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Abstract

Users interact with mobile devices under the assumption that
the graphical user interface (GUI) accurately reflects their
actions, a trust fundamental to the user experience. In this
work, we present TapTrap, a novel attack that enables zero-
permission apps to exploit UI animations to undermine this
trust relationship. TapTrap can be used by a malicious app
to stealthily bypass Android’s permission system and gain
access to sensitive data or execute destructive actions, such as
wiping the device without user approval. Its impact extends
beyond the Android ecosystem, enabling tapjacking and Web
clickjacking. TapTrap is able to bypass existing tapjacking
defenses, as those are targeted toward overlays. Our novel
approach, instead, abuses activity transition animations and is
effective even on Android 15. We analyzed 99,705 apps from
the Play Store to assess whether TapTrap is actively exploited
in the wild. Our analysis found no evidence of such exploita-
tion. Additionally, we conducted a large-scale study on these
apps and discovered that 76.3% of apps are vulnerable to
TapTrap. Finally, we evaluated the real-world feasibility of
TapTrap through a user study with 20 participants, showing
that all of them failed to notice at least one attack variant. Our
findings have resulted in two assigned CVEs.

1 Introduction

Mobile devices are now an integral part of everyday life.
They provide users with news, entertainment, communica-
tion, healthcare, banking, and other sensitive services. Funda-
mental to this user experience is the device’s graphical user
interface (GUI). As the GUI is the user’s primary means of
interaction with the device, it carries high trust. Users interact
with the GUI under the assumption that it accurately reflects
the underlying state of the device and that GUI elements, such
as buttons, correspond to the actions they intend to perform.

Threat actors have long sought to undermine this trust re-
lationship [2, 31, 36, 71, 74]. By creating malicious overlays
on top of the GUI, attackers can trick users into performing

unintended actions, such as authorizing financial transactions
or granting sensitive permissions. This type of attack is com-
monly known as tapjacking. Several strategies have been
added to Android over the years to counter this threat. These
include restrictions on the SYSTEM_ALERT_WINDOW permission,
mechanisms to automatically dismiss overlays during sensi-
tive interactions like permission prompts, and other defenses
introduced by default in Android 12. These mitigations, how-
ever, only target known tapjacking techniques using overlays.

In this work, we present TapTrap, a novel tapjacking at-
tack on the Android system. Compared to previous tapjacking
attacks that rely on malicious overlays, TapTrap leverages
a previously unexplored and fundamentally different mech-
anism: activity transition animations. By exploiting these
animations, a core feature of the Android UI experience, a
zero-permission app can spawn a benign transparent activity
on top of a malicious one, therefore bypassing existing tap-
jacking defenses at the system and app levels. This enables a
malicious app to stealthily bypass Android’s permission sys-
tem and gain unauthorized access to sensitive user data, such
as location, camera, and notification content. Beyond data
access, we demonstrate that TapTrap can escalate its impact
to compromise the entire device by triggering a factory reset
without user approval. Additionally, we show that the attack
also threatens the user’s security and privacy on the Web by
enabling clickjacking, highlighting its broader applicability.

We investigate whether this vulnerability is actively ex-
ploited in the wild based on 99,705 apps that we downloaded
from the Google Play Store and find no evidence of TapTrap
exploitation, suggesting that this attack is a previously un-
explored threat vector. Additionally, to assess the impact of
TapTrap, we perform further analyses on these apps, revealing
that 76.3% of the analyzed apps are vulnerable to the attack.

Finally, to evaluate the real-world feasibility of TapTrap, we
conduct a carefully designed ethical study with 20 participants.
Using a custom game app to simulate the attack, we find that
all participants failed to notice at least one attack variant,
underscoring the practical impact of TapTrap and the urgent
need for effective defenses against this novel attack vector.



In summary, our work makes the following contributions:

• We present TapTrap, a novel attack on the Android sys-
tem that can be used to bypass the Android permission
system, perform Web clickjacking attacks, and can esca-
late to a full device erasure (Sec. 3).

• We thoroughly review existing literature on tapjacking
attacks and classify previous work based on the exploited
mechanisms and the capabilities of the attacks. TapTrap
is the first to exploit activity transition animations and
the only tapjacking attack that affects the current An-
droid version. We also evaluate existing mitigations and
propose effective solutions against TapTrap (Sec. 4).

• We analyze 99,705 apps and find no evidence of TapTrap
exploitation in the wild. Using this analysis, we identify
an issue in the Android platform that allows animations
to run longer than expected, significantly extending the
attack window of TapTrap (Sec. 5).

• We perform a large-scale evaluation of these apps, re-
vealing that 76,035 are vulnerable to TapTrap (Sec. 6).

• We evaluate the real-world feasibility of TapTrap through
a user study. All of the 20 participants failed to notice at
least one attack variant, even after being informed of the
possibility of an attack (Sec. 7).

Ethics and Disclosure. We responsibly disclosed TapTrap
to the Android Security Team and the affected browser ven-
dors. Google and all browser vendors acknowledged the issue.
While browser vendors have since fixed the issue, even the
current Android 15 remains vulnerable, as we discuss in more
detail in the ethics section at the end of the paper.

2 Background

This section introduces the Android GUI elements relevant to
our work, explains their interactions, and briefly summarizes
permission model employed by the operating system.

2.1 Android GUI Elements and Interaction

Android apps are designed to enable interactions both within
a single app and between different apps, allowing one app to
invoke the functionalities of another. Below, we outline the
core concepts of these interactions.
Activities. Activities [11] are one of the main building blocks
of Android apps and provide the visual components for user
interaction. In a typical Android app, each activity represents
one screen of an app. An app can consist of multiple activities,
where one activity can start another one using intents.
Intents. Intents [10] are Android’s inter-component commu-
nication mechanism. They can be used to start other activities

or components. Intents can either be explicit or implicit. In
explicit intents, the target component is explicitly defined by
its class name. In contrast, in implicit intents, the system de-
termines the target component based on parameters such as
the intent’s action (e.g., opening a web browser for a URL).

Back Stack. In a typical setting, only one activity is visible to
the user at a time and remains in the foreground. The system
keeps track of activities in a so-called back stack [15]. When
an activity is started from another activity, it is pushed onto
the back stack, and the previous activity is stopped. When
navigating back, the activity is popped from the back stack,
and the previous activity is resumed. The Android system
maintains a separate back stack for each task.

Task. A task represents a collection of activities when navi-
gating through apps. Conceptually, it represents one item in
the recent apps list. By default, when an activity is started
from another activity, it is launched in the same task as the
activity that started it. However, activities can also define that
they can only be launched in a new task.

2.2 Android Permission Model

Each Android app operates within its own kernel-level sand-
box, running as a separate process [21]. This ensures that
apps are isolated from each other and cannot access other
apps’ data or system resources without proper authorization.
Android employs a permission system to regulate access to
sensitive resources based on three categories: install-time per-
missions, runtime permissions, and special permissions [13].

Install-time Permissions. Install-time permissions are auto-
matically granted when the user installs an app. These per-
missions are typically used for non-sensitive operations that
do not require explicit user approval.

Runtime Permissions. Android requires apps to request run-
time permissions for potentially dangerous actions, such as ac-
cessing the camera or retrieving the device’s location. These
permissions are presented to the user via a system dialog
when the application attempts to perform the relevant action,
allowing the user to approve or deny the request at runtime.

Special Permissions. Special permissions differ from run-
time permissions and must be explicitly granted by the
user in the device settings. These permissions often in-
volve significant security implications, and the user is ex-
plicitly warned about their potential impact before confirm-
ing the action. Examples of special permissions include the
SYSTEM_ALERT_WINDOW permission that allows apps to draw
over other apps and that has been frequently abused for tap-
jacking, the BIND_ACCESSIBILITY_SERVICE permission that en-
ables apps to perform actions on behalf of the user for acces-
sibility purposes, and the BIND_DEVICE_ADMIN permission that
can be used to, e.g., remotely wipe the device.



3 TapTrap

In this section, we introduce TapTrap, an animation-based tap-
jacking attack on Android. Due to its unique mechanism, Tap-
Trap bypasses existing tapjacking mitigations implemented
by the Android system and apps. We outline the threat model,
describe the attack mechanism, and present scenarios that
demonstrate its practical impact, ranging from bypassing the
Android permission model to enabling Web clickjacking.

3.1 Threat Model

We assume that a malicious app is installed on the user’s
device, for example, via an app market, as is typical in tap-
jacking scenarios [36, 71]. The app does not require any per-
missions, making it appear harmless and non-intrusive to the
user. Notably, we do not assume the SYSTEM_ALERT_WINDOW
permission, which prior work [31, 36] often relied on. How-
ever, we assume that animations are enabled on the device.
By default, animations are active unless explicitly disabled
through developer options or accessibility settings.

3.2 Attack Mechanism

When one activity starts another using the startActivity
method or a related method, Android uses an animation to
transition between the activities. The type of animation de-
pends on various factors, such as whether the activities be-
long to the same or different tasks or whether the app’s theme
specifies certain animations. Transitions across different tasks
always use a system-defined slide animation. If a transition oc-
curs between activities in the same task, developers can spec-
ify custom animations using the overridePendingTransition
method or the makeCustomAnimation method.

While this customization provides developers with fine-
grained control over the app’s appearance, we found that it can
be exploited by malicious apps to lure users into performing
sensitive actions without their knowledge. Our attack called
TapTrap achieves this goal by creating a mismatch between
what is displayed on the screen and the app’s actual state.

The attack mechanism is illustrated in Fig. 1. Activity A of
the malicious app starts activity B of a benign app containing
a sensitive UI element, such as a button to confirm a trans-
action. A uses a carefully crafted animation to make activity
B fully transparent by setting its starting and ending alpha
values near 0 (e.g., 0.01). Additional animation effects, such
as scaling and transformation, can be applied to zoom into
activity B, making the sensitive element occupy the whole
screen. Although A appears visible to the user, B is on top of
the stack and handles touch events. The malicious activity A
can place a UI element anywhere on the screen to lure the
user into interacting with it, unknowingly triggering actions
on B. Before the animation ends and B becomes visible, A
relaunches itself and puts B into the background. Even though

Activity A

Next

Activity A

Next

Activity B

Authorize

Activity A

DoneAnimation max. 6s

(1) (2)

Figure 1: Overview of TapTrap. (1) Activity A of a malicious
app starts activity B of a benign app using a low-opacity
animation. B is on top and reactive to touches, but A remains
visible, luring the user into unknowingly interacting with B.
(2) A is relaunched and hides B before the animation ends.

Android introduced restrictions on background launches for
apps targeting Android 14 and above, activity launches used
for TapTrap are not blocked1 [20].
Attack Window. TapTrap’s attack window is limited to 3
seconds, which corresponds to the maximum duration for ac-
tivity transition animations. However, as we discuss in Sec. 5,
we discovered a flaw in the implementation of this restriction,
allowing animations to run for up to 6 seconds, doubling the
attack window. Importantly, TapTrap remains effective even
without this flaw. If the attack does not succeed within the
attack window, the app can restart it.
Attack Implementation. We provide a minimal implemen-
tation of TapTrap in Appendix A. A full proof-of-concept,
including the restart strategy, is included in the artifacts.

3.3 Attacking the Android System

In this section, we report on selected case studies to demon-
strate the impact of TapTrap, ranging from bypassing An-
droid’s runtime permission model to full device erasure.

3.3.1 Circumventing Runtime Permissions

As discussed in Sec. 2.2, Android’s permission model restricts
access to sensitive data and operations. To request a runtime
permission, an activity must send an implicit intent with the
REQUEST_PERMISSIONS action and specify the requested per-
missions using the REQUEST_PERMISSIONS_NAME intent extra.
The framework provides APIs to abstract this process, mak-
ing it seamless for developers. We found that the activity
responsible for displaying the permission prompt is vulner-
able to TapTrap as it can be opened in the same task as the
malicious app and does not block custom animations. This
vulnerability allows malicious apps to request arbitrary run-
time permissions without the user’s knowledge, such as access
to the user’s location, camera, contacts, or microphone.

1Tested on Android 15 using an app targeting the newest API Level 35.



Because the malicious activity that is visible is not on top
of the stack during the animation, it does not receive touch
events. Therefore, the activity cannot directly detect when the
user taps the “allow” button. Instead, the activity can listen
to the onResume lifecycle method. This method is triggered
whenever an activity is brought to the foreground, such as
when the prompt disappears because the user taps the “allow”
button. This side channel can be used to detect the click and
update the UI of the malicious activity accordingly, keeping
the user unaware of the attack.

3.3.2 Notification Sniffing

The BIND_NOTIFICATION_LISTENER_SERVICE permission al-
lows apps to read, reply to, and control notifications,
making it a highly sensitive capability. Users must ex-
plicitly grant this permission in the device settings. A
malicious app can programmatically open the corre-
sponding settings screen by sending an intent with the
NOTIFICATION_LISTENER_DETAIL_SETTINGS action and includ-
ing the service containing the notification listener logic in the
NOTIFICATION_LISTENER_COMPONENT_NAME extra.

Granting this permission requires two steps: the user must
first toggle the permission and then accept a warning dia-
log describing the associated risks. Consequently, the attack
requires two user taps to succeed. The second tap can be
detected by monitoring the onBind method of the notifica-
tion listener service, which is invoked when the permission is
granted. However, the first tap cannot be directly detected. To
overcome this limitation, the malicious app can predict when
the user is likely to tap on the screen or rely on other side
channels to detect clicks, such as accelerometer or gyroscope
data, as has been explored in prior work [46, 64, 72].

Once the permission is granted, a malicious app can inter-
cept sensitive notifications, which can then be exploited in
phishing campaigns, ransomware attacks, or other malicious
activities. Furthermore, this would also allow the attacker to
steal two-factor authentication codes received via SMS or
email, escalating the attack to account takeover.

3.3.3 Full Device Erasure

Device administrator apps [9] are a special type of app
that can perform sensitive security-relevant operations on
a user’s device. Apps that want to become device adminis-
trators must request the BIND_DEVICE_ADMIN permission, im-
plement a receiver that extends DeviceAdminReceiver, and
declare its capabilities in the app’s resources. Similar to
the BIND_NOTIFICATION_LISTENER_SERVICE permission, users
need to explicitly grant the permission in the device settings.

The device administrator API is still supported, and its capa-
bilities remain significant as of Android 15 [44]. For example,
an app with device administrator privileges can remotely lock
or wipe the device. A malicious app can open the device ad-

min permission prompt by sending an explicit intent targeting
the DeviceAdminAdd activity and including its package name
in the DEVICE_ADMIN extra. After tapping the “activate” button,
the activity closes itself with a slide-out animation. Due to
this animation, the device admin activity is briefly visible
before the malicious app is fully in the foreground again.

To prevent this, the malicious app can lock the screen im-
mediately after the permission is granted, simulating an app
crash to hide its activity. Nevertheless, at that time, the mali-
cious app has already gained full control.

3.4 Attacking the Browser

TapTrap’s impact is not confined only to system apps but
extends beyond. This section demonstrates how TapTrap can
exploit another integral part of the system: the browser.

To open a website in a browser, an app can create an im-
plicit intent with the ACTION_VIEW action and set the URL of
the website as the intent’s data, or start an explicit intent that
specifies the browser’s package name and activity.

With Chrome 45, Google introduced Custom Tabs [34], a
feature that allows browsers to be embedded in apps. Custom
Tabs provide the same browsing experience as a standalone
browser while sharing cookies, permissions, and other state
with the browser. This feature is designed to enhance the user
experience, and developers can customize the Custom Tab
to fit their app’s theme. Furthermore, they allow developers
to specify the opening and closing animations, enabling a
seamless transition between the app and the browser. Because
of this rather tight integration with the host app, Custom Tab-
supported browsers open the Custom Tab activity in the same
task as the launching app, making them vulnerable to TapTrap.

Two primary security risks arise: (1) permission bypass
within the Web ecosystem and (2) Web clickjacking attacks.

In the following, we discuss these risks and evaluate the
vulnerability of 10 popular mobile browsers to TapTrap. Our
analysis includes the top nine browsers from StatCounter’s
ranking [66] that are available on the Play Store, plus Brave.
Despite not being listed by StatCounter, we added Brave to
the analysis, as it does not expose its user agent via HTTP
headers (the mechanism StatCounter uses for ranking) but
has over 100M downloads on the Play Store. Table 1 summa-
rizes the findings. Notably, Opera and UC Browser are not
vulnerable to TapTrap, as they do not support Custom Tabs
and always open the browser in a separate task. Additionally,
while Firefox and Brave are vulnerable to permission bypass,
they require two user clicks to persist permissions. By default,
these browsers grant permissions only temporarily unless the
user explicitly selects the “remember” option.

Note that to minimize the loading times of websites, an
app can use the warmup method to preload the browser and the
mayLaunchUrl method to prefetch a website. This is useful for
unstable connections when websites would otherwise require
a loading time that exceeds TapTrap’s attack window.



Browser Permission Clickjacking

! Chrome (v130) ! !
Samsung Internet (v26) ! !

! Opera (v85) " "
UC Browser (v13.7) " "

" Firefox (v131) #" !
# Edge (v130) ! !
" Yandex (v128) ! !

Naver Whale (v3.5) ! !
Coc Coc (v133) ! !
Brave (v130) #" !

Table 1: Browser vulnerability among popular mobile
browsers (! vulnerable, " not vulnerable, #" requires two
user clicks to persist permission).

3.4.1 Web Permission Bypass

The Web platform has evolved to include a wide range of
permissions, driven by the increasing demand for app-like
capabilities on the Web. Interaction with sensitive APIs, such
as the user’s location, camera, or microphone, is regulated
by the permission model of the browser. Additional features
include access to the system clipboard, Bluetooth, payment
handlers, and push notifications. Access to these critical APIs
is programmatically requested by the website via the Permis-
sions API [55], which displays a permission prompt to the
user. Once granted, the website can access the requested API
without further user interaction.

Attackers can stealthily obtain these permissions by loading
a malicious website in a Custom Tab and leveraging TapTrap.
While this may seem redundant given that TapTrap can be
used to directly bypass Android-level permissions, exploiting
the Web channel offers some advantages discussed below.

Unsuspicious App. The malicious app does not need to de-
clare any Android permissions, creating the impression of a
benign app and reducing user suspicion.

Transparency. Android 12 introduced the Privacy Dash-
board, which allows users to see when apps access specific
permissions in the device’s settings [43]. Permissions granted
to a website via TapTrap, however, are associated with the
browser rather than the malicious app. Therefore, the Privacy
Dashboard only lists the browser app but not the malicious
app. Unless the user actively suspects a Web-based compro-
mise and checks the browser’s site-specific permissions, they
are unlikely to detect the attack.

Persistence. Once granted, Web-based permissions persist
even if the user uninstalls the malicious app. The website re-
tains its privileges within the browser environment, providing
attackers with a durable foothold in the user’s Web ecosystem.
For example, attackers could use the granted permissions to
send phishing notifications long after the app is removed.

3.4.2 Clickjacking

Clickjacking, also known as UI redressing, is a well-known at-
tack in the Web ecosystem. In a typical clickjacking scenario,
an attacker embeds a victim website in a transparent iframe
and tricks the user into clicking on elements of the embedded
site while making it appear as though they are interacting with
the attacker’s page. This can result in unauthorized purchases,
account takeovers, and data exfiltration [1, 32, 65].

Over the years, various techniques to mitigate clickjacking
on the Web have been developed. Many of these defenses
focus on framing protection mechanisms that prevent a site
from being embedded in a malicious website, such as the
X-Frame-Options header [56] and the frame-ancestors direc-
tive [54] of the Content-Security-Policy header.

SameSite cookies [57] provide another layer of protection.
Introduced to primarily mitigate Cross-Site Request Forgery
(CSRF) attacks, developers can set the SameSite attribute to
Lax or Strict to restrict cookie transmission in cross-site
contexts, such as when a page is embedded in an iframe. As
a result, the embedded page does not receive such cookies
and thus does not display authenticated content, preventing
attackers from luring users into performing sensitive actions.

However, these Web-focused countermeasures assume that
threats are confined to the Web environment. They do not
account for interactions between browsers and the Android
system, as navigations to websites loaded via Custom Tabs
always attach Lax cookies. Strict SameSite cookies, instead,
are not sent by default on Custom Tabs [26,27]. Unfortunately,
as Khodayari and Pellegrino [51] found, only 1,854 out of
the top 500,000 websites (0.3%) employed Strict SameSite
cookies as of 2021. More recent studies have confirmed that
the Strict SameSite cookie adoption remains low (2%) [47],
leaving the vast majority of sites vulnerable to TapTrap.

4 TapTrap’s Unique Feature

To position TapTrap within the landscape of existing attacks,
we begin by providing an overview of the attack vectors and
capabilities of previous tapjacking attacks and compare them
to TapTrap. Next, we examine how existing mitigations ad-
dress known attacks and why they fail to protect against Tap-
Trap. Finally, we propose new strategies to close the gaps in
current mitigations and effectively defend against TapTrap.

4.1 Previous Tapjacking Attacks

Historically, tapjacking attacks have relied on malicious over-
lays drawn over a benign app. Depending on the specific type
of attack, an attacker can achieve varying levels of control
over the UI. In the following, we review existing literature
on tapjacking attacks and classify the capabilities and attack
vectors exploited by each attack. An overview of existing
attacks and their classification is shown in Table 2.



We categorize capabilities into six different classes. At-
tackers can perform app touchjacking, i.e., luring users into
interacting with a third-party app, or execute permission by-
pass attacks to trick users into granting sensitive permis-
sions. Additionally, malicious apps can achieve general touch-
awareness, allowing them to detect the timing and location of
user touches. This capability can lead to user input theft, such
as capturing passwords or other sensitive information using
transparent overlays. Moreover, attackers may be able to con-
trol UI elements, i.e., arbitrarily position and size sensitive UI
elements on the screen, increasing the flexibility of the attack.

Prior tapjacking attack vectors can be categorized into four
classes: toast-based attacks, overlay window-based attacks,
overlay activity-based attacks, and WebView-based attacks.
We discuss each attack vector in detail below.

Toast-based Attacks. Toast-based attacks exploit a special
type of overlay known as toasts. Toasts [17] are short-lived no-
tifications that can be displayed on the screen for up to 3.5 sec-
onds and do not require permissions to be used. Johnson [49]
were among the first to demonstrate how this mechanism
could be abused for tapjacking purposes in apps. Niemietz
and Schwenk [59] further showed that toasts could be lever-
aged to perform Web clickjacking attacks, install other apps
without user consent, and steal user input by monitoring touch
events. More recent research [50, 70] has extended the scope
of toast-based attacks and, among others, showed how toasts
can be used to lure users into granting permission prompts in
the browser. While all of these attacks have been mitigated at
the latest with Android 12, Kar and Stakhanova [50] identified
specific OEMs that were vulnerable even with Android 13.

WebView-based Attacks. Luo et al. [53] demonstrated a
WebView-based attack where a malicious app embedded a
WebView and overlaid it with arbitrary UI elements to trick
users into unintended website interactions. However, its im-
pact is limited as WebView’s browsing context is sandboxed
from the browser, and the attack is confined to WebViews.

Overlay Window-based Attacks. These attacks exploit
the SYSTEM_ALERT_WINDOW permission, which must be granted
through device settings and allows drawing windows over
other apps. Ying et al. [74] showed that overlay windows can
be used to hijack the system keyguard, i.e., the device lock
pattern, or obscure permission prompts, tricking users into
granting unintended runtime permissions. Although Android
lacked runtime permissions at that time, the authors were able
to circumvent custom ROMs developed by certain OEMs
(e.g., Huawei). Finally, they show how to use such windows to
infer numerical passwords by recording the time between taps.
Fratantonio et al. [36] found that the SYSTEM_ALERT_WINDOW
permission was automatically granted to apps downloaded
from the Play Store. They showed how they can silently lure
the user into granting accessibility permissions to the app
and, in turn, take full control over the device. Cai et al. [31]
used overlays to steal passwords, although a successful attack

required users to type their passwords multiple times. Finally,
Wang et al. [70] showed how rapidly creating and destroying
overlay windows bypasses the notification visible when the
permission is used, which was introduced in Android 8 [5],
as we will describe later.

Overlay Activity-based Attacks. Other works, such as
Alepis and Patsakis [2] and Wang et al. [71] have relied on
using overlay activities to perform tapjacking attacks that do
not require the SYSTEM_ALERT_WINDOW permission. While the
first showed how they can partially overlay the device admin
permission prompt and trick the user into granting it, the lat-
ter demonstrated how, due to missing mitigation in a specific
settings screen, they can lure users into granting the “draw
over apps” permission and circumvent physical input-based
authorization, such as fingerprint sensors.

4.1.1 Key Differences to Previous Attacks

When comparing these previous attacks with TapTrap, we
observe the following key differences:

Attack Feasibility. Compared to all previous attacks with
similar capabilities that have been mitigated, TapTrap does not
rely on overlays, the most common attack vector for tapjack-
ing. This allows TapTrap, as we will see in the next section, to
bypass existing mitigations tailored to preventing tapjacking
attacks and to be effective even on Android 15. Like previous
attacks, TapTrap is subject to runtime conditions (e.g., font
size) that may influence UI element positions. However, most
such parameters are accessible to an app, allowing it to adapt
its layout dynamically. TapTrap’s control over UI elements
further increases tolerance to layout variation.

Control UI Elements. TapTrap is the only attack that has
the capability to control the position of sensitive UI elements
the user interacts with on the screen. This capability is further
exacerbated by the ability to zoom into any part of the target
activity, to the extent that the sensitive UI element, e.g., a
payment button, can cover the entire screen. This is achieved
by using translate and scale animations during the activity
transition initiated by the malicious app.

Touch-Awareness. Compared to previous attacks, TapTrap
does not have general touch awareness, i.e., it cannot detect
taps on the screen. While, as we showed in the previous
section, it can detect taps through additional side-channels,
i.e., the onResume lifecycle method, it cannot detect taps on the
screen in general. Therefore, TapTrap can also not be directly
used to steal user input.

Persistence Across Activities. TapTrap cannot survive activ-
ity transitions. That means that if the user navigates to another
activity within the benign app, the attack is interrupted. There-
fore, TapTrap is not able to bypass the accessibility service
permission and install other apps, as these actions require
navigation across multiple activities.



Permission Bypass

Publication Mechanism R
e
q

u
ir

e
d

P
e
r
m

is
s
io

n

A
p

p
T

o
u

c
h

ja
c
k

in
g

R
u

n
ti

m
e

D
e
v

ic
e

A
d

m
in

D
is

p
la

y
O

v
e
r

A
p

p
s

A
c
c
e
s
s
ib

il
it

y

N
o

ti
fi

c
a

ti
o

n
S

e
r
v

ic
e

A
p

p
I
n

s
ta

ll
a

ti
o

n

W
e
b

C
li

c
k

ja
c
k

in
g

T
o

u
c
h

-a
w

a
r
e
n

e
s
s

I
n

p
u

t
S

te
a

li
n

g

C
o
n

tr
o

l
U

I
E

le
m

e
n

ts

A
ff

e
c
ts

A
n

d
r
o
id

1
3
+

Johnson [49] (2011) Toast – ! – " – " " " " " " " " "
Niemietz/Schwenk [59] (2012) Toast – ! – " – " " ! " ! ! ! " "
Luo et al. [53] (2012) WebView – " – " – " " " " #" #" #" #" #"
Ying et al. [74] (2016) Overlay Window ! #" " – " " " " " ! ! " "
Fratantonio et al. [36] (2017) Overlay Window ! ! ! – ! ! ! " ! ! ! " "
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Wang et al. [70] (2022) Toast – ! " " " " " " " " " "
Kar and Stakhanova [50] (2023) Toast – " " " " " " " ! " #" " " "

This work Animation – ! ! ! ! " ! " ! ! " " ! !

Table 2: Comparison of TapTrap with previous attacks and what is covered in the respective publication (! yes, " no/not covered,
#" restricted, – not applicable, SYSTEM_ALERT_WINDOW permission, SYSTEM_ALERT_WINDOW permission (but automatically
granted by the Play Store), when combined with overlay window and SYSTEM_ALERT_WINDOW permission).

4.2 Existing Mitigations

Android has introduced several mitigations to protect against
tapjacking attacks. Certain protections are enabled by default,
while others must be explicitly enabled by app developers. In
the following, we provide an overview of existing tapjacking
mitigations, how they mitigate previous attacks, and how Tap-
Trap is able to bypass them. A timeline of the introduction
for each mitigation in Android is outlined in Fig. 2.

4.2.1 Overlay Detection and Prevention

Android’s primary defenses against tapjacking attacks focus
on detecting and restricting overlays. In Android 2.3, the
FLAG_WINDOW_IS_OBSCURED flag was introduced to detect when
a touch event passes through an overlay, allowing security-
sensitive applications to reject the touch O1 .

This was later complemented by the
FLAG_WINDOW_IS_PARTIALLY_OBSCURED [12] flag in An-
droid 10, which protects against partial overlays, i.e., where
only part of the UI element is overlaid O3 . Additionally,
the setFilterTouchesWhenObscured [18] method allows
developers to filter out touch events passed through an
overlay O2 . At the latest with Android 7, security-critical
setting screens were protected against tapjacking M1 [29].
Android 11 later introduced an overlay check that prevents
overlays in the whole settings app M3 , and Android 12
opened up this functionality to third-party apps through the
setHideOverlayWindows method O4 [30]. From Android
6 onward, the SYSTEM_ALERT_WINDOW permission has to be
explicitly granted in the device’s settings M2 . The permission

was, however, automatically granted for apps downloaded
from the Google Play Store [36]. For apps targeting Android
8 and upward, drawing over other apps shows a notification in
the notification drawer S1 [5]. Finally, Android 12 adopted a
system-wide tapjacking prevention mechanism that blocks
touch interactions from overlays in most scenarios M4 [14].

All of these mechanisms fail to protect against TapTrap, as
TapTrap does not rely on overlays.

4.2.2 Toast-specific Mitigations

Starting with Android 11, background apps are no longer
allowed to display custom toasts, significantly reducing the
risk of phishing attacks originating from background pro-
cesses M5 . Android 12 further enhanced this by completely
blocking background toasts M7 and introducing mechanisms
to prevent toast-burst attacks, where multiple toasts are dis-
played in succession M6 . Additionally, toasts are now limited
to two lines of text M8 [14, 16]. As TapTrap does not rely on
toasts, these mitigations do not impact the attack.

4.2.3 User Awareness and Secure Interaction

Recent Android updates have introduced mechanisms to en-
hance user awareness and secure critical interactions. Android
9 introduced Protected Confirmation [6], a secure UI requir-
ing explicit user confirmation for sensitive actions, such as
financial transactions O5 . Android 12 added the Privacy In-
dicator [23], a status bar feature that alerts users when apps
access the camera or microphone S2 . These strategies pro-
vide only limited protection against TapTrap. The Privacy
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Figure 2: Android mitigations against tapjacking. The An-
droid version refers to either the installed Android version or
the app’s target SDK.

Indicator covers only a small subset of permissions and, as
we will show in Sec. 7, is not always effective. Furthermore,
Protected Confirmation has been “deprecated due to [. . . ] low
adoption rate among app developers” [4].

4.3 Mitigations Against TapTrap

App developers can currently mitigate TapTrap by prevent-
ing sensitive activities from being launched with custom an-
imations via the overridePendingTransition method or by
deferring user input handling until the completion of enter an-
imations using the onEnterAnimationComplete method. How-
ever, these measures apply only to third-party apps and do
not address vulnerabilities in system components, such as
permission prompts. Also, we believe that the responsibility
for mitigating TapTrap should not rest on app developers but
should instead be addressed at the system level.

A direct system-level solution is to prevent touch events dur-
ing activity transition animations. While this approach would
be effective, it risks negatively impacting the user experience
as legitimate touches during animations are ignored. To ad-
dress this, we propose a solution that accounts for the screen’s
opacity. Specifically, touch events should be blocked only
when the animation’s opacity falls below a defined thresh-
old. Android 12’s system-wide tapjacking defense defines a
maximum obscuring opacity threshold of 0.8 that is used to de-
termine whether overlays are allowed to pass touches through.
Overlays below this are allowed to pass touches through, as

the underlying UI elements are still visible [19]. Building on
this concept, we propose applying an opacity threshold of 0.2
for activity transitions to mitigate TapTrap.

In addition to exploiting opacity, TapTrap can also confuse
users by leveraging extreme “zoom” effects during activity
transition animations. To address this, we propose limiting
the zoom factor of such animations. Specifically, we suggest
setting the zoom factor limit to 400%, as we believe this
value balances the aesthetic and functional needs of legitimate
animations while reducing the risk of user confusion.

We have disclosed our findings to Google and the affected
browser vendors. Firefox and Chrome have implemented mit-
igations based on the onEnterAnimationComplete method, as
per our recommendation. Nevertheless, even the latest An-
droid version (Android 15), as of June 2025, lacks system-
level mitigations against TapTrap and remains vulnerable.

5 Detecting Malicious Apps in The Wild

To assess whether TapTrap is being actively exploited in the
wild, we developed an automated tool to systematically ana-
lyze Android apps for potentially malicious animations. Us-
ing this tool, we conducted a large-scale analysis of 99,705
Android apps from the Google Play Store.

5.1 Dataset

To compile a comprehensive dataset of apps, we adopted a
methodology similar to Steinböck et al. [67]. First, we used
google-play-scraper [40] to query the package names of the
top-ranked free, paid, and grossing apps across all categories
from the Austrian Play Store. Subsequently, we recursively
gathered the package names of their related apps until we did
not identify new package names. This process, performed on
December 16, 2024, yielded 123,765 unique package names.

Next, we retrieved metadata for each package name and
successfully obtained information for 123,581 apps. We fil-
tered this set to include only apps that are free to download,
resulting in 101,672 package names. Using a modified ver-
sion of apkeep [39], configured to emulate a Pixel 6a running
Android 15, we downloaded the corresponding APKs. This
step, performed between December 18, 2024 and January 2,
2025, yielded 99,722 successfully downloaded apps.

As many apps on the Play Store are distributed as split
APKs [8], we employed APKEditor [38] to merge these into
single APK files. This merging process failed for 17 apps,
leaving a final dataset of 99,705 Android apps.

5.2 Evaluation Methodology

We leverage two key properties of Android activity transitions
to evaluate the presence of apps that exploit the TapTrap
vulnerability. First, only tween animations [7] can be used
during activity transitions, making them the sole type relevant
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to TapTrap. These animations must always be declared as
XML files within an app’s resources. Second, resource files,
including tween animations, must be present at compile time
and are immutable at runtime.2 Consequently, analyzing an
app’s resource files in the APK ensures that, should TapTrap
be exploited in an app, our tool will detect it.

Our methodology comprises two main phases. First, we
extract all tween animations declared in the apps’ resource
files. Second, we analyze each animation to identify behaviors
indicative of TapTrap. Fig. 3 illustrates the analysis workflow.

5.2.1 Extracting Animations

An app’s resources, including its tween animations, are stored
in a binary format compressed in the app’s APK. We first
decompress and decode the APK using Apktool [24]. To get
all candidates for tween animations, we extract all XML files
in the app resource directory and filter for those that only
contain XML tags used in tween animations.

Android resources often reference other resources using the
@ symbol (e.g., strings or integers) or theme attributes with the
? symbol, which may vary based on the app’s theme. These
references may point to resources within the app or external
sources, such as the Android framework. To resolve refer-
ences to Android framework resources, we extract definitions
from the framework-res.apk of a Pixel 6a running Android
15. We then recursively resolve all references to construct the
final animation. As specific resources or theme attributes may
vary depending on factors such as screen size, we consider all
possible values during this resolution process to ensure we
do not overlook any potentially malicious animations. A sin-
gle XML animation may thus correspond to multiple distinct
animations, which are all included in our analysis.

2While modifying resources at runtime is technically possible using Run-
time Resource Overlays (RRO) [22], this requires elevated privileges and is
excluded from our threat model.

5.2.2 Analyzing Animations

After we have gathered all animations, we analyze them for
behavior that could potentially be abused for TapTrap. We
take each animation as a black box, execute it in a controlled
environment, and observe its behavior over time. This ap-
proach has multiple advantages over statically parsing the
XML files. First, Android animations can be highly complex,
often comprising multiple nested animations that interact
with one another. Accurately reconstructing the behavior of
such animations through static analysis would require an ex-
haustive and precise model of all potential interactions. This
process is error-prone, as it may overlook edge cases, and
the Android source code remains the ultimate source of truth
for animation behavior. Second, animations can register in-
terpolators that modify the animations behavior over time,
such as slowing it down or speeding it up. Statically model-
ing all possible interpolators and their effects would require
significant effort and still risk inaccuracies due to unfore-
seen interactions. As the android.view.animation package,
responsible for handling animations, relies on native code,
we cannot run animations directly in the JVM. Instead, we
leverage Robolectric [41], a testing framework for Android,
with which we can achieve this goal without requiring an
emulator or physical device. We prepare each animation as
the Android framework would, e.g., restricting the duration
to 3,000 milliseconds and setting appropriate sizes for the
views involved. During execution, we record the view’s opac-
ity values (!i) and its transformation matrices (Mi) at each
time interval (i) throughout the animation’s lifecycle.

5.2.3 Quantifying Maliciousness

Animations that can be abused for TapTrap exhibit one of
two properties: (1) a low opacity over a longer time or (2) a
large scale factor (“zoom”) over a longer time. We assign each
animation two scores that quantify its potential for malicious
behavior: a maliciousness score S! → [0,100] for abusing
opacity and a maliciousness score S∀ for abusing scaling S∀ →
[0,100]. For the attack to be successful, the animation must
exhibit a low opacity or a high scale factor at the beginning
of the animation. It should maintain this low opacity or high
scale factor for a significant portion of its duration. However,
this becomes less important as the animation progresses, as
the attacker can repeat the attack before the animation ends.

To capture these requirements, we introduce a weighted
scoring function #(i) over time i → [0,3000] milliseconds. We
use a logistic-shaped function that begins with slow decay,
becomes steeper, and then tapers off, thereby placing greater
emphasis on the early part of the animation. We choose an
inflection point at 1,500 milliseconds:

#(i) = 1↑ 1
1+ e↑0.005(i↑1500)



We normalize the weights to ensure the score remains in the
range [0,100] and define the normalized scoring function u(i):

u(i) =
#(i)

∃3000
j=0 #( j)

In case we observe that an animation exceeds 3,000 millisec-
onds, we flag it separately, as this indicates that the animation
is able to exceed the duration set by the system.

Opacity Score S!. To compute the opacity score, we con-
sider the opacity !i at each timestamp i → [0,3000]. We use
an indicator function 1[0 < !i ↓ 0.1], which is 1 if the opacity
at time i is greater than 0 and at most 0.1, and 0 otherwise.
Note that an opacity of 0 cannot be used for TapTrap, as the
view would not receive any input. We conservatively select
a threshold of 0.1. Even though an opacity of 0.1 would al-
ready be visible to the human eye, we choose this threshold
to ensure we do not miss any potential TapTrap attacks.

S! = 100 ·
3000

∃
i=0

u(i) ·1[0 < !i ↓ 0.1]

Scale Score S∀. For scale, let ∀ix and ∀iy be the scale factors
along the x- and y-dimensions at time i based on the transfor-
mation matrix Mi. We use the indicator 1[∀ix ↔ 4↗∀iy ↔ 4],
which is 1 if the scale in either dimension exceeds the thresh-
old of at least 4 at time i, and 0 otherwise. We choose a
threshold of 4 as the scale factor as, in order to perform Tap-
Trap stealthily using a scale animation, the scale factor must
be chosen high enough to distort what the user sees.

S∀ = 100 ·
3000

∃
i=0

u(i) ·1[∀ix ↔ 4↗∀iy ↔ 4]

5.3 Results

We successfully extracted animations for 99,018 apps in our
dataset, resulting in 2,504,547 animations, of which 55,825
were unique. We define an animation as unique if the MD5
hash of its resolved XML representation, after resolving all
references, matches no other hash in the dataset. 46 anima-
tions could not be analyzed, primarily due to missing refer-
ences. We validated our tool against our proof of concepts,
and our pipeline successfully assigned appropriate scores.

5.3.1 Finding #1: Animations Can Exceed Duration

In our dataset, we identified 61 unique animations that ex-
ceeded the intended duration limit of 3,000 milliseconds. Fur-
ther analysis revealed that this behavior is due to an off-by-one
error in the implementation of the duration restriction in An-
droid’s Animation class [3]. This bug allows animations to
run for up to 6 seconds instead of the intended 3 seconds.

The assigned scores indicate that none of them exhibit be-
havior that could be exploited for TapTrap. However, the iden-
tified off-by-one error increases the attack window to execute
TapTrap, thus lowering the barrier to successful exploitation.

5.3.2 Finding #2: TapTrap Not Exploited in the Wild

In our dataset, 22 apps contain animations with an alpha score
S! ↔ 50, while 6 apps contained those with a scale score
S∀ ↔ 50, covering a total of 28 apps. We manually analyzed
the animations and reverse-engineered the corresponding apps
to evaluate whether these animations were used to perform
TapTrap. Fortunately, our analysis found that none of these
animations were exploited for TapTrap. Thus, among the ex-
tensive dataset analyzed, no evidence suggests that TapTrap
is currently being exploited in the wild.

6 Evaluating App Vulnerability

We previously demonstrated that TapTrap can exploit vulnera-
bilities in both the Android system through bypassing system-
level permissions and the broader Web ecosystem through
the browser. Beyond these targets, TapTrap also poses a sig-
nificant threat to the security of individual third-party apps.
In this section, we present a large-scale evaluation of 99,705
Android apps to assess their vulnerability to TapTrap. This
analysis builds upon the dataset introduced in Sec. 5.1.

6.1 Methodology

As TapTrap relies on custom activity transition animations,
which can only be set for same-task transitions, not every app
is vulnerable to TapTrap. We define an activity A as vulnerable
if it meets all of the following criteria:

✁ Externally Launchable: Another app can launch A.

✂ Same-Task Launchable: A can be launched into the
same task as any other app.

✃ No Entry Animation Override: A does not override
the custom animation it may be launched with.

✄ No Animation Finished Wait: A does not wait for the
animation to complete before handling user input.

An app is considered vulnerable if it includes a vulnerable
activity. We build our analysis on Androguard [37], a popular
open-source static analysis tool for Android apps.

6.1.1 Manifest Analysis

Our analysis begins with the AndroidManifest.xml file, which
declares an app’s components. We parse the manifest to check
criteria ✁ and ✂. For criterion ✁, we verify the exported and
enabled attributes to confirm that an activity is externally
launchable and check for any declared permissions required



to open it. For criterion ✂, we examine the launchMode at-
tribute. Activities that specify standard or singleTop can be
launched same-task. Although the manifest can also be used
to declare enter or exit animations, our experiments show that
animations passed to startActivity via an ActivityOptions
bundle override any manifest-specified animations. Thus, we
do not consider manifest-declared animations in our analysis.

6.1.2 Code Analysis

After identifying candidate activities from the manifest, we
examine their bytecode to verify criteria ✃ and ✄. We first
construct a call graph of the app. For criterion ✃, we then
search for calls to Activity.overridePendingTransition,
which can be used to override the entry animation, and
trace the call graph back to an enter method of the activ-
ity. If we find a call to overridePendingTransition, we flag
the activity as overwriting the entry animation. If, how-
ever, this call is made after a call to startActivity or re-
lated methods used to start activities, we discard the method
occurrence as it affects a subsequently launched activity
rather than the current one. We do not consider alterna-
tive methods like Activity.overrideActivityTransition or
Window.setAnimations because they do not override the ani-
mation passed via ActivityOptions and are not applicable.

For criterion ✄, we check if the activity overrides the
onEnterAnimationComplete callback. This function is in-
voked once the enter animation finishes. If an activity over-
rides this function, we conservatively assume it waits until
the animation completes before handling user input. As we
show later, only a negligible portion of activities and apps
override this function, therefore this conservative approach
has minimal impact on the accuracy of our results.

6.1.3 Validation and Limitations

We validated our analysis by manually analyzing a subset of
10 randomly selected apps from our dataset. For each app, we
randomly selected 2 activities and attempted to run TapTrap
on it. If we were able to run TapTrap on the activity, we
classified it as vulnerable. Out of the 20 activities analyzed,
we found that our analysis correctly classified all of them.

We believe that this lightweight analysis provides a compre-
hensive overview of the volume of vulnerable apps. However,
certain limitations arise from the inherent constraints of static
analysis and specific assumptions in our methodology.
Static Analysis. Detecting activities that override entry ani-
mations via overridePendingTransition depends on the ac-
curacy of the call graph constructed by Androguard. An in-
accurate call graph, especially in the presence of obfuscation
techniques, such as reflection, may result in missed calls, lead-
ing to false positives. Additionally, we conservatively assume
that activities overriding onEnterAnimationComplete wait for
animations to finish before processing user input, which could

Activity/App Property Activities Apps

Externally launchable 10.1% 99,278 (99.7%)
Same-task launchable 93.6% 98,478 (98.9%)
Restricts animations 5.7% 37,017 (37.2%)
Waits for animation end 0.1% 599 (0.6%)

Total vulnerable 6.8% 76,035 (76.3%)

Table 3: Activities and apps meeting the vulnerability criteria.
An app meets a criterion if it includes an activity satisfying it.

cause false negatives. However, as only 0.1% of activities
override this function, it minimally affects our results.
Threat Model Simplifications. Our analysis treats each ac-
tivity as independent and may overlook complex app flows.
For example, an exported activity classified as vulnerable may
only launch other non-exported activities in new tasks, leading
to an overestimation of vulnerabilities. Furthermore, labeling
an activity as vulnerable does not imply it is easily exploitable.
Real-world UI flows or multi-step interactions, such as clicks
or swipes, can reduce TapTrap’s practical risk. Additionally, a
vulnerable activity may not be security-sensitive, e.g., a splash
screen may be vulnerable but pose little actual risk.

6.2 Results

Our analysis successfully processed 99,612 apps (99.9%). On
average, it took 111 seconds per app, with a timeout of 1 hour
reached for 6 apps. In total, the apps in our dataset contained
3,699,536 activities. Table 3 summarizes the findings.
✁ Externally Launchable. We found that 99.5% of activities
do not require permissions to be launched. Moreover, 382,089
(10.3%) are exported, and 3,688,165 (99.7%) are enabled,
resulting in 372,972 externally launchable activities (10.1%).
✂ Same-Task Launchable. The majority of activities
(93.6%) can be launched in the same task, as they use a
launchMode of either standard or singleTop.
✃ Overriding Entry Animations. Overriding entry anima-
tions is uncommon; only 209,850 activities (5.7%) override
entry animations using overridePendingTransition, thereby
preventing attackers from supplying custom animations.
✄ Waiting for Enter Animations to Complete.

Similarly, only 3,785 activities (0.1%) override the
onEnterAnimationComplete callback, indicating that a
negligible amount of activities have the capability to wait for
animations to complete before processing user input.
App Vulnerability. In total, 252,776 activities (6.8%) meet
all four criteria for vulnerability. This corresponds to 76,035
apps that contain a vulnerable activity and that we therefore
classify as vulnerable. With over 76% of the analyzed apps
being vulnerable, these findings underscore that TapTrap not
only targets Android system components, but also poses a
significant threat to the broader mobile app landscape.



7 Evaluating User Awareness

We conducted a user study to evaluate the real-world practi-
cality of TapTrap and users’ ability to detect TapTrap-based
attacks during typical mobile interactions. This section details
the recruitment process, study design, experiment setup, and
discusses the study’s key findings.

7.1 Recruitment

We recruited 20 participants through various channels, includ-
ing word of mouth among students, lecture hall announce-
ments, and outreach to administrative staff within our faculty.
All participants were at least 18 years old, with 14 participants
aged 24 or younger and 2 participants older than 34. As com-
pensation, they received hot and cold beverages. We did not
restrict participation based on prior experience with Android
devices. Nevertheless, 14 participants reported having used
an Android device within the last 5 years.

7.2 Experiment Design

We initially provided participants with only minimal informa-
tion about the study’s objectives. To avoid introducing bias,
we framed the study as a general evaluation of user interaction
with apps without disclosing the real purpose of the study.

7.2.1 Testing App: KillTheBugs

The study centered on the KillTheBugs game we developed.
Participants advanced through three levels by squishing bugs
that appeared on the screen and played the game on a Pixel
6a device running Android 15 that we provided. Each level
included a different attack scenario. The game is discussed in
more detail in Appendix B and included in the paper artifacts.
Level 1. TapTrap is used to open a malicious website in a
Custom Tab that requests the user’s location.
Level 2. Similar to Level 1, but the website requests camera
permissions. To disguise the privacy indicator displayed on
our Pixel 6a device when the camera is accessed, we match
the app background color to the indicator’s background color.
Level 3. This level escalates privileges by requesting device
admin permissions and locks the screen once granted.

7.2.2 Organization

The study was divided into the following phases. The content
of the questionnaires is provided in Appendix B.
Initial Questionnaire. Participants began the experiment by
completing a brief questionnaire about themselves.
First Run. We instructed participants to play the game and
told them to assume that they recently downloaded it from
the Google Play Store, ensuring no permissions had been

granted to the app. The primary objective of this phase was
to assess participants’ ability to detect TapTrap without prior
knowledge of the vulnerability.
Intermediate Questionnaire. After the first gameplay ses-
sion, participants completed a questionnaire to capture their
general impressions using free-form questions.
Intermediate Debriefing. We informed them that we are
conducting a security study, and the app tried to lure them
into stealthily granting specific permissions.
Second Run. Participants replayed the game. This phase
assessed whether TapTrap remains stealthy enough to evade
detection, even when users are aware of potential threats.
Final Questionnaire. Following this second session, they
completed a questionnaire to capture their observations.
Debriefing. The study concluded with a final debriefing ses-
sion, where participants could play the game a third time.
During this session, we adjusted the animations to make the
attacks noticeable to the participants (as shown in Fig. 4c).
This ensured that participants left the study with a clear un-
derstanding of the attack and did not feel tricked.

7.3 Results

This section presents the findings of the user study. We also
discuss the key insights derived from these findings.

7.3.1 Uninformed Users

After the first session, participants described the game as
“repetitive and slow-paced” and “wondered when the game
would end”. Two participants noticed minor glitches, such as
a quick flash on the screen, and one participant observed that
they sometimes needed to tap twice on a bug. However, no
one initially linked these glitches to any malicious behavior.
Level 1. None of the participants detected any anomalies in
this level beyond the general issues mentioned above.
Level 2. Four participants (21%) noticed the camera indica-
tor in the status bar. One participant noted, “The app didn’t
ask for permissions, but I saw the camera icon blink, which
seemed odd.” while another said, “There was a camera icon
in the top row as if the camera was accessed”. The remaining
participants did not notice anything abnormal. For one par-
ticipant, Level 2 failed as they did not interact with the game
within the TapTrap attack window of 6 seconds.
Level 3. Four participants noted that the screen suddenly
went black. They speculated that the “app broke down”, that
“maybe it crashed”, and that “the crash was interesting”. One
noted that a pop-up appeared before the screen went black.

7.3.2 Informed Users

Most participants tried to be more cautious in the second run.
However, one participant was so cautious that they did not



grant any permissions during the second session as they did
not interact with the game within the attack window. Another
participant was too cautious in Level 1 and was too slow to
grant the location permission.

Level 1. No participant detected the attack during this level.

Level 2. 14 participants (74%) noticed the camera indicator.

Level 3. Three participants observed anomalies before the
screen locked. Two participants reported briefly seeing a per-
mission prompt, while one mentioned noticing some text
flashing on the screen just before the lock occurred.

7.3.3 Key Insights

Our results indicate that, without visible security indicators,
uninformed users fail to detect TapTrap and that such attacks
can be performed completely stealthily. Even with security
indicators present, as in Level 2, only 21% of participants
noticed such indicators. This suggests that security indica-
tors are easily overlooked, especially when an app wants to
masquerade them and they are not expected by the user.

Alarmingly, the results suggest that even vigilant users who
are informed about the app’s malicious behavior struggle
to detect the attack when no security indicators are present.
While the detection rate of the camera indicator significantly
increased for informed users from 21% to 74%, attacks that
do not trigger an indicator went largely unnoticed.

8 Related Work

Previous work can be divided into previous attacks on the
mobile GUI, their mitigations, and clickjacking attacks.

Attacks on the Mobile GUI. Attacks that target the mobile
GUI have received various attention in the research commu-
nity. In Sec. 4 we have already extensively discussed pre-
vious work that relies on tapjacking techniques [2, 31, 36,
49, 50, 53, 59, 70, 71, 74]. Bianchi et al. [28] investigated de-
ception techniques in the Android UI. Through automated
state exploration of Android platform APIs, the authors iden-
tified novel attack vectors on the Android GUI, such as in-
escapable fullscreen overlays, and categorized existing tech-
niques, including phishing-style and tapjacking-style attacks.
Bove [29] conducted a systematization of knowledge on the
evolution of Trusted UI on mobile devices. Similarly, Bove
and Kalysch [30] explored the evolution of UI-based attack
vectors on Android. Other previous works rely on task hijack-
ing or app hijacking in which a malicious app inserts itself into
the foreground to perform phishing attacks [28, 33, 62, 69].

Tapjacking Prevention. Meanwhile, an increasing number
of works also propose defenses against tapjacking attacks.
Bianchi et al. [28] proposed modifications to the Android
OS to add an identification of what app is currently being
displayed on top. Fernandes et al. [35] analyzed the proposed

mechanism and found that this creates a side-channel and pro-
posed another defense mechanism that prevents non-system
background apps from creating overlays. Ren et al. [61]
proposed WindowGuard, a defense mechanism that relays
whether an overlay should be displayed in security-critical
scenarios to the user. Possemato et al. [60] developed Click-
Shield, an OS-level mechanism that evaluates the visual uni-
formity of overlays on the screen to differentiate between
benign and malicious overlays. Most recently, Yan et al. [73]
and Gong et al. [42] introduced OverlayChecker, a system for
the early detection of overlay-based malware during the app
market review process.

Web Clickjacking. The concept of clickjacking, the Web
counterpart to tapjacking, was first introduced in a 2002 Fire-
fox Bug report [58], though the term “clickjacking” originated
in 2008 in a blog post by Grossman and Hansen [45]. In 2010,
Rydstedt et al. [63] analyzed the deployment of clickjacking
defenses across the top 500 websites, marking an early effort
to understand its mitigation. Shortly after, Balduzzi et al. [25]
developed an automated tool to detect clickjacking attacks
and conducted a large-scale study to assess their prevalence.
In 2012, Lekies et al. [52] identified limitations in existing
defenses and evaluated the adoption of prevention mecha-
nisms on a broader scale. Around the same time, Huang et
al. [48] introduced new attack variants and proposed an opt-
in defense mechanism to ensure that sensitive UI elements
remain visible to users. Further research explored the role of
human perception in clickjacking attacks. Akhawe et al. [1]
proposed five novel attack techniques. Most recently, in 2020,
Calzavara et al. [32] examined inconsistencies in browser
support for framing control mechanisms. They introduced a
formal framework for automated analysis and conducted a
large-scale study to identify these inconsistencies.

9 Conclusion

In this work, we introduced TapTrap, a novel tapjacking at-
tack that leverages activity transition animations to create a
mismatch between user perception and the underlying state
of apps. TapTrap bypasses existing mitigations at both the
system and application levels, enabling a malicious app to cir-
cumvent sensitive permissions, such as access to the camera,
location, and notifications, and escalate its impact to critical
actions, including full device erasure.

We demonstrated that TapTrap extends beyond the Android
ecosystem, posing a significant threat to apps and websites
as well. Our analysis of 99,705 apps from the Google Play
Store revealed no evidence of TapTrap being exploited in the
wild. However, further analysis showed that 76.3% of apps
are vulnerable to TapTrap. To assess its practical impact, we
conducted a user study with 20 participants. Alarmingly, all
participants failed to detect at least one variant of the attack,
underscoring its stealthiness and the risks it poses to users.



As TapTrap represents a new class of UI-based attacks that
does not rely on traditional overlay techniques, it exposes a
fundamental gap in the current security model. As of June
2025, even the latest Android version (Android 15) remains
vulnerable, highlighting the urgent need for defenses.

While our analysis focused on Android activity transitions,
the broader security impact of animations and user perception
remains largely unexplored. Future work could investigate the
security implications of animations across different platforms,
as they may exhibit similar weaknesses.
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To foster future research and reproducibility, we make the
following artifacts of this paper publicly available:

• TapTrap PoC: A proof-of-concept implementation demon-
strating the TapTrap attack (Sec. 3).

• Dataset Preparation Pipeline: Scripts for crawling the
Google Play Store, downloading apps, and preparing them
for analysis (Sec. 5.1).

• Malicious App Detection Pipeline: Code and results used
to identify malicious apps (Sec. 5).

• Vulnerable App Detection Pipeline: Code and results
used to identify vulnerable apps (Sec. 6).

• User Study Materials: Materials used in the user study,
including the information sheet, consent forms, question-
naires, app, and study website (Sec. 7).

The artifacts are available at https://doi.org/10.5281/
zenodo.15519676. Due to the considerable size of the APK
dataset, we provide access to it upon request. Additionally,
we provide further material and up-to-date information on
TapTrap at https://taptrap.click.

Ethics Considerations

User Study

Our institution’s ethics committee reviewed the user study
conducted in this work. We outline the core concerns of the
study and the measures we took to mitigate them.

Recruitment Partiality. Participants were, among other
channels, recruited from courses offered at our institution.
To mitigate the potential concern that users might feel ob-
ligated to participate, we emphasized that participation was
entirely voluntary and provided no academic advantage. Ad-
ditionally, recruitment was conducted by two authors of this
paper who were not affiliated with any of the courses where
recruitment took place, to ensure impartiality and minimize
any perceived pressure to participate.

Participant’s Feelings of Deception. Participants who do not
identify the attack during the study might feel deceived or con-
fused. To mitigate this, we included a final debriefing session
where participants played the game a third time. During this
session, we explicitly demonstrated the attack mechanism and
explained where and how the attacks occurred. This ensured
that participants left the study with a clear understanding of
the attack and its implications.

Responsible Disclosure

In October 2024, we reported the TapTrap attack to the An-
droid Security Team. The report was intially acknowledged
but later marked as a duplicate of an existing issue, to which
we were not granted access to. The security team stated that
the vulnerability would be addressed in a future release, but
provided us with no timeline or further information in this re-
gard. As of June 2025, the vulnerability remains unpatched.3

We also disclosed the vulnerability to the affected browser
vendors, including Google Chrome, Mozilla Firefox, Mi-
crosoft Edge, and Brave. Both Edge and Brave acknowl-
edged the issue but deferred responsibility to Chrome, as
their browsers are based on the Chromium engine. Chrome
fixed the issue in version 135, assigned CVE-2025-3067, and
awarded us a bug bounty of $10K, while Mozilla addressed it
in Firefox 136 with CVE-2025-1939. Both browser vendors
followed our recommendations and mitigated the attack by
relying on the onEnterAnimationComplete method.

In November 2024, we separately reported the off-by-one
error in the animation duration restriction to the Android Secu-
rity Team. This report was marked as “WontFix’, explaining
that it “does not affect the security of the Android platform”.
While the issue may not be critical in isolation, it effectively
doubles the attack window for TapTrap, thereby increasing
the likelihood of a successful attack.

3We tested TapTrap based on the PoC included in the paper artifacts on
an up-to-date Pixel 8a (Android 15, last security update May 5, 2025, build
BP1A.250505.005.B1).
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A TapTrap Example Implementation

This section outlines a minimal implementation of the Tap-
Trap attack. A full proof-of-concept implementation is in-
cluded in the artifacts accompanying this paper.

To define the required low-opacity animation, we create
a custom tween animation in the res/anim directory of the
Android project, e.g., fade_in.xml, shown in Listing 1.

1 <?xml version ="1.0" encoding="utf -8"?>
2 <alpha xmlns:android="http://schemas.android.

com/apk/res/android"
3 android:fromAlpha="0.01"
4 android:toAlpha="0.01"
5 android:repeatCount="1"
6 android:duration="2999"
7 />

Listing 1: Low-opacity tween animation (fade_in.xml.)

This animation leverages the off-by-one error discussed in
Sec. 5, resulting in a total runtime of the animation of 5,998
milliseconds. To apply this animation during an activity tran-
sition to TargetActivity, we invoke makeCustomAnimation
and pass the resulting ActivityOptions to startActivity, as
shown in Listing 2.

(a) Start screen of the
game

(b) Bugs appear on
the screen

(c) Debriefing mode
showing the attack

Figure 4: KillTheBugs user study app.

1 // Create the Intent
2 val intent: Intent =
3 Intent(this, TargetActivity::class.java)
4

5 // Add the animation
6 val options: ActivityOptions =
7 ActivityOptions.makeCustomAnimation(
8 this, R.anim.fade_in , 0
9 )

10

11 // Start the activity
12 startActivity(intent , options.toBundle())

Listing 2: Launching TargetActivity with the custom low-
opacity TapTrap animation.

B User Study

We provide additional information on the user study we con-
ducted to assess the real-world practicality of TapTrap and
users’ ability to detect such attacks.

B.1 Testing App: KillTheBugs

Although the KillTheBugs game can be adapted for other
devices, we optimized it for a Pixel 6a device running Android
15, which was used by all the participants during the study.
The user interface of the game can be seen in Fig. 4.

To realistically mimic an attacker’s behavior, our objective
was to execute the attack as stealthily as possible. A primary
challenge stemmed from the system indicators shown when
the camera is accessed. On the Pixel 6a, three visual cues are
displayed: ✁ a green dot in the top-right corner, ✂ a pulse
animation around the front-facing camera cutout, and ✃ a
camera icon in the top right corner in the device’s status bar.

We bypassed ✁ by setting the app’s background color to
match that of the green dot. To address ✂, we added a black
ring around the camera cutout that hides the pulse animation,
which leaves ✃ as the only indicator of camera access.



B.2 Questionnaires

This section contains the questionnaires used in the user study.
Further materials used in the study, such as the information
sheet, are available in the artifacts accompanying this paper.

Initial Questionnaire

In the initial questionnaire, we collected information about
the participants before they started the game.

1. Please select your age group:

• 18-24
• 25-34
• 35-44
• 45-54
• 55+

2. Which mobile operating systems are you currently using
on your mobile phone(s)? (Select all that apply)

• Android
• iOS
• others (please specify) [free text]
• I don’t know
• I am not using a mobile phone

3. Which mobile operating systems have you used on your
mobile phone(s) in the past five years? (Select all that
apply)

• Android
• iOS
• others (please specify) [free text]
• I don’t know
• I am not using a mobile phone

Intermediate Questionnaire

Participants completed this questionnaire after the first game
session and before we disclosed the study’s true purpose.

1. How would you rate your overall experience with the
app?

• Very poor (1)
• Poor (2)
• Fair (3)
• Good (4)
• Very good (5)

Please explain why: [free text]

2. Did you encounter any issues, difficulties, technical prob-
lems, or glitches while using the app?

• Yes

• No

Please explain why: [free text]

3. Were there any moments when the app caught your at-
tention?

• Yes

• No

Please explain why: [free text]

4. Is there anything else you’d like to share about your
experience with the app?

Please describe if applicable: [free text]

Final Questionnaire

We administered the final questionnaire following the second
and final gameplay session.

1. Were you able to detect when the vulnerability/vulnera-
bilities was/were exploited?

• Yes

• No

If yes, please describe when and to what extent: [free
text]
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A Artifact Appendix

A.1 Abstract
We provide multiple artifacts to reproduce the results pre-
sented in the paper and support future work that builds on our
findings. Specifically, we include the following artifacts:

• Dataset preparation: Scripts for crawling the Google Play
Store, downloading apps, and preparing them for analysis
(/dataset_preparation). Due to the dataset size, we can-
not publicly release the full set of apps used. Reviewers are
granted access to it as outlined in Section A.3.1.

• Malicious app detection: Code and results for malicious
app detection (/malicious_app_detection).

• Vulnerable app detection: Code and results for vulnerable
app detection (/vulnerable_app_detection).

• User study: Materials from the user study, including the
information sheet, consent forms, questionnaires, app, and
website used during the study (/user_study).

• TapTrap PoC: Proof-of-concept of TapTrap (/poc).

• Reproducibility scripts: Scripts to reproduce the results
presented in the paper (/reproducibility).

• Supplementary files: Additional files not directly relevant
for artifact evaluation, such as assets and paper-related li-
censes (/assets and /paper_licenses)

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Excessive or rapid scraping and downloads of APKs from the
Play Store may violate the Play Store’s terms of service and
could result in temporary or permanent IP bans. The dataset
preparation pipeline uses a conservative approach to avoid
excessive downloads. We nevertheless recommend reviewers
use a dedicated machine to avoid potential issues.

Running the KillTheBugs app and the TapTrap PoC are
intended solely to demonstrate the security vulnerability de-
scribed in the paper. We do not perform destructive operations
and do not collect personal data.

A.2.2 How to access

The artifacts accompanying the paper are hosted
at https://github.com/secpriv/taptrap and archived at
https://doi.org/10.5281/zenodo.15519676.

A.2.3 Hardware dependencies

Access to the APKs. Due to the size of the APK dataset
used in the paper, we cannot distribute it directly. Reviewers
are granted access to it as outlined in Section A.3.1.

System Requirements. Both x86 and ARM architectures
are supported. For running an Android emulator, however, we
recommend a Mac with Apple Silicon. A minimum of 16 GB
RAM and 150 GB available disk space are suggested.

Physical Android Device. We recommend running the apps
on a physical Pixel 6a device running Android 15. While they
can be run on other devices, screen element positioning may
differ and require manual adjustment for the attack to run.
Alternatively, the app can be executed in an emulator.

A.2.4 Software dependencies

Operating System. We have tested and support Ubuntu
24.04 and macOS 15 with a desktop environment. Other sys-
tems may require adjustments.

Docker. Install Docker (see /reproducibility/README.md
for a step-by-step guide or https://docker.com/get-started for
official instructions).

Rsync. We require rsync (preinstalled on Ubuntu 24.04 and
macOS 15) to retrieve the APK dataset. We have, however,
experienced issues with it on macOS 15 and suggest installing
it via Homebrew instead (brew install rsync).

Java. To be able to use the necessary Android
dependencies, install a recent version of Java (see
https://www.java.com/en/download/manual.jsp)

1

https://github.com/secpriv/taptrap
https://doi.org/10.5281/zenodo.15519676
https://docker.com/get-started
https://www.java.com/en/download/manual.jsp


Android Dependencies. Install the Android dependencies
(see /reproducibility/README.md for a step-by-step guide):

• Download and install the Android command line tools,
which include sdkmanager.

• Install the platform tools to install ADB.

• Set the ANDROID_HOME environment variable.

• Add the platform tools to $PATH.

A.2.5 Benchmarks

Evaluating the analyses pipelines requires access to the APK
dataset we used. See Section A.3.1 for access instructions.

A.3 Set-up
A.3.1 Installation

Clone the Repository. Clone the artifact repository using
git clone https://github.com/beerphilipp/taptrap.git
in a directory of your choice.

Install the Dependencies. See A.2.4 for instructions.

Obtain a Google AAS token. Downloading apps from
the Play Store requires a Google account and an AAS to-
ken. We provide such credentials for reviewers to use. Other
researchers may create a new Google account and refer
to /dataset_preparation/downloader/README.md for a sum-
mary on how to generate an AAS token.

Download APKs. Our experiments use a subset of 500 ran-
domly selected apps and 266 predefined apps from the dataset.
To access the dataset, save the private SSH key that we provide
for reviewers to a file named ~/.ssh/taptrap_key and give it
the correct permissions with chmod 600 ~/.ssh/taptrap_key.
Researchers may request access to the APK dataset by con-
tacting the authors.
Run the following commands in the artifact’s root directory:

• Select 500 random apps:
rsync -e "ssh -i ~/.ssh/taptrap_key" -azn \
--out-format="%n" dl@download.st1.secpriv.wien: . | \
grep -v "/$" | sort -R | head -n 500 > /tmp/apps.txt

• Add the set of predefined apps:
cat reproducibility/fixed_apps.txt >> /tmp/apps.txt

• Download the selected apps, where <DIR> refers to where
the APKs should be stored:
rsync -e "ssh -i ~/.ssh/taptrap_key" -avxz \
--files-from /tmp/apps.txt \
dl@download.st1.secpriv.wien: <DIR>

Start the Android Emulator or Connect a De-
vice. Connect the physical device to the host ma-
chine via USB. If you are using an emulator, run
reproducibility/start_emulator.sh in the repository’s
root directory to automatically download the correct emulator
image for your system and start it.

Set up the Android device. On physical devices, enable
USB debugging in Settings > About phone, then tap Build

number seven times to enable developer options. Go to System

> Developer options and enable USB debugging. This step is
not required for emulators.

A.3.2 Basic Test

To verify correct installation and setup, run
reproducibility/basic_test.sh <email> <token> in
the repository’s root directory. Replace <email> and <token>
with the Google credentials. This command will perform the
following steps:

• Builds all required Docker images.

• Checks if the provided Google credentials are valid by
attempting to download an app.

• Checks if an Android device is connected.

The script should print OK to the console. Depending on the
device resources, this may take up to 20 minutes.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The app downloading and preparation process from
the Play Store, as described in Section 5.1, is functional
and yields a large dataset for further analysis. This is
proven by experiment E1.

(C2): TapTrap is effective on Android 15 as described in
Section 3 of the paper. This is proven by experiment E2.

(C3): A large-scale analysis of 99,705 apps using the ani-
mation detection pipeline (cf. Section 5.2) identified 61
unique animations that bypassed the intended duration
limit of 3,000ms (Section 5.3.1) and 28 apps containing
animations with a maliciousness score of at least 50 (cf.
Section 5.3.2). This is proven by experiment E3.

(C4): 76.3% of analyzed apps are vulnerable to TapTrap
based on the static analysis pipeline provided in Section
6 and Table 3. This is proven by experiment E4.

A.4.2 Experiments

(E1): Dataset preparation [15 human-minutes + 1 compute-
hour + 20 GB disk]
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Preparation: Follow the steps in Section A.3.1 to set
up the environment.

Execution: Run reproducibility/e1.sh <EMAIL>
<TOKEN> <OUT> in the repository and replace <EMAIL>
with the Google account email, <TOKEN> with the AAS
token, and <OUT> with the desired output directory. The
script performs a Play Store crawl and download and
prepares the APKs for analysis. Due to time constraints,
the crawl stops after 25,000 package names, and only a
random subset of 50 apps is attempted for download.

Results: The script should output OK.
Alternatively, manually verify that:
• <OUT>/apps.csv contains → 15,000 package names

(lower bound after crawling 25,000 package names)
• <OUT>/apps contains → 30 apps (lower bound after

downloading 50 apps)
• Note that lower bounds are due to regional restrictions

and possible device limitations.

(E2): TapTrap functionality [30 human-minutes + 10
compute-minutes + 15 GB disk]

Preparation: Follow the steps in Section A.3.1 to set up
the environment, then run reproducibility/e2.sh from
the repository root to install and launch the app. Note that
running an emulator on x86 with nested virtualization is
extremely slow and may cause the attack to fail.

Execution: Click the “Start” button in the app to initi-
ate the attack, then click “Click here”. The app secretly
opens a camera permission prompt and attempts to trick
the user into granting access.

Results: The app should display “Permission granted”

without the user being aware of granting the permission.
Alternatively, manually verify that camera access has
been granted to the app: long-press the app icon, select
“App info”, then “Permissions”.

(E3): Detection of potentially malicious animations [15
human-minutes + 45 compute-minutes + 100 GB disk]:

Preparation: Follow the steps in Section A.3.1 to set
up the environment, including downloading the APKs.

Execution: Run reproducibility/e3.sh <APK_DIR>
<OUT_DIR> in the repository root, where <APK_DIR> is
the input directory containing the APKs and <OUT_DIR>
is the output directory for results. The script analyzes
a random subset of 500 apps, plus a fixed subset of

apps that span the 61 animations exceeding 3,000 ms in
duration and those that have a score of at least 50.

Results: The script should output OK.
Alternatively, manually verify that the generated report
at <OUT_DIR>/report.tex states:
• maltapNumberUniqueAnimationsExtendedDuration:

61 unique animations exceeding the 3,000 ms
duration threshold were found (cf. Section 5.3.1).

• maltapNumberAppsAnimationsScoreMin: 28 apps con-
taining at least one animation with a maliciousness
score of at least 50 were found (cf. Section 5.3.2).

(E4): Detection of vulnerable apps [15 human-minutes + 4
compute-hour + 100 GB disk]

Preparation: Follow the steps in Section A.3.1 to set
up the environment, including downloading the APKs.

Execution: Run reproducibility/e4.sh <APK_DIR>
<OUT_DIR>, where <APK_DIR> is the directory containing
the APKs and <OUT_DIR> is the output directory for
results. The script executes the vulnerable app detection
pipeline on the app dataset.

Results: The script should output OK.
Alternatively, manually verify that 76.3% ±10%
of analyzed apps are vulnerable by inspect-
ing the vulntapAmountAppsMinOneActivity
VulnerablePercent macro in the generated report
located at (<OUT_DIR>/report.tex). The error margin
accounts for possible variability introduced by analyzing
only a subset of apps.

A.5 Notes on Reusability
To foster future research and make it easier for others to
build on our work, we provide detailed documentation in
the README.md files included in each subdirectory. These files
include troubleshooting information, describe how to adjust
the analysis pipeline (e.g., changing the level of parallelism),
explain the code organization and module structure, and out-
line usage outside Docker environments.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.
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