

Protocol

Technical Specification

Version 2.0

August 2024

Inverter Protocol - Technical Specification

Table of Contents

Abstract	 3

Introduction	 4

Requirements	 5

High-Level Requirements	 5

Architecture	 7

Overview	 7

Components	 9

Creating New Modules	 12

Deployment Structure/Versioning	 14

Our Proxy Pattern	 14

Versioning & Upgrades	 16

Closing Remarks	 20

Conclusion	 22

Appendix: Low-Level Requirements	 24

Appendix: Example Modules	 26

Authorizer Modules	 26

Funding Managers	 27

Payment Processors	 28

Logic Modules	 29

Appendix: Example Workflows	 32

Dynamic Token Issuance Workflow	 32

KPI-based Rewards and Staking Workflow	 32

Page of 2 33

Inverter Protocol - Technical Specification

Abstract

The Inverter Protocol presents a groundbreaking approach to token

programmability in the blockchain ecosystem. This technical specification

outlines a modular, flexible, and secure framework designed to support a

wide range of tokenization use cases, from decentralized finance to real-
world asset tokenization. At its core, Inverter employs a modular

architecture centered around a core orchestrator contract, enabling

seamless integration of various modules and existing protocols.

Key features include a governed module library, ensuring security and

adaptability, and a sophisticated deployment structure utilizing the

beacon proxy pattern for efficient upgrades and gas optimization. The

protocol's versioning system allows for smooth updates while maintaining

backward compatibility, with built- in mechanism to stop affected

contracts and allow for a safe retrieval of funds.

The architecture of the Inverter Protocol comprises essential modules

such as the Authorizer, Funding Manager, and Payment Processor,
alongside customizable Logic Modules. This structure facilitates the

creation of complex token economies, including Primary Issuance Markets

(PIMs) for dynamic token issuance and distribution.

The specification delves into the Inverter Protocol's commitment to

interoperability and robust security measures, including timelocked

upgrades and community-driven governance. It also presents example

workflows demonstrating the protocol's versatility in creating tailored

token ecosystems.

By providing a comprehensive toolkit for token design and management,
the Inverter Protocol aims to drive innovation in collaborative finance and

circular economies, making advanced tokenization accessible to a broad

range of applications and industries.

Page of 3 33

Inverter Protocol - Technical Specification

Introduction

The blockchain ecosystem lacks a robust token programmability layer. Current inflexible

frameworks fail to keep pace with the rapidly evolving landscape of tokenization use cases.
These shortcomings stifle innovation, elevate risks, and create inefficiencies that bottleneck

the transformative potential of token-based systems. Without a flexible, modular foundation,
the promise of tokenization to revolutionize industries - from decentralized finance to real-
world asset tokenization - remains frustratingly out of reach.

Inverter Protocol is a decentralized coordination protocol that enables programmable

issuance and asset flow between parties. The protocol is designed to support any project

or use case that requires hatching a token economy and defining the exchange of resources

between participating entities while ensuring openness, adaptability, and ease of use. The

Inverter Protocol consists of a modular architecture that seamlessly integrates different

modules and existing protocols. This modular approach enables developers to create new

modules that can be added to the protocol, allowing for an ever-expanding range of use

cases and applications.

Inverter Protocol is built on the Ethereum Virtual Machine and leverages the latest standards

and best practices in smart contract development. The protocol uses proxies for deploying

new contracts. This approach slashes deployment costs and enables on-chain upgrades

without requiring users to redeploy their modules, significantly enhancing flexibility and

reducing operational overhead. In addition to its modularity, one of the key benefits of the

Inverter Protocol is its focus on security. The protocol comprises audited and community-
accepted modules that have been tested, audited, and proven to work. Moreover, the

Inverter Protocol follows an open development process, allowing anyone to vet, verify, and

contribute to the codebase, further enhancing the protocol's transparency and reliability.

While Inverter was initially conceived as a dynamic funding protocol for projects and

contributors with multiple funders, it has become much more than that. It is now a

programmable and dynamic token engine that can be used in a wide variety of use cases,
from primary issuance markets over dynamic staking mechanisms to fully-fledged protocols.

A core focus of the Inverter Protocol is to enable the programmable and dynamic issuance

and distribution of tokens through Primary Issuance Markets (PIMs). PIMs employ algorithms

to dynamically issue tokens based on real-time data and market conditions tailored to meet

specific goals and KPIs relevant to each token's custom use case. By focusing on PIMs, the

Inverter Protocol aims to drive innovation in tokenizing real-world assets and credit products,
unlocking new possibilities for collaborative finance and circular economies.

Inverter Protocol's modular design ensures that each component, from token issuance to

utility management, can be customized independently yet interoperate seamlessly. The

protocol offers a library of ready-made, upgradable, and interoperable token mechanisms,

Page of 4 33

Inverter Protocol - Technical Specification

DeFi integrations, and an algorithm library for custom pricing algorithms. In addition, our

protocol stack integrates an agent library for verifiable market-making agents and a

customizable no-code admin panel for streamlined tokenization through configuration,
deployment, and operation of token economies.

As the Inverter Protocol continues to evolve, we strive to create a strong and unified

ecosystem for token design with its robust infrastructure and open library, making the

powers of tokenization accessible to a wide range of applications and industries.

Requirements

Inverter Protocol is designed to provide a flexible and extensible way for any project or

protocol to issue and exchange assets between parties programmatically, with a specific

focus on enabling the issuance and distribution of tokens through Primary Issuance Markets

(PIMs). As such, it must meet certain requirements to ensure its effectiveness and usefulness

for the wider open-source and blockchain communities, particularly in token economy-related

use cases. We must clearly define these requirements to create sound technical

specifications for the protocol and smart contracts.

The main goal of the technical specification is to ensure that these high-level requirements

are met, even as the implementation evolves beyond its first version. By doing so, we can

create a foundation that can be extended and adapted to meet the needs of different

projects and use cases without requiring a complete rewrite of the underlying code while

also driving innovation in the realm of collaborative finance and circular economies.

High-Level Requirements

High-level requirements are overarching principles and goals that guide the development of a

system or project. They provide a clear understanding of what the system aims to achieve,
its intended functionality, and the constraints it must operate within. In the context of

Inverter, high- level requirements ensure that the protocol meets certain security,

Page of 5 33

Inverter Protocol - Technical Specification

compatibility, and usability standards, allowing it to be effectively integrated into a broader

range of applications. These requirements are:

● Modular Architecture

○ The overall design strives for modularity by distinctly separating the various steps,
protocols, and actors from the code's foundation. The overall functionality is

divided between a core orchestrator contract and several modules that can be

activated or deactivated based on the specific requirements of the use case.

○ There is a high-level interface for each module that the orchestrator contract can

rely on when communicating with them. On top of that, each module should have a

clear and concise interface that outlines the expected input parameters and

output data, ensuring that each module can be easily understood and tested.

○ Modules follow a standardized format, so external contributors may easily create

their own modules without spending too much time understanding the intricacies of

our protocol.

○ The modular architecture allows for easier code-base maintenance, enabling

developers to fix bugs and update features without overhauling the entire system.

● Governed Module-Library

○ The Inverter Protocol has a module library that lists all the available modules. A

governance mechanism will maintain the library, allowing users to add, remove, or

update modules based on the community's needs and use cases.

○ This process may happen through a combination of on-chain and off-chain

governance mechanisms to balance decentralization and efficiency.

○ The curation of the module library prioritizes security and diligence considerations,
as the integrity and safety of the system depend on a safe and well-maintained

library. Any changes or additions to the module library undergo external audits.

○ In addition to auditing, we have implemented fallback mechanisms to handle

potential issues such as locked funds. Currently, we utilize an emergency stop

mechanism that, when activated, allows us to deploy a sunset version of the

affected contract. This sunset version operates in a rescue mode, allowing users

to withdraw their deposits and funds, thus avoiding negative impacts. We are

actively developing a more sophisticated, automated fallback mechanism to further

enhance the security and reliability of our protocol.

● Interoperability and Compatibility

○ The Inverter Protocol prioritizes interoperability and compatibility with existing DeFi

protocols and infrastructure to maximize its potential for driving adoption and

innovation across various applications.

Page of 6 33

Inverter Protocol - Technical Specification

○ The modular architecture and standardized interfaces enable seamless integration

with other protocols, allowing for the creation of complex, multi-protocol

workflows and applications.

○ The protocol adheres to industry standards and best practices to ensure

compatibility with wallets, exchanges, and other ecosystem tools, reducing friction

for users and developers.

● Token Flow Management

○ The Inverter Protocol is designed to enable seamless and secure token flows

between various contracts and parties, providing a flexible foundation for a wide

range of token-based use cases and applications.

○ Inverter Protocol's token flow management and coordination capabilities serve as a

foundation for building advanced token economies and token-based applications,
including PIMs and other dynamic issuance mechanisms, token-based governance

systems, and other innovative token models.

Architecture

In this section, we describe the various smart contracts and their functionalities. Together

with the general architecture and main interfaces, we also present the structure designed to

accommodate future extensions of the overall architecture.

Overview

The goal of developing the Inverter Protocol is to create a programmable and versatile

method for projects or protocols to design and operate token economies in a flexible and

extensible manner. Traditionally, a central group of trusted peers designs and deploys a fixed

economic design in a top-down manner. However, this approach has fundamental limitations

when scaling such a system to living economies, which need to adapt and grow beyond this

core group while maintaining security and flexibility.

Instead, with the Inverter Protocol, we focus on creating a system that tracks relationships

and permissions among various stakeholders who may not be part of a tightly defined group.
We establish clear interaction points for every party or contract without giving complete

control to a single entity. Setting these boundaries allows us to extend trust beyond just one

interaction and cover the entire process.

In a traditional multi-signature wallet, a trusted group of users sets rules to manage a shared

pool of funds (often using an "x-out-of-y" signature approval model). Once the owners agree,
the transfer of funds is carried out.

Page of 7 33

Inverter Protocol - Technical Specification

However, this method reaches its limits when implementing more complex flows involving

multiple parties and interactions. To address this, we split the system into different parts,
which are set up together and linked through a common orchestrator contract.

The Inverter Protocol's modular architecture enables dynamic token issuance and distribution

paradigms, such as the Primary Issuance Market (PIM) model. The Funding Manager

module is crucial in this process, allowing users to deposit funds while enforcing specific

deposit rules and issuing tokens in return. With a PIM, this process takes the form of buying

and selling the issued token, with the price and supply determined by the underlying

algorithms and parameters of the chosen token issuance model.

The issued tokens and the collateral can then be managed by Logic Modules, which

perform specific tasks and enforce custom economic designs. They are governed by a group

of addresses (usually the users who set up the system), with their control being defined and

governed by an Authorizer module, handling the system’s rules and the distribution of

rights. When tokens are intended to leave the system, they are handled via a Payment

Processor, where direct control is even more restricted. This modular approach allows for

the creation of complex token economies that can scale and adapt to the needs of living

economies while maintaining security and flexibility.

Page of 8 33

Inverter Protocol - Technical Specification

Components

Inverter’s software architecture comprises a core Orchestrator contract with modules

organized around it. These modules are defined within module types, defining certain

fundamental functionalities of each workflow (i.e., a Funding Manager, Authorizer, and

Payment Processor) and a broader category of Logic Modules, which covers any module

adding functionality to a workflow.

The Core Orchestrator Contract

The core orchestrator contract maps out and organizes all enabled modules. Besides these

functionalities, it also stores relevant metadata and, crucially, links to the modules that are

responsible for the core functions of the system:

● Management of Funds

● Authorization

● Processing of Payments

● Logic Modules

Page of 9 33

Inverter Protocol - Technical Specification

Modules responsible for these functionalities must implement specific interfaces on which the

system can rely.

Module Types and Interfaces

The modules used within the Inverter Protocol implement the specific business logic a user

desires to apply to their contract. As we strive to set the foundation for an open and

thriving marketplace of modules, we define specific types of modules and interfaces with

which the orchestrator and other modules may interact. This way, someone wanting to

contribute to the Inverter Protocol by creating a module (e.g., to integrate their own protocol

or to provide a new feature) only has to ensure that the interface requirements are met.

The Authorizer

This module defines and enforces the system's permission structure. It specifies the distinct

roles and permitted actions for each stakeholder. Stakeholders may be users or other

modules.

The authorization system itself is based on the notion of global and module roles. While

global roles (like the overall workflow owner) possess certain rights within all Modules and

the Orchestrator itself, a module role limits the power to a specific module’s functionality.

Each Authorizer implements the IAuthorizer interface, which defines one main function:

● hasRole(role, address): Returns whether a specific address possesses a specific

role and is thus authorized to execute the action.

Building upon a two-tiered role-based system provides the most flexibility by having

overarching and localized authorization levels. Additionally, the behavior of the authorization

layer can be easily altered via extension modules, as the role itself just needs to be owned

by an address - and this address can also be a contract. Consider the following example:

If the goal is to have a workflow based on voting on every action within the system, an

extension can be enabled by adding it as a module to the workflow. This module then

becomes the (sole) owner of each role. Now, each authorized call to any other module

is routed through it. Whenever a call to another module needs to happen, a vote must

be held within that extension module. Different implementations of these extensions can

then define different rules on the vote itself or the handling of the voters.

The Funding Manager

This module holds the funds of each workflow and manages user deposits and withdrawals.
In addition to the basic functionality, the Funding Manager module ultimately takes the role of

Page of 10 33

Inverter Protocol - Technical Specification

a Primary Issuance Market (PIM), enabling dynamic token issuance and redemption based on

predefined algorithms and funding flows. In general, this type of module offers four types of

interactions:

● Deposit: Users may deposit a specified amount of funds, which can be used to mint

new tokens in the case of a PIM.

● Withdraw: Users may withdraw previously deposited funds or redeem their tokens

for the underlying assets in the case of a PIM.

● Spend: Spends funds deposited inside the FundingManager and proportionally

reduces the amount depositors can withdraw. This functionality is only available for

other modules, not for end-users.

While users are making use of the deposit and withdraw functionality, the other modules

within a workflow interact with the spend functionality. Therefore, for use within other

modules, each Funding Manager implements the IFundingManager interface, comprised of the

following functionality:

● transferToken(module, amount): Transfers the token held within the funding

manager to a different module.

The Payment Processor

This module receives and processes payment orders from other modules. It acts as a funnel

through which all the value outflows of the system can be managed. Ultimately, it implements

the individual distribution policy of the workflows’ token economy, handling the monetary

f lows that are taking place . It implements the fol lowing functions within the

IPaymentProcessor interface:

● processPayments(module): Fetches the payment orders of a module and

processes them accordingly.

● cancelRunningPayments(module): Fetches the payment orders of a module and

signals the cancellation of currently active orders. It does not make assumptions

about internal bookkeeping or the return of unpaid funds.

The PaymentProcessor is working based on so-called PaymentOrders. Each logic module

within the Inverter Protocol can (based on its own logic) create a PaymentOrder, outlining

which payments will be made and under which conditions. An example payment order the

processor receives includes:

● Recipient: The beneficiary of the order.

● Token: The payment token used for the order.

Page of 11 33

Inverter Protocol - Technical Specification

● Amount: The amount of the payment.

● Timing: The timing details of the payment order, including:

○ Start: The execution date of the payment.

○ Cliff (optional): If used, the cliff of the vested payment.

○ End (optional): If used, the end of the vested payment.

Given the IPaymentProcessor interface and the base functionality of a module, including its

ability to create Payment Orders, multiple module variants can be created, implementing

different approaches to asset transfers. While a straightforward implementation would just

unlock a certain number of tokens once the payment terms are reached (e.g., a specific

date has been reached or a milestone has been completed), a more complex version of this

module can use streaming protocols or other solutions, leveraging the cliff and end dates

within the payment order. It generally enables value flows in multiple directions, e.g., back to

the funders or other stakeholders.

Logic Modules

This category includes the remaining modules in the system. They implement the individual

utility policies of the workflows’ token economy, defining the conditions under which certain

token flows occur. Ultimately, they implement the specific business logic a developer may

wish to apply to their contract, such as requesting funds from the Funding Manager, creating

payment orders, or performing any other tasks they are designed to do. There are no

imposed limits on what a module can do; we just need to ensure that the communication

between a specific module and the orchestrator contract, as well as the other modules

within a workflow, follows a predefined schema and interface.

An example of a module would be the KPI Rewarder. This module enables the creation and

management of Key Performance Indicator (KPI) based reward programs for staking. Owners

can define KPIs, which are a set of tranches with rewards assigned. An external asserter

can trigger the posting of an assertion to the UMA Optimistic Oracle, specifying the value to

be asserted and the KPI to use for the reward distribution. The workflow utilizing the KPI

Rewarder collects funds via a FundingManager, which are used to reward the stakers. Once

the assertion resolves, the UMA Oracle triggers a callback function, which calculates the

final reward value and distributes it to the stakers via the selected PaymentProcessor.

Creating New Modules

The Web3 space is constantly evolving and redefining itself, including the Inverter Protocol.
We aim to allow the Inverter community to easily integrate new functionalities and existing

Page of 12 33

https://github.com/InverterNetwork/contracts/blob/main/src/modules/logicModule/LM_PC_KPIRewarder_v1.sol

Inverter Protocol - Technical Specification

technologies as modules. Because of Inverter’s modular architecture and interface guidelines,
creating a new module should be simple, non-destructive, and non-intrusive.

Let’s consider the following example to outline the flexibility of adding new modules:

Example Case: Earning yield on idle funds

● Builders want to generate yield by depositing a portion of the idle reserve of their

token economy in their workflow contract into Morpho.

● A new module is created: The Morpho Funding Module, which adheres to the

IFundingManager interface: 	

○ Whenever someone deposits funds, bringing the reserve above a certain

ratio, they automatically deposit these to Morpho.

○ Whenever funds are to be paid out, withdraw them from Morpho and send

them to the user.

○ Add any generated yield to the funding pool.

The internal design can be as simple as a standard Funding Manager or implement more

complex logic: from the perspective of the rest of the system, it doesn't matter.

● The module is deployed and added to the Inverter Module Factory.

● Workflows may opt to make use of this module from now on.

The Module Library

Our approach to developing our protocol focuses on creating a user-friendly and specialized

library of available modules. To achieve this, we will enable an on-chain library of whitelisted

modules, which can be deployed from our workflow factory. This library consists of audited

and reliable modules, ensuring the highest level of trust and safety for our users.

Currently, the Module Registry is governed by a multisig comprised of members of the

Inverter Network team and well-known community members to maintain a high-quality control

standard. As the protocol evolves, we will implement an on-chain governance process for a

decentralized decision-making system. This transition will empower the community to play a

more active role in determining which modules are included in the library while still upholding

the system's integrity.

To further enhance the user experience, we will publish common patterns of module

configurations designed to address a wide range of use cases. With token economy

templates, we will simplify the process for users to quickly access and benefit from the

platform's features tailored to their unique requirements.

Page of 13 33

https://morpho.org/

Inverter Protocol - Technical Specification

Deployment Structure/Versioning

Each user should be able to deploy their own individual workflow contracts as cheaply as

possible and utilize any of the pre-deployed modules in Inverter’s Module Library.

Our goal in creating the Inverter Protocol was to allow for a deployment mechanism that

requires module contracts to be deployed only once, making their contract logic available to

any further deployed contracts. Additionally, we aimed to significantly simplify the

maintenance of workflows and the overall system, enabling Inverter Protocol maintainers to

quickly deploy fixes to malfunctioning modules by updating the module implementation.
Subsequently, any contract utilizing the updated module will automatically employ the

corrected and up-to-date logic.

Our Proxy Pattern

We leverage the beacon proxy pattern for all of our contracts. The Beacon pattern stores

the address of the implementation contract in a separate “beacon” contract. The address of

the beacon is stored in the proxy contract.

With other types of proxies, when the implementation contract is upgraded, all of the

proxies need to be updated. However, with the Beacon proxy, only the beacon contract

itself needs to be updated. If a module ever requires an update or bug fix, then only one

instance of the module needs to be updated rather than deploying an updated module for

each orchestrator contract.

The appropriate multisig can set both the beacon address on the proxy and the

implementation contract address on the beacon. This allows for many powerful combinations

when dealing with large quantities of proxy contracts that need to be grouped in different

ways and is also appropriate for situations that involve large amounts of proxy contracts

based on multiple implementation contracts.

It is important to note that we employ extensive security measures to limit our own power

regarding the administration of the overall beacon proxy system. A timelock mechanism, as

well as a multisig composed of important community members (and not just the maintainers of

the Inverter Protocol), ensures that there won’t be any unwanted, sudden changes to a

module's functionality.

Page of 14 33

Inverter Protocol - Technical Specification

Orchestrator contracts using the logic of multiple module major versions via their proxies

Independent Update Mechanism

We understand that upgradable contracts, especially when the mechanism to control the

upgrades themselves is not controlled by the users themselves, can raise concerns for some

individuals. To address this, we have established a clear process outlining when and how

upgrades can occur, as well as implemented mechanisms to limit our own power, such as a

timelock that can only be bypassed if a multisig controlled by our team and community

members allows it. The goal of the Inverter Protocol is to be a protocol for everyone,
catering to a wide range of users with varying needs and preferences. To accommodate

this, we allow our users to opt out of the automatic upgrade system by allowing them to use

a regular proxy pattern during deployment. This empowers workflow owners to decide

whether a specific upgrade we have deployed should be applied to their workflow or if they

prefer to maintain the previous version. This flexibility ensures that users have control over

Page of 15 33

Inverter Protocol - Technical Specification

the upgrades they adopt while still benefiting from the advancements and improvements

made to the protocol. For more information about this mechanism and our other security

measures, please refer to our Security Guidelines.

Versioning & Upgrades

There are generally two methods for updating a smart contract: a new deployment or an

upgrade to the existing one. Our protocol versioning system is based on version 2.0.0 of the

Semantic Versioning specification. Within our protocol, we define our versioning system

based on major, minor, and patch, which are defined as follows.

● Patch: A change to the contract that introduces (a) non-breaking changes (such as

minor changes to its logic or modifications to the NatSpec documentation) and (b)
doesn’t modify its functional interface. Full backward compatibility.

● Minor: A change to the contract that introduces (a) non-breaking changes and (b)
modifies the functional interface while ensuring backward compatibility. The old

interface still works, while the updated one unlocks added functionality.

● Major: A change to the contract that introduces (a) breaking changes and (b)
modifies its functional interface, breaking backward compatibility.

Each time a non-breaking update to a module is done, its patch version increments if the

interface remains the same. If a function was added or changed, thus modifying the

interface while ensuring backward compatibility, the minor version increments, and the patch

version resets to zero. Whenever a breaking update is deployed, its major version

increments, and both minor and patch versions are reset to zero. The “old” major version of

the corresponding module will still be available unless it is not safe anymore (see “Sunsetting

Upgrade”). This way, users and developers are always aware of the modules' current state.

1 . 0 . 0

Major
Version

Minor
Version

Patch
Version

Page of 16 33

https://docs.google.com/document/d/1CZgM9OEuibNrimbNeActve5n9ro3Ydu03OfSnZfRo_s
https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0.html

Inverter Protocol - Technical Specification

Within our Factory, we offer the user to choose between the latest major version of each

module. If a certain module has been developed for a longer time, with its version being at

1.8.2 for example, and a completely new version is released (as 2.0.0 for example), the user

may choose to either create their workflow with 1.8.2 or 2.0.0 (with the latter being the

default). Users may not revert back to earlier minor versions or patch versions.

It is important to keep in mind that this system still allows us to revert to earlier, known-safe

versions of the protocol if any issues are discovered in a new upgrade. This capability adds

an extra layer of security and stability to our protocol, ensuring that we can quickly respond

to any unexpected problems by reverting to a stable state.

Patch and Minor Version Upgrades

During a non-breaking upgrade, the major version does not change, while the patch or minor

version number is generally increased by one, depending on whether the interface was

Page of 17 33

Inverter Protocol - Technical Specification

changed or not. For example, a minor module upgrade with version 1.3.2 would change its

version number to 1.4.0. In this case, the contract is automatically updated for everyone

using the beacon structure.

To allow for changes to the contracts' storage, we use the “gaps” system, where an

unsigned integer array of a specific length (usually 50) is added as the last element of the

storage layout of each contract. Whenever a variable is added to a contract later, its

storage space is deducted from this array’s length. To guarantee that a non-major version

upgrade does not introduce unintended behaviors to the live system, we are using

established tools to verify that the storage layout of the upgraded contract does not collide

with the existing layout and that the gaps have been used correctly.

After developing a patch or minor upgrade, we extensively test the contract and upgrade

mechanism on a public testnet. This allows us to test the upgrade in a controlled environment

and make necessary adjustments before deploying it on the live networks.

Prior to the deployment and the actual upgrade on the live networks, a public announcement

outlining the changes is made, including a link to the implementation of the deployed contract.
This allows our users to familiarize themselves with the upgrade and provide feedback. At

the same time, an external audit of the proposed changes will be conducted, ensuring that

we did not introduce any new issues but also - if the upgrade occurs because of an issue

that needs fixing - fully understand the original issue and completely resolve it with the

planned upgrade. Afterward, the upgrade process, including the timelock mechanism, is

initiated on-chain. During this waiting period, the Inverter Protocol users can verify the

changes and provide feedback.

If the community provides negative feedback or has otherwise valid concerns, the upgrade

process can be stopped, and the cycle restarted to ensure that we only implement

upgrades beneficial to our users.

Once the designated duration of the timelock has passed and the feedback has been

positive, the upgrade is finalized on-chain, as the beacon’s implementation address is

updated and pointing to the newer module.

Major Version Upgrade

If a breaking update occurs, the major version increments by one while the patch version and

minor version are reset to zero. For example, an update from version 1.3.2 will change to

2.0.0 if a major version upgrade takes place. In this case, the modules used within workflows

are not automatically updated using the beacon structure. Instead, a new module is

created and registered in the module factory, which users may add to their workflow from

now on.

Page of 18 33

Inverter Protocol - Technical Specification

After the development process, each new module version is deployed on a public testnet

and enters the beta phase. During this time, the module is tested in a controlled environment,
and necessary adjustments can be made safely before deploying it on live networks. At the

same time, an external audit of the new module version will be conducted.

Once the beta phase has been completed successfully, the module will be deployed on the

live networks and subsequently registered within the module factory.

Afterward, a public announcement will outline the changes within this new version, including a

link to the implementation of the deployed contract. This will allow our users to familiarize

themselves with the upgrade and provide feedback.

Sunsetting Upgrade

In the rare occurrence that a bug is discovered that can not be fixed via a patch or minor

upgrade, we make use of a process that we call a “sunsetting upgrade”. If the resolution of

the underlying bug can not be done without incurring breaking changes to the functional

interface of the contract, upgrading the contract on-chain would lead to severe issues within

the applications leveraging its interface and functionalities, which we do not have full control

over and want to prevent at all costs.

To mitigate this and to adhere to our versioning system, we adhere to the following process:

1) The identified vulnerability within a contract is assessed in terms of the changes that

are required to resolve it.

2) If it is found that the fix will introduce breaking changes, we will assess whether

there are funds within that contract that require rescuing.

a) If funds are within the contract, we create a light version of the contract that

allows the respective entities that own the funds to withdraw them and blocks

any other functionality of the original contract (rescue version).

 Example: In the case of a staking contract, this would allow each user that has

staked funds to withdraw these funds but not do anything else.

b) If there are no funds within the contract, we only deploy an implementation of

the contract that blocks every functionality within it to prevent potential abuse.

3) The patch and minor version number of this upgrade from step (2) will be set to 99,
i.e., a contract with version 1.4.2 will then become version 1.99.99, indicating that a

sunsetting upgrade took place.

Page of 19 33

Inverter Protocol - Technical Specification

4) After the contract's underlying vulnerability has been fixed, we deploy it as a new

contract under version 2.0.0 via a major upgrade. From that point on, users may use

the contract in their workflows.

The rest of this upgrading process follows the procedures outlined for any major upgrade.
The only difference is that public announcements will describe every step and clearly

educate affected users on what steps they have to take to recover their funds.

Closing Remarks

As developers, we understand the importance of compatibility and interoperability when

building reliable and efficient software solutions. The module library is designed to foster

these qualities, but we must also acknowledge that not all integrations will be seamless.
While some contracts and protocols, such as the library, can be integrated with little effort

due to their natural compatibility, it is essential to note that work will be required to

implement, maintain, and foster the library with integrations across the broader ecosystem.

The Inverter Protocol aims to provide the ground on which to build a diverse range of

applications and economies, from tokenization verticals as base-layer blockchains and

protocol tokens to community currencies, from IP-NFTs and creative work to real-world

assets and tokenized invoice-based SME receivables, from micro-credit insurance pools to

on-chain policy engines. While the library is a solid foundation for building more interoperable

solutions, it cannot guarantee compatibility with every protocol. This is an essential

constraint when working with the library, but we remain committed to providing developers

with the resources they need to create groundbreaking solutions.

We can overcome challenges by working together and building a strong and unified

ecosystem, such as collaborating on compatible interfaces that account for the security and

functional considerations of multiple protocols. Another critical element to consider when

working with the library is the reliance on the community. We recognize the importance of

fostering a strong community around the library, and we are committed to working with

developers, users, and other stakeholders to ensure that the library is well-supported and

continues to grow over time. Specific incentive mechanisms and the game theory behind the

protocol will only succeed with an active community to support the library.

As the tools we design shape us in return, tokenization has the potential to embed dynamic

instruments of economic policy and incentive design into assets that will become an active

force in the economies people choose to live in. We can realize this future only through

positive-sum collaboration. The Inverter Protocol strives to create a strong and unified

ecosystem for token design with its robust infrastructure and open library to make the

powers of tokenization accessible. Mechanism designers and developers can turn their token

mechanisms into reusable and composable building blocks through Inverter. For Web3

Page of 20 33

Inverter Protocol - Technical Specification

protocols that are innovating towards new primitives of financial cooperation, our protocol

can act as a connective layer to facilitate an interoperability standard for projects to

seamlessly integrate novel web3 technologies in accordance with their unique needs. Design

agencies, researchers, and data scientists can build modeling & simulation tooling into

Inverter's open-sourced SDK to allow people to make sense of the powers and capabilities

of the tools they have access to. Thus, we can empower builders to dare to innovate and

experiment across the frontiers of tokenization applications for meaningful purposes by

providing an open design space relieved from the overbearing costs and expertise.

Page of 21 33

Inverter Protocol - Technical Specification

Conclusion

The Inverter Protocol represents a significant advancement in modular

token programmability and asset flow management within the blockchain

ecosystem. At its core, the Inverter Protocol's modular architecture,
centered around a versatile orchestrator contract, offers unprecedented

flexibility and extensibility. This design, complemented by a governed

module library of audited components, ensures both security and

adaptability, fostering an ecosystem of reliable building blocks for diverse

tokenization use cases.

The protocol's sophisticated deployment and versioning system, utilizing

the beacon proxy pattern, enables efficient upgrades and gas

optimization. This approach, coupled with a nuanced versioning strategy

ensures smooth transitions and maintains backward compatibility.
Security remains paramount, with features such as timelocked upgrades,
community multisig controls, and rollback mechanisms providing robust

safeguards, while still offering users the option to opt out of automatic

upgrades for additional control.

The Inverter Protocol’s architecture is inherently built around dynamic

token issuance and distribution paradigms, including Primary Issuance

Markets (PIMs), opening new avenues for innovative token economics.
The protocol's emphasis on interoperability allows for seamless

integration with existing DeFi protocols and blockchain infrastructure,
while its focus on gas efficiency optimizes costs for users.

By providing a foundation for creating tailored token ecosystems, as

demonstrated in the example workflows, the Inverter Protocol addresses

critical gaps in the current blockchain landscape. It empowers

developers, projects, and communities to create sophisticated token-
based applications, breaking down traditional barriers of complexity and

cost. As the blockchain space continues to evolve, the Inverter Protocol

is poised to play a pivotal role in shaping the future of tokenization,
driving innovation in collaborative finance, circular economies, and beyond.
Its true potential will be realized through the creativity and collaboration

of the wider blockchain community, paving the way for novel token

economies and applications that push the boundaries of decentralized

systems.

Page of 22 33

Inverter Protocol - Technical Specification

We extend our heartfelt gratitude to Omer Demirel, Mehmet Tanrikulu, Daniel

Gretzke, Eric Siu, John Shutt and Patrick Rawson for their invaluable

feedback and insightful reviews. Their expertise and dedication have been

instrumental in refining and enhancing this technical specification.

Page of 23 33

Inverter Protocol - Technical Specification

Appendix: Low-Level Requirements

The Low-Level Requirements of the Inverter Protocol define the specific technical

functionalities and constraints that form the foundation of the system. These requirements

outline important architectural decisions, security measures, and efficiency considerations

that drive the protocol's implementation. While the High-Level Requirements provide a broad

vision, these Low-Level Requirements offer concrete guidelines for our development. They

ensure that the Inverter Protocol maintains its modular, secure, and efficient nature while

providing flexibility for future expansions and improvements.

System Architecture and Security

● Each workflow is deployed as a separate smart contract instance, isolating funds and

logic. This ensures that a vulnerability in one module doesn't affect others, enhancing

overall system security.

● Modules must implement specific interfaces (IAuthorizer, IFundingManager,
IPaymentProcessor) to ensure compatibility with the Orchestrator and other modules.
This standardization allows for seamless integration of new modules and

interoperability within the system.

● Workflows can be paused at the module level or entirely in case of emergencies. This

granular control allows for targeted risk management without disrupting the entire

system unnecessarily.

Upgrades and Versioning

● The system offers users a choice in upgrade mechanisms: they can opt for the

beacon proxy structure, allowing the Inverter team to manage upgrades, or choose a

transparent proxy for full control over their upgrades. This flexibility caters to different

security preferences and use cases.

● Module updates follow semantic versioning (major.minor.patch), with different

processes for each type of update. Patch and minor updates can be applied

automatically (if the user chose the beacon structure), while major updates are

treated as entirely new modules. Users can choose to adopt these new major

versions in their workflows, but their existing modules remain unchanged unless they

actively choose to upgrade.

● The Module Library is governed on-chain, with a rigorous process for adding,
removing, or updating modules. This ensures that only thoroughly vetted and secure

modules are available for use in the system.

Page of 24 33

Inverter Protocol - Technical Specification

● New modules can be created by adhering to specified interfaces and undergoing

security audits. This open architecture allows for continuous innovation while

maintaining system integrity.

Gas Efficiency

● Gas efficiency is a key focus in smart contract design and implementation. Best

practices such as minimizing storage usage, reducing contract interactions, and utilizing

proxies for deployment are employed. Additionally, advanced Solidity features like the

--via-ir pipeline are used to further optimize gas usage, ensuring cost-effective

operation of the protocol.

Page of 25 33

Inverter Protocol - Technical Specification

Appendix: Example Modules

Authorizer Modules

Role-based Authorizer

 Type: Authorizer Module

The Role-based Authorizer module provides a robust access control mechanism for managing

roles and permissions across different modules within the Inverter Protocol, ensuring secure

and control led access to crit ical functional it ies. It is based on OpenZeppelin ’s

AccessControlEnumerable, extending its functionality to offer fine-grained access control

through role-based permissions.

Key features and functionalities:

● Implements the general Authorizer interface, which defines the core functions for

managing roles and permissions.

● Allows modules to grant and revoke roles for specific addresses or multiple addresses

in batches.

● Provides functions for the workflow admin to grant and revoke global roles that apply

to all modules.

● Generates unique role IDs for each module by combining the module address and role

identifier, ensuring role separation between modules.

Token-gated Authorizer

 Type: Authorizer Module

The Token-gated Role Authorizer module extends the functionality of the Role-based

Authorizer by introducing token-based access control. It enables roles to be conditionally

assigned based on token ownership, allowing for dynamic permissions tied to specific token

holdings.

Key features and functionalities:

● Builds on the Role-based Authorizer by integrating token-based access checks before

role assignment.

● Supports both ERC20 and ERC721 tokens as qualifiers for role eligibility.

● Allows modules to set token gating for specific roles and define token ownership

thresholds.

● Provides functions to grant token roles and set token thresholds for roles.

Page of 26 33

Inverter Protocol - Technical Specification

● Overrides the hasRole function to check for token ownership when a role is token-
gated.

Voting-Roles Authorizer Extension

 Type: Logic Module

The Voting-Roles Authorizer module is an extension of the Role-based Authorizer that

facilitates voting and motion management within the Inverter Protocol. It allows designated

voters to participate in governance through proposals, voting, and decision execution.

Key features and functionalities:

● Works like a logic module, extending the functionality of the Role-based Authorizer.

● Supports setting thresholds for decision-making and managing voter lists.

● Allows voters to create motions, cast votes, and execute actions based on collective

decisions.

● Provides functions for adding and removing voters, setting voting thresholds, and

adjusting voting duration.

Funding Managers

Bancor Redeeming Virtual Supply Funding Manager

 Type: Funding Manager

The Bancor Redeeming Virtual Supply Funding Manager module enables the issuance and

redemption of tokens on a bonding curve using a virtual supply for both the issuance and

the collateral. It integrates Aragon's Bancor Formula to manage the calculations for token

issuance and redemption rates based on specified reserve ratios.

Key features and functionalities:

● Supports buying and selling of tokens in exchange for an issuance token.

● Implements virtual supply adjustments for both the issuance token and the collateral

token.

● Utilizes the Bancor Formula to calculate token issuance and redemption amounts

based on reserve ratios.

● Allows the workflow admin to set virtual supplies and adjust reserve ratios.

● We also offer a version that allows the workflow admin to restrict user interactions to

only the holders of a certain module role (whitelisting).

Page of 27 33

Inverter Protocol - Technical Specification

Deposit Vault

 Type: Funding Manager

The DepositVault Funding Manager module allows users to deposit tokens to fund the

workflow. It implements a simple mechanism for users to contribute funds to the system, and

only allows the workflow admin to withdraw funds (if they have not been spent via the

workflow).

Key features and functionalities:

● Allows users to deposit a specified ERC20 token into the contract.

● Allows the workflow admin to withdraw any unspent funds.

Payment Processors

Simple Payment Processor

 Type: Payment Processor

The Simple Payment Processor module manages ERC20 payment processing for modules

within the Inverter Protocol compliant with the ERC20PaymentClient interface. It handles

payment orders from registered modules, ensuring only eligible modules can initiate payments.

Key features and functionalities:

● Implements the general PaymentProcessor interface to handle payment orders from

registered modules.

● Processes payments by transferring tokens from the payment client to the order

recipients.

● Tracks payments that could not be made to the recipients and allows recipients to

claim these amounts later.

Streaming Payment Processor

 Type: Payment Processor

The Streaming Payment Processor module manages continuous and linear streaming payment

streams within the Inverter Protocol. It allows for multiple concurrent streams per recipient

and provides tools to claim streamed amounts and manage payment schedules dynamically.

Key features and functionalities:

● Supports complex payment interactions, including streaming based on time for multiple

clients and recipients.

● Allows recipients to claim all streams at the same time or claim for specific streams.

Page of 28 33

Inverter Protocol - Technical Specification

● Provides functions to retrieve payment order details, such as start time, cliff duration,
end time, and released amounts.

● Enables the removal of payment orders for specific streams or all payments for a

recipient.

● Handles error scenarios by tracking unclaimable amounts and allowing recipients to

claim them later.

Logic Modules

Bounties Module

 Type: Logic Module

The Bounty Manager Module provides functionality to manage bounties and process claims,
allowing participants to propose, update, and claim bounties securely and transparently

within the Inverter Protocol.

Key features and functionalities:

● Extends the ERC20PaymentClient to integrate payment processing with bounty

management.

● Supports dynamic additions, updates, and locking of bounties by users with the

“bounty issuer” role.

● Allows users with the “claimant” role to create and update claims for bounties,
specifying contributor details and claim amounts.

● Enables users with the “verifier” role to verify claims and process payments to the

respective contributors.

● Provides functions to retrieve information about bounties and claims, such as bounty

and claim details, IDs, and contributor-specific data.

Recurring Payment Manager Module

 Type: Logic Module

The Recurring Payment Manager Module facilitates the creation, management, and execution

of scheduled recurring payments within the Inverter Network, allowing for systematic and

timed financial commitments or subscriptions.

Key features and functionalities:

● Uses epochs to define the period of recurring payments and supports operations

such as adding, removing, and triggering payments based on time cycles.

Page of 29 33

Inverter Protocol - Technical Specification

● Allows the workflow admin to add and remove recurring payments with specified

amounts, start epochs, and recipients.

● Provides functions to retrieve information about recurring payments, such as payment

details, IDs, and epoch-related data.

● Integrates with the ERC20PaymentClient to handle actual payment transactions using

the token type stored in the FundingManager.

Staking Module

 Type: Logic Module

The Staking Module provides a flexible staking mechanism for users to stake tokens and

earn rewards. It extends the ERC20PaymentClient and integrates with the Payment

Processor to enable the distribution of rewards to stakers.

Key features and functionalities:

● Allows users to stake tokens and earn rewards based on the staked amount and

duration.

● Calculates rewards based on a configurable reward rate and the time since the last

update.

● Maintains a total supply of staked tokens and keeps track of individual user balances.

○ Allows the workflow admin to set and update the reward parameters, such as

the reward amount and duration.

KPI-Rewarder Module

 Type: Logic Module

The KPI-Rewarder Module extends the functionality of the Staking Module by introducing a

mechanism for dynamically distributing rewards to stakers based on Key Performance

Indicators (KPIs). It integrates with UMA’s Optimistic Oracles to enable KPI-based reward

distribution within the staking manager.

Key features and functionalities:

● Allows the admin to create KPIs, which are a set of tranches with associated reward

values.

● Supports both continuous and non-continuous reward distribution based on the KPI

configuration.

● Enables external actors with the “asserter” role to trigger the posting of an assertion

to the UMA Oracle, specifying the KPI value and the target KPI for reward distribution.

Page of 30 33

Inverter Protocol - Technical Specification

● Handles the resolution of KPI assertions, calculating and distributing rewards to

stakers accordingly.

Payment Router Module

 Type: Logic Module

The Payment Router Module enables pushing payments directly to the Payment Processor,
allowing for seamless and efficient fund distribution within the Inverter Network. It extends

the ERC20PaymentClient to integrate payment processing functionality.

Key features and functionalities:

● Allows users with the “payment pusher” role to initiate payments by providing

recipient addresses, payment tokens, amounts, and timing parameters (start, cliff,
and end).

● Supports both individual payments through the pushPayment function and batched

payments through the pushPaymentBatched function, enabling efficient processing of

multiple payments in a single transaction.

● Integrates with the Payment Processor to process the payments immediately after

they are added to the payment orders.

● Provides flexibility in specifying payment timing, allowing for immediate payments

(when the start variable is set to “now”) or scheduled payments with specific start,
cliff, and end times.

● Implements access control using the “payment pusher” role to ensure only authorized

users can initiate payments.

Page of 31 33

Inverter Protocol - Technical Specification

Appendix: Example Workflows

Dynamic Token Issuance Workflow

An example workflow

The Dynamic Token Issuance Workflow combines the Bancor Redeeming Virtual Supply

Funding Manager, Streaming Payment Processor, and Token-gated Authorizer

modules to create a powerful and dynamic token issuance system based on the Primary

Issuance Market (PIM) framework. This workflow enables the creation of a new token based

on a bonding curve, allowing for dynamic price discovery and liquidity provision.

The Bancor Redeeming Virtual Supply Funding Manager serves as the core component,
enabling the issuance and redemption of tokens using a virtual supply for both the issuance

and the collateral. The unique parameters of the bonding curve, such as the reserve ratios

and initial supply, can be customized during the workflow initialization to suit the specific

requirements of the token.

The Streaming Payment Processor module facilitates the distribution of tokens to

participants in a continuous and linear manner. This allows for gradual and predictable token

distribution to encourage long-term engagement.

To ensure decentralized governance and decision-making, the Tokengated Authorizer module

is employed. It utilizes the newly issued token as the qualifying token for assigning roles and

permissions. Token holders can participate in governance activities, such as proposing and

voting on changes to the system parameters or managing the allocation of funds.

By leveraging the Dynamic Token Issuance Workflow, projects can create their own tokenized

ecosystems with built-in liquidity, price stability, native yield generation, and community-driven

governance.

KPI-based Rewards and Staking Workflow

An example workflow

The KPI-based Rewards and Staking Workflow is an ideal solution for a project that aims to

reward participants based on the project’s on- or off-chain performance metrics. The

workflow incorporates the Rebasing Funding Manager, Simple Payment Processor,
KPI-Rewarder, and Role-Based Authorizer modules to create a comprehensive system

for funding and reward distribution.

Page of 32 33

Inverter Protocol - Technical Specification

The Rebasing Funding Manager allows the project to manage its funds. It can accept funding

from the project’s treasury or individual users. Users can easily withdraw any unused funds

through the Rebasing Funding Manager token created as part of the workflow.

To incentivize participation and align interests, the KPI-Rewarder module is integrated into the

workflow. Project token holders can stake their tokens and earn additional rewards based

on the performance of the project. Those rewards get calculated by verifying performance

metrics through an external oracle (for example, the UMA Optimistic Oracle), which then

triggers the appropriate reward distribution based on a set of stored KPIs. This mechanism

encourages long-term commitment and active engagement from the community.

The Role-Based Authorizer module ensures that the appropriate roles and permissions are

assigned to participants within the workflow. This allows for secure and controlled access

to critical functions, such as posting assertions, setting KPIs, and managing the project’s

funds.

By combining these modules into a cohesive workflow, a project can effectively leverage the

power of dynamic issuance to incentivize participation and optimize its reward payouts

toward its success.

Page of 33 33

https://uma.xyz/

	Abstract
	Introduction
	Requirements
	High-Level Requirements

	Architecture
	Overview
	Components
	The Core Orchestrator Contract
	Module Types and Interfaces
	The Authorizer
	The Funding Manager
	The Payment Processor
	Logic Modules

	Creating New Modules
	The Module Library

	Deployment Structure/Versioning
	Our Proxy Pattern
	Independent Update Mechanism

	Versioning & Upgrades
	Patch and Minor Version Upgrades
	Major Version Upgrade
	Sunsetting Upgrade

	Closing Remarks
	Conclusion
	Appendix: Low-Level Requirements
	Appendix: Example Modules
	Authorizer Modules
	Role-based Authorizer
	Token-gated Authorizer
	Voting-Roles Authorizer Extension

	Funding Managers
	Bancor Redeeming Virtual Supply Funding Manager
	Deposit Vault

	Payment Processors
	Simple Payment Processor
	Streaming Payment Processor

	Logic Modules
	Bounties Module
	Recurring Payment Manager Module
	Staking Module
	KPI-Rewarder Module
	Payment Router Module

	Appendix: Example Workflows
	Dynamic Token Issuance Workflow
	KPI-based Rewards and Staking Workflow

