inferential Conception . . . . . . . . . 191
7.3 Discussion of the Inferential Conception . . . . . . . . . . . . 195
7.4 Extending the IC . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8 Applying the IC to GR: Three Episodes 207
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.2 Episode One: Choosing a Starting Point . . . . . . . . . . . . 208



CONTENTS v

8.3 Episode Two: A New Kind of Mathematics . . . . . . . . . . 213
8.4 Episode Three: Not-So-Smooth Operators . . . . . . . . . . . 220
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Conclusion 231

Bibliography 239



vi CONTENTS



Introduction

What is the role of mathematics in application to the world? Why is math-
ematics useful in solving empirical problems? The present thesis takes these
questions as a starting point for analyzing some prominent historical cases
of the application of mathematics. It is a contribution to the debate on the
applicability of mathematics; it examines the interplay between mathematics
and the world in three small case studies, and one big study.

The question as to why mathematics is applicable to the world has a long
philosophical tradition – it goes back as far as Plato.1 It is, therefore, all the
more surprising that the debate on this problem is not nearly as extensive
as debates on other classical questions in the philosophy of mathematics and
science.

As some observers have noted, this is about to change; the last two
decades have seen a renewed interest in the applicability of mathematics.2
Very recently, detailed accounts of the interplay between mathematics and
empirical problems have been proposed. What is more, the issue of applica-
bility is at the core of some of the core debates in the philosophy of science;
in particular the philosophy of physics.3

The focus of this thesis is not exclusively on the application of a (given)
mathematical theory to a (new) domain of application, because I am also in-
terested in what could be called mathematization, the creation of mathemat-
ics in view of one particular empirical problem, and, generally, the dynamics
of the interaction between empirical problems and mathematics.

One of the guiding ideas of the applicability debate is that, at least part
of, the usefulness of mathematics in application is due to the fact that we
can use mathematical structures, or models, to represent relevant empiri-

1See Steiner (2005, p. 626) for a short discussion of historical examples.
2See e.g. Colyvan (2009) and Steiner (2005), two recent handbook articles on the issue,

and the literature therein.
3To give an example, the question as to which aspects of the formalism of quantum

mechanics should be interpreted realistically, is, at its core, the question as to how a
particular mathematical representation is related to the world. A very similar problem
crops up in the debate on the Hole Argument in general relativity – I discuss this case in
chapters 5 and 8. It would be fruitful to bring the various strands of the debate together; at
least in some cases, specialized debates could benefit from the general perspective provided
by the applicability debate.

vii



viii INTRODUCTION

cal structure, and then exploit the inferential possibilities of mathematics,
to gain knowledge about the world. The idea that structure-preservation is
a relevant part of applicability is the main thesis of the so-called Mapping
Account, while the emphasis on the inferential role of mathematics is at the
core of the so-called Inferential Conception of the application of mathemat-
ics. Putting this simple account of application to work in real-life cases is
one of the goals of this thesis.4

The idea that the applicability of mathematics is rooted in a structural
correspondence between mathematics and the world raises many intricate is-
sues. One of the basic questions concerns the nature of mathematical struc-
tures. What is a mathematical structure? When I began writing this thesis,
I wanted to clarify this question before embarking on the more complex prob-
lem of how mathematical and empirical structures are related. Therefore,
I first examined a promising structuralist proposal for the metaphysics of
mathematics: Stewart Shapiro’s so-called ante rem structuralism.

The upshot of this study is twofold. First, I am quite critical of ante
rem structuralism, because it is, as I argue in chapter 1, in conflict with
mathematical practice. More specifically, mathematicians ascribe properties
to mathematical structures that are incompatible with ante rem structures.
Secondly, I had to realize that the question as to how to characterize mathe-
matical structures is itself worthy of a whole thesis, and that I therefore had
to move on, if I also wanted to address the problem of applicability. The
discussion of ante rem structuralism reinforced my belief that we have to
pay close attention to mathematical and scientific practice. However, it did
not lead to more than a sketch of how we might characterize mathematical
structures.5

An important question in the discussion of applicability is how it meshes
with classical positions in the metaphysics of mathematics. Does the fact
that mathematics is applicable favor a Platonist, Nominalist, or a Formalist
position? This question is the motivation behind the debates on the so-called
Indispensability Arguments – I will sketch this debate very briefly below. I
will not have much to say on the relation between applicability and the
metaphysics of mathematics. My contribution to this debate is limited to a
critical discussion of the examples used in this debate, and to some remarks

4See chapter 7 for a discussion of the Mapping Account and the Inferential Conception.
5The problem of what mathematical structures are, and the problem of applicability,

are closely related. Here are two examples. First, there is a close connection between
problems of characterizing purely mathematical structures, and problems that beset the
genesis of GR. In both cases, some of the problems can be solved by accepting isomorphism
types – in the case of GR, equivalence classes of metrics related by diffeomorphisms –
as the prime representational tool of the “real” structure, i.e structure that is free of
representational artifacts. Second, it has been proposed that we can ascertain applicability
on the level of set theory, the “foundational theory” of mathematics, by admitting so-called
urelements. I briefly argue, in chapter 1, that this can only account for a minority of
applications.
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on conceptual issues, which could be fruitfully applied in this context.6
I presuppose throughout the thesis that the domain of mathematics, and

the empirical domain, are distinct, whatever their metaphysical status may
be. This is compatible with Platonism, in that Platonists take mathematical
entities to be abstract, i.e. neither spatiotemporally located, nor causally
active, whereas the empirical domain is not abstract. It is also compatible
with Nominalism, in that a Nominalist can maintain scientific realism, and
distinguish the two domains on this basis.7

I think that the usefulness of mathematics in application is not a con-
troversial thesis, but rather a real phenomenon that we should try to under-
stand. However, it is in no way my goal to contribute to the mystification
of mathematics – in particular in its application to physics – that has be-
witched some philosophers, mathematicians and scientists.8 Therefore, my
interest is not limited to the successful application of mathematics. Quite to
the contrary, I think that we have a lot to learn from failed application: cases
where some mathematical approach, theory, or model is simply unsuitable
for a particular empirical problem. Some of the cases I examine are examples
of the unsuccessful application of mathematics.

Scope and Method

It goes without saying that I cannot touch on all aspects of the applicability
of mathematics; the systematic scope of the thesis, and the number of case
studies, is very limited. Systematically, the focus is on the role of mathemat-
ics in theoretical models and model building (in chapter 2, the Königsberg
case; in chapter 3, the predatory-prey model; and in chapter 4, the bee’s
honeycomb), and the genesis of a fundamental physical theory, in the case
study on GR. I do not consider data-driven modeling, or the use of statistics,
which are also cases of the application of mathematics. Furthermore, there
is a focus on a potential explanatory role of mathematics in application.
This is partially a function of the direction that recent philosophical discus-
sions have taken. I also touch on other theoretical roles of mathematics in
application, but these are not systematically evaluated.

Methodologically, the smaller case studies take the general question of
applicability as a starting point. However, they are not primarily driven by
particular philosophical questions and theses, but rather by the historical
cases themselves. The idea is to get a firm basis of the underlying science in

6I critically discuss contributions proposing an explanatory role of mathematics to
scientific explanations in chapter 2; chapters 3 and 4 also examine the role of mathematics
in an explanatory context.

7I discuss the question as to whether the separation between the two domains is prob-
lematic in chapters 2 and 7.

8Here I am thinking of early contributions to the debate on the “Unreasonable Effec-
tiveness of Mathematics”; I will briefly discuss this debate below.
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the first step, and to extract insights about the interplay between mathemat-
ics and empirical questions directly from the cases. Only in the second step
are the cases brought into contact with the recent philosophical discussion.
The case study on GR is an exception, in that our reconstruction is based
on a philosophical account of applicability.

The methodological approach of taking complex, historical cases as start-
ing points has several advantages:

1. In previous philosophical studies, there was a tendency to work with
simple case studies, which I call toy examples, which were, at times, not
presented in sufficient detail. A more careful look at the case studies
makes it possible to correct some misconceptions that have sneaked
into the philosophical literature.

2. The in-depth analysis of the case studies makes it possible to develop
novel systematic results. We are far away from having a clear picture
of the variety of roles that mathematics can play in application, and
we need to collect data. The case studies provide the raw material for
the formation of novel philosophical hypotheses.

3. The detailed analysis of historical cases enables the study of the pro-
cess of application. We can examine the genesis of a mathematically
formulated empirical theory.

4. Some of the theses of the applicability debate have a historical com-
ponent. In particular, Mark Steiner (1998) has proposed that at least
a part of the “Unreasonable Effectiveness of Mathematics” lies in the
effectiveness of mathematics in discovery, e.g., by suggesting the form
of new theories, and by predicting new empirical phenomena. In order
to address this issue, it is necessary to examine the historical genesis
of scientific theories. We will do this in the case study on GR.

5. The study of historical sources reveals the messy details of actual sci-
ence, as opposed to the smooth presentations of scientific models and
theories in textbooks. These presentations tend to obfuscate the as-
sumptions, idealizations, and compromises that are necessary for find-
ing a mathematical formulation of a theory. However, this is exactly
what we are interested in. This is what makes mathematics applicable
in the first place.

Applicability: Philosophical Debates

The thesis does not contain a survey of the literature on the applicability of
mathematics.9 It may therefore be helpful to sketch the relevant philosoph-

9I briefly review the relevant debate on mathematical structuralism in chapter 1.
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ical debates, very briefly.
The debate on applicability has two main strands. The first strand is

about the so-called “Unreasonable Effectiveness of Mathematics in the Nat-
ural Sciences”, discussed in a famous paper by Eugene Wigner (1995). The
second strand concerns the so-called “indispensability of mathematics” to
empirical science, and goes back to remarks by Quine and Putnam. I will
now, briefly, discuss both these strands.

The Unreasonable Effectiveness of Mathematics10 is the thesis that the
conjunction of the following two facts is surprising – or even miraculous –
and in need of explanation: a) mathematics is invented, or discovered, based
on aesthetic considerations, which are largely independent of empirical ques-
tions, whilst; b) mathematics is also the language in which many successful
empirical, and, in particular, physical, theories are formulated. The puzzle is
how is it possible that a tool that was developed independently of empirical
considerations can be successfully applicable to real-world problems.

Wigner famously wrote that

[t]he miracle of the appropriateness of the language of math-
ematics for the formulation of the laws of physics is a wonderful
gift which we neither understand nor deserve. (Wigner, 1995, p.
549)

One way of accounting for this problem appears to be Platonism: if the
world is inherently mathematical, then it is no wonder that mathematical
discoveries lead to good empirical theories. However, as Mark Colyvan (2009,
sec. 6.2) points out, this leaves many questions unanswered; for example
why the method of mathematics, which is wildly different from empirical
methods, is nevertheless helpful in the formulation of empirical theories. It
is more obvious that Wigner’s puzzle is a problem for formalist, or anti-
realist, positions in the philosophy of mathematics.11

An important, sustained discussion of applicability is that provided by
Mark Steiner (1998). Steiner points out that there is not just one problem
of applicability, but rather that the puzzle can be given many forms, some
of which he considers to be unproblematic. For example, he claims that
the semantical problem of applicability, the question as to why arguments
drawing on mathematical facts are valid, despite the fact that numbers seem
to feature both as objects and as predicates, has been solved by Frege.12

Steiner considers other varieties of the problem to be more serious; for
example the descriptive problem, i.e., the appropriateness of mathematical
concepts in the description and solution of empirical problems. Steiner gives

10See Steiner (2005) and Colyvan (2009, sec. 6) for an overview; the following account
draws on the latter.

11See Colyvan (2009) for further discussion.
12See Steiner (1998, p. 16) for an example and Frege’s solution.
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Wigner’s puzzle a distinctively historical twist. He emphasizes that the role
of mathematics in the discovery of empirical theories and phenomena is par-
ticularly puzzling: how can mathematics be helpful in the formulation of
theories that lead to the discovery of new phenomena?

There are systematic problems with Wigner’s and Steiner’s puzzle. For
one, it is simply not clear that mathematics really proceeds based on aes-
thetic considerations only. Also, if we wanted to gauge the real extent of the
unreasonable effectiveness of mathematics, it is not sufficient to only take
the successes of application into account; we would also have to consider the
many failures. It is unclear how to carry out such a study, and whether the
outcome would still speak in favor of a miracle.13

I will not systematically discuss Wigner’s or Steiner’s proposals in this
thesis. The questions they raise are important, but I think it is not helpful
to couch the problem in terms of an unreasonable effectiveness, or miracles.
We all know that there are no miracles. I will, however, point out potential
lines of conflict between their views and the cases I discuss; also, I will briefly
return to the unreasonable effectiveness in the conclusion.

The second strand of the applicability debate is concerned with argu-
ments for the indispensability of mathematics in application.14 Very roughly,
the original indispensability argument runs as follows15: We should accept
exactly those entities as real that are indispensable for our best scientific the-
ories. Mathematical entities are indispensable for the formulation of our best
physical theories, and therefore, we should be realists about mathematical
entities; i.e., we should be Platonists.

This argument is only of interest if we accept scientific realism; the argu-
ment has no traction if we simply deny the existence of the (unobservable)
entities of science. The argument has the form of an inference to the best
explanation (IBE) – the reality of mathematical entities explains why we
need mathematics to formulate our best scientific theories.

One line of attack against the argument is to question whether all theo-
retical entities we use in the formulation of scientific theories are on a par,
e.g. by postulating an additional criterion, which blocks accepting the reality
of mathematical entities.16

A second line of attack was pursued by Hartry Field (1980).17 Field ac-
cepts the IBE part of the argument, but denies that mathematical entities
are indispensable for the formulation of our best scientific theories. In order
to demonstrate the dispensability of mathematics, he nominalizes Newtonian
gravitational theory by “geometrizing” the theory and thus eliminating quan-

13See e.g. Maddy (2007, sec. IV. 2. iii.) for a critical discussion of the puzzles.
14See Colyvan (2009, 2011) for introductions; Colyvan (2001) is a book-length discussion

of indispensability.
15See Colyvan (2009, p. 656).
16See e.g. Maddy (1997).
17See Colyvan (2001, ch. 4) for an overview of Field’s program, and criticism.



INTRODUCTION xiii

tification over real numbers, and thus demonstrates that everything derivable
in a mathematical theory is also derivable in its nominalized counterpart.

Field’s program is now commonly taken not to have been successful. One
of the objections against Field’s program is its lack of naturalism. His nomi-
nalized gravitational theory is simply not a real-life alternative to the classical
formulation using mathematical entities, such as the potential function.

It is commendable that Field shifted the focus of the discussion to real-
life examples, where mathematical entities are taken to be indispensable.
One important example has been proposed by Alan Baker (2005): the ex-
planation of the prime-numbered life-cycles of cicadas, using a theorem from
number theory.18 Baker, and the recent debate in general, has focused on one
particular sense in which mathematics is indispensable, namely explanatory
contribution of mathematics to science. Mathematics is taken to be indis-
pensable to a scientific explanation, if the explanation using mathematics is
superior to alternative explanations without mathematics. I will critically
discuss examples from this debate in chapters 2, 3 and 4.

Chapter Synopsis

Here is a short summary of the thesis.

Part I

The first part of the thesis consists of four small case studies. The first is
concerned with the metaphysics of mathematical structures, while the other
three are about applicability.

• In chapter 1, I criticize ante rem structuralism, proposed by Stewart
Shapiro, by showing that it is in conflict with mathematical practice.
Shapiro introduced so-called “finite cardinal structures” to illustrate
features of ante rem structuralism. I establish that, although these
structures have a well-known counterpart in mathematics, this coun-
terpart is incompatible with ante rem structuralism. I then discuss
whether the controversial feature of ante rem structuralism is com-
patible with the most common representational tool of mathematical
structures, set theory. Finally, I review the prospects for retaining
features of ante rem structures by using isomorphism types.

• In chapter 2, I discuss Leonhard Euler’s solution of the Königsberg
bridges problem. I propose interpreting Euler’s solution both as an
explanation within mathematics and as a scientific explanation. The
purely mathematical explanation is not a proof, but an application of
Euler’s theorem. I put this notion of intra-mathematical explanation

18See section 2.4.1 for a brief exposition and discussion.
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to work against two recent philosophical accounts of the Königsberg
case; Alan Baker (2012) and Marc Lange (2013).
I then discuss whether the applied version of Euler’s solution can be
interpreted as a causal explanation. I suggest that, on a broad read-
ing of the notion, this is a causal explanation. Finally, I claim that a
pragmatist reading of the relation between the mathematical formula-
tion of the problem, and its real-world counterpart, based on Bas van
Fraassen’s theory of explanations, allows for an adequate understand-
ing of the case. I examine two philosophical analyses of the Königsberg
case, in view of the preceding analysis. I argue that the proposal by
Christopher Pincock (2007), to reconstruct the case as an “abstract ex-
planation”, is incomplete, and that the account of “distinctively math-
ematical explanations” by Marc Lange (2013), which goes against a
causal reading of the case, conflates the applied and the purely math-
ematical versions of Euler’s solution.

• In chapter 3, I analyze the predator-prey model, proposed by Lotka
and Volterra in the beginning of the 20th century. I revisit the his-
torical papers by Vito Volterra. After following the historical discus-
sion of the model in time, and giving a brief account of the model’s
status in population ecology today, I extract some interesting philo-
sophical lessons from Volterra’s original account of the model, such as:
Volterra’s remarks on mathematical methodology; the relation between
mathematics and idealization in the construction of the model; some
relevant details in the derivation of the Third Law, and; notions of in-
tervention that are motivated by one of Volterra’s main mathematical
tools, phase spaces.
I put the analysis to work in some recent philosophical debates on
the predator-prey model. I argue that Mark Colyvan (2013) underesti-
mates the importance of idealizations in the model. I then critically ex-
amine the recent contribution by Weisberg and Reisman (2008) to the
debate on robustness analysis. I claim that Weisberg and Reisman’s
account suffers from mathematical imprecisions. I also cast doubt on
robustness analysis as a phenomenon unique to biology, as opposed to
other modeling sciences. Finally, I argue that the analysis by Christo-
pher Pincock (2012), according to which the predator-prey model is an
acausal representation, is mistaken.

• In chapter 4, I discuss scientific and mathematical attempts to explain
the structure of the bee’s honeycomb. The chapter has two parts. In
the first part, I discuss a candidate explanation, based on the mathe-
matical Honeycomb Conjecture, presented in Lyon and Colyvan (2008).
I argue that this explanation is not scientifically adequate for two rea-
sons. Firstly, I show that the explanation is deficient because the HC
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solves a two-dimensional problem, whereas an actual honeycomb has
a three-dimensional structure that cannot be adequately captured in
two dimensions. I then cast doubt on the idea that we should accept
the HC even as a partial explanation of the actual, three-dimensional
honeycomb.
In the second part, I discuss other mathematical, physical and bio-
logical studies that could contribute to an explanation of the bee’s
honeycomb. I examine a mathematical explanation proposed by Las-
zlo Fejes Tóth (1964). I argue that the mathematical result of this
account is not applicable to the bee’s honeycomb because one of the
idealizations it introduces is too strong. I review some recent biologi-
cal investigations of the bee’s honeycomb, including Pirk et al. (2004);
Hepburn et al. (2007); Bauer and Bienefeld (2013). I then call atten-
tion to an alternative explanation of the bee’s honeycomb based on
these results. Finally, I introduce a general framework that classifies
the bee’s honeycomb as a kind of foam, and I give a short account of
an experiment by Weaire and Phelan (1994), that can be interpreted
as a physical realization of the bee’s honeycomb. The upshot is that
most of the relevant mathematics is not yet sufficiently understood,
and there is also an ongoing debate as to the biological details of the
construction of the bee’s honeycomb. However, the results from the
physics of foams, depending on the outcome of the biological debate,
could provide an explanation.

Part II

The second part of the thesis is a bigger case study from physics: the genesis
of GR. Chapter 5 introduces the necessary historical and systematics back-
ground from physics and mathematics; chapter 6 is a historical study of the
“new” mathematics applied in GR, and Marcel Grossmann’s contribution to
its application, and; chapter 7 introduces, discusses and extends the Inferen-
tial Conception, the account of the application of mathematics that we use
in the analysis of the case. Chapter 8, finally, is where rubber – the IC –
meets the road – GR.

Some brief readings instructions are in order. Most importantly, it is not
necessary to read all of chapter 6 for the philosophically-minded reader; it is
sufficient to read the highlights in section 6.10. For those familiar with the
history of GR, a short glance at chapter 5 should be sufficient.

Also, it should be noted that this part of the thesis, is based on joint
work with Tilman Sauer, except for the introductory chapter 5. This means
that, while I am the author of these three chapters, they are based on our
discussions, and have been substantially improved by extensive comments
by Tilman. This is why I have switched to the plural form when referring to
the authors.
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• Chapter 5 is a short introduction to the history, physics and mathe-
matics that is relevant to the genesis of GR. I first introduce physical
and mathematical theories that were available before the search for
GR started, and then I sketch the tumultuous genesis of GR in the
years 1907 – 1916, with a focus on the transition to the mathematical
theory, which is now thought to be indispensable for the formulation of
GR, tensor calculus, and the adaptation of that theory to gravitational
theory.

• Chapter 6 discusses the historical question as to what Marcel Gross-
mann contributed to the genesis of GR. We will examine the so-called
“Entwurf” paper, an important joint publication by Einstein and Gross-
mann, containing the first tensorial formulation of GR. In particular,
we will analyze the second, mathematical part of the Entwurf, and we
will discuss the origin of the mathematical theories used in this part,
as well as Grossmann’s own, novel contributions.

The Entwurf theory constitutes the earliest meeting point of the histor-
ical predecessor of tensor calculus, the “Absolute Differential Calculus”
(ADC), and gravitational theory. Previously, the ADC had been devel-
oped independently from any application to gravitational theory. By
comparing Grossmann’s part with the mathematical theories he used,
we can gain a better understanding of what is involved in the first steps
of assimilating a mathematical theory to a physical question.

• In chapter 7, we introduce and discuss a recent account of the appli-
cability of mathematics to the world, the Inferential Conception (IC),
proposed in Bueno and Colyvan (2011). The chapter has three objec-
tives. First, we give a short exposition of the IC, which improves on
a previous account of applicability, i.e. the mapping account. Then,
we offer some critical remarks on the account, and discuss potential
philosophical objections. Third, we propose some extensions of the IC,
preparing the ground for the application of the IC to our case study in
chapter 8.

• In chapter 8, we put the Inferential Conception (IC) to work in our
historical case study: the genesis of GR. We analyze three historical
episodes, using the conceptual apparatus provided by the IC. This, in
turn, will help us refine the account.

In episode one, we investigate how the starting point of the application
process, the “assumed structure”, is chosen. We will clarify the status of
the starting point of the application process, and discuss the trigger of
the application process. Then we analyze two small application cycles
that led to revisions of the initial assumed structure.
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In episode two, we examine how the application of “new” mathemat-
ics – the application of the Absolute Differential Calculus (ADC) to
gravitational theory – meshes with the IC. We describe how the math-
ematical part of the Entwurf is shaped by the application process. Our
focus is on the application cycle that led to the “discovery”, and the ap-
plication, of the ADC, i.e. the quest for generally covariant differential
operators.
In episode three, we will take a closer look at two of Einstein’s failed
attempts to find a suitable differential operator for the field equations,
and apply the conceptual tools provided by the IC so as to better
understand why he erroneously rejected both the Ricci tensor and the
November tensor in the Zurich Notebook.

I end with a conclusion, in which I comment on some of the common
themes of the case studies.
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Chapter 1

Against Ante Rem

Structuralism

1.1 Introduction

When it comes to the nature of mathematical objects, many philosophers
and mathematicians embrace a form of structuralism. Philosophers of math-
ematics have tried to formulate a metaphysics of mathematics in structuralist
terms for quite some time. One kind of structuralism is particularly popular:
Stewart Shapiro’s ante rem structuralism, first proposed in Shapiro (1997).

In this chapter, I critically assess ante rem structuralism. After a short
introduction to ante rem structuralism in section 1.2, I raise my principal
objection to this position in section 1.3 by showing that it is in conflict with
mathematical practice. Shapiro introduced so-called “finite cardinal struc-
tures” to illustrate features of ante rem structuralism. I establish that these
structures have a well-known counterpart in group theory, but this counter-
part is incompatible with ante rem structuralism: It has an in re character.
Furthermore, there is a good reason why, according to mathematical prac-
tice, these structures do not behave as conceived by ante rem structuralism:
We want to be able to establish connections between different representa-
tions of abstract structures, and in order to do this, we rely on “coordinates”,
non-structural properties of structures.

In section 1.4, I discuss the role of set theory for the in re perspective
on structures. It seems to me that the fact that domains of structures are
commonly taken to be sets can be explained by the fact that sets naturally
provide “surplus structure” and thus serve as coordinates of structures. This
is so because, on the most common conception of sets, the elements of sets
are discernible. I go through several notions of set theory to show that this
is the case.

The set-theoretic construction of sets is not completely satisfactory. Set-
theoretic representations of structures have properties that the structures do

3
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not have intrinsically – “surplus structure”. However, there are ways to deal
with this problem, which I discuss in section 1.5. The solution is based on
the notion of isomorphism types, which allows us to separate those properties
that are due to a particular representation from those properties that belong
to the represented structure. This solution will not satisfy the ante rem
structuralist, as it cannot do away with all the “surplus structure”, but it is
probably as close as we can go towards ante rem structuralism: We get ante
rem properties and relations, but not ante rem structure.

1.2 Ante Rem Structuralism

In this section, I first give a very short introduction to ante rem structural-
ism. Then I explain a relevant objection that has been raised against an
early version of ante rem structuralism – that it endorses a version of the
principle of the identity of indiscernibles – and show how Shapiro was able
to avert this problem. Finally, I lay out a feature of ante rem structuralism
that I find to be troubling, the fact that we cannot name places of certain
symmetric structures.

1.2.1 The Idea

One starting point of mathematical structuralism is Benacerraf (1965). Be-
nacerraf raises challenges to ontological realism in mathematics. First, he
argues that numbers cannot be particular sets, because we have no sufficient
reason to identify the natural numbers with one particular set-theoretic rep-
resentation instead of another, e.g. Zermelo or von Neumann ordinals.1
Second, this argument is extended to objects in general - numbers cannot be
objects. What, then, do we talk about when we talk about natural numbers?
Besides the negative answers just sketched, Benacerraf hints at a positive,
structuralist answer:

[...] in giving the properties [...] of numbers, you merely
characterize an abstract structure - and the distinction lies in
the fact that the ‘elements’ of the structure have no properties
other than those relating them to other ‘elements’ of the same
structure. (Benacerraf, 1965, p. 285)

This idea has been taken up by structuralists, most notably in Shapiro
(1997). According to his ante rem structuralism, we should not think of
mathematical structures in terms of their instantiations (in re), but in terms

1The von Neumann ordinals start with ∅, {∅}, {∅, {∅}}, ..., the Zermelo ordinals with
∅, {∅}, {{∅}}, ...
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of the structural features that the structures have independently of, or “be-
fore”, instantiations (ante rem). For example, the structure of natural num-
bers is independent of its instantiations as, say, some ordinal structure. It
is exhaustively characterized by the axioms of natural numbers. The nat-
ural numbers are the places in this structure, characterized in terms of the
structural relations, such as the successor function. This is the so-called
places-are-objects perspective of ante rem structuralism.

Ante rem structuralism is an attractive position, because each mathe-
matical structure is taken seriously in itself. We work exclusively with the
properties and relations that are naturally available in a structure; it is not
necessary to interpret structures in terms of, say, set theory. This meshes
well with many mathematicians’s conception of the autonomy of mathemat-
ical subdisciplines: A graph theorist is working with graphs, he is not doing
some version of set theory.

1.2.2 An Objection: PII

A serious objection, however, has been raised against ante rem structuralism;
see Burgess (1999) and Keränen (2001). The objection is based on two facts.
According to ante rem structuralism, we can characterize mathematical ob-
jects exclusively in terms of the structural properties (including relations) of
the structure to which the objects belong. Secondly, Shapiro can be read as
endorsing a form of the Principle of the Identity of Indiscernibles (PII): if
two objects of a structure share all structural properties, then they should
be identified; see Shapiro (2008, p. 286). This leads to the objection that
structures with certain symmetries are not adequately captured by ante rem
structuralism.

The concept of structures exhibiting more or less symmetry can be made
more precise using the concept of automorphism. An automorphism is a
structure-preserving function (isomorphism) from the structure to itself. In
the case of natural numbers, there is only one automorphism, the identity
function. Structures on which only this (trivial) automorphism can be de-
fined are called rigid. Structures admitting of non-trivial automorphisms are
called non-rigid. Places of structures linked by a non-trivial automorphism
are called structurally indiscernible.

Non-rigid structures, such as the complex numbers, do have places, e.g.
i and −i, that are structurally indiscernible – but which are nonetheless
not identical: the additive inverse of i is −i, not i itself. As 0 is the only
complex number additively inverting itself, and i is not 0, i and −i have to
be different. But, according to (IND), i and −i should be identified.2 Ante

2Note that i and −i need only be identified according to (IND), which is just one
possible formulation of PII. There are several notions of indiscernibility on the market;
see Ketland (2011) and Ladyman et al. (2010) for a discussion of these notions and their
interrelations). According to weak discernibility, i and −i are discernible by a formula
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rem structuralism appears not to adequately capture mathematics, which is
unacceptable for a nonrevisionist position, such as Shapiro’s.

In reaction to this objection, Shapiro (2008) agrees that it would be fatal
if ante rem structuralism were committed to the above form of PII. However,
he denies that this is the case. He thinks that in mathematics, identity cannot
be defined in a non-circular way, and that mathematics presupposes identity.3
Ante rem structuralism can thus be amended in the following way: we use
only structural properties that are naturally available in a mathematical
structure to characterize the objects belonging to that structure, and identity
is one of these structural properties.

If we accept identity as a primitive relation, then Shapiro has successfully
averted attacks based on PII. For the sake of the argument, I accept Shapiro’s
solution and assume that identity is available as a primitive relation. What
follows has nothing to do with metaphysically motivated principles, such as
PII.

1.2.3 No-Name Places

The feature of ante rem structuralism that I consider to be problematic
concerns reference in mathematics. To see the problem more clearly, I will
underline an implicit distinction made by Shapiro.

In Shapiro’s opinion, one attractive feature of ante rem structuralism is
that “in most cases, reference is straightforward” (Shapiro, 2008, p. 290).
One straightforward case is the structure of natural numbers with unique,
structurally characterized places interpreted as objects: the numeral “4”
refers to the fifth place in this structure. While Shapiro accepts the idea
that “singular terms in true sentences [... suggest] that there are objects
denoted by those terms”, he denies the converse: “It is simply false that to
be an object is to be the sort of thing that can be picked out uniquely with
a singular term.” (Ibid.) How can this be the case?

Shapiro gives several examples where reference to mathematical objects
fails. For big structures, such as the real numbers, at least one problem
of reference is well-known: Given a countable supply of names, we cannot
name or describe all real numbers at once, as they are uncountable. We
can “diagonalize out” of any list of members of these structures. Therefore,
the countable supply of names cannot be in a one-one-correspondence with
the members of these structures. There are probably further problems with
reference to members of big or random structures, but I will not discuss
them further, as the claim about failure of reference due to uncountability

φ(x, y) expressing the fact that x and y are additive inverses: φ(i, i) is false in the complex
number structure, while φ(i,−i) is true. If (IND) were based on weak discernibility, then
i and −i would be discernible (but see Ketland (2006) for criticism of weak discernibiliy).

3See Shapiro (2008, p. 292). The proposal that identity is presupposed in mathematical
practice has been made in Ketland (2006), as Shapiro notes.
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is uncontroversial.
My focus will be on a different type of example: structures that are

too homogeneous for reference. Shapiro thinks that certain mathematical
structures with symmetries have the property that we cannot name or refer to
the objects, or places, in these structures because they are too homogeneous.
He writes:

There simply is no naming any point in Euclidean space, nor
any place in a finite cardinal structure and in some graph, no
matter how much we idealize on our abilities to pick things out.
The objects are too homogeneous for there to be a mechanism,
even in principle, for singling out one such place, as required for
reference, as that relation is usually understood.(Shapiro, 2008,
p. 291)

I take it that the reason why we cannot name the objects in these struc-
tures is that there are no structural properties to pick them out, or discern
them. Identity is of no help, as structurally indiscernible places can be
nonidentical. I will call this the “no-naming constraint” of ante rem struc-
turalism.

I think that the no-naming constraint is an undesirable feature of ante
rem structuralism, because it is in conflict with mathematical practice. This
I will show by examining the paradigm of homogeneous structures, the finite
cardinal structures mentioned in the above quote. Finite cardinal structures
comply with the no-naming constraint to the extreme: none of their places
can be named, because they are too homogeneous. I will show that the
correlate of finite cardinal structures in mathematics does not comply with
the no-naming constraint.

This creates a problem for Shapiro, because he also endorses the so-called
faithfulness constraint. This is the “desideratum [...] to provide an interpre-
tation that takes as much as possible of what mathematicians say about
their subject as literally true, understood at or near face value” (Shapiro,
2008, p. 289, emphasis in original).4 Shapiro wants his position to be in
agreement with mathematical practice as much as possible. If naming the
objects of finite cardinal structures is no problem in practice, then either the
no-naming constraint or the faithfulness constraint has got to go.

1.3 An Objection from Group Theory

1.3.1 Finite Cardinal Structures in Mathematics

Shapiro characterizes the cardinal-four structure, one kind of finite cardinal
structure, as follows:

4See Shapiro (1997, ch. 1) for more on the faithfulness constraint.
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The cardinal-four structure [...] has four places, and no rela-
tions. [...] Since there are no relations to preserve, every bijection
of the domain is an automorphism. Each of the four places is
structurally indiscernible from the others and yet, by definition,
there are four such places, and so not just one. (Shapiro, 2008,
p. 287)

The cardinal-four structure has four objects, or places, and no relation
between these objects; therefore, every bijection between the objects is an
automorphism. Technically speaking, the places are pairwise structurally
indiscernible.

We will now locate the cardinal-four structure in mathematical practice.
Initially, it is unclear how to interpret the cardinal-four structure in ordinary
mathematical terms, because if we cannot name the objects of a structure,
it is not clear how to define a function on the structure.5 We will therefore
choose a familiar starting point, and work our way from there. We will use
the familiar idea that structures can be characterized via structure-preserving
functions.

Usually, a structure is defined by giving some domain, say C = {1, 2, 3, 4},
on which we can define functions in the usual way. There are no relations
on C, so every f : C → C, with f bijective, is an automorphism. In math-
ematics, a bijection on a (finite) domain, which is not required to respect
any relations, is called a permutation of C. Mathematicians are interested in
permutations because the set of permutations of a (finite) domain, equipped
with composition of functions, forms an important group called symmetric
group, written Sn if the size of C is n. The members of the group S4 are the
permutations of C.6

Clearly, C is not the cardinal-four structure: the elements of C are
natural numbers, thus we can name them. This carries over to the per-
mutation group on C: According to the ante rem structuralist, some of
the permutations of C should be indistinguishable. Take the functions
f , defined as f(1) = 2, f(2) = 1, f(3) = 3, f(4) = 4, and g, defined as
g(1) = 3, g(2) = 2, g(3) = 1, g(4) = 4. They are different members of S4.
However, the only difference between f and g is that f permutes 1 and 2,
while g permutes 1 and 3.

Thus we cannot use the permutation group S4 to characterize the cardinal-
four structure: f and g are distinguishable, which should not be the case, as
2 and 3 play the same structural role. We have to “identify” f , g, and any
other permutation of C that only swaps two places of C and leaves all other
places untouched.

5This concern has been formulated before, see Hellman (2005, p. 545, fn. 10).
6The portion of elementary group theory used in the following can be found in any

introduction to group theory, see e.g. Rotman (1995).
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Figure 1.1: Functions f (left) and g (right)

Figure 1.2: Function on Cardinal-Four Structure

In mathematics, the result of this identification is well-known and has
many different, but equivalent descriptions. A particularly intuitive ap-
proach is based on the notion of cycles. To understand how this works,
we need the cycle notation of permutations. A cycle of length r ≤ n,
written (i1i2...ir), is a permutation a ∈ Sn such that a(i1) = i2, a(i2) =
i3, ..., a(ir−1) = ir, a(ir) = i1, a(ik) = ik for k �= 1...r, i.e. it sends r places of
the domain around in a cycle and leaves the other places alone. For example,
f above is the cycle (12). Alternatively, we can also write f as (12)(3)(4),
i.e. 3 and 4 are cycles of length one.

It is a theorem of group theory that all permutations can be written as
a product of disjoint cycles. Thus we can think of permutations as cycles.
This is very useful for our purposes, because we can use the cycle notation
to classify all permutations into cycle types, also known as cycle structure.
The cycle type of a permutation only depends on the number of cycles of
length one, two, etc. of the permutation. The cycle type of a permutation
a ∈ Sn is written (1m1 , 2m2 , ..., nmn), meaning that the permutation a has m1

cycles of length 1, m2 permutations of length 2, and so on. For example, the
permutation (12)(3)(4) ∈ S4 above is of type (12, 21, 30, 40). Some thought
reveals that the permutations in S4 fall into five cycle types. Here is one
instance of each type: (1)(2)(3)(4), (12)(3)(4), (123)(4), (1234), (12)(34).

I suggest that cycle types capture finite cardinal structures. A cardinal-
four structure is completely characterized by the fact that we can define
five “essentially different bijections” on its places: all permutations are au-
tomorphisms, but some permutations have to be identified. Now, the five
essentially different bijections on the cardinal-four structure coincide with
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the five cycle types of S4, see figure 1.3 below. These cycle types capture
kinds of permutations by abstracting from the particular numbers (or places)
that are permuted. They only appeal to facts, such as the number of places
mapped to themselves, the number of places mapped to each other, the
number of places mapped in three-cycles, and so on – the structure of cycles.

Figure 1.3: Cycle Types of S4

It is not necessary to capture finite cardinal structures in terms of cycle
types; the idea can be restated in many different forms. For example, there
is a natural correspondence between cycle types and certain subgroups of
Sn called conjugacy classes: two permutations are of the same cycle type if
and only if they are in the same conjugacy class.7 Another perspective is
in terms of partitions of natural numbers. A partition of n is a sequence of
natural numbers i1, i2, ...ir such that i1+i2+ ...+ir = n.8 There is a one-one
correspondence between partitions of n, cycle types of length n, conjugacy
classes of Sn, and “essentially different” bijections on C, and we can use any
one of these concepts to capture finite cardinal structures.9

1.3.2 Ante Rem Structuralism vs. Mathematical Practice

After this detour into mathematics, we are ready for our philosophical prob-
lem. Are cycle types ante rem structures in Shapiro’s sense or not? More
specifically, is it possible to name their places? Mathematical textbooks do
not give a direct answer to this question, because naming is not a mathe-
matical notion. However, they give an indirect answer.

7If G is a group and a a member of G, the conjugacy class of a is the set of b such that
b = xax−1 for some x in G.

8Note, incidentally, that a closed form expression for p(n), the number of partitions of
n, is not known; see Simon (1996, p. 96). By extension, the same is true for the number
of “essentially different” bijections on finite cardinal structures.

9Shapiro (2008) points out a suggestion in Leitgeb and Ladyman (2008) according to
which finite cardinal structures are (isomorphic to) certain graphs. This is yet another
way to conceive of finite cardinal structures.
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In mathematics, different permutations such as f and g that belong to
the same cycle type are always distinguishable. This follows from the way
in which the permutations belonging to a certain cycle type are counted. A
theorem tells us that the number of permutations of type (1m1 , 2m2 , ..., nmn)
is n!/

�
Πn

j=1(mj)!jmj
�
; see Simon (1996, Theorem VI. 1.2.). Applied to the

cycle type (12, 21, 30, 40) of f and g, we find that the number of permutations
of this type is 4!/

�
2!12 · 1!21 · 0!30 · 0!40

�
= 6; these are the 6 permutations of

the set C that swap two places and leave two places untouched. This means
that we can recover all the cycles belonging to a cycle type, all the different
bijections on C, and especially f and g. We can move freely between cycle
types, as in figure 1.2, and cycles, as in figure 1.1.

This is not so according to ante rem structuralism. In figure 1.2, the
places 2 and 3, while nonidentical, are structurally indiscernible. There are
no properties or relations to discern them, and we cannot name them. From
the perspective of ante rem structuralism, there is exactly one function in
figure 1.2. But there is no way to recover, or count, different permutations,
such as f and g, in figure 1.1 that instantiate the function in figure 1.2.

The reason for this is that the ante rem structuralist can only use struc-
tural differences and identity to distinguish between f and g. However, they
have the same structural role: they swap two places, and leave two places
alone. In particular, the ante rem structuralist cannot use the fact that f

and g are different, because f swaps 1 and 2, while g swaps 1 and 3. All that
can possibly matter for the ante rem structuralist is that two (nonidentical)
places are swapped, while two further places, not identical to the former two,
are left alone. There is one such situation, not two, or six.

Now, the ante rem structuralist could maintain that it is a primitive fact
of identity that f and g are different permutations. However, this is not a
fact that can be grounded in the identity and structural discernibility of the
places that are permuted. Both f and g swap two nonidentical, structurally
indiscernible places, so the nonidentity of places is of no help in distinguishing
the two. The ante rem structuralist would need additional facts about the
identity and discernibility of functions; more specifically, he would have to
assume that there are exactly six different permutations with the same cycle
type as f – and so for all other cycle types of all permutation groups. I think
this is not an attractive option.

The easy way out would be to state the obvious: f and g are different
because, well, 2 and 3 are different. This, however, the ante rem structuralist
cannot do, as he would have to label the places of the cardinal-four structure
as 1, 2, 3, 4, and then describe the different permutations between these
numbers, which, arguably, amounts to naming the places. Once he has
adopted the ante rem perspective, the ante rem structuralist cannot move
freely from figure 1.2 to figure 1.1.

Why is the situation different for the mathematician? The mathemati-
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cian simply uses non-structural properties to discern the places of cycle types;
for example, by defining the permutations on a set of natural numbers. He
can then use the non-structural properties of the places of permutations to
calculate how many permutations belong to each cycle type.10 It appears
that mathematicians adopt an in re perspective for circle types: they are not
considered in isolation from their instantiations, but in close correspondence.

It could be asked11 whether the problem of distinguishing the functions
f and g could be solved by treating the places of the cardinal-four structure
as parameters. We could skolemize the axiom of the cardinal-four structure

∃x1, x2, x3, x4(x1 �= x2∧ ...∧x3 �= x4∧∀y(y = x1∨y = x2∨y = x3∨y = x4))

by eliminating the outermost existential quantifiers by introducing a new
parameter for each quantifier. This procedure is akin to the rule of existential
instantiation. If we now conceive of the functions as being defined on these
parameters, we can very well distinguish the functions f and g.

I think that this does not solve the problem, for the following reason. I
certainly agree that the parameters can be used to represent the places of
the cardinal-four structure. However, we can only distinguish the functions
f and g as functions between parameters, which represent the places. If we
want to establish, additionally, that we the functions f and g between the
places are distinguishable as well, we would need a stable relation, a one-
one correspondence between parameters and places (an interpretation of the
parameters). This, however, would essentially amount to naming the places
using parameters, which is impossible according to ante rem structuralism.

1.3.3 Ante Rem vs. In Re

My objection against ante rem structuralism is not a priori or metaphysical.
The problem is Shapiro’s faithfulness constraint, which it is in tension with
the no-naming constraint; I argued that the no-naming constraint has con-
sequences that contradict mathematical practice. Of course, the ante rem
structuralist can claim that cycle types and the other structures above do
not really capture his idea of finite cardinal structures. However, these struc-
tures are as close as mathematics gets to Shapiro’s finite cardinal structures.
If he does not think that cycle types adequately capture his idea, we can
reasonably question the relevance of these structures for mathematics – un-
less he comes up with a mathematical structure that captures finite cardinal
structures even better.

10The point that, in mathematics, we use non-structural properties to discern places in
structures has been made before; see e.g. Hellman (2001). Hellman’s criticism of ante rem
structuralism is more general and severe than the one advanced here, as he considers the
position to be incoherent.

11I thank an anonymous referee for this question.



1.4. SET THEORY AND DISCERNIBILITY 13

According to Shapiro, the faithfulness constraint is relative and has to be
weighted against other desiderata. If the feature of mathematics that is not
faithfully mirrored by ante rem structuralism is only of minor importance, we
could still dismiss it; after all, ante rem structuralism is able to capture some
aspects of mathematical practice. Are there good reasons for conceiving of
structures as in re rather than ante rem? Why is it important to count
cycles of a certain type in a certain way?

There are good reasons for adopting an in re perspective. One reason is
that it is an important part of mathematics to explore different perspectives,
or representations, of one and the same abstract, ante rem structure. We saw
an example of this practice above: we can think of finite cardinal structures
in terms of cycle types, but also in terms of conjugacy classes or partitions
of natural numbers. One advantage of these different representations is that
we can use our knowledge of one of the representations for all the others.

However, in order to do this, we have to be able to prove that the different
representations are equivalent, and in these proof, we often use instances of
abstract structures (“Let π be a permutation of type x ...”), and structure-
preserving mappings between these instances. This is why it is important
that we can move freely between an abstract structure and its instances.
This is impossible if we adopt an ante rem perspective, as we saw in the case
of the cardinal-four structure.

Summing up, ante rem structuralism is right in emphasizing that we
should take abstract mathematical structures seriously – they are more than
their instantiations. However, we should not take abstraction too far. If we
start to think of abstract mathematical structures as completely freestand-
ing and independent of their instantiations, we lose sight of the fact that
mathematics is also about the different representations of structures. If we
want to make use of these representations, we have to be able to move back
and forth between abstract structures and their instantiations, i.e. between
an ante rem and an in re perspective.

1.4 Set Theory and Discernibility

In the previous section, I argued that mathematicians seem to adopt an
in re perspective on structures, and that one reason why they adopt this
perspective is that it makes it possible to establish relations between different
structures. The fact that mathematicians want to be able to relate different
structures goes a long way towards explaining why there is one particular,
pervasive conception of structures in mathematics, namely a set-theoretic
conception.

We usually define structures by first specifying a set, called the domain
of the structure; on this domain, we can then define relations, functions,
constants, and so on. Thus, on the one hand, the domain provides us with the
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substrate to define all these structural features. On the other hand, domains
help us to establish connections between different structures by establishing
mappings between them – it serves as a sort of coordinate system of the
structure.

It is well-known that set theory can help clarify the notions of relation,
function, and so on. I suggest that the second role of the domain, its use-
fulness in establishing connections between different structures, is also tied
to the fact that the domain is a set. Sets have just the properties needed to
serve as coordinate systems. The property that is at the core of the concep-
tion of sets is arguably extensionality: A set is constituted by (nothing but)
the (distinct) elements of that set. We do not require any specific relations
etc. to hold between these elements, except that they are distinct. Thus, in
some sense, a set is as structureless as it gets: its structure is constituted by
the number of its elements, i.e. its cardinality.

However, the distinctness of the elements of a set would not be sufficient
to play the role of coordinate systems. For this, we need to be able to
name them, and the discernibility of the elements of a set is a feature on
which we rely to do so. In order to see whether the elements of a set are
in fact discernible, we will scrutinize some conceptions of a set, gauge their
overall relevance, and answer the question whether the elements of a set are
discernible, and if yes, in what sense. As we will see, there is no uniform
answer to this question; however, we can discern a tendency.

1.4.1 Sets in Mathematical Practice

We start with sets in mathematical practice, as this is the conception of sets
that Shapiro would consider to be relevant. As we saw above in section 1.3,
mathematicians will use domains such as {1, 2, 3, 4} or {a, b, c, d}; obviously,
natural numbers and letters are not only distinct, but discernible. Natural
numbers are even structurally discernible in the structure of natural numbers.
The discernibility of the elements of the two sets is useful for the reasons
pointed out above: it makes it easy to define functions on these domains,
and it makes it easy to define functions between the domains.

It could be objected that we cannot settle the question in this way.
Maybe, mathematicians are, in some cases at least, sloppy in that they use
sets with whatever elements they like in their daily work, be it numbers,
letters, or anything else, and it could be a mistake to attach too much signif-
icance to this fact – the elements of these sets are discernible, but this need
not be so in general. It could be instructive to have a look at more formal
conceptions of set theory, in the spirit of an explication of the concept of
sets, to find out whether the discernibility of the elements of a set is part of
the core concept of sets or not.
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1.4.2 Cantorian Set Theory

The first historical definition of sets was proposed in Cantor (1895, p. 481,
my translation):

By a ‘set’ we mean any collection M of definite, well-distinguished
[wohlunterschieden] objects m of our intuition or our thought
(which are called the ‘elements of M ) into a whole.

The important thing to note here is that the objects, or elements, are
characterized as “wohlunterschieden”. This does not just mean that they are
distinct, but that they can be distinguished from each other, as emphasized
by the prefix “wohl”. It seems, then, that on the original conception of
sets, the elements of a set are discernible. However, it is not yet clear how
elements of a set can be discerned; the discernibility is merely postulated.
This is different on at least some axiomatic set theories.

1.4.3 Pure Set Theory (ZF)

In most common, contemporary axiomatic set theories, such as ZF, the scope
of what is accepted as elements of a set is very limited: sets and sets alone
are sufficient to do set theory. It is not necessary to accept any other kind of
object as an element of a set. This is an important difference from Cantor’s
formulation. Set theories in which this restriction is adopted are called pure
set theories, as opposed to set theories with urelements, or atoms: these are
mathematical or physical objects that are members of a set, while not being
sets themselves.

In standard pure set theories, such as ZF, all sets are structurally dis-
cernible qua sets. Intuitively, the reason for this is that if two pure sets
are nonidentical, then, by extensionality, there is a set that is a member of
one set and not of the other, and this fact can only be due to the structure
of these two sets, i.e. set membership, because set membership is the only
relation of pure sets.

To be a little more formal, in these theories, structural discernibility
follows from a theorem, the so-called Isomorphism Theorem.12 As French
and Krause (2006, p. 266) write, the relevant point is that V , the well-
founded universe of ZF, is a rigid structure: in the structure described by the
axioms of ZF, there are no nontrivial automorphisms; all sets are structurally
discernible. French and Krause (2006, p. 265) characterize the situation in
standard pure set theory as follows:

[W]ithin the usual set-theories, indistinguishability can be
considered only in relation to a certain structure, but there is

12See Jech (1997, p. 74). Note that the proof of the theorem proceeds by ∈-induction,
which presupposes the axiom of regularity, a.k.a. foundation.
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no indistinguishability tout court. That is, the objects treated
by standard set theories (like Zermelo-Fraenkel with regularity)
are individuals, in accordance with Cantor’s intuitive conception
of a set.

In sum, Cantor’s conception of elements as discernible carries over to
standard axiomatic set theories, where the elements are even structurally
discernible.

1.4.4 Pure Set Theory and Mathematical Practice

What is the importance of pure set theory for mathematical practice? Maybe
pure set theory is just a formal theory with no particular consequences for the
working mathematician. However, some mathematicians think that pure set
theories are the gold standard, even when it comes to mathematical practice.
Halmos (1960) is an example of this line of thought. His primary concern is
to provide the working mathematician with the set theoretic tools necessary
for mathematical practice. Halmos gives the following account of set theory:

What may be surprising is not so much that sets may occur
as elements, but that for mathematical purposes no other ele-
ments need ever be considered. In this book, in particular, we
shall study sets, and sets of sets, and similar towers of sometimes
frightening height and complexity – and nothing else. By way of
examples we might occasionally speak of sets of cabbages, and
kings, and the like, but such usage is always to be construed as
an illuminating parable only, and not as a part of the theory that
is being developed. (Halmos, 1960, pp. 1)

Thus, even if only those portions of set theory necessary for mathematical
practice are studied, pure set theory is entirely sufficient, if we are to believe
Halmos.

1.4.5 Set Theory with Urelements

The crucial difference between pure set theories and set theories with ure-
lements for our concerns is that as soon as we accept urelements, sets need
no longer be structurally discernible as sets, instead the discernibility rela-
tions between urelements come into play.13 To give an example, if we admit
finitely many natural numbers as urelements, these natural numbers would
not be discernible using the axiom of extensionality, but would be using the
natural number structure.

Despite the fact that some mathematicians think that we need not take
sets with urelements seriously, there could be good reasons for doing set

13See French and Krause (2006, sec. 6.4), for a more detailed discussion.
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theory with urelements. Urelements are not excluded by Cantor’s charac-
terization, and if they have an important role in axiomatic set theory, then
we should accept the verdict for the use of set theory in practice. I will now
review mathematical and philosophical reasons for including urelements in
set theory.

First, to the mathematical reasons for considering set theories with urele-
ments. In Jech (1997, pp. 197), we find a discussion of ZF with urelements -
or atoms - (ZFA) in the context of arguments for the independence of the ax-
iom of choice (AC) from the other axioms. Jech writes that these arguments
were of importance in the pre-forcing era, that is, before the independence
of AC of ZF was proven using the technique of forcing. ZFA gives rise to
examples where AC is violated, but, as Jech notes on page 201, these do not
give any information about “true” sets, like real numbers, sets of real num-
bers, etc., since those sets are in V , the universe of ZF. Jech thinks that the
importance of urelements is limited to historical and pedagogical contexts.
There are no compelling mathematical reasons for including urelements in
the study of (axiomatic) set theories.

Second, to the philosophical reasons for using set theories with urele-
ments. Michael Potter (2004) proposes a version of set theory with urele-
ments, and addresses the advantages of this approach: admitting urelements
into set theory, while nonstandard, is “central for ensuring its applicability”
(Ibid. p. 76). If we were to work exclusively with pure sets, “it begins to
seem miraculous that mathematics applies to the world at all” (Ibid. p. 77).
Potter thinks that the applicability of set theory to the world should be built
into set theory, and that this can at least partially be assured by using set
theory with urelements.

The issue of the applicability of mathematics is an important and pressing
issue, and it is certainly valuable, if an account of set theory has the means
to account for applicability. However, by admitting urelements, applicability
can only be ascertained in a few cases like, for example, that of relating
the number of objects to the cardinality of the corresponding set. In more
complex cases, it is doubtful whether the use of urelements are of any help in
accounting for the applicability of mathematics – think of population ecology,
see chapter 3. In these cases, application proceeds by relating the relevant
mathematical structures to the world – without detour to the (set-theoretic)
domain on which the structure is defined. Unfortunately, Potter is silent on
this issue.14

Potter is aware that set theory and application could be kept apart even
in the simple cases that can be accounted for by using set theory with ure-
lements, but he questions whether this would make sense, because at some
point a correspondence between pure sets and the world has to be estab-
lished:

14See also Moschovakis (2006, 12.35) on this issue.
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If for some reason we were determined to study only pure
theory, all would not be lost quite yet, it is true: we could try to
repair the damage later by adding appropriate bridging principles
connecting the pure sets of our theory to the denizens of the real
world that we want eventually be able to count. But it is very
hard to see what the point would be of proceeding in this fashion.
(Ibid., p. 77)

I think there are good reasons to separate set theory and its applica-
tion. If any kind of urelement is admitted into set theory, then set theory
inherits the properties of these urelements. For example, the question of the
discernibility does not have a principled answer if urelements are admitted,
but it has a principled answer, as we have just seen, if we consider pure set
theories. It could be a good methodological decision to exclude urelements
because one does not want to take their nature into account when doing set
theory.

Also, if there is no restriction on the kind of admissible urelements, then
set theory is not formulated in the spirit of its original conception. As we
have seen, Cantor thought of the elements of sets not as just distinct, or
nonidentical, but as “well-distinguished”, which can reasonably be interpreted
as discernible. However, if absolutely indiscernible atoms were added as
urelements to ZF, this requirement would be violated.

1.4.6 Summary: Discernibility in Set Theory

We have now considered some important conceptions of sets, and answered
the question whether, on these conceptions, elements of sets are discernible.
The verdict is that on the original conception of sets, the elements are dis-
cernible, and in pure (axiomatic) set theory, elements are structurally dis-
cernible as sets. In set theories that admit urelements, discernibility depends
on the discernibility of the urelements. However, we also saw that at least
some mathematicians do not believe that we need urelements in set theory.
Overall, there is a tendency to conceive of the elements of sets as discernible.

Of course, there is no guarantee that this tendency carries over to sets
as used in mathematical practice; clearly, mathematicians do not work with
pure set theory, and therefore, in practice, the elements of the sets they
use are not, strictly speaking, structurally discernible. On the other hand,
the case can be made that mathematicians tend to conceive of elements as
discernible, and this confirms the idea that we use sets as coordinate systems,
as pointed out above.

Assuming that the elements of a set are discernible, structurally or oth-
erwise, cannot be the end of the story, because at this point, a form of
Benacerraf’s dilemma strikes back: if we use sets as in one of the above con-
ceptions, say, pure sets, and we use these sets to define other structures, such
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as the natural numbers, the sets representing the natural numbers have “too
many properties”; the sets representing natural numbers have set-theoretical
properties, while natural numbers do not.

On the other hand, I argued before that we may need some additional
properties in the domains of structures, because the domains serve as co-
ordinate systems, and the structure that is naturally available in, say, the
cardinal-four structure cannot play the role of coordinate system on its own.

The least we can expect is that, if we are given a set-theoretic repre-
sentation of a structure, we get a systematic account of how to distinguish
between the properties that are “really” part of the structure represented,
and the properties that are only due to the representational role of set the-
ory – we want to know what properties can be found in the landscape, and
which properties are only in the map. Such an account, I think, is provided
by the concept of isomorphism types.

1.5 Structures as Isomorphism Types

We can use the concept of isomorphism type to flesh out the idea that,
on a set-theoretic construction, some properties of the structure are prop-
erly structural, while other properties are artifacts of the particular domain
chosen for the representation. We have already seen an example of this idea
above: cycle types capture the structural properties of cycles, while abstract-
ing away from the particular set of labels in the domain that is permuted.
Here we will consider a second example, the isomorphism type of graphs.
As I pointed out above, Shapiro (2008, p. 287) argues that certain graphs
are identical to, or isomorphic to, his finite cardinal structures; specifically,
graphs with n vertices and no edges. A further analysis of how we can reason
about graphs will shed further light on the differences between a set-theoretic
approach and ante rem structuralism.15

1.5.1 Graphs

Graphs are structures studied in pure mathematics, with applications in pure
and applied mathematics, computer science, physics and other disciplines.
A graph is formally defined as a pair G = (V,E), with V the set of vertices,
and E the set of edges, given as two-element subsets of V .16 An example of a
graph is G = ({a, b, c, d}, {{a, b}, {c, d}}); see a diagrammatic representation
below in figure 1.4. In the following, we use xy as shorthand for the two-
element subset {x, y}.

15I thank Hannes Leitgeb for helpful correspondence on the issues discussed in this
section.

16See e.g. Diestel (2006), a standard textbook on graph theory. I will restrict attention
to finite graphs without multiple edges, without loops, and without directed edges.
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a b c d

Figure 1.4: Graph G

1.5.2 Isomorphism Types of Graphs

In many cases, we do not care about the particular set V used in the definition
of the graph: we may not want to distinguish between the two graphs G =
({a, b, c, d}, {ab, cd}) and G� = ({1, 2, 3, 4}, {12, 34}) – they have the same
structure, and only differ in the choice of the domain V . G� can be obtained
from G, by systematically substituting 1 for a, 2 for b and so on. This
is what an isomorphism between G and G� does: exchanging labels while
leaving the structure untouched. Formally, two graphs G = (V,E) and
G� = (V �, E�) are isomorphic, if there exists a bijection φ : V → V � such
that xy ∈ E ⇐⇒ φ(x)φ(y) ∈ E�. The idea that we may not want to
distinguish isomorphic graphs leads us to consider the isomorphism type, the
“structure of graphs”, which is the set, or class, of all graphs G� isomorphic
to G, written [G] = {G� : G� � G}.

1.5.3 Graph Properties

Based on these notions, we can draw a distinction between properties that
are structural, and properties that a graph has in virtue of the copy, or
instance, we are working with. A graph property is a property that only
depends on the isomorphism type of a graph.17 To give an example, it is a
graph property of G in figure 1.4 that it is not connected, i.e. that there is
no path from one component to the other. On the other hand, it is not a
graph property that there is an edge between a and b: if we use a different
domain, then there may be no edge between a and b, simply because these
two elements are not in the domain of the graph.

1.5.4 Naming Vertices?

Using the concept of structural property, we can give a nuanced answer to the
question as to whether we can name places of graphs. The answer depends
on the perspective we adopt. First, we can adopt the in re perspective of a
representant G of [G]. As the domain V is a set, its elements will usually
be discernible in some sense, and thus it is usually no problem to name

17More generally, a function assigning equal quantities to isomorphic graphs is called a
graph invariant. Properties are a special case of graph invariants: we can interpret them
as functions from graphs to {1, 0}; either a graph, and thus all graphs isomorphic to it,
have a property (1), or not (0).
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them. The second, ante rem perspective is based on the notion of graph
properties of [G]. Let a be a member of V . It is not a graph property of
[G] that a is one of its vertices: there are structures G� isomorphic to G

such that a is not in the domain of S�. Thus, if two places in a graph are
structurally indiscernible, and we only want to draw on graph properties to
refer to vertices, it can happen that naming vertices is impossible.

Note the difference between this proposal and the ante rem structuralist’s
view. If we work with isomorphism types, it is not impossible to name
places in a structure tout court. It is only impossible when we adopt a
certain perspective on a structure, that is, if we restrict attention to graph
properties. Other properties, namely those inherited from the domain of the
structure, are still there, but they are ignored. The ante rem structuralist, on
the other hand, maintains that the indiscernibility is an ontological feature of
the structure, because he adopts an ontological reading of graph properties:
these are not only the properties that are essential to the graph, but they
are the only properties there are. This, I argued above, is problematic.

1.5.5 Functions on Isomorphism Types

It is, I think, advantageous to adopt a dual ante rem and in re perspective,
if we return to the problem of how to define a function on an isomorphism
type, as this construction essentially depends on the in re perspective.

If we want to define a function on an isomorphism type [G], we first have
to define a function on a representative of [G]. A representative is some
member of [G], i.e. one of the isomorphic copies of G. In a second step, we
show that the function is well-defined. This means that the function does
not depend on our choice of representative in the first step. If a function is
well-defined in this sense, it is a function on the corresponding isomorphism
type.

Examples of not well-defined functions can come up when one uses nat-
ural numbers as a domain, and some arithmetical expression to define the
function. The problem is that these functions rely on properties of this par-
ticular domain, i.e. the fact that the elements of the domain are natural
numbers. On the other hand, if I define a function on natural numbers case-
by-case, the specification does not rely on the fact that the elements are
natural numbers, and it will be well-defined.

As with graph properties, the trick is to first define a function on an
instance of the structure, and then make sure that the function does not
depend on “inessential properties” of the copy. Note that it is not clear how
we would go about defining a function directly on the isomorphism type itself
instead of taking a detour via an isomorphic copy. We need the “inessential
properties” to get an expression for the function in the first place; only
then can we make sure that the function does not really depend on these
“inessential properties”.
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1.5.6 Isomorphism Types: Problems

The concept of isomorphism type is not universally accepted as an official
counterpart of structures.18 There are at least two kinds of problems.

The first worry is, roughly, that if we define isomorphism types using
some fixed set theory, such as ZF, i.e. if the domain can be any set in ZF
of the right size, then some of the isomorphism types will be proper classes,
and thus will transcend the scope of set theory.

I think this worry is entirely justified as a foundational question about
how to treat set theory itself as a structure. I do not pretend to have a
solution to this kind of problem.19 However, we know how to solve this
problem for all practical purposes – i.e. all cases that do not involve set
theory itself. All we need to do is to restrict the scope of elements we use
for the domain of structures to a subset of the set-theoretic universe. For
example, an initial segment of the natural numbers is entirely sufficient as a
“background ontology” for all finite structures. This blocks the problem that
isomorphism classes are proper classes.

The second worry we can have about structures as isomorphism types
goes to the core of the ante rem structuralist’s problem with set-theoretic
structuralism. It is formulated in Leitgeb and Ladyman (2008) for the case
of graph theory. Leitgeb and Ladyman think that isomorphism types of
graphs do not really capture what graphs theorists are after when they reason
about graphs, because isomorphism types do have features that are absent
in structures, and vice versa: graphs don’t have members, and sets don’t
have edges.

I think that this is a valid point. We should not identify graphs, or any
abstract structure, with isomorphism types. Isomorphism types have, as I
explained, two aspects: a representational, or in re aspect that is rooted in
the domain of structures, and a non-representational, or ante rem aspect
that only takes the “essential structure”, or graph structure, into account.
Leitgeb and Ladyman are right in pointing out that isomorphism types have
purely representational “surplus structure”.

However, the graph properties are exactly what the graph theorist is after
– they are the properties that are essential to the graph. I think Leitgeb
and Ladyman would agree. The crucial point of disagreement is that on
their view, different vertices of graphs can be indistinguishable simpliciter.
I argued that this is problematic: We need the “surplus structure” in order
to define functions on isomorphism types; graph properties are simply not
sufficient do that job. Both the ante rem and the in re perspective that
isomorphism types provide are an indispensable part of many mathematical
structures.

18See e.g. Hellman (2005, p. 539) and Shapiro (1997, p. 92).
19See Hellman (2005) for an overview of corresponding problems.
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1.5.7 Conclusion

Summing up, isomorphism types seem to capture a good part of what we
want from mathematical structures. On the one hand, there is no problem
with establishing correspondences between isomorphism types or defining
functions on isomorphism types, as we can adopt an in re perspective; on
the other hand, we can also consider the “purely structural” aspects of an
isomorphism type, for example the graph properties, that have nothing to
do with the set-theoretical construction of graphs.

However, we also have to acknowledge that isomorphism types do not
capture all aspects of mathematical structures. First, there is the founda-
tional problem of accounting for set theory itself in structural terms. Second,
there is no denying that isomorphism types have properties that we would
not want to attribute to, say, graphs.

The second point appears to raise a dilemma that does not seem to be
due to set theory in particular, but to mathematical practice in general. We
would like to characterize our structures in terms of their proper structural
properties and relations. This blocks our ability to discern places in some
structures, which is necessary to define functions on these structures. This is
the ante rem horn. However, if we accept that our structures are character-
ized in set-theoretic terms, our structures inherit surplus structure, and the
set-theoretical representations have properties that we would not normally
attribute to our structures. This is the in re horn.

While I do not see a completely satisfactory solution to this dilemma, I
think we should take the in re horn, for the following reason. If we choose
this option, it is at least possible to adopt both an ante rem and an in re
perspective on a structure: we can consider the “essentially structural”, ante
rem properties of a structure. What we do not get in this way is an ante
rem ontology.

A passage in Shapiro (1997, p. 74) suggests that the basic idea behind
ante rem structuralism might be compatible with isomorphism types after
all:

A structure is the abstract form of a system, highlighting the
interrelationships among the objects, and ignoring any features
of them that do not affect how they relate to other objects in the
system.

It seems as if in this passage, Shapiro does not insist on a reification
of the ante rem perspective of structures: if the “ignored features” (repre-
sentational properties in the domain) are not completely eliminated from
the structure, but are just distinguished from the “highlighted interrelation-
ships” (structural properties), then ante rem structures are compatible with
structures as isomorphism types.
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Chapter 2

The Bridges of Königsberg

2.1 Introduction

In this chapter, I reexamine Leonhard Euler’s solution of the Königsberg
bridges problem, a case of the application of mathematics that has become
standard in the pertinent philosophical debates. The problem Euler faced
was to determine whether or not it is possible to cross every bridge in the an-
cient city of Königsberg exactly once. Euler solved the problem – there is no
such path – by relating it to a mathematical problem, to which he proposed
multiple solutions. Since its introduction into the debate by Torsten Wil-
holt (2004), philosophers have been interested in this case because Euler’s
solution can be interpreted as an explanation of a scientific phenomenon in
which mathematics plays an important role, and it has been used to propose
novel kinds of scientific explanations.

This chapter improves on previous philosophical accounts by basing the
discussion on Euler’s original paper on the case, as well as other historical
sources; see section 2.2. This has several advantages. Euler proposes not
one, but at least three different solutions to the problem. His discussion of
the respective strengths and weaknesses of these solutions can be fruitfully
explicated in terms of differences in explanatory power; see section 2.3.5.
Also, we can retrace the genesis of Euler’s solution, on the basis of historical
sources. This allows us to better understand what is involved in the “math-
ematization” of the problem, i.e. the transformation of a problem through
the use of mathematics.

In section 2.3, after introducing some conceptual distinctions, I propose
interpreting Euler’s solution both as an explanation within mathematics and
as a scientific explanation. The purely mathematical explanation is not a
proof, but an application of Euler’s theorem. Thus, explanations within
mathematics need not be proofs. I put this notion of intra-mathematical
explanation to work against two recent philosophical accounts of the Königs-
berg case, by Alan Baker (2012) and Marc Lange (2013), in section 2.4.

25
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In section 2.5, I first discuss whether the applied version of Euler’s so-
lution can be interpreted as a causal explanation. I suggest that while this
is not a causal explanation in the narrow sense that it explains by giving
a cause, we can give the components of the underlying mathematical struc-
ture a causal reading. Thus, on a broad reading of the notion, this is a
causal explanation. Finally, I claim that a pragmatist reading of the rela-
tion between the mathematical formulation of the problem and its real-world
counterpart, based on Bas van Fraassen’s theory of explanations, allows an
adequate understanding of the case.

In section 2.6, I examine two philosophical analyses of the Königsberg
case, in view of the preceding analysis. I argue that the proposal by Christo-
pher Pincock (2007) to reconstruct the case as an “abstract explanation”
is incomplete, and that the account of “distinctively mathematical explana-
tions” by Marc Lange (2013), which goes against a causal reading of the
case, conflates the applied and the purely mathematical version of Euler’s
solution.

The following picture of the role of mathematics emerges. We can dis-
cern two different kinds of contributions of mathematics to Euler’s expla-
nations. First, mathematics contributes to explanatory power on the level
of pure mathematics. Characteristics of explanatory power are reduction
of irrelevant information, reduction of complexity, and increased simplicity.
Second, the mathematics aids explanations by representing aspects of the
causal structure of the city of Königsberg. This is a causal explanation on a
liberal notion of causal explanation, if we take the pragmatics of explanations
into account.

2.2 Euler’s Königsberg

In this section, after a short look at the genesis of the Königsberg bridges
problem, I scrutinize Euler’s original solution to the Königsberg bridges prob-
lem in his paper “Solutio problematis ad geometriam situs pertinentis” (“The
solution of a problem relating to the geometry of position”), and I compare
Euler’s approach to a modern approach.1

2.2.1 Prehistory

The story of how Euler learned of the Königsberg bridges problem is not
completely known, see Sachs et al. (1988). Euler probably first heard about
the problem from letters by Carl Leonhard Gottlieb Ehler, who acted as an
intermediary between Euler and Heinrich Kühn, a professor of mathematics

1I use the widely available translation Euler (1956). See Hopkins and Wilson (2004)
for a useful overview of Euler’s paper. I thank an anonymous referee for his suggestion
to consider Euler’s original publication, and for pointing out several interesting aspects of
Euler’s approach.
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from Danzig. In a letter to Euler on March 9, 1736, Ehler alludes to an
earlier formulation of the problem, asks for a solution, and adds a schematic
map of the city of Königsberg, indicating the direction of flow of the river
and stating the names of bridges, the island, and neighborhoods.

Figure 2.1: Ehler’s Map of Königsberg

The solution to the problem is laid out in full detail in the Königsberg pa-
per. Euler probably obtained the solution a few days after receiving Ehler’s
letter; he noted that he had a solution in a letter to Giovanni Jacobo Mari-
noni on March 13, 1736. However, Euler had not yet made up his mind
as to the mathematical significance of the problem. In a letter to Ehler on
April 3, 1736, he wrote that “the solution is based on reason alone, and its
discovery does not depend on any mathematical principle”; he also had not
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yet assigned the problem to a new mathematical discipline: “[Y]ou have as-
signed this question to the geometry of position, but I am ignorant as to
what this new discipline involves [...]”. Reading the Königsberg paper shows
that Euler would soon make up his mind about these matters.

2.2.2 The Königsberg Paper

We will now reconstruct Euler’s line of thought in the Königsberg paper.
In paragraph 1, Euler states his systematic interest in the Königsberg

bridges problem. He takes it to be an example of a new, special kind of
geometry, which does not involve quantities and measures, but only position.
Leibniz introduced this new kind of geometry under the name geometria
situs, geometry of place, what we would now call topology. Euler writes
that no systematic account of this kind geometry is available yet, but that
the problem at hand can serve to illustrate the new theory and its methods.
Euler apparently changed his mind about the mathematical nature of the
problem and its classification as topological.

In paragraph 2, Euler describes two problems. He illustrates the situation
in Königsberg using a schematic map; see figure 2.2. He assigns capital letters
A,B,C,D to the island and land masses, and lower case letters a, b, c, ... to
the bridges connecting land masses and island. The first problem is to find
out whether it is possible to cross every bridge of this system exactly once.
Euler notes that there is no definite answer to this problem as yet. We
will call this the Königsberg Problem. Euler then generalizes the problem
and asks how one can determine the solution, not only for this particular
configuration, but for any kind of system, i.e. any kind of branching of
the river and any number of bridges. We will call this second problem the
General Problem.

Figure 2.2: Euler’s Map of Königsberg

Several aspects of this paragraph are noteworthy. Firstly, there is the
introduction of two kinds of letters, one for places, or areas, the other for
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connections, or bridges. This distinction, as we will see in a moment, is
key to a graph-theoretic approach to both problems. This notational inno-
vation does not feature in Ehler’s letter of March 9, 1736. Secondly, Euler
suppressed some information contained in Ehler’s map, such as the names of
bridges and the direction of flow of the river, probably because he considered
them to be irrelevant to the solution. Third, the immediate generalization
of the problem shifts the focus from mere puzzle-solving to a real mathe-
matical question – some solutions that are appropriate for the special case
of Königsberg will not do in the general case, which requires a more elegant
argument. The Königsberg Problem and the General Problem should be
carefully distinguished.

In paragraph 3, we learn of a first method for solving the Königsberg
Problem: it consists of “tabulating all possible paths” and examining whether
one of them uses every bridge exactly once. Euler rejects this method because
it is “too tedious and too difficult”: there are too many possible paths, and for
bigger systems, this method becomes intractable. The approach generates
information that is irrelevant to the problem at hand. This insight leads to
a shift of focus: Euler restricts the task to establishing whether the required
path exists, which does not require the specification of an actual path, i.e.
a witness. Euler does not specify how to carry out the brute force search in
detail. However, he thinks that it will be a finite procedure.2

A crucial innovation is introduced in paragraph 4. It consists of the use of
a particular notation for paths in the bridge system in terms of the crossing
of bridges. All bridges are labeled with lower-case letters a, b, c, ...; see figure
2.2. Land masses and islands, on the other hand, are labeled with capital
letters A,B,C, ... . The crossing of any one of the bridges a and b between
A and B can now be written as AB. A path from A over B to D is noted
as ABD, using any one of the bridges connecting these areas.

This notational shift is characteristic of the graph-theoretic nature of
Euler’s approach to both problems and marks the invention of graph theory.
In modern graph theory, a graph3 is represented by a set of vertices V , and
a set of edges E, represented by pairs of vertices, E ⊆ V 2. This is exactly
what Euler’s notation achieves: Bridges and areas are brought into notational
correspondence by writing bridges (edges) as pairs of areas (vertices). There
are no longer two separate sets of labels for the two kinds of objects – bridges
(edges) are expressed with the help of areas (vertices).

As Euler himself notes, the bulk of the paper consists of putting this

2One way of implementing it would be to write down all (finitely many) paths of length
seven starting from any one of the areas A,B,C,D, and see whether any one of these paths
consists of seven different bridges. A distinctive feature of the brute force approach is that
we do not need both kinds of letters introduced above – the lower-case bridge labels will
do the job.

3More specifically, a multigraph, as there are some pairs of vertices that are connected
by more than one edge.
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simple yet powerful idea to work. The rest of the paper is a sequence of
methods for determining the existence of what we now know as Euler paths,
culminating in Euler’s theorem. The key idea is that if we write bridges as
pairs of areas, we can compare the algebraic condition for the length of Euler
paths with algebraic conditions for the areas.

First, Euler finds a method that is sufficient to solve the Königsberg
Problem. We can represent a path on a bridge system consisting of n bridges
by a string of n+ 1 capital letters, i.e. land masses. A bridge between land
masses A and B is written AB. The notation does not distinguish between
different bridges that connect the same two land masses, as this information
is irrelevant for the existence of a path. However, we know that if we want
to use every bridge in Königsberg exactly once, the string has to consist of
8 letters.

We can now figure out how many times a capital letter (area) has to
occur in a string representing a path. If the number of bridges leading to
area X is odd (2n− 1), then X will have to appear n times: If three bridges
lead to area X, then X will have to feature twice in the path, whether we
start in area X or not. For five bridges, the letter has to occur three times,
and so on. We can now apply this result to the Königsberg system. We need
A three times, and B,C,D two times. This adds up to 9, which is bigger
than 8. It is therefore impossible to find a path that crosses every bridge in
Königsberg exactly once.

Euler’s next step is to extend this method to systems with even areas. If
an area X has an even number of bridges (2n), there are two possibilities. If
we start in X, the letter X will occur n+1 times. If we do not start in X, it
will occur n times. We can now sum up the number of times a letter has to
occur in a path string for even and odd regions – taking the starting point
into account – and compare the result with the length of an Euler path. This
is a solution to the General Problem. If the sum is equal to the number of
bridges plus one, then there is a path, but only if we start in an odd region.
If the result is less than that, we can start in an even region.

After explaining this method in some detail, and illustrating with a more
complicated, imaginary bridge system, Euler writes:

By this method we can easily determine, even in cases of
considerable complexity, whether a single crossing of each of the
bridges in sequence is actually possible. But I should now like
to give another and much simpler method, which follows quite
easily from the preceding [...] (Euler, 1956, par. 16).

This “much simpler method” yields Euler’s theorem. It is based on the
preceding method, together with the observation that if we separately deter-
mine the number of bridges adjacent to each region, and add these numbers
up, we get double the actual number of bridges, because each bridge is
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counted twice. The sum thus has to be even. The theorem distinguishes the
following cases: If all regions are even, it is possible to cross all the bridges
no matter where we start. If two regions are odd, there is a path, provided
that we start in an odd region. However, if four, six, etc. regions are odd,
their sum is greater than the number of bridges plus one, thus no Euler path
exists.

2.2.3 Euler and Modern Graph Theory

Here I compare Euler’s solution to modern formulations of the Königsberg
Problem and the General Problem.4

The most important difference is that many modern formulations heav-
ily rely on graph diagrams, such as in the following figure, to explain the
problem.

Figure 2.3: Königsberg Graph

However, no such diagram can be found in Euler’s paper. He only uses
various schematic maps of Königsberg, see figure 2.2, and of other, imagi-
nary bridge systems. As Robin J. Wilson (1986, p. 272) points out, graph
diagrams only appear 150 years later.

The fact that Euler’s reasoning does not rely on a graph diagram does
not mean that it is not graph theoretical. The omission of a diagrammatic
representation probably has historical reasons. According to Kruja et al.
(2002), the omission can be traced back to the influence of Leibniz, who
envisioned the new “geometria situs” as dispensing with figures which, to
his mind, hindered the imagination. I argued above that the introduction
of graph-theoretic methods in the paper occurs in paragraph four with the
identification of bridges (lower case letters) with pairs of land masses (pairs
of capital letters). This is the relevant innovation, not the use of graph
diagrams.

4For a modern textbook account, including a proof of Euler’s theorem, see Diestel
(2006, pp. 21).
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Further differences between Euler’s and the modern approach should be
noted. First, Euler’s initial question is slightly different from the modern
formulation: he asks if it is possible to cross every bridge in Königsberg
exactly once, without the further assumption that starting and end point
coincide. Second, Euler does not assume that graphs are connected. This
is a necessary condition for the theorem: if a graph is not connected, we
will not be able to find an Euler path even if all vertices have even valence,
simply because at least one part of the graph is inaccessible from another.
Euler probably omitted this condition because it is implicitly clear that there
is no solution in these cases. Third, Euler only proved one direction of the
eponymous theorem. The theorem states that an Euler path on a connected
graph exists if, and only if, every vertex has an even number of edges. The
fact that if an Euler path exists, every vertex has an even number of edges
was only proved 135 years later; see Wilson (1986, p. 270). Note that this
direction of the theorem is not necessary for the solution of the Königsberg
Problem.

2.3 Königsberg Within Mathematics

We now turn to a philosophical analysis of Euler’s work. The focus of this
section is on explanations within pure mathematics; the discussion of the
Königsberg case as a scientific explanation follows in section 2.5. It will turn
out that it is fruitful to interpret the differences between Euler’s methods
to solve the Königsberg and the General Problem in terms of differences in
explanatory power.

2.3.1 Intra-Mathematical Explanations and Scientific Expla-
nations Using Mathematics

The discussion on mathematical explanations distinguishes between mathe-
matical explanations of purely mathematical phenomena, and scientific ex-
planations that make use of mathematics.5 Both kinds of explanation are
controversial and have been hotly debated in recent years: some examples
of Intra-Mathematical Explanation (IME) have been put forward both by
philosophers and mathematicians, but we do not yet have a stable notion of
what IME involves. We certainly need more good real-life examples. Sci-
entific Explanation using Mathematics (SEM), on the other hand, is under
debate, mainly because it has been used to defend mathematical Platonism
in the context of indispensability arguments.6

5The distinction is due to Baker (2012). See Mancosu (2011) for a useful overview of
the debate on explanations in pure and applied mathematics.

6See Baker (2009) for the now-standard formulation of an explanatory version of in-
dispensability arguments. I will not discuss whether Euler’s solution to the Königsberg
bridges problem speaks in favor of mathematical Platonism.
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Prima facie, the distinction between IME and SEM is not particularly
controversial. All we need is a clear separation between an empirical and
a mathematical domain, and at least some idea of what an explanation in-
volves. The distinction between the two domains is not hard to draw in the
present case: some parts of Euler’s argument only concern pure graph theory
and are unrelated to any particular domain of application, while other parts
allow us to draw conclusions about the existence or non-existence of paths in
cities, and Königsberg in particular. It will be instructive to pay close atten-
tion to this difference. We will see in the discussion of recent philosophical
work that these notions are still debated.

As to the explanatory nature of Euler’s work, I will only presuppose
that it is at least partially geared towards answering why questions. My
focus is on the question as to what we can learn from Euler’s work if we
approach it from an explanatory perspective, and what the distinctive role
of mathematics in explanations is.7

2.3.2 The Königsberg Problem and the General Problem

In paragraph 2, Euler distinguishes between the question whether there is
a certain path in the city of Königsberg, the Königsberg Problem, and the
general question of conditions for paths in similar kinds of system, the Gen-
eral Problem. Both problems give rise to explanations. In the case of the
Königsberg Problem, the relevant why question is: why is it impossible to
cross every bridge in Königsberg exactly once? In the case of the General
Problem, the question is: why is it possible to cross every bridge in some
systems (of a certain kind), and not in others? The two problems are not
independent: the General Problem also solves the Königsberg Problem as a
special case.

Do the explanations that answer these two questions belong to pure
mathematics (IME), or are they scientific explanations that come with a
portion of mathematics (SEM)? It seems to me that we can construe both
explanations as belonging to both kinds of explanations: they can concern
one real (or several actual and possible) bridge systems, or they can concern
one (or a type of) graph-theoretic problem. I think that one of the keys to a
better understanding of both IME and SEM is to get a clear picture of how
the purely mathematical formulation, and the scientific formulation of the
explanations, are related.

7I will not enter into debates about particular models of scientific explanation and
how they mesh with IME and SEM; the following remarks have to suffice. First, it has
been convincingly argued in the literature that mathematical explanations should not be
classified as explanations by unification; see Hafner and Mancosu (2008). Second, at least
IMEs cannot be given a causal reading. Therefore, explanations in mathematics do not
fit any of the common models of scientific explanation.
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2.3.3 The Brute Force Solution vs. Euler’s Solution

I argued in section 2.2.2 above that the introduction of two sets of labels,
and the fact that we can express one set (bridge labels) in terms of the
other (area labels) marks the invention of graph theory. Euler notes early
on, in paragraph 3, that we can tabulate all possible paths and examine
whether one of these conforms to our specifications, and that this solves the
Königsberg Problem. This, in turn, means that we do not need both sets of
labels to solve the Königsberg Problem: we can tabulate paths in terms of
bridge labels; there is no need for the area letters. Strictly speaking, we do
not need graph theory to solve the Königsberg Problem.

However, Euler quickly dismisses this approach (Brute Force Method
henceforth) as not satisfactory. His reason to dismiss the approach is that it
is “tedious”: It solves the problem, but not in an efficient and telling manner.
It gives us too many irrelevant details and is therefore not informative and
tractable. Euler is after a more telling method for solving the problem. This
superior method, which I will call Euler’s Method, underlies Euler’s theorem,
which states that an Euler path exists if and only if all vertices have an even
number of edges, or if exactly two vertices have an odd number of edges.

I think it is fruitful to interpret the difference between these two methods
in terms of explanatory power. Both methods provide answers to the why
question of the Königsberg Problem. However, the answer provided by the
Brute Force Method does not meet Euler’s expectations for a solution to the
Königsberg Problem. The method does give us a reason why an Euler path
on the Königsberg system does not exists – none of the paths in a complete
list is an Euler path – but the reason is not very telling. Euler writes, “it
yields a great many details that are irrelevant to the problem”.8 The Euler
method, on the other hand, provides an explanatory answer. It tells us that
the reason for the non-existence of an Euler path is that none of the four
areas has an even valence.

Both the Brute Force Method and Euler’s method can be interpreted
as intra-mathematical explanations (IMEs): In the case of the Brute Force
Method, the (bad) explanation consists of a list of strings of lower case
letters of length seven, the fact that this list contains all strings that comply
with the structure of the Königsberg map, and the fact that none of these
strings consists of seven different letters. In the case of Euler’s Method, the
explanation consists of the Königsberg graph, Euler’s theorem, and the fact
that according to the theorem, there is not Euler path on the Königsberg
graph.

8We could also interpret the Brute Force Method as not being an explanation at all.
However, I think this would be going too far. After all, the method does give us a reason,
albeit a not very telling one. I therefore prefer to interpret it as a bad explanation.
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2.3.4 Two Notions of Intra-Mathematical Explanations

Both the Brute Force Method and the Euler Method can be used to solve the
Königsberg Problem. They have a similar form: both contain general facts
about the method to solve the problem, and also facts about the Königsberg
system. On the Brute Force Method, we use the general fact that we can
compile a complete list of paths of a certain length for a system, and the
particular list of the Königsberg system. In Euler’s explanation, we use
Euler’s theorem, and the Königsberg graph.

It is important to note that in both cases, we use general facts, such as
theorems, but the proofs of these facts are not part of the explanation. The
mere appeal to Euler’s theorem, and the fact that the Königsberg system
does not satisfy the theorem’s conditions, is a legitimate and satisfactory
explanation. The proof of the theorem is not a necessary ingredient of the
explanation. The same is true, to a certain extent, for the Brute Force
explanation. The explanation is satisfactory if we accept that the Brute
Force Method works, and the proof that this is so need not be part of the
explanation.9

This is not to say that we have to accept Euler’s theorem or the Brute
Force Method on faith. We can request proof of these results. However, this
is a request for different explanations, namely the explanations of methods or
theorems. We can keep apart the explanation of a theorem, which can consist
in a proof, and an application of the same theorem in the explanation of a
particular mathematical fact. We should not be too puzzled about this, as
the same is common in scientific explanations: we use a regularity to explain
an event, and we can explain the regularity by appealing to a different, more
general regularity. These are just two different explanations.

The difference between these two kinds of explanations is the one be-
tween a solution to the General Problem and a solution to the Königsberg
Problem. The former consists of a method to decide whether a class of sys-
tems has a certain property, while the latter is the application of this method
to a particular system. Euler deemed only the General Problem a genuine
mathematical problem. This mirrors the different status of the two explana-
tions. While both are deductive, only the solution to the General Problem
is the proof of a theorem; the solution of the Königsberg Problem is merely
an application of that theorem.

Euler’s two solutions two the Königsberg Problem have a few things in
common. They do not involve a proof and they both use general facts and
facts pertaining to the Königsberg system. But what are the (explanatory)
differences between the methods?

9The idea that we can draw this distinction is taken from a recent paper by Alan Baker
(2012). We will discuss the ramifications of the distinction for Baker’s ideas in section
2.4.1 below.
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2.3.5 Explanatory Differences Between Euler’s IMEs

Euler notes several differences. The first is the “large number of possible
combinations” of the Brute Force Method, which makes it difficult to carry
out, or even inapplicable for more complicated systems – a Complexity Dif-
ference. Second, Euler points out that he is after a simpler method, i.e.
there is a Simplicity Difference. The third difference is that the Brute Force
Method gives us “a great many details that are irrelevant to the problem”,
i.e. an Irrelevant Information Difference. Euler thinks that the Irrelevant
Information Difference is responsible for the Complexity Difference. Fourth,
if an Euler path exists, the Brute Force Method will find it. This goal is re-
laxed for the Euler Method. It is not necessary to specify a path; a method
that decides whether a path exists or not is sufficient. Call this the Witness
Difference. Here I will examine whether these differences shed light on the
difference in explanatory power between the two methods. I do not claim
that these differences are unrelated or mutually exclusive.

The Complexity Difference

First, to the Complexity Difference.10 It is plausible that a reduction of
complexity contributes to the goodness of an explanation. A method that
reduces complexity can enhance our understanding, because it can make it
easier for us to grasp the reason for the existence or non-existence of a path,
given that it can be hard to survey the long list of possible paths of a complex
system.

However, Euler is not only after a reduction of complexity. Before dis-
cussing Euler’s theorem, he describes a different, but general method to
solve the Königsberg Problem. In this “Intermediate Method”, we sum up
the number of times the letter has to occur in a string, depending on the
number of bridges connected to an area. Euler notes that while the Interme-
diate Method is already quite successful at reducing complexity, he prefers
a “much simpler method”, which we dub “Euler’s Method”, culminating in
Euler’s theorem. This suggests that while complexity can contribute to the
goodness of an explanation, it is not sufficient: the Intermediate Method
already achieves a (sufficient) reduction of complexity, but it does not have
a sufficient degree of simplicity.

The Simplicity Difference

Simplicity is a well-known candidate contributor to explanatory power. What
variety of simplicity could Euler have in mind? Euler’s Method is easier to

10I think that Euler’s pre-theoretic notion of complexity could be spelled out in terms
of modern computational complexity, and that it would be helpful to carry out such an
analysis. However, I will not explore the computational complexity of the methods under
discussion here.
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carry out than the Intermediate Method, as for the latter, we have to count
the number of bridges for each area, determine the number of times the area
letter has to occur in a path string, sum the results up, and compare the
number with the length of Euler paths of the system. If, on the other hand,
we use Euler’s Method, the only information we need is whether zero or two
areas have an odd number of bridges. This is easier to determine than the
calculation of the Intermediate Method.

Euler’s Method is also simpler in that it provides us with an intuitive
reason as to why an Euler path does or does not exist in a system with one
or more than three odd areas. In a discussion of the case, Marc Lange (2013,
p. 5) sums it up as follows: “Any successful bridge-crosser would have to
enter a given [area] exactly as many times as she leaves it unless that [area]
is the start or the end of her trip. So among the [areas], either none (if the
trip starts and ends at the same vertex) or two could touch an odd number
of edges.”

The Intermediate Method provides us with a reason that is somewhat
transparent – the method of determining the numbers for odd and even areas
and that we have to sum them up makes intuitive sense – but it is not as
clear as Euler’s theorem, where we get an immediate grasp on the relevant
property. The Intermediate Method, however, is clearer than the reason
provided by the Brute Force Method, where we do not get any information
about how the (non-)existence of paths depends on the structure of the
bridge system.

Summing up, there could be two varieties of simplicity at play. First, the
methods with more explanatory power are easier to carry out – this could be
related to complexity. Second, the reason provided by the more explanatory
methods becomes more transparent. This, in turn, could be related to the
Irrelevant Information Difference, to which we will now turn.

The Irrelevant Information Difference

Euler writes that the Brute Force Method gives us details that are irrelevant
to the problem at hand. In one sense, this is wrong: the method does not give
us any irrelevant details at all, because we need a complete list of possible
paths of a certain length to establish that there really is no Euler path on
the system. Yet, in another sense, Euler is right. Going through all these
possibilities to figure out whether there is a path or not seems like overkill.
Why?

The reason could be that every time we write down one possible path, we
draw on the structure of the bridge system, because this structure dictates
what sequence is possible. However, it can happen that we use the same in-
formation more than once, for example if two paths share an initial segment.
The structural information of the bridge system is plugged into the paths,
but in a redundant manner.
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The Intermediate Method does better in this respect than the Brute Force
Method. We compute the length of an Euler path in a compositional manner,
by exploiting a structural property of areas, namely the number of bridges
connected to it. As we use every area once, redundancy is reduced and
because of the compositionality, i.e. the fact that the property of the system
depends on the property of the parts in a clear manner, the information is
more transparent.

On the other hand, if we compare the Intermediate Method with Euler’s
Method, we notice that the former still exhibits some redundancy, because
it requires us to determine the exact number of bridges connected to each
area, compute another number from this, and sum the results up. In Eu-
ler’s Method, most of this information is irrelevant. All that matters is
whether the number of bridges connected to an area is even or odd. In some
sense, Euler’s Method is maximally informative in that it uses no irrelevant
information at all. Euler’s theorem is an equivalence: it is sufficient, and
necessary, to know whether the numbers are even or odd to answer the why
question.

There exists a philosophical account of IME proposed by Mark Steiner
(1978a) that could shed light on the Irrelevant Information Difference. Steiner
suggests an analysis of explanatory proofs in terms of characterizing proper-
ties:

My view exploits the idea that to explain the behavior of an
entity, one deduces the behavior from the essence or nature of the
entity. [...] Instead of ‘essence’, I shall speak of ‘characterizing
properties’, by which I mean a property unique to a given entity
or structure within a family or domain of such entities or struc-
ture. My proposal is that an explanatory proof makes reference
to a characterizing property of an entity or structure mentioned
in the theorem, such that from the proof it is evident that the
result depends on the property. (Ibid., p. 143)

This account suggests that in an IME, the explanatory work is done by
a characterizing property, a property used in the explanans that somehow
characterizes the explanandum.

Let’s apply this idea to the three methods. In the Brute Force Method,
there is no property of the structure that we use in particular, we go directly
for the possible paths, and the structural information is “evenly distributed”
over the paths. In the Intermediate Method, we identify a relevant structural
property, the valence of areas. This property is sufficient to account for
our explanandum. Thus, the valence of the areas probably qualifies as a
characterizing property: It is sufficient to pick out exactly those structures
on which an Euler path exists. Finally, in Euler’s Method, the characterizing
property of the Intermediate Method is “refined”: We only need the property
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of even or odd valence of areas. The combination of this property of areas in
Euler’s theorem gives us not only a sufficient, but also a necessary condition
for our explanandum.

What is the relation between characterizing properties and irrelevant in-
formation? I suggest that characterizing properties are a means for getting
rid of irrelevant information. Not all of the structural information of the
Königsberg graph matters for the explanandum we are after. A good char-
acterizing property squeezes exactly the right amount of information out of
the structure, while a not-so-good characterizing property squeezes out too
much. This suggests that characterizing properties can come in degrees. The
less (irrelevant) information it contains, the better it is, the ideal case being
an characterizing property that is equivalent to the explanandum.

However, caveats are in order. I do not endorse Steiner’s proposal as
a general account of IME. He proposes a notion of IME that focuses on
explanatory proofs. I suggested above that we should distinguish two notions
of IME, one concerning explanations of theorems, which are typically proofs,
the other explanations that consist of the application of a theorem to a
particular mathematical fact or structure, which need not involve proofs. It
is not clear that Steiner’s proposal captures both notions equally well.

Steiner’s proposal has been criticized on several occasions; see Resnik and
Kushner (1987), and Hafner and Mancosu (2005). They show that Steiner’s
account is not all there is to IME in proposing examples that are not easily
captured on Steiner’s view. However, I think it would be hasty to read
these objections as overall rejections of Steiner’s account. Maybe it is too
early in the discussion on IMEs to try to formulate a completely general
account of these explanations, or maybe IMEs are inherently heterogeneous.
At this stage of the debate, we should not focus too much on the old game
of rejecting overreaching philosophical accounts with counterexamples, but
rather try to come up with plausible candidates that can shed light on, at
least some, real-life examples.

In sum, the idea that characterizing properties are relevant, in that they
are a “measure” of the amount of irrelevant information, and thereby corre-
lated with explanatory power, is not too far-fetched.

The Witness Difference

The Brute Force Method, if applied to a system that has an Euler path,
would provide us not only with one specimen, but with all Euler paths in
that system, while both the Intermediate Method and Euler’s Method do not
provide us with this information. In a sense, this is a deficiency of those two
methods that we would otherwise assess as more explanatory. There are two
ways in which we can deal with this problem. We can either insist that we are
only interested in the existence of an Euler path, i.e. in a decision method,
and not in witnesses – the request for a witness is a different explanandum.
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Alternatively, we can modify the two methods so as to produce witnesses.
In the last paragraph of the paper, Euler writes that in cases where an

Euler path exists, we are left with the task of finding such a path. He then
describes a method that facilitates the search: Eliminate any two bridges
that connect the same region, and find a path on the reduced system. This
should be considerably easier than the original task. If this is done, we can
just add the omitted pairs of bridges in “loops” to the reduced systems, which
results in an Euler path in the original system.

Euler thus chooses the second option. This supports the view that it is
a virtue of the Brute Force Method to deliver candidate Euler paths if they
exist. The Brute Force Method has at least one explanatory virtue after all.

2.4 Philosophers on the Transmission View

The above discussion sheds light on some issues in the recent philosophical
debate on scientific explanations using mathematics. Here we will take a
look at contributions by Alan Baker (2012) and Mark Lange (2013). Both
are sceptical of a certain view of IME and its application. I argue that their
scepticism is difficult to maintain in view of the above discussion.

2.4.1 Baker on the Transmission View

Baker’s arguments are directed against a view of SEM defended by Mark
Steiner (1978b), which Baker dubs the Transmission View. Here is a short
reconstruction of this view (see chapter 4; it is repeated here for readability).

According to the Transmission View, SEM work via a transmission of an
IME to some physical explanandum. The SEM with explanans M , typically
a proof, used in the explanation of a physical explanandum P ∗, written
M → P ∗ is, first and foremost, an explanation of an IME M∗, written
M → M∗, and the explanation of M∗ is transmitted to P ∗ via a bridge
principle, written M∗ ↔ P ∗. If we remove the bridge principle from the
complete SEM, M → M∗ ↔ P ∗, we are left with an IME, M → M∗.

Baker identifies two separate problems with this view. The first is a
counterexample, the honeycomb case. I deal with this example in extenso in
chapter 4. The second is an argument for the thesis that, even if we use a
theorem in an SEM, the proof of said theorem is not necessarily part of the
SEM.

Baker supports his argument with a well-known case of SEM, the cicada
case.11 The explanandum is that certain cicadas have live cycles with periods
of 17 years (or some other prime-numbered period). The explanans consists
of biological and mathematical premisses. The biological premisses are that

11Here we follow the cicada case as introduced in Baker (2005); see also the discussion
and reactions to critics in Baker (2009).
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it is evolutionary advantageous to minimize intersection with other periods
(to avoid predators emerging in periods, or to avoid hybridization), and that
there are ecological constraints on the possible length of life cycles (they
have to lie between 14 and 18 years). The mathematical premiss, a number-
theoretic theorem, is that prime periods minimize intersection. From this
we can deduce that cicadas will have a life cycle of 17 years.

Baker argues that in this explanation, a number-theoretic theorem is
used, but the proof of said theorem does not feature in the explanation.
From this he concludes that the Transmission View is flawed, as the standard
explanations of the cicada case do not use the proof of the number-theoretic
theorem. According to him, it is sufficient for the explanation that the
theorem has been proved.

I agree with Baker that in this example, the proof of the number-theoretic
theorem need not be part of the explanation. However, this only undermines
the Transmission View if all IMEs are, or involve, proofs. I argued above
that the application of Euler’s theorem to the Königsberg graph constitutes
an IME such that no proof features in the explanation. The explanation is
more like a corollary, or an application of the theorem within mathematics.

Baker makes the implicit, but important, presupposition that the ex-
planatory relation within mathematics has to involve a proof. If this is not
so, we can accept that the cicada case is a good explanation without using
the proof of the number-theoretic theorem, and still defend a version of the
Transmission View.

I do not want to defend the Transmission View as a general account of
mathematical explanations in science. However, it seems to have certain
advantages that are worth keeping in mind. For one, according to this view,
mathematics can have explanatory benefits both within mathematics (due
to the IME part of the explanation), and in application to the world (due to
the bridge principle). It also seems to fit nicely with at least some candidates
for SEM, one of them being the Königsberg case.

On the other hand, the Transmission View can also be interpreted as
claiming that almost all the explanatory work is done by the IME involved
in the explanation. I think this is wrong. The bridge principle connecting
the mathematics and the world is far from trivial. We should think hard
about what this connection is, and what mathematics contributes. We will
return to this point in section 2.5 below.

2.4.2 Lange on the Transmission View

In a further important contribution to the debate, Marc Lange (2013) dis-
cusses Steiner’s proposal, i.e. the Transmission View. Lange is also critical
of Steiner’s position:

[N]one of the mathematical explanations in science that I have
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mentioned [including the Königsberg case, TR] incorporates a
mathematical explanation in mathematics. These mathematical
explanations in science include mathematical facts, of course,
but not their proofs – much less proofs that explain why those
mathematical facts hold. [...] I am not sure that there even is
a distinction between a proof that explains this fact and a proof
that merely proves it. (Ibid., pp. 24)

The problem with Lange’s position is identical with that of Baker’s: he
too seems to presuppose that it is necessary for an IME to include a proof.
I think this is wrong, as I argued above: It is reasonable to accept Euler’s
theorem, together with the fact that the Königsberg graph does not satisfy
the conditions specified in the theorem, as an explanation of the fact that
there is no Euler path on the Königsberg graph. This explanation does not
cite the proof of Euler’s theorem, it only relies on the fact that it is indeed
a theorem.

Can Lange (and Baker) deny that the example of an IME without proof
that I just described is in fact an acceptable explanation? They could argue
that Euler himself, and mathematicians in general, do not describe their
work as involving explanations – this is a problem for both kinds of IMEs,
with and without proofs.

A convincing case for IMEs without proofs can be made by comparing
the Königsberg IME with its SEM “twin”:

1. SEM Explanandum: there is no path in the bridge system of Königs-
berg that uses every bridge exactly once, i.e. there is no Euler path in
Königsberg. Explanans: given a set of reasonable presuppositions, the
bridge system of Königsberg has the structure of a graph in which all
four vertices have odd valence. According to Euler’s theorem, a graph
has an Euler path if and only if all, or all but two, vertices have even
valence.

2. IME Explanandum: there is no Euler path on the Königsberg graph.
Explanans: in the Königsberg graph, all four vertices have odd valence.
According to Euler’s theorem, a graph has an Euler path if and only if
all, or all but two, vertices have even valence.

Both Baker and Lange accept the SEM version as a (good) explanation.
Given that this is so, I think it is hard to deny that the IME version is a
good explanation as well. I do not see how one can accept one of the above
explanations and not the other – this, however, is what they are committed
to.



2.5. KÖNIGSBERG IN APPLICATION 43

2.5 Königsberg in Application

In this section, we shift or focus to the question of how to conceive of the
Königsberg case from the perspective of scientific explanations, or SEM.

First, we would like to understand what kind of scientific explanation
we are dealing with here. Second, we would also like to obtain an account
of how the SEM and IME versions of explanations are related. This, third,
could shed light on the connection between pure mathematics and the world;
the bridge principle connecting mathematical and empirical structure. We
will, again, approach these questions based on Euler’s papers and the letter
in which the Königsberg Problem was formulated.

2.5.1 Presuppositions of the Brute Force Method as an SEM

We distinguished several IMEs in Euler’s paper, the Brute Force Method,
the Intermediate Method, and Euler’s Method, and analyzed them in terms
of explanatory power. I proposed that we can give all of these methods both
an IME and an SEM reading. I think that these methods do not essentially
differ when it comes to their relation to the world. The advantage of the
Intermediate Method over the Brute Force Method, and that of the Euler
Method over the Intermediate Method, is based on introducing, and exploit-
ing, notation.12 The innovation is purely mathematical and has nothing to
do with their relation to the world. I will therefore limit myself to examining
and comparing the IME and SEM version of the Brute Force Method. The
hope is that if we understand the relation of the IME and the SEM version of
this method, we will automatically have a better understanding of the SEM
interpretation of the other explanations.

We begin our analysis with the question of what explicit and implicit
assumptions are necessary to formulate the Königsberg Problem as a math-
ematical problem. What do we assume when we choose the map, and the
labels, as the starting point of our mathematical investigation? An analysis,
and comparison, of the historical sources suggests that we can distinguish at
least three kinds of assumptions.

First, Ehler relied on the map in figure 2.1 to formulate the Königsberg
Problem. This provided Euler with a preselection of what counts as an
acceptable solution of the Königsberg Problem: Ehler is interested in “struc-
tural” answers, i.e. answers related to facts about how the parts of the city
hang together. This includes an implicit presupposition that the system of
paths is stable over time.

Second, most details about the city of Königsberg are irrelevant and
therefore left out. I have already pointed out one example: the information

12The importance of notation, in particular in explanatory contexts, has recently been
pointed out by Mark Colyvan (2012, ch. 8). It would be worthwhile to explore the
ramifications of the present case for Colyvan’s ideas.
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about the direction of flow of the river is contained in Ehler’s map, but
omitted in Euler’s map. On the other hand, relevant aspects are highlighted
in Euler’s map by adding labels. By assigning lower-case letters to bridges,
the crossing of a bridge is turned into a fundamental process, the details of
which are irrelevant. Subsequently, the crossing of several bridges can be
written as a sequence of lower-case letters.

Third, both map and labels represent structural constraints on possible
paths. We presuppose that we can cross the bridges in certain sequences
only, that areas with distinct letters, say C and D, are disjunct, and that
the map is “complete”, i.e that there are no bridges outside the map.

How should we interpret these presuppositions? What do they tell us
about the kind of explanation we are dealing with?

2.5.2 The Role of Causality

When it comes to scientific explanations, causal explanations are something
like the gold standard. Here we will examine whether we can shed light on
the Königsberg Problem and the Brute Force Method from a causal point of
view.

The Brute Force Method uses strings of lower case letters to denote paths
in the bridge system of Königberg. We can interpret the lower case letters
as standing for causal processes: the label x stands for the crossing of bridge
x, where we do not care about the exact path that is taken, or the direction
in which the bridge is crossed.

The structure of the bridge system then restricts the possibilities of how
these causal processes can be combined. The geometry of the situation
dictates that not any succession of lower case letters is a path. We operate
under the assumption that certain fundamental causal processes can only be
combined in a certain way.

The strings of lower case letters thus encode causal-cum-geometrical in-
formation. Does this mean that the Brute Force Method provides a causal
explanation? Not within the traditional, narrow conception of causal expla-
nations. Traditionally, causal explanations are explanations that specify a
cause of a phenomenon, event or fact that is to be explained. The Brute
Force Method does not provide a single cause that would explain the phe-
nomenon, the impossibility to travel the system in a certain way.

However, the explanation by the Brute Force Method is not acausal in
that it provides relevant causal information. The explanation is of the form:
given that certain fundamental causal processes (crossing bridges) can only
be combined in a certain way, is it possible to find a sequence such that every
fundamental causal process occurs exactly once? The Brute Force Method
draws on the causal network of the Königsberg bridge system and is a causal
explanation on this wider reading of causal explanations.

One could object that this is not much more than a causal interpretation
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of a mathematical structure, and a mathematical explanation based on that
structure, which is only introduced after the explanatory work is essentially
done. Is the causal interpretation of the structure more than the introduction
of a trivial bridge principle?

This perspective on the Königsberg Problem, and its solution, is natural
only after we have already accepted a certain perspective on that problem.
Is it really obvious that we have to answer the question as to why it is
impossible to cross all the bridges exactly once based on the map and the
structural constraints? No. The context, and the way in which the question
is formulated, go a long way towards suggesting what kind of answer we
will consider to be acceptable, and the mathematical solution removes all
ambiguity. These issues are related to the pragmatic aspects of explanations,
to which we will now turn.

2.5.3 The Role of Pragmatics

The historical starting point of the Königsberg case is a request for an expla-
nation, as we saw in section 2.5.1. The question was whether it is possible
to cross all the bridges in Königsberg exactly once and return to the starting
point. We also saw that the question was asked with certain presuppositions.
It is fruitful to reconstruct the historical case using Bas van Fraassen’s prag-
matic theory of explanations, as proposed in van Fraassen (1980, ch. 5).

Van Fraassen’s theory is based on the idea that explanations can be
interpreted as answers to why questions. Van Fraassen suggests that expla-
nations do not simply cite causes of an event to explain it – ‘x causes e’ is
not sufficient for ‘x explains e’ – the cause has to be salient, and salience is
determined by the context in which the explanation is requested. At least
two contextual factors determine which causes are salient. The first contex-
tual factor is relevance. For example, the person from which we request an
explanation helps to determine relevance. Assume we ask a physician about
why the victim of a car accident died, then the explanation we expect will
have to do with the victim’s injuries or the level of alcohol in his blood, but
not with the condition of his car or other circumstances of the accident. In
this case, the context dictates that the relevant causes are medical.

The second contextual factor is the contrast class. Using one of van
Fraassen’s own examples, contrast classes can be illustrated as follows. The
question ‘Why did Adam eat the apple?’ can be interpreted in several ways
depending on emphasis. Compare (1) ‘Why did Adam eat the apple?’ with
(2)‘Why did Adam eat the apple?’ In (1), we ask why it was Adam, as op-
posed to some other person or animal, who ate the apple, whereas in (2), we
ask why Adam ate the apple as opposed to eating some other fruit, or pastry,
or what have you. The difference is one of contrast: as the contrast varies,
different kinds of answers or explanations are acceptable. If the contrast is
as in (1), the answer ‘because he does not like other fruit’ is not acceptable,
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because this was not what we are after.
Both factors help in determining which answer to a why question we find

acceptable. Van Fraassen points out that, most of the time, relevance and
contrast class will be implicitly given by context, such that all participants
of a conversation know what kind of explanation is acceptable. This means
that the participants share a set of presuppositions, i.e. assumptions in the
background of a request for an explanation.13

Let us now locate our historical case in van Fraassen’s framework. First,
the why question prompting the explanation is: why is it impossible to cross
all bridges in Königsberg exactly once and return to the starting point?

Second, relevance is expressed by the maps and the notation. Ehler,
who asked the question, was interested in structural reasons for the failure
of finding a certain path, by providing a sketch of the situation in Königs-
berg in his letter. Euler further narrowed down the relevant aspects of the
structure, by omitting irrelevant details and introducing the letters for areas
and bridges. This means that Euler’s search for an appropriate mathemati-
cal representation was, at the same time, a search for a representation that
captures the explanatorily relevant factors, as requested in the formulation,
and in the context, of the initial why question. Thus, the transition, from
the initial request for an explanation to the reformulation in a mathematical
framework, also plays an explanatory role in that the reformulation makes
the pragmatic relevance relation explicit.

What, thirdly, is the contrast class? We are asking what distinguishes
the situation in Königsberg from other possible bridge systems. What is
special about this particular configuration of bridges that stands in the way
of an Euler path? If we rely on the fact that relevance is determined by the
mathematics, the contrast class of this explanation comprises those bridge
systems in which we take the same fundamental causal processes as given,
and in which an Euler path exists.

In principle, all three methods discussed by Euler can answer the initial
why question, and specify the members of the contrast class. However, in the
case of the Brute Force Method, it will be practically infeasible to determine
whether a big bridge system is in the contrast class or not. If we take

13Van Fraassen’s segregation of pragmatic aspects into relevance relation and contrast
class is not without complications. To point out just one problem, it is not clear that
relevance and contrast class are clearly separate pragmatic aspects: We could think of
the contrast class as just one further pointer to the relevant kind of cause or explanans.
But then, the contrast class could be integrated into the relevance relation without loss;
see Jakob (2007, section 2.3) for criticism along these lines. I think that these problems
do not undermine the overall relevance of the pragmatic theory of explanations. What
matters is that we can think of explanations as answers to why questions, that we ask
these questions with certain implicit presuppositions in mind, which are closely related
to the context, and that the context determines which explanations, or answers to the
why question, are acceptable. However, see Sandborg (1998) for a critical analysis of van
Fraassen’s theory, in the context of mathematics.
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complexity seriously, then this method will not identify all elements of the
contrast class. The Euler method, on the other hand, will give a maximally
informative answer to the why question, in that it separates all possible
bridge systems into two classes, and specifies a property that all, and only,
the members of the contrast class have, namely the even valence of all areas.

This reconstruction does not fit with van Fraassen’s theory, in that the
relevance relation does not select the explanatorily relevant causes, and the
contrast class also does not contain contrasting causes. This was to be ex-
pected, as we are not dealing with a causal explanation in a narrow sense.
However, the explanans can be interpreted as giving us structural informa-
tion about how certain causes hang together, and this is contrasted with
other ways in which causes could hang together, and van Fraassen’s theory
seems to fit nicely with this wider notion of explanation, which is certainly
not acausal.

Within this reconstruction, the initial why question is a question about
the real bridge system; it is not a purely mathematical question about graphs.
The determination of the explanatory relevant factors is at least partially
located in the translation of the question about the real system into the
question about the graph. The determination of explanatory relevant causal
factors becomes obsolete once we conceive of the question as purely mathe-
matical. These two ways of framing the explanation should not be conflated.

2.6 Philosophers on Königsberg in Application

In this section, I examine some recent philosophical contributions which
examine the Königsberg case as an SEM.

2.6.1 Pincock 2007: Abstract Explanation

Christopher Pincock (2007) proposes interpreting the Königsberg Problem
as an instance of abstract explanations. These are explanations that pick
out certain relations of a physical system, while other aspects of the sys-
tem are ignored. Abstract explanations can rely on mathematics, by using
a structure-preserving mapping between the physical system and a mathe-
matical domain, but this mapping does not depend on an arbitrary choice of
units or a coordinate system – it captures an intrinsic feature of the system.
Here I discuss several different readings of the notion of abstract explanation
in Pincock’s paper.

On a first reading, the graph-theoretic formulation of the problem amounts
to not much more than an incomplete description of the bridge system. Pin-
cock writes: “All that I have done is described the physical system at a
higher level of abstraction by ignoring the microphysical properties of the
bridges, the banks and the islands” (Pincock, 2007, p. 259). From this per-
spective, the mathematical description of a physical system is nothing more
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than a description that picks out certain salient properties of the system,
while leaving out others. Or, to put it differently, when we give an abstract
description of a situation, we tell the truth, and nothing but the truth, but
not the whole truth.14

This account of how the explanation works is only partially correct. I
argued above that leaving out irrelevant details is an important part of the
process, which we can discern in the historical path to the formulation of
the explanation. However, it is not all that matters. If my claim, that the
mathematical formulation of the problem has a pragmatic aspect, is correct,
then the relation between the real bridge system and the mathematical graph
potentially violates the “nothing but the truth” clause. For example, it may
be possible to find an Euler path in the system if we took alternative paths in
the real bridge system into account, but such possibilities are simply excluded
for the explanation’s sake. The formulation of the problem in graph-theoretic
terms excludes a whole class of other reasons as to why it may or may not
be possible to travel within the real bridge system in a certain way.

Pincock seems to deal with abstraction differently, when he writes that
abstract explanations are explanations that “[appeal] primarily to the formal
relational features of a physical system” (Ibid., p. 257). This is problematic
because Pincock appears to ascribe mathematical, formal properties to the
bridge system, which essentially amounts to a mathematization of the real
bridge system.

Later on, Pincock retracts this claim. He cautions us against accepting
that there are mathematical properties in the world:

It is tempting to say that the bridge system just is a graph,
although this is somewhat misleading. The bridge system is of
course not a graph because graphs are mathematical entities and
the bridge system is physical. Still, the bridge system and this
particular graph seem [...] intimately connected [...]. We might
capture this by saying that the bridge system has the structure
of a graph, in the sense that the relations among its parts allow
us to map those parts directly onto a particular graph. (Pincock,
2007, p. 259f)

According to this quote, we should not think of the bridge system as
being identical to a graph, because this implies that there are mathemat-
ical properties in the world. Rather, there is a close, intrinsic connection
between a particular mathematical structure and the bridge system via a
“direct mapping” that preserves graph structure.

14The “nothing but the truth” part distinguishes abstraction from idealization: in ab-
straction, we leave out certain properties in our description of a system, while in idealiza-
tion, our description of the system comprises claims that are, strictly speaking. wrong;
see e.g. Batterman (2010) for a recent discussion.
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The idea that the Königsberg graph is connected to the Königsberg sys-
tem by a structure-preserving mapping is prima facie attractive, but proves
to be problematic on closer inspection. Two problems discussed in the liter-
ature are particularly relevant to the Königsberg case.15

The first is the so-called assumed structure problem. This is the problem
that if we claim that there is a structure-preserving mapping between an
empirical and a mathematical domain, we have to assume that the empirical
domain is structured into objects and relations such that it makes sense to
define a structure-preserving mapping between the two domains. This raises
the question as to why this should be so: we simply have to assume that the
structure is there to be preserved.

The second relevant problem lies in accounting for explanatory contribu-
tions of mathematics. If all a mathematical structure does is to represent
some structure in the world, how can mathematics be explanatorily helpful?
Why don’t we base the explanation directly on the structure in the world,
which, on this account, is the same as the mathematical structure?

The root of both of these problems is that on the mapping account, we
project a mathematical structure, a certain graph, directly onto the world,
and claim that this accounts for the contribution of mathematics in the ex-
planation. I think that the reconstruction of the Königsberg case presented
above successfully solves both problems. If we take the pragmatic aspect of
the explanation into account, then there is no direct mapping between the
mathematical structure and the world. The relation between the mathemat-
ics and the world is more complicated: the mathematical structure captures
our explanatory interest in the system, which need not have the same struc-
ture. Furthermore, I argued in section 2.3 that there is an explanatory
contribution at the level of pure mathematics, provided that we conceive of
the Königsberg Problem as a request for an IME. This explanatory contri-
bution carries over to the bridge system, via the pragmatically-constituted
bridge principle.

In sum, neither is the representation relation between mathematics and
the world direct, nor is the role of mathematics purely representational, but
rather genuinely explanatory at the level of pure mathematics.

2.6.2 Pincock 2012: Acausal Representation

In his recent book, Christopher Pincock (2012) classifies the Königsberg case
an abstract acausal representation – acausal because it does not represent
change over time. Pincock writes:

The mathematics here is not tracking genuine causal rela-
tions, but is only reflecting a certain kind of formal structure

15See Bueno and Colyvan (2011) for the original formulations of these problems. I
review these problems of the so-called mapping account in detail in section 7.2.2.
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whose features in the physical system have some scientific signif-
icance (Ibid., p. 53)

I agree with Pincock that the graph does not represent change over time.
However, I think it is wrong to classify the representation as acausal for this
reason. I proposed above that we can give the components of the structure,
i.e. the edges, a straightforward causal interpretation. In this sense, the
mathematical structure is tracking genuine causal relations.

2.6.3 Lange 2013: Causality vs. Necessity

Marc Lange (2013) discusses the Königsberg case as an example of so-called
distinctively mathematical explanations. These are scientific explanations in
which mathematics plays a distinctive role. Lange thinks that they do not
even fall under a broad notion of causal explanation: “Distinctively mathe-
matical explanations are ‘non-causal’ because they do not work by supplying
information about a given event’s causal history or, more broadly, about the
world’s network of causal relations” (Ibid., p. 3). Rather, such an explana-
tion provides information that is modally stronger than causal information.
It works “by showing how the explanandum arises from the framework that
any possible causal structure must inhabit, where the ‘possible’ causal struc-
tures extend well beyond those that are logically consistent with all of the
actual natural laws there happen to be” (Ibid., p. 21). The explanatory
power is derived from the established fact that the explanandum holds as a
matter of mathematical necessity, and not from the causal information that
it may provide.

Lange grants that we can give the parts of the Königsberg graph a causal
interpretation, and that we presuppose causal stability of the bridge system
for the explanation. Distinctively mathematical explanations can cite causes,
or rely on causal structure. This, however, does not undermine the fact that
this is a case of a distinctively mathematical explanation:

[T]he fixity of the arrangement of bridges and islands, for
example, is presupposed by the why question that the explana-
tion answers: why did this attempt (or every attempt) to cross
this particular arrangement of bridges – the bridges of Königs-
berg in 1735 – end in failure? [...] [T]he why question itself
takes the arrangement as remaining unchanged over the course
of any eligible attempt. If, during an attempt, one of the bridges
collapsed before it had been crossed, then that journey would
simply be disqualified from counting as having crossed the in-
tended arrangement of bridges. The laws giving the conditions
under which the bridges’ arrangement would change thus do not
figure in the explanans. (Likewise, it is understood in the why
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question’s context that the relevant sort of ‘crossing’ involves a
continuous path.) (Ibid., p. 13)

Here Lange claims that the explanatory work is done by the mathematics,
while all the causal presuppositions (laws) are fixed by the why question, and
therefore do not figure in the explanans. However, later on, he appears to
claim that at least some contingent, causal facts are part of the explanans:

The explanans consists not only of various mathematically
necessary facts, but also [...] of various contingent facts presup-
posed by the why question that the explanandum answers, such
as that the arrangement of bridges and islands is fixed. The dis-
tinctively mathematical explanation shows it to be necessary (in
a way that no particular force law is) that, under these contingent
conditions, the bridges are not crossed. (Ibid., pp. 21)

Lange’s account of the Königsberg case shows some similarities with my
account; however, several aspects can be clarified by rephrasing them in my
framework.

One similarity is that Lange’s account is compatible with a pragmatic
account of the Königsberg case. He agrees that the why question, and the
context, help in determining a subset of acceptable answers, and in the last
quote, he also seems to endorse the view that some contingent, causal as-
sumptions are part of the explanans. However, if this is correct, it is unclear
to me how he can maintain that the explanatory power has to be located
exclusively in the mathematical demonstration, or that the explanation is
non-causal, even on the broad conception of causal explanation. This is
impossible, if causal information is part of the explanans. Here Lange is
ambiguous.

In my account, mathematics contributes in two ways to the SEM version
of the Königsberg Problem. First, the mathematics is explanatory at the
level of pure mathematics by accounting for the purely mathematical fact
that no Euler path exists in the Königsberg graph. Second, the mathematics
has an explanatory role, in the transition from the mathematical structure to
the real bridge system, by making explicit what the causal factors of interest
are, in this request for an explanation.

We have seen in section 2.4.2 that Lange is opposed to the notion of
IME, because he thinks that no clear notion of explanatory proof is to be
had. I, on the other hand, argued that IMEs need not be proofs, but can
be applications of theorems to mathematical facts. If we accept this, it is
no wonder that Euler’s explanation is a matter of mathematical necessity:
we can reconstruct it as an intra-mathematical explanation, a mathematical
deduction. I think that Lange confuses the IME version with the SEM
version by projecting the mathematical structure directly into the world.
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The application of Euler’s IME to the world is a matter of pragmat-
ics, and Lange would probably concede that much. I would argue, further,
that this is where causal information comes into play, turning this into a
causal explanation in a broad sense. The connection between explanans and
explanandum is not a matter of mathematical necessity, as causal presup-
positions feature in the explanans. In this step, the mathematics plays an
explanatory role, by capturing the salient causal structure, and by restricting
the class of acceptable answers to the why question.

Euler’s solution to the Königsberg Problem is so successful that it leads
to a gestalt switch. Once we have seen his solution, and the precise math-
ematical formulation of the question that is possible in the framework of
graph theory, we forget that this framework, and the question formulated
in it, both come with certain presuppositions that are pragmatic in nature.
I think that this is what happened to Lange: the why question, and the
context in which it is asked, is already heavily mathematized, as witnessed
by the historical sources.

2.7 Conclusions

Here are the main question, lessons, and open problems of this chapter.
First, a methodological remark. Once more, the close examination of the

original scientific exposition of a problem, and its solution, prove to be very
fruitful. We can track the genesis of the formulation of the two problems,
and we discover that Euler proposed several solutions, including a discussion
of their respective advantages and drawbacks. This settles, once and for
all, the notion that not all solutions to one and the same mathematical
problem are equal; additionally, the interpretation of the differences, in terms
of explanatory power, seems to be instructive.

Second, we discerned two notions of IMEs, as instantiated by the so-
lutions to the General Problem and the Königsberg Problem. The former
involves a proof of a theorem, or a method for solving a decision problem,
while the latter consists of the application of that theorem, or method, to a
particular instance. This distinction helped us clarify issues in the philosoph-
ical debate; in particular, it calls into question arguments by Alan Baker and
Marc Lange against the Transmission View. The Transmission View stands
as a viable option, with the caveat that the bridge principle can involve more
than mere structure-preservation. The distinction between these two kinds
of IMEs need not be exhaustive. There are probably further kinds of IME
that we have not touched upon.

Third, there are at least three different methods for solving the Gen-
eral Problem in Euler’s paper, the Brute Force Method, the Intermediate
Method, and Euler’s Method. Euler himself discusses the systematic differ-
ences between these methods. We interpreted these differences in terms of
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explanatory power. The ideas, that (computational) complexity, along with
the provision of just the right amount of information, are maximized in the
form of an equivalent characterizing property, seem particularly promising.
These ideas are not fully worked out yet, and should be further explored.

Fourth, the invention of graph theory is closely connected to a notational
innovation: the idea to write some components of the Königsberg system,
the bridges, in terms of another, the areas connecting the bridges. This, in
turn, is the basis for the reduction of complexity, and enhanced explanatory
power obtained in the transition from the Brute Force Method to Euler’s
Method. The relation between these issues, and a potential explanatory role
of notation, is also an issue that should be investigated further.

Fifth, interpreting the Königsberg Problem as a request for an SEM
raised the question as to what kind of scientific explanation this is. The
proposed solution has two aspects. First, this is not a causal explanation
in the narrow sense that it cites a cause of the explanandum. However, if
we adopt a wider notion of causal explanation, which requires that the ex-
planans relies on causal structure, then this is a causal explanation, given
that the components of the mathematical structure have a causal interpre-
tation. Second, the formulation of the explanation in graph-theoretic form
is pragmatic, in van Fraassen’s sense, in that the explanation excludes whole
classes of causes that are potentially explanatorily relevant, and focuses on
the “structural” reasons as to why it is impossible to cross all the bridges
exactly once.

Sixth, I argued against two accounts of the Königsberg case as a kind of
scientific explanation. Christopher Pincock’s notion of abstract explanation
was found to be only partially adequate in that it does not mesh with the
pragmatic aspect of the explanation, which implies that the explanation
does not only rely on the omission of certain details of the system, but
rather on distorting the causal structure for the explanation’s sake. Marc
Lange’s account of the case as a distinctively mathematical explanation loses
its plausibility, if we keep in mind that we can reconstruct the solutions to
the Königsberg problem both as SEM and IME.

To prevent the danger of overgeneralizing the systematic significance of
these results, the next step in the investigation would be, firstly, to push
the systematic questions just mentioned further, and, secondly, to apply the
concepts, and theses, developed here to other, ideally more complicated,
examples of explanations involving mathematics.
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Chapter 3

The Lotka-Volterra

Predator-Prey Model

3.1 Introduction

The topic of this chapter is the predator-prey model from population ecol-
ogy, proposed by Lotka and Volterra in the beginning of the 20th century.1
The Lotka-Volterra predator-prey model, predator-prey model for short, is a
case of mathematical modeling in biology that has received much attention
in philosophical debates, and was a seminal early contribution to theoreti-
cal population ecology. I will revisit the historical papers by Vito Volterra
that introduced the model; the focus will be on the role of mathematics in
application to population systems. More specifically, I will closely exam-
ine the empirical puzzle that was responsible – or so we are told – for the
construction of the model.

After following the historical discussion of the model in time and giving
a brief account of the model’s status in population ecology today, I extract
some interesting philosophical lessons from Volterra’s original account of the
model. I then relate the historical account and the philosophical lessons to
some recent philosophical work that draws on the predator-prey model as a
case study.

I discuss the following philosophical issues and questions.

• Idealization and Mathematical Modeling: What is the historical
and systematic status of the idealizations of the model; how are the
idealizations justified? Are the idealizations driven or suggested by the
mathematics or by empirical considerations? What is the historical

1This chapter draws on my paper Räz (2013a), as well as Scholl and Räz (2013).
Some passages of the chapter report on an ongoing project with Raphael Scholl. I thank
Raphael for many discussions about this episode. I am also very grateful to Claus Beisbart
for extensive comments on a previous draft of this chapter.
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and systematic perspective of scientists and philosophers on the use of
mathematics in biological models?

• Causality and Mathematical Modeling: What is the role of causal-
ity in this model? What is the relation between causal inference and
modeling as scientific practices? Can we interpret parts of the model
causally? What is the role of intervention in this model?

• Robustness Analysis: What are the ramifications of a historical
perspective on the case for robustness analysis? Is robustness analysis
a topic that is only of interest to population ecology? What is the
relation between the precise mathematical formulation of properties of
the model and the robustness of these properties?

3.1.1 Overview

In section 3.2, I present Volterra’s 1928 account of the predator-prey model,
and the deduction of the so-called Third Law, which is supposed to explain
certain features of fishery statistics. I follow the mathematical derivations
in some detail.

In section 3.3, we have a look at the immediate reactions of population
ecologists to Volterra’s proposal, again with a focus on the role of mathe-
matics. We will see that at the time, theorists took some of the idealizations
to be particularly worrisome.

In section 3.4, I discuss some interesting passages from Volterra’s and
d’Ancona’s later writings, which can be interpreted as methodological reflec-
tions that were prompted, at least partially, by the early critics of the model.
Volterra and d’Ancona give an extended motivation for using mathematical
modeling instead of some other mode of theorizing.

In section 3.5, I recapitulate the status of the predator-prey model in pop-
ulation ecology today. I reconstruct the reason why the model is commonly
not accepted as providing an account of actual predator-prey interactions.
The model is nowadays taken to serve pedagogical purposes, and it is used
as a template for more complicated, and realistic, models of predator-prey
systems.

In section 3.6, we begin to harvest the philosophical fruit of our previous
work. I discuss: Volterra’s remarks on mathematical methodology; the rela-
tion between mathematics and idealization in the construction of the model;
some relevant details in the derivation of the Third Law; and notions of in-
tervention that are motivated by one of Volterra’s main mathematical tools,
phase spaces.

In section 3.7, I put the preceding philosophical analysis, and the detailed
reconstruction, to work in some recent philosophical debates on the predator-
prey model. In section 3.7.1, I comment on a recent paper by Mark Colyvan
(2013); I argue that his main thesis, that mathematical models in the special
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sciences can be explanatory, is supported by the historical sources. I further
point out that Colyvan underestimates the importance of idealizations in
the model. In section 3.7.2, I critically examine the recent contribution of
Weisberg and Reisman (2008) to the debate on robustness analysis. I claim
that Weisberg’s and Reisman’s account suffers from mathematical impreci-
sions, which threaten to undermine their main thesis that Volterra’s Third
Law is a robust property of a whole class of predator-prey models. I also
cast doubt on robustness analysis as a phenomenon of biology, as opposed to
other modeling sciences. Section 3.7.3 has some critical remarks on Christo-
pher Pincock (2012); I argue that his view, that the predator-prey model is
an acausal representation, is mistaken.

Section 3.8 sums up the main points of the chapter, and notes open
questions.

3.2 The Predator-Prey Model in 1928

In this section, I present the predator-prey model, based on the first histor-
ical in-depth account by Vito Volterra (1928).2 According to Volterra, the
construction of the model was prompted by a request for an explanation;
see Volterra (1928, p. 4, fn 2). Umberto d’Ancona, a marine biologist and
Volterra’s son-in-law, brought the following puzzle to Volterra’s attention.
Fishery statistics showed an increase in the number of predators relative to
the number of prey in the adriatic sea during the first world war, a period in
which fishing diminished; the pre-war proportion was restored when fishing
returned to its old intensity.

Volterra was able to qualitatively reproduce and explain this surprising
proportion shift with the predator-prey model. The central result for the
explanation of the phenomenon is Volterra’s Third Law, the “Law of the dis-
turbance of the averages”. In the 1928 paper, Volterra had already shifted
his focus from the mere explanation of the proportion shift to the goal of a
quantitative theory of interspecies relations, taking into account interspecies
competition, interaction between n species, and more complex interaction
patterns. Here I will focus on the original predator-prey model, the deriva-
tion of Volterra’s Third Law, and the explanation of the proportion shift.

3.2.1 Volterra on the Role of Mathematics

In the beginning of the paper, Volterra reflects on the use of mathematical
methods in population biology. He first addresses general worries about
the adequacy of mathematical methods in application to complex biological
systems:

2The 1928 account is predated by Volterra (1926), which is much shorter, and Alfred
Lotka’s writings on the same model, which I will not discuss here.
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[O]n first appearance it would seem as though on account of
its extreme complexity the question might not lend itself to a
mathematical treatment, and that on the contrary mathematical
methods, being too delicate, might emphasize some peculiarities
and obscure some essentials of the question. To guard against
this danger we must start from hypotheses, even though they be
rough and simple, and give some scheme for the phenomenon.
(Ibid., p. 5)

In the discussion of the modern perspective on the Lotka-Volterra model
in section 3.5, we will see that his concer about “peculiarities”, generated
by mathematics, was justified. However, the problem is not due to the use
of mathematical methods in general, but rather due to problems of this
particular model. While the justification of the use of mathematics here
seems all too brief, Volterra’s defense of mathematical methods became more
sophisticated in later publications, as we will see in section 3.4.

Having addressed some of the problems that the use of mathematical
methods might cause, Volterra turns to a positive characterization of the
role of mathematics in modeling:

And what mathematical methods will it be convenient to use?
[...] Permit me to indicate how the question can be considered:
Let us seek to express in words the way the phenomenon pro-
ceeds roughly: afterwards let us translate these words into math-
ematical language. This leads to the formulation of differential
equations. If then we allow ourselves to be guided by the meth-
ods of analysis we are led much farther than the language and
ordinary reasoning would be able to carry us and can formulate
precise mathematical laws. These do not contradict the results
of observation. Rather the most important of these seems in per-
fect accord with the statistical results [...]. The road followed is
thus clearly indicated with these few words. We shall see after a
little how the difficulties met were overcome. (Ibid., pp. 5)

Volterra distinguishes at least four steps of the application process. First,
we start with an informal, but abstract description of a phenomenon of
interest. Second, we translate the informal description into mathematical
language, which results in differential equations. Third, we deduce laws from
the equations, using results from qualitative analysis of ordinary differential
equations. Volterra thinks that mathematical methods are most fruitful in
the third step, as the mathematics facilitates formal inferences, carrying
us further than informal ones. In a fourth step, the “mathematical laws”
deduced from the model are compared with empirical data. In a footnote,
Volterra gives an example for such a “mathematical law”; the Third Law. We
will discuss its derivation in detail in section 3.2.4 below.
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3.2.2 Introduction and Justification of the Model

The core of the Lotka-Volterra predator-prey model is a set of two coupled,
non-linear differential equations. Volterra writes them as3

dN1

dt
= (�1 − γ1N2)N1 (3.1)

dN2

dt
= (−�2 + γ2N1)N2 (3.2)

These two equations are supposed to describe the evolution of the preda-
tor and prey populations over time. The components of the equation are
defined as follows:

• N1 is the number of prey.

• N2 is the number of predators.

• �1 is the net growth rate of the prey.

• �2 is the net rate of decrease of the predators.

• γ1 is the “aptitude of defense” of the prey.

• γ2 is the “means of offense” of predators.

All the variables and parameters are assumed to range over positive real
values. Volterra devotes quite some space to the introduction and justifica-
tion of the equations. We can discern two aspects of this discussion.

The first aspect is that the model is not supposed to capture changes in
populations that are due to external factors, but rather to capture purely
internal phenomena. These are phenomena that do not depend on interac-
tions of the fish with the environment, such as migration, or the change of
seasons, or impacts of any further species, but only on the interaction of the
two species with each other, “due only to the reproductive power and to the
voracity of the species as if they were alone” (Ibid., p. 5). If such external
factors play a significant role in population dynamics, then the model does
not mirror the system adequately.

The second aspect is the justification of the particular form of equations
3.1 - 3.2. It is necessary to introduce idealizing assumptions in order to
formulate the model: According to Volterra, we have to assume that the
populations are described by continuous, not discrete variables – otherwise
we could not use differential equations. We also assume constant, continuous
birth and death rates (yielding the net growth), and homogeneity of the

3I will use Volterra’s historical notation throughout.
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individuals – for example, age structure, and the dependence of fertility on
age, are neglected.4

These assumptions justify the use of constant growth coefficients �1 and
�2 in the linear terms of the predator-prey equations. These terms deter-
mine the time evolution of the two species independent of interactions: in
the absence of predators, the prey population grows exponentially, and the
predators die out exponentially, as e−t.

What remains to be justified, then, are the two non-linear interaction
terms. Here is Volterra’s story:

[If] the second species feeds upon the first �1 will diminish and
−�2 will increase, and evidently the more numerous the individ-
uals of the second species become the more �1 will diminish, and
the more the individuals of the first species increase, the more
will −�2 increase. To represent this fact in the simplest manner
let us suppose that �1 diminishes proportionally to N2, that is by
the amount γ1N2, and that −�2 increases proportionally to N1,
that is by the amount γ2N1. (Ibid., p. 9)

Volterra believes that the interaction terms modify the natural growth
and death rates of the two species in the “simplest manner”, viz. as propor-
tional to the size of both species. However, he is not entirely satisfied with
this argument; he adds two further justifications. First, he proposes to take
the probable number of encounters into account to support the form of the
interaction terms. Second, he claims that the results he deduces later are
valid for more general interaction terms.

The justification of the interaction terms based on the probable number
of encounters is given in §4. It runs as follows. The number of encounters
between the two species in one unit of time can be assumed to be propor-
tional to N1N2, i.e. equal to αN1N2. Then, the two species will be affected
differently by the encounters. In the case of one species preying on the other,
the predators will profit by a positive factor β2, while the prey will experi-
ence a different, negative factor β1. We can now essentially set β1α = −γ1
and β2α = γ2, which yields the interaction terms of the predator-prey model.
Volterra does not elaborate further on the second justification; the deduction
with general interaction terms.

3.2.3 Exploring the Model

After setting up the model, Volterra turns to its mathematical analysis, in
particular the derivation of his three laws. First, he notes that the quotients

4It is not clear that all these assumptions are necessary. The parameters could also
be interpreted as averages, such that, say, homogeneous individuals are not a necessary
assumption.
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K2 := �1
γ1

and K1 := �2
γ2

are the components of the stationary state of the
system; i.e. if you insert these numbers into the predator-prey equations,
they are equal to 0, meaning that if population sizes are equal to these
quotients, population sizes do not change over time.

Next, he integrates the equations: First, he removes dependent param-
eters – this is called non-dimensionalization, see Murray (1993, p. 64) – by
setting n1 :=

N1
K1

and n2 :=
N2
K2

. This yields the equations

dn1

dt
= �1(1− n2)n1 (3.3)

dn2

dt
= −�2(1− n1)n2 (3.4)

These are then added and integrated to yield
�

n1

en1

��2

= C

�
n2

en2

�−�1

(3.5)

This what is called a first integral, that is, there is a constant relation C
between the two variables n1 and n2. This is a necessary condition for the
subsequent phase space analysis.

Volterra examines how the right hand side and the left hand side of
equation 3.5 behave as functions of n1 and n2; then he combines the two
functions in phase space. From this, and equation 3.5, it can be deduced
that the population sizes N1 and N2 fluctuate in closed, periodic cycles.
Finally, he derives that the period is constant. The result is summed up as
follows: “We have then in this case a periodic fluctuation of the number of
individuals of the two species, with period T, or the phenomenon will have a
cyclically periodic character” (Volterra, 1928, p. 15, emphasis in original).

The population dynamics of the Lotka-Volterra equations can be illus-
trated using a phase space diagram; see figure 3.1. Ω is the stationary state
of the system. The orbits X, Ψ, Λ, Φ are examples of the different, exhaus-
tive and disjunct orbits describing the evolution of the two population sizes;
the evolution runs conter-clockwise. Each orbit corresponds to a separate
class of initial conditions, and if the system is not disturbed, it will stay on
its orbit. Note that the parameters of the system, i.e. the �s and γs, are
assumed to be constant.

3.2.4 Derivation of the Third Law

In section 7, Volterra turns to the derivation of the Third Law. He first de-
termines the averages of the two populations during a period, and, secondly,
how these averages are affected by changes in the � parameters.5

5The presentation in this section draws on Braun (1993, p. 447), who has a conspicuous
reconstruction of Volterra’s derivation.
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Figure 3.1: Periodic Orbits, from Volterra (1928, p. 14)

First, to the average populations numbers. The time average of a popu-
lation N , N̄ , over a period T , is defined as

N̄ =
1

T

� T

0
Ndt (3.6)

This average can be determined directly from the predator-prey equations
for both species. By dividing both sides of equation 3.1 by N1 we get

dN1

N1dt
= (�1 − γ1N2) (3.7)

1

T

� T

0

dN1

N1
=

1

T

� T

0
(�1 − γ1N2)dt (3.8)

Now, because

� T

0

dN1

N1
=

� T

0
dln[N1]

= ln[N1(T )]− ln[N1(0)] (3.9)

the left hand side of equation (3.8) is 0; N1 is T -periodic, i.e. N1(T ) =
N1(0). From (3.8) we can thus deduce
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1

T

� T

0
(�1 − γ1N2)dt = 0 (3.10)

1

T

� T

0
N2dt =

1

T

� T

0

�1
γ1

dt =
�1
γ1

(3.11)

The derivation for the second case is analogous. We thus get the result
that the average of the population sizes of the two species over a period is
identical to the equilibrium point Ω = (K1,K2)

1

T

� T

0
N1dt =

�2
γ2

(3.12)

1

T

� T

0
N2dt =

�1
γ1

(3.13)

The most important consequence of this result is that

[I]f �1, �2, γ1, γ2 stay constant, the averages of the individuals
of the two species during a cycle of fluctuation will always be the
same whatever may be the initial numbers of individuals of the
two species. (Volterra, 1928, p. 18)

Thus, on whatever orbit the system is in phase space, see figure 3.1, the
average number of species for one full cycle is identical to the abundance of
the stationary state Ω.

Finally, Volterra turns to the Third Law, which concerns the distur-
bance of averages. The question here is how the system is affected if the
�-parameters change, i.e. if we interfere with the reproductive abilities of the
two species, while the γ-parameters are held constant.

We modify the original equations by adding a constant α, positive or
negative, to the natural growth rate of the prey population, and the same
constant α to the natural depreciation rate of the prey population

dN1

dt
= (�1 − α− γ1N2)N1 (3.14)

dN2

dt
= (−�2 − α+ γ2N1)N2 (3.15)

We assume that α does not change the sign of the overall growth rate of
both species, i.e. we assume it to be smaller than both � parameters. Also,
we could have chosen separate αs for the two species, but our main interest
is when the change in growth rates is the same for both species.
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The new system is qualitatively identical to the original system; this can
be seen by letting �∗1 := �1 − α and �∗2 := �2 + α. We get a new equilibrium
point for the new system:

�∗1
γ1

=
�1 − α

γ1
(3.16)

�∗2
γ2

=
�2 + α

γ2
(3.17)

This equilibrium point is, by the same argument as before, the time
average of the number of both species for the new system:

1

T

� T

0
N1dt =

�2 + α

γ2
(3.18)

1

T

� T

0
N2dt =

�1 − α

γ1
(3.19)

Let us now see what happens to the averages if we vary α. Assume α
is positive. With the help of equation (3.14), we can interpret this as a
reduction of the growth rate of the prey population, �1, by a factor α, and
from equation (3.15) we see that it means we enlarge the depreciation rate of
the predator population, �2, by the same factor α. Put differently, we reduce
the growth rates of both populations by a constant rate. The effect of these
changes on the time averages is that the average number of prey is increased,
see equation (3.18), and the average number of predators is decreased, see
equation (3.19). This is Volterra’s Third Law.

The scope of the Third Law is quite general. In a footnote, Volterra writes
that “ this law is valid within certain limits [...] as long as the coefficient of
increase �1 remains positive” (Volterra, 1928, p. 20). The principle is valid
as long as the change in parameter α will not result in a change of sign of
the � parameters, which would constitute a qualitative change of the system.

It is, again, useful to examine how the change in parameters affects phase
space. Here is Volterra’s description:

In figure [3.2, see below] we have represented the transition
from a cycle Λ corresponding to the parameters �1 and �2 to a
cycle Λ� corresponding to parameters [�1 − α ≤ �1, �2 + α ≥ �2
...]. We may conceive of this transition as occurring in an instant
corresponding to the point P of intersection of the two cycles,
that is to say, without having any sensible change at that instant
in the number of the individuals of the two species, although
a change is disclosed with the passage of time by virtue of the
constant action due to the variation of the parameters �1 and �2.
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The centre Ω� of Λ� is moved to the right of and below Ω which
indicates a diminution in the average value of N2 and an increase
in the average value of N1. (Ibid., pp. 18)

Figure 3.2: Volterra’s Third Law, from Volterra (1928, p. 19)

Note that the new trajectory of the system depends on the point at
which the parameters are reset: the system would be on a different orbit
than Λ� if the parameters were reset at the point where N2 is maximal, even
if the parameters were the same as those of Λ�; same phase space, different
trajectory.

So far, Volterra’s reasoning does not depend, to a significant degree, on
the interpretation of the variables and parameters at play, and it is not yet
clear how changes in parameters can be implemented. Volterra writes that
“constant action” is necessary to “enforce” the new trajectory Λ�. The change
of parameters can be implemented as follows:

Now to make �2 increase means destroying uniformly indi-
viduals of the second species in a quantity proportional to their
number, and to make �1 decrease means destroying uniformly in-
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dividuals of the first species in a quantity proportional to their
number ... (Ibid., p. 18)

And a little bit later, he points out that fishing is an instance of such a
uniform destruction:

It seems that the animal species for which in their natural
state the verifications of these laws can most easily be carried out
are fish, of which there are in fact species which feed upon others.
Continual fishing constitutes a uniform destruction of individuals
of the various species. The cessation of fishing during the period
of the recent war and its resumption after the war established
transitions comparable to those considered above, from one cycle
to another. Besides, the greater or less abundance of fish of
various species determined by statistics gives a measure of the
abundance of the individuals of the various species; hence the
statistics of fishery furnish data on the fluctuations. The results
of the statistics are seen to be in accord with the mathematical
predictions [...]. (Ibid., p. 21)

The mathematical shift of averages, which can be implemented by a
continuous, uniform intervention in a two-species system, explains the fishery
statistics, which showed the surprising shift in proportions. On Volterra’s
view, this constitutes a confirmation of the mathematically derived results.

This concludes our reconstruction of Volterra’s account of the predator-
prey model and the derivation of the Third Law. We will turn to a philo-
sophical analysis of Volterra’s work in section 3.6; beforehand, we will follow
the history of the model up to its status in contemporary population ecology.

3.3 Contemporary Voices on Lotka-Volterra

In this section, we have a brief look at the immediate historical reactions to
Volterra’s model, with special attention to criticism, be it against the use of
mathematical models in general, against particular modeling assumptions,
or biological concerns.

Two of the first critics of Volterra’s and d’Ancona’s work were Egon
Pearson and Friedrich Bodenheimer. Their criticism was mainly directed at
the applicability of the model to the Adriatic. Pearson worried that:

[P]erhaps other factors which d’Ancona had not considered,
such as changes in the methods of fishing or even migration of
the fish, might account for the observations during the war years
... . (Kingsland, 1985, p. 131)
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Bodenheimer advanced similar worries about uncontrolled environmental
factors. For both critics, the point of contention was not the use of math-
ematical modeling in population ecology in general, but its applicability to
this particular system, the Adriatic. They called into question whether the
isolation assumption was justified in the case of the adriatic: even if the
model reproduces phenomena, such as oscillating populations and the Third
Law, it is possible that, in the case of the Adriatic, external causes are re-
sponsible for these phenomena.

There is a partial remedy for this problem, namely trying to isolate a
different system in an experimental setting. Such an experiment was carried
out by Georgii Frantsevich Gause:

To test the predator-prey model, Gause set up populations
of protozoans in test-tube environments [...]. The Lotka-Volterra
equations had predicted that the two populations would oscillate
continually, without either species going extinct. Gause’s popu-
lations were not so obliging: his predators quickly consumed all
the prey and then died off shortly afterwards. (Ibid., p. 150)

It proved difficult to produce the behavior predicted by the model in
an experimental setup that controlled for environmental factors. However,
Gause was able to produce oscillations under very specific conditions. First,
oscillations occurred when he allowed for “immigration”, i.e. adding a num-
ber of predators and/or prey from outside the system. A more promising,
second finding was that if predation was at a “low intensity”, oscillatory be-
havior did occur. The first result suggests that periodicity could be due to
external factors, as proposed by Pearson, while the second can be interpreted
as imposing restrictions on the range of parameters (means of offense and
defense, γ parameters) in which the model is valid.

Apart from specific criticism of the predator-prey model, and attempts
to verify the model experimentally, the reactions to the use of sophisti-
cated mathematical methods in population ecology were mixed, ranging
from wholehearted endorsement to principled rejection. On one end of the
spectrum, Royal Chapman was convinced of the usefulness of mathematical
methods in ecology:

Mathematics, he believed, would raise the lowly status of ecol-
ogy to the dignified level of the physical sciences. He believed
that Volterra’s publications were destined to be as important for
population biology as those of Willard Gibbs for physical chem-
istry [...]. Ecology was on the way to being an exact science.
(Ibid., p. 128)

On the other end of the spectrum, the prominent entomologist William
Robin Thompson was critical of the usefulness of mathematical methods in
population ecology beyond heuristics:
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What alarmed him especially was not the continued growth
of mathematical ecology per se, but rather his feeling that people
had stopped discriminating between mathematical figments and
biological facts. [...] Mathematical ecology was no longer just a
stimulus to the imagination, a way to help biologists envisage a
problem. People were beginning to believe that it held the truth.
(Ibid., p. 139)

In sum, these voices represent the whole spectrum of attitudes towards
the use of mathematical methods in biology. In hindsight, critics addressing
particular modeling assumptions, such as the question of how to de-isolate
the system, were right: the isolation assumption is indeed problematic. It is
more difficult to evaluate the more sweeping endorsements or rejections of
mathematical methods in population ecology. Today the field thrives, and
at least some of its exponents have a nuanced view of the usefulness and
pitfalls of mathematical models, as we will see in section 3.5 below.

3.4 Volterra and d’Ancona 1935: Methodological
Reflections

In this section, we revisit Volterra and D’Ancona (1935, Ch. 1), a monograph
on population ecology, with special attention to the methodological motiva-
tions driving Volterra’s and d’Ancona’s research.6 Volterra and d’Ancona
reflect on the reasons for adopting mathematical modeling as their method
of choice. In a nutshell, Volterra and d’Ancona would have preferred a dif-
ferent, more direct approach to population ecology, but were forced to adopt
the modeling path by limited epistemic access to the system under scrutiny.

Their first, preferred method would have been direct causal inference by
controlled experimentation. This, however, is not feasible because actual
populations cannot be controlled adequately: they are spread out spatially,
their breeding cycles are too long, and environmental factors vary indefi-
nitely. All this prevents a direct, experimental approach to this system.
Second, detailed statistics could compensate for some of the epistemic lim-
itations of controlled experimentation, as varying factors would eventually
cancel out over time. However, a statistical approach is out of the question
too, because the necessary practical means to carry out statistical evaluations
were not available at the time.

As the methods of experimental control and statistics cannot be applied,
Volterra and d’Ancona propose a third, more indirect approach. They write:

Since it appears too difficult to carry through quantitative
studies by experiments and thus to obtain the laws that regu-

6The following discussion of Volterra’s and d’Ancona’s methodological reflections is
taken from Räz (2013a), which is partially based on Scholl and Räz (2013, Sec. 3).
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late interspecific relationships, one could try to discover these
same laws by means of deduction, and to see afterwards whether
they entail results that are applicable to the cases presented by
observation or experiment.7

Volterra and d’Ancona advocate an indirect, modeling approach. How-
ever, they only resort to mathematical modeling faute de mieux : a more
direct approach, based on controlled experiments, is simply too difficult to
carry out. The use of mathematics is not due to the desire to apply com-
plicated mathematics at all cost, but due to a lack of alternatives. This
means that in order to carry out their explanatory project, the use of mod-
eling techniques was the only viable option. Population ecology faced real
methodological difficulties that could only be overcome with the help of
mathematical methods.

Volterra and d’Ancona are outspoken defendants of the use of mathe-
matical methods in population ecology that parallel physics. Volterra held a
Chair of Mathematical Physics at the University of Rome, and he does not
hide his sympathy for mathematical methods:

One should not worry too much when one considers ideal el-
ements and imagines ideal conditions that are not completely
natural. This is a necessity, and it is sufficient to think of the
applications of mathematics to mechanics and physics that have
led to results that are important and useful in practice. In ratio-
nal mechanics and in mathematical physics one considers surfaces
without friction, absolutely flexible and unextended strings, ideal
gases, and so on. The example of these sciences is a great ex-
ample we should always keep in mind and that we should strive
after.8

Two aspects of this passage stand out. Volterra and d’Ancona recom-
mend the example of mathematical physics and its successes as a template

7“D’ailleurs s’il apparaît trop difficile d’effectuer l’étude quantitative par voie
d’expérience et d’obtenir ainsi les lois qui règlent les rapports interspécifiques dans les
associations biologiques, on pourra tenter de découvrir ces mêmes lois par voie déduc-
tive et de voir ensuite si elles comportent des résultats applicables aux cas que présente
l’observation ou l’expérience.”(Volterra and D’Ancona, 1935, p. 8)

8“D’autre part, il ne faut pas trop se préoccuper si on envisage des éléments idéaux
et l’on se place dans des conditions idéales qui ne sont pas tout à fait ni les éléments
ni les conditions naturelles. C’est une nécessité et il suffit de rappeler les applications
des mathématiques à la mécanique et à la physique qui ont amené à des résultats si
importants et si utiles même pratiquement. Dans la mécanique rationnelle et dans la
physique mathématique on envisage en effet les surfaces sans frottement, les fils absolument
flexibles et inextensibles, les gaz parfaits, etc. L’exemple de ces sciences est un grand
exemple que nous devons avoir toujours présent à l’esprit et que nous devons tàcher de
suivre.” (Ibid., p. 8)
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for other sciences, especially biology. However, this is not an unqualified
endorsement. There are reasons to adopt mathematical methods beyond
the fact that they have worked well in the case of classical mechanics. The
authors are acutely aware of the dangers and pitfalls of modeling.

Secondly, Volterra and d’Ancona point out that “ideal elements and con-
ditions”, what we would call idealizations, are an integral part of physics,
and the success of physics suggests that the same should be tried in biology.
Their emphasis on the issue of idealization should be taken seriously, as they
discuss the issue not only in the methodological reflections, but over and
over again, as we have seen in Volterra’s 1928 account of the predator-prey
model.

We believe that the reflections on the use of (mathematical) modeling
is potentially due to criticisms, such as Pearson’s, and that they serve as a
justification of the modeling approach: if mathematical modeling is basically
the only viable method, as we cannot separate internal and external causes
in this target system, the approach gets more attractive. Volterra’s and
d’Ancona’s position on the use of mathematical methods lies somewhere
between the extremes we saw in the last section. The use of mathematics is
not a means to legitimize population ecology, but grows out of the internal
logic of the biological system under scrutiny; on the other hand, they fend
off sweeping criticism against the use of mathematics by appealing to the
authority of physics.

Of course, it is impossible to reach a verdict on the predator-prey model
based on this methodological apology. However, what is the status of the
model today? I turn to this question in the next section.

3.5 The Predator-Prey Model Today

Today, there appears to be a consensus in the literature on mathematical
modeling in biology that the original predator-prey model fails to genuinely
capture interactions in real biological systems. The failure is prima facie
attributed to a mathematical property of the system of differential equations,
the stability of the system: the mathematical system is unstable in that if
there is a small disturbance of the system, this can have a big effect later
on.9

The phase space diagram in figure 3.1 above illustrates this point. As-
sume we are on orbit Λ below point Ω, and the system is disturbed such that
we are now on orbit Φ. If we follow the two trajectories, we see that the two
orbits diverge over time; the gap has markedly widened in the upper right

9See e.g. Murray (1993, p. 65). The predator-prey model is neutrally stable: if
disturbed from its initial orbit, it will not return to this initial orbit, but stay on a
new orbit. Neutral stability should be contrasted with unstable systems, who behave
chaotically, and asymptotically stable systems, where, roughly, the disturbance gets smaller
over time such that the system returns to its undisturbed state.
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corner of the diagram. The property that small changes at one point can
have large effects later is commonly taken to be responsible for the model’s
inapplicability.

At times, the formulations in the literature suggest that the problem with
the predator-prey model is exclusively due to this mathematical property.
However, this would not be satisfactory: If the real system in the world
also showed the lack of stability we find in the equations, we would have no
reason to reject the model. It is only possible to reject the model based on
this mathematical property together with some empirical findings.

The following passages from a textbook on mathematical modeling in
biology gives a more satisfactory explanation:

[I]t turns out that there are serious flaws in the model. Any
attempt at refinement by introducing self-limiting terms in the
per capita growth rates such as in the logistic equation for single
populations will lead to qualitatively different behavior of the
solutions, orbits that spiral in towards the equilibrium rather
than periodic orbits. The price of refinement of the model is
loss of agreement with observation. (Brauer and Castillo-Chávez,
2001, pp. 129)

The problem with the Lotka-Volterra model described in this passage is
that, if we remove the idealization that the prey population grows indefinitely
in isolation, the model will no longer exhibit the behavior we expect, namely
the periodic fluctuations, which, in turn, also affects the Third Law, as we
use the periodicity of fluctuations in its derivation.

The problem described in the following passage is even more general and
devastating:

[T]he Lotka-Volterra system [...] unrealistically predicts pop-
ulation oscillations that have been observed in real populations
[...]. The reason for describing this prediction as “unrealistic” is
that the model is extremely sensitive to perturbations. A change
in initial population size would produce a change to a different
periodic orbit, while the addition of a perturbing term to the
system of differential equations could produce the same type of
change or could produce a qualitative change in the behavior of
orbits, which might either spiral in to an equilibrium or spiral
out from an equilibrium. (Ibid., p. 180)

The problems here is also due to the instability of the system, but it is
wider in scope in that any attempt to de-isolate the system by allowing small
disturbances will either lead to uncontrolled oscillations, and not the regular
behavior of the unperturbed system, or to an overall qualitative change in the
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system. This renders the model virtually inapplicable, as there are always
external factors such as seasons and migration that interfere with the system.

This, however, does not undermine the value of the model altogether. As
Murray points out in his classic textbook:

[T]his model has serious drawbacks. Nevertheless it has been
of considerable value in posing highly relevant questions, is a
jumping-off place for more realistic models and is the main mo-
tivation for studying it here. (Murray, 1993, p. 64)

In sum, while the original predator-prey model is ultimately flawed, be-
cause we cannot de-isolate it without changing its qualitative behavior, it
is valuable as a template for more sophisticated models with more realistic
growth and interaction terms. It is interesting to note that Volterra himself
anticipated the possibility that there might be a problem with this partic-
ular model when he suggested that his derivation does not depend on the
functional form of its interaction terms; see section 3.2.2 above. However, he
does not specify which of his results depend on the structure of the model.
We will scrutinize the dependence of the Third Law on the model in section
3.6.3, and we will turn to the philosophical discussion of robustness in section
3.7.2.

3.6 Philosophical Lessons from History

In the preceding sections, we have prepared the ground for a philosophical
analysis of the predator-prey model, to which we now turn. The goal is to
get a clearer picture of the role of mathematics in the construction of the
model, and in the subsequent derivation of the Third Law.

We focus on four aspects of Volterra’s 1928 discussion. First, we will
sketch an interesting parallel between Volterra’s characterization of the role
of mathematics and a recent account of the applicability of mathematics, the
Inferential Conception. Second, we examine the influence of mathematics on
the various idealizations of the model. Third, we discuss the derivation of
the Third Law, and its dependence on the specifics of the model. Fourth, we
scrutinize the relation between the mathematical phase spaces and several
notions of intervention.

3.6.1 Volterra’s Account of Applicability

There is a striking similarity between Volterra’s account of the role of math-
ematics in the application to population ecology presented in section 3.2.1
above, and an account of applicability, the Inferential Conception (IC), pro-
posed in Bueno and Colyvan (2011), which is discussed in-depth in chapter



3.6. PHILOSOPHICAL LESSONS FROM HISTORY 73

7. In particular, it is noteworthy that Volterra emphasizes the inferential
possibilities provided by the theory of differential equations.

Volterra’s stages of the application process align with the stages of the
IC as follows: The first step, the abstract description of the target phe-
nomena, corresponds to the initial assumed structure, the starting point of
the modeling exercise. The second step, the translation of the informal de-
scription into differential equations, corresponds to the immersion step. The
mathematical domain is the theory of ordinary differential equations, and
the predator-prey equations are the target mathematical structure of the
immersion mapping. The theory of differential equations is put to work in
the deduction of the Third Law. Finally, after deducing the Third Law as a
purely mathematical result, it is taken to explain statistical data concerning
the Adriatic in the interpretation step. Prima facie, we are dealing with a
closed cycle – the Third Law explains the fishery statistics.

It would be fruitful to carry out a deeper analysis of the application
process in terms of the IC. Here is how such an analysis might proceed. The
above discussion provides us with a good understanding of the application of
mathematics to this particular problem. It would be interesting to examine
which parts of Volterra’s mathematical deductions were already available
from the theory of ordinary differential equations prior to their application
to population ecology. For example, does an analogue of the Third Law
exist for other target systems from physics?10 This would make it possible
to gauge to what extent the model, and the subsequent deductions, were
motivated by pure mathematics – say, the simplicity of equations – which,
in turn, would suggest that the discovery of the Third Law was mathematics-
driven, or whether it grew out of the fishery statistics, as Volterra writes.

The deductive possibilities provided by the mathematical theory, how-
ever, are only one way in which mathematics may have been the driving force
behind the construction of the model. Some passages of Volterra’s account
suggest that the construction of the predator-prey model itself is based on
mathematical considerations rather than real-world concerns. This is the
topic of the next section.

3.6.2 The Model: Mathematics-Driven Idealizations

We discerned two different kinds of idealizing assumptions relevant for setting
up the model.11 First, Volterra restricts the phenomena that are supposed
to be captured by the model; he excludes factors that are not due to the
interaction of the two species or their intrinsic growth and death rates. This
can be interpreted as (causal) isolation: only a subset of all the causes

10I thank Raphael Scholl for suggesting this question.
11The debate on idealization in models is very large by now, going at least back to

Cartwright (1983). A useful overview of idealization in the context of modeling can be
found in Frigg and Hartmann (2012, Sec. 1.1., 5.1.).
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that influence the two populations are taken into account. While this is
an idealizing assumption for most systems, the idea could be that this is
harmless, as other causes can be added to the model at a later stage.

The second aspect of idealization is how to deal with those factors that
are part of the model. Here we have identified several idealizing assumptions,
such as continuous variables and continuous birth and death rates. These
idealizations are of a different type in that it does not seem possible to
remove them at a later stage. It is simply a fact that fish populations are
discrete, that they have age structure, and so on. However, this need not
render the model unrealistic. First, the description of discrete quantities
with continuous variables could be a good approximation, or, alternatively,
that the model is a good description of, say, populations with variable birth
and death rates because it captures averages of these quantities.

However, it is questionable whether it makes sense to establish that the
continuous case is an approximation of the discrete case, for the following
reason. In order to show this, we would need a discrete model in order to
evaluate our continuous model. Once we have a discrete and reliable model,
we no longer need the continuous model. The same reasoning applies to the
interpretation of the idealization as an average. Defending these idealizations
based on a more realistic model is not a viable option.

We suspect that Volterra’s implicit account of model building – he first
discusses idealizations, and introduces the terms of the model later – does
not mirror their actual role in discovery. It is more likely that this is a
case of “reverse engineering”: Volterra wanted to find a model in which both
species evolve in a certain way if the other species is not present, and then
he wanted to capture interactions between species. The predator-prey model
is just the simplest possible model of this sort: both species grow, die, eat,
and are eaten at a constant rate. If this is correct, then Volterra began the
construction of the model by thinking about the interpretation of constant
growth factors and interaction terms, and found the various idealizations
after setting up the model.

This interpretation is further supported by Volterra’s discussion of the
interaction terms, where he comes close to admitting that what is respon-
sible for the model’s form is mathematical simplicity; a more substantive
justification followed only after the fact. The fact that Volterra justified
the model based on simplicity at first, and added other justifications later,
creates a tension. Which justification should we take seriously? The appeal
to mathematical simplicity, in the construction of models, can undermine a
realistic interpretation, as it is unclear why a simple or elegant model should
track truth.

Volterra appeals to the probable number of encounters as a remedy of this
flaw. However, on closer inspection, the argument is not convincing. It only
shows that the different constants in the interaction terms are compatible
with an equal number of encounters for both terms, which is reasonable, as
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the situation is symmetric (if I meet you, you meet me). The difference is
then explained by different conversion rates, i.e. differences in the means
of offense and defense between the two species. But this does not explain
why the conversion rates should be constant instead of any other functional
dependence.

As a second justification, Volterra notes that the “mode of integration” he
uses in the deduction does not depend on the particular form of interaction
terms. This is an interesting observation, as it seems to mesh well with the
ongoing philosophical debate on robustness: the idea that if we can vary
features of a model, such that inferences from the model still go through, is
a sort of confirmation of the model’s properties.

While showing that certain results do not depend on certain specific as-
sumptions of a model is certainly valuable, it does not empirically confirm
the original model in any way, as it is the very point of a robustness result
that the deduction is, to a certain degree, independent of said model. There-
fore, a robustness result does not speak in favor of a realistic interpretation
of the predator-prey model. We will further discuss the issue of robustness
below.

In sum, we conjecture that, while the motivation for the predator-prey
model was prompted by fishery statistics, the driving force behind the con-
struction of the model, and especially its particular form, was mathematical
simplicity, and not any real-world consideration. This speaks against a re-
alistic interpretation of the model, as Volterra does not seem to succeed in
providing good justifications for the idealizations underlying the model. It
does, however, not speak against Volterra’s framework.

3.6.3 The Derivation of the Third Law

Volterra’s mathematical analysis of the predator-prey model has a notewor-
thy feature. He does not examine explicit solutions of the system of coupled
differential equations, because it is impossible to find analytical solutions
to the equations.12 He only derives some qualitative features of the model,
which do not depend on quantitative details; most importantly, the solutions
are closed orbits of constant period.

This, however, does not mean that the results derived from this qualita-
tive analysis are approximative in nature: Volterra’s Third Law is derived
independently of explicit solutions of the Lotka-Volterra equations, but it is
nevertheless a precise result that holds for all orbits of the system, not only
for those close to the equilibrium point; Volterra writes that the Third Law
holds as long as the disturbance term α does not change the sign of the �
parameters.

Also, the Third Law depends on the specifics of the model. In particular,

12See e.g. Brauer and Castillo-Chávez (2001, p. 128).
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the fact that the average population sizes over a period correspond to the
equilibrium point, expressed in equations 3.12 - 3.13, depends on the fact
that the solutions of the predator-prey equations are closed orbits of constant
period. The derivation uses the fact that equation 3.9 is zero, which is only
possible if both N1 and N2 are periodic functions of time.

These two features of the derivation, that the Third Law is not an approx-
imative result, and that it crucially depends on the (qualitative) properties of
this model, have been neglected in the philosophical discussion of the model,
as we will see.

3.6.4 Phase Spaces and Their Interpretation

One of Volterra’s mathematical tools in the derivation of the Third Law is
the analysis of phase spaces, in particular how they are affected by changes in
parameters. An interpretation of phase spaces, in the context of population
dynamics, brings interesting aspects of the interaction between mathematical
representation and real-world phenomena to the fore. I propose to interpret
the different phase space diagrams used by Volterra in terms of different kinds
of interventions in predator-prey systems. This will give us useful insights
into the scope and nature of the Third Law. Note that I do not discuss the
issue of a realist interpretation of phase spaces, but rather the question of
how certain aspects of phase space suggest different notions of intervention
in the system.

First, we can distinguish between a) interventions within one phase space
and b) interventions that change the phase space.

For case a), consider figure 3.1 above. Usually, we think of the different
orbits in phase space as corresponding to different trajectories due to different
initial conditions. We can implement a change of orbit with a “surgical”, one-
time intervention that changes the total number of one or both of the species
in a system. Assume we are on orbit X somewhere in the lower right corner.
Now we instantaneously change the number of species as follows: we add a
certain quantity of N1 and take away a comparable quantity of N2, without
tampering with the reproductive abilities of the two species. The result of
this intervention is that we are in the lower right corner on the new orbit
Ψ. If we do not intervene further, the system will stay on this orbit. More
importantly, we have not changed any of the parameters, and the average
number of both species is unaffected. We are on a different orbit, but in the
same phase space.

The same is not true in case b), see figure 3.2. Interventions underlying
the transition from orbit Λ to Λ� are more complicated to realize. It is not
sufficient to change the number of species at one instant of time only – this
would just reset the system on a different, disjunct orbit. There are two
ways in which this kind of intervention can be implemented.

We can i) change the � parameters, that is, we change the natural rate of
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birth or death of the two species by, say, introducing a more fertile species,
or shortening the life span of the animals with chemicals. This changes the
parameters permanently such that we make a transition from one phase space
to another: different parameters correspond to different phase spaces. This
intervention can also be instantaneous (at point P in figure 3.2), but it does
not directly affect the number of species, just their reproductive capabilities.

Option ii) is to implement the transition from Λ to Λ� by continuously
increasing or decreasing the number of one or both species, starting at P .
This intervention has to be continuous because, presumably, adding or sub-
tracting a certain number of animals to the population will not affect their
natural reproduction rates, at least within certain limits. If the intervention
is suspended, the system returns to its old orbit with its old stationary state.

Volterra thought that fishing is an instance of this kind of intervention – a
certain number of animals of both species is subtracted in a continuous way.
This is what motivated the whole inquiry, because a pause in the continuous
intervention during WWI resulted in the qualitative changes explained by
the Third Law.

However, it is not easy to implement option ii): The continuous inter-
vention has to add or subtract a constant fraction of predators and prey
at all times. We aim for a certain constant deviation α from the natural �
parameters, resulting in a trajectory in a new phase space as in figure 3.2.
In order to implement this change, we have to keep the system on a new set
of parameters �∗1 = �1 − α and �∗2 = �2 + α.

If the intervention α is not proportional to the number of species N1

and N2, which vary over time, we will not stay in one phase space, but
continuously wander through different phase spaces corresponding to the
varying growth rates. If we stop continuously subtracting a proportion α of
both species, the system will instantaneously go back to its old phase space
with natural parameters �1 and �2.

This makes it impossible to bring about a change in parameters by con-
tinuous intervention in a quantitatively precise manner, because this would
require that we know the functions N1 and N2, i.e. the solution to the
predator-prey equations, and this solution we do not have. Thus, any con-
tinuous intervention, such as fishing, is necessarily an approximation of the
exact change α in parameters described above, because we cannot know the
exact number of predators and prey to be subtracted at any time. Volterra’s
principle is only qualitatively instantiated by fishing in the Adriatic.

In sum, there are two main lessons to be learned. First, we can interpret
the different transitions between orbits in phase space diagrams as differ-
ent kinds of interventions. We distinguished three kinds of interventions: a
one-time change in the number of species; a change of parameters, or repro-
ductive capabilities, and continuous intervention on the number of animals,
in particular subtraction of one or both species. The second and the third
kind of intervention are qualitatively on a par.
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Second, the Third Law is only approximately instantiated by fishing in
the Adriatic, as it is only approximately a continuous intervention. This
indicates that mathematical simplicity is the driving force behind the math-
ematical formulation of continuous interventions. Assuming that a constant
portion of each species is subtracted at every instance in time is just the
simplest possible mathematical implementation of a continuous intervention
in the predator-prey system. It is, however, not a very natural implementa-
tion and consequently only yields a qualitative understanding of the change
of the system. A change of reproductive capabilities of the two species due
to, say, some pesticide, is a much more natural real-world interpretation of
a change α in the � parameters.

This is not to downplay Volterra’s achievement. Reading a change in
parameters in terms of a continuous intervention, yielding a qualitative un-
derstanding of the original explanandum, is a surprising, and brilliant, con-
ceptual reinterpretation of the change of parameters.

3.7 The Predator-Prey Model in the Philosophical
Discussion

In this section, we look at some recent discussions of the predator-prey model
in the philosophical literature. Our discussion of Volterra’s historical account
of the model will permit us to clarify some (mis-)conceptions in these debates,
and to sharpen our systematic understanding of the case.

3.7.1 Colyvan on Population Ecology

Mark Colyvan (2013) discusses the Lotka-Volterra model in the context of the
philosophical debate on the applicability of mathematics in the sciences.13

He thinks that, to this day, the use of mathematical methods in the special
sciences has been challenged, if not outright rejected. His goal is to establish
that mathematical models in the special sciences are not only helpful for
prediction, but that they can play a genuinely explanatory role. This claim
is supported by various case studies from biology; one of them is the predator-
prey model.

I agree with Colyvan’s main thesis that mathematical models in gen-
eral, and models in population ecology in particular, can be explanatory,
and that there are good reasons to accept the use of mathematical mod-
els in the special sciences – despite the fact that the original predator-prey
model probably fails to be explanatory. Colyvan’s main thesis can be sup-
ported historically – explanatory concerns played a key role in the genesis of
mathematical population ecology.

13This section draws on Räz (2013a).



3.7. THE PREDATOR-PREY MODEL IN THE PHILOSOPHICAL DISCUSSION79

As we saw in the beginning of section 3.2, the predator-prey model was
not constructed merely to reproduce a certain phenomenon, but to explain a
high-level feature of a system of fish populations. The project of mathemat-
ical modeling in population ecology was explanatory from the start. What
is more, the mathematical model only gives us an approximate, qualitative
understanding of the population interactions, as the coupled, nonlinear dif-
ferential equations generally cannot be solved analytically. The material
motivation for the model, as well as its mathematical features, lead to a
qualitative understanding of the system under scrutiny – precise quantita-
tive predictions are neither the motivation behind the model, nor are they
possible.

On a more critical note, I think that Colyvan does not sufficiently em-
phasize the issue of idealization, one of the main problems of (mathematical)
modeling. In his response to the objection that mathematical models fail to
give an adequate account of ecological systems, he distinguishes between
the claim that mathematical models fail to represent at all, and the claim
that mathematical models are overly simple, or misrepresent; see Colyvan
(2013, p. 4). He refutes the first claim, by pointing out that the parame-
ters of the predator-prey model can be interpreted as summing up biological
information, such as birth and death rates.

In his response to the second claim, he grants that the original predator-
prey model is overly simple, but points out that its role in modern population
ecology is pedagogical, and that it can serve as a template for more sophisti-
cated models. He thinks that even these models leave out biological details,
which, however, does not invalidate them, as leaving out details is part and
parcel of the practice of modeling. In sum, Colyvan considers the first claim
to be true, but somewhat beside the point.

I agree with Colyvan’s characterization of the model’s role in modern
population ecology (see the quote at the end of section 3.5), and that the
predator-prey model does sum up and represent biological information. The
model’s parameters have a clear biological correlate. However, I find the
claim that (some) mathematical models, such as the predator-prey model,
are overly simple and misrepresent to be much more interesting, and trou-
bling. The real challenge of mathematical population ecology is to tell a story
about how some models that lie about their target system can nevertheless
be explanatory, while others are worthless.

The claim that the issue of idealization is of utmost importance is sup-
ported by a close reading of Volterra’s and d’Ancona’s original publications.
The use of idealizations is acknowledged and defended throughout Volterra
(1928) and Volterra and D’Ancona (1935), as we saw in sections 3.2 and 3.4.
Volterra and d’Ancona were aware of the fact that they made ample use of
“ideal elements and conditions”. They defend this practice based on general
considerations, such as the appeal to the use of idealizations in physics, but
also by attempting to justify particular idealizations, such as the use of con-
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tinuous variables and constant growth coefficients. Idealization is one of the
problems Volterra and D’Ancona took seriously.

In sum, Colyvan’s claim that mathematical models in the special sci-
ences have an important, and even explanatory role, is supported by histori-
cal facts; population ecology relied on mathematical models for explanatory
purposes from the beginning. I urged that one of the most important prob-
lems with mathematical models is idealization; this should be emphasized
more. However, this does not invalidate Colyvan’s general philosophical
claims.

3.7.2 Weisberg and Reisman on the Volterra Principle

Weisberg and Reisman (2008) discuss the predator-prey model in the con-
text of so-called robustness analysis in population ecology. The idea behind
robustness analysis is the following. Mathematical models in biology are
often highly idealized, and it can be unclear whether properties of a model
are generic or an artifact of the mathematics used in the formulation of the
model. To prevent the danger of mathematical artifacts, modelers employ
the technique of robustness analysis, which involves the construction and
analysis of multiple models. The hope is that if multiple, independent mod-
els are able to, say, reproduce a phenomenon, this is taken to indicate that
this phenomenon is a genuine feature of these models, and not due to ide-
alizations used in any one of them. The slogan of robustness analysis goes
back to Richard Levins, who wrote that “[O]ur truth is at the intersection of
independent lies” (quoted after Weisberg and Reisman (2008, p. 107)).

Weisberg and Reisman detail three ways in which a mathematical model
can be robust. First, parameter robustness investigates whether features of a
model depend on particular settings of the parameters of a models (think of
settings of the � and γ parameters in equations 3.2 and 3.1). Second, struc-
tural robustness is a more severe test in that different models of a certain
general kind are compared: the structure of the models comes into focus. For
example, models with different interaction terms could be compared, while
the modeler would rely on the framework of (coupled) ordinary differential
equations. Third, representational robustness is a further generalization in
that different models from different mathematical frameworks, such as mod-
els with continuous and discrete time steps, are compared.

Weisberg and Reisman put these categories to work in population ecol-
ogy; they compare several mathematical models, among them the original
predator-prey model. One of their main results is that, what they call the
Volterra Principle, is a robust result in that it has all three kinds of robust-
ness for a range of predator-prey models. The Volterra Principle states that
“a general biocide, any substance which has a harmful effect on both preda-
tors and prey, will increase the relative abundance of the prey population”
(Ibid., p. 113, emphasis in original).
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I will argue in the following that several of the details in Weisberg’s
and Reisman’s analysis of the original predator-prey model are historically
and systematically inaccurate, and that this invalidates their main thesis,
viz. that the Volterra Principle is a robust property of predator-prey mod-
els. Volterra’s Third Law is arguably the most important result of Volterra
(1928), and this is what Weisberg and Reisman refer to as the Volterra
Principle. However, the Third Law is not a structurally robust property of
predator-prey models. Here is why.

Weisberg and Reisman first discuss parameter robustness of some prop-
erties of the original predator-prey model. They note that the model shows
undampened oscillations and is neutrally stable: if the system is undisturbed,
it will oscillate on a closed trajectory, and if it is disturbed, it will make a
transition to a different trajectory, and stay on this new trajectory until it is
further disturbed. More importantly, the model has the Volterra Property,
the key component of the Volterra Principle: if a general biocide is applied,
i.e. if both predators and prey are destroyed, the proportion of prey relative
to predators is increased.

I have two clarificatory remarks on this. First, the biocide has to be of
the right kind: it is necessary to continuously destroy both species, or to
affect their reproductive capabilities, as we saw in section 3.6.4 above. Sec-
ondly, parameter robustness has to be formulated carefully in the case of the
Volterra Property, as the property itself relies on a variation of parameters.
Volterra himself analyzes parameter robustness when discussing the scope of
the Third Law in terms of the range of α, see section 3.2.4.

Weisberg and Reisman then turn to the analysis of the structural robust-
ness of these properties. To this end, they introduce a modified predator-prey
model with density dependence: The linear term of equation 3.1 is modified
such that, if left alone, the prey population would not grow indefinitely, but
only to a certain maximum, the so-called carrying capacity. This model
has no, or only dampened, oscillations and is not neutrally stable, as the
populations converge to one of three equilibrium points depending on initial
conditions. These properties are not structurally robust. Weisberg and Reis-
man also claim that the model with density dependence still has the Volterra
Property.

I think that this last claim is historically incorrect and in need of sys-
tematic clarification. We saw in section 3.2.4 above that in the derivation
of the Third Law, Volterra used the fact that the trajectories of the origi-
nal predator-prey model are closed cycles of constant period; specifically, we
need this property in order for equation 3.9 to be equal to zero. However,
this means that if a model has only dampened, or no, oscillations, as the
model with density dependence, then we also cannot derive the Third Law
in Volterra’s manner. Put differently, if the Volterra Principle is the Third
Law, then it is impossible that undampened oscillations and neutral stability
are not structurally robust, but the Third Law is, as the latter depends on
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the former.
What has gone wrong in Weisberg’s and Reisman’s analysis of the Volterra

Principle a.k.a. the Third Law? There are crucial differences between their
account of the Volterra Principle and Volterra’s account of the Third Law.
Weisberg’s and Reisman’s analysis of the Volterra Principle begins on p. 113.
They write that the equilibrium point Ω = (�2/γ2, �1/γ1), see figure 3.1, can
be found by setting the equations equal to zero. The ratio of the two com-
ponents then yields the relative abundances of the two species. Weisberg
and Reisman then note that the equilibrium points “correspond to the aver-
age abundance of the predator and prey species over indefinitely long time
periods” (Ibid., p. 113).

Here Volterra’s deduction of the Third Law becomes relevant. Volterra
gave a precise mathematical meaning to average abundances in equation 3.6.
This does not correspond to an average abundance over “indefinitely long
time periods”, but to exactly one oscillation. More importantly, the argument
as to why the equilibrium point corresponds to the average abundance, i.e.
essentially the whole derivation of the Third Law, is missing in Weisberg’s
and Reisman’s account. It is probably precisely because they left out this
argument that they did not recognize the dependence of the Third Law on
closed cycles of constant period.14

We can trace the origin of this less than satisfactory treatment of the
original predator-prey model to the literature on population ecology used by
Weisberg and Reisman. They cite Roughgarden (1997) and May (2001) in
their discussion of the Volterra Principle. Here is Roughgarden’s account of
the relation between equilibrium point and average abundance:

[W]e can use the formulas for the equilibrium abundances as
approximate predictors of the average abundances through time.
If the trajectories were circles, the equilibrium point would be ex-
actly the average through time, and because the trajectories are
not quite circular, the equilibrium point is only approximately
the average through time. But let’s look at these formulas any-
way. (Ibid., p. 270, emphasis in original)

This is not quite right, as we have seen above. The equilibrium is not only
an “approximate predictor” of average abundances, but the exact average
abundance. Also, the result is independent of the form of the trajectories
in phase space: It hold for all kinds of (closed) trajectories. This is clear
from the mathematical derivation, which does not put any restriction on the
shape of orbits.

14Maybe Weisberg’s and Reisman’s ideas could be sanitized by a) spelling out what
they mean by “average abundance”, say, a limit of the time average, and b) showing
that Volterra’s notion, as well as that of other models, falls under this notion of average
abundance. I thank Claus Beisbart for suggesting this possibility.
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May (2001) has a very brief discussion of the original predator-prey model
which does not draw on Volterra’s original work.15 May relies on an eigen-
value analysis of the model, which, presupposes a linearization, or approxi-
mation, of the original model. This is perfectly fine, but it could undermine
the generality of certain of Volterra’s results; for example, the approximation
may not be good enough for certain parameter values. If this is what Weis-
berg and Reisman had in mind, they should have discussed the ramifications
of using an approximation.

In sum, Weisberg’s and Reisman’s account of the Volterra Principle a.k.a.
the Third Law is certainly historically inaccurate, and systematically want-
ing, in that Volterra’s Third Law presupposes closed cycles of constant period
in order to be valid, and it is a general, not an a approximative result. Sys-
tematically, Weisberg and Reisman owe us an explanation as to why the
equilibrium in the original model corresponds to an average of the popula-
tion sizes, and if this account depends on an approximation, they should
discuss how this affects the (parameter) robustness of the properties under
discussion. As I pointed out above, the discussions of the relevant aspects of
the model in the ecology literature is often either very brief, or inadequate.

Let me conclude with some remarks on Weisberg’s and Reisman’s ideas
and the prospects of robustness analysis in general. First, I think that the
idea of identifying robust properties, such as the Volterra Property, is an
interesting idea. However, much hinges on the precise mathematical formu-
lation of the ideas involved. We saw that if vague ideas, such as that of
average abundance, are mathematically disambiguated, it can happen that
the robustness of a property breaks down. Once more, the devil is in the
detail.

Second, reading the introductory paragraphs of Weisberg’s and Reis-
man’s paper, one can get the impression that the idea behind robustness
analysis is a novel approach first proposed by Levins, and particularly useful
in (population) biology, e.g. when the authors write:

Biologists often value results that are general – for example, a
theoretical treatment of a system that remains true under many
possible states of the system, or a result that applies to a wide
range of different systems. Recognizing that any body of theory
will depend on some set of assumptions, biologists possessing a
general result will often want to know whether it will continue to
apply under differing assumptions about the system. (Weisberg
and Reisman, 2008, p. 107)

It seems to me that everything Weisberg and Reisman say about bi-
ologists’s predilections is equally true for any scientist, or mathematician,

15I was unable to find p. 439 of May’s book indicated in Weisberg and Reisman (2008,
p. 114), as the book only has 265 pages in toto.



84 CHAPTER 3. THE PREDATOR-PREY MODEL

working with abstract mathematical models. Whenever we work with such
a model, it is crucial to understand how the results derived from the model
depend on particular assumptions, and we will always strive to generalize the
model and check whether results are still valid under weaker assumptions.
This is a very common scientific practice, and I am not convinced that it
is necessary to introduce “robustness analysis” as a novelty for biological or
ecological contexts. I have not yet been able to discern an argument show-
ing the particular value of robustness analysis in biology as opposed to, say,
physics. A philosophical discussion of these issues in general would certainly
be valuable.

3.7.3 Pincock 2012

In a recent monograph on the role of mathematics in scientific representa-
tion, Christopher Pincock (2012) discusses the predator-prey model as an
example of an acausal representation. He gives two reasons for classifying
the representation as acausal: The first is that the model misrepresents ac-
tual causal processes, by introducing various idealizations, such as constant
growth, death and interaction parameters, and by neglecting influences from
the environment. The second, more important reason for classifying the rep-
resentation as acausal is that “the genuine causal actors in these systems
are the individual animals and not anything like the number of predators or
prey in the system” (Ibid., p. 59). Pincock thinks that a representation of a
biological system on this level will involve “a host of inaccuracies”.

Pincock maintains that the model is useful by providing an acausal rep-
resentation via Volterra’s Third Law. This claim is based on the alleged
robustness of the Third Law as proposed in Weisberg and Reisman (2008):
the predator-prey model may be an inaccurate representation for individual
parameter values, but if we take a whole set of models and ranges of pa-
rameter values into account, the Third Law holds true in this set of models
and range of parameters, and we have reason to believe that the result is
independent of individual parameter values.

I have already discussed the prospects of robustness analysis in section
3.7.2 above. Everything hinges on the precise formulation of the concepts
involved; if done properly, it turns out that the Volterra Principle, a.k.a. the
Third Law, is not nearly as universal as one might have thought.

Regarding the question as to whether the predator-prey model is a causal
representation or not: I think we should not require a model to be accurate,
or to mirror a target system faithfully, in order for it to be a model that
is supposed to mirror the causal structure of a system. Concerns of ideal-
izations and causality can (but need not be) orthogonal. For example, if a
model merely isolates core factors out of a totality of relevant causes of a
phenomenon, we would certainly classify it as causal, despite its idealizing
nature.
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Pincock’s second reason for thinking that the predator-prey model is an
acausal representation, namely that the system is described at the level of
populations, while the underlying causes are located at the level of individ-
ual animals, is also not convincing. First, I see no principled reason why the
level of individual animals is a privileged level of description. A description
of the system on the level of, say, fundamental particles could be required
by the same kind of argument; however, such an explanation would be less
explanatory than a higher level account. The same is probably true of a
description of the system on the level of individual animals: Volterra’s (and
population ecology’s) goal is to describe and explain population level phe-
nomena, and taking individual fish into account just introduces irrelevant
details. Secondly, as Mark Colyvan (2013) points out, parts of the predator-
prey model do correspond to a causal description of the system: It seems
entirely reasonable to view the birth and death rates as major causes of
population sizes. These factors are more or less directly represented by the
parameters of the model, albeit in an idealized manner.

3.8 Conclusions and Outlook

In this final section, I offer conclusions and note questions that could be
pursued further.

First, we saw in sections 3.2 and 3.4 that in Volterra’s (and d’Ancona’s)
account, the material motivation for proposing the predator-prey model was
explanatory, namely to account for the shift in proportion of predators and
prey during the first world war by invoking the Third Law. Furthermore, the
discussion in Volterra and D’Ancona (1935) shows that they view modeling as
an alternative account when other methods, such as direct causal inference,
fail.

It is an open question as to whether the fishery statistics really were
the starting point of Volterra’s investigations. An alternative explanation
is that the motivation for the model came directly from mathematics; more
specifically, from a physical analogue of the Third Law. To substantiate this
alternative motivation, we would have to search the mathematical literature
on ordinary differential equations and their application to physical problems
available to Volterra.

Second, I argued in section 3.6.1 that Volterra’s mathematical method-
ology is strikingly similar to the Inferential Conception, especially in that
Volterra emphasizes the deductive possibilities offered by the theory of ordi-
nary differential equations. To fully appreciate how the application process
works in this case, we need a better understanding of the relevant mathe-
matical theories.

Third, the issue of idealization in modeling in general, and in the predatory-
prey model in particular, is paramount and cannot be overemphasized. We
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saw in the discussion of Colyvan’s contribution in section 3.7.1 that this is
not always appreciated in the philosophical discussion. I discerned differ-
ent kinds of idealizations relevant to the model. While the isolation from
external, environmental factors seems to be driven by real-world concerns,
other idealizations apparently have their origin in mathematical simplicity.
We would expect the latter kind of idealization to be in need of justification;
however, this is not accomplished by Volterra.

Historically, idealizations were important in the discussion of the model
from the start; systematically, the ultimate reason for the rejection of the
model is the impossibility of de-idealizing the model without changing its
qualitative features. However, the model is still important as a template for
more realistic and complicated models. An open question remains as to the
evolution of the idealizations and their assessment by population ecologists
and mathematicians. For example, what was the path to the discovery of
the structural instability of the system?

Fourth, I discussed several instances where the mathematical details of
the model can inform and improve philosophical debates. One example is
the derivation of the Third Law, which, in its original form, is a general, not
an approximate result, and one which depends on other properties of the
predator-prey model, in particular that the phase space consists of closed
orbits with constant period. This fact has been neglected in philosophical
discussions, which has led to misconceptions about the robustness of the
Third Law. A second example is the connection between phase spaces and
intervention: I discerned several notions of intervention that are suggested,
at least in part, by the mathematics. They are relevant to the application
of the model, as only the right kind of intervention will lead to a shift of
population averages as predicted by the Third Law. It could be interesting
to explore whether these distinctions can be used in philosophical debates,
say, on interventionism. I argued in section 3.7.2 that discussions of issues
like robustness should be conducted at the general level of mathematical
modeling; there is nothing particularly biological about robustness.

Fifth, we touched on the issue of causality. I argued in section 3.7.3
that the model has a direct causal interpretation in that the parameters
can be interpreted causally: growth rates seems to be a major cause of the
size of populations. We also argued that modeling can be interpreted as an
alternative to a more direct approach involving causal inferences.



Chapter 4

The Bee’s Honeycomb

4.1 Introduction

In this chapter, I discuss scientific and mathematical attempts to explain
the structure of the bee’s honeycomb. The chapter has two parts. In the
first part, I discuss a candidate explanation, based on the mathematical
Honeycomb Conjecture, a standard example in the philosophical debate on
mathematical explanations of physical phenomena. I argue that this expla-
nation is not scientifically adequate. I will cast doubt on the idea that the
Honeycomb Conjecture is part of an explanation of the structure of the bee’s
honeycomb – the purported explanation is flawed on mathematical grounds.1

In the second part, I discuss other mathematical, physical and biological
studies that could contribute to an explanation of the bee’s honeycomb.
The upshot is that most of the relevant mathematics is not yet sufficiently
understood, and that there is an ongoing debate about the biological details
of the construction of the bee’s honeycomb. There are, however, relevant and
promising results from the physics of foams that, depending on the outcome
of the biological debate, could provide an explanation.

4.1.1 Overview

Here is a section-by-section overview of the chapter.
In section 4.2, I give a brief account of the explanation of the structure of

the bee’s honeycomb based on the Honeycomb Conjecture (HC) as presented
in Lyon and Colyvan (2008).

In section 4.3, I establish the importance of the example for a recent
philosophical argument by Alan Baker (2012).

In section 4.4, I argue that the explanation proposed by Lyon and Coly-
van (2008) is inadequate for two reasons. I first show that the explanation
is deficient because the HC solves a two-dimensional problem, whereas an

1This part of the chapter is a version of my paper Räz (2013b).
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actual honeycomb has a three-dimensional structure that cannot be ade-
quately captured in two dimensions. This establishes that the HC provides
only a fraction of the mathematics relevant to the bee’s honeycomb. I then
cast doubt on the idea that we should accept the HC even as a partial ex-
planation of the actual, three-dimensional honeycomb. The problem is that
once we consider the honeycomb in three dimensions, the adequacy of a sep-
arate explanation of the two-dimensional hexagonal substructure becomes
dubious.

In section 4.5, I examine a different mathematical explanation of the bee’s
honeycomb proposed by Laszlo Fejes Tóth (1964), which has hitherto been
neglected in the philosophical discussion. I argue that the mathematical
result of this account is not applicable to the bee’s honeycomb because one
of the idealizations it introduces is too strong.

In section 4.6, I first review some recent biological investigations of the
bee’s honeycomb. I then call attention to an alternative explanation of the
bee’s honeycomb based on these results. This alternative explanation does
not rely on the HC and thus further undermines the latter’s relevance.

In section 4.7, I first introduce a general framework that helps us system-
atize all candidate explanations discussed so far. This framework classifies
the bee’s honeycomb as a kind of foam. I then give a short account of an
experiment that can be interpreted as a physical realization of the bee’s
honeycomb; the analogy between foams and honeycombs is partially corrob-
orated by the biological results discussed in section 4.6.

I conclude in section 4.8, with an emphasis on the philosophical ramifi-
cations of the scientific and mathematical results.

4.2 Lyon’s and Colyvan’s Explanation

The explanation of the geometric structure of the bee’s honeycomb, based
on the Honeycomb Conjecture (HC), was first proposed by Aidan Lyon and
Mark Colyvan in their 2008 paper “The Explanatory Power of Phase Space”.2
The explanandum is that the bee’s honeycomb has a hexagonal shape, as
opposed to some other geometric shape. The explanans has two parts, one
biological, the other mathematical. The biological part is that it is evolution-
ary advantageous to minimize the amount of wax used in the construction
of honeycombs; Lyon and Colyvan trace this part of the explanation back
to Darwin. The mathematical part of the explanation is provided by the
Honeycomb Conjecture and its recent proof by Thomas Hales (2001). The
Honeycomb Conjecture states that “a hexagonal grid represents the best way

2This is not to say that Lyon and Colyvan are the first to suggest a connection between
the bee’s honeycomb and some mathematical conjecture. As early as 36 B.C., Marcus
Terentius Varro claimed that the hexagon “encloses the greatest amount of space”, which
explains the structure of the bee’s honeycomb; see Hales (2000, p. 448). However, Lyon
and Colyvan introduced the explanation into the philosophical discussion.
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to divide a surface into regions of equal area with the least total perime-
ter ”(Lyon and Colyvan, 2008, pp. 228). Figure 4.1 shows a part of the
hexagonal grid. Lyon and Colyvan claim that the combination of these facts
explains the structure of the bee’s honeycomb.

Figure 4.1: Hexagonal Tiling

This explanation of a physical phenomenon based on a mathematical
theorem has subsequently been adopted as a standard example in the philo-
sophical discussion of mathematical explanations; see e.g. Baker (2009),
Baker and Colyvan (2011), Saatsi (2011), Lyon (2012), Baker (2012), Tallant
(2013) – and there has been considerable disagreement about its philosoph-
ical analysis and significance.

So far, it has never been disputed that the explanation given by Lyon
and Colyvan is acceptable on mathematical or scientific grounds. However,
this is what I will to do in section 4.4, after first illustrating the importance
of the case for the philosophical discussion.

4.3 Baker: A Philosophical Motivation

One might think that the honeycomb case is but one of many examples
proposed and discussed by philosophers, and that therefore, while it is re-
grettable if it turns out not to be an actual explanation, this will not really
affect philosophical arguments. However, this is not so. A recent paper by
Alan Baker (2012) relies to a large extend on the scientific adequacy of the
honeycomb case.

In his paper, Baker attacks the so-called Transmission View of Mathe-
matical Explanation in Science (MES), which he attributes to Mark Steiner
(1978b). According to this view, MES works via a transmission of an intra-
mathematical explanation to some physical explanandum. The MES with
explanans M , typically a proof, used in the explanation of a physical ex-
planandum P ∗, written M → P ∗ is, first and foremost, an explanation of an
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intra-mathematical explanandum M∗, written M → M∗, and the explana-
tion of M∗ is transmitted to P ∗ via a bridge principle, written M∗ ↔ P ∗.
If we remove the bridge principle from the complete MES, M → M∗ ↔ P ∗,
we are left with an intra-mathematical explanation, M → M∗.

According to Baker, there are two separate problems with this view. The
first is a counterexample, the honeycomb case. The second is an argument
for the thesis that the proof of a mathematical theorem is not necessarily part
of a scientific explanation, even if the theorem is used in that explanation.3

Baker notes that two conditions have to hold in order for the honeycomb
case to be a counterexample. First, it has to be a genuine MES, and second,
the proof must not explain the theorem. Baker thinks that the honeycomb
case is clearly a genuine MES. He writes that

[T]here is not much to be said [on this condition], other than
that biologists do generally take this to be the best explanation
of why honeybees build their cells in the shape of hexagons, and
that it clearly makes nontrivial use of mathematics (Baker, 2012,
p. 250).

Baker repeats the claim that biologists take this explanation seriously
later in his paper, but he does not substantiate it with references.

I will argue below that the first condition does not hold. If this is so,
then Baker’s main counterexample is flawed. Thus, the honeycomb case is
worth our attention.

4.4 Why the Explanation Fails

4.4.1 The Explanation is Incomplete

Lyon and Colyvan claim that Hales’s theorem can help to explain what they
call the hexagonal structure of the honeycomb. This presupposes that the
structure of the honeycomb is in fact hexagonal – but this is incorrect. It is
only the form of the openings of honeycombs, or their prismatic base, that
show a hexagonal pattern, not the entire honeycomb. Actual honeycombs
show hexagonal openings on the surface, but their actual geometric structure
is more complicated than this: honeycombs consist of two layers of congruent
cells, each one with a hexagonal opening and a non-flat bottom; see figure
4.2 for an approximate geometrical representation of a cell.

Mathematically speaking, the problem with Lyon’s and Colyvan’s pro-
posal is that their explanation applies to a two-dimensional structure, whereas

3Baker does not want to rest his entire argument on just one counterexample, and notes
the application of the four-color theorem as a second counterexample. I will not assess
the strength of this example. However, the honeycomb case is his main case study and
appears to carry most of the argumentative weight. I will discuss Baker’s second problem
in chapter 2.



4.4. WHY THE EXPLANATION FAILS 91

Figure 4.2: The three-dimensional honeycomb

the actual honeycomb is three-dimensional. The HC says: “any partition of
the plane into regions of equal area has perimeter at least that of the regu-
lar hexagonal honeycomb tiling” (Hales, 2001, abstract). The bee’s honey-
comb, however, is a three-dimensional structure that does not reduce to the
two-dimensional case. What we should be looking for is an optimal three-
dimensional structure that can be applied to the actual honeycomb instead
of the two-dimensional HC. Put simply, the structure should minimize area
relative to the volume of cells instead of perimeter relative to area.

To treat the honeycomb as a two-dimensional optimization problem is
not a priori unreasonable, but on closer inspection, it proves to be problem-
atic. For example, if the honeycomb consisted of one thin layer of hexagonal
cells only, then a two-dimensional description would probably capture the
relevant aspects of the structure.4 However, it is simply a fact that the hon-
eycomb has a non-trivial three-dimensional structure. The critical point is
that the actual structure comes in two layers such that the cells are open on
one end only. That is why we cannot possibly account for the shape of the
rhombic caps in two dimensions: the caps do not fit into the two-dimensional
representation and would have to be omitted – the third dimension is neces-
sary to represent this aspect of the structure. The three rhombi can be seen
very nicely in the geometrical representation; see the top of figure 4.2.

The problem I just raised has gone unnoticed in the philosophical dis-
cussion of the honeycomb case, but it is well-known in the mathematical
literature. For example, Erica Klarreich discusses Hales’s proof of the HC
and writes:

Hales’s work confirms that the hexagonal arrangement is the
4This has been suggested by Erica Klarreich; see the quote below. The qualification

“probably” is necessary because the claim that this structure is optimal would have to be
proven, despite its plausibility.
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one that uses the smallest amount of beeswax to create a single
thin layer of cells, open on each end. In an actual honeycomb,
the cells in each layer are capped by three rhombic faces, forming
a rhombic dodecahedron. (Klarreich, 2000, p. 157)

Klarreich at least implicitly acknowledges that the HC does not directly
apply to an actual honeycomb. The three-dimensional structure to which
the two-dimensional HC applies is a prismatic extension of the hexagonal
grid, while what Klarreich calls the actual honeycomb is depicted in figure
4.2.

Some formulations in the mathematical literature are even more succinct.
Frank Morgan discusses the HC in his introduction to geometric measure
theory. Immediately after stating and proving the HC, he adds the following
observations under the title “The Bees’ Honeycomb”:

The bees actually have a more complicated, three-dimensional
problem involving how the ends of the hexagonal cells are shaped
to interlock with the ends of the cells on the other side. L. Fejes
Tóth [...] showed that the bees’ three-dimensional structure can
be improved slightly, at least for the mathematical model with
infinitely thin walls. (Morgan, 1988, pp. 166)

Morgan states that the hexagonal grid of the HC is not the relevant
structure for the actual honeycomb, and he even mentions an alternative
approach.

It could be thought that it was Thomas Hales who suggested this appli-
cation of the HC – but this is not so. In his paper proving the HC, Hales
discusses the historical link between the conjecture and the bee’s honeycomb,
but he does not advocate an application of the theorem along the lines of
Lyon’s and Colyvan’s proposal.

There is a gap between the philosophical and the mathematical discus-
sion. Mathematicians think of the bee’s honeycomb as three-dimensional and
do not attempt to explain it via HC. Philosophers, on the other hand, have
unfortunately neglected the three-dimensionality of the structure to date.

Even if we disregard the shape of the real honeycomb, there is a sys-
tematic problem with the explanation based on the HC: It applies to two-
dimensional surfaces and therefore can only take the shape of the openings
of the cells into account. This, however, is not sufficient. It is not clear that
a structure with optimally shaped openings minimizes the amount of wax. A
structure can have cells with optimal openings, but some non-optimal shape
otherwise. We cannot infer the optimality of cells from the shape of the
openings. To make sure that a structure is optimal, we have to take the
whole three-dimensional structure into account.
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4.4.2 The Honeycomb Conjecture Is (Probably) Irrelevant

We saw in the last subsection that Lyon’s and Colyvan’s explanation is in-
complete: it cannot capture all that is mathematically relevant about the
actual honeycomb. This, however, still leaves open the possibility that the
HC is of some relevance to the actual honeycomb. After all, the openings of
the cells are hexagonal – see the bottom of figure 4.2 – so it is possible that
we can apply the HC to explain the optimal shape of the openings. This
would constitute a partial explanation in that the HC explains a part of the
structure. In this subsection, I will argue that the HC is probably not even
a partial explanation of the shape of the actual honeycomb.

The argument is not directed against the use of mathematical optimiza-
tion in explanations of physical structures; some form of mathematical opti-
mization may be relevant to the bee’s honeycomb. Before I proceed, there-
fore, it may be helpful to clarify the role of mathematics in this kind of
explanation. What is necessary for a successful explanation involving math-
ematical optimization?

I argued above that the relevant optimization problem is three-dimen-
sional in the present case. What is minimized is the amount of wax relative
to cells of unit volume. Then, the optimization problem has to satisfy cer-
tain boundary conditions; one of them is that each cell needs an opening of
reasonable size. A possible mathematical formulation of the problem is as a
bounded form of the Kelvin problem: the optimal tiling of space with cells
of equal volume, with the restriction that the cells lie between two paral-
lel planes such that each cell has an opening in one of the planes. Laszlo
Fejes Tóth (1964) analyzed this kind of problem; we will turn to his pro-
posal in section 4.5. Additionally, the optimization will probably have to
take the thickness of the walls into account. Of course, purely mathematical
considerations will not do. For example, we have to find out if and how an
“optimization process” is implemented in the world: do the bees construct
the beehive from beginning to end, or is some other process involved? These
issues are still debated in the biological literature, as we will see in section
4.6 below. Finally, there are some structural constraints due to stability.

The question whether any form of mathematical optimization is relevant
to the bee’s honeycomb is an open scientific question. For the sake of the
argument, I assume that some three-dimensional optimization problem is in
fact relevant, and I answer the question as to whether, under this assumption,
the two-dimensional HC is relevant to the explanation as well.

We can distinguish two cases. The first possibility is that the solution
to the right mathematical optimization problem does not have cells with
hexagonal openings at all. In this case, the bee’s honeycomb would sim-
ply not be an optimal solution, and the HC would be inapplicable, as the
hexagonal tiling is not part of the structure. This is a real possibility: Three-
dimensional geometric optimization problems are notoriously hard, and opti-
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mal solutions to three-dimensional problems relevant to the bee’s honeycomb
are not known. To give an example, we do not know the optimal solutions
to the aforementioned mathematical honeycomb structures proposed in Fe-
jes Tóth (1964).

The second possibility is that the hexagonal grid is part of the three-
dimensional structure that constitutes the solution to a three-dimensional
optimization problem. Even if this is the case, it is still probable that the
hexagonal grid is part of the real, three-dimensional honeycomb because
this whole structure is optimal in three-dimensions, and not because the
grid is the optimal solution to a two-dimensional problem. This is, once
more, a qualified statement, as the relevant mathematical results for three-
dimensional optimization problems are not known. The hexagonal grid is
nothing but a geometrical structure, and the fact that it is part of a more
complex structure may be unrelated to the fact that the hexagonal grid
features in the HC.

What would have to be established to show the relevance of the HC to
a three-dimensional structure? The HC is one possible explanation of the
shape of openings of the three-dimensional honeycomb structure. However,
the structure is three-dimensional, and it is probably the solution to a differ-
ent, three-dimensional optimization problem that will explain the shape of
the entire structure. So one way to establish the relevance of the HC would
be to show that the reason why the three-dimensional structure has its shape
subsumes the reason why a part of the structure has its shape. Or, to put
it differently: the proof of the optimality of the three-dimensional structure
would somehow have to imply the proof in the two-dimensional case, i.e.
the proof of the HC. It is unclear whether such a relation between results
is plausible or can be established, as we simply do not know the relevant
optimality results. However, as long as we do not know whether the HC is
relevant here, we should suspend our judgement about this case.

It could be objected that the hexagonal shape of the openings does not
have to be a consequence of the optimality of the three-dimensional structure,
because it is a biological requirement that the cells of the honeycomb have
(two-dimensional) openings in the shape of the hexagonal grid. It would then
be reasonable to postulate this structure as a kind of boundary condition for
the optimality of the entire, three-dimensional cells.

If we, however, simply postulate the hexagonal structure as a boundary
condition, then the HC loses its explanatory power. In this case, we do not
use the HC to explain the structure of the bee’s honeycomb, but we use it
in the deduction of a different result, the optimality of a three-dimensional
structure. If, on the other hand, we could prove that a) the hexagonal
openings are part of the optimal three-dimensional cell structure, and that b)
the proof of the optimality of the three-dimensional structure really subsumes
the two-dimensional, hexagonal case, the relevance of the HC would not have
to be postulated, but it would follow from a stronger result. In this case, the



4.5. FEJES TÓTH: A MATHEMATICAL PROPOSAL 95

HC would indeed be explanatory.
I have not ruled out the possibility that the HC is explanatorily relevant

to the actual honeycomb. However, the arguments in this section show that
the relevance of the HC depends on optimality results in three dimensions,
and as we do not yet have a clue what the optimal solution in three dimen-
sions might be, we should abstain from such speculations at this point of
mathematical progress.

4.5 Fejes Tóth: A Mathematical Proposal

I will now turn to the second goal of the chapter, namely finding out what the
best available scientific explanation of the structure of the bee’s honeycomb
is. I will examine scientific and mathematical results that shed light on this
question.

The most important paper that examines the honeycomb from a math-
ematical point of view is well known in the mathematical literature5, but
it has not been taken into account by philosophers. The paper is entitled
“What the Bees Know and What They do not Know” and was written by
Laszlo Fejes Tóth (1964).

Fejes Tóth’s goal is to find out whether the bee’s honeycomb is an opti-
mal solution to some relevant geometrical optimization problems. His most
important result is that the bee’s solution is not optimal. While this re-
sult is interesting within pure mathematics, it does not warrant conclusions
about actual honeycombs, because it essentially depends on the problematic
assumption that the walls of the honeycomb are infinitely thin. Fejes Tóth
readily acknowledges this problem; I will explain his result and its limits in
some detail.

4.5.1 Fejes Tóth’s Proposal

Here is a short account of Fejes Tóth’s results. He starts with a description
of what he takes to be the actual structure of the bee’s honeycomb. It is a
structure entirely made up of one type of cell. These are hexagonal prisms
with one open end and a bottom formed by three rhombi; see figure 4.2
(dubbed “Actual Honeycomb” in the following). These cells are arranged
in two layers, oriented in opposite directions with the hexagonal openings
pointing outwards, showing the characteristic seamless hexagonal tiling, and
the bottom side of each layer meeting the other layer – the landscapes made
up of three-rhombi-hills neatly fit together.

Fejes Tóth’s goal is to compare this and other possible designs with
respect to their surface area: is the bee’s structure really the structure that

5See the quotes by Klarreich and Morgan above, as well as Hales’s paper on the HC,
for remarks on Fejes Tóth in the mathematical literature.
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minimizes surface area, or do other, superior designs exist? The biological
motivation for his approach is that there is a direct correspondence between
the surface area of a given structure and the amount of wax necessary to
build a honeycomb: less surface area means that less wax is necessary to
build a honeycomb. Of course, it could be asked whether surface is a good
measure for the amount of wax necessary to build a honeycomb. We will
return to this point in the discussion of Fejes Tóth’s proposal.

Before one can even start to compare the Actual Honeycomb with other
candidates, it is necessary to impose some reasonable restrictions on the
search space of admissible candidate structures – we are not interested in
any kind of surface-minimizing structure, but only in biologically-reasonable
ones. Fejes Tóth thus keeps certain structural features of the Actual Hon-
eycomb fixed. These features define a type of mathematical structure called
honeycomb; this type provides us with a framework, which turns a vague
question about the optimal use of wax into a precisely formulated mathe-
matical problem of surface minimization.

The most important features of the type honeycomb are that the cells
are arranged between two parallel planes, that they are congruent6, fill the
space between the planes without overlap, and that they have an opening in
exactly one of the two planes. One consequence of these constraints is that
the cells are arranged in two layers, with each cell belonging to exactly one
of the two planes, via its opening. We can immediately see that the bee’s
honeycomb is of the type honeycomb.

Fejes Tóth formulates two optimization problems for the honeycomb. The
first isoperimetric problem asks for cells with minimal surface area for a given
volume v if we assume that the honeycomb has a certain constant width w,
i.e. a constant distance between the two planes. The effect of assuming a
constant width is that we can thereby “fix the depth” of cells: if the width
is large compared to the volume of cells, i.e. if w � 3

√
v, then the cells will

be stretched orthogonal to the planes. The second isoperimetric problem is
more permissive in that we let the width of the honeycomb vary as well.
Fejes Tóth shows that the bee’s solution is not optimal with respect to the
second isoperimetric problem, but notes that it might be biologically sensible
to let the cells be of a certain, fixed depth. Thus the biologically-relevant
problem might be the first isoperimetric problem.

Fejes Tóth then proves the main result of the paper: The bee’s cells
(figure 4.2) are not the best geometrical solution to both isoperimetric prob-
lems. If we choose a different design for the cell bottom, we get cells with
a smaller surface area for the same volume and arbitrary lengths; figure 4.3
shows the superior cell.7 Fejes Tóth sums up his result as follows: “Instead

6More specifically, only congruent convex polyhedra are considered.
7The design of the bee’s cell bottom is based on the rhombic dodecahedron, while Fejes

Tóth’s cells are based on a truncated octahedron.
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of closing the bottom of a cell by three rhombi, as the bees do, it is always
more efficient to use two hexagons and two rhombi ” (Fejes Tóth, 1964, p.
473, emphasis in original).

Figure 4.3: The “Fejes Tóth Structure”

The design of this “Fejes Tóth Structure” is superior to the bee’s design,
but by how much? Fejes Tóth calculates that the saving in surface area is
less than 0.35% of the area of a cell opening, and much less of the area of
a cell of normal length. He acknowledges that this is a very small gain in
efficiency, and as the real cells are not perfectly regular in several respects,
it seems that the difference is negligible in practice.

4.5.2 Mathematics vs. The World: Discussion of Fejes Tóth

Now that we are familiar with Fejes Tóth’s proposal, we want to assess its
significance for actual honeycombs. What do the mathematical results tell
us about real honeycombs?

Before we tackle this question, it is instructive to compare Fejes Tóth’s
result with Lyon’s and Colyvan’s explanation. Fejes Tóth’s result differs
from Lyon’s and Colyvan’s in that, if it were applicable, it would establish
that the bee’s solution is not optimal. In this case, it would be interesting
to explain, from an empirical point of view, why the bee’s solution is not
optimal. The second difference between the two results is that Fejes Tóth’s is
only a relative optimality result. The optimal solutions to both isoperimetric
problems are unknown.

Does Fejes Tóth succeed in establishing that the Actual Honeycomb is
not optimal? I think not. His solution presupposes that the walls of the
mathematical honeycomb are infinitely thin, but neither is this true in the
case of actual honeycombs, nor does he provide an argument why the dif-
ference between honeycombs with infinitely thin walls and honeycombs with
thick walls can be neglected in practice, such that his mathematical results
hold in application.
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The last point needs some elaboration. In what scenario could we neglect
the difference between a honeycomb with infinitely thin walls and a honey-
comb with thick walls? The idea behind the assumption of infinitely thin
walls could be that all we have to do to find the wall volume of an actual
honeycomb, and thus the amount of wax necessary to build it, is to multiply
the surface area with a small constant factor that captures wall diameter.
We could then compare the wall volume of two de-idealized structures and
we would find that the de-idealized Fejes Tóth Structure (cells in figure 4.3
with finite thickness) is better than the de-idealized Actual Honeycomb (cells
in figure 4.2 with finite thickness).

However, this procedure will give us a good approximation only if the
walls of honeycombs in the world are sufficiently thin and homogeneous, i.e.
if the overlap of walls around the cell edges is not too big, if the walls have
the same diameter everywhere, and if the structure is regularly shaped. How-
ever, this is not the case. Neither are the walls of honeycombs in the world
very thin, nor are they homogeneous or particularly regular. This means
that if we compare honeycombs in the world with the de-idealized Actual
Honeycomb, the difference between the de-idealized Actual Honeycomb and
any real honeycomb more than offsets the tiny difference between the de-
idealized Fejes Tóth Structure and the de-idealized Actual Honeycomb. The
difference found in the mathematical case does not carry over to the real
world.8

To be fair, Fejes Tóth is clearly aware of the shortcomings of his approach;
in the second part of his paper, he takes some steps towards its resolution by
taking the thickness of walls into account from the outset. Also, Fejes Tóth’s
primary goal is to formulate, and solve, a mathematical, not an empirical,
problem. He knows that the application of the mathematical result to actual
honeycombs is a delicate matter. Consequently, he does not settle for one
formulation of the problem, but offers several different approaches.

At this point, we should not be misled into thinking that the problem
with the failed explanations we have seen so far is that they use idealizations.
The use of idealizations is not problematic per se. Lyon’s and Colyvan’s
explanation is a case in point: There are good explanations that describe
some three-dimensional setting in two dimensions – think of city street maps.
Their explanation could have been successful. The same goes for Fejes Tóth:
the assumption of infinitely thin walls might have been fruitful, but it just
so happens that the real honeycomb is too irregular for the approximation
to be useful.

Nevertheless, Fejes Tóth’s proposal means progress: although ultimately
not successful, it does not face the problems discussed in the first part of the

8Based on this result, it could be conjectured that the small gain in efficiency that
Fejes Tóth has found has been “neglected” by the bees because the structure they build
is not that regular anyway.
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chapter. What is more, Fejes Tóth’s discussion suggests how we can fix the
problem. We have to take the (irregular) thickness of walls into account. We
will examine this kind of approach later in the chapter.

4.6 Biological Stories And An Alternative Expla-
nation

In this section, I first review some recent biological examinations of the actual
construction process of the bee’s honeycomb. We will see that the final
verdict on this issue has not been returned. There are two rival accounts:
One is that the construction process is, at least partially, physical in that
the cells are the result of a liquid equilibrium. The second is that the bees
build the cells mechanically.

I then sketch an alternative explanation for the structure of the bee’s
honeycomb under the assumption that the construction is based on a liquid
equilibrium. If this is correct, then the mathematics underlying the expla-
nation is different from what we have seen so far.

This explanation, based on the liquid equilibrium process, serves a double
purpose: On the one hand, it is a reasonable proposal for an explanation of
the honeycomb. On the other hand, it serves as a further argument against
the relevance of the HC and complements the objections I raised in the first
part of the chapter. I will present the explanation in a two-dimensional
setting to make the argument more accessible; nothing hinges on this in
principle.

4.6.1 How Honeycombs are Built: Pirk et al.

In their paper “Honeybee combs: construction through a liquid equilibrium
process?”, Pirk et al. (2004) examine the construction process of the bee’s
honeycomb and make an observation about the final structure of honey-
combs.

First, here is how the bees construct the honeycomb. The bees do not
form the hexagonal cells entirely “by hand”; rather, they erect a rough frame-
work of cells which is then melted into its final shape:

The structure of the combs of honeybees results from wax as
a thermoplastic building medium, which softens and hardens as a
result of increasing and decreasing temperatures. It flows among
an array of transient, close-packed cylinders which are actually
the self-heated honeybees themselves. (Pirk et al., 2004, p. 350)

The bees raise their body temperature to over 40°C in a coordinated
process – they work simultaneously in neighboring cells in both layers – and
the cells get their characteristic hexagonal shape through a thermodynamic
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process: “the comb structure is a result of a thermoplastic wax reaching a
liquid equilibrium” (Ibid., p. 352).

Second, Pirk et al. make an interesting observation. They took a closer
look at the shape of the cells, and they found that the cell bottoms, or
closings, are not in fact formed by three rhombi (see figure 4.2 for the rhombic
design):

[T]he cell bases are hemispherical from the onset of construc-
tion and never form three rhomboids [...] The ‘three rhomboids’
are just an optical artefact caused by traditional thinking lead-
ing to the wrong conclusions about a three-dimensional struc-
ture from looking at two interlaced hexagonal rasters in semi-
transparency. (Ibid., p. 352)

The apparent three rhombi at the base of cells, the authors contend, is
just the structure of the second layer of cells shining through. This finding
about the cell bases, as we will see in a moment, has been contested in a
recent paper.

If the bees do not construct the cells “by hand”, but use a physical mech-
anism to give the cells their final shape, it is possible to find various optimal
solutions not just mathematically, but empirically. In fact, Pirk et al. were
able to experimentally confirm the formation of hexagonal cells: they filled
the space between rubber cylinders with melted wax and observed the for-
mation of the characteristic hexagonal pattern during the cooling process.

4.6.2 The Real Shape of Cell Bases: Hepburn et al.

The results by Pirk et al. have a small but important flaw. The finding
that the bottom of cells is spherical, and not formed by three rhombi, has
been challenged in a recent paper by Hepburn et al. (2007). Hepburn et al.
examined moulds taken from newly constructed, as well as from old, cells and
found that while old cells indeed have spherical bases, newly-constructed cells
have rhombic bases, see figure 4.4 below. The difference between new and
old cells arises “from gradual accretion of silk and larval faeces, which slowly
changes the ‘apparent’ shape of the cell bottom from the real underlying
rhomboid to a superimposed hemisphere” (Hepburn et al., 2007, p. 270).
Pirk et al. made the mistake of taking moulds exclusively from old cells.

This may appear to be a minor finding, but it is an important part of the
bigger picture. Hepburn et al. point out that if the construction mechanism
postulated by Prik et al. is correct, the rhombic shape is not that surprising;
rather, spherically shaped bottoms would have been “paradoxical”:

[T]hree rhomboids would be expected as a product of equilib-
rium in precisely the same way that soap bubbles form angular,
not hemispherical, contact faces. [...] [T]he underlying geometry
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Figure 4.4: mould of new comb, (Hepburn et al., 2007, p. 269)

of the cell walls and bases are in keeping with mathematical laws
on surface minima. (Hepburn et al., 2007, p. 270)

If the cell bases had been spherical, this would have indicated that at
least not all parts of cells were constructed by thermal equilibrium; the
finding by Hepburn et al. shows that the thermal construction can explain
the shape of the cells, provided that we start with the rounded-off cylinders.
The real importance of this finding, as well as the connection between the
bee’s honeycomb, surface minima and soap bubbles, will be further explored
in section 4.7.

4.6.3 No Liquid Equilibrium After All? Bauer and Bienefeld

A very recent paper, Bauer and Bienefeld (2013), calls into question that
the bee’s honeycomb is constructed via a liquid equilibrium as postulated
in Pirk et al. (2004). Bauer and Bienefeld are much more cautious in their
formulations about what we do and do not know about the construction
process; they think that the process is still “a mystery”.

Bauer and Bienefeld examined the construction process of European hon-
eybees (Apis mellifera) using infrared and thermographic video observations.
Their result is twofold. First, they observe that the bees actively formed the
wax with their mandibles, using their legs for stabilization and to apply the
necessary force. However, it is unclear how the bees measure the geometri-
cal shape of the cells. Second, the temperature of the wax never rose above
37.8°C, while the thorax temperature of builder bees never rose above 39.6°C,
well below the 40°C found by Pirk et al., which is necessary for the liquid
equilibrium: “[t]he wax was compact and did not enter the liquid equilibrium
state at any of the building temperatures observed” (Bauer and Bienefeld,
2013, p. 48). Bauer and Bienefeld concede that heating up the wax may con-
tribute to its plasticity and thereby may facilitate its (mechanical) shaping.
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Finally, they note that wax may not have a clear-cut “jump temperature”; a
clear boundary for the phase transition.

4.6.4 An Alternative Path to the Hexagonal Grid

The final word on how the bees actually construct the honeycomb is not out
yet; both available alternatives raise interesting issues. Here I will sketch
how mathematics and biology could be combined to yield a new explanation
under the assumption that the the construction process is based on a liquid
equilibrium.

The two-dimensional hexagonal grid features in various optimization
problems, in addition to the HC; one of them is the circle packing problem.9
The circle packing problem asks for the optimal packing of equal circles in
the plane, i.e. the densest arrangement of circles without overlap. There is
an obvious candidate solution: each circle is surrounded by six circles such
that the centers of the six circles form a hexagon (see figure 4.5, part (a),
below).10

(a) (b)

Figure 4.5: Close-Packing of Circles (a), corresponding Voronoi Cells (b)

The optimal packing of circles is called the hexagonal packing, but it is
not a tiling of the plane: the circles are not separated by one-dimensional
lines, but by a non-negligible, two-dimensional part of the plane (the circles
cover only 90.68% of the plane). There is, however, a straightforward and
unique way to get from the hexagonal packing of circles to the familiar
hexagonal tiling. If we start from the circle packing and divide the remaining
space between circles, such that each point is assigned to the closest circle,

9See Szpiro (2003, ch. 3-4) for a detailed account of the history of this problem. Lyon
and Colyvan mention the result on p. 229, footnote 2. It seem that they find the result
to be irrelevant to the honeycomb.

10You find this arrangement when you arrange equal coins in the densest possible manner
on a table. Although this arrangement clearly is the best solution, a complete proof of
this conjecture was only given in 1940 by Fejes Tóth, see Szpiro (2003) for more on this.
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we arrive at the hexagonal tiling: the points lying exactly between two or
three circles are the points of the hexagonal grid. The cells we get in this
way are known as Voronoi cells (see figure 4.5, part (b), for an illustration).

Why should we accept this two-step process as an explanation instead of
the HC? Why is this alternative explanation of any relevance at all? After all,
the HC at least explains the hexagonal grid straightforwardly – it establishes
that a minimum amount of wax is necessary for this structure – while the
two-step process seems more complicated: the circle packing problem does
not minimize the amount of wax; this only happens in the second step.

The construction process, based on a liquid equilibrium, suggests that
the primary optimization problem is a packing problem. In a first step,
the bees build cells that make it possible to pack themselves as closely as
possible – this is a close-packing of cylinders – bees – in two layers. In a
second step, they subtract wax from the close-packed cylinders and thereby
minimize the necessary amount of wax. This, I suggest, corresponds to the
two-stage process I described above: first, some bodies are close-packed, and
then, starting from this close-packing, Voronoi cells are constructed, i.e. as
much wax as possible is subtracted. This supports the thesis that the two-
dimensional hexagonal tiling is not due to a tiling problem, such as the HC,
but to a packing problem, such as the circle-packing problem.

4.6.5 What About the Mathematics?

So far, I have proposed that an alternative explanation of the honeycomb’s
structure is plausible if we assume the liquid equilibrium to be the construc-
tion process. On this alternative account, the real optimization problem is
not surface minimization tout court, but a packing problem with subsequent
surface minimization. It could be asked what mathematics has to say on
this issue: What are the optimal solutions to the packing and surface min-
imization problems in three dimensions? And; How are the two problems
related?

Unfortunately, the answers to these questions are not known. For ex-
ample, it is an open problem as to whether the obvious arrangement of
parallel rows of congruent cylinders is the best solution to the general “tin
can stacking problem” in three dimensions; see Hales (2000, p. 440). It is
also unknown whether the bee’s arrangement of cylinders in two layers is op-
timal. The same is true for the relation between the different optimization
problems. This is a common phenomenon, as I pointed out above.

In conclusion, based on one possible construction process, the primary
optimization problem seems to be a three-dimensional packing problem, not
a three-dimensional tiling problem. Therefore, if a two-dimensional opti-
mization problem is relevant to the shape of the openings, it it is plausible
that this is the circle-packing problem, not the HC. However, it is far from
conclusive that the alternative proposal will carry the day. The situation
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is just not well enough understood from a mathematical, as well as from a
biological, point of view.

4.7 Dry Foams, Wet Foams, Honeycombs

At the end of the last section, I pointed out that we do have a very incomplete
understanding of three-dimensional optimization problems: We do not know
what the solutions to relevant packing and surface minimization problems
are. However, there is a physical-mathematical framework that unifies all
the problems we have seen so far. This framework is the topic of the present
section.

The framework suggests an alternative path of inquiry: While we do not
yet understand the mathematics of three-dimensional honeycombs, we can
approach the problem experimentally. Two physicists have explored this op-
tion: they produced a physical realization of the bee’s honeycomb. The result
of the experiment reveals a deep connection between close-packing and sur-
face minimization problems, bringing together all mathematical approaches
to the bee’s honeycomb discussed above.

4.7.1 A Physical-Mathematical Framework: Foams

The distinction between optimal structures with finite and infinitely-thin
walls, or between packing and surface minimization problems, can be cast in
terms of foams.11 Why foams? Just as it is an evolutionary advantage for
the bees to minimize the amount of wax when building a honeycomb, it is
energetically advantageous for soap bubbles to minimize surface area. The
distinction between optimal cellular structures with infinitely-thin walls and
cellular structures with thick walls carries directly over to foam structures:
Some foams have negligible liquid content and the boundaries between soap
bubbles are (almost) infinitely thin. These are called dry foams. On the other
hand, foams with a non-negligible liquid content are called wet foams. In
wet foams, the bubbles do not have large common boundaries, but minimize
surface energy one by one. This results in spheres floating in some medium.

We can classify all optimization problems we discussed so far into one of
these two kinds of foams. In two dimensions, the HC is about the optimal dry
foam of unit bubbles, while the circle-packing problem is the analogue wet-
foam problem. In three dimensions, there is the sphere packing problem, or
Kepler problem, which is a wet-foam of unit bubbles (spheres); the analogue
dry-foam problem, also known as the Kelvin problem, asks for the optimal
dry-foam made of bubbles, or cells, of unit volume.12

11My account in this section is based on Klarreich (2000) and Hales (2000). Weaire and
Hutzler (1999) is an introduction to the physical aspects of foams.

12Today three of these four problems are solved; only the Kelvin problem remains
open. Mathematicians believe that it could take decades to solve it. For a long time,
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The foam problem, corresponding to the honeycomb, cannot be one of
these four problems. The honeycomb foam has to be bounded because every
cell has to have an opening. We have already encountered dry-foam problems
that seem to capture the bee’s honeycomb very well: the two isoperimetric
problems based on honeycomb-type structures defined by Fejes Tóth. The
main shortcoming of these formulations is the assumption of infinitely-thin
walls, in other words, that it is a dry-foam problem. What we would have to
examine, then, is the wet-foam analogue of Fejes Tóth’s problems: we have
to add some liquid content to honeycomb-type structures.

I pointed out above that we do not know whether the Fejes Tóth Struc-
ture is the solution to the dry-foam version of the honeycomb, and the solu-
tion to the corresponding wet-foam problem is not known either. What can
be done, and has been done, is to carry out experiments with foams. We
will now turn to such an experiment.

4.7.2 Realizing the Honeycomb, Physically: Weaire and Phe-
lan

Denis Weaire and Roberd Phelan report their experiment in a paper entitled
“Optimal design of honeycombs”. They start by summing up the results by
Fejes Tóth; see section 4.5.1 above. Then they describe their experiment,
which reproduces the honeycomb with soap bubbles. To this end, they in-
troduce equal-sized bubbles of a liquid solution, between two glass plates,
such that they form a double layer of cells. This is a bounded foam. Weaire
and Phelan observe that the two layers form an array of cells with hexagonal
openings. Their main finding is that, as the liquid content of the foam is
varied, the design of the cell bottoms changes:

[In the case of a] foam of low liquid content [...] which cor-
responds to Toth’s geometrical picture, we observe the structure
proposed by him [see figure 4.3]. If we wet the foam by the ad-
dition of more liquid, the junction between films are thickened
to form what are called Plateau borders. The conditions under
which surface energy is to be minimized are accordingly changed.
What happens as the foam is progressively wetted is quite dra-
matic. At a certain point the Toth structure becomes unstable
and there is a sudden switch to the configuration favoured by the
bees [see figure 4.2]. Such a switch also takes place in the reverse
direction, as liquid is removed. (Weaire and Phelan, 1994)

The experiment, then, has three main components. First, the Fejes Tóth
Structure is realized as a real dry foam. Second, the Actual Honeycomb

the candidate solution was a structure proposed by Kelvin, but in 1994, Denis Weaire and
Robert Phelan found a counterexample to Kelvin’s structure, now called Weaire-Phelan
structure.
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is realized as a wet foam. Third, and most surprisingly, there is a real,
physical connection between these two realizations in that one structure is
transformed into the other if liquid content is added or subtracted. Let us
now turn to the interpretation of this result.

4.7.3 Weaire and Phelan: Interpretation

We can interpret Weaire’s and Phelan’s finding as a sort of physical verifi-
cation that both the Fejes Tóth Structure (figure 4.3) and the Actual Hon-
eycomb (figure 4.2) are optimal solutions: the Fejes Tóth Structure is the
optimal solution to the dry-foam version of the problem, while the Actual
Honeycomb is the optimal solution to the wet-foam version. Of course, this
experiment in no way constitutes a mathematical answer to the mathemat-
ical dry-foam and the wet-foam problems. A proof of optimality is in both
cases missing.

We have seen in the previous section that according to one possible con-
struction process, the bees construct the honeycomb using a liquid equilib-
rium. They melt the cells of the honeycomb into their final form. This
means that the bees realize actual foam bubbles in the honeycomb: the wax
becomes liquid and obeys the physical laws of a foam. The bee’s honeycomb
is an instance of an actual wet foam: the underlying physical process is the
same in the case of the bee’s honeycomb and in the experiment. Therefore,
it is no surprise that they both realize the same structure.13

What does the fact that we can physically transform one foam into the
other, by adding and subtracting liquid content, mean for the bees honey-
comb? We could speculate that the bees start with a wet foam and melt away
some of the wax. This could correspond to the process involving Voronoi cells
I described in the previous section. However, if the bees continued to melt
away wax, it could happen that a sort of structural transition from the Ac-
tual Honeycomb to the Fejes Tóth Structure occurs. If this is so, then Fejes
Tóth’s proposal does not apply simply because the bees, for whatever rea-
son, do not push the melting to the extreme. Ultimately, we would like to
understand the mathematics behind this structural transition.

4.8 Conclusion and Outlook

Here is a summary of the most important results and lessons of the chapter.
13Hypotheses linking the bee’s honeycomb to soap bubbles via an equilibrium process

have been around for some time; see e.g. Klarreich (2000, p. 159). However, only the
biological results reported in the last section confirm that this could actually be the case.
Note that the biological results were unknown to Weaire and Phelan in 1994! Still, one
important difference between a genuinely liquid foam and the bee’s honeycomb should be
kept in mind: the bee’s foam is not liquid in its totality, but only locally. It is unclear to
me how this affects the formation of minimal surfaces.
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The first goal of the chapter was to argue against the original explana-
tion of the bee’s honeycomb, proposed by Lyon and Colyvan. I offered two
arguments. First, I established that the original explanation is incomplete
because the real honeycomb is non-trivially three-dimensional. Second, I
argued that, because the real structure is three-dimensional, the HC could
be superfluous, given that it is a three-dimensional optimization problem.

The main philosophical lesson we can learn from the first part of the chap-
ter is that we have to be more careful in the use of examples from science,
especially if we rely on our examples to be real-life cases. The discussion also
has immediate consequences for the debate on mathematical explanations in
science. As the original explanation, based on the HC, is not scientifically
adequate, we should stop using it as a case of mathematical explanations in
science and postpone the discussion of the role of mathematics for the struc-
ture of the bee’s honeycomb until we have a clear, well-founded explanation
of this phenomenon. As a case in point, my argument undermines the use
of the honeycomb case as a counterexample by Alan Baker.

The second goal was to present and assess mathematical and scientific
results that could lead to a novel, adequate explanation. In the discussion of
Fejes Tóth’s mathematical proposal, I found that his result is not applicable
to the bee’s honeycomb because it assumes infinitely-thin walls, an idealiza-
tion that cannot be removed in a sensible way. I then presented an overview
of some relevant biological results. Here I found that the biological details
of the construction process are still debated. There are two rival accounts.
In the first account, the construction process relies on a liquid equilibrium,
while the second account maintains that the construction is carried out me-
chanically by the bees.

If the first construction process, using a liquid equilibrium, is correct,
then the best close-packing of cylinders, followed by a subtraction process
from the close-packing structure, may be relevant instead of a tiling problem.
This yields a different mathematical-biological explanation of the structure
of the bee’s honeycomb. However, the relevant mathematical optimization
problems are still open.

It is not clear to me what kind of mathematical optimization problem
is relevant if the second, mechanical construction process is correct. This
outcome would raise interesting biological questions as well as issues about
the application of mathematics. Bauer and Bienefeld point out that it is not
clear how the bees measure the geometry of the cell. It is even more puzzling
how the bees solve a mathematical problem, which seems necessary if they
form the cells by hand. How do they memorize the solution to this optimiza-
tion problem? This question becomes even more pressing if the underlying
mathematics is very complicated. How do the bees bypass the complicated
mathematics, and find an optimal solution in a potentially very large search
space? If the number of alternatives is infinite, it seems impossible for them
to check all possible alternatives by “trial and error”; the bees would have to
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perform a kind of intelligent search. How is this supposed to work?
Irrespective of what the correct biological account of the construction

process is, we see that biological results, mathematical considerations, and
even physics are intertwined. The actual construction process can speak
in favor of a particular mathematical account of the story, but it can also
make it implausible. For example, if the construction relies on a liquid
equilibrium, it is plausible that some wet foam formulation of the underlying
mathematics is in action, while a mechanical construction process could rule
out the application of this kind of mathematics, as it could be impossible
for the bees to realize a very complicated mathematical structure “by hand”.
The physical realization of the bee’s honeycomb as a wet foam speaks in
favor of the construction based on the liquid equilibrium.

Then, we saw once more that the issues of application of mathematics and
idealization are intimately connected. Many of the problems of application
we discussed can be cast in terms of harmless and harmful idealizations.
In the present case, as in general, we have to make an effort to explain
why some idealizing explanation fails. We glossed over other idealizations
that are more or less unproblematic; for example, we always assumed that
the structures are infinitely extended in two dimensions – but that is no
problem as long as the real honeycomb is sufficiently large. To say that an
explanation using mathematics fails because mathematical models idealize,
i.e. contain information that is literally false, is always an easy way out, but
we should resist this temptation. A further analysis of this case, in terms of
idealizations, would certainly be fruitful.

Finally, there are some open scientific and mathematical problems. First,
the explanations we discussed so far only take the (biological) desideratum
of optimization into account. However, this cannot be the only constraint
at play. For example, the bees have to make sure that the honeycomb is
sufficiently stable.14 The actual honeycomb might not reach the point of
structural transition realized in the Weaire-Phelan experiment because sta-
bility stands in the way. Stability is obviously in tension with optimization
– but how exactly does stability come into play and how do the constraints
interact?

Then, I did not discuss all relevant kinds of honeycombs in this chapter.
Different kinds of bees might construct honeycombs with a different global
structure. This would open the possibility of thinking about other kinds of
mathematical honeycombs, and their respective advantages and drawbacks.

I will not repeat the many open mathematical problems I pointed out
throughout the chapter. However, I would like to stress that it is not suffi-
cient to study a phenomenon such as the bee’s honeycomb exclusively from
a mathematical point of view. It is a job for philosophers of science to try to

14Weaire and Hutzler (1999, p. 167) mention stability and simplicity as constraints
besides surface minimization.
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connect disparate results, from various disciplines, to get the bigger picture;
be it only to understand the bee’s honeycomb.



110 CHAPTER 4. THE BEE’S HONEYCOMB



Part II

The Application of

Mathematics

in the Genesis of General

Relativity

111





Chapter 5

The Genesis of General

Relativity:

A Short Introduction

5.1 Introduction

This chapter is a short introduction to the history of early general relativity,
between 1907 and 1916. The goals of the chapter are, first, to provide the
historical background for the philosophical discussion in chapter 8, and sec-
ond, to give a short, informal introduction to the physics and mathematics
relevant to the episode.

The chapter is organized as follows. In section 5.2, I introduce the central
motives, theories and strategies of Einstein’s search for GR. After motivating
the search for GR in subsection 5.2.1, I introduce relevant physical concepts
and theories that were already available at the time, in subsection 5.2.2.
In subsection 5.2.3, I discuss the history of the “new mathematics”, what
is now known as tensor calculus, the mathematical theory commonly used
to formulate GR. In subsection 5.2.4, I introduce heuristic strategies and
principles that guided Einstein in his search for GR.

These protagonists and motives then enact the drama of GR1, in sections
5.3, 5.4 and 5.5: The first two acts of the drama cover the episode from 1907
to 1912, the year in which Einstein and Grossmann formulated the so-called
“Entwurf” theory of GR. The third act tells the story of how the discovery
of the final, correct field equations was delayed for three years, despite the
fact that all main protagonists were already on the scene.

The account presented here does not pretend to be original; it is largely
based on the standard reference for the history of GR, the four volumes of
“The Genesis of General Relativity”, in particular Janssen et al. (2007a,b);

1The picture of GR as a drama goes back to Stachel (2007).
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Renn and Schemmel (2007). The discussion of the purely mathematical tra-
dition in 5.2.3 draws on the historical account in chapter 6, and the historical
literature therein.

5.2 Protagonists and Motives

5.2.1 What prompted the search for GR?

One of the starting points for the search for a generalized theory of relativity
(GR) was a conflict that arose between classical mechanics, in particular
Newton’s universal law of gravitation, and the new theory of special relativity
(SR), discovered by Einstein in 1905.

To a large degree, SR grew out of the then-new theory of electrodynamics.
SR is based on two principles. First, the principle of relativity states, that
if a physical law holds in one inertial frame, it holds in all inertial frames.
Second, the principle of the constancy of the speed of light states that the
speed of light, c, is the same in all inertial frames. The second principle is
often read as the claim that the speed of light is an upper limit on the speed
of physical interactions. These two principles together imply that the laws
of physics are Lorentz covariant, i.e. they do not change their form under
so-called Lorentz transformations.2

Einstein’s main achievement was to reinterpret the formal Lorentz trans-
formations, which were known to hold in electrodynamics, as a fundamental
feature of space and time; it is particularly noteworthy that in SR, the fact
that physical interactions propagate, at most, at the speed of light becomes
a feature of space-time, and thus is an explicit desideratum for all space-time
theories.

The requirement that physical interactions travel at a finite speed is in
contradiction to Newton’s law of gravitation, which implies an action-at-a-
distance between masses. It was thus necessary to reformulate the law of
gravitation, to make it Lorentz covariant. On top of this, it was desirable
to implement one of the features of electrodynamics in gravitational theory,
namely to find a field theoretic formulation of gravitation, such that forces
are mediated by a real gravitational field. Finally, SR also had a deep impact
on the concepts of mass and energy. It showed that they are equivalent; if
mass is the source of gravitation, then so is energy. A new law of gravitation
had to incorporate the equivalence of mass and energy. All these points
made it necessary to rework gravitation in view of SR.3

2See Renn (2007a, sec. 2.8) for a short historical introduction to the genesis of SR.
3See Renn (2007a, sec. 2.9) for more on the conflict between SR and classical gravita-

tion.
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5.2.2 Physics before GR

What is the role of existing physical theories in the genesis of GR? In par-
ticular: which theories were important for the formulation of GR, and in
what form? In this section, we introduce important classical and special-
relativistic theories and concepts.

Minkowski Formalism (SR)

Special relativity is a necessary condition for the formulation of a general-
ized theory of relativity. One formulation of SR, Minkowski’s geometrical
approach, was particularly important in the genesis of GR.

Einstein’s formulation of SR, in 1905, had shown that space and time
themselves were no longer concepts that could be treated separately – they
were no longer invariant quantities. Minkowski’s reformulation of SR, in
1908, established that the two principles of SR imply the existence of a dif-
ferent invariant quantity, now known as the Minkowski line element, which,
in turn, can be used to succinctly describe special-relativistic space-time.4

The significance of the Minkowski line element is best illustrated with an
analogy. In Cartesian coordinates5, we can express the distance ds between
any two points with coordinate differences dx, dy, dz6 in three-dimensional
space with the help of the Pythagorean Theorem:

ds
2 = dx

2 + dy
2 + dz

2 (5.1)

This form of ds2 is an invariant quantity under change of Cartesian co-
ordinates: If we use any other set of Cartesian coordinates, ds2 is the same.
On the Cartesian picture, length is not a property of the coordinate system,
but a real geometric property. Minkowski showed that the same can be done
in SR. If we multiply the time coordinate with the speed of light, and add
it to the Pythagorean formula with negative sign, we get a metric with four
spatial coordinates:

ds
2 = dx

2 + dy
2 + dz

2 − c
2
dt

2 (5.2)

ds is the Minkowski line element; it represents lengths not in space, but
in space-time. It is sometimes called a pseudo-Euclidean metric. It is similar
to Pythagorean distance, but has some peculiarities. ds2 can be zero without
the components being zero, namely if dx2 + dy2 + dz2 = c2dt2. Two events
that are separated in this manner are connected by a light signal. The set

4See e.g. Renn (2007a, sec. 2.8) for an overview of the historical significance of
Minkowski’s work.

5Cartesian coordinate systems are orthogonal with equal units for all coordinate axes.
6Note that historically, the necessity of using coordinate differentials was not a feature

of Minkowski’s original formulation, but only emerged in the so-called Einstein-Abraham
controversy, see below.
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of all events, connected by a light signal with e, form the light cone of e. If
the distance between two events is negative, i.e. c2dt2 > dx2 + dy2 + dz2,
they are time-like separated, i.e. one is inside the other’s light cone. If the
distance is positive, they are space-like separated, i.e. they lay outside each
other’s light cone. This partition of space-time, into three invariant sets, is
best captured by space-time diagrams.

In four-dimensional geometry, Lorentz transformations are analogous to
spatial rotations in three dimensions. It can be shown that ds2 is in close
correspondence with the Lorentz transformations: it is invariant under the
Lorentz transformations, and it can be used to characterize them. ds2 is in-
dependent of coordinates on the picture of SR.7 In sum, Minkowski provided
a geometric formulation of SR, as a theory of a four-dimensional, pseudo-
Euclidean space-time manifold.

Minkowski’s reformulation is significant, for the genesis of GR, for sev-
eral reasons. It is one of two crucial ingredients that paved the way for a
new mathematical approach; the generally covariant formulation of relativ-
ity, see Norton (1984, p. 260). Firstly, it suggested a characterization of
physically significant quantities in geometric and invariant theoretic terms.
Secondly, as we will see, the form of the expression (5.2) probably suggested
a generalization of the metric. It took some time before Einstein recognized
the importance of Minkowski’s formulation of SR; he dismissed it as a fancy
piece of mathematics probably as late as 1911; see Norton (2000, p. 141).
In 1912, it became an important part of his heuristics.

Lorentz Model (Electrodynamics)

We noted above that SR at least partially grew out of Einstein’s reflections
on certain features of electrodynamics. Electrodynamics continued to be a
template for Einstein’s approach to an integration of gravitation and relativ-
ity. The approach has been characterized as the “Lorentz model” of physical
theories.8

The Lorentz model grew out of Hendrik Antoon Lorentz’s reflections
on experiments in electrodynamics. On the Lorentz model, the interaction
between elementary particles should not be described in terms of a force that
the particles exert on each other, instead we should think of the interactions
as mediated by a field created by the particles. Only when this field given
can we determine how particles move, as it is the field that exerts the force
on particles.9

7Note that Minkowski did not introduce ds as “line element”; this only happened in
discussions of rigid bodies and rigid motion; see Stachel (2007, p. 105).

8See Renn (2007a, p. 54) for a useful, short description of the Lorentz model. For a
more detailed explanation see Renn and Sauer (2007, sec. 2). The following draws on
these accounts. Note that I do not take this model to carry any metaphysical weight.

9In principle, particles can be manipulated independently of a field, e.g. with other
kinds of forces, which, in turn, influence the fields.
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This model of a physical theory suggests a division of labour in the math-
ematical representation: First, we have to describe how the distribution of
elementary particles determines a corresponding field with a field equation
– in electrodynamics, these are the Maxwell equations. Second, can then
deduce an equation of motion from the field equation, which describes how a
test particle moves in the field; this is the Lorentz force in electrodynamics.
In classical mechanics, the Poisson equation is the field equation from which
we can derive the Newton’s law of motion.

Poisson Equation (Classical Mechanics)

Two aspects of classical mechanics stand out as particularly important for
the discovery of GR: the formulation of classical gravitational theory with
the Poisson equation, and Lagrangian mechanics.

The Poisson equation is one of the starting points of Einstein’s search for
the field equation of GR.10 It encodes the classical theory of gravitation, but
in a form that was particularly suitable for Einstein’s purposes. The Poisson
equation is

∆φ = 4πGρ (5.3)

The components of the equation are the gravitational potential φ, the
Laplace operator ∆, defined as

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(5.4)

Then, G is the gravitational constant, and ρ, is the density of gravita-
tional matter. Both φ and ρ are scalar functions of three-dimensional space.

Why is the Poisson equation a more suitable starting point for the search
of GR than, say, Newton’s law of gravitation? The latter is

F = G
mM

r2
er (5.5)

with F the force vector, m and M two point masses, er the unit vector
in the direction of the force, and r the distance between the two masses.

The differences between the two formulations of classical gravitation can
help us get a clearer picture of the role of the Poisson equation. First,
Newton’s equation is a force law; it is a vectorial equation. The Poisson
equation is a scalar potential equation. We can recover the gravitational force
from the the potential, determined by the Poisson equation by differentiation,
but the fact that the Poisson equation is scalar makes it more tractable in
many cases. This is a pragmatic difference between the two formulations.

10The following account, of the role of the Poisson equation in the genesis of GR, is
based on Renn and Sauer (2007, sec. 2.1).
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A second difference is that Newton’s law is formulated for two point
masses, while the Poisson equation uses a continuous distribution of mass
densities. Thus the Poisson equation is more general. Despite these differ-
ences, the two formulations are often characterized as mere formal variants
with the same physical content.

The crucial difference between the two formulations is that the Poisson
equation is closer to the Lorentz model: The potential can be interpreted as a
gravitational field, which is determined by the distribution of mass density.
From the potential we can derive the force law. This suggests that the
Poisson equation is a good starting point for a reformulation of gravitational
theory, based on the Lorentz model.

The analogy between the Poisson equation and an actual field theory is
incomplete: in the domain of classical mechanics, the potential function is
not interpreted realistically – it is a mathematical tool. The advent of GR
will put the gravitational potential right at the center of attention; this is a
radical conceptual shift.

Energy-Momentum Tensor (SR, Continuum Mechanics)

The Energy-Momentum (EM) tensor is the mathematical object that repre-
sents the unification of mass, energy, momentum and stresses in GR. How-
ever, we do not need GR to construct the EM tensor; it has its roots in
the special-relativistic reformulation of branches of classical mechanics, such
as hydrodynamics and electrodynamics. As soon as SR was available in a
vector-analytical formulation, it could be inferred that the EM tensor should
replace the simpler, classical concept of energy and momentum. Here we will
explain, very briefly, the motivation for the shift from the simple classical
concepts to the rather involved EM tensor.11

The EM tensor describes continuous distributions (densities) of quantities
– energy and momentum in the case of GR. The densities are assigned to
small elements that fill space-time. The picture that is often adopted is that
of a fluid. A fluid is different from a solid in having small antislipping forces:
The forces that counteract motion in the direction parallel to the surface
between two neighboring elements are small. In a perfect fluid, these forces
are zero. There is an even simpler case than that of a perfect fluid, that of
“dust”. In dust, particles in an element are not in relative motion – there is
an inertial frame in which all particles in the element are at rest. This simple
case is sufficient to understand why we need a rank-two tensor to represent
mass-energy and momentum in SR, and consequently GR.

The first ingredient for the argument is the reformulation of the concept
of density in SR. Consider an element of dust, in the inertial frame, in which

11The account given here is based on the very accessible presentation in Schutz (2009,
ch. 4) – as a consequence, the account given here is not entirely historically accurate. I
will indicate which parts of the account can be found in Einstein’s writings.
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the particles are at rest. The number of particles n in an element is called
the number density of the element. The number density is not a Lorentz
covariant quantity: if we consider the same volume element in a different
inertial frame, the volume will contain the same number of particles, but
it will be Lorentz contracted in the direction of motion, which increases
the number density. However, we can integrate the number density as a
component in a Lorentz covariant four-vector, the number-flux four-vector.
The other components of this vector capture the number of particles flowing
through a unit surface of constant x, y, z in a unit of time. It makes intuitive
sense that this is a Lorentz covariant four-vector, if we conceive of the time
component of the vector, the number density, as the flux of particles through
a surface of constant time – flux in time and space are on a par in SR.

The second ingredient is very similar, but concerns the concepts of energy
and momentum in SR. In isolation, they are not Lorentz covariant, but they
can also be integrated as the components of the energy-momentum four-
vector, the four-velocity of a particle multiplied by its mass. Energy (or
mass) are the time-component of this vector, while the three components of
three-momentum are the spatial components.12

These two ingredients imply that we need a second-rank EM tensor to
represent the distribution of mass-energy and momentum in space-time. For
dust, we can define the energy density of a volume element as the energy
of each particle in the rest frame, m, times the number of particles in the
volume element, n, yielding the energy density ρ = mn. If we now look at
how energy density transforms under change of inertial frame, we see that,
according to the first ingredient, we have to transform it, because the volume
element is Lorentz contracted, and according to the second ingredient, we
have to transform it using a second Lorentz factor, because energy transforms
into momentum. Thus, energy density transforms, not as the component
of a four-vector, but as the component of a quadratic array with sixteen
components, a rank-two tensor that is the tensor product of the number-
density vector and the energy-momentum four-vector. The same argument
can be applied to the other components of the EM tensor T ab, the energy
flux as well as the momentum density and flux.

The case of dust is also discussed in Einstein and Grossmann (1995, par.
4) under the title “motion of continuously distributed incoherent masses in
an arbitrary gravitational field”. Einstein writes the EM tensor as

Θµν = ρ0
dxµ

ds

dxν

ds
(5.6)

This is exactly what is described above, with ρ0 the mass-energy density
and dxµ

ds
dxν
ds the product of the two vectors described above. Note that we

have adopted Einstein’s notation, which does not use the position of indices

12See Schutz (2009, ch. 2).
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to distinguish co- and contravariant quantities – the contravariant nature of
the EM tensor is indicated by the use of the Greek letter Θ.

As Einstein notes (Einstein and Grossmann, 1995, p. 312), the EM
tensor will take on a different form if we consider more general situations,
such as perfect fluids. In general, the components of T ab will be the flux of a
momentum across the surface of constant b in some frame of reference, with
“time momentum” being energy, and flux across a surface of constant time
the number density.

Lagrangian Formalism (Classical Mechanics)

The Lagrange formalism of classical mechanics can be used to solve mechan-
ical problems under geometrical constraints.13 On the Newtonian approach,
geometric constraints have to be formulated using constraining forces, which
complicates matters. The Lagrangian formalism does not use forces, but for-
mulates mechanical problems in terms of energy, and as constraining forces
do not do work, they are easier to capture in this framework.

More specifically, the Lagrangian of a physical system is the difference
between kinetic and potential energy of the system:

L = T − V (5.7)

The idea is that the equation of motion can be obtained by considering
all possible paths of a body, where the paths under consideration already
incorporate geometrical constraints. The actual path is found by calculating
the extremal integral of L. The principle warranting this inference is called
Hamilton’s principle, and it can be expressed as

δ

��
Ldt

�
= 0 (5.8)

From this principle, we can deduce the equation of motion, the so-called
Euler-Lagrange equations:

d

dt

�
∂L

∂ẋi

�
− ∂L

∂xi
= 0 (5.9)

The Euler-Lagrange equations are analogous to Newton’s law of motion:
∂L
∂ẋi

can be read as the impulse, and ∂L
∂xi

as the force; we thus obtain the
result that the change of impulse over time equals force. The use of the
Lagrangian formalism constitutes a shift from a formulation of mechanical
problems in terms of forces to a geometrical formulation.

Later in the genesis of GR, the Lagrangian formalism also suggested
interpreting the metric as the gravitational potential, for the following rea-
son. We can think of a geodesic line, the shortest distance between two

13The following account is based on Renn and Sauer (2007, pp. 141, 155).
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points in a general space – informally the closest thing to a straight line in
a curved surface, think of big circles on a globe – as the extremal integral
of an infinitesimal line element ds (which is already a generalization of the
Minkowski line element in equation (5.2)):

δ

��
ds

�
= 0 (5.10)

There is now an analogy between this purely geometrical principle and
Hamilton’s principle in equation (5.8), suggesting that we use ds = Ldt. If
we insert this into the Euler-Lagrange equations, we see that the force term
∂L
∂xi

is basically a (coordinate) derivative of the metric, i.e. the metric has
exactly the same role as the potential in classical mechanics. This leads to
an identification of the metric with the potential.

5.2.3 Enter the Mathematics

In this section, we give a very short overview of the “new” mathematics that
was first applied in the Entwurf theory.

Gaussian Surface Theory

Gaussian surface theory, a part of modern differential geometry, is the math-
ematical theory that purportedly established a close connection between ge-
ometry and GR from early on. In later recollections, Einstein repeatedly
wrote that Gaussian surface theory helped pave the way for the search for
a suitable mathematical framework for GR; see Reich (1994, ch. 5) and
Stachel (2007). Here we give a very short, informal overview of the theory.14

Intuitively, a (regular) surface is a two-dimensional landscape in ordinary,
three-dimensional space, without edges and self-intersections. Examples of
surfaces are planes, spheres and rotational paraboloids. Two-dimensional
surfaces are parametrized by a mapping from two-dimensional coordinate
space to real three-dimensional space; the mapping is a local description of
the surface and ensures there is a (unique) tangent plane to every point of
the surface.

For our purposes, Gauss’s most important result was to show that certain
quantities of surfaces can be described intrinsically, i.e. without using the
embedding space of the surface. The central object of intrinsic geometry is
the so-called first fundamental form. The first fundamental form is a mea-
sure of infinitesimal distances in a Gaussian surface. It can be expressed in
different ways. If we use the three-dimensional ambient space, an infinites-
imal displacement from some point in direction w = (x, y, z) of the surface
is

14The following account is based on the historical accounts just mentioned, and on
do Carmo (1993), an introduction to differential geometry.
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dw
2 = dx

2 + dy
2 + dz

2 (5.11)

This is a form of the Pythagorean theorem. Gauss’s innovation is based
on the fact that we can express the first fundamental form in terms of the
coordinate function of the surface in that point. Take a vector v = (p, q)
in two-dimensional coordinate space, and map it to a three-dimensional
vector tangent to the surface, using the parametrization of the surface:
w = (x(p, q), y(p, q), z(p, q)). This results in a description of an infinitesi-
mal displacement in terms of the two-dimensional coordinate space:

dw
2 = Edp

2 + 2Fdpdq +Gdq
2 (5.12)

The letters E, F and G stand for the following functions:

E =
�
dx
dp

�2
+
�dy
dp

�2
+
�
dz
dp

�2 (5.13)

F = dx
dp

dx
dq + dy

dp
dy
dq + dz

dp
dz
dq

G =
�
dx
dq

�2
+
�dy
dq

�2
+
�
dz
dq

�2

E, F and G encode the rate of change of a tangent vector w, in terms of
the rate of change of a coordinate vector v = (p, q), in coordinate direction p

(E) and q (G), and the degree of dependence of the coordinate directions p

and q (F). The significance of the first fundamental form with components E,
F and G lies in the fact that it allows us to determine intrinsic geometrical
properties of a surface, such as the length of curves in the surface, angles
between two curves, surfaces areas, and intrinsic curvature. One of the most
important results about intrinsic properties is Gauss’s “theorema egregium”,
which establishes that the intrinsic curvature of a surface depends only on
the first fundamental form, and not on the parametrization of the surface.

In modern terminology, the functions E,F,G, are the components of the
metric of the surface. If we can map one surface to another, and preserve
these functions, the two are (locally) isometric, which means that “from
within the surface”, there is no way of telling the two surfaces apart.

Gauss also showed that the shortest curves within a given surface depend
only on the metric of the surface. We can parametrize a curve in coordinate
space as c(t) = (p(t), q(t)); this can be plugged into a parametrization of
the surface to get the curve embedded in the surface in three-dimensional
space. The shortest distance between two points can now be found by finding
a minimal curve between the two. The distance between two neighboring
points is given by

ds =
�
Edp2 + 2Fdpdq +Gdq2 (5.14)

Extremal paths between a and b can therefore be found as
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δ

�� b

a

�
Edp2 + 2Fdpdq +Gdq2

�
= 0 (5.15)

This equation can be found, more or less in this form, in notes that Marcel
Grossmann took from lectures on differential geometry by Carl Friedrich
Geiser – and these lecture notes, we are told, were used by Einstein to learn
for the exams.15

Riemann: Manifold, Metric, Curvature Generalized

A further seminal contribution to differential geometry was provided by Rie-
mann (1876c), entitled “Ueber die Hypothesen, welche der Geometrie zu
Grunde liegen”.16 This is the written version of Riemann’s habilitation lec-
ture. It addresses a wide audience and therefore is more “philosophical”, or
conceptual, rather than mathematical, in that it contains almost no formu-
las.

The ideas laid out in the habilitation lecture generalize Gauss’s ideas to
general, n-dimensional manifolds, which need not be embedded in a space of
higher dimension. The habilitation lecture begins with the first ever discus-
sion of general manifolds, including their topological and geometrical prop-
erties.17

Riemann then discusses what we would call a Riemannian metric, i.e. a
quantity ds which is a function of variables dxi with n·n+1

2 coefficients. While
he does not write down the expression, he is referring to the line element and
the components of the metric tensor gik as coefficients of variable differentials:

ds
2 = gikdxidxk (5.16)

Riemann notes the tensorial character of the line element: it is indepen-
dent of the choice of variables. The line element, being an “inner measure”
(“inneres Massverhältnis”) of a manifold, is independent of points outside the
manifold, i.e. of its embedding. This suggests a generalization of intrinsic
geometry to n dimensions.

The habilitation lecture also contains the first description of the “curva-
ture measure” (“Krümmungsmass”), what we know as the Riemann tensor.
The metric has n · n+1

2 components. Only n of these are determined by
changes of the n variables; n · n−1

2 are independent. According to Riemann,
these are determined by the “curvature measure”, or by the nature of the

15See Stachel (2007, p. 104) for the expression of the geodesic, and Reich (1994, sec.
5.1) for more on Einstein’s mathematical education. See Sauer (2013) for evidence that
Einstein actually may have written a brief note (“Krakeleien”) in Grossmann’s lecture
notes.

16The following account draws on Reich (1994, sec. 2.1.3.1.).
17See Scholz (1980) for more on Riemann’s notion of manifold.
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manifold. If the “curvature measure” is zero, the manifold is flat. The no-
tion “curvature measure” is due to Gauss; Riemann’s more general notion
coincides with Gaussian curvature, up to a constant, for surfaces.

Riemann returned to the Riemann curvature tensor in Riemann (1876a),
the “Commentatio”, a paper that appeared posthumously. One section of this
paper is about the transformation behavior of the metric; more specifically,
it asks under which conditions the metric vanishes under variable transfor-
mations. Riemann shows that this is the case if, and only if, the Riemann
curvature tensor is zero. Here the Riemann tensor is fully written out. How-
ever, the “Commentatio” probably played a minor role, if any, in the early
history of GR; major developments were independent of this contribution.

Christoffel: Algebraic Invariants

In his paper, Christoffel (1869), Elwin Bruno Christoffel formulated a more
general version of Riemann’s problem in the “Commentatio”. Christoffel asks
under which condition we can transform two quadratic differential forms into
each other. In slightly modernized notation, his problem, the equivalence
problem of homogeneous quadratic differential forms, concerns under which
conditions the following equality holds:

gikdxidxk = g
�
ikdx

�
idx

�
k (5.17)

Why is this question relevant? In geometrical, slightly anachronistic
terms, the question is whether the metric on the left is “the same” as the
metric on the right. Riemann showed that the metric has n · n+1

2 indepen-
dent components, in total. If we change coordinates, this will only affect
n of these, while n · n−1

2 are independent, i.e. they “belong to the metric”.
Christoffel asked under which conditions these n · n−1

2 components of two
metrics are connected by coordinate transformation, or if we can reach g�ik
from gik with a change of coordinates.18

In a nutshell, Christoffel’s main result is that the equivalence problem
depends only on the Riemann tensor and its derivatives. The problem is
thus reduced to the equality of these quantities. However, in Christoffel’s
case, the path to the result is as important as the result itself. Along the way
Christoffel introduces a number of notions, notations and techniques that will
prove to be crucial in the further course of tensor calculus. He discovered the
Riemann tensor, the eponymous Christoffel symbols, and also the expression
that would later be interpreted as the covariant derivative.

18It has to be noted that, while Christoffel cites Riemann once, Riemann’s influence on
Christoffel is probably negligible. In particular, Christoffel derived the Riemann tensor
independently of Riemann – he could not have known about Riemann’s “Commentatio”,
which appeared in print only in Riemann’s collected works; see e.g. Reich (1994) on this
point.
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Christoffel’s importance for the further course of events cannot be over-
estimated. Jürgen Ehlers (1981), in a review of Christoffel’s 1869 paper, and
later work on the equivalence problem, assesses their role as follows:

This review may show to what extent Christoffel’s work on
the equivalence problem has paved the way towards solving that
problem and to characterize pseudo-Riemannian spaces intrin-
sically: He developed an analytic apparatus which, apart from
notational simplicity, anticipated all essential ingredients of the
tensor calculus of Ricci and Levi-Cevita [sic]; he introduced the
first and most important non-tensorial, geometric object (of sec-
ond order) – his set of three-index symbols; he recognized the
basic role of systems of total differential equations and their in-
tegrability conditions of arbitrary order as a tool for differential
geometry and applied them particularly when these systems are
not completely integrable. (Ehlers, 1981, p. 533)

Two things about Christoffel’s role, in the history of GR, are particularly
noteworthy. First, many of the central notions were introduced by Christof-
fel, but his discussion often remained at a technical level; he did not make an
effort to interpret his innovations and place them in a broader mathematical
context. This carries over to the second important point: the total lack of ge-
ometrical notions in Christoffel’s paper. The equivalence problem is treated
as a problem in its own right, and while the relevance of the problem, to
ideas by Riemann (and Gauss), is mentioned very briefly; Christoffel does
not elaborate on the consequences of his result for differential geometry.

Ricci & Levi-Cività: Absolute Differential Calculus

The culmination point of the previous mathematical developments, and prob-
ably the entry point for Einstein and Grossmann into the mathematical liter-
ature, is Ricci and Levi-Civita (1901), the now-famous survey paper on the
“Absolute Differential Calculus and its applications” (“Méthodes de calcul
différentiel absolu et leurs applications”), ADC for short. This paper intro-
duces what we now would call tensor calculus and its applications – without,
however, using the word “tensor”.

In the first chapter, Ricci & Levi-Cività introduce the “algorithm” of the
ADC. The goal is to develop a calculus of mathematical objects that are
independent of the choice of variables – the form of these objects, tensors, is
invariant under change of variables. In the introduction, Ricci & Levi-Cività
point out that the line element, and the metric, are the fundamental object
in this context, as they serve to give an intrinsic description of n-dimensional
manifolds.

The chapter introduces the central notions of tensor calculus, includ-
ing the distinction between co- and contravariant “systems” (tensors), tensor
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algebra and tensor calculus. Ricci & Levi-Cività introduce covariant differ-
entiation, a tensorial notion of derivative that is independent of coordinate
systems; if we apply covariant differentiation to a tensor, a new tensor of
higher rank results. They also discuss the Riemann tensor, but only very
briefly; more on this central concept follows in their chapter three, on ana-
lytic applications. This chapter takes many of the techniques introduced by
Christoffel, and turns them into a proper calculus.

Chapters 2-6 are supposed to demonstrate the variability and strength
of the calculus, showing how the algorithm can help to solve problems in
intrinsic geometry, analysis, geometry, mechanics, and physics.

In the introduction, Ricci & Levi-Cività discuss the methodological goal
of the paper, as well as the mathematical traditions in which they stand.
They discern two major influences. On the one hand, they emphasize that
the calculus is “entirely” due to Christoffel. On the other hand, the moti-
vation for developing the calculus is attributed to the “genius of Gauss and
Riemann”. The ADC paper is truly a culmination of previous mathemat-
ical work, in the tradition of Christoffel, an algebraic, invariant-theoretic
approach – as well as differential geometry, championed by Gauss and Rie-
mann.

5.2.4 Einstein’s Heuristic and Research Strategies

We have now seen the questions that motivated the search for a generalized
theory of relativity, and we have a rough overview of the relevant physics
and mathematics that served as a starting point for the search. On top of
this, however, Einstein needed a heuristic that gave his search for the field
equations of GR further constraints and guidance. Renn and Sauer (2007)
identify four heuristic principles, “relatively stable structures”, as they call
them, that could have played this role. These principles, grounded in the
physical and mathematical knowledge of the time, indicated how the quest
for GR might proceed at the same time. Renn and Sauer conjecture that
Einstein had two different research strategies, based on these four principles.
We will first introduce the four principles, and then the two strategies.

Equivalence Principle

This is probably the most famous of Einstein’s principles. It postulates an
equivalence between a homogeneous static gravitational field, i.e. a field
where gravitation is evenly distributed and does not change over time, and a
uniformly and linearly accelerated frame of reference without a gravitational
field: the motion of a massive body in these two situations is the same, as-
suming that we use an inertial frame in the first situation. This equivalence
is incorporated in Einstein’s famous “elevator model”. A second important
model, in the same spirit, is the “bucket model”, which equates a uniformly
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rotating frame of reference with a stationary gravitational field. These prin-
ciples are properly heuristic in that, literally speaking, their validity is very
limited; for example, the first equivalence stated above only holds locally.

Both these models can be interpreted as instantiations of the more general
thought that there is an equivalence between gravitational and inertial mass.
Both models were at the center of Einstein’s early investigations of special
cases of the equivalence principle; in the second phase of the search for
GR, the principle served both as a control mechanism and as a construction
principle, depending on the research strategy he pursued.

Generalized Relativity Principle

This principle is closely related to the equivalence principle. It suggests
generalizing the idea from SR that there are no privileged inertial frame to
non-inertial frames. In this sense, the principle has to do with the question
as to which properties of space-time should be accepted a priori. However, in
application, the principle appears to have taken a distinctively mathematical
flavor. In Einstein’s mind, the requirement to generalize SR was closely re-
lated to finding an appropriate mathematical description of gravitation that
was independent of the chosen coordinate system. After this mathematical
theory, the ADC, had been found, the role of the generalized relativity prin-
ciple revolved around the question of the right mathematical formulation of
the field equations – generally covariant or not? – and also the question as
to how general covariance had to be interpreted.19

Conservation Principle

The conservation principle has its roots in both classical mechanics and
SR. In classical mechanics, quantities such as energy and momentum are
conserved. SR brought about conceptual changes, showing that these two
quantities could be transformed into each other. This led to a new, inte-
grated conservation law, and a reformulation of the integrated quantities
in the stress-energy-momentum tensor. This tensor, described above, en-
ters into the field equation as the correct description of the source, i.e. the
distribution of mass-energy-momentum that gives rise to the gravitational
potential. The conservation principle expressed the expectation that a form
of the conservation laws of classical mechanics, and SR, would be recovered
in GR. It was not clear from the beginning whether an acceptable form of
energy-momentum conservation had to be postulated as an additional re-
quirement, or whether, as it turned out in the end, it would follow from the
field equations. However, it was clear that a form of the divergence equation

19Generally covariant equations are equations that do not change form under a general
class of coordinate transformation, e.g. differentiable coordinate functions.
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was a necessary condition for acceptable field equations, be they generally
covariant or not.

Correspondence Principle

The correspondence principle is the requirement that the new, relativistic
theory of gravitation should incorporate, in some form or other, the content
of classical gravitational theory, and other well-established theories. More
specifically, the expectation was that the new field equation of GR would
yield, in some suitable limit (low velocities and weak fields), the classical field
equation of gravity: the Poisson equation. It was expected that the classical
limit would be reached via an intermediate, special-relativistic limit; we will
discuss Einstein’s expectations of how this works below.

The Poisson equation played a double role in the genesis of GR: On the
one hand, it served as a starting point for the “modeling exercise” of GR. On
the other hand, it could be used to check the correctness of candidate field
equations.

The correspondence principle is the strongest of the heuristic principles in
that it could not really be avoided: the new theory would not be acceptable
if it were not able to explain, or incorporate, classical gravitational theory,
which is, after all, accurate and well confirmed, with few exceptions.

Two Research Strategies

The four heuristic principles do not uniquely determine the outcome of the
search for GR; they are not even satisfiable simultaneously. This is not
problematic per se, as they should not be read as axiomatic principles that
Einstein never questioned; instead they changed content as Einstein’s search
progressed, and were able to take on different roles at different stages. Renn
and Sauer (2007, sec. 3.4) discern two different research strategies that re-
sult from using the four heuristic principles in changing roles, either as “con-
structing principles”, i.e. starting points of the investigation, or as “validity
criteria”, i.e. for checking the adequacy of candidate formulations.

First, the physical strategy is to take the existing physical theories as
the starting point, and to find a suitable modification thereof. The physical
strategy takes the correspondence principle as the starting point; candidate
field equations are modeled on the basis of the Poisson equation. Candidates
are then first checked against the physically motivated conservation princi-
ple. Only after passing this test would there be an attempt to determine the
covariance group of the field equations, i.e. the extent to which the gener-
alized relativity principle was satisfied, paying special attention to both the
“elevator model” and the “bucket model” of the equivalence principle.

The mathematical strategy, on the other hand, takes the distinctively
more audacious approach of starting from the principle of generalized rela-
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tivity: suitable candidates for the field equations are taken from the math-
ematical knowledge about generally covariant differential operators. Only
then are the physically motivated principles, first and foremost the corre-
spondence principle, used to check the adequacy of candidates. This strategy
is dubbed mathematical because the mathematics used in the construction
had not been applied in this physical context before, and the exploration of
its physical interpretation caused much more difficulties than for the physical
strategy with its well-known mathematics.

These two strategies were not applied simultaneously, but in sequence. In
the first stage of the genesis of GR, Einstein pursued the physical strategy by
implementing the “elevator model” and the “bucket model” mathematically.
Then, when these explorations suggested an extension of the mathematical
framework, he switched to the mathematical strategy and checked candi-
date operators for the field equations. After he had (erroneously) convinced
himself that this approach was not paying off, he returned to the physical
strategy. This is, of course, a very rough account, and we will paint a more
detailed picture below.

Renn and Sauer emphasize that the research strategies played an impor-
tant role in organizing the available physical and mathematical knowledge.
All the principles were connected with specific and varying physical and
mathematical content. For example, the correspondence principle had to be
implemented using the Poisson equation, as well as differential operators,
as results of the weak-field special-relativistic limit of candidate generally-
relativistic field equations, while an entirely new kind of mathematics had to
be explored to implement the principle of generalized relativity. The sheer
mass of available knowledge made it almost impossible to reconcile all the
different parts at once. The two research strategies alleviated this problem,
to a certain extent, by stressing different (mathematical and physical) parts
of the available body of knowledge, thus making the task more tractable.

5.3 From the Beginning to the Entwurf Stage (1907
– 1912)

In Stachel (2007), John Stachel structures the genesis of GR as a three-act
drama. We will follow Stachel’s example and sketch the first two acts of
the drama of GR, in section 5.3.1, drawing on our exposition of the main
protagonists (predecessor theories), and the motives that may have guided
the action of the play (heuristic principles and research strategies). The first
act is Einstein’s formulation of the equivalence principle in 1907. The second
act tells the story of how the general, non-Euclidean metric became one of
the central objects of gravitational theory, representing the gravitational,
potential before 1912.

In section 5.3.2, I will give a quick overview of the first scene of act
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three, culminating in the Entwurf theory. This is the part of the drama
we understand best, as its genesis is documented in the Zurich notebook.
The end of the drama is the story of how Einstein found the correct field
equations in 1915. We will turn to this part in sections 5.4 – the explanation
for the three-year delay – and 5.5, the resolution and discovery of the final
field equations.

5.3.1 The First Two Acts (1907 – 1912)

Act I

The main event of the first act is the introduction of the Equivalence Prin-
ciple. The Equivalence Principle is, roughly, the extension of the Relativity
Principle from SR to accelerated frames of reference; see section 5.2.4 above.
Stachel notes that the implementation of the physical insight, that gravita-
tional and inertial mass are equivalent, was delayed for several years because
the appropriate mathematical concept for capturing this equivalence – an
affine connection on a four-dimensional manifold – was not yet available.

Act II, Scene 1

In the first scene of Act II, Einstein realized around 1907 that even in the
simple case of a uniformly accelerating reference frame, the “elevator model”
of the Equivalence Principle, coordinates lose their direct meaning: while
spatial measurement does not pose any problems in this model, the time
coordinate no longer has a direct interpretation, as mirrored in the distinction
between universal and local time.

The reason for this is that the rate of clocks is affected by gravitational
fields (gravitational frequency shift).20 In a uniform gravitational field, one
case of a static field, it is possible to find a “universal time”, which expresses
simultaneity of distant events. However, in order to get such a universal time
in a spatially varying gravitational potential, one has to adjust the rate of
clocks according to potential differences. If we set a clock at an arbitrary
point A to be the standard clock that ticks at standard rate, the rate of a
clock at a point B will have to be multiplied with a (constant) factor e−φB/c2 ,
where φB is the potential at B (we have set the potential at A to zero), in
order to bring the clocks at A and B to the same (universal) frequency.

Probably as early as 1909, Einstein also noted that spatial coordinates
might lose their direct meaning as well. The implementation of the “bucket
model”, involving a uniformly rotating disk and frame of reference, ques-
tioned not only the direct interpretation of coordinates, but more generally
the appropriateness of Euclidean geometry. Additionally, the behavior of
a light ray in a gravitational field, corresponding to a uniformly rotating

20The following draws on Rindler (2006), in particular sections 1.16, 9.1-9.4.
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disk, suggested that the field exerted a velocity dependent force on the light,
meaning that the theory could not be scalar.

Here is a short explanation of the rotating disk model. The central role
of this model in the genesis of GR was first pointed out in Stachel (1980).
Stachel writes that the rotating disk could be the “missing link” between
“flat” generalizations of SR and the Entwurf theory with a general metric.
However, he notes that there is no clear historical evidence for the central
role of the rotating disk; we can only infer it from later accounts by Einstein.

The most detailed account of the model can be found in a letter from
Einstein to Petzold in 1919. In an earlier letter to Einstein, Petzold had
claimed that if we measure lengths of a disk in uniform rotation, the circum-
ference C is length-contracted, while the diameter D, which is orthogonal
to the direction of motion, is not. Therefore, C < D · π, in contradiction to
Euclidean geometry.

In his reply, Einstein disagrees and proposes the following analysis. We
can measure diameter and circumference of the uniformly rotating disk in
two frames of reference. Frame K0 is at rest, and the disk rotates relative to
it. If we measure diameter and circumference, with rods at rest in K0, then
their proportion is π. Now we choose a frame K that is co-rotating with
the disk, and we use rods at rest in K. Seen from K0, the rods measuring
the diameter are not length-contracted, wherease the rods measuring the
circumference are. However, according to the measurement with these rods,
the circumference is longer than measured in K0: C > D · π. In any case,
Euclidean geometry can no longer hold.

Stachel argues that this argument suggests that, if we can treat the ro-
tating disk with the means of SR, if the frames of reference can be brought
in correspondence with gravitational fields, and if gravitational fields do not
affect length measurement, rigid bodies cannot be adequately captured by
Euclidean geometry.

Summing up, after scene 1, Einstein was probably aware of the fact that
in two separate models, temporal and spatial coordinates lose their direct
interpretation, and he might have realized that Euclidean geometry will not
do, at least for spatial coordinates.

Act II, Scene 2

Act II, Scene 2 is centered around the notion of gravitational potential.
Stachel first notes that Max von Laue may have helped Einstein realize the
importance of the gravitational potential. In a letter to Einstein at the end
of 1911, von Laue pointed out that, in generalized relativity, the potential
acquires direct physical meaning: it is measurable because of its influence
on the speed of light. We have seen in the last section how the potential
φ influences the rate of clocks in a gravitational field. The idea was to
interpret the potential as the speed of light; the latter would depend on



132 CHAPTER 5. GENESIS OF GR: INTRODUCTION

spatial position:

ds
2 = dx

2 + dy
2 + dz

2 − c
2(x, y, z)dt2 (5.18)

Here c(x, y, z) acquires the role of the static gravitational potential, φ(x, y, z).
In two 1912 papers, Einstein started to explore this line of thought, in the
case of static gravitational fields. The crucial insights may have been that
we can interpret c as a (variable) component of the metric, and von Laue’s
remarks on the correct representation of the potential, in the case of more
general fields. If this is combined with the insight that the spatial coordi-
nates might lose their direct meaning, and that they could be variable in the
general case, generalizing the Minkowski metric, to a metric with variable
coefficients, does not seem an outlandish option.

At the end of Scene 2, a further important tool was introduced. In
a supplement of the second 1912 paper, Einstein derived the equation of
motion from a Lagrangian formulation (see section 5.2.2 above), writing

δ

�� �
c2dt2 − dx2 − dy2 − dz2

�
= 0 (5.19)

The role of the Lagrangian formulation of the equations of motion is, first,
due to the insight that the formulation is independent of any specific choice
of coordinates. Second, it might have suggested a parallel to differential
geometry to Einstein, as we will see in the next scene.

Act II, Scene 3

Scene 3 describes the transition from the previous two scenes to the Entwurf
theory, which is based on the ADC and uses the generally covariant metric.
Stachel identifies two different kinds of influence that may have led to this
formulation. On the one hand, there is, from the mathematical side, dif-
ferential geometry, and in particular Gaussian surface theory. On the other
hand, the physics literature also discussed the line element, especially in the
context of rigid motion and bodies.

Einstein was familiar with differential geometry through lectures by Carl
Friedrich Geiser. This part of the literature provided ideas about the use of
arbitrary coordinate functions, the invariant line element ds, and geodesics,
although only for two-dimensional surfaces. We saw above that Einstein used
variational techniques to derive the equation of motion in the supplement
of his second paper on static gravitational fields. In the Entwurf theory,
Einstein switched to writing ds for the square root of the line element, as in
equation (5.10), thereby opening the path to a new geometric interpretation
of the equation of motion: the variation can now be interpreted as giving rise
to the motion of a particle on a geodesic in a non-Euclidean space-time, in
close analogy to geodesics on two-dimensional surfaces in Gaussian surface
theory (see section 5.2.3 above).
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The root of this interpretation is, first, the line element in Gaussian sur-
face theory, according to which geodesic lines in a Gaussian surface are given
by equation (5.15). Second, the interpretation of the Minkowski metric as
line element had entered the physical discussion before, in the context of rigid
bodies in SR. Stachel writes that the similarity of the geodesic equation from
differential geometry to the equation of motion in a variational formulation
“could have suggested the analogy between Gauss’ theory of surfaces and
Einstein’s theory of the static gravitational field” (Ibid., p. 104). Stachel
sums up scene 3 as follows:

[O]n the basis of the mathematical and physical resources at
his command, at some point in mid-1912, after generalizing the
single gravitational potential c to the array of ten gravitational
potentials gik, Einstein realized that they formed the coefficients
of a quadratic form

�
gikdxidxk which could be regarded as the

square of the invariant line element (ds2 =
�

gikdxidxk) of a
four-dimensional spacetime manifold; and that the interval ds

represents a physically measurable quantity—the proper time if
the interval between two events were time-like, the proper length
if it were space-like (of course it would vanish for null intervals)
(Ibid., p. 106)

With all of this at hand, Einstein turned to Grossmann, who introduced
him to the generalizations of Gauss by Riemann, Christoffel, Ricci & Levi-
Cività. Stachel notes that, unfortunately, despite the parallels with Gaussian
surface geometry, Grossmann did not take a very geometrical route in his
1913 discussion of tensor calculus.

5.3.2 Act III, Scene 1: The Entwurf Theory

This section contains a short description of the state of the drama at the
beginning of Act III.21Einstein had adopted the “Lorentz model” for GR.
His main goal was to find field equations of gravitation, which describe how
the gravitational field is generated locally, depending on the distribution
of mass-energy and momentum. In a second step, he wanted to derive an
equation of motion, from the field equations.

The Field Equations

Renn and Sauer represent the model of a field equation symbolically as fol-
lows:

OP (POT ) = SOURCE (5.20)
21A detailed account of the story can be found in Renn and Sauer (2007).
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This is a general model of a field equation and has different instantiations
depending on context. One example is the Poisson equation (5.3) from clas-
sical mechanics. The model has three components. First, the SOURCE slot
has to be filled with a term for the source of the gravitational field. Second,
the POT slot has to be filled with an expression for the potential. Third, the
OP slot has to be filled with a differential operator acting on the POT term.
In classical mechanics, SOURCE is matter density ρ, POT is the classical
potential φ, and OP is the Laplacian ∆.

In the beginning of Act III, Einstein had already settled for generally-
relativistic candidates of both POT and SOURCE. The POT slot was in-
stantiated by the generally covariant metric tensor gµν . We have seen how
the Minkowski metric was generalized in the first two acts of the drama; its
identification with the potential was described in section 5.2.2.

The SOURCE slot was instantiated by the Energy-Momentum tensor;
see section 5.2.2 above.22 There were physical reasons, coming from classical
mechanics and SR, for choosing the EM tensor as the appropriate choice for
SOURCE in GR. In the context of the field equation, a further, mathematical
reason is the form of equation 5.20: the metric tensor is a two-index tensor,
which suggests that the right-hand side of the equation should be instantiated
with a two-index tensor as well. This further stabilized the choice of both
SOURCE and POT.

What remained, then, was the question of how to instantiate the differ-
ential operator for the OP slot. As we will see, this final part of the puzzle
posed the greatest problems. Other than in the case of SOURCE and POT,
it was not clear what would be a suitable candidate for OP, other than the
requirement that it should generalize the Laplacian operator from the Pois-
son equation. It is presumably at this point that Einstein turned to his
“mathematician friend” Marcel Grossmann for help.

Grossmann’s Role in the Genesis of GR

Marcel Grossmann and Albert Einstein both studied at the ETH Zürich;
Einstein took physics, while Grossmann focused on mathematics.23 Their
coursework overlapped, and classes were small, so they became friends. Years
later, Einstein remembered that he used Grossmann’s carefully transcribed
lecture notes to learn for the exams – including the notes of Geiser’s lecture
on infinitesimal geometry (“Infinitesimalgeometrie”). This lecture could be
responsible for the momentous shift towards the application of geometry with
variable curvature in physics; see section 5.2.3 above.

Grossmann was appointed professor of mathematics at the ETH in 1907.
By 1911, he had become a heavyweight in the ETH, and in 1911, he worked

22In the so-called source-free case, the SOURCE term is identically zero, i.e. the EM-
tensor vanishes.

23This subsection is based on Sauer (2013).
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towards an engagement of Einstein, taking over the now-vacant professor-
ship previously held by Hermann Minkowski. In January 1912, Einstein was
appointed professor of theoretical physics, effective fall of 1912. Einstein
moved from Prague to Zürich in the summer of 1912, and started a collab-
oration with Grossmann on GR soon afterwards. The collaboration lasted
until Einstein left for Berlin in 1914.

The collaboration between Einstein and Grossmann is not only of histor-
ical interest: it is also fruitful for the better understanding of philosophical
issues surrounding the application of mathematics in empirical science. We
can interpret the collaboration of Einstein, the physicist, and Grossmann,
the mathematician, as an exemplification, and personification, of the inter-
action of mathematics and physics, in one of the most important episodes
in the history of science. The hope is that, if we understand Grossmann’s
contribution to the genesis of GR, we also gain a clearer picture of the role
of mathematics in application.

The question we have to answer is what Grossmann’s contribution to the
genesis of GR was. Unfortunately, it is not clear what the exact state of re-
search was, or what Einstein already knew, when he approached Grossmann.
In later recollections, Einstein gives fairly detailed accounts; however, they
are incomplete, and not very reliable. In 1955, Einstein described the state
of research, and the question he asked Grossmann, as follows (quoted after
Sauer (2013, p. 8)):

The problem of gravitation was thus reduced to a purely
mathematical one. Do differential equations exist for the gik,
which are invariant under nonlinear coordinate transformations?
Differential equations of this kind and only of this kind were to
be considered as field equations of the gravitational field. The
law of motion of material points was then given by the equation
of the geodesic line. With this problem in mind I visited my old
friend Grossmann who in the meantime had become professor of
mathematics at the Swiss polytechnic. He at once caught fire,
although as a mathematician he had a somewhat skeptical stance
towards physics.

If this account is correct, then Einstein’s challenge was to find candidate
differential operators instantiating OP in the field equation. However, it is
not clear whether, at this point, Einstein already had a “tensorial” approach
in mind, i.e. whether he wanted the differential operator to be generally
covariant. Maybe this was Grossmann’s suggestion.

Besides these recollections, there are several contemporary documents
that give us insight into the collaboration; two of them stand out. One is
the so-called Zurich notebook: Einstein’s notebook containing research notes
on GR (among other things), written between the summer of 1912 and spring
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1913. The second is the Entwurf theory, Einstein and Grossmann (1995),
the first published account of GR based on the ADC.

Both documents are telling in their own way. The Zurich notebook gives
us direct insight into the process of discovery, the laboratory, of Einstein’s
work on GR. Here Einstein examined various approaches to the mathemati-
cal formulation of GR, and surprisingly, he wrote down a (linearized) version
of the final, correct field equations years before their “true” discovery. The
notebook is entirely in Einstein’s hand. However, Grossmann’s name appears
at critical junctures. The relevant pages suggest that it was Grossmann who
familiarized Einstein with the new mathematics. His name appears in con-
junction with the Riemann tensor, and another differential expression.24 We
will not analyze the role of the Zurich notebook in the context of Gross-
mann’s contribution here; we hope to make good for this lacuna at a later
point.

The Entwurf paper is the document we will focus on in chapter 6. It
has two parts. The first, physical part is authored by Einstein; the second,
mathematical part is written by Grossmann.

Einstein’s part presents much of GR as it is known today. He introduces
the invariant line element as a measure of distance between infinitesimally
close space-time points using the metric gµν (the invariance holds for ar-
bitrary variable substitutions); he derives the energy-momentum balance
equation, using a variational principle and the energy-momentum tensor for
dust; and, most importantly, states and discusses the question of how to find
a field equation, as a generalization of the classical Poisson equation.

At this point, however, the Entwurf theory deviates from the modern
route. Einstein writes that it is impossible to find a generally covariant
differential operator that enters into a potential field equation and reduces
to the Poisson equation in a suitable manner; see Einstein and Grossmann
(1995, p. 312). He refers the reader to the second, mathematical part for
the argument. Instead of taking the route suggested by the mathematical
theories now at his disposal – what Renn and Sauer call the mathematical
strategy; see section 5.2.4 above – Einstein chose to construct a field equation
that is not generally covariant; he followed the physical strategy and derived
the Entwurf equations using the conservation principle.

Einstein failed to see that it is in fact possible to construct a generally
covariant field equation, which delayed the formulation of GR in its final
form for three years. The reason for this failure cannot be understood from
the Entwurf paper alone; it is necessary to consult the Zurich notebook. We
will return to this part of the story below.

In the mathematical part of the Entwurf, Grossmann lays the mathemat-
ical foundations for the first tensorial formulation of a theory of gravitation.

24The notebook is now a well-understood part of the history of GR. A facsimile and
reconstruction is given in the “Genesis” volumes.
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He begins with a programmatic introduction, in which the most important
mathematical sources he used, Christoffel (1869) and Ricci and Levi-Civita
(1901), are cited. First Grossmann gives an exposition of tensor algebra
and tensor calculus. The most important part of the paper is part four, the
“service part” for the physical theory. Grossmann proves that the energy-
momentum balance equation is generally covariant, discusses the generally
covariant approach to the field equations, and finally provides the mathe-
matical derivation of the Entwurf field equations.

In chapter 6, our goal will be to understand the transition from the purely
mathematical theories, introduced in section 5.2.3, to Grossmann’s part of
the Entwurf. What is the origin of the mathematics introduced in Gross-
mann’s part of the Entwurf? And: how did he transform the mathematics
to adapt it to the physics? We will have a detailed look at Grossmann’s part,
trace the origins of his ideas, and discern his own contributions. This his-
torical groundwork will help us understand the systematic question of how
(pure) mathematics is transformed for applicability, in chapter 8.

5.4 Act III, Scene 2: Progress in a Loop (1912 –
1913)

Act III, Scene 2 of the drama is the last twist before the great resolution;
it is centered around the question as to why it took Einstein three more
years to complete the theory and settle on the Einstein field equations. We
have already touched on some of the major questions: Why did Einstein and
Grossmann abandon the mathematical strategy in the Entwurf? Why did
they believe that the Ricci tensor does not yield the right classical limit?
This part of the story is discussed in section 5.4.1.

However, the problem with the Ricci tensor is only the tip of the iceberg.
The so-called “November tensor”, a further candidate differential operator,
poses an even greater puzzle. The November tensor did not face the same
difficulties as the Ricci tensor, but it was nevertheless rejected around 1913,
only to be briefly revived in November 1915. There is not yet a defini-
tive account of what the problem with this tensor may have been, but the
discussion reveals further conceptual issues regarding the interplay between
mathematics and physics. We will discuss this part of the story in section
5.4.2.

It is necessary to draw on recent results, based on Einstein’s Zurich note-
book, to reconstruct Einstein’s odyssey. Such a reconstruction is available
in the form of the “Genesis of General Relativity” volumes, in particular
Janssen et al. (2007a,b). The brief account given here is mainly based on
Renn and Sauer (2007); Norton (2007); Janssen and Renn (2007), as well as
the accessible discussion in Norton (2005).
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5.4.1 Rejecting Ricci

The first question we want to answer is: what exactly went wrong with the
classical limit of the Ricci tensor? Before the analysis of the Zurich notebook,
it was commonly held that Einstein and Grossmann were simply not aware of
a modern, standard feature applied to obtain the Newtonian limit, so-called
coordinate conditions; Pais (1982, p. 222) is an example.

Coordinate conditions are conditions imposed on the coordinate systems
in order to recover the Newtonian limit. Coordinate conditions, such as
the harmonic coordinate conditions we will encounter below, are necessary
to recover the Newtonian limit from the generally covariant field equations;
this results in a restriction of covariance to Galilean coordinate transfor-
mations. Galilean coordinate transformations are closed under coordinate
systems that are in constant relative motion. They are only used in the
context of the classical limit, and do not restrict the covariance group of the
generalized field equations.

The Zurich notebook shows that Einstein was aware of the mathematical
possibility of imposing coordinate conditions. For example, he invoked har-
monic coordinates in order to recover the Laplacian operator from the Ricci
tensor. An analysis of the Zurich notebook suggests that two related mis-
conceptions prevented Einstein from recognizing the Ricci tensor as a viable
candidate differential operator for the field equations.

The first misconception was Einstein’s expectation that static fields are
spatially flat. In a static gravitational field, the metric tensor can be given
the following form in certain coordinates:





g11 g12 g13 0
g21 g22 g23 0
g31 g32 g33 0
0 0 0 g44



 (5.21)

A space-time of this form has the property that time and space com-
ponents can be considered in isolation; there is no interaction between time
and space coordinates. We can recover the usual notion of three-dimensional
space, with its geometrical properties, by running through the time coordi-
nate.

A metric is spatially flat if it can be transformed into the following form:





−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 g44



 (5.22)

The only non-constant component of this kind of metric is g44. In other
words, Euclidean geometry is valid for the spatial components.
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We have seen above that Einstein had already explored the form of space-
times that implement the principle of equivalence in simple cases, in partic-
ular coordinates in uniform linear acceleration, which are equivalent to a
static, homogeneous gravitational field. In such cases, the line element takes
the form 5.18, and all but the time component of the metric can be trans-
formed away. Einstein failed to see that the homogeneous case is only a
special case of static fields in which spatial curvature vanishes.

The second misconception had to do with Einstein’s expectation as to
how the Poisson equation would be recovered. To obtain the Poisson equa-
tion in the classical limit, one considers the case of weak fields, in which
there are only small deviations from the Minkowski metric ηµν ; they can be
written as follows:

gµν = ηµν + hµν (5.23)

where hµν << ηµν , and derivatives of h are small. Einstein assumed that
the differential operator, entered into the field equations, would reduce to

Γµν =
�

αβ

∂

∂xα

�
γαβ

∂γµν
∂xβ

�
+
�
second order terms

�
(5.24)

This is a simple, generally covariant generalization of the Laplacian op-
erator. γµν is the contravariant form of the metric. Note that we assume the
determinant of the metric to be 1. The idea of the second summand is that,
if the deviations from the Minkowski metric are only small, then products
of these deviations, terms of second order or higher, will be tiny, and can
be neglected. If this operator is inserted into the field equations, and the
special case of a spatially flat metric is considered, along with pressureless,
motionless dust as the energy-momentum tensor25, then the field equations
essentially reduce to the Poisson equation.

If equation 5.24 were indeed the right intermediate step, between the
general field equations and the classical limit, and all but first order terms
were retained, then, in the weak field limit, we would get

�gµν = κΘµν (5.25)

where � is the d’Alembertian, the special-relativistic generalization of
the Laplacian. However, it turns out that in the final theory, the weak field
limit contains a trace term26:

�gµν = κ(Θµν − 1/2gµνΘ) (5.26)

Einstein’s expectations for the weak, and the static, fields are related: If
one solves equation 5.25 in the special case of a time-independent field, i.e.

25See section 5.2.2 above.
26The trace of a rank two tensor is the sum of its diagonal elements.
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a field that does not change over time, and pressureless, motionless dust as
the energy-momentum tensor, then one recovers a spatially flat metric. This
inference is blocked if one takes the route via equation 5.26, i.e. the weak
field equation with a trace term.

How did these two misconceptions lead to the rejection of the Ricci ten-
sor? It is possible to reconstruct Einstein’s path of reasoning on the basis
of some pages of the Zurich notebook. If one accepts Einstein’s premises,
about weak and static fields, then the Ricci tensor has to be rejected. In or-
der to reach the Newtonian limit, one has to introduce coordinate conditions,
so-called harmonic coordinates:

�

κl

γκl

�
κl

i

�
= 0 (5.27)

This condition makes it possible to recover the Newtonian limit from
equation 5.24, as the superfluous second derivatives in the left-hand term in
this equation are set equal to zero. However, if one applies the harmonic co-
ordinate conditions to a weak, static field, one does not recover the spatially
flat metric 5.22, as Einstein expected – a different condition is necessary to
achieve this goal.27 For Einstein, this was sufficient for rejecting the Ricci
tensor, and harmonic coordinate conditions no longer play a role in the Zurich
notebook.

5.4.2 November Nullified

The Zurich notebook makes it possible to delve deeper into Einstein’s con-
ception of the interplay between mathematics and physics, in particular the
evolution of his interpretation of coordinates, different covariance groups,
and the interpretation of other aspects of the ADC. The goal of this subsec-
tion is to have a brief look at some of the issues that Einstein was struggling
with between 1913 and 1916, which had to be resolved before he could for-
mulate the final theory of GR.

One of the major puzzles in the genesis of GR is that Einstein rejected a
second differential operator, the November tensor, in the Zurich notebook,
while he thought for a short period in November 1915 that it would be an
acceptable differential operator for the field equations. What was the reason
for this change in perspective?

The November Tensor and the “Fateful Prejudice”

The November tensor is not a tensor of general covariance, it is only covariant
under so-called unimodular transformations. These are transformations for
which the matrix of the coordinate differentials,

� ∂x�
β

∂xα

�
, has determinant 1.

27In personal communication, Tilman Sauer speculated that harmonic coordinates and
weak, static fields, together with spatial flatness, might be mathematically inconsistent.
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The November tensor results from a decomposition of the Ricci tensor Til

into two summands:

Til =

�
∂Ti

∂xl
−
��

il

λ

�
Tλ

�
−

�

κl

�
∂
� il
κ

�

∂xκ
−
�
iκ

λ

��
lλ

κ

��
(5.28)

The first summand is a tensor of unimodular covariance, as it is the
covariant derivative of a vector of unimodular covariance, the coordinate
derivative of log

�
det(gµν). The second summand, the November tensor, is

therefore also unimodular, as it can be written as the difference between a
generally covariant and a unimodular tensor. While unimodular covariance is
a subgroup of general covariance, it still realizes the principle of equivalence
in important cases, including rotations around spatial axes, and acceleration
of the spatial origin.

The November tensor was attractive for two further reasons. First, if one
applies the so-called “Hertz condition”

�

κ

∂γκα
∂xκ

= 0 (5.29)

to the November tensor and considers the weak field solution of the new
object, the result agrees with Einstein’s expected weak field equation 5.24,
up to second order quantities. Second, the November tensor satisfies the
requirement of energy conservation in the weak field form. Thus, if one takes
the November tensor as a candidate differential operator, both problems with
the Ricci tensor are resolved. Einstein played around with the November
tensor in the Zurich notebook, and discarded it nevertheless. What were his
reasons?

In retrospect, Einstein gave several accounts for why he abandoned the
November tensor, attributing the decision to a “fateful prejudice”. Firstly,
he writes that he was unable to recover the Newtonian limit. Secondly,
considerations of energy-momentum conservation led him to interpret the
components of the metric, and not the Christoffel symbols, as the compo-
nents of the gravitational field, as he thought later. His belief about the
components of the gravitational field prompted him to expand the products
of the Christoffel symbols in the November tensor, in order to get an expres-
sion in terms of derivatives of the metric. This calculation may have proven
to be too difficult, or to be not simple enough.

One difference between the first exploration of the November tensor, and
the situation in November 1915, was that Einstein had developed variational
methods, which allowed him to establish energy-momentum conservation in
an easier manner. Furthermore, if the “fateful prejudice” is abandoned, and
the expression is written in terms of Christoffel symbols, and not directly in
terms of the metric, the result is very simple.
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However, Einstein’s explanation as to why he dismissed the November
tensor in the Zurich notebook seems odd. Is it reasonable to abandon this
promising candidate simply because a calculation looks complicated? The
remark that the November tensor did not yield the right classical limit also
seems strange, in view of the fact that, in the notebook, Einstein showed
how one can apply the Hertz condition 5.29, to obtain the weak field form
of the operator 5.24 that he expected. Why did he abandon this approach
nevertheless?

Coordinate Conditions and Coordinate Restrictions

Einstein scholars have not reached an unanimous verdict on this issue; di-
vergent explanations have been proposed. Here I will recount what appears
to be the majority view. In the subsequent subsection, I will sketch an
alternative explanation proposed by John Norton.

The majority view of what went wrong with the November tensor is
based on two different notions of what it means to apply, say, the Hertz
condition to a candidate differential operator. Firstly, these equations can
be used as coordinate conditions. Coordinate conditions are a now-standard
tool for obtaining the classical limit of the generally covariant field equations.
Classical equations are only covariant under Galilean transformations. If one
takes the limit of weak, static fields, the resulting equations are covariant
under a bigger group of transformations. Therefore, it is necessary to impose
further restrictions to recover Galilean covariance. This can be achieved with
the help of coordinate conditions. Coordinate conditions are not a restriction
on the generally covariant theory, but just a tool for recovering the classical
limit.

Secondly, conditions, such as harmonic coordinates and the Hertz condi-
tions, can be interpreted as coordinate restrictions. The idea behind coordi-
nate restrictions is to limit the covariance group of some tensor A, in order
to find a new tensor A�, of limited covariance, which is itself a candidate
operator. One example of this is the November tensor itself. It is generated
from the generally covariant Ricci tensor, and despite its covariance under
unimodular transformations, it was considered to be a candidate operator
for the field equations.

Coordinate restrictions are only acceptable if one is ready to give up on
general covariance for the final theory and accept unimodular covariance in-
stead. A possible justification for such a restriction could be that general
covariance is too permissive, from the perspective of the equivalence prin-
ciple, as some changes of coordinate systems do not correspond to genuine
changes in the state of motion.

This raises the question as to how to interpret Einstein’s calculations
in the Zurich notebook. Did he conceive of the Hertz condition, or the
harmonic coordinates, as coordinate conditions that only serve to recover the
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classical limit, or did he use them in the more substantial sense of coordinate
restrictions? And if he used coordinate restrictions, was he aware of the
possibility of using the same expressions as coordinate conditions?

There is evidence that Einstein interpreted the Hertz condition as a co-
ordinate restriction, and not as a coordinate condition. A calculation in the
Zurich notebook suggests that Einstein wanted to find the covariance group
of the November tensor under the Hertz condition. This does not make sense
if one is merely interested in the Newtonian limit of the November tensor.
If, on the other hand, Einstein was searching for a differential operator con-
forming to his expectation for the weak field limit, then it was important to
determine its covariance group. Einstein did not finish the calculation, but,
if he did, he would have found that the resulting differential operator is not
acceptable. It is not invariant under spatial rotations, a requirement that he
checked on other occasions.

Further calculations in the notebook, using a different condition, the
so-called “Theta requirement”, also point towards a use of coordinate restric-
tions. In this case, Einstein checked whether the November tensor, together
with the Theta requirement, is invariant under spatial rotations, and found
that this is not the case. Again, this calculation would not make sense, had
Einstein only been interested in recovering the Newtonian limit. It seems
that he wanted to check covariance properties of the November tensor, com-
bined with the Theta requirement.

These two calculations suggest that Einstein rejected the November ten-
sor because he interpreted the harmonic coordinate condition, the Hertz
condition, and the Theta requirement, not as coordinate conditions, but as
coordinate restrictions. The requirements genuinely constrain the covariance
group of the differential operator, and consequently the covariance group of
the field equations. If a tensor, together with the coordinate restriction, did
not conform to Einstein’s expectations, it had to be abandoned.

Some of the requirements, such as the Theta requirement, seem to make
sense only if they are interpreted as coordinate restrictions. In other cases,
for example the harmonic coordinate condition, it is not possible to settle
for a definite answer as to how it should be interpreted, based on the Zurich
notebook. In the end, the question boils down to whether Einstein was aware
of the fact that he could use coordinate conditions in the modern sense, or
whether he consistently used coordinate restrictions. There is no agreement
on this issue amongst Einstein scholars. In the next subsection, we have a
brief look at a divergent interpretation of Einstein’s reasons for rejecting the
November tensor.

Minority Report: Norton’s Hole Argument

In Norton (2005, 2007), John Norton disagrees with the above account, which
explains Einstein’s rejection of the November tensor, based on the distinction
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between coordinate conditions and coordinate restrictions. He thinks that
attributing a confusion between these two notions to Einstein is implausible,
as Einstein never conceded committing this mistake later, and as it is a
fundamental oversight at the heart of his expertise. Norton prefers to trace
Einstein’s dismissal of the November tensor back to a version of the famous
Hole Argument. Here I will recapitulate this argument very briefly, and
explain how, according to Norton, it explains Einstein’s rejection of the
November tensor.

Einstein originally proposed the Hole Argument28, to establish that gen-
eral covariance is not a desirable feature of field equations, by showing that
generally covariant field equations are indeterministic. Here is a sketch of
the argument.

Assume that the metric field is determined by the (source free) field
equations Γµν = 0, and gµν is a metric solving these equations. As the
field equations are generally covariant, we can express the metric in any
coordinate system we like, say, as g�µν in primed coordinates. This means
that we can let the metrics gµν and g�µν agree everywhere, except in some
space-time region, the hole, where one deviates smoothly from the other.
The solutions of Γµν = 0 will agree everywhere, except in the hole. This,
however, implies that the metric outside the hole does not determine the
metric inside the hole, which is an unacceptable form of indeterminism.

This argument against general covariance, the Hole Argument, is flawed.
In order to understand why it is deficient, it is useful to introduce the dis-
tinction between active and passive transformations.

The gµν are the components of the metric in one coordinate system xα:
there is a functional dependence of the components of the metric on the co-
ordinates, gµν(xα).29 In a passive transformation, we change the coordinate
system, x�β(xα) (read: the primed coordinates are functions of the unprimed
coordinates), and let the components of the metric co-vary, yielding new
components expressed in a new coordinate system, g�µν(x�β). Because of gen-
eral covariance, this new expression is also a solution of the field equations.

The passive transformation g�µν(x
�
β) is also a solution to the field equa-

tions, if we let the components of the metric be functions of the original
coordinate system, xα. This yields an active transformation g�µν(xα): the
primed components of the metric as functions of the old, unprimed coordi-
nate system.

Why is the Hole Argument flawed? The problem is that the active trans-
formation of the metric might suggest that, if we admit general covariance,
it is possible to ascribe different metrical properties, gµν(xα) and g�µν(xα), to

28The following account is based on Norton (2005).
29The dependence can be seen explicitly in the expression of the Gaussian metric for

two-dimensional surfaces in equation 5.14: x, y, z are coordinate functions and change
under coordinate transformations; the components of the metric, the functions E,F,G,
change accordingly.
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the same space-time point xα. This, however, is a mistake: If it is possible,
as assumed in the argument, that we can transform gµν into g�µν , using coor-
dinate transformations, then they are physically the same. gµν and g�µν are
mathematically different expressions, or different components, of the same
class of metrics linked by coordinate transformations. It does not matter
whether we use the primed or the unprimed coordinate system to express
the components of the metric.

This also means that the coordinate functions xα and x�β are not sufficient
for picking out space-time events. It is only the combination of coordinates
and metric that determines space-time properties of events. Two mathemat-
ically different descriptions of a space-time point are physically the same, if,
and only if, we can transform one description of the point, the components
of the metric in that point, into the other components, the other description.

How does the Hole Argument explain Einstein’s rejection of the Novem-
ber tensor? Norton conjectures that Einstein may have ascribed an “indepen-
dent reality” to some set of coordinates that mirror the structure of classical
mechanics. One of the test cases of transformations, that he considered to
be a necessary part of a restricted covariance group, were spatial rotations.
Einstein may have considered the active transformation of the Minkowski
metric under spatial rotations. However, this metric is not compatible with
the Hertz condition; equation 5.29. Just as in the Hole Argument, this pre-
supposes that it is possible to “remove” the Minkowski metric from a priv-
ileged set of coordinates, and introduce rotational coordinates afterwards.
We now know that this does not make sense.

The advantage of Norton’s account is that it is possible to explain Ein-
stein’s mistake on the basis of the Hole Argument, which he defended during
the period in question; it is not necessary to ascribe a new, hitherto unknown,
confusion to him.

5.5 Act III, Scene 3: Resolution (1913 –1916)

In this final section, I give a brief, somewhat cursory, account of Act 3, Scene
3, the events after the Zurich notebook and Entwurf phase described above,
based on Renn and Sauer (2007, sec. 7).

After the publication of the Entwurf theory, Einstein was criticized be-
cause the Entwurf field equation was not generally covariant, and because
it was unclear how the Entwurf theory was related to the generally covari-
ant objects of the ADC. Einstein used the Hole Argument to defend the
lack of general covariance of the Entwurf theory; he also adduced problems
with energy-momentum conservation on the generally covariant approach,
to argue against such a formulation.

In 1914, Einstein thought he had clarified the problem of how general
covariance was related to the Entwurf equations. Working in a variational
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formulation, he claimed that, by postulating two requirements, one based
on energy-momentum conservation, the other on the generalized relativity
principle, the Entwurf Lagrangian could be shown to be unique. This argu-
ment was designed to support the Entwurf theory from the point of view of
the mathematical strategy, while the previous formulation used the physical
strategy, and in particular the conservation principle.

The realization that the Entwurf equations did not constitute an accept-
able generalized theory of gravitation was a gradual process. The theory
has three major problems. First, the Entwurf theory is unable to explain
Mercury’s anomalous perihelion precession; one of the few empirical phe-
nomena that were not correctly predicted by classical mechanics. Second,
the Entwurf equations did not contain the Minkowski metric in rotating co-
ordinates as a solution; rotating coordinates were taken to correspond to a
simple state of accelerated motion, rotation, according to the equivalence
principle. Third, Einstein’s “proof” that the Entwurf Larangian was unique
under two reasonable assumptions proved to be erroneous. It is probably
a combination of these problems that led Einstein to abandon the Entwurf
theory. The last problem is the only one Einstein mentions in writing. He
gave up the Entwurf theory some weeks after discovering the non-uniqueness.

In November 1915, he definitely returned to the mathematical strategy,
and published a new theory, based on the November tensor. The fact that
Einstein returned to candidate differential operators may seem puzzling at
first. However, it was a reasonable course of action, if one takes into account
that, first, certain properties of the candidates, especially energy-momentum
conservation, had been left unexplored in the Zurich notebook. Also, Ein-
stein had developed more powerful mathematical techniques to scrutinize
the candidates. This, together with the fact that the November tensor had
already been a promising candidate earlier, as it did not face problems in the
weak, static field limit, is sufficient to explain Einstein’s renewed interest.

Only a week after the publication of the November tensor, Einstein wrote
an addendum, in which he returned to the Ricci tensor. He had to weight
problems with the November tensor against problems with the Ricci ten-
sor. The former implied an unmotivated restriction on general covariance,
while he had found the latter to be problematic in the Zurich notebook, be-
cause it implied that the trace of the stress-energy tensor vanished, and thus
contradicted his expectations for a theory of matter.

A week after this addendum, Einstein successfully explained Mercury’s
perihelion precession using the field equations with the Ricci tensor. This
was, of course, a very strong empirical confirmation of the generally covariant
approach. Einstein was able to carry out the calculation very quickly because
he had already tried to explain the perihelion shift with the Entwurf theory;
this attempt had been a quantitative failure. Luckily, the explanation of
Mercury’s perihelion does not depend on the still-missing trace term of the
final field equations.
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Now only a last modification was necessary to get from the field equa-
tions, based on the Ricci tensor, to the final, full field equations. Einstein
realized that he could solve a problem with the energy-momentum balance,
by adding a trace term of the energy-momentum tensor on the right-hand
side of the field equation. This made it possible to abandon an additional,
artificial requirement on the determinant of the metric. The resulting equa-
tions were a form of the Einstein field equations.

Of course, there were still many open questions; for example, a verifica-
tion of energy-momentum conservation in the new theory. However, we will
let the curtain fall on the drama of the genesis of GR at this point.
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Chapter 6

Grossmann’s Sources

6.1 Introduction: Motivations, Questions, Meth-
ods

The topic of this chapter is the historical question as to what Marcel Gross-
mann contributed to the genesis of GR.1 We will examine the so-called “En-
twurf” paper, an important joint publication of Einstein and Grossmann,
containing the first tensorial formulation of GR. In particular, we will ana-
lyze the second, mathematical part of the Entwurf, and we will discuss the
origin of the mathematical theories used in this part, as well as Grossmann’s
own, novel contributions.

The historical issues we discuss in this chapter are relevant for several
philosophical issues. Our main systematic interest is in the general problem
of how (pure) mathematics is applied to an empirical problem. The applica-
tion of tensor calculus in GR is a prime historical case study for this problem.
The very beginning of the tensorial formulation of GR is especially suitable,
because the Entwurf theory mirrors the division of labour between mathe-
matics and physics, in that the two authors, the mathematician Grossmann
and the physicist Einstein, wrote their separate parts of the Entwurf.

The Entwurf theory constitutes the earliest meeting point the historical
predecessor of tensor calculus, the “Absolute Differential Calculus” (ADC),
and Einstein’s generalized theory of gravitation. Previously, the ADC had
been developed independently of application to gravitational theory. By
comparing Grossmann’s part with the mathematical theories he used, we
can gain a better understanding of what is involved in the first steps of
assimilating a mathematical theory to a physical question.

We will not explore these systematic issues in the present chapter, but
will rather limit ourselves to the historical dimension of Grossmann’s role
in the early genesis of GR. We will put our historical insights to work in

1This chapter is based on joint work with Tilman Sauer. All translations are ours,
unless stated otherwise.
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chapter 8, in which we will confront the philosophical theory introduced in
chapter 7 with the historical case discussed here.

There are several limitations to the historical width and depth of the
present study. First, our focus is on the origin and transformation of those
mathematical theories that had not been applied to gravitational theory
prior to the Entwurf. We will not discuss the evolution of mathematics that
evolved simultaneously to physics, especially the mathematical innovations
in SR due to Minkowski, Sommerfeld, Laue, and others. These authors are
also important for the Entwurf, but the influence of their tradition is much
better understood than the purely mathematical tradition; see Norton (1992)
for the distinction of the two traditions.

Secondly, we will neglect several documents that are relevant to Gross-
mann’s contribution to GR. Most importantly, we will not examine Gross-
mann’s role in the Zurich notebook, which documents the genesis of the
Entwurf theory. We will also neglect other contemporary documents and
later recollections. We hope to examine the Zurich notebook, as well as
other relevant documents, at a later point.

6.1.1 Research Questions

Grossmann’s contribution to the genesis of GR has two aspects that we
will carefully distinguish. On the one hand, there are Grossmann’s passive
contributions to GR. At some point in 1912, Einstein asked Grossmann for
help with the existing mathematical literature. This means that one part of
Grossmann’s job was simply to scan the mathematical literature, and show
and explain the results of his search to Einstein. This task requires mathe-
matical knowledge, but no substantive, original mathematical contribution
on Grossmann’s part.

If we want to understand this aspect of Grossmann’s contribution, we
will have to dig into the mathematical literature that Grossmann used, in
order to understand the existing mathematical knowledge. More specifically,
we will answer the following questions:

• What are the mathematical sources that Grossmann used for his con-
tribution to GR?

• What are the mathematical theories and traditions behind these sources?

• What is the role, and relative importance, of these theories and tradi-
tions (in Grossmann’s eyes) for the mathematical development of GR?

On the other hand, we want to gauge the extent of Grossmann’s active
contributions to GR. We will analyze whether Grossmann had to modify the
existing mathematical theories, and whether he contributed new, original
pieces of mathematics to GR. In particular we will answer the following
questions:
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• To what extent did Grossmann transform, amend and simplify the
available mathematical results for the purposes of application in GR?

• Did Grossmann contribute genuinely original mathematical results?

• What is the relative importance of Grossmann’s new results?

This set of questions is not independent of the first, as we need a firm
grasp on the existing mathematical knowledge to gauge the scope of Gross-
mann’s own contributions. We thus face the task of surveying the mathe-
matical knowledge as completely as possible. In the present study, we will
only take into account the mathematical sources that Grossmann cites; the
task of tracking his influences thereby becomes tractable. A short overview
of the most important mathematical sources can be found in chapter 5. We
will also draw on selected secondary sources, on relevant mathematical theo-
ries and concepts, in order to embed the primary sources in their respective
mathematical context.

6.1.2 Method

One of our tasks is to identify the origin of the mathematical theories and no-
tions presented by Grossmann. In a first step, we will compare Grossmann’s
account with its various predecessors. However, it may happen that more
than one of the sources discusses some particular result. In this case, we will
compare Grossmann’s notation with that of the sources in question. It is
plausible that, whenever Grossmann’s notation is very close to the notation
of one of the sources, he mainly used this source for a particular concept or
theory. Finally, we will also use the manner of citation, to track the lines of
influence. We use historical notation throughout the chapter.

Our use of notation for identifying sources has to be taken with a grain of
salt. In general, the more a mathematician is familiar with some mathemat-
ical theory, the more his notation will be independent of the source he uses,
i.e. the link between notation and sources is weakened. Thus, our method
presupposes, to a certain degree, that Grossmann was not an expert on the
ADC. Our examination of the Entwurf, and on his scientific biography, sug-
gests that this is the case, and that Grossmann followed the sources rather
closely.

We are also interested in Grossmann’s original contributions. Here we
will, to a certain extent, rely on secondary sources. If some result cannot be
traced to any of Grossmann’s sources, we will tentatively attribute it to him.
Certain results have been discovered, and discussed, before, without Gross-
mann’s acknowledgement. Some of these results may have been rediscovered
by Grossmann. This is plausible, especially if the context of the result is far
from Grossmann’s interests. We are not interested in Grossmann’s original-
ity, but in the extent of his active and passive contributions.
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6.1.3 Overview

Here is an overview of the chapter. In section 6.2, we give a short summary
of Grossmann’s mathematical sources, and list the citations, illustrated with
a citation tree. In section 6.3, we discuss one of the sources that is often
taken to be particularly important and influential: Riemann’s contributions,
which outline a geometry with variable curvature. We argue that Grossmann
may have never consulted Riemann’s work. In section 6.4, we examine the
introduction to Grossmann’s part, focusing on his view of the existing math-
ematical literature, his own contribution, and his methodological credo. In
6.5, we take a closer look at the fundamental concept of manifold, in the
Entwurf and the mathematical literature. In sections 6.6 to 6.9, we con-
tinue or examination of the Entwurf, tracing the origin of the mathematics
at each step. We pay special attention to the origin of the mathematics in
the (failed) generally covariant approach to the field equations. Finally, in
6.10, we summarize our results and note systematic consequences and open
questions.

6.2 Grossmann’s Sources

In this section, we describe and analyze the citations of works of pure math-
ematics in Grossmann’s part of the Entwurf. We add a citation tree, which
shows the citations by Grossmann and by his sources. Before we examine
the citations, a very brief characterization of the main protagonists may be
helpful; see also the discussions in chapter 5.

Grossmann cites Riemann, Christoffel, Ricci & Levi-Cività, Kottler, and
Bianchi-Lukat.

Riemann: Two of his contributions are potentially relevant. His paper on
the foundations of geometry, which is based on his habilitation lecture,
formulates seminal concepts such as manifolds, and the idea of a ge-
ometry of variable curvature. This paper is informal in style, as it is
aimed at a general audience. The “Commentatio”, on the other hand,
is a paper on the heat equation, which introduces and discusses the
eponymous Riemann tensor.

Christoffel’s paper is a contribution to algebraic invariant theory, in an
algebraic, algorithmic tradition. He aims to solve a technical problem,
the equivalence problem of homogeneous quadratic differential forms,
and is not interested in geometry.

Ricci & Levi-Cività’s famous “tensor analysis paper” presents a general
calculus, the ADC, and demonstrates its applicability in geometry,
analysis, and physics. The pure calculus is heavily indebted to Christof-
fel. The paper has a survey character, and proofs are often omitted.
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Bianchi-Lukat is the German translation of an Italian textbook on differ-
ential geometry. Grossmann mainly used the second chapter, which
also draws on Christoffel’s work. However, Bianch’s presentation is
more accessible than Christoffel’s.

Kottler applies the ADC to a physical problem. This is no pure mathe-
matics paper; however, it contains some relevant mathematical results.
This is one of the first physics papers to apply the ADC. Grossmann’s
motivation for citing it could be priority: Grossmann has a an alter-
native proof of a result by Kottler.

Here are the citations of these sources in full (references in square brackets
are to (Klein et al., 1995)):

• “Christoffel: Über die Transformation der homogenen Differentialaus-
drücke zweiten Grades, J. f. Math. 70 (1869), S. 46.” [p. 324]

• “Ricci et Levi-Cività, Méthode de calcul différentiel absolu et leurs
applications, Math. Ann 54. (1901), S. 125.” [p. 324]

• “Kottler, Über die Raumzeitlinien der Minkowskischen Welt, Wien.
Ber. 121 (1912).” [p. 324]

• “Bianchi-Lukat, Vorlesungen über Differentialgeometrie, erste Auflage,
S. 47.”, [p. 330]

• “Riemann, Ges. Werke, S. 270.” [p. 336]

These are the primary mathematical sources that Grossmann used. From
a close examination of the manner and place of these citations, we can gain
valuable information about these sources, their relative importance, and the
relations between these sources.

The first three sources, Christoffel, Ricci & Levi-Cività, and Kottler, are
first cited in the introduction; Bianchi-Lukat and Riemann in the main text.
Grossmann further mentions “Minkowski, Sommerfeld, Laue u.a.” as con-
tributors to the vector-analytic innovations in special relativity. On p. 328,
he cites the relevant papers of these three authors. Other mathematicians,
including Laplace and Beltrami, are mentioned without citation. Laplace is
mentioned in the context of the Laplace operator, Beltrami in the context
of Beltrami parameters.

Some of the sources are mentioned more than once. Here are the further
citations and their context:

Ricci & Levi-Cività: p. 326, footnote 1 – remarks on their tensor nota-
tion and why Grossmann’s deviates; p. 329 – attribution of the name
“covariant differentiation”; p. 333 – attribution of the discriminant
tensor (“system �”).
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Christoffel: p. 328 – attribution of the form of covariant differentiation; p.
329 – introduction of the Christoffel symbols of the first and second
kind: p. 336 – attribution of the Riemann tensor.

Kottler: p. 331 – attribution of one form of the divergence of a covariant
four-vector.

The fact that some of the sources are cited more than once gives us
valuable information about their importance. It is plausible that the math-
ematical sources with multiple citations were really consulted and used by
Grossmann, especially if the reference is not contained in one of the other
sources; we will see in the next section that this is relevant in Riemann’s
case. Based on the number of citations, the most important mathematical
sources are Ricci & Levi-Cività, and Christoffel, followed by Kottler, and
finally Riemann and Bianchi-Lukat.

6.2.1 Citation Tree

The citation tree shows who cites whom among Grossmann’s sources. We
will return to the significance of this network of citations in the course of the
chapter.

6.3 The Curious Case of Riemann

Grossmann’s citation of Riemann’s habilitation paper is of great interest.
Riemann is commonly taken to have had a big influence on the genesis of
GR: he discovered geometries of variable curvature in n dimensions, and in
particular the eponymous Riemann tensor2, one of the crucial mathematical
objects of GR. However, we think that, based on Grossmann’s citation, he
did not actually consult Riemann’s work for the Entwurf. Here are our
reasons for this claim.

Grossmann cites Riemann one time, on p. 336: “Riemann, Ges. Werke,
S. 270.”. First, this reference is faulty. There are two editions of Riemann’s
collected work to which Grossmann had access, Riemann (1876b) and Rie-
mann (1892). The reference to p. 270 does not make sense for both editions.
In the 1876 edition, page 270 is the beginning of “Ein Beitrag zur Elektro-
dynamik”. In the 1892 edition, page 270 is the second-to-last page of “Ueber
die Darstellbarkeit einer Function durch eine trigonometrische Reihe”. Both
papers are irrelevant in the present context. Note, however, that in the 1892
edition, Riemann’s habilitation paper “Ueber die Hypothesen, welche der
Geometrie zu Grunde liegen” begins on p. 272.

2Einstein calls it the Riemann-Christoffel tensor. This is a suggestive name, not because
it hints at questions of priority, but because it indicates that the tensor has its roots in
at least two different mathematical traditions, one more geometrical, the other invariant-
theoretic in nature.
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Christoffel 1869
Transformation

Ricci Levi-Cività 
1901 ADC

Riemann 1876
Werke 1st edition

Riemann 1867
Habilitation

Bianchi-Lukat 1899 
DG 1st edition

Grossmann 1913
Entwurf part 2

Kottler 1912

Figure 6.1: Grossmann’s Sources: Citation Tree

Grossmann’s mistake has been pointed out in Janssen et al. (2007b, p.
611, fn. 209). The authors write: “ ‘270’ is a misprint and should be ‘370’
” – in the 1876 edition, the “Commentatio”, in which the Riemann tensor is
discussed, begins on that page. If this were indeed so, Grossmann’s mistake
would be an uninteresting typo.3

We agree that this is one possibility. However, there is an even better
explanation. We believe that Grossmann’s mistake is not a typo, but rather
that he copied a typo from Ricci and Levi-Civita (1901). It is well known
that Grossmann made extensive use of the ADC paper. Ricci & Levi-Cività
cite Riemann’s works twice:

• On p. 142, they introduce the “covariant system of Riemann”4, i.e. the

3In a footnote to Grossmann’s reference to Riemann in Klein et al. (1995), we are
referred to Riemann (1892). In view of the above, the reference should be to Riemann
(1876b, p. 370).

4“système covariant de Riemann”
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Riemann tensor. They write that “[the symbols] can be found in the
Commentatio mathematica by Riemann” (“On les trouve dans la Com-
mentatio mathematica de Riemann.”), adding the following reference
in a footnote: “Gesammelte Werke, pag. 270”.

• On p. 192, they discuss physical application of the ADC and mention
that Riemann solved a certain problem of the heat propagation equa-
tion, adding a reference in a footnote:“ ‘Commentatio mathematica,
qua etc.’, Ges. Werke, pag. 370”.

In the 1876 edition, the “Commentatio” begins on p. 370, while in the
1892 edition, the “Commentatio” begins on p. 391. Thus, the first citation
by Ricci & Levi-Cività on p. 142 is wrong, it should be to p. 370 of the
1876 edition. What is noteworthy about this typo is that it is identical
to Grossmann’s – both citations are identically wrong. The only difference
between the two is that Grossmann writes “S. 270”, whereas Ricci & Levi-
Cività write “pag. 270”. It is thus reasonable to conjecture that Grossmann
simply copied the faulty citation from Ricci & Levi-Cività. It would be a huge
coincidence if both Grossmann and Ricci & Levi-Cività had independently
made the same typo when citing Riemann. What is more, the first passage in
which Ricci & Levi-Cività cite Riemann is central for Grossmann, because it
is here that they introduce the Riemann tensor. Ricci & Levi-Cività’s second
(correct) citation of Riemann, on the other hand, is not directly relevant for
Grossmann – it is about an application of the ADC.

The fact that Grossmann copied Ricci & Levi-Cività’s mistake has an
interesting consequence. Recall that this is the only time Grossmann even
mentions Riemann. It is therefore probable that Grossmann did not actually
consult Riemann’s work for the mathematical part of the Entwurf, which,
in turn, suggests that Riemann’s work had no direct influence on the very
first tensorial formulation of GR. This applies not only to Grossmann, but
also to Einstein. Einstein probably first learned about the Riemann tensor
from Grossmann; this is documented in the Zurich notebook, p. 14L (see
Janssen et al. (2007a, p. 418)), where Einstein writes down the Riemann
tensor, with Grossmann’s name next to it.

Some remarks in Janssen et al. (2007b, pp. 610) suggest that Riemann
might have had a direct influence on Grossmann nevertheless. The authors
discuss where Grossmann might have learned about the Riemann tensor.
They mention that Christoffel and Riemann are candidates, and give two
reasons as to why Riemann might have had a direct influence on Grossmann
and Einstein.

The first reason is a notational detail, the use of a comma in the symbol
for the Riemann tensor, which was used by Riemann, but not by Christoffel.
However, Riemann is not the only one to use this comma. It also features in
Bianchi and Lukat (1899). We will discuss the notational variants in section
6.9.2 below.
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The second reason why there might have been a direct influence by Rie-
mann on Grossmann is the occurrence of the word “Mannigfaltigkeit”, man-
ifold, which features in Riemann’s work, but not in Christoffel’s paper. We
agree. However, the manifold concept features, under its French name (“var-
iété Vn”), in Ricci and Levi-Civita (1901), in prominent positions, such as in
the introduction. We will discuss the interpretation of Grossmann’s concept
of manifold in detail in section 6.5 below.

Thus, both reasons mentioned by Janssen et al. for thinking that Rie-
mann had a direct influence on Grossmann, can be explained by taking other
mathematical sources into account.

The result that Grossmann did not consult Riemann directly has to be
taken with a grain of salt. We do not deny, in any way, that Riemann’s
work was important for the genesis of GR. Riemann’s influence shows up
in all of the mathematical sources used by Grossmann. However, the fact
that Riemann’s influence is mediated by others is nevertheless important,
because some of the mathematicians building on Riemann had quite a differ-
ent methodology, and perspective, on the relevant mathematical techniques
and results. We will have to keep this in mind while we track Grossmann’s
sources.

6.4 Introduction to Part II

In this section, we begin our analysis of Grossmann’s part of the Entwurf.
The introduction to part II is of great interest for our purposes. Here Gross-
mann states which mathematicians and mathematical theories he draws on;
furthermore, some passages indicate what he took to be his contribution to
the mathematics of GR. We first give a translation of the introduction, then
an analysis.

The mathematical tools necessary to devise a vector analysis
of gravitational fields characterized by the invariance of the line
element

ds
2 =

�

µν

gµνdxµdxν (6.1)

can be traced back to the fundamental treatise by Christoffel
[...] on the transformation of quadratic differential forms. Based
on Christoffel’s results, Ricci and Levi-Cività [...] have devised
their methods of an absolute differential calculus, that is, a cal-
culus independent of the coordinate system; these methods make
it possible to state the differential equations of physics in an in-
variant manner. However, as the vector analysis of Euclidean
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space in arbitrary curvilinear coordinates is formally identical to
the vector analysis of an arbitrary manifold given by its line el-
ement, it is not difficult to extend the vector-analytic concepts
(“Begriffsbildungen”) that have been developed in recent years by
Minkowski, Sommerfeld, Laue et al. for relativity theory, to the
preceding general theory by Einstein.

With some practice, the general vector analysis thus obtained
can be manipulated as easily as the special vector analysis of the
three- or four-dimensional euclidean space; indeed, the greater
generality of its concepts (“Begriffsbildungen”) lead to a clear
exposition that cannot be found in the special case.

The theory of special tensors (§ 3) has been thoroughly cov-
ered in a treatise by Kottler, which appeared while the present
paper was being written; Kottler’s work is based on the theory
of integral forms, an approach that is not generalizable.

A systematic presentation of general vector analysis may be
appropriate, as a more thorough mathematical study will have
to follow the gravitational theory by Einstein and especially the
problem of the differential equations of the gravitational field. In
doing this I did not draw on geometrical tools, as they contribute
little to the illustration (“Veranschaulichung”) of the concepts
(“Begriffsbildung”) of vector analysis.

In the first sentence of the introduction, Grossmann characterizes his goal
in general terms: the development of a vector analysis based on the invari-
ance of the line element. The tools for this vector analysis have their origin
in Christoffel’s work. The fact that Grossmann mentions Christoffel in the
very first sentence, and calls his paper “fundamental”, underlines the impor-
tance of Christoffel’s work, as does the characterization of the mathematical
problem, that of the invariance of the line element. In the second sentence,
Grossmann notes that Ricci & Levi-Cività have worked out Christoffel’s re-
sults and devised methods for stating differential equations in an invariant
manner; he emphasizes the coordinate independence of their theory.

These first two sentences introduce what Grossmann considers to be his
most important mathematical predecessors: Christoffel on the one hand,
and Ricci & Levi-Cività on the other. The next sentence is already about
Grossmann’s own contribution.

The characterization of Christoffel as the “main technical innovator” of
the ADC is probably not Grossmann’s; it can be found in the introduction
of Ricci & Levi-Cività’s paper. They write: “The algorithm of the abso-
lute differential Calculus, that is the material instrument of the methods
(“l’instrument matériel des méthodes”) to which we will introduce the read-
ers [...] can be found entirely in a remark due to M. Christoffel [...]” (Ricci
and Levi-Civita, 1901, p. 127). Here the “material instrument” should be
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contrasted with what the calculus describes, n-dimensional manifolds, which
goes back to Gauss and Riemann. It seems that Grossmann adopted Ricci
& Levi-Cività’s perspective on the division of labour between their own con-
tribution and Christoffel’s, without mentioning Gauss and Riemann.5

The third sentence describes Grossmann’s own contribution: the connec-
tion between the “vector analysis of an arbitrary manifold given by its line
element”, i.e. the mathematics of the ADC, and the traditional mathematics
of “vector analysis” as it is known from “relativity theory”, i.e. SR. This con-
nection is established via the “vector analysis of the euclidean space, related
to arbitrary curvilinear coordinates”: Grossmann conceives of this vector
analysis as a generalization of the vector analysis of SR, which is limited to
pseudo-Euclidean coordinates. The distinction between this generalization
and the vector analysis of a manifold is a formal one.

According to Norton (1992, Appendix), Grossmann is the first to system-
atically bring together the two traditions of vector analysis, as developed in
physical application, and the ADC. In the Entwurf, Grossmann draws this
distinction in the abstract; later, in the Frauenfeld lecture, he explains the
parallels in more detail.

The second paragraph of the introduction advertises the advantages of
the new mathematical approach: the new theory is easy to use and clearly
arranged. The third paragraph mentions work by Kottler on the theory of
special, i.e. antisymmetric, tensors. Grossmann points out that, while Kot-
tler’s treatment of special tensors is “complete”, it is not based on the general
vector analysis he will draw on, but on the theory of integral forms. In the
last paragraph, Grossmann appears to acknowledge that he is not completely
satisfied with his results, or the manner in which they are presented. On the
other hand, it is a justification for the rather detailed exhibition of vector
analysis that is to follow.

Grossmann’s remarks on geometry could be somewhat puzzling for the
modern reader, as they appear to be off the mark. Grossmann did not anti-
cipate the fundamental importance of geometrical notions for GR. The only
role he envisioned for geometry was that of an illustration, and he considered
geometry to be of rather limited usefulness, even in this respect. His remarks
are, however, very much in line with Ricci & Levi-Cività’s ideas. In their
introduction, they emphasize the value of the ADC’s abstractness; what is
more, they appear to find it distasteful if a certain “purity of method” is
not met, e.g. the use of variational methods to derive Beltrami parameters.6

5Karin Reich (1994, p. 81) points out that Ricci & Levi-Cività trace the ADC back
to Beltrami’s work on differential parameters. It seems to us that the reason why Ricci
& Levi-Cività mention Beltrami is that, historically, grappling with Beltrami’s work led
to the ADC. Their goal was to find the proper mathematical framework for Beltrami’s
results. We will return to this point below.

6Dell’Aglio (1996) traces this emphasis on the tradition of algebraic invariants back to
the great influence of Christoffel on Ricci’s work.
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This call for a purity of methods was probably heard by Grossmann.

6.5 Interlude: Manifolds in the Entwurf

In this section, we discuss Grossmann’s manifold concept in the Entwurf, as
well as its historical origins.7 Manifolds are an indispensable tool for the
mathematical formulation of GR, and the concept has an involved history
in this context – think of the Hole Argument.

In the previous section, we mentioned the thesis that Riemann’s work
was important for the first tensorial formulation of GR, because manifolds
feature in the mathematical part of the Entwurf. Janssen et al. (2007b, pp.
610) interpret the use of the notion as a sign that Riemann had a direct
influence on Grossmann. We argued that this is not necessarily the case, as
Grossmann might have adopted the notion from Ricci & Levi-Cività. This
suggests that, while Riemann influenced Grossmann, the influence is indirect
and filtered through Ricci & Levi-Cività’s lenses. We will examine Ricci &
Levi-Cività’s conception in some detail. Other possible interpretations of
how Einstein and Grossmann conceived of manifolds emerge from a search
for the word “manifold” in Einstein’s other writings.

6.5.1 Very Early History

The concept of manifold goes at least back to Gauss, who uses the con-
cept, albeit cautiously, in the “disquisitiones”; see section 5.2.3 for Gauss’s
theory of two-dimensional manifolds. The modern notion has its origin in
the writings of Riemann, especially his habilitation paper (see section 5.2.3).
Riemann already had an elaborate manifold concept that was important for
his work on differential geometry, as well as other subfields, such as com-
plex analysis and topology. For our purposes, his treatment of continuous,
“metric” manifolds, i.e. metrics with more than just topological structure, is
relevant. In his habilitation paper, he describes the line element, and how
it determines lengths in such manifolds, without using formulas. The man-
ifold “fully determines” the n(n − 1)/2 functions of the metric that are not
determined by the n variable transformations.

After Riemann, several mathematicians used manifolds as a tool in the
foundations of geometry.8 Exploring the influence of these mathematicians
on Grossmann and Einstein is beyond the scope of this chapter; a few remarks
will have to suffice. Two of the authors who developed the notion further
are Beltrami and Klein. There are paths from both of these authors to
Grossmann.

7The historical discussion of manifolds draws on Scholz (1980). We thank Erhard
Scholz for correspondence concerning this section.

8See Scholz (1980, ch. 3)
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Beltrami is relevant for Grossmann because, for one, he worked on non-
euclidean geometry, in particular surfaces of constant, non-zero curvature; a
topic that was of great interest to Grossmann. Also, Beltrami was a strong
influence on Ricci. Klein, on the other hand, certainly had an influence on
Grossmann via Bianchi. Bianchi studied in Göttingen for two years and
was influenced by Klein.9 Grossmann consulted Bianchi’s textbook when
he worked on the Entwurf; see section 6.7 below. The textbook is also
relevant in the context of surfaces with constant curvature. We also know
that Grossmann carefully studied Klein’s work on projective geometry, since
he worked on Cayley-Klein metrics.

6.5.2 Ricci & Levi-Cività

Norton (1992, p. 308) argues that Ricci and Levi-Civita (1901) set a prece-
dent for Grossmann’s perspective on manifolds:

Ricci and Levi-Civita buried their definition of a manifold in
the short preface within an account of the geometric ancestry of
their absolute differential calculus. The formal exposition of their
calculus begins in Chapter 1, with no mention of manifolds and
in a way that seems to seek as much of a divorce from geometrical
associations as possible.

This approach, Norton thinks, carries over to Grossmann: “[T]he con-
cepts of manifold and coordinate system were to be taken as terms already
known to the reader. At best, they were to be dismissed briefly in prefatory
remarks.” (Ibid.)

We agree that Ricci & Levi-Cività could be the origin of Grossmann’s
manifold concept. However, we do not agree with Norton’s assessment of the
importance of manifolds for Ricci & Levi-Cività. First of all, the discussion
of manifolds takes up a good part of the introduction, which underlines
the importance of the concept. More importantly, their discussion does not
suggest that manifolds are only important for the “geometric ancestry” of
the more general ADC. True, the origin of the ADC is traced to a geometric
tradition as opposed to its ”algorithmic core”, which goes back to Christoffel.
However, Ricci & Levi-Cività think there is an intimate connection between
the ADC and manifolds (p. 127f.):

A manifold Vn is defined intrinsically in its metrical proper-
ties by n independent variables and by a whole class of quadratic
differential forms of these variables, any two of which can be
transformed into each other by a point transformation. As a

9See Reich (1989, p. 282).
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consequence, the Vn [the manifold] is invariant under all trans-
formations of its coordinates. The absolute differential calculus,
by acting on the covariant and contravariant differential forms
of ds2 [the line element] of Vn [the manifold] in order to derive
others of the same nature, is also, in its formulae and in its re-
sults, independent of the choice of coordinates. – Being of the
sort essentially attached to Vn [the manifold], it is the natural
instrument of all investigations which have such a manifold as
their object, or in which one encounters as characteristic element
a positive, quadratic form of the differentials of n variables or
their derivatives.10

Especially in the last sentence, Ricci & Levi-Cività propose a close, “nat-
ural” connection between the ADC and manifolds: They characterize the
ADC as being “essentially attached” to a manifold and as being the natural
tool to investigate such objects. Manifolds are always implied when one uses
the ADC – it is what the calculus refers to.

The link between the line element and the manifold emerging from this
quote is striking. According to the last sentence, the line element “belongs to”
a manifold, or can stand in for a manifold. This might explain why manifolds
are not mentioned in the exposition of the ADC as a calculus, a fact pointed
out by Norton: if the line element is nothing but an algebraic representation
of the manifold, there is no need to deal with manifolds directly. We will see
below that this link between manifold and line element is key to Grossmann’s
conception as well.

The importance of the concept of manifolds shows not only in the in-
troduction, but also throughout Ricci & Levi-Cività’s paper. For example,
manifolds feature quite prominently in the second part of the paper on in-
trinsic geometry; see pp. 145. Here is the beginning of the chapter:

In this chapter, we will draw on the language of geometry by
considering the fundamental form φ to be the ds2 of a manifold
Vn.11

10“[U]ne variété Vn est définie intrinsèquement dans ses propriétés métriques par n va-
riables indépendantes et par toute une classe de formes quadratiques des différentielles de
ces variables, dont deux quelconques sont transformables l’une en l’autre par une trans-
formation ponctuelle. – Par conséquence une Vn reste invariée vis-à-vis de toute trans-
formation de ses coordonnées. Le Calcul différentiel absolu, en agissant sur des formes
covariantes ou contrevariantes au ds2 de Vn pour en dériver d’autres de même nature,
est lui aussi dans ses formules et dans ses résultats indépendant du choix des variables
indépendantes. – Étant de la sorte essentiellement attaché à Vn, il est l’instrument naturel
de toutes les recherches, qui ont pour objet une telle variété, ou dans lesquelles on ren-
contre comme élément caractéristique une forme quadratique positive des différentielles
de n variables ou de leurs dérivées.”

11“Dans ce chapitre nous aurons recours au langage géométrique en considérant la forme
fondamentale φ comme le ds2 d’une variété Vn à n dimensions.”
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Manifolds are treated as general, n-dimensional geometrical objects through-
out the chapter.12

6.5.3 Grossmann

The assumption that Grossmann adopted Ricci & Levi-Cività’s perspective
on manifolds has interesting consequences. It would not only explain why
manifolds are almost constantly associated with the line element, but also
why manifolds do not feature prominently in the Entwurf. As we saw in
the discussion of the introduction to the Entwurf, Grossmann refrains from
using “geometrical tools” in the exposition of tensor calculus. If he had a
geometric conception of manifolds, it is reasonable that they do not feature
later in the Entwurf.

An analysis of the entire Entwurf reveals that manifolds only feature in
Grossmann’s part – Einstein never uses the word “manifold”. In Grossmann’s
part, manifolds feature in the introduction, in part three (once), and then in
part four, section two; the discussion of the (failed) attempt to find generally
covariant field equations.

As we already noted, Grossmann uses the concept of manifolds in almost
constant association with the line element: a manifold is “given by its line
element”. This formulation is used in the introduction as well as in the
discussion; in part four, section two. In part three, Grossmann even identifies
the manifold with the line element: he introduces the Levi-Cività symbol
and emphasizes its “importance for the vector analysis of the n-dimensional
manifold ds2 =

�
µν gµνdxµdxν”. A very close association indeed.

The close connection between manifold and line element suggests that
Grossmann, just as Ricci & Levi-Cività, regarded line element and metric as
an (algebraic) surrogates that facilitate calculations without invoking dubi-
ous, geometrical connotations. The line element becomes the central object
and makes geometric reasoning superfluous.

However, maybe we modern readers are simply reading too much into
the notion, as we are aware of the conceptual difficulties that arose in the
genesis of GR, from the question of how to interpret manifolds. Our reading
could be anachronistic indeed, as a glance at Einstein’s use of the concept
shows. A search for the word “manifold” in Einstein’s writings reveals a
more colloquial, non-technical use of the word, which is derived from the
German adjective “mannigfaltig”, meaning “diverse”. Maybe manifolds are
nothing but an undetermined “diversity”, or a stand-in for whatever object

12We have to point out that the importance of manifolds cannot be adequately assessed
if one consults Hermann (1975); the standard english translation of Ricci & Levi-Cività’s
paper. Hermann’s translation almost systematically suppresses the notion of manifold.
For example, the above quotation reads as follows in Hermann’s translation: “In this
chapter we make use of geometric language, with a Riemannian metric tensor φ defining
the basic ‘geometry.’ [sic] ” (ibid., p. 65). The translation does not live up to historical
standards in other respects as well.
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is represented by the line element. Maybe Einstein and Grossmann did
not pay too much attention to the concept, because they thought that the
relationship between metric and manifold is straightforward, or even trivial,
or because they worked under time pressure and pressed on without working
out the ramifications of the concept.

Finally, we have indirect evidence that Grossmann may have emphasized
the algebraic, invariant-theoretic perspective of Ricci & Levi-Cività, origi-
nating in Christoffel, over Riemann’s more geometric approach, from a letter
that Felix Klein wrote to Einstein on March 20, 1918:

You will probably immediately agree with what I have to say
about Riemann, Beltrami, and Lipschitz; it seems to me that
Grossmann at the time instructed you too much from the point
of view of the school of Christoffel more narrowly.13

Summing up, we have various possible interpretations of the concept of
manifold in the Entwurf, which are not necessarily mutually exclusive. First,
Grossmann could have adopted a more or less sophisticated version of the
concept, as developed in the mathematical literature, especially by Riemann.
We think that a direct influence of Riemann is unlikely, as the discussion in
the Entwurf is not very deep, and Grossmann may not have consulted Rie-
mann. Second, Grossmann could have relied on Ricci & Levi-Cività’s treat-
ment of manifold. This is Norton’s preferred account. Grossmann could
have adopted Ricci & Levi-Cività’s separation of the algorithmic aspect of
the ADC, which mainly deals with the line element, and its natural interpre-
tation in terms of geometry, which involves the manifold. Third, there is a
more extreme reading of Grossmann’s interpretation of the relation between
manifold and line element, according to which the two concepts are to be
identified. Fourth, the use of “manifold” may have been influenced by the
colloquial meaning of the word at the time. This last interpretation cautions
us against reading too much of the modern notion into the concept used in
the Entwurf.

6.6 Paragraph 1: General Tensors

In this paragraph, Grossmann introduces tensors, and what is now known
as tensor algebra; operations allowing the construction of new tensors from
old ones. We have divided the paragraph into subparagraphs, in order to
enhance readability.

13“Was ich von Riemann, Beltrami, und Lipschitz erzähle, wird wohl gleich ihren Beifall
haben; es scheint mir, dass Grossmann Sie s. Z. zu einseitig vom Standpunkte der engeren
Christoffelschen Schule aus instruiert hat” – cited after (Janssen et al., 2007b, p. 611, fn.
212).
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6.6.1 Variables and their Differentials, Fundamental Tensor
and its Inverse, Transformation Properties

Grossmann first introduces the square of the general line element, as in
equation (6.1) above. He writes that it “can be interpreted as the invariant
measure of the distance of two infinitely-close space-time points”. This in-
terpretation is new, insofar as the ADC has not been applied to theories of
space-time before. However, the exposition of tensors is largely independent
of this interpretation; accordingly, all concepts are defined for n variables.

Next, Grossmann discusses transformations. If one set of variables is
a general function of another set of variables, xi = xi(x�1, x

�
2, ..., x

�
n), their

differentials transform as

dxi =
�

k

∂xi
∂x�k

dx
�
k =

�

k

pikdx
�
k (6.2)

dx
�
i =

�

k

∂x�i
∂xk

dxk =
�

k

πkidx
�
k

The notation pik, πik is not used by Ricci & Levi-Cività in this form,
nor by Christoffel, who uses a more compact notation. Bianchi (p. 38)
uses the notation dxr =

�
i pridx

�
i with pri =

∂xr
∂x�

i
for variable differentials.

Grossmann then notes the transformation behavior of the line element gµν ,
using the same notation.

Next, Grossmann introduces the discriminant of the fundamental ten-
sor, the determinant g = |gµν |. This allows him to define γµν , a quantity
he only later calls the inverse fundamental tensor; here it is defined, rather
awkwardly, as the “normed subdeterminant of G adjoint to γµν” (“γµν [ist]
die durch die Diskriminante dividierte (‘normierte’), dem Element gµν ad-
jungierte Unterdeterminante von g”). The γµν transform as

γ�rs =
�

µν

πµrπνsγµν (6.3)

The manner in which γrs is introduced is telling. The notation for the
components of the metric, and especially for the inverse, is, in all probability,
not from Ricci & Levi-Cività; on p. 134, they introduce the inverse metric as
such, and show how covariant and contravariant tensors (“systèmes”) can be
transformed into each other. The discriminant is not used in the definition
of the inverse metric.

Christoffel uses the subdeterminant definition, in what is, essentially, the
definition of the inverse of the metric, but he does not explicitly address the
relation between covariant and contravariant quantities.

Grossmann’s presentation is closest to Bianchi’s. Bianchi introduces the
components of the inverse metric as Aks (= γks), on p. 37; he uses the same
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definition as Grossmann (“Aks [... ist] die durch die Discriminante a selbst
dividierte Unterdeterminante von aks in a”). This is the second instance
where Grossmann follows Bianchi rather than Ricci & Levi-Cività.

6.6.2 Covariant, Contravariant and Mixed Tensors

Grossmann defines general covariant, contravariant, and mixed tensors, based
on their transformation behavior. Covariant tensors are written with latin
capitals, contravariant tensors with Greek capitals, and mixed tensors with
German capitals:

T
�
r1r2...rλ =

�

i1,i2...il

pi1r1pi2r2 ...piλrλ · Ti1i2..iλ

Θ�
r1r2...rλ =

�

i1,i2...il

πi1r1πi2r2 ...πiλrλ ·Θi1i2..iλ

T �
r1r2...rµ/s1s2...sν

=
�

i1,i2...iµ
k1,k2...kν

pi1r1pi2r2 ...piµrµ · πk1s1πk2s2 ...πkνsν · Ti1i2...iµ/k1k2...kν

Consequently, he classifies gµν as a covariant tensor of order two, γµν as a
contravariant tensor of order two, and variable differentials as contravariant
tensors of order one. In the case n = 4, gµν and γµν are interpreted as the
fundamental tensors of the gravitational field.

In a footnote to the contravariant case, Grossmann comments on the
definition and notation of tensors. He notes that “covariant (contravariant)
tensors of rank λ are thus identical to the ‘covariant (contravariant) systems
of degree λ’ by Ricci & Levi-Cività”. However, he does not want to adopt
their notation, as “complications with compounded equations have forced us
to choose the above notations”.

Grossmann is the first to introduce the notion of tensor for these mathe-
matical objects, i.e. for general co- and contravariant quantities of arbitrary
rank.14 Ricci & Levi-Cività call these objects “systems”. Previously, only
special objects with a physical interpretation from, e.g., elasticity theory
were called tensors. It is also the first definition of general mixed tensors.15

It is not entirely clear why Grossmann chose the more awkward notation,
with different kinds of letters, over the more elegant system, with upper and
lower indices, proposed by Ricci & Levi-Cività; a notation that is still used
today. One possible explanation is the use of mixed tensors in Einstein’s
part, especially the parts on electrodynamics.16 Also, a mixed tensor, for

14See the appendix of Norton (1992), and especially the Addendum on pp. 309, for
more on Grossmann’s use of the notion.

15See Reich (1994, p. 194)
16Abraham Pais (1982, p. 220) notes that the Entwurf contains the correct generally

covariant version of the Maxwell equations.
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the divergence of the stress-energy tensor, features in Grossmann’s part of
the Frauenfeld lecture.

In sum, in this subsection we have first examples of new concepts and
notation. We do not yet fully understand the motivations behind these
innovations; they could well be motivated by requirements from existing
physical theories.

6.6.3 Tensor Algebraic Operations

Grossmann introduces tensor-algebraic operations: sum; outer product, now
called tensor product; inner product, including the general case of mixed ten-
sors; “reciprocity”, now called raising and lowering indices, and; contracting
indices.

The end of the paragraph has a short discussion of how invariants can be
formed from co- and contravariant tensors of order one and two, and dimen-
sion 4, by using the metric. Grossmann notes the form of these invariants in
SR, but then states that he will no longer explore the parallel to SR; instead,
he refers the reader to Minkowski, Sommerfeld and Laue.

The tensor algebraic operations are very similar to Ricci & Levi-Cività’s,
up to their names; for example “Reziprozität” corresponds to “réciproques par
rapport à la forme fondamentale”. There are, however, some notational de-
viations; also, the comparison to SR, and the introduction of the operations
for mixed tensors, is new.

6.7 Paragraph 2: Differential Operators on Tensors

In the second paragraph, Grossmann introduces tensor calculus proper: “ex-
tension” (“Erweiterung”), the covariant derivative, divergence, and “general-
ized Laplacean operation”; Laplace-Beltrami differential operators. Gross-
mann then applies these notions to tensors of rank 0, 1 and 2. The purpose
of this application is not didactic; the cases under discussion will prove to
be crucial in paragraph 4, the application to GR. The discussion of the cases
is quite detailed. This could mean that Grossmann thought they were new.
In any case, they cannot be found in any of the cited sources in the form
presented here.

6.7.1 “Erweiterung” (Covariant Derivative)

Grossmann first defines the covariant derivative (“Erweiterung”). This is “the
covariant (contravariant) tensor of rank λ+1, which results from a covariant
(contravariant) tensor of rank λ by ‘covariant (contravariant) differentiation’
”. Grossmann notes that, according to Christoffel, this is the expression
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Tr1r2...rλs =
∂Tr1r2...rλ

∂xs
− (6.4)

�

k

��
r1s

k

�
Tkr2...rλ +

�
r2s

k

�
Tr1k...rλ + ...+

�
rλs

k

�
Tr1r2...k

�

Grossmann attributes the name “covariant differentiation” to Ricci &
Levi-Cività. He first defines the Christoffel symbols of the second kind after
using them in equation (6.4), then those of the first kind, and then the
relation between the two kinds of symbols. Finally, Grossmann introduces
the “contravariant extension”; this is the operation of applying the above
operation, the reciprocal, to T , and “raising” the differentiation index.

It is not easy to determine the source of Grossmann’s notion of covari-
ant derivative; it is useful to take the history of that concept into account.
According to Luca Dell’Aglio (1996), the covariant derivative was first in-
troduced by Christoffel in order to construct “new forms [tensors] of higher
orders”. However, Christoffel did not interpret the algebraically defined op-
eration as a form of derivative, as the focus of his work was not analytic. He
was merely interested in the construction of algebraic invariants. Dell’Aglio
notes that it was Ricci who brought together the algebraic origin of the
concept with the analytic tradition, especially the differential parameters of
Lamé and Beltrami, and interpreted the expression as a generalized (coordi-
nate independent) form of derivative.

Thus, on top of attributing the name “covariant derivative” to Ricci &
Levi-Cività, Grossmann drew on Ricci’s work for its interpretation. The
importance of the relation to differential parameters that Ricci established
will be clarified later. However, Grossmann probably did not adopt the
expression of the covariant derivative, i.e. equation (6.4), from Ricci & Levi-
Cività: the notation is just too different. Ricci & Levi-Cività write on p.
138:

M. Christoffel [...] has first noted that if a system of order m,
Xr1r2...rm , is covariant, the system of order m+ 1

Xr1r2...rmrm+1 =
∂Xr1r2...rm

∂xrm+1

−
m�

1

l

n�

1

q

�
rlrm+1

q

�
Xr1r2...rl−1qrl+1rm

(6.5)

is covariant too. We call this operation [...] covariant deriva-
tive.

In contrast to Grossmann, Ricci & Levi-Cività use a compact double
sum in their definition. But more importantly, Ricci & Levi-Cività do not
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explicitly define the Christoffel symbols: they appear in the above definition
without ever being defined in terms of the metric. Later, they introduce the
Riemann tensor without using Christoffel’s notation; instead, they devise
their own notation. Thus, Grossmann must have taken the definition and
properties of the Christoffel symbols from some other source.17

Christoffel’s notation, on the other hand, is very similar to Grossmann’s.
He writes on p. 57:

Under the assumption that all integrability conditions are sat-
isfied, every complete system of transformation relations [(α1...αµ)
...] of order µ yields a new complete system of transformation
relations [(αα1...αµ) ...] of order µ+ 1 if one defines

(ii1...iµ) =
∂(i1i2...iµ)

∂xi
−
�

λ

��
ii1

λ

�
(λi2...iµ) +

�
ii2

iλ

�
(i1λ...iµ) + ...

�

(6.6)

Thus, Grossmann’s account is not based exclusively on Christoffel, nor
on Ricci & Levi-Cività. He cannot have used Bianchi exclusively either, be-
cause Bianchi does not introduce the covariant derivative as such. However,
Bianchi has a very useful paragraph summarizing useful properties of the
Christoffel symbols, which Grossmann might have used.

Summing up, Grossmann probably used a combination of Ricci & Levi-
Cività, Bianchi, and Christoffel for the notion of covariant derivative. He
adopted the interpretation of the derivative provided by Ricci & Levi-Cività,
which is useful for generating differential operators (differential parame-
ters). On the other hand, he adopted the notation used by Christoffel (and
Bianchi), not Ricci & Levi-Cività’s.

6.7.2 Divergence and “Generalized Laplacean Operation”

Divergence is defined as the successive application of covariant derivative
and inner product (contraction) with the fundamental tensor. This yields
a new tensor of rank diminished by 1. The operation, as Grossmann notes,
is not unique for general tensors, as the product can be formed with any
one of the indices. The “Generalized Laplacean Operation” is the successive
application of covariant derivative and divergence. The result is a tensor of
the same rank.

17It is unclear why Ricci & Levi-Cività use Christoffel’s notation only in the context
of the covariant derivative. One possibility is that this is a slip of notation. Later on,
they use a more unified notation, when they introduce the Riemann tensor. In any case,
Ricci & Levi-Cività acknowledge the fundamental importance of Christoffel’s work several
times. The change of notation should, therefore, not be interpreted as an attempt to
downplay Christoffel’s importance.
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What is the source of these operations? Ricci and Levi-Civita (1901,
ch. 3, pp. 163.; ch. 6, pp. 191) discuss differential parameters, but not in
sufficient detail; for example, no proofs are given. According to Dell’Aglio
(1996), Ricci discussed differential parameters of higher orders as early as
1886. Therefore, Grossmann’s results, in the discussion of the cases n =
0, 1, 2, are probably not original work. However, Grossmann did not use
these earlier results by Ricci either. As we will see below, the most probable
source, especially in the application of the operator to particular cases, is
Bianchi and Lukat (1899).

6.7.3 Application to Scalar T

Grossmann discusses the notions of tensor analysis first in application to a
tensor of rank 0, i.e. to a scalar T . He defines the gradient of T and, based
on this, the first Beltrami parameter. More importantly, he introduces the
“generalized Laplacean operation”, which is formed as the successive appli-
cation of derivative and divergence. Grossmann notes that this is the second
Beltrami parameter (what we would now call Laplace-Beltrami operator),
and states, but does not prove, that it can be given the following form:
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Grossmann refers the reader to Bianchi for this result, and to the parallel
derivation in the case of tensors of rank 1.

6.7.4 Application to Covariant Tensor Tr

Grossmann’s main goal in this part is to show that the divergence of a
covariant tensor (left hand side of the following equation) can be given a
particular form (right hand side):
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This result is mentioned, but not derived, by Ricci & Levi-Cività, p. 164.
Grossmann mentions that Kottler (1912, p. 1679) arrived at the same result,
albeit using different methods; the theory of integral forms. In any case,
Grossmann finds it necessary to prove the result in the spirit of the ADC,
using methods that can be found in Bianchi’s book. Maybe he thought that
he was the first to prove this result using the ADC methods. In any case,
the result is important for Einstein’s part, as we will see below.

The derivation indicates that at this point, Grossmann was already quite
familiar with basic facts of tensor algebra and analysis; for example, he
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makes free use of the symmetry of the metric. A reconstruction of his deriva-
tion also suggests that he might have drawn on Bianchi’s monograph, which
summarizes some useful relations. Grossmann’s derivation is very similar to
Bianchi’s proof that the second Beltrami differential parameter can be given
a particular form.

6.7.5 Application to Contravariant Tensor Θrs

Again, Grossmann’s goal is to bring the divergence of a rank two tensor
into a particular form. The starting point of the transformation is what
Grossmann calls column divergence (“Kolonnendivergenz”):
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Grossmann states the following identity that is necessary for the subse-
quent transformation:
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The first identity already appears in the beginning of the second para-
graph. The second identity has not been used before, and, as it is an easy
result, Grossmann does not prove it. The third identity is stated in the
derivation of the rank one tensor.18 Bianchi derives and states equation
(6.10) as equation 20 on p. 45. It is plausible that Grossmann took the
result from there.

Putting (6.9) and (6.10) together, and recalling that ∂log
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This result is important for the proof, in paragraph four, that the diver-
gence of the energy-momentum tensor is generally covariant.

Summing up, Grossmann probably considered at least some of the results
in the application of the tensor analytic notions to be new, especially the
cases of rank one and two. It is plausible that for much of this section, he

18It is unclear why Grossmann states this identity here, and not earlier, or in a more
organized manner. This could indicate that Grossmann wrote the exposition in a rush.
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relied on Bianchi’s monograph, which contains many of the necessary tools.
The same is not true for Kottler; Grossmann probably refers to him to clarify
that his own result is not new, except for the derivation.

The fact that Grossmann relies on Bianchi, and not on Kottler, who uses
the theory of integral forms to derive some of the results, can be explained by
placing Grossmann in the methodological tradition of Ricci & Levi-Cività,
who defend a “purity of method” in the introduction to their paper; see
section 6.4 above.

6.8 Paragraph 3: Special Tensors (Vectors)

In this paragraph, Grossmann discusses antisymmetric tensors. According
to Reich (1994, p. 198), this is the first definition of an antisymmetric tensor
of rank n. Grossmann writes that “we can reduce the theory of vectors of
the n-th kind (four- and six-vectors for n = 4) to the special tensors of rank
λ. From the perspective of the general theory, it is more convenient to start
with tensors and treat vectors as a special case.”

Grossman introduces the Levi-Cività symbol, as he calls it, in a footnote
(“Das ‘System �’ von Ricci und Levi-Cività”); e the covariant, and � the con-
travariant discriminant tensor, i.e. the Levi-Cività symbol. This is obviously
taken from Ricci & Levi-Cività.

Grossmann derives two results that are important for the physical part.
First, he shows that the divergence of a special tensor of rank two takes
a particular form; this is a specialization of a result derived above. The
divergence of a special tensor of rank two Θµν is

Θµ =
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ν
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Second, he derives the “dual” of a contravariant tensor of rank two.

6.9 Paragraph 4: Mathematical Supplement to Part
I

This paragraph has three sections. Two of these sections, the first and the
third, have the simple purpose of supplementing necessary calculations for
Einstein’s part of the Entwurf. The second section, however, is unusual in
that it does not contribute to the Entwurf theory, but discusses an “alterna-
tive” approach to the field equations. Grossmann explains, and rejects, the
possibility of finding a generally covariant differential operator based on the
Riemann tensor. From the modern perspective, this is the most spectacular
part of the Entwurf, and also what might have led Einstein and Grossmann
to qualify the paper as an “outline”.
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6.9.1 Proof of the General Covariance of the Energy-Momentum
Conservation Equation

The goal of the first part is to prove the general covariance of the energy-
momentum equation, which was heuristically derived in Einstein’s part. This
equation is, up to a factor of

√
−1:

�

µν

∂

∂xν

�√
g · gµν ·Θµν

�
− 1

2

√
g ·

�

µν

∂gµν
∂xσ
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for σ = 1, 2, 3, 4.
The starting point is the result from paragraph 2, i.e. that the divergence

of a contravariant tensor Θµν can be written as in equation (6.11). The
ingredients of the derivation are integration by parts as well as the fact that,
by symmetry of Θµν , one can exchange dummy indices. The calculation
is more or less straightforward. Grossmann describes the result as follows:
“The divergence of the (contravariant) stress-energy-tensor of the material
flow, or of the physical process, vanishes.”

The result, that the energy balance equation is generally covariant, is
new. The main tool is the fact that the divergence of a contravariant tensor
can be written as in equation (6.11). We argued there that Grossmann
probably relied on Bianchi for this result.

6.9.2 Differential Tensors of a Manifold Given by its Line
Element

In this interesting section, Grossmann explores, and rejects, the mathemat-
ical approach to the field equations, which will later prove to be correct.
We have identified three central aspects of this passage. We will compare
Grossmann’s account of these three points with the corresponding accounts
in the works of Ricci & Levi-Cività, Christoffel, Bianch, and Riemann.

1. Riemann Tensor Formula: Grossmann defines the Riemann tensor in
two forms: i) in fully covariant form, and ii) with one contravariant
index. He notes the relation between the two expressions. The Rie-
mann tensor is one of the fundamental objects in the construction of
the later, correct, field equations. We will compare the possible sources
of Grossmann’s account.

2. Interpretation of the Riemann Tensor: Grossmann notes that, based
on the Riemann tensor (and the discriminant tensor), we can construct
the complete system of differential tensors of the line element, with
generally covariant algebraic and differential operations. Grossmann
emphasizes the “eminent importance of these concepts for differential



174 CHAPTER 6. GROSSMANN’S SOURCES

geometry”. This characterization of the Riemann tensor is traced back
to the mathematical literature.

3. (Failed) Application of the Riemann tensor in GR: Grossmann con-
structs what we now recognize as the Ricci tensor in equation (6.23),
but ultimately rejects it as an operator for the field equations, because
he is convinced that it fails to reduce to the Newtonian limit in a suit-
able manner. These considerations do not go back to the mathematical
literature.

Grossmann’s Program

In the beginning of the second section, Grossmann states his program:

The formulation of the differential equations of the gravita-
tional field [...] directs our attention to the differential invariants
and differential covariants of the quadratic differential form [gµν ].
The theory of these differential invariants [...] leads to the dif-
ferential tensors given by a gravitational field. The complete
system of these differential tensors for arbitrary transformations
can be reduced to a differential tensor of rank four found by Rie-
mann [fn.: Riemann, Ges. Werke, S. 270] and, independently, by
Christoffel [fn: Christoffel, 1.c., S. 54]; we will call it the Riemann
differential tensor [...]. By covariant algebraic and differential
operations, the Riemann differential tensor and the discriminant
tensor [..] provide the complete system of differential tensors
(and thereby also of differential invariants) of the manifold.

Grossmann establishes a direct line of reasoning from the differential
equations of a gravitational field, via the differential tensors based on the
metric, to the Riemann tensor, which allows the construction of all differen-
tial tensors of this kind. If you want to find generally covariant differential
equations based on the metric, the Riemann tensor is the mathematical ob-
ject you need. We will return to the stated interpretation of the Riemann
tensor below. Note the (faulty) reference to Riemann, and the (correct)
reference to Christoffel.

Grossmann: Riemann Tensor Formula

Grossmann writes the fully covariant Riemann tensor as follows:
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Grossmann notes that
�
ik, lm

�
is also called the Christoffel four-index

symbol of the first kind. Then he introduces the four-index symbol of the
second kind:
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Grossmann notes that the symbol of the second kind, a different form
of the Riemann tensor, is a mixed tensor of covariant rank three and con-
travariant rank one. The two kinds of four-index symbols are related as
follows:
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Riemann: Riemann Tensor Formula

In Riemann’s “Commentatio” (Riemann, 1876b, p. 381, eq. I), we can find
the following expression:
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Riemann writes the components of the expression on the l.h.s. as (ιι�, ι��ι���).
This is the Riemann tensor. Its vanishing, i.e. equation (6.18), is a necessary
condition for a flat metric, i.e. we can transform it into

�
ι dx

2
ι .19

Riemann’s notation is quite different from Grossmann’s, especially in
comparison with the other sources. Riemann does not use the inverse met-
ric, and he does not use Christoffel’s notation either.20 Furthermore, the
approach taken in the “Commentatio” is not relevant for Grossmann – for
example, Riemann is not interested in the tensorial nature of the Riemann
tensor. This further supports our argument in section 6.3 that Riemann was
not directly consulted, or used by, Grossmann.

19See also Zund (1983, p. 87).
20According to Zund (1983), he could not have known Christoffel’s work, as Riemann

wrote the “Commentatio” around 1861, before Christoffel’s 1869 paper. However, Christof-
fel did not know the “Commentatio” either, as it only appeared in print in the 1876 edition
of Riemann’s works. The two are independent.
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Ricci & Levi-Cività: Riemann Tensor Formula

Ricci & Levi-Cività discuss the Riemann tensor, or “Riemann system” (“sys-
tème de Riemann”), as they call it, twice. On pp. 142., they define the
Riemann tensor in two forms and state some important properties. To give
an example, they note that the Riemann tensor is, what we would now
call, the commutator of the covariant derivative. This passage contains the
first citation of Riemann.21 They also cite Christoffel, but without a page
number. Grossmann, on the other hand, gives page numbers in his Christof-
fel citations. This is a further clue that Grossmann did consult Christoffel
separately. On pp. 160, Ricci & Levi-Cività discuss the construction of
differential invariants from the Riemann tensor.

Ricci & Levi-Cività did consult Riemann’s “Commentatio”. However, it is
highly unlikely that Grossmann has taken his account of the Riemann tensor
from Ricci & Levi-Cività. There are two reasons for this claim. Firstly, the
notation used by Ricci & Levi-Cività, on the one hand, and Grossmann on
the other, do not match – most strikingly, as I mentioned above, they only
use Christoffel symbols once in the whole paper, in the definition of the
covariant derivative. Later, they even introduce their own notation for the
Christoffel symbols (p. 142):
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ars are the components of the metric. Subsequently, they write the fully
covariant Riemann tensor (“système covariant de riemann”) as follows:
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Secondly, Ricci & Levi-Cività do not discuss the four-index symbol of the
second kind at all, i.e. they do not introduce the (general) Riemann tensor
with one contravariant index, and, consequently, the relations between the
two expressions of the Riemann tensor are not stated as well. They only
discuss a contravariant version of the Riemann tensor in the case n = 3.

Christoffel: Riemann Tensor Formula

Grossmann cites Christoffel’s paper as one of the origins of the Riemann
tensor, with a specific reference to p. 54. Grossmann’s Riemann tensor is
more or less the same as Christoffel’s. Christoffel writes the fully covariant
Riemann tensor (p. 54, eq. 14) as

21This is the faulty reference to p. 270 instead of p. 370; see our discussion in section
6.3 above.
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This expression deviates from Grossmann’s in the order of some indices,
Christoffel’s notation for the metric (wαβ), the use of the subdeterminant
divided by the determinant (Eαβ

E ) instead of the inverse metric, and the
missing comma in the four-index symbol. It is probable that Grossmann’s
account is based directly on Christoffel, or on a source close to Christoffel.

However, Christoffel is probably not the only source. Most importantly,
Christoffel does not define the four-index symbol of the second kind – it is,
strictly speaking, not a Christoffel symbol. Christoffel writes the Riemann
tensor with one contravariant and three covariant indices on p. 52, but he
does not introduce a special notation for it; instead he “lowers” the contravari-
ant index in order to get the fully covariant Riemann tensor. Christoffel also
does not state the transformation relations between the two forms of the
Riemann tensor, (6.16) and (6.17) above.

Bianchi: Riemann Tensor Formula

Bianchi writes the four-index Christoffel symbol of the first kind as follows
(p. 51, eq. 32*)
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This is very similar to Grossmann’s notation, except for the metric (aik)
and inverse metric (Aik) in place of Grossmann’s gµν and γµν . Bianchi and
Grossmann both use the comma in the middle of the four-index symbol.
The motivation for the introduction of the comma is probably to indicate its
symmetries.

Bianchi is the only one among Grossmann’s sources to introduce the
four-index symbol of the second kind (p. 49, eq. 27). What is more, he also
states the relation between the two kinds of four-index symbols (p. 49, eqs.
29, 29*), which is very similar to Grossmann’s equations (6.16) and (6.17)
above.

Bianchi’s presentation is closest to Grossmann’s; it is almost a perfect
match. It is very likely that Grossmann used Bianchi, and probably also
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Christoffel. However, a close parallel reading of Bianchi and Christoffel re-
veals that Bianchi took big parts of his account directly from Christoffel:
Much of paragraphs 27 (on the four-index symbols) and 28 (on the curva-
ture of a binary differential form) are parallel to Christoffel’s parts 4 and 5.
In his paragraphs 27 and 28, Bianchi reconstructs Christoffel in a more read-
able way. In sum, at least here, Bianchi is a mediator between Christoffel
and Grossmann.22

Riemann, on the other hand, was not as big an influence on Bianchi as
Christoffel. Bianchi does not list Riemann as a major influence on chapter
two, and while Riemann’s habilitation paper is in Bianchi’s bibliography,
Bianchi does not mention the “Commentatio” at all.23

Grossmann: Interpretation of the Riemann Tensor

Grossmann’s interpretation of the Riemann tensor has two aspects. First,
the Riemann tensor has a systematic mathematical significance. It produces
all differential tensors and invariants of a “manifold given by its line element”.
In modern terms, it delivers all generally covariant differential operators that
can enter into the field equations. This is the main mathematical message.24

Second, he points out the “eminent importance” of the Riemann tensor
for differential geometry, and mentions one particular property of the Rie-
mann tensor in a footnote: “[t]he identical vanishing of the tensor Riklm

constitutes the necessary and sufficient condition for the transformability of
the differential form into

�
i dx

2
i .” For Grossmann, this seems to establish

the connection between the Riemann tensor, a purely mathematical object,
and the problem of finding differential equations of the gravitational field:
the vanishing of the Riemann tensor is equivalent to the possibility of trans-
forming the metric into the form

�
i dx

2
i , in which case we get a flat metric.

We will now try to locate these aspects in the mathematical literature.

Ricci & Levi-Cività: Interpretation of the Riemann Tensor

Ricci & Levi-Cività discuss the construction of differential invariants based
on the Riemann tensor in chapter three, “On analytical applications”, pp.
160, par. 2. Their objective is the following:

22This does in no way mean that Bianchi plagiarized Christoffel; the latter’s influence
is acknowledged: Bianchi cites Christoffel’s paper as one of the main sources used for
chapter two.

23The bibliography reads: “Riemann, Über die Hypothesen, welche der Geometrie zu
Grunde liegen. (Gesammelte Werke, Leipzig -Teubner, S. 254. Vgl. auch die Zusätze von
Dedekind, S. 517)”. The “Commentatio” is not mentioned. He draws attention to remarks
by Dedekind that were added later. The remarks (“Zusätze”) by Dedekind on p. 517 are
part of a biographical sketch and concern the genesis of Riemann’s habilitation paper.

24This result was first proved in Christoffel (1869). As stated, the result is not entirely
correct and has to be hedged suitably; see Ehlers (1981) for an appraisal of Christoffel’s
result and later generalizations.



6.9. PARAGRAPH 4: MATHEMATICAL SUPPLEMENT TO PART I179

Given a definite quadratic form φ [i.e. the fundamental ten-
sor] and any number of associated systems S (covariant or con-
travariant) [i.e. tensors], determine all the absolute invariants
that can be formed with the coefficients of φ, the elements of the
systems S, and their derivatives up to a fixed order µ.

Ricci and Levi-Civita do not define absolute invariants. According to
Reich (1994, p. 55), the definition of absolute invariants is due to Siegfried
Aronhold: It is a transformation that is independent of the substitution
determinant. In modern terminology, an absolute invariant transforms like
a tensor, while invariants in general transform as tensor densities. In this
respect, Ricci & Levi-Cività deviate from Grossmann, who includes the use
of the discriminant tensor in the construction of differential invariants. Ricci
& Levi-Cività then state the answer to this problem:

To obtain all the absolute differential invariants of order µ, it
is sufficient to determine the algebraic invariants of the systems
of the following form:

1. fundamental form φ;
2. associated forms S and their derivatives with respect to φ

up to order µ

3. (for µ > 1) quadrilinear form, with coefficients from the
Riemann system [i.e. Riemann tensor]; derivatives of the
form up to order µ− 2

Proper invariants are those invariants of a form φ that de-
pend on the form φ and its derivatives only; we can deduce the
following two corollaries from the preceding proposition:

• The forms of class 0 do not admit of any proper differential
invariants

• The forms of higher classes do not have differential invari-
ants of order one; their invariants of order µ > 1 are those
of the forms 1) and 3).

They then go on to discuss the cases n = 2, 3.25

Ricci & Levi-Cività’s discussion of invariants generated by the Riemann
tensor is similar to Grossmann’s in that they discuss how the complete set of
(absolute) differential invariants can be obtained. The terminology, however,
differs from Grossmann’s in several respects. First, they state the theorem in
terms of absolute invariants, a notion that Grossmann does not use. The no-
tion of algebraic invariant is not properly defined as well. We can guess that

25Curiously, they announce that they want to come back to these issues in the chapter
on geometric applications, specifically in par. 8; however, this paragraph does not exist.
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they allude to the tensor algebraic operations defined in the first chapter.
We can deduce, from the second corollary, that those differential invariants
of order µ = 2 that can be constructed from the metric alone are the alge-
braic invariants constructed from the metric and the Riemann tensor; there
is no need to form derivatives of the latter. Secondly, and perhaps more im-
portantly, Ricci & Levi-Cività do not discuss constructions involving tensor
densities.26

Ricci & Levi-Cività mention on p. 143 that if we can transform the fun-
damental tensor into the form

�
i dx

2
i , the Riemann tensor vanishes identi-

cally; this is repeated on p. 161. They do not state that it is an equivalence.
As pointed out above, they note that the Riemann tensor is basically the
commutator of the covariant derivative.

In sum, it is implausible that Grossmann based his account exclusively
on Ricci & Levi-Cività.

Christoffel: Interpretation of the Riemann Tensor

In contrast to Ricci & Levi-Cività, Christoffel treats the case of invariants
with nontrivial substitution determinant, i.e. tensor densities:

[...] the system containing all the necessary and sufficient
conditions for the transformation from F to F � is I � = rλI, I �1 =
rλ1I1, ...; with r substitution determinant, and λ constant. It
is appropriate to call these invariants of the forms F,G4, G5, ...

[i.e. the fundamental form, the Riemann tensor, and its covariant
derivatives] the complete system of invariants of the differential
expression F .

It is plausible that Grossmann consulted the Christoffel paper directly
on this point.

Bianchi: Interpretation of the Riemann Tensor

Bianchi discusses differential invariants and covariants in the following pas-
sages: In paragraph 22, he defines the differential invariants and differential
parameters of a quadratic differential form. Paragraph 24 is entitled “Equiv-
alence of two quadratic differential forms”. Here he derives what he calls the
fundamental equation (equation I on p. 43). This equation expresses the
second differential quotients of the coordinate system x in terms of the first

26Ricci & Levi-Cività’s discussion is not really user-friendly. The above theorem is stated
without much explanation or proof; they only refer to earlier papers by Ricci. Concepts
such as absolute and algebraic invariants are not introduced. As a consequence, it is hard
to understand how exactly we can construct the proper differential invariants we are after.
We assume that Ricci & Levi-Cività are referring to proper differential invariants in the
second corollary as well.
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differential quotients. It can be found one-to-one in Christoffel, p. 49, equa-
tion (9). In paragraph 27 on “four-index symbols”, i.e. the Riemann tensor,
he discusses the construction of differential invariants, as opposed to differ-
ential parameters. He writes: “We now want to build a covariant of degree
four in the differentials, whose coefficients are built from the fundamental
form and of its (first and second) derivative. In this manner we are able
to construct differential invariants.” However, he does not state, or discuss,
whether the differential invariants we get in this manner form a complete
system of such invariants.

In sum, Bianchi does not prove statements about the construction of
differential invariants in chapter two, at least not in the generality required
by Grossmann.27

Ricci Tensor: The (Failed) Application

The last part of Grossmann’s discussion of a generally covariant approach to
gravity is the one that caused the most controversy and has been widely dis-
cussed by historians of general relativity.28 The mistake we find documented
in this short passage sent Einstein on a more than three-year-long odyssey
until he finally found the correct field equations. Here is the notorious pas-
sage in full:

Indeed, it is possible to find a covariant differential tensor of
rank two and order two, Gim, that could enter into these equa-
tions, namely

Gim =
�

kl

γkl(ik, lm) =
�

k

{ik, km} (6.23)

However, it turns out that in the special case of an infinitely
weak static field, this tensor does not reduce to the expression
∆φ. Therefore, we have to leave open how far the general theory
of differential tensors linked to the gravitational field is related to
the problem of the gravitational equations. Such a relation would
have to exist, if the gravitational equations allowed for arbitrary
substitutions; however, in this case it seems impossible to find
differential equations of order two. In contrast, if it turned out
that the gravitational equations only allow a certain group of
transformations, it would be reasonable if the general differential
tensors will not do. As stated in the physical part, we are unable
to give our opinion on these matters.

27The annotations in Einstein and Grossmann (1995) refer us to Bianchi for the passages
on complete systems of differential invariants, see annotations [69], [70]. In view of the
above, these references are misleading.

28See Janssen et al. (2007a,b) for references.
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In the first sentence, Grossmann states two formal requirements on the
differential operator that could enter into the field equation. The requirement
that the object should be of rank two is suggested by the right hand side of
the field equations: the EM tensor is of rank two; this should be mirrored
on the left hand side. The restriction of the differentials to order two is
discussed in Einstein’s part. It is justified by the analogy to the Poisson
equation.29

The requirement that the operator be of rank two excludes the Riemann
tensor as a candidate, but, as Grossmann noted above, other candidate op-
erators can be generated from the Riemann tensor. In equation (6.23) he
therefore contracts two indices of the Riemann tensor, thus reducing the
number of free indices to two. This results in, what we now know as, the
Ricci tensor.

It is possible that Grossmann found the Ricci tensor on his own: the Ricci
tensor has not been noted in any of the writings that Grossmann used.30 If
this is true, it is quite an achievement. However, it should also be noted that
the Ricci tensor is not the only tensor that satisfies the above requirements;
there is the possibility of further algebraic operations that lead, in the end, to
the correct field equations.31 This possibility is nowhere noted. Grossmann
had probably not yet achieved a sufficient understanding of tensor calculus
to see this alternative.

In the next sentence, Grossmann states the reason why he and Einstein
rejected the Ricci tensor as a suitable differential operator: it fails to yield
the correct expression ∆φ, i.e. the Laplace operator entering into the Pois-
son equation, in the weak, static limit. Grossmann’s very brief account is,
of course, not sufficient to understand or reconstruct the reasoning that ul-
timately led to the rejection of the Ricci tensor, and to Einstein’s year-long
rejection of generally covariant field equations. However, it is possible to re-
construct Einstein’s (and Grossmann’s) reasons for rejecting the Ricci tensor
at this point by taking other sources into account, in particular the famous
Zurich notebook.32

29Einstein seems not to be entirely satisfied with this justification; he admits that this
is unsatisfactory and that there is no a priori reason to exclude differential operators of
higher degrees.

30The Ricci tensor was first discussed in Ricci (1904). However, Grossmann was prob-
ably not aware of this paper.

31The differential opterator entering into the Einstein field equations is Rµν − 1
2gµνR,

where R, the Ricci scalar, can be obtained from the Ricci tensor, by contracting the
two indices. The cosmological term was probably neglected by Einstein and Grossmann,
because the Poisson equation does not suggest such a term; by analogy, the generally
covariant candidate does not contain it either.

32The first account of “Einstein’s Odyssey” is in Norton (1984); the story is thoroughly
discussed in Janssen et al. (2007a,b). We will not further explore this fascinating part
of the genesis of general relativity in this chapter, as it is only indirectly tied to Gross-
mann’s mathematical sources. A short account of the story can be found in chapter 5; a
philosophical discussion in chapter 8.
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In the rest of the section, Grossmann expresses ambivalence about the
prospect of a generally covariant formulation of gravitational theory. He
seems to think that this is not a mathematical question, but has to be settled
based on physical considerations.

Differential Tensors of a Manifold Given by its Line Element: Sum-
mary

We are now in a position to assess the relative importance of Grossmann’s
mathematical sources and their influence on 1) the expression of the Riemann
tensor, 2) the interpretation of the Riemann tensor, and 3) the construction
of the Ricci tensor and its rejection as a candidate differential operator for
the field equatinon

First, the origin of Grossmann’s Riemann tensor is, in all probability,
Bianchi’s textbook. Bianchi, in turn, based his account on Christoffel. We
thus have a direct line of influence from Christoffel to Grossmann. On the
other hand, the same can probably be excluded for Ricci & Levi-Cività, and
Riemann. In all probability, Grossmann did consult Ricci & Levi-Cività, and
use them as a guide to the literature, at least to copy the faulty reference to
Riemann.

Second, the interpretation of the Riemann tensor that allows the con-
struction of all differential operators related to the metric tensor: Here the
origin is not as clear cut. In all probability, Ricci & Levi-Cività served as
guides, but they do not give the full story. Christoffel is the most proba-
ble source, as he is the only one discussing tensor densities in this context.
Bianchi does not discuss the interpretation of the Riemann tensor in suffi-
cient detail.

Third, we see no precedent for the Ricci tensor and the failed transi-
tion to the classical limit in the mathematical literature – this is not very
surprising. However, there is a ‘gap” in the mathematical literature at this
point. All mathematical sources formulate the possibility of generating new
candidate differential operators at an abstract level – it is not trivial to op-
erationalize this step. As a consequence, Grossmann does not exhaust the
mathematical possibilities for constructing candidate differential operators,
and in particular, he does not consider the Einstein tensor as a live option.
This would have been possible, had the mathematical literature been more
user-friendly.

6.9.3 On the Derivation of the Gravitation Equations

In the third section of the “mathematical supplement”, Grossmann provides
calculations for the derivation of the (faulty) Entwurf field equations in Ein-
stein’s part. The steps of the derivation are not difficult: all that is needed
is integration by parts, the derivative of the square root of the determinant,
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and rewriting the partial derivative of the inverse metric in terms of the
derivative of the metric, a result that Grossmann proved in part two. The
motivation for this calculation, and its relevance, have to be found in the
physical part. Grossmann’s part of the Entwurf ends here.

6.10 Grossmann and the Mathematicians: Main
Lessons

In the introduction, we asked two sets of questions. The first set of questions
concerns Grossmann’s “passive” contributions: his mathematical sources, the
mathematical traditions behind the sources, and the relative importance of
the sources, theories, and traditions. The second set of questions is about
Grossmann’s “active” contributions. What did Grossmann add to the al-
ready existing mathematics? What are his amendments, notational and
conceptual innovations, or even new results? Finally, we are also interested
in the problems of the application process: Were there any misunderstand-
ings, blunders, or even mistakes, either due to the existing mathematical
literature, or to Grossmann, or even both? In this concluding section, we
will answer these questions.

6.10.1 “Passive” Contributions: Sources, Traditions, and their
Relative Importance

We examined the influence of five mathematical sources on Grossmann: Rie-
mann, Christoffel, Ricci & Levi-Cività, Kottler, and Bianchi. We are now in
a position to gauge to what degree they influenced Grossmann’s work.

First, we argued that there is no direct influence by Riemann, as Gross-
mann may not have consulted Riemann’s works at all; see section 6.3 above.
The same may be true for Riemann’s manifold concept; see section 6.5.

Second, we did not find many traces of Kottler’s work in the Entwurf.
Grossmann emphasizes that his approach to differential parameters is differ-
ent from Kottler’s. The reason why Kottler is cited may be due to a question
of priority; see section 6.7.4.

We found more traces of the other three sources, Christoffel, Ricci &
Levi-Cività, and Bianchi. We examined which of these Grossman used in
each part of the Entwurf. Here is a summary.

Christoffel’s contribution stands out as particularly important. He con-
tributed crucial technical innovations that had a major impact, not only on
Grossmann, but on all later developments in tensor calculus and differen-
tial geometry. We argued that Grossmann might have taken the expression
for the covariant derivative directly from Christoffel; see section 6.7.1. In
addition, Christoffel is probably the source of the (invariant-theoretic) inter-
pretation of the Riemann tensor; see section 6.9.2. Christoffel’s paper is not
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an easy read. Almost every section contains important new results, but it
is not easy to figure out what exactly is going on. It is therefore no wonder
that other mathematicians took up his ideas and presented them in a more
accessible manner.

Ricci & Levi-Cività’s paper has several important roles. First, it has
survey character and might have served as an entry point to the mathemat-
ical literature – in this sense, Ricci & Levi-Cività’s contribution is a success
story. Second, they fleshed out Christoffel’s work and developed it into a
calculus, the ADC. They emphasize the importance of a clear, accessible
presentation and notation. Third, the paper is the source of some crucial
concepts of the Entwurf: it is probably the origin of Grossmann’s concept
of manifold, see section 6.5, tensors (the concept, not the name), see section
6.6.2, and the covariant derivative (which is based on an expression found
by Christoffel), see section 6.7.1. Fourth, their paper also contains quite
some notational innovations, but these were almost all dismissed or ignored
by Grossmann – this would only change later, when their use of upper and
lower indices, to distinguish contravariant and covariant components, became
an industrial standard.

Bianchi’s textbook on differential geometry served two main purposes.
First, Grossmann almost invariably used Bianchi’s notation: for example
variable differentials and the inverse metric; see section 6.6.1, and, more
importantly, Bianch’s formula for the Riemann tensor, see section 6.9.2.
Bianchi covers much of Christoffel’s paper in a well-organized “textbook”
style, and is much more accessible than Christoffel. Second, Bianchi pro-
vided Grossmann with a template for the construction of generalizations of
Laplace-Beltrami operators; see section 6.7.3 and the following. These are
indispensable tools for the crucial paragraph four, the mathematical sup-
plements. Bianchi’s textbook is not directly linked to Ricci & Levi-Cività’s
paper. We can speculate that Grossmann was familiar with the book be-
fore he searched the mathematical literature for Einstein, as Bianchi covers
non-Euclidean geometries with constant curvature, a topic Grossmann was
interested in. It should be noted that, while Bianch’s book is about differen-
tial geometry, Grossmann only drew on the second chapter, which is largely
on quadratic differential forms, and almost free of geometrical notions.

We have now identified the three central sources of the pure mathematics
applied in Grossmann’s part of the Entwurf. All three contributions point
to one source as the origin, and this is Christoffel’s paper. We propose
that Christoffel, and part of Ricci & Levi-Cività’s paper, as well as Bianchi’s
second chapter, can be grouped into a single tradition, an algebraic, algorith-
mic tradition, which focuses on the solution of a particular technical problem
without immediate interpretation – Christoffel’s solution of the equivalence
problem with algebraic invariant theory – and on the formulation of a cal-
culus with no particular application in mind – Ricci & Levi-Cività’s ADC.

This algebraic-algorithmic tradition should be contrasted with a geo-
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metric tradition that has its origin in Gauss’s work, and was extended by
Riemann. We can find traces of this tradition in virtually all of Gross-
mann’s sources. Bianch-Lukat is a textbook on differential geometry; Ricci
& Levi-Cività’s paper has sections on the application of the ADC to intrinsic
geometry. Even Christoffel acknowledges, albeit very briefly, that the prob-
lem he is interested in has its origin in surface theory. However, we think
that, for better or worse, this geometric tradition left almost no traces in the
Entwurf.

Grossmann made very selective use of his sources: While he drew heavily
on both Ricci & Levi-Cività and Bianchi-Lukat, the citations indicate that
he did not use the geometric parts of their work; the references are all to the
“algorithmic” parts and chapters. This seems plausible, in view of the fact
that Grossmann’s goal was to do without geometric concepts, as he writes
in the introduction.

Geometric reasoning and geometric interpretations of most algebraic ex-
pressions was almost entirely neglected. The single most important object,
the line element, has a natural geometric interpretation, but other than that,
the geometric significance of virtually everything else is unspecified, and left
unexplained, in the mathematical part of the Entwurf.

In sum, we can discern an algorithmic-algebraic tradition, starting with
Christoffel, and fleshed out by Ricci & Levi-Cività, on the one hand, and
Bianchi on the other, as the single most important mathematical tradition
featuring in the first application of tensor calculus in the Entwurf, and also
an almost complete lack of geometric interpretations of the parts of the
algorithm.

6.10.2 “Active” Contributions

Let us now turn to the second set of questions, Grossmann’s own contri-
butions to the mathematical part of the Entwurf. We have grouped Gross-
mann’s innovations into several categories: a) changes and innovations on a
conceptual level, b) changes and innovations of notation, c) genuinely new
mathematical results, and d) missed opportunities and mistakes.

Reinterpretation of Concepts: Implicitly, the mathematical part is the
first account of the mathematics of a space-time manifold. However, Gross-
mann does not really spell this out; space-time interpretations of the math-
ematics are missing, except for the line element. We argued in section 6.5
that Grossmann might have had a quite rudimentary manifold concept; at
times, he identifies it with what is given by the line element.

Grossmann introduced an extended concept of tensors, transcending its
prior, physically-grounded interpretation by relabelling the covariant and
contravariant “systems” of the ADC as tensors; see section 6.6.2.
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Arguably the most important “interpretational” contribution is Gross-
mann’s realization that the Riemann tensor is the mathematical object that
provides candidate, generally covariant, differential operators that could en-
ter into the field equations. The requirements on this object had been pro-
vided by Einstein, and were heuristically motivated, but were also sufficient
to identify the Riemann tensor.

New Concepts: Grossmann introduced several new concepts, especially
generalizations of existing mathematical concepts. Examples are general
mixed tensors, see section 6.6.2, general antisymmetric tensors, see section
6.8, and probably the notion of general differential operators, see section
6.7.2.

Notational Changes and Innovations: Grossmann introduced new no-
tation for covariant, contravariant, and mixed tensors, by assigning them
three different kinds of letters; see section 6.6.2. This notation did not sur-
vive; it is more awkward than Ricci & Levi-Cività’s index position system,
and we cannot conclusively answer why he did not adopt their convention.

New Mathematical Results: A first set of new results can be found in
paragraph 2, the application of tensor calculus to tensors of rank 0-2. Gross-
mann derives special forms of generally differential operators, see sections
6.7.4 and 6.7.5. The operator for tensors Tr was known before, but Gross-
mann derives the result in an alternative, potentially new manner. The
operator for tensors Θrs is probably also new. Both results are necessary
for the results in paragraph four. Furthermore, Grossmann specializes these
results to “special tensors” (antisymmetric tensors); see section 6.8.

The most important innovations can be found in the “Mathematical Sup-
plement”. First, there is the proof of the general covariance of the Energy-
Momentum Conservation equation; see section 6.9.1. This is one of the
contact points of physics and mathematics: a physically motivated equation
is proven to be tensorial. Second, there is the search for an operator for the
field equation based on the Riemann tensor. Grossmann derives the Ricci
tensor as a suitable candidate operator based on algebraic operations; see
section 6.9.2. Here he draws on the mathematical literature that provides
general recipes of how new operators can be derived. Third, Grossmann
derives the Entwurf field equations. This derivation is not difficult on a
technical level, but indispensable for the physical part.

Unfinished Business, Entwurf Character: Some of Grossmann’s for-
mulations suggest that he was not entirely happy with his approach and
his results. One example is the notation for covariant, contravariant, and
mixed tensors: He emphasizes that Ricci & Levi-Cività’s solution has many
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advantages, but that he was forced to choose a different path; see section
6.6.2.

The clearest example is Grossmann’s dissatisfaction with the failed gen-
erally covariant approach to the operator entering into the field equation;
see section 6.9.2. This whole section, which discusses an alternative account
that has not been carried out successfully, would be superfluous if Gross-
mann and Einstein really trusted their solution, the Entwurf operator. The
fact that this section has been included nevertheless goes a long way towards
explaining why Einstein and Grossmann considered this to be an Entwurf
theory.

Missed Opportunities, Mistakes: There are not many mistakes in Gross-
mann’s part of the Entwurf. We could not find any mistake in the cal-
culations that are actually carried out. The presentation of the material,
however, is not very accessible and balanced. For example, the part on dif-
ferential operators; see section 6.7.3, is somewhat awkward in that at times,
Grossmann states auxiliary results after he has already used them. We have
already pointed out that there are some missed opportunities when it comes
to notation, especially the step back from Ricci & Levi-Cività’s index posi-
tion notation.

Finally, there is the missed opportunity with the failed application of
the generally covariant approach based on the Riemann and the Ricci ten-
sor, see section 6.9.2. Grossmann did not exhaust all candidate differential
operators that can be constructed according to the mathematical literature;
in particular, he (probably) missed the Einstein tensor, the correct differen-
tial operator that enters into the field equations. On the other hand, the
mathematical literature was not very user-friendly in providing the users of
the ADC more hands-on recipes for the construction of differential opera-
tors based on the Riemann tensor. In the end, the mistake that led to the
abandonment of the generally covariant approach cannot be attributed to
Grossmann or the mathematicians; the story is more complicated.

6.10.3 Systematic Take-Home Message

We will not flesh out the philosophical or systematic significance of our his-
torical results here; rather, we will use the present historical study to refine
an existing account of the application of mathematics in chapter 8. Never-
theless, we would like to point out some features of this case of application
of mathematics that are particularly noteworthy.

First, at least in the present case, the application of mathematics is not
“plug-and-play”. Mathematical theories are not sitting in a shelf, waiting to
be put to work. Even though the theory in question had been formulated for
some time, it still took considerable effort on Grossmann’s part to adapt and
extend the mathematics for its application to gravitation. Not only did he
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have to consult multiple sources, but he also had to contribute substantive
mathematical results himself. This is a first sense in which mathematics is
not static.

Second, there is a contribution of mathematics to its own applicability:
Mathematicians put a considerable effort into fleshing out technical work.
Ricci & Levi-Cività, as well as Bianchi-Lukat, are examples. The mathe-
maticians also tried to find applications of their work both in pure mathe-
matics and in application. At least some mathematicians do not conceive
of their contributions as free from practical considerations. This is a second
sense in which mathematics is not static.

Third, there are failures and missed opportunities, both on the side of
pure mathematics and its application. Even though some of the mathe-
maticians made an effort to present their work in an accessible manner, and
anticipated some of the challenges of application, there are also gaps in their
presentation; at times, it is very hard to figure out what is going on even
in Ricci & Levi-Cività’s paper, which is supposed to be a survey paper and
thus particularly accessible.

Fourth, there are systematic lessons from the particular mathematical
theory, and tradition, that we found to be at the heart of the first appli-
cation of the ADC to GR. At first, it could be surprising that geometry is
not the most important mathematical tool in the first application of gener-
ally covariant methods to GR, and that the abstract, algebraic-algorithmic
tradition, originating with Christoffel, had center stage. We think, however,
that there is a good explanation for this choice; on the other hand, it also
led to difficulties that plagued the early history of GR.

An obvious advantage of the algorithmic approach was that it was avail-
able as an uninterpreted calculus, rather than as a calculus of geometry. It
would have taken too much time to work out the geometrical meaning of all
the concepts, even more so as it was not clear at this point that the applica-
tion of the ADC would be fruitful. Einstein and Grossmann probably first
wanted to be sure that the approach could solve a substantive problem, say,
yielding the right classical limit, to confirm that they were on the right track.
When this did not work, the approach was, to a certain extent, abandoned,
and it would have been a waste of time to work out what the geometrical
meaning of, say, the Riemann tensor is.

The disadvantages of working with an uninterpreted calculus generated
some persistent problems in the genesis of GR. It simply was not clear what
the mathematics was describing, or what aspects of it had to be interpreted
realistically. The interpretation of the significance of manifolds, and their
relation to the metric, was one major stumbling block.
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6.10.4 Open Problems and Possible Extensions

Finally, here are some open problems and possibilities for extending the
above study.

• A systematic evaluation of sources, other than the Entwurf and the
papers cited therein, especially the Zurich notebook and further texts
from pure mathematics, could deepen our understanding of the appli-
cation of tensor calculus in GR.

• Our understanding of some details of algebraic invariant theory are still
incomplete. In particular, we would like to understand better whether,
at this early stage, it would have been possible for Grossmann to find
the Einstein tensor. This is related to the question of how to interpret
the “complete set of differential invariants” locution by Grossmann,
Ricci & Levi-Cività, and Christoffel.

• The historical question as to what Grossmann contributed to the for-
mulation of the question that led to the application of the ADC is still
open. It is probably impossible to answer this question without further
historical sources.



Chapter 7

Introducing the Inferential

Conception

7.1 Introduction

In this chapter, we introduce and discuss a recent account of the applicability
of mathematics to the world, the Inferential Conception (IC) proposed in
Bueno and Colyvan (2011).1 The chapter has three objectives. First, we give
a short exposition of the IC, in section 7.2. Then, in section 7.3, we offer
some critical remarks on the account, and discuss potential philosophical
objections. Third, we propose some extensions of the IC in section 7.4,
preparing the ground for the application of the IC to our case study in
chapter 8. We conclude in section 7.5.

7.2 Mapping Account and Inferential Conception

Our account of the IC in this section follows the presentation in Bueno and
Colyvan (2011). First, we introduce the “default view” of the application of
mathematics, the so-called mapping account. Then we discuss four problems
of this account. Third, we introduce the IC and show how this account solves
the problems of the mapping account.

7.2.1 The Mapping Account

Bueno & Colyvan address the question of the role of mathematics in appli-
cation. They use a familiar picture of applying mathematics as a foil for
their own account. On this “default view”, mathematics helps us in appli-
cation, by representing empirical structures in mathematical form; we can
then learn about the world, by examining this mathematical representation.
The application relation is established via a structure-preserving mapping,

1This chapter is based on joint work with Tilman Sauer.
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which connects the mathematical structure with relevant parts of the world.
The mapping account has been spelled out in detail in Pincock (2004).

A city street map is a useful illustration of the mapping account. A city
street map represents parts of the structure of a city by mirroring the street
system and buildings of the city in some detail. A map will usually leave out
some information such as slope, or even distances. However, there should be
some correspondence (mapping) between parts of the street map and parts
of the city – most importantly, it should represent how various parts of the
city are connected. This information can then be read off the map, and
therein lies its usefulness.

7.2.2 Problems of the Mapping Account

Bueno & Colyvan find the mapping account to be largely correct. However,
they argue that it cannot be a complete story of how mathematics is applied,
and why it is useful in application. They identify four problems with the
mapping account, and claim that the IC fares better on all four counts.

The first problem is the assumed structure problem. Normally, when we
speak of a structure-preserving mapping between two domains, we assume
that both domains are equipped with a set of objects and relations (prop-
erties) between these objects, or, more generally, that there is some sort of
structure present in both domains. Therefore, if we want to account for the
applicability of mathematics based on the mapping account, we have to as-
sume that some sort of structure is in the world that can be preserved by
the mapping. However, there is simply no guarantee that the world is con-
veniently structured in this way. We have to take it for granted that there
is some meaningful way of discerning and using the structure of the world.2

The second problem, which we dub the choice of mapping problem, arises
if we try to be more precise about what kinds of mapping are acceptable,
and say more about how to find acceptable mappings in the first place. On
the mapping account, we expect the mapping to preserve structure, so it
should be a homomorphism of some sort. Additionally, the mapping can be
surjective, injective, or both.3

However, the idea that we can capture all that is essential to application
with just one structure-preserving mapping is problematic. At times, we
do not want to take into account either all the available structure in the
world (think of the city street map example above), or all the “surplus”
mathematical structure (think of physically meaningless solutions to some

2Bueno & Colyvan write that this might not be a problem in the case of the city street
map. However, we think that even in this simple case, we have to explain carefully how
to interpret the assumed structure; see the discussion of the related Königsberg case in
chapter 2.

3A mapping f : X → Y is surjective if f(X) = Y , injective if, for all a, b ∈ X, if
f(a) �= f(b), then a �= b. A mapping that is both injective and surjective is bijective, i.e.
there is a one-one correspondences between X and Y .
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mathematical equation). What are the criteria for selecting the relevant
parts, both in the mathematical domain and in the world? Bueno & Colyvan
think that any account of applying mathematics that is silent on this issue
should be considered incomplete.

The third problem is idealization. If a mathematical structure is ideal-
ized, we know that it does not faithfully represent an actual structure in the
world. An example is when we use a continuous mathematical structure to
represent quantities that are really discrete (think of the continuous Lotka-
Volterra equations that represent discrete predator and prey populations; see
chapter 3). In these cases, a mapping between the two domains is impossible;
there can only be a mapping between a mathematical and a possible, but
non-actual, empirical structure. An account of how mathematics is applied
should say something on this issue.

The fourth problem has to do with explanatory contributions of math-
ematics. If all that mathematics does is to represent certain aspects of an
empirical system, then there is no place left for an explanatory role of math-
ematics, because every explanation based on the representation could also be
given on the basis of the features of the system represented by the mathemat-
ical structure. This, however, is in tension with examples where mathematics
has a prima facie explanatory role, be it unificatory or otherwise.

7.2.3 Introducing the Inferential Conception

Next, Bueno & Colyvan introduce the Inferential Conception (IC). One of
the motivations behind the IC is to solve the above problems of the mapping
account. The IC breaks down the process of applying mathematics into three
steps:

1. In the immersion step, we specify a mapping from the relevant aspects
of the empirical domain to a mathematical structure.

2. In the derivation step, also called deduction step, we draw inferences
from the immersed mathematical structure. This step is purely math-
ematical.

3. In the interpretation step, the consequences found in the derivation
step are mapped back to the empirical domain, that is, we interpret
the results of our mathematical investigation. The mapping we use in
the interpretation step is not necessarily the inverse of the immersion
mapping; it need not even be of the same kind.

It is one of the main innovations of the IC to distinguish the immersion
and the interpretation step; this feature is absent in the mapping account.
Mappings play a more flexible role in the IC than in the mapping account.
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Distinguishing the immersion and interpretation steps gives the IC a dis-
tinctively dynamical flavor – the suggestion is that by going back and forth
between mathematics and the world, we can gradually refine the mathemat-
ical description, and also discover new empirical phenomena. This dynamic
is a second important feature of the inferential conception.

The emphasis on inferences is an important feature of the IC. Bueno &
Colyvan describe the usefulness of mathematics in application emphasized
by the IC as follows:

[B]y embedding certain features of the empirical world into
a mathematical structure, it is possible to obtain inferences that
would otherwise be extraordinarily hard (if not impossible) to
obtain. (Ibid., p. 352)

Facilitating inferences is not the only role of mathematics in application.
Bueno & Colyvan maintain that most, if not all, other roles of mathematics
in application, especially unification, novel prediction, and explanation, are
ultimately tied to its inferential role.

Bueno & Colyvan do not discuss the distinctive roles that the mathemati-
cal domain plays in application. They only note that often, the mathematical
formalism has an intended empirical interpretation.

The discussion of the empirical domain, Bueno & Colyvan point out that
the empirical domain is, to a certain degree, dependent on mathematics: of-
ten it is impossible to give a mathematics-free description of the empirical
domain. They nevertheless adopt a metaphysical reading of the empirical do-
main – it is real, empirical structure, and does not depend on the possibility
of describing it in non-mathematical terms. A second issue is the meta-
physical nature of the empirical domain. Bueno & Colyvan emphasize that
the structure in the empirical domain can, but need not be, causal struc-
ture. They mention examples proposed by Batterman (2002), suggesting
that abstraction from causal details can be important for the application of
mathematics, e.g. for explanatory purposes. Finally, the inferential concep-
tion encompasses the possibility of applying mathematics to itself; in these
cases, the domain of application is not empirical. Bueno & Colyvan think
that a clean separation between empirical and mathematical domains is not
as important as the existence of immersion and interpretation mappings.

7.2.4 Advantages of the Inferential Conception

Once they have introduced this scheme, Bueno & Colyvan explain how the
IC is supposed to solve the four problems of the mapping account. Our
explanations here are rather short, because we focus on those parts of the
IC we will use later.

First, to the choice of mapping problem. This problem has two aspects.
First, there is the problem that there might be surplus structure in both
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domains. The IC is more flexible in that it is not restricted to using just
one mapping and its inverse, and can thereby avoid the formal problem from
surplus structure. The emphasis is not on a structural correspondence, but
on facilitating inferences, which is a contextual matter to a large degree. Sec-
ond, the mapping account is silent on how to choose the right mathematical
setting (and, by extension, the right mapping), and assess the adequacy of
that choice. The IC can avoid this problem by going back and forth between
mathematical and empirical domains, which makes it easier to gradually
revise the relation between the empirical domain and a mathematical struc-
ture.

Second, the inferential conception can help to solve the assumed structure
problem: We can start from a tentative assumed structure in the world, and
gradually revise the structure, after our inferential investigations, and by
choosing a new interpretation mapping; Bueno & Colyvan write that there
is no need to “formally revise” the initial assumed structure, as the interpre-
tation mapping need not be the the inverse of the immersion mapping. Once
more, the back-and-forth between empirical and mathematical domains and
the emphasis on inferences are key.

Third, Bueno & Colyvan introduce the so-called partial structures frame-
work, to deal with the problem of idealization. The idea behind this frame-
work is to allow mappings and structures to be only partially defined. Bueno
& Colyvan present this framework in some detail, and explain its workings
using an example from economics. We will not explore this part of Bueno
& Colyvan’s solution. This is harmless because the partial structures frame-
work is largely orthogonal to the overall scheme of the IC, and can be assessed
independently.

Fourth, Bueno & Colyvan tie the theoretical virtues of unification, novel
predictions and explanations to the inferential conception, by emphasizing
the role of inferences in unifying, predicting and explaining. They think that
these aspects depend on contextual factors, and they mention that mathe-
matics might help to give us epistemic access to theories, by highlighting
inferential patterns. The problem of the tension between the representa-
tional and explanatory roles of mathematics is not explicitly addressed, but
in their discussion of examples by Batterman (2002), they leave open the
possibility for an explanatory role of mathematics that goes beyond pure
representation.

7.3 Discussion of the Inferential Conception

In this section, we take a closer look at those aspects of the IC that are
relevant for our purposes. We will point out some weak points of the IC,
and explain how the account might be amended.
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7.3.1 Empirical Domain

On the IC, the empirical part of the application process has, at least im-
plicitly, two aspects. The first is the empirical domain, i.e. the domain of
application insofar as mathematics is not applied to itself.

Bueno & Colyvan do not give a definite answer to the metaphysics of
the empirical domain. They think that characterizing the empirical domain
in terms of causality, is possible, but not necessary, for two reasons: Firstly,
there are cases where the application of mathematics works because we leave
out causal details; Bueno & Colyvan mention the Euler strut discussed in
Batterman (2002) as an example. Secondly, they want to leave open the pos-
sibility that the domain of application is itself purely mathematical. Bueno
& Colyvan even suggest that empirical and mathematical domains are not
clearly separable: “We are not assuming, in the immersion and the interpre-
tation steps, that the empirical set up and the mathematical structures are
completely distinguished components” (Bueno and Colyvan, 2011, p. 354).

We agree with Bueno & Colyvan on the first point – to a certain extent.
An account of applying mathematics should leave open the possibility of
non-causal explanations. A second concern about a purely causal character-
ization of the empirical domain is that it could be problematic to interpret
geometrical structure as causal. Geometry and causality are certainly in-
timately connected, but it is not clear that geometry, in itself, is causally
relevant (think of higher level explanations using geometry, not space-time
theories such as GR).

We are more sceptical about the second reason for not characterizing the
empirical domain as causal. We think that the application of mathematics
within mathematics, and empirical application, should be carefully distin-
guished. We will discuss the reasons for distinguishing these two cases in
section 7.3.4 below.

7.3.2 Assumed Structure

The second aspect of the empirical part of the application process is the
assumed structure. This is “something like a pre-theoretic structure of the
world (or at least a pre-modeling structure of the world).” (Ibid., p. 347)
As the name “assumed structure” suggests, this is not structure that we
should take metaphysically seriously. Rather, it is “tentative” structure that
can be revised once we have brought mathematics into play: “the assumed
structure is the structure the modeling exercise assumes to be present in the
[...] empirical setup [...] the interpretation step of the process will deliver
the final structure of the empirical setup [...]” (Ibid., p. 357). Bueno &
Colyvan point out that the assumed structure need not be mathematics-free:
“It will be hard to even talk about the empirical setup in question without
leaning heavily on the mathematical structure, prior to the immersion step.”
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(Ibid., p. 354). According to this picture, the assumed structure can already
be mathematized. The immersion maps the mathematically characterized
assumed structure to the mathematical domain.

Several philosophical objections can be raised against the IC because it
relies on the concept of assumed structure.

A first objection4 is that the assumed structure problem is an insur-
mountable difficulty for the IC along with all accounts that rely on map-
pings. We should conceive of the immersion and interpretation mappings
as mathematical objects. Therefore, both domain and codomian have to
be mathematical as well. But then a mapping cannot account for the ap-
plication of mathematics to the world. All we have is a mapping from an
assumed mathematical structure, which is not really in the world, to math-
ematics. The IC cannot possibly explain how mathematics can be applied
to the world; it can only explain how mathematics can be applied to some
other mathematical domain. The IC is circular.

We think that this problem can be dissolved. We agree that, in some
cases, including the case study we are about to consider, the assumed struc-
ture is given in mathematical form. However, this does not mean that the
structure itself is mathematical. Rather, the mathematics represents, possi-
bly in an indirect manner, empirical facts. The immersion mapping estab-
lishes a correspondence between these empirical facts and a mathematical
structure, not between the mathematical representation of the empirical facts
and another mathematical structure. We will spell this out in more detail
below.

Also, it has to be appreciated that this objection does not only apply to
the IC, but to a whole class of accounts of how mathematics is applied. The
objection can be raised once we accept that, first, there is a clear separation
between mathematical and physical domain, and b) that some kind of map-
ping, however indirect, between the two domains has to exist. Both of these
assumptions seem very reasonable. Thus, although the objection appears
prima facie attractive, the price you pay for accepting it is quite high.

The objection nevertheless raises an important issue: we have to explain
the value of basing an account of applying mathematics on mappings, be-
cause it seems that mappings can only connect mathematical domains. We
will make an effort to be clear on the question as to what the starting point
of the application process is, viz. how the assumed structure is constituted,
and also to explain why the assumed structure is not (purely) mathematical.

A second objection5 is to deny that there is a problem here at all, at
least from the perspective of scientific realism: of course can we find objects,
relations, structures in the world that are independent of mathematics. The

4We thank members of the audience at the Workshop “Metaphysics of science: objects,
relations and structures” of October 2012 in Lausanne for this objection.

5We thank Matthias Egg for raising a form of this objection in the philosophy of science
research seminar in the fall of 2012 in Lausanne.
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assumed structure problem is a red herring.
We think that this objection only has traction if we adopt a metaphysical

reading of the assumed structure, i.e. if we presuppose that it is unproblem-
atic to interpret the assumed structure as real, empirical structure that is
mapped to mathematics. However, if it is the goal of, say, a new theory of
gravitation to unveil the real structure of the world, but this theory is not
yet available, how can we take that very structure as a starting point of our
investigation? Saying that the assumed structure is just the structure in the
world seems like begging the question.

When Bueno & Colyvan write about the assumed structure as the “rel-
evant bits of the empirical world”, this should not be read metaphysically.
We should interpret the assumed structure as the reasonable starting point
of the process of applying mathematics. It is not to be confused with the
result of applying mathematics.

Prima facie, there are two separate issues here: the metaphysical question
as to what is the nature of the structure we are trying to capture mathe-
matically, and the epistemological question as to how we come to know this
structure according to the IC, viz. by going back and forth between mathe-
matics and the world, and thereby refining our mathematical description.

However, we think that these issues cannot be separated in a clear-cut
way. A theory which is the final product of a mathematical description of
the structure of the world is a product of that discovery, and thereby closely
tied to the reliability of the process by which we discover the theory.

A third problem with the assumed structure is the choice of an appropri-
ate starting point. According to the IC, we start with a tentative assumed
structure, which can be gradually revised by going back and forth between
the empirical domain and mathematics. However, the IC does not have any-
thing to say about how the initial assumed structure should be selected. The
concern could be that if we choose a bad starting point, all the work of going
back and forth could lead to a bad outcome.

We see three possibilities for dealing with this problem. First, we could
formulate a systematic account of how to select an appropriate assumed
structure. Second, we could come up with an argument showing that the
“revision process” of the IC can “wash out” bad starting points. The third
possibility is to deny this is a problem at all: The IC is an account of
how mathematics is applied, not an account of how mathematics is applied
successfully. The IC leaves open the possibility that something goes wrong
in the application process, and this could well be due to a bad starting point.

Currently, we do not know how to substantiate ideas that would support
options one and two. For the time being, we endorse option three. If it were
possible to say more on the first two options, the IC would be an account of
how to apply mathematics successfully.

Summing up, the following picture of the assumed structure in the IC
emerges: Assumed structure is tentative empirical structure, possibly repre-
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sented in mathematical form. It is not the empirically adequate structure
of the world, and we should therefore not take it metaphysically seriously.
The goal of the process described by the IC is to revise and refine the initial
assumed structure. One of our goals in the case study will be to identify the
assumed structure in the beginning, and to track the revision process.

7.3.3 Mathematical Domain

Bueno & Colyvan argue that the inferential conception does not have to
settle for a position in the metaphysics of mathematics. We will follow them
in this respect and not enter into these debates.

The focus of the IC (and of the mapping account) is on finding mappings
from one domain to another. This picture suggests that the domains are, to
a certain extent, static objects. By adopting this perspective, we run the risk
of overlooking that the domains themselves, and the mathematical domain in
particular, are dynamical. We are not claiming that such a dynamic picture
of domains is incompatible with the IC; rather, it is an extension of the view.

We will see in our case study that the mathematical domain is indeed
a dynamical entity. Note that these aspects of the mathematical domain
counteract, to some extent, the thesis of the “unreasonable effectiveness”
of mathematics: the more we can attribute the successful application of
mathematics, either to an effort prior to application, or to adaptation during
application, the less the effectiveness is miraculous, or unreasonable.

Finally, it will prove fruitful to be specific about the mathematical theory
that is applied. We should prevent our picture from becoming too coarse-
grained by lumping all mathematical theories under one header. What is
more, even if a particular kind of immersion or interpretation mapping is
specified, this need not determine the mathematical theory that is applied,
especially if it is possible to interpret one mathematical theory in terms of
another (think of a calculus with and without “intended interpretation”).
This is compatible with Bueno & Colyvan’s idea of multi-stage application
processes, where one of the stages is purely mathematical.

7.3.4 Separating Empirical and Mathematical Domain

Bueno & Colyvan claim that the IC can encompass both application to the
world, as well as the application of one mathematical theory to another.
While we agree that both these notions are important, and worth exploring,
we maintain that there are good reasons for working them out separately,
for two reasons.

First, a big part of the puzzle surrounding the application of mathematics
stems from the fact that it is unclear how mathematics can help us solve em-
pirical problems. On the other hand, the question as to how the application
of one mathematical theory to another works, while also worth asking, is not
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nearly as puzzling. This suggests that these are at least two clearly separate
problems; the applicability of mathematics to the world is more pressing.

Second, it has been argued in the literature that attempts at drawing
a clear distinction between mathematics and the empirical domain, say, in
terms of the abstract-concrete distinction, are in vain, see Ladyman and Ross
(2007, pp. 159), or even that the distinction between mathematics and the
world is blurred, see e.g. French (2000). While it may be true that there
is no wholesale solution to the problem of distinguishing between pure and
applied mathematics, this does not imply that the distinction can therefore
be dismissed easily, or that no solutions exist in each case. Quite to the
contrary, separating the representation from what is represented is at the
core of many philosophical debates, especially in the philosophy of physics.

One example is the question as to how to interpret the wave-function
in quantum mechanics – are some aspects of these objects mathematical
artefacts, and if yes, which ones? In GR, there is, first, the problem of the
correct interpretation of coordinates, which plagued the genesis of GR, and,
secondly, the problems arising from the Hole Argument, which turns on the
question as to what the correct mathematical representation of space-time
points is. All these examples suggest that giving up on a clear separation of
the two domains would amount to dismissing all these problems. This is not
a viable option.

7.3.5 Mapping Selection Problem and Dynamics

Bueno & Colyvan propose solving the mapping selection problem by, firstly,
distinguishing immersion and interpretation mapping, which makes the cor-
respondence between domains more flexible. On the mapping account, work-
ing with just one homomorphism is responsible for the problem of surplus
structure. The second part of the solution is the suggestion that a back-
and-forth between empirical and mathematical domains will help us find the
right kind of mapping, or structure, that is preserved.

We agree with Bueno & Colyvan that the IC solves the (formal) prob-
lem with surplus structure, and therefore will not further discuss this issue.
We will focus on the second aspect of the solution, which we call the dy-
namical aspect of the IC. By dynamics, we mean the interaction of the IC’s
components such as mappings and domains, and also regularities between
these components. We think that Bueno & Colyvan’s idea that there ex-
ists a back-and-forth between empirical and mathematical structure, which
helps us choose both the right assumed structure and the right mathemati-
cal setting, is an interesting idea that should be spelled out in more detail.
The picture of gradual refinement is an attractive picture of application, but
there is no guarantee that this process will be successful, or lead to a good
equilibrium point. The IC is a theory of the application of mathematics,
not a theory of successful application. What the IC can do is to provide us
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with diagnostic tools if an application goes wrong, i.e. if there is a mismatch
between some empirical target structure and a mathematical structure. We
will say more on this issue in the next section.

A second set of questions concerns the starting point of the dynamics.
What prompts the search for a new mathematical domain? This question is
of special interest in cases where there is already a mathematical structure in
place. What kind of consideration leads scientists to question, or abandon,
an old framework, and start to search for a new mathematical domain?
What are the guiding principles if a scientist does not yet know what kind of
mathematical framework he needs in the first place? We will turn to these
questions in our case study.

Then, not all components of the IC are independent. The mathematical
domain determines, to a certain degree, the immersion and interpretation
mapping, as the mathematical structure has to be able to mirror the struc-
ture preserved by the mapping. What is more, there is not just one kind of
structure that can be preserved, we have to specify the nature of the struc-
ture – graph structure, ordinal structure, metric structure, and so on. This
leaves open the possibility of surplus structure on either side of the mapping.

7.3.6 Idealization (Partial Structures)

Bueno & Colyvan think that the mapping account is incomplete because it
cannot accommodate idealizations. They propose solving this problem by
augmenting the IC with the partial structures framework.

We agree that idealizations are a pressing problem for any account of
the applicability of mathematics. However, we are sceptical that the partial
structures account can address the problem. Here we offer some reasons for
our critical stance towards partial structures. However, we will not enter
into a sustained critical discussion. Our criticism does not invalidate the IC,
as the two frameworks are largely independent.6

First, partial mappings are not necessary for solving the problem of sur-
plus structure in the domain. It is sufficient to suitably restrict the domain
of a normal mapping such that all and only those objects that are not su-
perfluous are mapped.

Second, we think that the partial structures account might be too per-
missive. For example, it is possible to have a mapping between empirical
structure and mathematics, even if there is a total mismatch between the
two structures. The domain of the partial mapping can simply be assumed
to be empty. The partial structures account runs the risk of being trivial,
because it allows for structural correspondence between any two structures.

Third, Bueno & Colyvan introduce a case study from economics to il-
lustrate the force of the partial structures account. The partial structures

6See e.g. Pincock (2005) for further criticism of the partial structures framework.
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account is attractive because it makes it possible to take vague ideas about
a partial match between empirical and mathematical structures and spell
them out in a formal framework. However, the discussion in the paper re-
mains at an informal level. The authors do not really exploit the strength
of this account. It would be desirable to see a case study where the formal
apparatus of partial structures is really put to work.

Finally, we think that the defenders of the partial structures account
should demonstrate that their account is able to solve some of the classical
problems of idealization, for example by spelling out the important distinc-
tion between “harmless” idealizations, i.e. false modeling assumptions that
do not prevent a model from being useful, or even admit of realistic interpre-
tation, and “essentially idealized” models, which pose a threat to realism.7

7.4 Extending the IC

In this section, we introduce some extensions of the IC. These extensions
are designed to accommodate a distinctively historical approach to apply-
ing mathematics, i.e. to mirror not only the result of application, but the
historical process leading to mathematically formulated theories of empirical
phenomena. The role of the IC, and its extensions, is that of a conceptual
framework providing us with tools to better understand historical cases. It is
not meant to be a wholesale account covering every aspect of the application
of mathematics.

Bueno & Colyvan at least implicitly construe immersion, deduction, and
interpretation steps as temporal; otherwise, talk of a gradual revision pro-
cess, based on going back an forth between mathematics and the empirical
domain, would not make sense. The temporal succession between these steps
need not be temporally ordered, as beginning with immersion, followed by
deduction and then interpretation, in all cases. For example, at times, we
will check possible deductions before working out the immersion step.

The smallest historical unit that is iterated in temporal succession con-
sists of immersion, deduction and interpretation steps. We call such a unit
a cycle. A cycle is one round of going back-and-forth between mathemat-
ics and the world, one round of assimilating a mathematical theory and a
particular empirical structure. The starting point of a cycle is the initial
assumed structure, the end point is the revised assumed structure.

We conceive of the IC as an account of application of mathematics, not an
account of successful application of mathematics. Accordingly, there are two
possible outcomes for completed cycles. The application can be successful,
i.e. the scientist finds that mathematics and empirical structure match as
expected. We call this a closed cycle. On the other hand, the application can

7See e.g. Uskali Mäki’s work on idealized models in economics. Lehtinen et al. (2012)
is a useful recent survey.
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fail in the eyes of the scientist; we call this an open cycle. The two possible
cycle outcomes, closed and open cycles, trigger different dynamics. We first
discuss the dynamics of open cycles.

If the outcome is an open cycle, i.e. the scientist finds that there is
a mismatch between the mathematically derived result and the empirical
domain, a process of reflection is set in motion: the failed application can be
due to any one of the components of the IC, and we can use the components
as a diagnostic tool to analyze the open cycle, and potentially fix the problem.
Of course, the problem can be with more than one of the components.

First, we can attribute the failure to a bad initial assumed structure.
Maybe the empirical phenomena we took as a starting point of our modeling
exercise have to be investigated more closely, and more data have to be
collected. Maybe it is even necessary to reconceptualize our description of
the empirical phenomena.

Second, the failure can be due to the immersion step, or the mathematical
theory we use. The framework can lack the expressive power for a task, it
can be insufficiently understood, or it can exhibit internal difficulties, or even
inconsistencies. In this case, the problem can be fixed, either by revising,
or further exploring, the mathematical framework, or it could be given up
entirely.

Third, there could be a failure in the deduction step. The scientist could
commit a mistake; certain inferences can be hard, or even impossible, to
reach, so that it is hard to reconnect the findings of the deduction step
with the world in the interpretation. In this case, the scientist could make
an additional assumption to facilitate the deduction, search for a different
framework, or she could explore alternative routes of deduction.

Finally, there could be a failure in the interpretation step. For example,
it could be unclear whether a solution to some equations has to be taken
seriously, or if it is just a mathematical artifact.

In the case of a closed cycle, a successful application step, the process of
application is not over. Usually, a closed cycle only means that the scientist
has successfully derived some consequences within mathematics that have a
meaningful empirical interpretation, not that there is a full match between
the mathematical and empirical structure. The further goal will normally
be to consolidate the closed cycle. Again, improvements are possible in all
components: the scientist can send the revised assumed structure back to
mathematics in the second cycle, or even widen the scope of phenomena
in the assumed structure, and check whether the cycle can still be closed;
she can work out further deductions and interpretations from the original
immersed structure; the validity of the deductions can still be checked; and,
the interpretation can suggest further empirical investigations, if it yields
novel predictions that have not been anticipated, and so on.

In sum, a historical reading of the “equilibrium process”, the mutual adap-
tation of mathematics and the world, in terms of an iterated game of cycles,
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which can either be successful or fail, seems to us to provide a useful analytic
tool that will help us better understand the genesis of mathematically formu-
lated empirical theories, and the systematic interplay between mathematics
and the world.

7.5 Summary

In this section, we sum up the essential points about the extended IC that
we will put to work in the historical case study in the next chapter. We can
distinguish the components of the IC and the dynamics of these components;
both come with a set of systematic questions.

Empirical Domain and Assumed Structure: The empirical domain
consists of those phenomena that are the subject of theorizing. The assumed
structure, on the other hand, is the structure we assume to be in, or part of,
the empirical domain, such that the process of application can get started.
The assumed structure need not be the real structure of the world; it is
subject to revision in the process of application. It is a “modeling choice”.
Questions: What are the empirical domain and the assumed structure? In
what form is the assumed structure given (specificity)? Is the picture of
initial and refined assumed structure adequate?

Mathematical Domain and Deduction Step: This is the mathemat-
ical structure, or theory, that is applied. Deduction is the step of drawing
inferences from the mathematical structure within mathematics. Questions:
Can we confirm the picture of the mathematical domain as a dynamical
entity, in that a) there is a tendency within mathematics to prepare or an-
ticipate application, and b) the mathematics is adapted, changed, expanded
during the process of application? What is the role of interpretation of one
mathematical theory in terms of another, or “layered application”? What
is the role of notation in the deduction step? How does the possibility of
drawing inferences influence the choice of mathematical theory?

Immersion and Interpretation Step: Immersion is the mapping from
the initial assumed structure into the mathematical domain; whereas inter-
pretation is the mapping of the inferential results back into the empirical
domain, not necessarily the inverse of the immersion mapping, or even of
the same type. Questions: Do we have instances where the two come apart
in kind? What is the systematic upshot of the distinction in the historical
case?

Dynamics, Back-and-Forth, Open and Closed Cycles: The idea be-
hind the dynamics of the IC is that by going back and forth between empirical
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and mathematical domains, we can revise the initial assumed structure after
repeated cycles consisting of immersion, deduction, and interpretation. This
can, but need not, lead to an equilibrium between empirical structure and
mathematical representation. If we have a closed or an open cycle, depending
on whether the application is successful or not, different kinds of “reflection”
on the application process are triggered.

Tasks: Find instances for these theoretical ideas, especially for closed
and open cycles, and the reflection process they trigger. Refine the picture
suggested here accordingly.
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Chapter 8

Applying the IC to GR: Three

Episodes

8.1 Introduction

In this chapter, we put the Inferential Conception (IC) to work in our histor-
ical case study, the genesis of GR.1 We will analyze three historical episodes
using the conceptual apparatus provided by the IC. This, in turn, will help
us to refine the account.

In section 8.2, we investigate how the starting point of the application
process, the “assumed structure”, is chosen. We will clarify the status of
the starting point of the application process, and discuss the trigger of the
application process. Then we analyze two small application cycles that led
to revisions of the initial assumed structure.

In section 8.3, we examine how the application of “new” mathematics –
the application of the Absolute Differential Calculus (ADC) to gravitational
theory – meshes with the IC. We describe how the mathematical part of the
Entwurf is shaped by the application process. Our focus is on the application
cycle that led to the “discovery”, and application, of the ADC, the quest for
generally covariant differential operators.

In section 8.4, we will take a closer look at two of Einstein’s failed at-
tempts to find a suitable differential operator for the field equations, and
apply the conceptual tools provided by the IC to better understand why he
erroneously rejected the Ricci tensor and the November tensor in the Zurich
Notebook. We conclude in section 8.5.

1This chapter is based on joint work with Tilman Sauer.
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8.2 Episode One: Choosing a Starting Point

In this section, we identify and discuss the initial assumed structure, the first
component of an application cycle, at the beginning of the genesis of GR.
We are not only interested in the historical starting point of the “modeling
exercise” of GR, but also in the systematic lessons to be learned from the
episode. After proposing a candidate for the initial assumed structure in GR,
we track the first rounds of application cycles, leading to the first revisions
of the initial assumed structure.

8.2.1 What Triggered the Application Dynamics?

One of the problems prompting the search for a new theory of gravitation was
the conflict between special relativity (SR), which postulates a finite, con-
stant speed of light c, and Newtonian Gravitational Theory (NGT), which
postulates an instantaneous propagation of gravitational effects; see section
5.2.1. These two physical domains were inconsistent and had to be recon-
ciled.

While the inconsistency is rooted in physics, it carries over to a for-
mal inconsistency in their respective mathematical formulations: NGT does
not conform to the formal requirement imposed by SR, Lorentz covariance.
Therefore, the mathematical formulation of the theories had to be adapted
as well. This set the process of the application of mathematics in motion.
However, it was not yet clear whether radical changes in the mathematics,
or the application of a new kind of mathematics were necessary, or whether
a more conservative revision of NGT was sufficient.

8.2.2 The Initial Assumed Structure in GR

What was the initial assumed structure at the very beginning of the genesis
of GR? Recall, from section 7.3.2, that the initial assumed structure is some
aspect of the empirical domain, which is mapped into mathematics at the
beginning of the application process. The assumed structure need not be
real empirical structure, that is, we need not take it metaphysically seriously.
Also, the assumed structure can be represented in mathematical form. It has
to be kept in mind that the assumed structure is what is represented by the
mathematics, not the representation itself. We will have to spell out what
this means in each case.

Historically speaking, the starting point of Einstein’s investigations were
the two theories that triggered the search for a relativistic theory of gravi-
tation, SR on the one hand, and NGT on the other. We think that these
two theories, or the empirical structure they describe, are the assumed struc-
ture for the modeling exercise of GR. Both are formulated mathematically.
Therefore, it is vital to specify what empirical phenomena they describe.
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SR can be interpreted as a restriction on physical theories, such as elec-
trodynamics, requiring that their laws are Lorentz covariant. NGT, on the
other hand, describes gravitational phenomena – the motion of massive bod-
ies in space due to the force of gravitation, such as the motion of planets
around the sun, and falling bodies on earth.

The case of NGT is a little more tricky. First, while NGT is well con-
firmed for small velocities, this is not true for velocities approaching the
speed of light, where the inconsistency with SR becomes apparent. Second,
some isolated gravitational phenomena, in particular the anomalous peri-
helion advance of Mercury, are incompatible with NGT. It was known for
quite some time that NGT could not account for this anomaly, which is also
a gravitational phenomenon.

These two lines of conflict were not treated equally. While the first
shortcoming was at the center of Einstein’s attention – the conflict between
SR and NGT triggered the search for GR, and it was one of the main goals
of the new theory to remove the inconsistency between the two theories –
the second class of phenomena did not enter into the construction process of
GR. It is not part of the assumed structure.

In sum, the physical domain of gravitational phenomena that Einstein
was dealing with was given in the form of NGT. He took it to be an em-
pirically well validated theory that was to be reproduced by the successor
theory, keeping in mind, however, that two kinds of inconsistencies, that
with SR, and that with isolated phenomena, had to be removed. Thus, it
was obvious from the very beginning of the genesis of GR that the initial
assumed structure would not stand as it was, but that, ultimately, it would
have to be revised. Also, not all relevant empirical phenomena were part of
the assumed structure.

8.2.3 Assumed Structure: Systematic Significance

This account of the initial assumed structure in the genesis of GR is histor-
ically accurate. But what is its systematic significance? Is Einstein’s choice
of initial assumed structure a mere historical contingency?

We think that there are systematic reasons for Einstein’s choice of initial
assumed structure; they can be traced back to the heuristic correspondence
principle, one of the guiding requirements shaping the search for GR (see
section 5.2.4). Recall that, according to the correspondence principle, the
new theory should reproduce NGT in a special-relativistic, weak-field limit,
such that the empirical knowledge embodied in NGT was sure to be recovered
in this limit. Everything that could be adequately represented by NGT could
be adequately represented by a generalized theory as well, provided that the
generalized theory reduced to the Newtonian limit properly.

The heuristic requirement of a Newtonian limit therefore fulfilled a func-
tion of utmost importance: it guaranteed that the new theory would be
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empirically adequate, at least to the same extent as NGT, and the empirical
adequacy of the new theory would not have to be demonstrated from scratch.

However, the role of the correspondence principle is not limited to em-
pirical adequacy, it also plays a theoretical role. By specifying how we ap-
proach the Newtonian limit, we also provide information about the necessary
background assumptions that are required for the validity of the Newtonian
theory, i.e., we obtain information about the possible reasons for empirical
failures of NGT, and we get information about the order of magnitude of
numerical errors that the old theory generated in the prediction of, say, the
anomalous perihelion advance of Mercury.

As it turned out later, the Newtonian limit had a third, equally impor-
tant, role. By establishing the connection with NGT, it was possible to
interpret mathematical objects introduced by the new mathematical theory.
For example, the g00-component of the metric is connected with the New-
tonian scalar potential. The Newtonian limit is also the standard way of
determining the physical dimension, and numerical value, of the arbitrary
constant entering the gravitational field equations.

In sum, the systematic significance for this choice of initial assumed struc-
ture can be found in the heuristic correspondence principle. The correspon-
dence principle played at least three roles. It made sure that most known
gravitational phenomena are saved, if the new theory reduces to the pre-
decessor theories in a suitable limit; it made it possible to explain, after
the fact, why NGT failed in some instances, and it helped in determining
constants in the new theory.

8.2.4 But is it Application?

It could be questioned whether, at least at this stage of the story, we are
dealing with a genuine case of the application of mathematics. The use of
the correspondence principle could suggest that this a case of inter-theoretic
reduction, not of the application of mathematics. We do not take empirical
phenomena as a starting point, but the initial assumed structure already
comes in mathematical form.

To this we reply that, first, the correspondence principle plays multiple
roles here; one of them is to save the phenomena of NGT. Building the
old theory into the new one is not only a theoretical exercise, it serves the
purpose of connecting the new theory with the empirical structure described
by the old theory. In this respect, the mathematics of the new theory is
applied to a (known) empirical structure.

Secondly, once physical theories have reached a certain degree of sophisti-
cation, it is to be expected that the empirical phenomena will be represented
in mathematical form. The genesis of GR is an example of this. We do not
start from scratch, but, as suggested by Bueno and Colyvan (2011), we pick
up the construction of the theory mid-stream. We have already gone through
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several cycles of immersion, deduction, and interpretation, and what we see
here are further application cycles.

8.2.5 Refining SR and NGT: First Steps

We have now characterized the initial assumed structure of GR at a rather
general level. Now we will put the IC to work. We will sketch, for some in-
stances, how the initial assumed structure was refined before the application
of the ADC. The picture will also get more detailed as we describe the appli-
cation of particular mathematical theories. We believe that it is necessary to
describe the process of application at a rather fine-grained level, as crucial
breakthroughs in the episode hinge on the use of particular formulations of
the physical theories.

The Poisson Equation

First, what form of NGT did Einstein adopt? The starting point of the
modeling exercise in classical mechanics, the assumed structure, was the
Poisson equation, the classical, non-relativistic field equation of gravitation;
see 5.2.2.2 One of the reasons why the Poisson formulation of gravitation
was preferred over Newton’s force law was the former’s greater mathematical
simplicity; it is a scalar equation. The main reason why it was taken as a
starting point in the genesis of GR was that it fitted better with the Lorentz
model approach, on which gravitation, and other forces, are mediated by
a field, which, in turn is determined by the sources. Thus, Einstein’s main
reason for adopting the Poisson equation was not mathematical, but physical:
he wanted to find a relativistic field equation; the goal of the enterprise was
to avoid Newton’s action-at-a-distance force law.

Einstein vs. Abraham: Adopting Minkowski

Second, let us have a closer look at the form of SR. Prior to 1912, Einstein
was content with the “pedestrian” account of SR he had developed in his
1905 paper on SR. This account did not make use of group-theoretic notions
or the line element provided by Minkowski’s formulation of SR, but rather
used explicit coordinate transformations. As late as 1911, he quipped that he
did not understand “modern” formulations of SR, based on the Minkowski
formalism, which was discussed in a textbook on SR written by Max von
Laue (see Norton (2000, p. 141)).

It was only after Einstein was confronted with a rival, special-relativistic
approach to gravitation, by Max Abraham, that he changed his mind and

2Historically, the first attempts to formulate classical mechanics in a Lorentz covariant
manner took Newton’s law of universal gravitation as a starting point. It is not clear
whether Einstein first took this route as well.
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adopted the more powerful approach by Minkowski.3 Abraham’s theory
of gravitation was a straightforward generalization of the Poisson equation,
based on the Minkowski line element. Einstein must have been surprised
when Abraham elegantly derived results in a compact mathematical formal-
ism that Einstein had derived by conceptual arguments of physical theoriz-
ing:

Abraham had [...] achieved all essential elements of Einstein’s
research in the years 1907 to 1911, albeit in an entirely differ-
ent way which, in addition, offered a wealth of mathematical
resources for the further elaboration of a full-fledged theory of
gravitation. (Renn, 2007b, p. 309)

However, Einstein soon became convinced that Abraham’s approach was
flawed. He continued to admire the mathematical elegance of the approach,
but he rejected it on physical grounds. In Abraham’s theory, the central
posit of the constancy of the speed of light had to be given up because, as
Einstein had shown, it varied in proportion to the gravitational potential. As
a consequence, the theory was no longer globally Lorentz covariant. Einstein
was not willing to accept this: he pointed out that if one uses a Lorentz
covariant formulation, but global Lorentz covariance is not valid, an inner
inconsistency arises. The disagreement developed into a heated exchange of
papers and correspondence between Einstein and Abraham.

In the end, Einstein’s view prevailed among physicists; Abraham’s theory
was abandoned for the reason just mentioned. Abraham nevertheless stuck
by his theory and never accepted Einstein’s approach. The controversy was
nevertheless fruitful: the fact that Abraham’s theory had failed on the whole
does not imply that his use of Minkowski’s formulation was doomed as well.

Einstein [...] became gradually convinced that it was worth-
while after all to take a closer look at the utility of a modification
of this formalism for his version of a gravitational field theory
as well. Driven by Abraham’s bold and occasionally stubborn
persistence, Einstein in May 1912 thus finally recognized that
a generalized line element, as suggested by Abraham’s note of
three months earlier, indeed represents the key to a generally
relativistic gravitation theory. (Renn, 2007b, p. 316)

This change of perspective can be understood as the result of an open
cycle, one round of application of mathematics that failed, but that still
proved crucial for the further development of GR. Abraham’s theory used
the Minkowski formalism to represent SR. Einstein adopted this approach,
despite its failure, because it provided him with more deductive possibilities,

3See Renn (2007b) for a historical account of the Einstein-Abraham controversy.



8.3. EPISODE TWO: A NEW KIND OF MATHEMATICS 213

and because it suggested an alternative generalization of SR, based on the
mathematical form of the line element. The reflection on the open cycle
showed that, properly used, there was nothing wrong with this mathematical
approach; quite to the contrary, the superior mathematical features made the
Minkowski formulation attractive.

In short: what made the Minkowski approach attractive from the per-
spective of the IC was, first, an improvement in the deduction step of the
application cycle, and, second, the anticipation that the next immersion step
would be easier, if the assumed structure was formulated using the Minkowski
metric.

8.3 Episode Two: A New Kind of Mathematics

In this section, we apply the IC to one of the most interesting episodes in the
genesis of GR, the collaboration of Einstein with his “mathematician friend”,
Marcel Grossmann, on the so-called Entwurf (“outline”) theory of gravita-
tion in 1912-13; see section 5.3.2 for an introduction to the episode. The
collaboration started when Einstein tried to generalize the equivalence prin-
ciple, to reference frames of arbitrary acceleration, but faced mathematical
difficulties. Legend has it that in a state of desperation, he turned to Mar-
cel Grossmann, a fellow professor at the ETH Zurich, for help. Grossmann
identified the Absolute Differential Calculus (ADC), an early version of ten-
sor calculus, as a mathematical theory that could solve Einstein’s problems.
Together, Einstein and Grossmann reformulated gravitational theory in this
new framework, and published the first tensorial formulation of GR.

In this episode, we have two goals. First, we want to reconstruct the cycle
that led to the first application of the ADC to gravitational theory. Second,
we want to scrutinize the evolution of a mathematical theory, the ADC, in
application. These two goals complement each other, in that the first goal
focuses on the application process from the perspective of one particular
application, gravitational theory, while the other highlights an aspect of
application that is not captured by the IC, namely the contribution of pure
mathematics to its own application.

We will put to work the insights from our historical case study on Gross-
mann’s contributions to the Entwurf theory. The episode is a particularly
interesting case of the application of mathematics for the following reasons.
First, the mathematics applied in the Entwurf, the ADC, were developed
independently of the particular physical problem at hand, gravitational the-
ory. This sets it apart from the application cycles of episode 1. Because of
this feature, it has often been discussed as an example of the “unreasonable
effectiveness” of mathematics; see Steiner (1998).

Secondly, at this stage of history, the division of labour between math-
ematics and physics is discernible at several levels. The protagonists of the
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episode, Einstein and Grossmann, both had clearly defined competences and
tasks: Einstein initiated the collaboration and brought the physical motiva-
tion and knowledge to the table. Grossmann’s competence was in finding a
theory that solved a clearly-formulated mathematical problem. This division
of labour carries over to the resulting joint publication. The Entwurf paper
has two parts: Einstein was responsible for the first, physical part, while
Grossmann was responsible for the second, mathematical part.

Third, the case is interesting because Einstein and Grossmann were not
yet able to carry out the application process to their satisfaction, as the
application cycle remained open. The characterization of the theory as an
Entwurf proved to be justified, as the Entwurf field equations turned out to
be wrong in the end.

We will start with a reconstruction of the episode as an application cycle,
and discuss the distinctive contribution of the mathematical theories to their
own application as we go.

8.3.1 Assumed Structure

Since the inception of the drama of GR, the assumed structure had been
substantially revised; see section 5.3.2. Einstein’s goal was to find relativistic
field equations of gravitation, i.e. an equation of the form

OP (POT ) = SOURCE (8.1)

This is a so-called “frame”, a template that can be instantiated differently
depending on the context; see Renn and Sauer (2007, p. 127). Its instances
are differential equations which determine the gravitational potential (POT)
from the distribution of sources (SOURCE). In the classical case, this is the
Poisson equation. At this point, Einstein had already determined two of the
three components in the generalization. The SOURCE slot was filled with
the energy-momentum (EM) tensor Tµν

4, and the POT slot was filled with
the space-time metric gµν . Both of these candidates resulted from several
application cycles. While the EM tensor is a special-relativistic construction,
the path leading to the adoption of the metric was more involved – for exam-
ple, Einstein had to overcome his initial reservation vis-à-vis the Minkowski
formalism.

These two components of the new relativistic field equation had become
part of the assumed structure. The remaining task was to find, and examine,
suitable candidates for OP, the differential operator acting on the metric,
which would reduce to the Laplace operator of the Poisson equation in a
suitable limit. This brings us to the immersion step.

4Note that in so-called vacuum solutions, the SOURCE can be the zero tensor.
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8.3.2 Immersion Mapping

The immersion mapping connects the initial assumed structure and the
mathematical domain. The goal of the immersion step was to find differ-
ential operators that could enter into the field equation. The mathematical
object that had to be immersed, and that guided the search for the differ-
ential operators, was the metric. The mathematical theory had to provide
differential operators acting on the gµν – this translates into the search for
a mathematical theory that provides covariants of a homogeneous quadratic
differential form.

Einstein’s formulation of the task in the Entwurf paper makes it clear
that the requirements on a suitable differential operator have a modeling
character:

In accordance to [the Poisson equation], one is inclined to re-
quire that [the new relativistic field equation] be of order two.
However, it has to be emphasized that it proved to be impossi-
ble to find a differential equation that satisfies this requirement,
is a generalization of [the Laplace operator], and is tensorial for
arbitrary transformations. A priori we cannot exclude that the
final, exact equations of gravitation are of order bigger than two.
[...] The attempt of a discussion of such possibilities, however,
would be premature in view of our present knowledge of the phys-
ical properties of the gravitational field Einstein and Grossmann
(1995, p. 312).

We can extract a list of requirements, Einstein’s “check list” for differen-
tial operators, from the above quote:

1. The operator should be of order two.

2. It should be invariant under transformations larger than the Lorentz
group.

3. It should be a generalization of the Laplace operator.

The first is a heuristic requirement derived from the Poisson equation.
The second is based on the principle of generalized relativity (see section
5.2.4 above). The third, finally, is grounded in the correspondence principle.
The assumption that the operator should be of order two had no conclusive
justification.

Most of the specifications for the differential operators were extracted
from the existing mathematical formulation of NGT, the Poisson equation.
The requirement for a wider covariance group, on the other hand, was new.
Unfortunately, no historical sources concerning this issue are available: We
do not know how Einstein formulated the request for candidate differential
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operators before he approached Grossmann for help, so it is not clear whether
he thought that general covariance was required, or if he had only a vague
idea that the covariance group should be larger, and Grossmann filled in
the details based on the ADC. There are later recollections of the precise
formulation of Einstein’s question, but such later accounts always have to
be taken with a pinch of salt.

8.3.3 The Mathematical Domain

According to the IC, the next step in the application process is the deduction
step. In a certain sense, this is correct: once part of the empirical domain
is represented as a mathematical structure, we use the mathematical theory
to gain knowledge about this mathematical structure. However, this picture
overlooks the fact that the mathematical domain, or the mathematical the-
ory, could be a dynamical entity in itself, and could therefore make its own
contributions to application. Here we will examine to what degree this is the
case.

Before we do this, it may be helpful to distinguish the mathematical do-
main from the other steps in the application process. On the one hand, the
mathematical domain is distinct from the immersion in that it is a whole
mathematical framework with rules of deduction, notation, and so on. The
mathematical theory needs to be able to represent the structure that is im-
mersed into it, but it can have surplus structure. On the other hand, the
mathematical domain is different from the deduction step, in that the latter
is geared towards a specific goal of application. It is how the mathematical
theory is put to use. The mathematical domain is a general framework which
provides a space of possible structures and deductions.

In chapter 6, we discussed the mathematical part of the Entwurf, and
we examined the evolution of the relevant mathematical theories prior to
the Entwurf. We found that the application of the new mathematics in the
Entwurf has two aspects, which we dubbed “passive” and “active” contribu-
tions.

The “passive” contributions of mathematical theories to application are
those aspects that are independent of, or prior to, their application to this
particular empirical domain. They concern the evolution of these mathemat-
ical theories previous to the application: What is the internal, mathematical
dynamics in these mathematical theories? Did the mathematicians take any
steps towards an application of their theories before Einstein and Grossmann
arrived on the scene?

The “active” contributions, on the other hand, have to do with the follow-
ing problems: Did Grossman adapt, change, or extend the existing mathe-
matics in order to make it applicable? Did he make original contributions to
the applied mathematics? Grossmann’s own contributions can take various
forms and can be of greater or minor importance, ranging from innovations



8.3. EPISODE TWO: A NEW KIND OF MATHEMATICS 217

regarding the notation to genuinely new mathematical results. Finally, there
is always the possibility of misapplication. Mathematical theories may not
be fully worked out, and there can be misunderstandings and subsequent
mistakes in the application process.

Before we discuss these two kinds of contributions, it is vital to discuss
which mathematical theories are applied in the Entwurf, and what the rela-
tive importance of these theories and traditions is.

The Mathematical Theories in the Entwurf

We argued, in section 6.10, that Grossmann mainly drew on an algebraic-
algorithmic tradition, initiated by Christoffel’s work. Bianchi presented
Christoffel’s work in an accessible manner in his textbook on differential
geometry, and Ricci & Levi-Cività expanded and developed it into a calcu-
lus in the ADC paper. In all of these contributions, the mathematical theory
did not yet have an elaborated geometrical interpretation, for the most part.

The systematic significance of this choice could be the following. The
ADC was formulated as a calculus with clearly defined rules of inference; it
was an attractive tool, nevertheless, because it made it possible to quickly
reach conclusions about the objects that could be represented in the theory.
One of the central pieces of the ADC, the metric, already had geometrical
interpretation. It would have been very tedious for the mathematicians to
work out the geometrical significance of the other objects of the calculus,
in particular the Riemann, the Ricci tensor, the manifold, or the Christoffel
symbols. It was certainly more economical to do this with respect to a
particular application.

Passive Contributions: The “New Mathematics”

Let us turn to the internal dynamics of pure mathematics. We have argued,
in our historical study of the mathematical traditions, that mathematicians
do not only strive to solve abstract mathematical problems irrespective of
applicability, but that there is a distinct tendency within pure mathematics
to work towards an application of mathematical theories. These two tenden-
cies can be nicely illustrated by comparing Christoffel’s contribution, on the
one hand, and Ricci & Levi-Cività’s paper on the other.

Christoffel’s research question is directly relevant to Grossmann: he con-
structed differential invariants to solve the equivalence problem of quadratic
differential forms. However, his presentation is not accessible; his main goal
is to solve an abstract, technical problem, not to provide an applicable tool.
Ricci & Levi-Cività fix this problem by taking Christoffel’s – and other math-
ematicians’ – ideas, develop a calculus and give various examples of their
application. Their paper has the goal of presenting everything in an accessi-
ble, yet general manner. Whether Ricci & Levi-Cività’s efforts are entirely
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successful is another matter; we will return to this point below.

Active Contributions: Adapting the New Mathematics

Grossmann’s “active” contributions to tensor calculus encompass a spectrum,
ranging from finding the appropriate mathematical sources and theories,
to notational innovations, the reinterpretation of existing concepts and the
introduction of new concepts and new mathematical results. These are all
contributions that are relevant to the mathematical theory in itself, and not
restricted to the application of the calculus to GR.

The most important contribution is probably the realization that the
Riemann tensor is the mathematical object that allows a generally covariant
approach to the field equations: all differential operators can be constructed
by algebraic operations from the Riemann tensor. This approach, as we have
seen in the historical part, was not yet carried out successfully in the Ent-
wurf. To a certain degree, the same is true for the concepts of space-time
metric, and of manifold. These were put to work for the first time, but
the ramifications and geometrical interpretations of these concepts were not
explored.

The application of the ADC to relativistic gravity left its traces in the
mathematical theory. Examples are; the reinterpretation of mathematical
notions; Ricci & Levi-Cività’s co- and contravariant “systems” as tensors,
previously a physical concept; the introduction of new concepts that are
needed in application such as mixed tensors, and; new notation that is ne-
cessitated by the application, such as the distinction between co- and con-
travariant and mixed tensors using different kinds of letters. Many, but not
all of these innovations are now standard in tensor calculus.

Grossmann also contributed new results to pure mathematics; most im-
portantly his proofs that Beltrami parameters (differential operators), and
generalizations thereof, can be given a particular form, useful in application.

Systematic Lessons

Here are the most important systematic lessons to be learned from this case
about the dynamics of the mathematical domain:

• The mathematical domain is a dynamical entity geared towards ap-
plication prior to any actual application; mathematicians do not only
try to solve abstract mathematical problems (think of Christoffel), but
they also work towards a more accessible presentation of mathemati-
cal theories, and they strive to anticipate the needs of the prospective
applicators (think of Ricci and Levi-Civita, and Bianchi), for example
by developing calculi, and thereby facilitating inferences.
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• As the present case illustrates, it is not a realistic expectation that a
mathematical theory can just be applied without further ado. It will
be necessary to modify and amend the purely mathematical theory to
make it workable.

• The process of application will reflect back on the mathematics in that
notions and conceptual extensions suggested by physics will become
part of the mathematical theory.

• We can hypothesize that the ADC was put to work in particular be-
cause it was developed as a calculus, i.e. had a set of well-defined
inferences. It did not yet come with any particular interpretation of
the structures described by the calculus. This was an advantage, be-
cause it made the application process more economical. On the other
hand, it also caused problems in the interpretation step.

8.3.4 Deduction Step

The deduction step, one of the focal points of the IC, takes place within
the mathematical domain. In this step, we draw on a calculus, or inference
rules, in order to extract mathematical knowledge about the mathematical
structure in question. These inference rules can be implicit or explicit, and
are ideally, but not necessarily deductive. Some deduction steps may not be
fully worked out. “Material” aspects, such as notation, become important,
because these can influence how easy or difficult it is to draw inferences –
typically these difficulties only become apparent at this stage.

The main heuristic goal of the application cycle was to extract differential
operators acting on the metric and conforming to the requirements specified
in the immersion step above, and to check, in the interpretation step, whether
they reduce to the Newtonian limit.

The mathematical part of the Entwurf theory contains not one, but sev-
eral, application cycles, and thus several deductions. They can be found
in paragraph four, the “mathematical supplement to the physical part” (see
section 6.9 for an overview and discussion). The “mathematical supplement”
has three parts, and accordingly three application cycles.

In the first part of the supplement, Grossmann shows that the Energy-
Momentum Conservation equation is generally covariant. This is an impor-
tant result, because it establishes that the conservation principle could be
written in generally covariant form. Grossmann used the ADC, as well as
on some of his own results, on the form of differential operators in para-
graph 2. In the third part of the supplement, he provides some steps of the
derivation of the “Entwurf operator”. This derivation is successful, and quite
elementary.

The second part of the supplement discusses the generally covariant ap-
proach to the field equations, i.e. it examines generally covariant differential
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operators generalizing the Laplace operator. This is the “main” application
cycle, as it was the original goal to formulate a generally covariant theory
of gravitation. The deduction step has two parts. First, Grossmann estab-
lished that under the heuristic requirements specified in the immersion step,
the Riemann tensor is the differential operator from which all other possible
operators that could enter into the field equation can be generated. Gross-
mann then contracted two indices of the Riemann tensor to find a two-index
tensor – the Ricci tensor – which could enter into the field equation.

Grossmann does not exploit all deductive possibilities provided by the
calculus. There are other two-index tensors that can be generated from the
Riemann tensor. Consulting the mathematical sources, we find that it would
have been possible to find, say, the Einstein tensor, but that the deductive
possibilities were not easy to grasp from the presentation in Ricci & Levi-
Cività’s paper, let alone from Christoffel’s paper. This is a failure both of
the mathematical literature, which did not make the deductive possibilities
sufficiently explicit, and of Grossmann, as he did not fix the problem.

We will see below that the deduction steps in the first and third parts
of the supplement are part of closed cycles. The deduction step in the sec-
ond part, however, is part of an open cycle. The problem with this cycle
did not become apparent in the deduction step, and only surfaced in the
interpretation step.

8.3.5 Interpretation Step

In the interpretation step, some of the results of the deduction step are
mapped back to the empirical domain, and compared either with empirical
results or theoretical background knowledge. This step is not purely math-
ematical, as empirical and other theoretical considerations come into play
– the results of the deduction are brought into contact with the assumed
structure.

The interpretation step of the “main” application cycle failed: the candi-
date differential operator, the Ricci tensor, did not yield the Newtonian limit
that Einstein expected, and thus violated the main heuristic requirement, the
correspondence principle. The details of this step cannot be adequately as-
sessed on the basis of the Entwurf paper alone; it is necessary to take into
account the Zurich notebook, which documents Einsteins’ struggle with the
generally covariant approach to GR. We will turn to this issue in the next
episode.

8.4 Episode Three: Not-So-Smooth Operators

In this final episode, we will put the IC to work as an account that helps
us understand failures of application, the unsuccessful application of math-
ematics. The search for the field equations of GR is a story of many failed



8.4. EPISODE THREE: NOT-SO-SMOOTH OPERATORS 221

attempts at finding a suitable differential operator for the field equations.
Can we discern a pattern in the problems that Einstein faced in his search?
Which part of the application cycle was responsible for the problems? The
IC will help us classify, and understand, Einstein’s problems and mistakes.

The working hypothesis of this episode is that we can locate the problems
in the components of the open cycles, the steps of the application process.
However, we have to distinguish between two different kinds of reasons as to
why an application cycle is open. On the one hand, an open cycle can be
due to an objective mismatch between mathematics and the world, as when
a mathematical theory is just unsuitable for a particular empirical problem.
On the other hand, a cycle can be open due to a mistake somewhere in
the cycle. To give two examples, there can be a mistake in the calculation,
or some aspect of a mathematical theory can be erronenously interpreted
realistically.

Many of the open cycles in the search for a differential operator fall into
the category of application mistakes. As in the case of objective problems of
application, the IC provides a framework for thinking systematically about
application mistakes: we can locate the mistakes in the components of ap-
plication cycles. Here is a short description of the four possible kinds of
mistakes.

1. Assumed Structure Mistake: This mistake occurs when there are
wrong expectations about the starting point of an application cycle, or
when there are wrong expectations about the empirical target structure
one expects to recover when completing a cycle.

2. Immersion Step Mistake: This is the mistake of taking some em-
pirical phenomenon and choosing an unsuitable mathematical repre-
sentation for it. It can happen that we have a clear mathematical
counterpart for one empirical object, but that it is unclear as to what
the appropriate representation of other aspects of reality will be. For
example, knowing that the line element represents distances between
space-time points does not solve the problem of how to represent space-
time points.

3. Deduction Step Mistake: These are mistakes that occur in the
deduction step, such as errors in calculations or the failure to fully
exploit the deductive possibilities of a mathematical theory.

4. Interpretation Step Mistake: This is the mistake of interpreting
part of the mathematical formalism a) realistically, if the mathemat-
ical object has properties that are purely representational, or b) not
realistically, if it allows for a realistic interpretation. The most im-
portant example are coordinate systems: Einstein interpreted them
realistically, but they are in fact mere tools of representation.
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We will try to classify all mistakes we encounter in this episode as one
of these four cases. We will pay special attention to problems with this clas-
sification scheme, as these could help us get a better picture of application,
which could lead to a refined version of the IC. In particular, there could be
mistakes that have to be assigned to more than one of the four cases, and
there could be mistakes which are not easily attributed to any one of the
four cases.

8.4.1 The Ricci Cycle

The first open cycle we will analyze is the one we already considered above:
the application of the Ricci tensor as a differential operator for the field
equation (see section 5.4.1). Now, our focus is not on the use of the ADC in
application to gravitational theory, but rather on the reflection on how the
open application cycle can help us understand Einstein’s erroneous rejection
of the Ricci tensor, and his justification for this rejection.

The reconstruction of Einstein’s Zurich notebook shows that Einstein
had certain expectations for how the field equations would reduce to the
Newtonian limit, in particular that the weak, static limit would be spatially
flat. This expectation turned out to be wrong. It was an unwarranted
generalization of his previous applications of the equivalence principle, where
he had explored metrics in which only the g44 component was variable.

Which of the four kinds of mistake is this? We think this is an as-
sumed structure mistake. Einstein had expectations for the structure that he
wanted to recover at the end of the application cycle, and these expectations
were unwarranted. However, there is no immersion, deduction, or interpre-
tation mistake. All the calculations are valid, and, with certain caveats, the
Ricci tensor is the right differential operator.

Einstein’s reflection on the open cycle shows that he was not ready to
accept this outcome on faith. Because he was convinced that his choice of
assumed structure was correct, he had to locate the problem elsewhere in
the cycle. The reflection convinced Einstein that the problem was due to the
class of mathematical objects suggested by the ADC, the generally covariant
differential operators. As he took the Ricci tensor to be the only viable
candidate, a generally covariant approach was out of the question, and the
covariance group had to be restricted. He thus located the mistake in the
immersion step: a generally covariant operator is not the right generalization
of the Laplacian operator.

However, Einstein needed a positive argument to reject all generally co-
variant operators. We can interpret Einstein’s later formulation of the Hole
Argument as an attempt to give an independent reason for this rejection of
the Ricci tensor. It does not merely restate the failure to close this applica-
tion cycle, but tries to explain it. We will discuss the Hole Argument further
in section 8.4.3.
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In a sense, then, when he failed to close the cycle, Einstein tried to estab-
lish a different equilibrium. He had good reasons to endorse the generally
covariant approach provided by the ADC; most notably, generally covari-
ant field equations promised to comply with the equivalence principle to the
fullest extent. Therefore, it was necessary to find an equally good argument
to reject this approach. It was not sufficient to simply give it up on the
grounds that the cycle was open, as the problem may have been with the
deduction step, or with the assumed structure, which would have spoken
against a rejection of the generally covariant approach.

8.4.2 The November Cycle

The November tensor was the second differential operator that Einstein re-
jected in the Zurich notebook (see section 5.4.2). The rejection of the Novem-
ber tensor is different from that of the Ricci tensor in that, objectively speak-
ing, it is not a suitable candidate for a generalized theory of relativity, as it
presupposes a restriction of covariance to unimodular transformations. How-
ever, it is nevertheless instructive to examine Einstein’s reasons for rejecting
the November tensor, as they are signs of deeper problems in applying math-
ematics.

In retrospect, Einstein identified two problems with the November tensor.
Firstly, it did not yield the correct Newtonian limit. Unfortunately, it is not
clear what exactly went wrong in this step, so it is difficult to categorize the
mistake. Secondly, Einstein interpreted the derivatives of the metric, and
not the Christoffel symbols, as the components of the gravitational field.

There are to ways to categorize this “fateful prejudice”, as Einstein called
it. It could be an interpretation step mistake, the failure to recognize which
part of the formalism has a realistic counterpart, or what that counterpart
is. On the other hand, if the problem was in identifying the mathemati-
cal counterpart of the components of the gravitational field, then it is an
immersion step mistake.

An additional difficulty that led to the second mistake was a lack of
deductive possibilities. At a later stage, Einstein was able to recognize the
Christoffel symbols as the correct representation, by using more powerful
variational techniques. Thus, a deduction step mistake may have contributed
to the “fateful prejudice”.

Einstein’s own diagnosis as to why he rejected the November tensor is
an instance of an open cycle where different kinds of mistakes interact: a
problem in the deduction step, together with the expectation of a simple
result of the calculation, acted as a confirmation of a mistake Einstein made
in the interpretation of the formalism.

Let us now turn to current reconstructions of the problem with the
November tensor. Einstein scholars think that the deduction step mistake
has a different status than the immersion or interpretation step mistake be-
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cause Einstein did not finish the calculation. He thus had to ascribe the
problem to his lack of mathematical ability, not to an objective problem
with the theory. However, Einstein expected his theory to yield a simple
solution, and his calculations may have suggested that this was not a likely
outcome. Therefore, he may have interpreted the problem in the deduction
step as a real, “objective” obstacle for the theory.

The majority of Einstein scholars have identified a different reason why
Einstein rejected the November tensor, namely the distinction between co-
ordinate conditions and coordinate restrictions. Einstein interpreted con-
ditions, such as harmonic coordinates or the Hertz condition, as genuine
restrictions on the covariance group of the field equations.

This can be categorized as an interpretation step mistake, the failure to
recognize which parts of the formalism are to be interpreted realistically –
the coordinate conditions do not have real significance in the general theory,
but only in the classical limit. The mistake is not purely mathematical, as
such conditions can be interpreted as coordinate conditions or as coordinate
restrictions – the distinction lies in the interpretation, not in the formalism.
However, some of the mathematical deductions do not make sense, if the
expressions are coordinate conditions, as the calculations served to determine
the covariance group of an operator under certain constraints.

John Norton has proposed an alternative account as to why the Novem-
ber tensor was rejected; see section 5.4.2. He thinks that Einstein was aware
of the distinction between coordinate conditions and coordinate restrictions,
but that he had a reason, analogous to the Hole Argument, for rejecting
the November tensor. The argument presupposes that we can conceive of
a coordinate condition as an independent entity, which directly represents
space-time points, and from which we can remove the metric, and add a met-
ric with different components later. This is an interpretation step mistake:
Einstein failed to see that coordinates in themselves do not have a realistic
interpretation. The Hole Argument only makes sense under this assumption.

The November tensor is an interesting construction from the point of
view of the application of mathematics. When he explored the Ricci ten-
sor, Einstein convinced himself that a generally covariant differential opera-
tor was not an option, and that the requirement of general covariance had
to be weakened, which meant that substantial modifications of the candi-
dates provided by the ADC were necessary. However, the fact that Einstein
constructed the November tensor based on the Ricci tensor suggests that
Einstein was not yet ready to give up on the mathematical possibilities pro-
vided by the ADC. The November tensor was still part of the mathematical
strategy. Thus, even though Einstein was unable to close the cycle, i.e. to
successfully apply the ADC in the first attempt, he did not simply reject the
mathematical framework, but rather continued to exploit it.
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8.4.3 Remarks on the Hole Argument

John Norton has conjectured that the Hole Argument may have been rel-
evant for Einstein’s rejection of the November tensor. In the philosophy
of physics, the Hole Argument has risen to prominence in the debate on
space-time substantivalism: the position that space-time is, to some extent,
independent of the events taking place in it.5 In modern terms, the Hole Ar-
gument rules out one particular form of substantivalism, so-called manifold
substantivalism. This is the position that the four-dimensional space-time
manifold itself represents space-time events.

Norton’s discussion shows that the Hole Argument can be formulated
independently of manifolds – all we need are coordinate functions with a
realistic interpretation, i.e. that coordinate functions directly refer to space-
time points. Here we will have a look at the argument from a historical point
of view. In particular, we will examine how the mathematical literature, prior
to the application of the ADC to GR, may have influenced the argument,
and whether the perspective of the IC is fruitful in this context.

In section 6.5, we discussed the history of the manifold concept in math-
ematics, prior to its application in GR, and Grossmann’s manifold concept
in the Entwurf. We saw that the concept was not as clear-cut as the modern
notion, and we distinguished several interpretations. The most important
difference between the modern and the historical concept is that from the
modern perspective, we first define manifolds as sets of points with local
differentiable structure, and assign the metric to the manifold afterwards,
whereas from a historical perspective, the metric and the manifold were, at
least according to some interpretations, not distinct entities: the manifold is
just the geometrical entity described by the line element.

Ricci & Levi-Cività define manifolds as follows in the introduction of
their paper:

A manifold Vn is defined intrinsically in its metrical properties
by n independent variables and by a whole class of quadratic
differential forms of these variables, any two of which can be
transformed into each other by a point transformation. As a
consequence, the Vn is invariant under all transformations of its
coordinates.6

5See section 5.4.2 for a historical exposition of the argument and a short discussion of
Norton’s conjecture. Norton (2011) is an accessible discussion of space-time substantival-
ism in the context of the Hole Argument.

6[U]ne variété Vn est définie intrinsèquement dans ses propriétés métriques par n vari-
ables indépendantes et par toute une classe de formes quadratiques des différentielles de ces
variables, dont deux quelconques sont transformables l’une en l’autre par une transforma-
tion ponctuelle. – Par conséquence une Vn reste invariée vis-à-vis de toute transformation
de ses coordonnées. (Ricci and Levi-Civita, 1901, p. 128)
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A manifold is not defined independently of, or prior to, the metric, but by
the variables, and by classes of the metric, at the same time. Thus the Hole
Argument does not apply to this notion of manifold: defining the manifold
by classes of metrics blocks the possibility of thinking of the metric as an
entity that is independent of the points of the manifold, and interpreting two
metrics in the same equivalence class as different entities. This rules out the
construction of the Hole Argument, which relies on the distinctness of gµν
and g�µν , even if the two metrics are related by a coordinate transformation.

The situation is more complicated in Grossmann’s case. On some inter-
pretations, the Hole Argument does not stand up for Grossmann’s manifold
concept. In particular, if manifolds are close to, or even identified with, the
line element – an invariant quantity – different metrics in the same equiva-
lence class are nothing but notational variants.

Thus, historically speaking, manifolds are not responsible for the con-
fusion leading to the Hole Argument. Rather, the mistake can be traced
back to an interpretation of coordinate functions as direct representations of
space-time points, a sort of “coordinate substantivalism”. But how did this
problem come about? How could this confusion arise, given that the math-
ematical literature discussed the ADC as a calculus that allowed physical
theories to be formulated independently of coordinate systems?

One part of the problem can be explained by the focus of the math-
ematical literature. Christoffel’s and Ricci & Levi-Cività’s work describes
how distances in space-time can be represented in a coordinate-independent
manner, namely as the invariant line element. This implies that the com-
ponents of the metric do not have a realistic interpretation, in that they
depend on the coordinate functions we use – they are not invariants. How-
ever, the mathematical literature does not answer the question as to how to
represent space-time points, or events. The formalism was not designed for
this particular application, and the applicators were on their own when it
came to finding the correlate of space-time points in the ADC; this made the
misconceptions possible.

A second aspect of the problem could stem from the kind of application
mistake that Einstein and Grossmann committed. It is easier to commit a
mistake in the interpretation step when we try to find empirical correlates
for parts, or aspects, of the formalism. It is at least prima facie plausible
to ascribe some property in the world to the coordinate system. On the
other hand, if the question was what the correct mathematical correlate of
space-time points are, then it is a) harder to disregard the invariant-theoretic
perspective of the formalism, and b) easier to take prior immersions of other
mathematical objects into account, and model the later immersion on these
prior examples – in the present case, on the immersion of distances in space-
time as the line element.

Finally, a big part of the problem was that the relevant application cy-
cles are not independent. Once we have a mathematical representation for
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distances, the question as to how to immerse space-time points cannot be an-
swered independently of the representation of distances, and it is rather the
earlier step that determines the answer: we cannot speak about space-time
points independently of the metric.

In the end, one cannot help but wonder at the irony that, if Einstein
had accepted the manifold concept as proposed by Ricci & Levi-Cività, he
could have avoided the confusion arising from the Hole Argument, and he
could have defended a sort of manifold* substantivalism – manifold* being
the historical, “invariant” notion as opposed to the modern manifold concept.

8.4.4 Systematic Observations

Here are some of the systematic lessons learned from an analysis of the open
application cycles in the search for a differential operator.

First, the conceptual tools provided by the IC allow us to locate appli-
cation mistakes in a descriptively adequate manner. There are only a few
cases in which we cannot locate the mistakes in the framework. The analysis
in terms of the IC is also philosophically insightful, in that it makes it easier
to further analyze, what could be called, the dynamics of application, that
is, the influence of misconceptions on the further course of the application
process.

Second, the distinction between an immersion step mistake and an in-
terpretation step mistake seems to be instructive. These mistakes have a
different logic in that one is a misconception about the realistic interpre-
tation of mathematics, while the other is a misconception about the right
representation of a phenomenon or aspect of the world.

Third, not all the components of the cycle are on a par. Problems with
either immersion or interpretation can lead to the outright rejection of a
mathematical theory for a particular application. A problem with the de-
duction step, on the other hand, is more likely attributable to the applicator’s
inexperience, or an incomplete understanding of the possibilities provided by
a mathematical framework. In the present case, it is interesting that Ein-
stein attributed an “objective” significance to a problem in the deduction
step, his “fateful prejudice”, in that, by doing so, he took the simplicity of a
mathematical expression to be a sign of its verisimilitude.

Fourth, the fact that one particular aspect of the world is successfully
mirrored in mathematics, i.e. that there is a closed cycle, does not guar-
antee the successful application in other cases – quite to the contrary, it
can complicate matters. For example, the ADC provided a framework for
capturing space-time distances as an invariant quantity: the line element.
However, it was not clear how space-time points should be mirrored in that
framework. To find the right representation for space-time points was all the
more difficult because it is not possible to characterize them independently
of the metric. Thus, the subsequent application cycles are not independent;
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latter cycles have to be compatible with former cycles, which can make the
application task increasingly hard.

8.5 Summary

Let us sum up our most important findings.
In episode one, we examined the initial assumed structure, the empirical

phenomena which are the starting point of the application process. Not
all relevant gravitational phenomena are part of the assumed structure –
the anomalous precession of Mercury’s perihelion did not play a role in the
formulation of GR, but rather served as a test for the completed theory.

We found that the assumed structure was given by the empirical content
of SR and NGT. However, it was an important part of the discovery of
GR to identify the right mathematical formulation of these two theories,
namely the Minkowski formalism, which facilitated inferences and suggested
the invariant line element as a central object that had to be generalized, and
the Poisson equation, which was helpful for a field-theoretic approach, and
not only served to capture empirical content, but also played a theoretical
role in the new theory of GR.

We suggest that settling for these two formulations was already part
of the application process, and that the importance of the mathematical
form of the predecessor theories in the discovery and justification of GR is
paramount.

In episode two, we reconstructed the first application of the ADC to
gravitation based on the IC framework. The application cycle, leading to
the application of the ADC, was triggered by the search for a differential
operator acting on the metric with a larger covariance group. Einstein and
Grossmann did not succeed in closing this cycle, as they found that the
candidate differential operator, the Ricci tensor, does not reduce to the ex-
pected Newtonian limit. They did, however, close two other cycles, one of
them yielding the Entwurf operator with restricted covariance.

Based on the historical study of the mathematical part of the Entwurf
paper, we conjecture that the mathematical domain itself has to be treated as
a separate aspect of application. We found that some mathematicians work
on abstract mathematical puzzles with negligible ties to direct application,
as witnessed by Christoffel’s work, while others, such as Ricci & Levi-Cività,
strive to make mathematical theories applicable, facilitating inferences, and
even suggesting potential domains of application. This contribution of pure
mathematics to its own application is not captured by the IC.

We also found that Grossmann himself put a considerable effort into the
application of the ADC to gravitation, contributing to many aspects of the
mathematical theory. The application of mathematics it is not a matter
of plug-and-play, it is an active process that transforms the mathematics
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through the application process.
Finally, we noted that the first application of the ADC did not go smoothly.

For one, Grossmann failed to realize the full deductive potential of the ADC,
when he only derived the Ricci tensor as a viable differential operator, and
neglected other possible candidates.

In episode three, we used the IC as conceptual framework for analyzing
application mistakes in Einstein’s search for a differential operator for the
field equations. We reconstructed his rejection of the Ricci tensor and the
November tensor, documented in the Zurich notebook, as open cycles. We
found that the IC provides useful categories for the analysis of application
mistakes, such as the distinction between immersion step mistakes and in-
terpretation step mistakes. Further systematic observations can be found in
section 8.4.4.

Finally, we briefly commented on the Hole Argument, from the perspec-
tive of the application of mathematics. The Hole Argument can be inter-
preted as an attempt to give a positive reason for the failed attempt to close
the Ricci cycle. We then found that, historically, the notion of manifold is
not responsible for the confusion arising from the argument, because at least
some historical conceptions of the notion would have blocked the argument.

All in all, the extended IC provides a useful framework for the analysis of
the application process, and allows a nuanced reconstruction of the historical
episodes, if one keeps in mind that it does not capture the internal application
dynamics of mathematics.



230 CHAPTER 8. IC AND GR: THREE EPISODES



Conclusion

The goal of this thesis was to discuss the following questions: What is the
role of mathematics in application to the world? and, why is mathematics
useful in solving empirical problems? In the conclusion, I would like to gather
some systematic lessons learned from the various case studies, and point out
avenues for future research.

Metaphysical Issues

The problem of applicability is related to some intricate metaphysical ques-
tions, which can be divided into three groups: the metaphysics of mathemat-
ics, the metaphysics of the empirical domain, and the nature of the relation
between these two domains.

I critically discussed one particular account of the metaphysics of math-
ematics, ante rem structuralism, in chapter 1. The alternative I sketched
in this context – the representation of mathematical structures in terms of
isomorphism types – is not convincing from a metaphysical point of view;
isomorphism types are not the answer to the question as to what are mathe-
matical structures. However, I am rather sceptical that we will ever be able
to provide a concluding answer to this question.

Instead, I propose to pay more attention to the question as to what
particular mathematical theories and structures are applied in particular
contexts, and to think about the philosophical ramifications of these choices.
First, in the case study of GR, it proved fruitful to examine the status, and
traditions behind, tensor calculus – we discerned an invariant-theoretic and
a geometrical perspective, and argued that, at least in the beginning, the
former prevailed, with all its advantages and drawbacks. Second, in the
Königsberg case, I argued that, although, strictly speaking, we do not need
graph theory to solve the Königsberg problem, graph theory is still important
at the level of pure mathematics, e.g. for reducing complexity.

As to the metaphysics of the empirical domain, I argued, both in the
Königsberg case and the Volterra case, that we can give relevant parts of
the mathematical structures a causal interpretation. Keeping this in mind
prevents us from taking the mathematical structures themselves metaphys-
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ically seriously. The causal interpretation can inform our view as to what
kind of explanation we are dealing with; in particular, none of the cases
we saw are “purely mathematical” explanations of physical phenomena. I
will further comment on explanations below. In the honeycomb case, the
causal interpretation of the structure is even more important, as the con-
struction mechanism of the physical structure can speak in favor, or against,
the applicability of mathematical results.

In the case study on GR, we did not enter into the classical debates
on the metaphysics of space-time theories, but rather limited ourselves to a
discussion of the Hole Argument, as well as a discussion about which parts
of the mathematical formalism of GR can be given a realistic, geometrical
interpretation. Here we got the impression that many of the interpretational
problems of the genesis of GR could have been settled through a careful
handling of the available mathematical theory, the ADC, which is, after all,
a theory of mathematical objects that are independent of coordinate systems.
However, we will have to pursue these issues further.

Finally, there is the question as to how the relation between mathematical
and empirical domains is constituted. Critics of the Inferential Conception
point out that if the correspondence between mathematical and empirical
domains is spelled out in terms of mappings, the result risks being circular,
as mappings are themselves mathematical entities. The assumed structure
problem raises similar concerns.

One of the common themes of all the cases we review is that the re-
lation between mathematics and the world is not one of simple structural
correspondence. First, I argued that, in the Königsberg case, the represen-
tation is, at least partially, a matter of pragmatics. Second, idealizations
are paramount in all cases. This shows that a direct correspondence be-
tween mathematics and empirical structure is out of the question. Thus,
the objection that the IC is circular loses traction. However, it also shows
that we should not interpret the mappings of the IC as establishing a direct
structural correspondence.

Explanation

All of the smaller case studies of applicability – the Königsberg case, the bee’s
honeycomb, and the predator-prey model – are examples of explanations
where mathematics plays a central role. What lessons can we learn from
these cases about explanations, be they scientific or within mathematics?

We can wholeheartedly reject the notion that there are mathematical ex-
planations, in the sense that we can explain empirical phenomena exclusively
on the basis of mathematics. In all cases we examined, we saw that a mere
match between an empirical and a mathematical structure was not sufficient
to explain the empirical structure; think of the explanation of the hexagonal
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openings based on the HC, or the reproduction of periodically fluctuating
populations by the predator-prey model.

The bridge principle between mathematical structures and the world is
often highly non-trivial and in need of independent justification. I argued
that, in the Königsberg case, it has a pragmatic justification. In the case
of the bee’s honeycomb, I pointed out that, even if we succeed in physically
reproducing the actual honeycomb as a kind of foam, we should suspend
judgement as to whether this constitutes an explanation, because we do not
know whether the underlying mechanism producing the structure, the liquid
equilibrium, is the actual construction process. Finally, the reproduction of
the Third Law, as a mathematical analogue of the population shift, is not
sufficient for accepting the model as an explanation of this phenomenon.
Only if we can reproduce the Third Law in more realistic models, should we
accept this account.7

In all cases we examined, it proved to be fruitful, or, at least, possible, to
find a causal interpretation for the mathematical structure or model. Because
of this, I also rejected the idea that scientific explanations using mathematics
are non-causal. I think that those maintaining such views simply project
purely mathematical explanations onto the world.

In the Königsberg chapter, I proposed that mathematics can contribute
to scientific explanations at two levels: the relation between mathematics
and the world, on the one hand, and the explanation of purely mathematical
facts, on the other. This suggests that we should accept explanations in pure
mathematics, which can, but need not, take the form of proofs. I further
proposed several factors that potentially contribute to purely mathematical
explanations; the two most promising being reduction of (computational)
complexity, and elimination of irrelevant information. This proposal is es-
sentially a refined version of Mark Steiner’s transmission view.

Idealization

One of the common themes of the cases we considered is the issue of idealiza-
tion. Volterra explicitly discusses, and tries to justify, the idealizations that
go into the predator-prey model. However, he is ultimately not successful,
as the model is now commonly taken to be flawed. I argued that the same is
true for Lyon and Colyvan’s application of the HC to the bee’s honeycomb,
and also for Fejes Tóth’s mathematical approach to the honeycomb.

I also argued that the introduction of idealizations is not per se respon-
sible for the fact that these models are flawed. Euler’s explanation is also
based on idealizing assumptions, but we nevertheless accept it as a good ex-

7One caveat is in order: I did not examine a fundamental, physical theory, such as QM,
with respect to explanation. Maybe the situation is different in these cases, as we may
not have access to the underlying mechanisms of fundamental theories.
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planation. The same is true for most mathematical models – all models are
wrong, but some are useful, as the statistician George E. P. Box quipped.
Why are certain idealizations harmless, while others can render a model vir-
tually useless for certain purposes? And: what’s mathematics got to do with
it?

It is very difficult to give systematic reasons as to why certain idealiza-
tions are adequate for certain purposes, while others are not, and the in-
ductive basis of the cases we considered is certainly too thin. However, one
discernible pattern is that the mathematics-driven idealizations, i.e. ideas
motivated by, say, mathematical simplicity, or tractability, or by the desire
to find an application of a particular mathematical result, were particularly
problematic.

Mathematics-driven idealizations are not necessarily problematic. It is
possible to find a good justification for the choice of a particularly simple
mathematical model ex post facto. However, such a justification always has
to be supplied later, as simplicity need not track truth – this is in stark
contrast to empirically-driven idealizations, which already come with a (good
or bad) justification, by their very nature.

Thus, it could be speculated that there exists asymmetry in the justifica-
tion of these two kinds of idealizations – empirically-driven idealizations come
with a built-in justification, which can be good or bad, while mathematics-
driven idealizations are always in need of later justification – and that this
asymmetry is responsible for the fact that the latter are particularly prob-
lematic: when we use mathematics-driven idealizations, we have to get lucky,
while we have already weeded out the worst empirically-driven idealizations.

We did not say much about the idealizations of the “modeling exercise”
of GR. This does not mean that no idealizations went into the construction
of the Einstein field equations. For example, the equations are only unique
under the assumption that they should be of order two, and linear in the
second derivatives; see Steiner (1998, pp. 94) for more on this issue. While
the analogy with the Poisson equation goes some way towards justifying
this choice, it is also based on considerations of mathematical simplicity –
at least, this is Einstein’s perspective. Thus, we are, again, dealing with a
mathematics-driven idealization. It would certainly be worthwhile to further
explore the justification of these assumptions.

The IC: Prospects and Problems

In this thesis, we examined accounts of the applicability of mathematics;
in particular, we tried to apply the IC to GR. How successful are these
attempts? Should we try to refine the IC, and similar accounts, or should
they be given up?

On the positive side, the IC has proven to be a useful tool in the de-
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scription, and analysis, of the historical interplay between mathematics and
physics in the case study of GR. What is more, this account seems to capture,
at least some practitioners’ conception, of the application of mathematics;
see Volterra’s reflections on the role of mathematics.

I think that the usefulness of the IC lies its simplicity, and in that it
allows us to decompose a big problem into smaller components (“divide and
conquer”). The account does not presuppose much. All we have to assume is
that there exists a clear separation between the empirical and the mathemat-
ical domain, and that there is some kind of correspondence between the two.
The IC breaks up the application process into components, i.e. manageable
steps, which can be analyzed separately, and then be reassembled.

However, the IC is a complete account of applicability. As we pointed
out in the case study on GR, there are aspects of applicability about which
the account is silent; most importantly, it neglects the internal dynamics of
mathematics. Also, the problems of conceiving of the relation between the
two domains as of mere structure-preservation were pointed out throughout
the thesis; other philosophical problems are open as well. Thus, if we con-
tinue using the IC as a framework for the process of applying mathematics,
we should always keep in mind that it does not faithfully capture all relevant
aspects of applicability. It should be used as a conceptual and heuristic tool,
not as the final word on applicability.

History and Discovery

What are the advantages of examining the historical genesis and the con-
struction process of mathematical theories and models?

Many of the systematic issues we examined benefitted from the historical
approach. To take two obvious examples; the examination of Euler’s original
paper uncovered several approaches to the Königsberg problem, which were
fruitfully applied in the discussion on scientific and mathematical explana-
tions; and the discussion of Volterra’s justification of idealizations, which
revealed the primary motivations for idealizations, suggesting that some of
them were mathematics-driven.

Of course, a historical approach is indispensable for questions of theory
dynamics. However, examining the actual construction process of scien-
tific theories substantially changes our perspective on the relation between
mathematics and the world. It becomes apparent that the process of appli-
cation is one of mutual adaptation: empirical questions and desiderata can
lead to substantial changes, and extensions, of mathematical theories; and
the mathematical expression of empirical phenomena can lead to substantial
conceptual changes in the way we see the world, and even help in the discov-
ery of new phenomena. All these aspects come to the fore once we conceive
of the application of mathematics as of a historical process.
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Finally, the historical approach also reveals problems of applicability, no-
tably mistakes. These are usually not visible, if only the result of the appli-
cation process is taken into account – think of Einstein’s three-year struggle
with his field equation. However, a systematic understanding of the pitfalls
of the application process yields a better understanding of applicability tout
court. We are at the very beginning of this journey.

Unreasonable Effectiveness?

What are the consequences of our case studies for the thesis of the unreason-
able effectiveness of mathematics? Of course, we cannot reject the thesis on
the basis of just a few examples. However, we certainly can discern whether
the cases speak in favor, or against, the thesis.

All the cases we saw, except for the Königsberg case, are not pure success
stories, but rather involve a considerable struggle with the mathematics; in
some of the cases, the application even fails altogether. It is questionable to
call the mathematics effective, at all, in these cases.

The case of GR is particularly noteworthy. The application of the ADC
to gravitational theory is certainly effective, but not unreasonably so. One of
the presuppositions of the thesis of the unreasonable effectiveness is that the
methods of mathematics are mainly driven by aesthetic considerations, and
independently of empirical considerations. In the case of the ADC, this is not
correct. Even in Christoffel’s paper, which could be considered to be farthest
from real-world applications, the connection to a real, geometrical problem is
quite clear – the equivalence problem of homogeneous quadratic differential
forms, a formal problem, translates into the problem of which metrics are
related by coordinate transformations. In the paper by Ricci & Levi-Cività,
the methodological gap is even smaller. All in all, the assumption that
mathematical research is mainly driven by aesthetics just seems to be wrong.

Then, as we pointed out repeatedly, the mathematics was not “plug and
play”, but rather there was a considerable effort by Einstein and Grossmann
to extend the existing mathematics. The suggestion, that mathematics can
be applied without further ado, is plainly wrong.

This is not to say that there are no gaps in our understanding of the
application of mathematics in the genesis of GR. I already mentioned the
formal restrictions on the form of the final field equations in the context of
idealizations above. Some of the properties of the field equations can be
derived form the Poisson equation, and there are physical reasons for doing
so, namely the correspondence principle. However, this does not completely
determine the field equations – at this point, mathematical simplicity comes
into play. I think we should not interpret this as a case of unreasonable
effectiveness, but rather as an idealization that is still in need of proper
justification.
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Concluding Remarks

I believe that the applicability of mathematics is an important philosoph-
ical issue, which deserves more attention from philosophers and scientists,
and I am convinced that a unified perspective on the problems of applica-
bility could be beneficial for many debates in the philosophy of science and
mathematics.

Clearly, all the cases I discussed in this thesis should be further explored;
in particular, the case study on GR, which is a very rich source that we have
only begun to understand. I would certainly like to continue working on this
case.

There are two areas that I consider to be particularly interesting from the
perspective of applicability, but which I did no touch on in the present thesis.
The first is quantum mechanics, and the second is the use of mathematical
models in economics, and in finance in particular. If I have one regret, it
is that I did not have time to take a closer look at these two important
examples of the application of mathematics.
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