mverter
Protocol

Technical Specification

/

N
N

Version 2.0

Inverter Protocol - Technical Specification

Table of Contents

Abstract 3
Introduction 4
Requirements 5
High-Level Requirements 5
Architecture 7
Overview 7
Components 9
Creating New Modules 12
Deployment Structure/Versioning 14
Our Proxy Pattern 14
Versioning & Upgrades 16
Closing Remarks 20
Conclusion 22
Appendix: Low-Level Requirements 24
Appendix: Example Modules 26
Authorizer Modules 26
Funding Managers 27
Payment Processors 28
Logic Modules 29
Appendix: Example Workflows 32
Dynamic Token Issuance \Workflow 32
KPl-based Rewards and Staking Workflow 32

v Page 2 of 33

Inverter Protocol - Technical Specification

Abstract

The Inverter Protocol presents a groundbreaking approach to token
programmability in the blockchain ecosystem. This technical specification
outlines a modular, flexible, and secure framework designed to support a
wide range of tokenization use cases, from decentralized finance to real-
world asset tokenization. At its core, Inverter employs a modular
architecture centered around a core orchestrator contract, enabling
seamless integration of various modules and existing protocols.

Key features include a governed module library, ensuring security and
adaptability, and a sophisticated deployment structure utilizing the
beacon proxy pattern for efficient upgrades and gas optimization. The
protocol's versioning system allows for smooth updates while maintaining
backward compatibility, with built-in mechanism to stop affected
contracts and allow for a safe retrieval of funds.

The architecture of the Inverter Protocol comprises essential modules
such as the Authorizer, Funding Manager, and Payment Processor,
alongside customizable Logic Modules. This structure facilitates the
creation of complex token economies, including Primary Issuance Markets
(PIMs) for dynamic token issuance and distribution.

The specification delves into the Inverter Protocol's commitment to
interoperability and robust security measures, including timelocked
upgrades and community-driven governance. It also presents example
workflows demonstrating the protocol's versatility in creating tailored

token ecosystems.

By providing a comprehensive toolkit for token design and management,
the Inverter Protocol aims to drive innovation in collaborative finance and

circular economies, making advanced tokenization accessible to a broad
range of applications and industries.

Page 3 of 33

Inverter Protocol - Technical Specification

Intfroduction

The blockchain ecosystem lacks a robust token programmabillity layer. Current inflexible
frameworks fail to keep pace with the rapidly evolving landscape of tokenization use cases.
These shortcomings stifle innovation, elevate risks, and create inefficiencies that bottleneck
the transformative potential of token-based systems. Without a flexible, modular foundation,
the promise of tokenization to revolutionize industries - from decentralized finance to real-
world asset tokenization - remains frustratingly out of reach.

Inverter Protocol is a decentralized coordination protocol that enables programmable
issuance and asset flow between parties. The protocol is designed to support any project
or use case that requires hatching a token economy and defining the exchange of resources
between participating entities while ensuring openness, adaptability, and ease of use. The
Inverter Protocol consists of a modular architecture that seamlessly integrates different
modules and existing protocols. This modular approach enables developers to create new
modules that can be added to the protocol, allowing for an ever-expanding range of use
cases and applications.

Inverter Protocol is built on the Ethereum Virtual Machine and leverages the latest standards
and best practices in smart contract development. The protocol uses proxies for deploying
new contracts. This approach slashes deployment costs and enables on-chain upgrades
without requiring users to redeploy their modules, significantly enhancing flexibility and
reducing operational overhead. In addition to its modularity, one of the key benefits of the
Inverter Protocol is its focus on security. The protocol comprises audited and community-
accepted modules that have been tested, audited, and proven to work. Moreover, the
Inverter Protocol follows an open development process, allowing anyone to vet, verify, and
contribute to the codebase, further enhancing the protocol's transparency and reliability.

While Inverter was initialy conceived as a dynamic funding protocol for projects and
contributors with multiple funders, it has become much more than that. It is now a
programmable and dynamic token engine that can be used in a wide variety of use cases,
from primary issuance markets over dynamic staking mechanisms to fully-fledged protocols.

A core focus of the Inverter Protocol is to enable the programmable and dynamic issuance
and distribution of tokens through Primary Issuance Markets (PIMs). PIMs employ algorithms
to dynamically issue tokens based on real-time data and market conditions tailored to meet
specific goals and KPIs relevant to each token's custom use case. By focusing on PIMs, the
Inverter Protocol aims to drive innovation in tokenizing real-world assets and credit products,
unlocking new possibilities for collaborative finance and circular economies.

Inverter Protocol's modular design ensures that each component, from token issuance to
utility management, can be customized independently yet interoperate seamlessly. The
protocol offers a library of ready-made, upgradable, and interoperable token mechanisms,

v Page 4 of 33

Inverter Protocol - Technical Specification

DeFi integrations, and an algorithm library for custom pricing algorithms. In addition, our
protocol stack integrates an agent library for verifiable market-making agents and a
customizable no-code admin panel for streamlined tokenization through configuration,

deployment, and operation of token economies.

As the Inverter Protocol continues to evolve, we strive to create a strong and unified
ecosystem for token design with its robust infrastructure and open library, making the

powers of tokenization accessible to a wide range of applications and industries.

Requirements

Inverter Protocol is designed to provide a flexible and extensible way for any project or
protocol to issue and exchange assets between parties programmatically, with a specific
focus on enabling the issuance and distribution of tokens through Primary Issuance Markets
(PIMs). As such, it must meet certain requirements to ensure its effectiveness and usefulness
for the wider open-source and blockchain communities, particularly in token economy-related
use cases. We must clearly define these requirements to create sound technical
specifications for the protocol and smart contracts.

The main goal of the technical specification is to ensure that these high-level requirements

are met, even as the implementation evolves beyond its first version. By doing so, we can
create a foundation that can be extended and adapted to meet the needs of different
projects and use cases without requiring a complete rewrite of the underlying code while

also driving innovation in the realm of collaborative finance and circular economies.

High-Level Requirements

High-level requirements are overarching principles and goals that guide the development of a
system or project. They provide a clear understanding of what the system aims to achieve,
its intended functionality, and the constraints it must operate within. In the context of

Inverter, high-level requirements ensure that the protocol meets certain security,

v Page 5 of 33

Inverter Protocol - Technical Specification

compatibility, and usability standards, allowing it to be effectively integrated into a broader

range of applications. These requirements are:

e Modular Architecture

o

The overall design strives for modularity by distinctly separating the various steps,

protocols, and actors from the code's foundation. The overall functionality is
divided between a core orchestrator contract and several modules that can be

activated or deactivated based on the specific requirements of the use case.

There is a high-level interface for each module that the orchestrator contract can

rely on when communicating with them. On top of that, each module should have a
clear and concise interface that outlihes the expected input parameters and
output data, ensuring that each module can be easily understood and tested.

Modules follow a standardized format, so external contributors may easily create
their own modules without spending too much time understanding the intricacies of

our protocol.

The modular architecture allows for easier code-base maintenance, enabling
developers to fix bugs and update features without overhauling the entire system.

e Governed Module-Library

o

The Inverter Protocol has a module library that lists all the available modules. A
governance mechanism will maintain the library, allowing users to add, remove, or
update modules based on the community's needs and use cases.

This process may happen through a combination of on-chain and off-chain
governance mechanisms to balance decentralization and efficiency.

The curation of the module library prioritizes security and diligence considerations,
as the integrity and safety of the system depend on a safe and well-maintained
library. Any changes or additions to the module library undergo external audits.

In addition to auditing, we have implemented fallback mechanisms to handle
potential issues such as locked funds. Currently, we utiize an emergency stop
mechanism that, when activated, allows us to deploy a sunset version of the
affected contract. This sunset version operates in a rescue mode, allowing users
to withdraw their deposits and funds, thus avoiding negative impacts. We are
actively developing a more sophisticated, automated falloback mechanism to further
enhance the security and reliability of our protocol.

e Interoperability and Compatibility

o

The Inverter Protocol prioritizes interoperability and compatibility with existing DeFi
protocols and infrastructure to maximize its potential for driving adoption and

innovation across various applications.

Page 6 of 33

Inverter Protocol - Technical Specification

o The modular architecture and standardized interfaces enable seamless integration
with other protocols, allowing for the creation of complex, multi-protocol

workflows and applications.

o The protocol adheres to industry standards and best practices to ensure
compatibility with wallets, exchanges, and other ecosystem tools, reducing friction
for users and developers.

¢ Token Flow Management
o The Inverter Protocol is desighed to enable seamless and secure token flows

between various contracts and parties, providing a flexible foundation for a wide

range of token-based use cases and applications.

o Inverter Protocol's token flow management and coordination capabilities serve as a
foundation for buiding advanced token economies and token-based applications,
including PIMs and other dynamic issuance mechanisms, token-based governance

systems, and other innovative token models.
Architecture

In this section, we describe the various smart contracts and their functionalities. Together
with the general architecture and main interfaces, we also present the structure designed to

accommodate future extensions of the overall architecture.

Overview

The goal of developing the Inverter Protocol is to create a programmable and versatile
method for projects or protocols to design and operate token economies in a flexible and

extensible manner. Traditionally, a central group of trusted peers designs and deploys a fixed
economic design in a top-down manner. However, this approach has fundamental limitations
when scaling such a system to living economies, which need to adapt and grow beyond this
core group while maintaining security and flexibility.

Instead, with the Inverter Protocol, we focus on creating a system that tracks relationships
and permissions among various stakeholders who may not be part of a tightly defined group.
We establish clear interaction points for every party or contract without giving complete
control to a single entity. Setting these boundaries allows us to extend trust beyond just one

interaction and cover the entire process.

In a traditional multi-signature wallet, a trusted group of users sets rules to manage a shared
pool of funds (often using an "x-out-of-y" signature approval model). Once the owners agree,
the transfer of funds is carried out.

v Page 7 of 33

Inverter Protocol - Technical Specification

Access Control

—} Token Flow

Multi-Signature Wallet

NS

However, this method reaches its limits when implementing more complex flows involving

multiple parties and interactions. To address this, we split the system into different parts,
which are set up together and linked through a common orchestrator contract.

The Inverter Protocol's modular architecture enables dynamic token issuance and distribution
paradigms, such as the Primary Issuance Market (PIM) model. The Funding Manager
module is crucial in this process, allowing users to deposit funds while enforcing specific
deposit rules and issuing tokens in return. With a PIM, this process takes the form of buying
and seling the issued token, with the price and supply determined by the underlying
algorithms and parameters of the chosen token issuance model.

The issued tokens and the collateral can then be managed by Logic Modules, which
perform specific tasks and enforce custom economic designs. They are governed by a group
of addresses (usually the users who set up the system), with their control being defined and
governed by an Authorizer module, handling the system’s rules and the distribution of
rights. When tokens are intended to leave the system, they are handled via a Payment

Processor, where direct control is even more restricted. This modular approach allows for
the creation of complex token economies that can scale and adapt to the needs of living
economies while maintaining security and flexibility.

v Page 8 of 33

Inverter Protocol - Technical Specification

—’ Token Flow

Access Control |

AV

© © ©
@9 @ @

|
g g g
09 @ @ © © ©

Orchestrator
Workflow

- g

Components

Inverter's software architecture comprises a core Orchestrator contract with modules
organized around it. These modules are defined within module types, defining certain
fundamental functionalities of each workflow (i.e., a Funding Manager, Authorizer, and
Payment Processor) and a broader category of Logic Modules, which covers any module
adding functionality to a workflow.

The Core Orchestrator Contract

The core orchestrator contract maps out and organizes all enabled modules. Besides these
functionalities, it also stores relevant metadata and, crucially, links to the modules that are
responsible for the core functions of the system:

e Management of Funds

e Authorization

e Processing of Payments
e Logic Modules

v Page 9 of 33

Inverter Protocol - Technical Specification

Modules responsible for these functionalities must implement specific interfaces on which the
system can rely.

Module Types and Interfaces

The modules used within the Inverter Protocol implement the specific business logic a user
desires to apply to their contract. As we strive to set the foundation for an open and
thriving marketplace of modules, we define specific types of modules and interfaces with
which the orchestrator and other modules may interact. This way, someone wanting to
contribute to the Inverter Protocol by creating a module (e.g., to integrate their own protocol

or to provide a new feature) only has to ensure that the interface requirements are met.

The Authorizer

This module defines and enforces the system's permission structure. It specifies the distinct
roles and permitted actions for each stakeholder. Stakeholders may be users or other
modules.

The authorization system itself is based on the notion of global and module roles. While
global roles (like the overall workflow owner) possess certain rights within all Modules and
the Orchestrator itself, a module role limits the power to a specific module’s functionality.

Each Authorizer implements the lAuthorizer interface, which defines one main function:

e hasRole(role, address): Returns whether a specific address possesses a specific
role and is thus authorized to execute the action.

Building upon a two-tiered role-based system provides the most flexibiity by having
overarching and localized authorization levels. Additionally, the behavior of the authorization
layer can be easily altered via extension modules, as the role itself just needs to be owned
by an address - and this address can also be a contract. Consider the following example:

If the goal is to have a workflow based on voting on every action within the system, an
extension can be enabled by adding it as a module to the workflow. This module then
becomes the (sole) owner of each role. Now, each authorized call to any other module
is routed through it. Whenever a call to another module needs to happen, a vote must
be held within that extension module. Different implementations of these extensions can
then define different rules on the vote itself or the handling of the voters.

The Funding Manager

This module holds the funds of each workflow and manages user deposits and withdrawals.
In addition to the basic functionality, the Funding Manager module ultimately takes the role of

74| Page 10 of 33

Inverter Protocol - Technical Specification

a Primary Issuance Market (PIM), enabling dynamic token issuance and redemption based on
predefined algorithms and funding flows. In general, this type of module offers four types of
interactions:

e Deposit: Users may deposit a specified amount of funds, which can be used to mint
new tokens in the case of a PIM.

e Withdraw: Users may withdraw previously deposited funds or redeem their tokens
for the underlying assets in the case of a PIM.

e Spend: Spends funds deposited inside the FundingManager and proportionally
reduces the amount depositors can withdraw. This functionality is only available for
other modules, not for end-users.

While users are making use of the deposit and withdraw functionality, the other modules
within a workflow interact with the spend functionality. Therefore, for use within other
modules, each Funding Manager implements the IFundingManager interface, comprised of the
following functionality:

e transferToken(module, amount): Transfers the token held within the funding
manager to a different module.

The Payment Processor

This module receives and processes payment orders from other modules. It acts as a funnel
through which all the value outflows of the system can be managed. Ultimately, it implements
the individual distribution policy of the workflows’ token economy, handling the monetary
flows that are taking place. It implements the following functions within the
IPaymentProcessor interface:

e processPayments(module). Fetches the payment orders of a module and
processes them accordingly.

e cancelRunningPayments(module): Fetches the payment orders of a module and
signals the cancellation of currently active orders. It does not make assumptions
about internal bookkeeping or the return of unpaid funds.

The PaymentProcessor is working based on so-called PaymentOrders. Each logic module
within the Inverter Protocol can (based on its own logic) create a PaymentOrder, outlining
which payments wil be made and under which conditions. An example payment order the
processor receives includes:

e Recipient: The beneficiary of the order.

e Token: The payment token used for the order.

v Page 11 of 33

Inverter Protocol - Technical Specification

e Amount. The amount of the payment.

e Timing: The timing details of the payment order, including:
o Start: The execution date of the payment.
o CIiff (optional): If used, the cliff of the vested payment.

o End (optional): If used, the end of the vested payment.

Given the IPaymentProcessor interface and the base functionality of a module, including its
ability to create Payment Orders, multiple module variants can be created, implementing
different approaches to asset transfers. While a straightforward implementation would just
unlock a certain number of tokens once the payment terms are reached (e.g., a specific
date has been reached or a milestone has been completed), a more complex version of this
module can use streaming protocols or other solutions, leveraging the cliff and end dates
within the payment order. It generally enables value flows in multiple directions, e.g., back to
the funders or other stakeholders.

Logic Modules

This category includes the remaining modules in the system. They implement the individual
utility policies of the workflows’ token economy, defining the conditions under which certain
token flows occur. Ultimately, they implement the specific business logic a developer may
wish to apply to their contract, such as requesting funds from the Funding Manager, creating
payment orders, or performing any other tasks they are designed to do. There are no
imposed limits on what a module can do; we just need to ensure that the communication
between a specific module and the orchestrator contract, as well as the other modules
within a workflow, follows a predefined schema and interface.

An example of a module would be the KPI Rewarder. This module enables the creation and
management of Key Performance Indicator (KPI) based reward programs for staking. Owners
can define KPIs, which are a set of tranches with rewards assigned. An external asserter
can trigger the posting of an assertion to the UMA Optimistic Oracle, specifying the value to
be asserted and the KPI to use for the reward distribution. The workflow utilizing the KPI
Rewarder collects funds via a FundingManager, which are used to reward the stakers. Once
the assertion resolves, the UMA Oracle triggers a callback function, which calculates the

final reward value and distributes it to the stakers via the selected PaymentProcessor.

Creating New Modules

The Web3 space is constantly evolving and redefining itself, including the Inverter Protocol.
We aim to allow the Inverter community to easily integrate new functionalities and existing

v Page 12 of 33

https://github.com/InverterNetwork/contracts/blob/main/src/modules/logicModule/LM_PC_KPIRewarder_v1.sol

Inverter Protocol - Technical Specification

technologies as modules. Because of Inverter’'s modular architecture and interface guidelines,
creating a new module should be simple, non-destructive, and non-intrusive.

Let’s consider the following example to outline the flexibility of adding nhew modules:

Example Case: Earning yield on idle funds

e Builders want to generate yield by depositing a portion of the idle reserve of their
token economy in their workflow contract into Morpho.

e A new module is created: The Morpho Funding Module, which adheres to the

IFundingManager interface:

o Whenever someone deposits funds, bringing the reserve above a certain

ratio, they automatically deposit these to Morpho.

o Whenever funds are to be paid out, withdraw them from Morpho and send
them to the user.

o Add any generated yield to the funding pool.

The internal design can be as simple as a standard Funding Manager or implement more
complex logic: from the perspective of the rest of the system, it doesn't matter.

e The module is deployed and added to the Inverter Module Factory.

e Workflows may opt to make use of this module from now on.

The Module Library

Our approach to developing our protocol focuses on creating a user-friendly and specialized
library of available modules. To achieve this, we will enable an on-chain library of whitelisted
modules, which can be deployed from our workflow factory. This library consists of audited
and reliable modules, ensuring the highest level of trust and safety for our users.

Currently, the Module Registry is governed by a multisig comprised of members of the
Inverter Network team and well-known community members to maintain a high-quality control
standard. As the protocol evolves, we will implement an on-chain governance process for a

decentralized decision-making system. This transition wil empower the community to play a
more active role in determining which modules are included in the library while still upholding
the system's integrity.

To further enhance the user experience, we wil publish common patterns of module
configurations designed to address a wide range of use cases. With token economy
templates, we wil simplify the process for users to quickly access and benefit from the

platform's features tailored to their unique requirements.

v Page 13 of 33

https://morpho.org/

Inverter Protocol - Technical Specification

Deployment Structure/Versioning

Each user should be able to deploy their own individual workflow contracts as cheaply as
possible and utilize any of the pre-deployed modules in Inverter’s Module Library.

Our goal in creating the Inverter Protocol was to allow for a deployment mechanism that
requires module contracts to be deployed only once, making their contract logic available to
any further deployed contracts. Additionally, we aimed to significantly simplify the
maintenance of workflows and the overall system, enabling Inverter Protocol maintainers to
quickly deploy fixes to malfunctioning modules by updating the module implementation.
Subsequently, any contract utilizing the updated module wil automatically employ the

corrected and up-to-date logic.

Our Proxy Pattern

We leverage the beacon proxy pattern for all of our contracts. The Beacon pattern stores
the address of the implementation contract in a separate “beacon” contract. The address of
the beacon is stored in the proxy contract.

With other types of proxies, when the implementation contract is upgraded, all of the
proxies need to be updated. However, with the Beacon proxy, only the beacon contract

itself needs to be updated. If a module ever requires an update or bug fix, then only one
instance of the module needs to be updated rather than deploying an updated module for
each orchestrator contract.

The appropriate multisig can set both the beacon address on the proxy and the
implementation contract address on the beacon. This allows for many powerful combinations
when dealing with large quantities of proxy contracts that need to be grouped in different
ways and is also appropriate for situations that involve large amounts of proxy contracts

based on multiple implementation contracts.

It is important to note that we employ extensive security measures to limit our own power
regarding the administration of the overall beacon proxy system. A timelock mechanism, as
well as a multisig composed of important community members (and not just the maintainers of
the Inverter Protocol), ensures that there won’t be any unwanted, sudden changes to a
module's functionality.

v Page 14 of 33

Inverter Protocol - Technical Specification

~ Orchestrator
: v1.0.0

Orchestrator Contract Orchestrator Contract

Orchestrator ID #519

Funders: Active Modules: Funders: Active Modules:

0x3b7c...6206 * Governance (v1.0.0)

» Milestone (v1.9.3)

+ Streaming Payout (v2.8.0)

« Authorizer (v1.0.0)

« Milestone (v2.1.1)

« Simple Payout (v1.0.2)

>

o o 4 s
X N Dark Green = Contract: Deployed by the Team é »xy: Deployed by user 1 g 3
_~'Milestone ™. Il Sl ~ Ployedy _-Streaming..
. Module ** —>_ Payout
Toves Deployed by the Team l Blue = Proxy: Deployed by user 2 '~;‘Mv%, ol.ey'
. ‘0’4 .‘.5 < ',/)"‘

o L
w» w

Orchestrator contracts using the logic of multiple module major versions via their proxies
Independent Update Mechanism

We understand that upgradable contracts, especially when the mechanism to control the
upgrades themselves is not controlled by the users themselves, can raise concerns for some
individuals. To address this, we have established a clear process outlining when and how
upgrades can occur, as well as implemented mechanisms to limit our own power, such as a
timelock that can only be bypassed if a multisig controlled by our team and community
members allows it. The goal of the Inverter Protocol is to be a protocol for everyone,
catering to a wide range of users with varying needs and preferences. To accommodate
this, we allow our users to opt out of the automatic upgrade system by allowing them to use

a regular proxy pattern during deployment. This empowers workflow owners to decide
whether a specific upgrade we have deployed should be applied to their workflow or if they
prefer to maintain the previous version. This flexibility ensures that users have control over

v Page 15 of 33

Inverter Protocol - Technical Specification

the upgrades they adopt while stil benefiting from the advancements and improvements
made to the protocol. For more information about this mechanism and our other security
measures, please refer to our Security Guidelines.

Versioning & Upgrades

There are generally two methods for updating a smart contract: a new deployment or an
upgrade to the existing one. Our protocol versioning system is based on version 2.0.0 of the

Semantic \Versioning specification. Within our protocol, we define our versioning system

based on major, minor, and patch, which are defined as follows.

e Patch: A change to the contract that introduces (a) non-breaking changes (such as
minor changes to its logic or modifications to the NatSpec documentation) and (b)

doesn’t modify its functional interface. Full backward compatibility.

e Minor: A change to the contract that introduces (a) non-breaking changes and (b)
modifies the functional interface while ensuring backward compatibility. The old
interface still works, while the updated one unlocks added functionality.

e Major: A change to the contract that introduces (a) breaking changes and (b)
modifies its functional interface, breaking backward compatibility.

Major Minor Patch
Version Version Version

Each time a non-breaking update to a module is done, its patch version increments if the
interface remains the same. If a function was added or changed, thus modifying the
interface while ensuring backward compatibility, the minor version increments, and the patch
version resets to zero. Whenever a breaking update is deployed, its major version
increments, and both minor and patch versions are reset to zero. The “old” major version of
the corresponding module will still be available unless it is nhot safe anymore (see “Sunsetting
Upgrade”). This way, users and developers are always aware of the modules' current state.

v Page 16 of 33

https://docs.google.com/document/d/1CZgM9OEuibNrimbNeActve5n9ro3Ydu03OfSnZfRo_s
https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0.html

Inverter Protocol - Technical Specification

Orchestrator Contract #1
Using version 1.x.x

1

'

T— ’
Oldinactive |_ _ .

versions %

Orchestrator Contract #2

Using version 2.x.x

Orchestrator Contract #3
Using version 3.x.x

New Orchestrator Contract
will use this version

[I We keep the most recent version of each major module.

Within our Factory, we offer the user to choose between the latest major version of each
module. If a certain module has been developed for a longer time, with its version being at
1.8.2 for example, and a completely new version is released (as 2.0.0 for example), the user
may choose to either create their workflow with 1.8.2 or 2.0.0 (with the latter being the
default). Users may not revert back to earlier minor versions or patch versions.

It is important to keep in mind that this system still allows us to revert to earlier, known-safe
versions of the protocol if any issues are discovered in a new upgrade. This capability adds
an extra layer of security and stability to our protocol, ensuring that we can quickly respond
to any unexpected problems by reverting to a stable state.

Patch and Minor Version Upgrades

During a non-breaking upgrade, the major version does not change, while the patch or minor
version number is generally increased by one, depending on whether the interface was

M Page 17 of 33

Inverter Protocol - Technical Specification

changed or not. For example, a minor module upgrade with version 1.3.2 would change its
version number to 1.4.0. In this case, the contract is automatically updated for everyone
using the beacon structure.

To allow for changes to the contracts' storage, we use the “gaps” system, where an
unsigned integer array of a specific length (usually 50) is added as the last element of the
storage layout of each contract. Whenever a variable is added to a contract later, its
storage space is deducted from this array’s length. To guarantee that a non-major version

upgrade does not introduce unintended behaviors to the live system, we are using
established tools to verify that the storage layout of the upgraded contract does not collide
with the existing layout and that the gaps have been used correctly.

After developing a patch or minor upgrade, we extensively test the contract and upgrade
mechanism on a public testnet. This allows us to test the upgrade in a controlled environment
and make necessary adjustments before deploying it on the live networks.

Prior to the deployment and the actual upgrade on the live networks, a public announcement
outlining the changes is made, including a link to the implementation of the deployed contract.
This allows our users to familiarize themselves with the upgrade and provide feedback. At
the same time, an external audit of the proposed changes will be conducted, ensuring that
we did not introduce any new issues but also - if the upgrade occurs because of an issue
that needs fixing - fully understand the original issue and completely resolve it with the
planned upgrade. Afterward, the upgrade process, including the timelock mechanism, is
initiated on-chain. During this waiting period, the Inverter Protocol users can verify the
changes and provide feedback.

If the community provides negative feedback or has otherwise valid concerns, the upgrade
process can be stopped, and the cycle restarted to ensure that we only implement
upgrades beneficial to our users.

Once the designated duration of the timelock has passed and the feedback has been
positive, the upgrade is finalized on-chain, as the beacon’s implementation address is
updated and pointing to the newer module.

Major Version Upgrade

If a breaking update occurs, the major version increments by one while the patch version and
minor version are reset to zero. For example, an update from version 1.3.2 wil change to
2.0.0 if a major version upgrade takes place. In this case, the modules used within workflows
are nhot automatically updated using the beacon structure. Instead, a new module is
created and registered in the module factory, which users may add to their workflow from
now on.

v Page 18 of 33

Inverter Protocol - Technical Specification

After the development process, each new module version is deployed on a public testnet
and enters the beta phase. During this time, the module is tested in a controlled environment,
and necessary adjustments can be made safely before deploying it on live networks. At the
same time, an external audit of the hew module version will be conducted.

Once the beta phase has been completed successfully, the module wil be deployed on the

live networks and subsequently registered within the module factory.

Afterward, a public announcement will outline the changes within this new version, including a
ink to the implementation of the deployed contract. This will allow our users to familiarize
themselves with the upgrade and provide feedback.

Sunsetting Upgrade

In the rare occurrence that a bug is discovered that can not be fixed via a patch or minor
upgrade, we make use of a process that we call a “sunsetting upgrade”. If the resolution of
the underlying bug can not be done without incurring breaking changes to the functional
interface of the contract, upgrading the contract on-chain would lead to severe issues within
the applications leveraging its interface and functionalities, which we do not have full control

over and want to prevent at all costs.

To mitigate this and to adhere to our versioning system, we adhere to the following process:

1) The identified vulnerability within a contract is assessed in terms of the changes that
are required to resolve it.

2) If it is found that the fix wil introduce breaking changes, we wil assess whether

there are funds within that contract that require rescuing.

a) If funds are within the contract, we create a light version of the contract that
allows the respective entities that own the funds to withdraw them and blocks
any other functionality of the original contract (rescue version).

Example: In the case of a staking contract, this would allow each user that has
staked funds to withdraw these funds but not do anything else.

b) If there are no funds within the contract, we only deploy an implementation of
the contract that blocks every functionality within it to prevent potential abuse.

3) The patch and minor version number of this upgrade from step (2) will be set to 99,
i.e., a contract with version 1.4.2 wil then become version 1.99.99, indicating that a

sunsetting upgrade took place.

v Page 19 of 33

Inverter Protocol - Technical Specification

4) After the contract's underlying vulnerability has been fixed, we deploy it as a new
contract under version 2.0.0 via a major upgrade. From that point on, users may use
the contract in their workflows.

The rest of this upgrading process follows the procedures outlined for any major upgrade.
The only difference is that public announcements wil describe every step and clearly
educate affected users on what steps they have to take to recover their funds.

Closing Remarks

As developers, we understand the importance of compatibility and interoperability when
building reliable and efficient software solutions. The module library is designed to foster
these qualities, but we must also acknowledge that not all integrations wil be seamless.
While some contracts and protocols, such as the library, can be integrated with little effort
due to their natural compatibility, it is essential to note that work wil be required to
implement, maintain, and foster the library with integrations across the broader ecosystem.

The Inverter Protocol aims to provide the ground on which to buld a diverse range of
applications and economies, from tokenization verticals as base-layer blockchains and
protocol tokens to community currencies, from IP-NFTs and creative work to real-world
assets and tokenized invoice-based SME receivables, from micro-credit insurance pools to
on-chain policy engines. While the library is a solid foundation for building more interoperable
solutions, it cannot guarantee compatibiity with every protocol. This is an essential
constraint when working with the library, but we remain committed to providing developers

with the resources they need to create groundbreaking solutions.

We can overcome challenges by working together and building a strong and unified
ecosystem, such as collaborating on compatible interfaces that account for the security and
functional considerations of multiple protocols. Another critical element to consider when
working with the library is the reliance on the community. We recognize the importance of
fostering a strong community around the library, and we are committed to working with
developers, users, and other stakeholders to ensure that the library is well-supported and
continues to grow over time. Specific incentive mechanisms and the game theory behind the

protocol will only succeed with an active community to support the library.

As the tools we design shape us in return, tokenization has the potential to embed dynamic
instruments of economic policy and incentive design into assets that wil become an active
force in the economies people choose to live in. We can realize this future only through
positive-sum collaboration. The Inverter Protocol strives to create a strong and unified
ecosystem for token design with its robust infrastructure and open library to make the
powers of tokenization accessible. Mechanism designers and developers can turn their token
mechanisms into reusable and composable building blocks through Inverter. For Web3

74| Page 20 of 33

Inverter Protocol - Technical Specification

protocols that are innovating towards new primitives of financial cooperation, our protocol
can act as a connective layer to faciitate an interoperability standard for projects to
seamlessly integrate novel web3 technologies in accordance with their unigue needs. Design
agencies, researchers, and data scientists can build modeling & simulation tooling into
Inverter's open-sourced SDK to allow people to make sense of the powers and capabilities

of the tools they have access to. Thus, we can empower builders to dare to innovate and
experiment across the frontiers of tokenization applications for meaningful purposes by
providing an open desigh space relieved from the overbearing costs and expertise.

v Page 21 of 33

Inverter Protocol - Technical Specification

Conclusion

The Inverter Protocol represents a sighificant advancement in modular
token programmability and asset flow management within the blockchain

ecosystem. At its core, the Inverter Protocol's modular architecture,
centered around a versatile orchestrator contract, offers unprecedented
flexibility and extensibility. This design, complemented by a governed
module library of audited components, ensures both security and
adaptability, fostering an ecosystem of reliable building blocks for diverse
tokenization use cases.

The protocol's sophisticated deployment and versioning system, utilizing
the beacon proxy pattern, enables efficient upgrades and gas
optimization. This approach, coupled with a nuanced versioning strategy
ensures smooth transitions and maintains backward compatibility.
Security remains paramount, with features such as timelocked upgrades,
community multisig controls, and rollback mechanisms providing robust
safeguards, while still offering users the option to opt out of automatic
upgrades for additional control.

The Inverter Protocol’'s architecture is inherently built around dynamic
token issuance and distribution paradigms, including Primary Issuance
Markets (PIMs), opening new avenues for innovative token economics.
The protocol's emphasis on interoperability allows for seamless
integration with existing DeFi protocols and blockchain infrastructure,
while its focus on gas efficiency optimizes costs for users.

By providing a foundation for creating tailored token ecosystems, as
demonstrated in the example workflows, the Inverter Protocol addresses
critical gaps in the current blockchain landscape. It empowers
developers, projects, and communities to create sophisticated token-
based applications, breaking down traditional barriers of complexity and
cost. As the blockchain space continues to evolve, the Inverter Protocol
is poised to play a pivotal role in shaping the future of tokenization,

driving innovation in collaborative finance, circular economies, and beyond.
Its true potential will be realized through the creativity and collaboration
of the wider blockchain community, paving the way for novel token
economies and applications that push the boundaries of decentralized
systems.

Page 22 of 33

Inverter Protocol - Technical Specification

We extend our heartfelt gratitude to Omer Demirel, Mehmet Tanrikulu, Daniel
Gretzke, Eric Siu, John Shutt and Patrick Rawson for their invaluable
feedback and insightful reviews. Their expertise and dedlication have been
instrumental in refining and enhancing this technical specification.

Page 23 of 33

Inverter Protocol - Technical Specification

Appendix: Low-Level Requirements

The Low-Level Requirements of the Inverter Protocol define the specific technical
functionalities and constraints that form the foundation of the system. These requirements
outline important architectural decisions, security measures, and efficiency considerations
that drive the protocol's implementation. While the High-Level Requirements provide a broad

vision, these Low-Level Requirements offer concrete guidelines for our development. They
ensure that the Inhverter Protocol maintains its modular, secure, and efficient nature while

providing flexibility for future expansions and improvements.
System Architecture and Security

e Each workflow is deployed as a separate smart contract instance, isolating funds and
logic. This ensures that a vulnerability in one module doesn't affect others, enhancing

overall system security.

e Modules must implement specific interfaces (IAuthorizer, IFundingManager,
IPaymentProcessor) to ensure compatibility with the Orchestrator and other modules.
This standardization allows for seamless integration of new modules and
interoperability within the system.

e \Workflows can be paused at the module level or entirely in case of emergencies. This
granular control allows for targeted risk management without disrupting the entire
system unnecessarily.

Upgrades and Versioning

e The system offers users a choice in upgrade mechanisms: they can opt for the
beacon proxy structure, allowing the Inverter team to manage upgrades, or choose a
transparent proxy for full control over their upgrades. This flexibility caters to different

security preferences and use cases.

e Module updates follow semantic versioning (major.minor.patch), with different
processes for each type of update. Patch and minor updates can be applied
automatically (if the user chose the beacon structure), while major updates are
treated as entirely new modules. Users can choose to adopt these hew major
versions in their workflows, but their existing modules remain unchanged unless they

actively choose to upgrade.

e The Module Library is governed on-chain, with a rigorous process for adding,
removing, or updating modules. This ensures that only thoroughly vetted and secure
modules are available for use in the system.

v Page 24 of 33

Inverter Protocol - Technical Specification

e New modules can be created by adhering to specified interfaces and undergoing
security audits. This open architecture allows for continuous innovation while
maintaining system integrity.

Gas Efficiency

e Gas efficiency is a key focus in smart contract design and implementation. Best
practices such as minimizing storage usage, reducing contract interactions, and utilizing
proxies for deployment are employed. Additionally, advanced Solidity features like the
--via-ir pipeline are used to further optimize gas usage, ensuring cost-effective
operation of the protocol.

v Page 25 of 33

Inverter Protocol - Technical Specification

Appendix. Example Modules

Authorizer Modules

Role-based Authorizer

Type: Authorizer Module

The Role-based Authorizer module provides a robust access control mechanism for managing
roles and permissions across different modules within the Inverter Protocol, ensuring secure
and controlled access to critical functionalities. It is based on OpenZeppelin's
AccessControlEnumerable, extending its functionality to offer fine-grained access control

through role-based permissions.

Key features and functionalities:
e Implements the general Authorizer interface, which defines the core functions for
managing roles and permissions.

e Allows modules to grant and revoke roles for specific addresses or multiple addresses
in batches.

e Provides functions for the workflow admin to grant and revoke global roles that apply
to all modules.

e Generates unigue role IDs for each module by combining the module address and role
identifier, ensuring role separation between modules.

Token-gated Authorizer

Type: Authorizer Module

The Token-gated Role Authorizer module extends the functionality of the Role-based
Authorizer by introducing token-based access control. It enables roles to be conditionally
assigned based on token ownership, allowing for dynamic permissions tied to specific token
holdings.

Key features and functionalities:

e Builds on the Role-based Authorizer by integrating token-based access checks before

role assignment.

e Supports both ERC20 and ERC721 tokens as qualifiers for role eligibility.

e Allows modules to set token gating for specific roles and define token ownership
thresholds.

e Provides functions to grant token roles and set token thresholds for roles.

v Page 26 of 33

Inverter Protocol - Technical Specification

e Overrides the hasRole function to check for token ownership when a role is token-
gated.

Voting-Roles Authorizer Extension

Type: Logic Module

The Voting-Roles Authorizer module is an extension of the Role-based Authorizer that
facilitates voting and motion management within the Inverter Protocol. It allows designated
voters to participate in governance through proposals, voting, and decision execution.

Key features and functionalities:
e \Works like a logic module, extending the functionality of the Role-based Authorizer.
e Supports setting thresholds for decision-making and managing voter lists.

e Allows voters to create motions, cast votes, and execute actions based on collective
decisions.

e Provides functions for adding and removing voters, setting voting thresholds, and
adjusting voting duration.

Funding Managers

Bancor Redeeming Virtual Supply Funding Manager

Type: Funding Manager

The Bancor Redeeming Virtual Supply Funding Manager module enables the issuance and
redemption of tokens on a bonding curve using a virtual supply for both the issuance and

the collateral. It integrates Aragon's Bancor Formula to manage the calculations for token

issuance and redemption rates based on specified reserve ratios.

Key features and functionalities:

e Supports buying and selling of tokens in exchange for an issuance token.

e Implements virtual supply adjustments for both the issuance token and the collateral
token.

e Utilizes the Bancor Formula to calculate token issuance and redemption amounts
based on reserve ratios.

e Allows the workflow admin to set virtual supplies and adjust reserve ratios.

e \We also offer a version that allows the workflow admin to restrict user interactions to
only the holders of a certain module role (whitelisting).

v Page 27 of 33

Inverter Protocol - Technical Specification

Deposit Vault

Type: Funding Manager

The DepositVault Funding Manager module allows users to deposit tokens to fund the
workflow. It implements a simple mechanism for users to contribute funds to the system, and

only allows the workflow admin to withdraw funds (if they have not been spent via the

workflow).

Key features and functionalities:
e Allows users to deposit a specified ERC20 token into the contract.

e Allows the workflow admin to withdraw any unspent funds.

Payment Processors

Simple Payment Processor

Type: Payment Processor

The Simple Payment Processor module manages ERC20 payment processing for modules
within the Inverter Protocol compliant with the ERC20PaymentClient interface. It handles
payment orders from registered modules, ensuring only eligible modules can initiate payments.

Key features and functionalities:

e Implements the general PaymentProcessor interface to handle payment orders from
registered modules.

e Processes payments by transferring tokens from the payment client to the order
recipients.

e Tracks payments that could not be made to the recipients and allows recipients to
claim these amounts later.

Streaming Payment Processor

Type: Payment Processor
The Streaming Payment Processor module manages continuous and linear streaming payment

streams within the Inverter Protocol. It allows for multiple concurrent streams per recipient
and provides tools to claim streamed amounts and manage payment schedules dynamically.

Key features and functionalities:

e Supports complex payment interactions, including streaming based on time for multiple

clients and recipients.

e Allows recipients to claim all streams at the same time or claim for specific streams.

v Page 28 of 33

Inverter Protocol - Technical Specification

e Provides functions to retrieve payment order details, such as start time, cliff duration,

end time, and released amounts.

e Enables the removal of payment orders for specific streams or all payments for a
recipient.

e Handles error scenarios by tracking unclaimable amounts and allowing recipients to
claim them later.

Logic Modules

Bounties Module

Type: Logic Module

The Bounty Manager Module provides functionality to manage bounties and process claims,
allowing participants to propose, update, and claim bounties securely and transparently
within the Inverter Protocol.

Key features and functionalities:

e Extends the ERC20PaymentClient to integrate payment processing with bounty
management.

e Supports dynamic additions, updates, and locking of bounties by users with the
“bounty issuer” role.

e Allows users with the “claimant’ role to create and update claims for bounties,

specifying contributor details and claim amounts.

e Enables users with the “verifier” role to verify claims and process payments to the

respective contributors.

e Provides functions to retrieve information about bounties and claims, such as bounty
and claim details, IDs, and contributor-specific data.

Recurring Payment Manager Module

Type: Logic Module

The Recurring Payment Manager Module facilitates the creation, management, and execution
of scheduled recurring payments within the Inverter Network, allowing for systematic and

timed financial commitments or subscriptions.

Key features and functionalities:

e Uses epochs to define the period of recurring payments and supports operations
such as adding, removing, and triggering payments based on time cycles.

v Page 29 of 33

Inverter Protocol - Technical Specification

e Allows the workflow admin to add and remove recurring payments with specified
amounts, start epochs, and recipients.

e Provides functions to retrieve information about recurring payments, such as payment
details, IDs, and epoch-related data.

e Integrates with the ERC20PaymentClient to handle actual payment transactions using
the token type stored in the FundingManager.

Staking Module

Type: Logic Module

The Staking Module provides a flexible staking mechanism for users to stake tokens and
earn rewards. It extends the ERC20PaymentClient and integrates with the Payment
Processor to enable the distribution of rewards to stakers.

Key features and functionalities:

e Allows users to stake tokens and earn rewards based on the staked amount and
duration.

e Calculates rewards based on a configurable reward rate and the time since the last
update.

e Maintains a total supply of staked tokens and keeps track of individual user balances.

o Allows the workflow admin to set and update the reward parameters, such as
the reward amount and duration.

KPI-Rewarder Module

Type: Logic Module

The KPI-Rewarder Module extends the functionality of the Staking Module by introducing a
mechanism for dynamically distriouting rewards to stakers based on Key Performance
Indicators (KPlIs). It integrates with UMA’s Optimistic Oracles to enable KPl-based reward

distribution within the staking manager.

Key features and functionalities:

e Allows the admin to create KPIs, which are a set of tranches with associated reward

values.

e Supports both continuous and non-continuous reward distribution based on the KPI

configuration.

e Enables external actors with the “asserter” role to trigger the posting of an assertion
to the UMA Oracle, specifying the KPI value and the target KPI for reward distribution.

74| Page 30 of 33

Inverter Protocol - Technical Specification

Handles the resolution of KPI assertions, calculating and distributing rewards to
stakers accordingly.

Payment Router Module

Type: Logic Module

The Payment Router Module enables pushing payments directly to the Payment Processor,

allowing for seamless and efficient fund distribution within the Inverter Network. It extends

the ERC20PaymentClient to integrate payment processing functionality.

Key features and functionalities:

Allows users with the “payment pusher” role to initiate payments by providing
recipient addresses, payment tokens, amounts, and timing parameters (start, cliff,
and end).

Supports both individual payments through the pushPayment function and batched
payments through the pushPaymentBatched function, enabling efficient processing of
multiple payments in a single transaction.

Integrates with the Payment Processor to process the payments immediately after
they are added to the payment orders.

Provides flexibility in specifying payment timing, allowing for immediate payments
(when the start variable is set to “now”) or scheduled payments with specific start,
cliff, and end times.

Implements access control using the “payment pusher” role to ensure only authorized
users can initiate payments.

Page 31 of 33

Inverter Protocol - Technical Specification

Appendix: Example Workflows

Dynamic Token Issuance Workflow

An example workflow

The Dynamic Token Issuance Workflow combines the Bancor Redeeming Virtual Supply

Funding Manager, Streaming Payment Processor, and Token-gated Authorizer
modules to create a powerful and dynamic token issuance system based on the Primary
Issuance Market (PIM) framework. This workflow enables the creation of a new token based

on a bonding curve, allowing for dynamic price discovery and liquidity provision.

The Bancor Redeeming Virtual Supply Funding Manager serves as the core component,
enabling the issuance and redemption of tokens using a virtual supply for both the issuance
and the collateral. The unique parameters of the bonding curve, such as the reserve ratios
and initial supply, can be customized during the workflow initialization to suit the specific

requirements of the token.

The Streaming Payment Processor module facilitates the distribution of tokens to
participants in a continuous and linear manner. This allows for gradual and predictable token

distribution to encourage long-term engagement.

To ensure decentralized governance and decision-making, the Tokengated Authorizer module
is employed. It utilizes the newly issued token as the qualifying token for assigning roles and
permissions. Token holders can participate in governance activities, such as proposing and
voting on changes to the system parameters or managing the allocation of funds.

By leveraging the Dynamic Token Issuance Workflow, projects can create their own tokenized
ecosystems with built-in liquidity, price stability, native yield generation, and community-driven

governance.

KPl-based Rewards and Staking Workflow

An example workflow

The KPl-based Rewards and Staking Workflow is an ideal solution for a project that aims to
reward participants based on the project’'s on- or off-chain performance metrics. The
workflow incorporates the Rebasing Funding Manager, Simple Payment Processor,
KPI-Rewarder, and Role-Based Authorizer modules to create a comprehensive system
for funding and reward distribution.

v Page 32 of 33

Inverter Protocol - Technical Specification

The Rebasing Funding Manager allows the project to manage its funds. It can accept funding
from the project’s treasury or individual users. Users can easily withdraw any unused funds
through the Rebasing Funding Manager token created as part of the workflow.

To incentivize participation and align interests, the KPI-Rewarder module is integrated into the
workflow. Project token holders can stake their tokens and earn additional rewards based
on the performance of the project. Those rewards get calculated by verifying performance
metrics through an external oracle (for example, the UMA Optimistic Oracle), which then

triggers the appropriate reward distribution based on a set of stored KPIs. This mechanism
encourages long-term commitment and active engagement from the community.

The Role-Based Authorizer module ensures that the appropriate roles and permissions are
assigned to participants within the workflow. This allows for secure and controlled access
to critical functions, such as posting assertions, setting KPls, and managing the project’s
funds.

By combining these modules into a cohesive workflow, a project can effectively leverage the
power of dynamic issuance to incentivize participation and optimize its reward payouts
toward its success.

mverter

v Page 33 of 33

https://uma.xyz/

	Abstract
	Introduction
	Requirements
	High-Level Requirements

	Architecture
	Overview
	Components
	The Core Orchestrator Contract
	Module Types and Interfaces
	The Authorizer
	The Funding Manager
	The Payment Processor
	Logic Modules

	Creating New Modules
	The Module Library

	Deployment Structure/Versioning
	Our Proxy Pattern
	Independent Update Mechanism

	Versioning & Upgrades
	Patch and Minor Version Upgrades
	Major Version Upgrade
	Sunsetting Upgrade

	Closing Remarks
	Conclusion
	Appendix: Low-Level Requirements
	Appendix: Example Modules
	Authorizer Modules
	Role-based Authorizer
	Token-gated Authorizer
	Voting-Roles Authorizer Extension

	Funding Managers
	Bancor Redeeming Virtual Supply Funding Manager
	Deposit Vault

	Payment Processors
	Simple Payment Processor
	Streaming Payment Processor

	Logic Modules
	Bounties Module
	Recurring Payment Manager Module
	Staking Module
	KPI-Rewarder Module
	Payment Router Module

	Appendix: Example Workflows
	Dynamic Token Issuance Workflow
	KPI-based Rewards and Staking Workflow

