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Abstract: Diffusion language models (Diffusion-LMs) introduce an explicit temporal dimension into text
generation, yet how this structure can be leveraged to control generation diversity for exploring multiple valid
semantic or reasoning paths remains underexplored. In this paper, we show that Diffusion-LMs, like diffusion
models in image generation, exhibit a temporal division of labor: early denoising steps largely determine the
global semantic structure, while later steps focus on local lexical refinement. Building on this insight, we
propose Time-Annealed Perturbation Sampling (TAPS), a training-free inference strategy that encourages
semantic branching early in the diffusion process while progressively reducing perturbations to preserve
fluency and instruction adherence. TAPS is compatible with both non-autoregressive and semi-autoregressive
Diffusion backbones, demonstrated on LLaDA and TraDo in our paper, and consistently improves output
diversity across creative writing and reasoning benchmarks without compromising generation quality.

§ Project Page: https://taps-dlm.github.io/

1. Introduction

Once upon a time, there was a brave 
knight named Sir Roland who always wore 
his shiny armor.

The knight is tasked to rescue a princess from 
a dragon. The princess is trapped in a cave. 
The knight brings the princess to safety.

Once the knight reached the castle, he was 
greeted by the new king, who tasked him with 
investigating the mysterious disappearance 
of the castle's treasure.

Once upon a time, there was a knight 
named Sir Arthur, who rode his horse 
through the vast forest.

Once upon a time, there was a knight 
named Sir Toby who rode his bicycle to 
tournaments instead of riding a horse.

Once upon a time, the knight is trapped in 
a castle in a forest with the queen. The 
castle is guarded by a dragon.
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Figure 1: Comparison between TAPS and the base models
across diversity, generation quality, and reasoning
performance. Quality is assessed by GPT, and reasoning is
measured via majority voting accuracy on GSM8K (Sec. 4).

Diffusion language models (Diffusion-LMs) have re-
cently emerged as a promising paradigm for natural
language generation [1, 2, 3, 4, 5]. A growing body
of work has proposed diverse architectures, rang-
ing from models initialized from pretrained large
language model weights to approaches trained en-
tirely from scratch. Across a wide range of tasks, in-
cluding creative writing, reasoning, and instruction
following, these models have demonstrated com-
petitive or even superior performance compared
to autoregressive language models [6, 7]. Despite
recent progress, Diffusion-LMs face a limitation
shared with autoregressive models, frequently gen-
erating repetitive or conservative outputs under
diversity-promoting instructions [8]. Diffusion-LMs
use different inference dynamics from autoregres-
sive language models, and existing diversity control
methods do not transfer well. Output diversity in
diffusion-based language generation, therefore, remains underexplored and insufficiently addressed in text
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generation.
Prior work on improving generation diversity in large language models can be broadly categorized into
training-time and decoding-time approaches. Training-time methods typically modify the optimization
objective during supervised fine-tuning or reinforcement learning [9, 10, 11]. While effective in certain
settings, these approaches often require carefully curated datasets tailored to the modified objective and
tend to possibly generalize poorly beyond the training distribution. Moreover, retraining or fine-tuning
models for diversity can be costly and inflexible in practice. Alternatively, decoding-time approaches offer
greater adaptability by operating directly at inference time, but they commonly face a fundamental trade-off
between diversity and generation quality. Furthermore, prompt-based approaches encourage diversity by
conditioning on prior generations or auxiliary instructions; however, their effectiveness depends heavily on
the model’s inherent inference capabilities [12, 13]. Sampling-based methods increase diversity by modifying
token sampling, such as temperature scaling or nucleus sampling [14, 15, 16]. However, aggressive tuning
often harms coherence or fluency, making it difficult to achieve both high diversity and stable quality.
To address this limitation, we introduce a simple yet effective technique termed Time-Annealed Perturbation
Sampling (TAPS). From a diffusion perspective, conditional generation can be viewed as sampling trajectories
conditioned on a signal derived from the prompt. In standard Diffusion-LMs inference, this conditioning
signal remains fixed throughout the denoising process, leading the model to repeatedly converge to similar
semantic outcomes under multiple samplings. On the contrary, TAPS perturbs the conditioning signal during
inference with a magnitude that decays over denoising steps. Intuitively, injecting stronger perturbations
at early denoising steps reduces the model’s reliance on a single conditioning trajectory, enabling semantic
branching when global structure is formed. As denoising progresses, the perturbation strength is gradually
reduced, allowing the model to recover alignment with the original prompt and refine local lexical and
stylistic details. This time-aware design allows TAPS to improve output diversity while preserving generation
quality and instruction adherence. To illustrate the effect of TAPS, Figure 1 provides an overview comparison
between TAPS and the base models across diversity, quality, and reasoning performance.
Our contributions are three-fold: (i) We empirically identify a temporal semantic structure in Diffusion-LMs,
where early denoising steps shape high-level semantics while later steps refine lexical realization. (ii) Based
on this insight, we propose Time-Annealed Perturbation Sampling (TAPS), a simple, training-free, and easily
scalable inference strategy that leverages diffusion time semantics to improve output diversity without sacri-
ficing generation quality. (iii) We validate TAPS across diverse tasks, including story generation, instruction
following, open-ended generation, and mathematical reasoning. Experiments on multiple diffusion-based
backbones show consistent gains in both semantic-level and token-level diversity with negligible overhead,
where increased diversity translates into improved exploration of alternative semantic or reasoning paths.

2. Related work
Diversity is a fundamental property of conditional text generation, as a single input prompt often admits
multiple valid and informative outputs in many tasks [17, 18, 19, 20]. Beyond improving surface-level
variation, diversity directly affects the effectiveness of downstream usage, such as selecting high-quality
candidates from multiple generations [21], supporting iterative refinement, and enabling exploration in both
text-only and multimodal inference settings [22, 23, 24], which is crucial for broadening rollout trajectories
in self-training or feedback-driven loops [25, 26, 27, 28]. As a result, improving generation diversity has
become an important objective in language modeling research. As discussed above, existing efforts to improve
diversity in language models can be broadly categorized into two lines of work: training-free methods and
training-based methods.
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Training-free Methods For Diversity. In training-free settings, efforts to improve LLM output diversity
largely focus on decoding-time by modifying token selection to better navigate the quality–diversity trade-off.
Deterministic decoding, such as greedy decoding and beam search, tends to follow the highest-probability
trajectories, often yielding repetitive and generic outputs, while beam search additionally incurs non-trivial
inference overhead [29]. In contrast, stochastic sampling injects randomness to broaden the space of
continuations: temperature sampling rescales distribution sharpness to balance coherence and diversity [30],
but overly high temperatures can degrade coherence; top-k sampling restricts candidates to a fixed set of
the k most probable tokens [18], and may over-prune under high uncertainty since the truncation does not
adapt to context-dependent confidence; top-p sampling preserves the probability “nucleus” by keeping the
smallest set whose cumulative mass exceeds p [14], yet under high-temperature regimes it can still admit
low-probability tail tokens and thus produce incoherent outputs. To better adapt across contexts with varying
uncertainty, recent work explores uncertainty-aware dynamic schemes. One line leverages global statistics
such as entropy—e.g., η-sampling and mirostat dynamically regulate the sampling pool/information rate
to maintain a target uncertainty level [31, 32]. Another line adapts temperature online: Entropy-Driven
Temperature (EDT) adjusts temperature as a function of model entropy [33], while KLD-based approaches
tune temperature using KL divergence between two models [34]. Beyond entropy-based control, confidence-
scaled truncation has also been studied, Li et al. [35] introduces an adaptive plausibility constraint within
contrastive decoding, filtering tokens using a threshold proportional to the maximum probability. Building on
this intuition, min-p sampling instantiates confidence-scaled truncation with pscaled = pbase · pmax, tightening
the candidate set under high confidence and relaxing it under uncertainty to better balance coherence and
diversity [36]. Complementarily, prompt-based conditioning on prior generations can steer later outputs
without modifying truncation; for instance, Ruan et al. [13] uses guided prompting and selective intervention
while controlling context growth via representative history selection, albeit with potential semantic drift and
added inference cost [8].
Training Methods For Diversity. Neural language models often suffer from repetitiveness and output
homogenization. Along the supervised-learning line, prior work modifies the maximum-likelihood objective to
encourage diversity: maximummutual information (MMI) reduces generic responses [17], while unlikelihood
training explicitly penalizes repetitive continuations [37]. Beyond token-level penalties, target-shaping
objectives such as the data-dependent Gaussian prior further regularize overconfident distributions [38].
More recently, preserving diversity has been studied directly in the SFT stage, aiming to mitigate diversity
collapse during instruction tuning [9, 39]. A second line incorporates diversity into preference-based post-
training. DivPO constructs preference pairs by selecting rare but high-quality responses under an explicit
diversity signal, thereby improving diversity without sacrificing alignment quality [10]. Recent diverse
preference learning methods analyze diversity collapse in KL-regularized preference optimization and recover
diversity by decoupling entropy regularization from reward alignment within the KL penalty [40]. For
creativity-oriented post-training, deviation-aware objectives can be applied on top of DPO/ORPO to learn
from rare, high-quality instances and promote diverse creative writing [41]. Relatedly, Creative Preference
Optimization injects modular creativity signals (including diversity) into the preference objective [42].
Finally, online RL offers a direct mechanism to shape exploration for multi-sample performance: unlikeliness
reward corrects GRPO’s rank bias by up-weighting rare-but-correct trajectories, improving pass@N and
sample diversity [43]. Li et al. [11] further couples a semantic-level diversity signal with a quality reward
during online RL, explicitly optimizing for both diversity and quality rather than treating diversity as a side
effect.

3. Methodology
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3.1 Preliminary
Different language models adopt different generation paradigms, which fundamentally shape how random-
ness and diversity arise during inference. We briefly contrast autoregressive language models and diffusion
language models, and discuss the implications of their generation mechanisms for diversity control.
Autoregressive Language Models. Autoregressive language models generate text by factorizing the condi-
tional distribution as p(y | x) =

∏︀T
t=1 p(yt | x, y<t), and sample tokens sequentially from this distribution.

Randomness is introduced at the token level through stochastic decoding strategies such as temperature
scaling or nucleus sampling, leading to diversity across different decoding trajectories.
Diffusion Language Models. Diffusion-based language models generate text through an iterative denoising
process that progressively refines a corrupted or masked sequence. Randomness in Diffusion-LMs arises not
only from token sampling but also from the inference dynamics themselves, such as stochastic denoising
updates and remasking decisions across steps [44]. Existing Diffusion-LMs can be broadly categorized into
non-autoregressive and semi-autoregressive variants. Non-autoregressive Diffusion-LMs update all tokens in
parallel at each denoising step by predicting masked tokens and selectively remasking them based on model
confidence. In contrast, semi-autoregressive DLMs generate text in a block-wise manner: blocks are produced
sequentially, while tokens within each block are refined using a non-autoregressive diffusion process.

3.2 Time-Annealed Perturbation Sampling
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Figure 2: A conceptual comparison of the inference
process between the base Diffusion-LM and our proposed
method, TAPS, illustrating different context conditioning
behaviors.

The core principle of Time-Annealed Perturbation
Sampling (TAPS) is that, by perturbing the condi-
tioning signal during inference in a time-dependent
manner, the model is exposed to a slightly differ-
ent input at each denoising step, leading to more
diverse generations. In particular, we introduce
stochastic perturbations to the context embeddings
at early inference stages and gradually attenuate
the perturbation strength as inference progresses.
As illustrated in Figure 2, we contrast the inference
trajectories of TAPS and the base model, highlight-
ing the effect of time-annealed perturbations across
denoising steps.
To preserve the essential correspondence between
the conditioning context and the generated output,
the injected noise is annealed towards zero and
completely removed in the final stages of inference.
As a result, the model retains strong conditioning
fidelity while benefiting from increased exploration
in the early semantic formation phase. The com-
plete sampling procedure is summarized in Appendix B.
Formally, given a conetxt embedding E, we define the perturbed conditioning at inference step t as

Ẽ(t) =

{︃
E + σ(t)ϵ, t ∈ [tstart, tend],
E, otherwise, (1)
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where ϵ ∼ N (0, I) and σ(t) follows a monotonically decreasing annealing schedule. We note that an
alternative form of conditioning perturbation can also be applied at the token level, where context tokens
are randomly masked during inference to weaken conditioning strength. We discuss this variant and its
empirical behavior in Appendix C.2.

Rescaling the Noise. Strong perturbations applied to conditioning embeddings can easily introduce
excessive distributional drift, leading to degraded generation quality, especially in hard tasks. To stabilize
the conditioning signal while still enabling effective stochastic exploration, we employ a distribution-aware
rescaling mechanism that jointly aligns the statistical structure of the perturbed embeddings and controls
their deviation magnitude.
Formally, Let Ẽ(t) denote the perturbed conditioning defined in Eq. (1) at inference step t. We first rescale Ẽ
to match the mean and standard deviation of the original embeddings:

E′ =
Ẽ− µ(Ẽ)

σ(Ẽ)
· σ(E) + µ(E),

where µ(·) and σ(·) are computed over both the token and embedding dimensions.
To further prevent overly aggressive deviations from the original conditioning signal, we interpolate between
the rescaled embeddings E′ and the original embeddings E using a mixing coefficient ψ ∈ [0, 1]:

Ê = ψE′ + (1− ψ)E.

This interpolation provides explicit control over the effective perturbation strength, allowing strong stochastic
variation while preserving semantic fidelity. Practically, we find this rescaling-and-mixing strategy crucial for
maintaining generation quality under large conditioning noise scales.

Norm-Preserving Projection. While the rescaling and mixing operations preserve the global statistical
structure of the conditioning embeddings, they do not explicitly constrain local geometric deviations at the
token level. In particular, additive perturbations may significantly alter the embedding norms of individual
tokens, which can disrupt the model’s learned representation geometry and lead to unstable generation.
To address this issue, we apply a norm-preserving projection that enforces per-token magnitude consistency
between the perturbed and original embeddings. Specifically, let Ê ∈ RT×d denote the rescaled and mixed
embeddings obtained from the previous step, and let E be the original conditioning embeddings. We project
Ê onto the hypersphere defined by the original token-wise norms:

E∗i =
Êi⃦⃦

Êi
⃦⃦

2 + ϵ
· ∥Ei∥2 , (2)

where i indexes tokens in the context and ϵ is a small constant for numerical stability. This projection preserves
the directional perturbation introduced by noise while maintaining the original embedding magnitudes,
thereby constraining the perturbation to lie on a norm-preserving manifold.

4. Experiments
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4.1 Experiments Setup
We briefly describe the experimental setup here. The detailed setup can be found in the Appendix A.
Datasets & Benchmarks. We evaluate on four benchmarks that jointly cover creative writing, real-world
instruction following, and verifiable reasoning. Specifically, we use WritingPrompts as our main long-form
story generation testbed [18], and complement it with NoveltyBench to stress-test diversity in the multi-
sample setting [12]. Beyond open-ended generation, we include GSM8K as a controlled benchmark for
multi-step mathematical reasoning [45], and utilize the creative-writing subset of Arena-Hard-Auto to
evaluate writing quality and instruction-following under more challenging, preference-aligned prompts [46].
Backbones. We conduct experiments on two diffusion language model backbones LLaDA-8B-Instruct [2]
and TraDo-8B-Instruct [3]. Both models are instruction-tuned variants. We initially experimented with their
base; however, we found that these models often failed to follow instructions and frequently produced empty
or degenerate outputs.
Baselines. We compare against five training-free baselines that encourage diversity through complementary
mechanisms while keeping the backbone, prompts, and generation seed. At the decoding level, we include
standard token-distribution truncation methods, top-k, top-p, and min-p [36], which control diversity
by restricting the candidate set in different ways. To account for diffusion-specific decoding behavior,
we additionally evaluate entropy-based dynamic temperature (EDT) [33], which modifies the denoising
dynamics during generation. Finally, we include Diverse Prompt as an input-level baseline that perturbs the
prompt to elicit varied outputs without changing the model itself [12].
Evaluation Metrics. We evaluate generation diversity using a comprehensive set of lexical, semantic, and
embedding-level metrics. Specifically, we report IntraDistinct [17] and calculated Div-Blue as 1− Self-BLUE
[47] to measure surface-level lexical diversity, Sent-BERT [48] to capture semantic variation based on sentence
embeddings, and Expectation-Adjusted Distinct Ngrams (EAD) [49] to quantify diversity in the embedding
space (see definition details in Appendix A.4). We evaluate generation quality using multi-dimensional
automatic evaluators, with the choice of evaluator adapted to each benchmark. On NoveltyBench, we employ
Skywork-Reward-Gemma-2-27B-v0.2 [50] to score generated outputs from multiple quality aspects. On
WritingPrompts and Arena-Hard-Auto, we follow standard practice and use GPT-4o-2024-08-06 [51] as
the quality judge, which provides multi-aspect evaluations of generated responses. For GSM8K, we assess
reasoning accuracy by sampling each prompt multiple times and reporting the final accuracy using a majority
voting strategy over all generated answers.

4.2 Results
4.2.1. Diversity under Multi-Sample Generation

NoveltyBench consists of two complementary subsets: Curated, which contains carefully filtered prompts
designed to elicit diverse yet valid responses, and WildChat, which comprises real-world user instructions
collected from open-domain interactions. In our evaluation, we use the full Curated subset of 100 prompts.
For WildChat, we randomly sample 500 prompts to ensure a diverse and representative set while keeping
the evaluation computationally tractable. For each prompt in both subsets, we generate 10 independent
samples under identical decoding conditions, following the standard multi-sample evaluation protocol of
NoveltyBench. All diversity and quality metrics are computed over these generated sample sets. Additional
results under different temperature settings are provided in the Appendix C.3.
Table 1 reports the diversity results on NoveltyBench, aggregated over both the Curated and WildChat
subsets. Across all four diversity metrics, our method consistently achieves the highest scores on both LLaDA-
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8B-Instruct and TraDo-8B-Instruct. Compared with baselines, our approach yields substantially larger gains
in semantic and embedding-level diversity, as reflected by Sent-BERT and EAD, indicating more meaningful
variation beyond surface-level lexical changes. To assess whether the increased diversity comes at the cost of
generation quality, we further evaluate the same outputs using the Skywork-Reward-Gemma-2-27B-v0.2
model, which provides multi-aspect quality scores across six human preference dimensions (Figure 3). Our
method achieves the strongest performance on creativity-related dimensions, suggesting that the induced
diversity translates into genuinely more creative and engaging responses rather than superficial variation.
Importantly, on other dimensions, our method performs comparably to or better than standard decoding
baselines. Together, these results demonstrate that our approach simultaneously improves diversity and
creative quality without compromising overall usefulness or coherence.

Table 1: Diversity metrics comparison across two backbones on
Novelty-Bench.

Diversity metrics
Backbone / Method IntraDistinct ↑ Div-Blue ↑ Sent-BERT ↑ EAD ↑
LLaDA-8B-Instruct
Base (Normal) 72.47 48.44 25.80 50.22
Top-p 74.77 42.40 24.30 51.09
Top-k 75.64 45.16 23.38 50.50
Min-p 76.08 44.39 22.30 54.48
Diverse Prompt 71.50 24.32 19.84 48.58
Ours Method 78.32 66.26 36.04 63.35
TraDo-8B-Instruct
Base (Normal) 83.73 57.06 24.28 62.15
Top-p 82.67 53.08 22.44 60.94
Top-k 82.54 56.49 22.93 62.84
Min-p 81.86 50.06 20.69 58.56
Diverse Prompt 85.57 61.50 28.58 66.51
Ours Method 86.50 65.88 29.84 67.31

We further observe that the effec-
tiveness of several baselines varies
markedly across backbones. While Di-
verse Prompt yields noticeable gains
on LLaDA, its performance on TraDo
deteriorates substantially across both
diversity and quality metrics. A similar
backbone-dependent trend is observed
for min-p decoding, which performs
favorably on LLaDA but degrades on
TraDo. In addition, we find that EDT
fails to produce reasonable genera-
tions on NoveltyBench under our eval-
uation setting; despite extensive pa-
rameter tuning, EDT often leads to de-
generate or incoherent outputs and is
therefore omitted from the compari-
son. These observations suggest that
prompt-based and token-level decod-
ing strategies can be highly sensitive
to the underlying model’s generative
capacity and the task distribution. In
contrast, our method exhibits more consistent improvements across backbones, indicating a more robust and
model-agnostic mechanism for enhancing diversity.

4.2.2. Open-Ended Story Generation

Table 2 presents results on WritingPrompts for long-form story generation. We randomly sample 250 prompts
and generate 16 outputs per prompt. Due to the inherent instability of Diffusion-LMs, a small fraction
of generations may degenerate into malformed or incoherent text; we therefore apply the same validity
filtering across all methods and compute metrics on the top 12 valid outputs per prompt. Under this
evaluation protocol, our method consistently achieves the highest diversity scores across lexical, semantic,
and embedding-level metrics on both backbones. In particular, we observe clear improvements in Sent-BERT
and EAD, indicating that the induced diversity extends beyond surface-level lexical variation and reflects
more substantial semantic differences among generated stories. Compared to token-level truncation baselines
such as top-k, top-p, and min-p, our approach yields stronger and more balanced gains across all diversity
metrics, suggesting more effective exploration of the narrative space.
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Figure 3: Quality comparison on Novelty-Bench across multiple human preference dimensions. The radar
plots compare our method with decoding baselines, showing consistent improvements on creativity-related
evaluation dimensions while maintaining comparable overall quality on other dimensions. Results for LLaDA
are shown on the left and for TraDo on the right.

To assess generation quality, we use GPT-4o as an automatic judge and report scores along four dimensions:
creativity, coherence, writing quality, and relevance. As shown in Table 2, our method maintains quality
scores that are comparable to, and in some cases slightly better than, baseline decoding strategies across
all evaluated dimensions. Notably, the substantial gains in diversity do not lead to degraded coherence or
relevance, indicating that the generated stories remain well-structured and faithful to the input prompts. In
contrast, min-p decoding exhibits consistent drops across diversity metrics, while EDT leads to noticeable
degradation in quality scores, highlighting the difficulty of preserving narrative quality under entropy-based
temperature modulation in long-form generation.

4.2.3. Preference-Aligned Creative Writing

We further evaluate our method on the creative-writing subset of Arena-Hard-Auto, which consists of 250
preference-aligned prompts derived from real user interactions. For each prompt, we generate 8 outputs
under identical decoding conditions. As in the previous experiment, we apply the same filtering across all
methods and compute metrics on the top 6 valid outputs per prompt. As shown in Table 2, our method
consistently achieves the highest diversity scores across diversity metrics on both backbones, closely mirroring
the trends observed on WritingPrompts. Notably, the improvements are particularly pronounced on semantic
and embedding-based metrics, indicating that the induced diversity reflects meaningful narrative variation
rather than superficial lexical changes. Following the same evaluation protocol as in Section 4.2.2, we use
GPT-4o to assess quality along four aspects. On Arena-Hard-Auto, our method maintains quality scores that
are comparable to or slightly better than other baselines. In contrast, Diverse Prompt exhibits a substantial
drop in diversity under this setting, while EDT leads to pronounced degradation in quality scores; min-p
decoding consistently underperforms the base model across both diversity and quality dimensions. Besides,
we further conduct a preference-based evaluation by directly comparing generations from different methods
using GPT-4o as a pairwise judge. The resulting win-rate statistics, reported in Table 10, show that our method
is consistently preferred over baseline decoding strategies, providing additional evidence that the increased
diversity aligns well with human-aligned preferences rather than introducing undesirable randomness.
Additional results under different temperature settings are provided in Appendix C.3.
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Table 2: Diversity and multi-aspect quality comparison across two backbones on two benchmarks.
Diversity metrics Quality (GPT-4o)

Backbone / Method IntraDistinct ↑ Div-Blue ↑ Sent-BERT ↑ EAD ↑ Crea ↑ Coh ↑ WQ ↑ Rel ↑
WritingPrompt
LLaDA-8B-Instruct 58.39 57.44 34.80 51.91 6.26 6.05 6.33 5.07
Top-p 58.51 57.16 34.76 51.96 6.34 6.07 6.31 4.93
Top-k 56.95 55.01 32.82 49.45 5.99 5.61 6.01 4.66
Min-p 55.90 53.86 32.20 47.62 6.18 5.92 6.27 4.74
Diverse Prompt 57.01 42.40 22.50 42.15 6.16 5.42 5.91 4.37
EDT 58.85 58.90 35.02 52.72 5.95 5.51 5.98 4.58
Ours Method 60.51 60.82 40.95 55.33 6.21 5.98 6.23 5.31
TraDo-8B-Instruct 67.70 81.71 52.23 66.46 5.31 6.09 5.84 6.93
Top-p 61.61 78.50 53.54 59.76 5.28 6.21 5.92 7.05
Top-k 58.47 76.20 51.57 55.83 5.16 6.11 5.75 7.00
Min-p 55.54 75.08 51.37 51.80 5.06 6.11 5.78 6.97
Diverse Prompt 61.64 77.36 39.06 65.35 5.23 6.17 5.87 6.94
EDT 67.80 81.90 52.43 66.61 5.15 5.85 5.60 6.79
Ours Method 68.44 82.37 53.84 67.06 5.32 6.10 5.83 6.96

Arena-Hard-Auto (Creative-Writing)
LLaDA-8B-Instruct 54.02 67.79 24.80 44.72 4.49 4.46 4.48 5.07
Top-p 53.75 66.80 24.18 44.27 4.56 4.53 4.60 5.17
Top-k 52.80 63.48 22.78 43.28 4.44 4.51 4.61 5.08
Min-p 51.26 60.81 22.53 41.05 4.40 4.48 4.57 5.01
Diverse Prompt 50.48 40.51 17.72 29.64 4.47 4.43 4.45 4.90
EDT 54.25 67.90 25.32 45.61 4.31 4.20 4.24 4.71
Ours Method 57.70 69.53 27.35 48.12 4.66 4.59 4.43 4.95
TraDo-8B-Instruct 77.65 81.17 34.57 73.76 5.56 5.08 4.84 6.05
Top-p 76.90 77.81 32.36 70.78 5.52 5.39 5.16 6.17
Top-k 75.14 76.73 32.24 69.93 5.42 5.29 5.05 6.07
Min-p 73.25 74.41 29.90 65.55 5.47 5.22 5.14 6.16
Diverse Prompt 63.85 47.36 17.17 48.34 5.42 5.21 5.07 6.00
EDT 78.20 81.92 34.80 73.91 5.20 4.33 4.27 5.56
Ours Method 80.90 82.93 35.65 74.66 5.39 5.24 5.08 6.12

4.2.4. Reasoning Robustness

We evaluate the robustness of our method on GSM8K to examine whether injecting context-level noise
adversely affects mathematical reasoning performance. We randomly sample 300 questions from GSM8K and
generate 10 independent reasoning trajectories per question under identical decoding conditions, varying
the decoding temperature. We report accuracy under two evaluation protocols: (i) single-sample accuracy
computed from the first generated solution (Pass@1), and (ii) majority-vote accuracy obtained by aggregating
the final answers from all 10 samples.
As shown in Figure 4, our observations can be summarized from two complementary perspectives. First,
compared to other baselines, our method incurs only a mild drop in Pass@1 accuracy while consistently
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outperforming all baselines under majority-vote evaluation. Second, as temperature increases, Pass@1
accuracy inevitably decreases for all methods, which would typically also lead to degraded majority-vote
performance. However, we observe the opposite trend for our method and Top-k, whose majority-vote
accuracy improves at higher temperatures.
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Figure 4: GSM8K accuracy on 300 questions with 10
samples per question. We report single-sample and
majority-vote accuracy under three temperatures.

These two observations together suggest that our
method benefits from structured exploration of
diverse reasoning paths. Although stronger ex-
ploration slightly affects single-sample reliability,
it produces sets of solutions with less correlated
errors, allowing aggregation to recover correct an-
swers more effectively. In contrast, the improve-
ment of Top-k arises from a different mechanism:
by aggressively truncating low-probability tokens,
it enforces a stricter sampling space and yields
more reliable answers across repeated samples,
even under increased stochasticity. To further
illustrate this behavior, Appendix E.1 provides
qualitative examples comparing multiple reason-
ing trajectories generated under different decoding strategies, illustrating how our method explores distinct
reasoning paths and how majority voting benefits from their complementarity.

4.3 Ablation Study

Table 3: Robustness under different noise scales σ and injection
windows t.
Backbone / Setting Div-Blue ↑ Sent-BERT ↑ EAD ↑ Quality ↑
LLaDA-8B-Instruct
σ=0.1, t ∈ [0.9, 0.3] 66.90 34.27 59.97 7.08
σ=0.3, t ∈ [0.9, 0.3] 68.64 37.28 60.25 6.96
σ=0.2, t ∈ [0.9, 0.3] 67.80 35.51 59.58 7.05
σ=0.2, t ∈ [0.9, 0.5] 67.55 35.40 59.44 7.09
σ=0.2, t ∈ [0.5, 0.1] 67.10 34.22 59.90 6.99
TraDo-8B-Instruct
σ=0.1, t ∈ [0.9, 0.5] 85.87 54.14 70.00 5.52
σ=0.3, t ∈ [0.9, 0.5] 85.64 54.04 70.15 5.50
σ=0.2, t ∈ [0.9, 0.5] 85.83 54.54 69.49 5.54
σ=0.2, t ∈ [0.9, 0.1] 85.98 53.84 70.38 5.49
σ=0.2, t ∈ [0.5, 0.1] 85.71 53.62 69.59 5.46

This section explores the role of the most
important parameters in our method on
the final quality and diversity of gener-
ated samples. Additional ablations on
the role of other parameters are provided
in Appendix D.
Noise scale σ. As shown in Table 3, the
effect of noise scale exhibits distinct be-
haviors across the two backbones. For
LLaDA-8B-Instruct, increasing the noise
scale consistently improves diversity-
related metrics, indicating that stronger
perturbations encourage broader explo-
ration of the semantic space at the cost of
degrading quality. In contrast, for TraDo-
8B-Instruct, increasing the noise scale
primarily improves the token-level diver-
sity metric, whereas the semantic-level diversity measured by Sent-BERT shows a degradation trend. This
suggests that stronger noise in TraDo primarily affects surface-level lexical variation rather than high-level
semantic branching. We attribute this difference to the semi-autoregressive diffusion design of TraDo, whose
denoising dynamics are less tolerant to strong perturbations compared to non-autoregressive diffusion
backbones. As a result, excessive noise is more likely to disrupt semantic coherence in TraDo, reflecting its
greater proximity to autoregressive generation and a weaker separation between semantic formation and

10
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surface refinement.
Noise injection time windows t. As shown in Table 3, the timing of noise injection plays a more critical
role in shaping semantic diversity. Injecting noise primarily during the early denoising stage consistently
yields higher Sent-BERT and EAD scores, whereas configurations that shift noise injection toward later stages
exhibit a noticeable decline in Sent-BERT performance. This indicates that late-stage noise has a limited
influence on high-level semantic formation and mainly affects local lexical variation, leading to weaker
semantic diversification. Moreover, injecting noise at later stages can interfere with the final refinement
process, preventing the denoising dynamics from fully absorbing the perturbations and resulting in mild
degradation in generation quality. These results support the intuition that early-stage perturbations are more
effective for guiding semantic branching in Diffusion-LMs.

Table 4: Ablation study of the quality-protection coefficient ψ.
ψ IntraDistinct ↑ Div-Blue ↑ Sent-BERT ↑ EAD ↑ Quality ↑
LLaDA-8B-Instruct
ψ=1.0 71.94 75.43 35.90 72.12 7.18
ψ=0.9 71.73 75.62 35.44 71.82 7.30
ψ=0.5 71.43 75.59 36.04 71.43 7.28
ψ=0.2 71.54 75.66 35.93 72.11 7.23
TraDo-8B-Instruct
ψ=1.0 69.74 85.81 54.91 70.19 5.45
ψ=0.9 69.63 85.72 55.15 70.06 5.50
ψ=0.5 69.63 85.53 54.96 69.90 5.49
ψ=0.2 69.55 85.63 54.70 69.96 5.48

Noise rescale coefficient ψ. As shown
in Table 4, the noise rescale coefficient ψ
effectively safeguards generation quality
against embedding-level noise. When
ψ=1.0, the psi-mix mechanism is dis-
abled and the model fully adopts per-
turbed embeddings, resulting in the low-
est quality scores across both backbones.
Meanwhile, varying ψ has only a lim-
ited effect on diversity metrics: although
ψ=1.0 yields slightly higher diversity,
the differences remain modest, and even
strong quality protection causes only mi-
nor diversity degradation. Overall, these
results demonstrate that ψ provides a smooth and robust trade-off between diversity and quality. By partially
pulling perturbed embeddings back toward the clean conditioning signal, psi-mix effectively stabilizes
generation quality without severely compromising diversity, even when ψ takes extreme values.

5. Conclusion
We propose Time-Annealed Perturbation Sampling (TAPS), a simple yet effective, training-free decoding strat-
egy for Diffusion Language Models that enhances generation diversity through time-dependent noise injection.
Extensive experiments show that TAPS consistently improves output diversity while maintaining a favorable
balance between diversity and quality, and generalizes well across different tasks. Inspired by diffusion-based
image generation, our results further indicate that Diffusion-LMs inherit key characteristics of diffusion
models—namely, the separation between early semantic formation and late-stage refinement—highlighting
Diffusion-LMs as a promising direction for future research on controlled and diverse text generation.
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A. Implementation Details
A.1 Hyperparameter Setting
We use backbone-specific hyperparameter configurations for TRADO-8B-Instruct and LLaDA-8B-Instruct,
following their respective default decoding setups. Differences in denoising steps, block length, and remasking
strategies reflect architectural and training variations between the two diffusion language models. Unless
otherwise specified, these hyperparameters are fixed across all experiments for each backbone. In addition,
the hyperparameters of our method are kept identical across all tasks and temperature settings, providing
further evidence of the robustness and generality of the proposed approach.

Table 5: Hyperparameter settings for
TraDo-8B-Instruct.

Hyperparameter Value
TraDo-8B-Instruct (Backbone)
Mask ID 151669
Generation Length 200
Block Length 4
Denoising Steps 4
Remasking Strategy low_confidence_dynamic
Confidence Threshold 0.9
TAPS Settings (Ours)
Noise Scale σ 0.20
Noise Injection Window t [0.90, 0.50]
Noise Rescale Coefficient 0.90
Annealing Strategy cosine

Table 6: Hyperparameter settings for
LLaDA-8B-Instruct.

Hyperparameter Value
LLaDA-8B-Instruct (Backbone)
Mask ID 126336
Generation Length 256
Block Length 128
Denoising Steps 256
CFG Scale 0.0
Remasking Strategy low_confidence
TAPS Settings (Ours)
Noise Scale σ 0.20
Noise Injection Window t [0.90, 0.30]
Noise Rescale Coefficient 0.90
Annealing Strategy cosine

A.2 Framework and Baseline Implementation Details
For TraDo-8B-Instruct1 and LLaDA-8B-Instruct2, we follow the official Hugging Face implementations and
usage guidelines released by the model authors. For the Diverse Prompt baseline, we build upon the method
proposed in Ruan et al. [13], with minor adaptations including a sliding-windowmechanism to better support
long-form generation. For the EDT baseline, we find that the hyperparameter settings recommended in the
original work can lead to degenerate outputs when directly applied to diffusion language models; therefore,
we re-tune the hyperparameters based on empirical validation to ensure stable and fluent generation. For the
Min-p baseline, we strictly follow the recommended configurations from the original work across all tasks.

A.3 Backbone-Specific Generation Settings
Although our method is model-agnostic in principle, we adopt different generation configurations for LLaDA
and TraDo due to architectural and practical constraints.
1https://huggingface.co/Gen-Verse/TraDo-8B-Instruct
2https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct
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TraDo is trained on SDAR weights and follows a block-wise masked generation paradigm [1], which adapts
an autoregressive Transformer language model. In practice, we find that the block length in TraDo must be
set to a small value, specifically, 4 tokens in the official GitHub. Increasing the block length leads to severe
generation instability, including garbled outputs or empty generations. Consequently, generating a sequence
of 256 tokens requires 64 blocks. Under this setting, diffusion steps within each block are necessarily limited,
and semantic construction and surface-level refinement are tightly coupled within a very short horizon.
To accommodate this constraint, we inject context noise across blocks with a gradually decaying schedule,
allowing early blocks to introduce diversity while later blocks stabilize the output.
In contrast, LLaDA supports substantially larger block lengths. In our experiments, we set the block length to
128 tokens and use a larger number of denoising steps within each block. This configuration more closely
aligns with the intended behavior of diffusion language models, where early denoising steps primarily
determine high-level semantic structure, and later steps focus on lexical choice and local fluency. As a result,
context perturbations injected early in the diffusion process can more effectively induce semantic diversity
without significantly harming generation quality. Overall, the greater flexibility in block length and denoising
depth allows our method to better exploit the temporal structure of diffusion in LLaDA, which partly explains
its stronger empirical performance compared to TraDo.

A.4 Evaluation Details
We evaluate diversity using lexical- and semantic-level metrics computed from multiple generations per
prompt. For each prompt, we first apply light text cleaning by removing template/special tokens (e.g.,
patterns like <|...|> and short XML-like tags) and normalizing whitespace. We then discard generations
shorter than a minimum character threshold and keep at most the top N longest remaining samples per
prompt; prompts with fewer than two valid samples are excluded from evaluation. Tokenization for lexical
metrics follows a simple regex-based tokenizer that splits text into word tokens and punctuation marks.
IntraDistinct is computed as the average distinct-n ratio over samples, with n ∈ {1, 2, 3}:

Distinctn(x) =
|uniq(ngramn(x))|
|ngramn(x)| , IntraDistinct =

1
3

3∑︁
n=1

Ex
[︀
Distinctn(x)

]︀
,

where ngramn(x) denotes sets of n-grams in generation x. We also report EAD following an occupancy-style
normalization: for a set of generations X of a prompt, let Cn be the total number of extracted n-grams across
X and Nn be the number of unique n-grams; with global vocabulary size Vn computed from all evaluated
generations, we define

EADn(X ) =
Nn

Vn

(︂
1−

(︁
Vn−1

Vn

)︁Cn
)︂ .

We average EADn over n = 1, . . . , 5 to obtain a single EAD score scaled by 100 for presentation.
For semantic diversity, we use Sentence-BERT embeddings from the all-MiniLM-L6-v2 checkpoint.3 We
encode all generations for the same prompt, L2-normalize the embeddings, and compute the mean pairwise
cosine distance over all upper-triangular pairs; the resulting SBERT diversity score is scaled by 100. All
metrics are first computed per prompt and then averaged across prompts to obtain dataset-level results.
3https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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B. Algorithm
This section presents the complete TAPS Algorithm 1, including embedding-level conditioning perturbation,
noise annealing, and the associated quality preservation mechanisms.

Algorithm 1: TAPS
Require: Diffusion LM fθ; prompt token ids p; mask token id m; total steps S; generation length L;

block length B; noise window [tstart, tend]; annealing schedule σ(t) with maximum scale
σmax; mixing coefficient ψ ∈ [0, 1].

Output: Completed sequence x ∈N|p|+L.
x← [p, m, . . . , m⏟  ⏞  

L

] E← Embed(p) ∈ RT×d N ← L/B Sb ← ⌊S/N⌋ S′ ← N · Sb

for b← 0 to N − 1 do
Let Ib be the token indices of the current block;
Precompute transfer counts {ki}Sb

i=1 from the block mask pattern
for i← 1 to Sb do

g← b · Sb + i t← g/S′

if t ∈ [tstart, tend] then
Ẽ← E + σ(t)σmaxϵ, ϵ ∼ N (0, I); // Inject embedding noise
Normalize Ẽ to match the mean and variance of E
E′ ← ψ Ẽ + (1− ψ) E; // ψ-mix for quality preservation
for j← 1 to T do

E′j ←
E′j

∥E′j∥2 + ε
· ∥Ej∥2; // Norm-preserving projection

else
E′ ← E

z← fθ(x; E′) x0 ← arg max(z + Gumbel(τ)) Compute confidence scores c from z Select ki
masked positions in Ib with lowest confidence Update selected positions in x using x0

return x

C. Additional Experiment Results
C.1 A toy Experiment
We design a toy experiment to provide an intuitive illustration of semantic branching and diversity evolution
in diffusion language models. Using TraDo-8B as the backbone, we construct a semantically ambiguous
prompt—“The mysterious prisoner looked at the guard and suddenly”—which naturally admits multiple
coherent but distinct continuations. We compare Standard DLM decoding with TAPS, where perturbations
are injected during the early denoising stage (the first 30% of steps) to encourage exploration of diverse
semantic trajectories.
To visualize the evolution of semantic diversity, we embed generated samples using Sentence-BERT and
project them into a shared two-dimensional space via t-SNE. We capture snapshots at three representative
stages (early, middle, and final) and visualize semantic coverage using convex hulls, as shown in Figure 5.
For the intermediate stage, since DLMs predict all tokens at each denoising step followed by re-masking, we
retain all predicted tokens when computing semantic representations. The results reveal a clear contrast: the
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Standard DLM exhibits progressive semantic contraction and mode collapse toward a single dominant region,
whereas TAPS consistently maintains broader and more multimodal semantic coverage across all stages.
This visualization highlights the importance of early-stage intervention in preserving semantic diversity and
mitigating repetitive generation in diffusion language models.
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Div: 23.73

Final Stage
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TAPS vs. Standard DLM

Figure 5: Toy experiment on semantic branching with TraDo-8B. We compare Standard DLM and TAPS by
projecting SBERT embeddings of generated samples into a shared 2D space via t-SNE at three denoising
stages (early, mid, final). Convex hulls illustrate semantic coverage. TAPS maintains broader and more
multimodal coverage across stages, while Standard DLM exhibits progressive semantic contraction. For the
mid-stage snapshot, we retain all predicted tokens before re-masking when computing semantic
representations.

C.2 Token-level Mask-based Noise Injection
In addition to embedding-level perturbation, we explore a token-level variant that injects noise by masking
a subset of tokens during decoding. Due to architectural differences, this variant is evaluated only on
LLaDA-8B-Instruct. Specifically, TraDo-8B-Instruct is adapted from autoregressive model weights and does
not naturally support token-level masking within the diffusion decoding process.
For token-level perturbation, we randomly mask 5% of the context tokens and apply the same time-annealed
schedule as in TAPS, where the masking effect gradually decays within a predefined early denoising window.
We conduct experiments at temperature T = 1.0 on a writing prompt benchmark consisting of 100 samples,
and compare token-level masking with embedding-level perturbation as well as the base decoding strategy.
As shown in Table 7, both perturbation variants improve diversity-related metrics over the base model,
indicating that TAPS can be instantiated using either discrete or continuous perturbation mechanisms.
However, while token-level masking achieves comparable or higher gains in certain diversity metrics, it
exhibits a larger degradation in quality-related scores. In contrast, embedding-level perturbation consistently
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maintains a more favorable balance between diversity and generation quality, suggesting that continuous
perturbations offer better stability for diffusion language models in practice.

Table 7: Comparison between token-level mask-based perturbation and embedding-level perturbation on
LLaDA-8B-Instruct at temperature T = 1.0. Results are averaged over 100 writing prompts.

Diversity Metrics Quality (GPT-4o)
Method IntraDistinct ↑ Div-BLEU ↑ Sent-BERT ↑ EAD ↑ Crea ↑ Coh ↑ WQ ↑ Rel ↑
LLaDA-8B-Instruct
Base Model 72.44 75.49 35.95 71.14 6.86 7.32 7.18 7.66
TAPS (Token-level Mask) 71.14 76.69 36.12 72.43 6.81 7.18 6.95 7.60
TAPS (Embedding-level) 72.68 76.60 36.51 72.68 6.90 7.23 7.25 7.73

C.3 Results under Different Temperatures
Due to space constraints, we report results at temperature T = 1.0 in the main paper. In this appendix,
we further present results under additional temperature settings, T = 0.8 and T = 1.5, on NoveltyBench
and Arena-Hard-Auto. We limit our evaluation to these three values, as diffusion language models tend to
produce unstable or degenerate outputs when the temperature falls outside this range. Experimental results
demonstrate that, across different temperatures, our method consistently improves diversity-related metrics
while maintaining comparable generation quality.

C.3.1. Arena-Hard-Auto

For Arena-Hard-Auto, the main paper reports results on the full creative writing subset. In this appendix, we
additionally evaluate on a randomly sampled subset of 50 creative writing prompts, where each prompt is
generated 8 times to facilitate diversity evaluation. Results under different temperatures are reported in
Table 8 (T = 0.8) and Table 9 (T = 1.5).
At lower temperature (T = 0.8), our method consistently outperforms baseline decoding strategies on most
diversity metrics across both backbones. Notably, TAPS also achieves the best performance on multiple
quality-related metrics, indicating that time-annealed perturbation can effectively enhance diversity without
sacrificing generation quality in conservative decoding regimes. At a higher temperature (T = 1.5), we
observe distinct behaviors between the two backbones. For LLaDA-8B-Instruct, a fully non-autoregressive
diffusion model, TAPS remains robust under increased sampling stochasticity and continues to achieve
strong diversity gains while maintaining competitive quality. In contrast, for TraDo-8B-Instruct, which
retains certain semi-autoregressive characteristics, high temperature amplifies the inherent randomness
of autoregressive decoding, leading to noticeable quality degradation for several baseline methods. Under
this setting, Top-k sampling achieves the strongest overall quality performance on TraDo-8B-Instruct. This
behavior is expected, as Top-k explicitly filters out low-probability tokens and thus provides a stronger
constraint on local token selection. Given TraDo’s partial autoregressive nature, such token-level filtering is
particularly effective at mitigating error accumulation under high-temperature decoding.
Overall, these results suggest that TAPS provides stable and effective diversity control across temperature
regimes, with its robustness being particularly pronounced for diffusion-style backbones. The observed
differences further highlight how the degree of autoregressive structure influences a model’s tolerance to
high-temperature stochasticity.
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Table 8: Diversity and multi-aspect quality comparison across two backbones in Arena-Hard-Auto (T=0.8).

Diversity metrics Quality (GPT-4o)
Backbone / Method IntraDistinct ↑ Div-Blue ↑ Sent-BERT ↑ EAD ↑ Crea ↑ Coh ↑ WQ ↑ Rel ↑
LLaDA-8B-Instruct
Base (Normal) 75.35 40.81 20.66 48.22 4.85 5.02 5.20 5.08
Top-p 76.82 38.85 19.16 45.48 4.70 4.82 4.87 4.97
Top-k 75.07 44.98 23.27 50.23 4.94 5.04 4.97 5.25
Min-p 77.15 33.09 14.95 40.90 4.12 4.36 4.43 4.40
EDT 50.50 27.44 10.08 21.80 4.20 4.23 4.31 4.25
Diverse Prompt 69.98 10.87 10.31 27.97 4.75 4.72 4.77 4.81
Ours Method 78.47 43.57 24.63 49.35 4.96 5.07 5.23 5.21
TraDo-8B-Instruct
Base (Normal) 81.80 40.45 20.29 49.72 5.83 5.12 5.07 6.02
Top-p 81.63 38.22 19.90 48.40 5.80 5.19 5.16 6.03
Top-k 81.64 40.36 20.25 49.54 5.87 5.20 5.12 6.02
Min-p 80.51 37.39 19.65 47.45 5.65 5.05 5.06 5.90
EDT 80.50 27.44 10.08 21.80 3.40 2.09 2.28 2.31
Diverse Prompt 69.83 17.06 6.30 19.37 3.55 2.62 2.79 2.77
Ours Method 82.47 40.77 20.36 50.30 5.90 5.19 5.09 6.07

Preference-Based Evaluation on Arena-Hard-Auto Arena-Hard-Auto is an automatic preference-based
evaluation benchmark that adopts an LLM-as-a-Judge paradigm to approximate human judgments in Chatbot
Arena. It performs pairwise comparisons between a candidate method and a baseline model (Normal
decoding in our setting), where a strong judge model (GPT-4o) determines which response is preferred. To
mitigate positional bias, each comparison is conducted twice with swapped response orders. The final score
represents the win rate against the baseline, with 50% indicating parity, and 95% confidence intervals are
estimated via bootstrap resampling.
As shown in Table 10, most decoding strategies—including Min-p, Top-p, Top-k, the Base Model, and
TAPS—achieve comparable preference scores clustered around 50%, indicating similar overall quality under
this evaluation protocol. In contrast, EDT and Diverse Prompt perform significantly worse, suggesting that
aggressively enforcing diversity can substantially harm human-aligned preference. Notably, TAPS achieves
the second-highest overall score among all methods, while remaining within the confidence range of the
top-performing baselines. These results suggest that TAP is able to enhance diversity without introducing
preference-level degradation, maintaining competitiveness under LLM-based preference evaluation.

C.3.2. NoveltyBench

For Novelty-Bench, we additionally evaluate on both the curated and wildchat subsets by randomly sampling
50 prompts from each subset. For each prompt, we generate 10 samples and report the average results.
Table 11 summarizes the diversity metrics under different temperature settings.
At lower temperature (T = 0.8), our method consistently achieves the best or near-best performance across
almost all diversity-related metrics on both backbones, demonstrating its effectiveness in promoting diverse
generation under conservative decoding regimes. Importantly, these diversity gains do not come at the
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Table 9: Diversity and multi-aspect quality comparison across two backbones in Arena-Hard-Auto (T=1.5).

Diversity metrics Quality (GPT-4o)
Backbone / Method IntraDistinct ↑ Div-Blue ↑ Sent-BERT ↑ EAD ↑ Crea ↑ Coh ↑ WQ ↑ Rel ↑
LLaDA-8B-Instruct
Base (Normal) 83.33 54.02 32.44 64.50 4.08 3.75 3.73 4.14
Top-p 79.76 49.30 27.31 54.40 4.60 4.61 4.66 4.78
Top-k 75.98 47.34 28.60 49.14 4.37 4.65 4.79 4.84
Min-p 80.27 37.47 21.35 44.06 4.21 4.35 4.63 4.42
EDT 79.12 42.44 22.79 41.10 4.13 4.21 4.48 4.29
Diverse Prompt 75.43 29.38 18.16 41.21 4.48 3.75 3.76 4.48
Ours Method 84.29 55.58 32.14 65.80 6.21 5.52 6.23 5.31
TraDo-8B-Instruct
Base (Normal) 87.51 58.32 23.18 60.47 3.27 1.85 1.77 2.57
Top-p 87.33 57.38 23.21 61.21 3.52 2.08 2.23 3.04
Top-k 83.05 44.26 12.25 52.21 5.00 4.31 4.28 4.97
Min-p 78.45 37.78 9.30 46.31 4.82 4.23 4.19 4.80
EDT 82.12 29.20 12.09 24.75 2.51 1.48 1.66 1.61
Diverse Prompt 70.93 18.11 9.38 22.78 2.62 1.69 1.83 1.83
Ours Method 88.30 59.58 24.04 61.80 4.26 3.53 3.20 3.72

expense of generation quality: as shown in Figure 6, TAP maintains competitive or superior quality scores
across multiple categories, including creativity and subjective preference, compared to baseline decoding
strategies. In contrast, the Diverse Prompt baseline exhibits noticeable quality degradation across several
aspects, suggesting that aggressively encouraging diversity through prompt manipulation can negatively
impact overall generation quality.
At higher temperature (T = 1.5), we observe a different behavior. For the base model, this temperature
already approaches the upper limit of stable generation, leading to a higher likelihood of degenerate or
incoherent outputs. Under this setting, several methods exhibit a sharp increase in diversity metrics, including
TAP and Diverse Prompt, but this is accompanied by substantial degradation in generation quality. In contrast,
Top-p and Top-k sampling retain relatively strong quality performance at high temperature, which aligns
with their intrinsic filtering mechanisms that suppress low-probability or implausible tokens. These results
suggest that while high temperature can artificially inflate diversity scores, it may do so by sacrificing output
quality, and highlight the importance of balanced diversity control under realistic decoding regimes.

D. Additional Ablation Study
D.1 Studied Parameters
In the robustness study, we vary the following hyperparameters of TAPS while keeping all others fixed to their
default values. We consider (i) the noise scale(σ), (ii) noise injection time windows t defined by the start and
end denoising steps, which are treated jointly as they together determine the duration of perturbation, and
(iii) the noise annealing strategy, including cosine and linear decay. Unless otherwise specified, all results are
reported using the same decoding configuration as in the main experiments.
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Table 10: Arena-Hard-v2.0 Preference Results (Category: Creative Writing)

Method Scores (%) CI (%)

Min-P 52.6 (-10.7 / +7.9)
TAPS 51.7 (-7.2 / +9.1)
Top-P 50.5 (-8.6 / +6.9)
Base Model 50.0 (-0.0 / +0.0)
Top-K 49.3 (-9.8 / +8.8)
EDT 22.3 (-7.1 / +8.2)
diverse prompt 19.2 (-6.7 / +9.5)

Table 11: Diversity comparison across two backbones on Novelty-Bench under different temperatures. Left:
T = 0.8. Right: T = 1.5.

Diversity metrics
Backbone / Method IntraDistinct ↑ Div-Blue ↑ Sent-BERT ↑ EAD ↑
LLaDA-8B-Instruct
Base (Normal) 80.13 46.64 34.57 54.05
Top-p 77.91 47.24 36.75 54.24
Top-k 81.52 46.53 34.49 53.97
Min-p 81.39 40.82 32.88 52.18
EDT – – – –
Diverse Prompt 77.86 36.09 27.07 45.64
Ours Method 82.27 47.61 36.64 56.14
TraDo-8B-Instruct
Base (Normal) 84.79 72.60 29.33 74.88
Top-p 84.17 72.82 28.81 74.88
Top-k 84.33 72.23 28.96 74.75
Min-p 84.28 72.12 29.18 73.95
EDT – – – –
Diverse Prompt 84.02 68.28 30.21 72.84
Ours Method 85.60 73.91 31.20 75.72

Diversity metrics
Backbone / Method IntraDistinct ↑ Div-Blue ↑ Sent-BERT ↑ EAD ↑
LLaDA-8B-Instruct
Base (Normal) 79.01 62.33 30.89 61.18
Top-p 84.76 77.99 41.65 77.14
Top-k 82.70 72.36 36.76 72.49
Min-p 82.03 65.81 33.02 65.61
EDT – – – –
Diverse Prompt 86.10 80.45 41.52 79.23
Ours Method 88.33 88.84 49.12 84.11
TraDo-8B-Instruct
Base (Normal) 84.79 72.60 29.33 74.88
Top-p 87.53 85.58 36.70 82.77
Top-k 87.30 89.43 38.88 83.81
Min-p 84.97 81.67 32.69 79.06
EDT – – – –
Diverse Prompt 98.02 96.90 55.21 104.57
Ours Method 94.45 98.69 56.08 94.15

D.2 Robustness w.r.t. Annealing Strategy
Overall, as shown in Table 12, we observe that TAPS exhibits similar performance under both cosine and
linear annealing schedules. This suggests that the method does not critically rely on a specific annealing
function, provided that the injected noise decays over time. More specifically, for both LLaDA-8B-Instruct and
TraDo-8B-Instruct, introducing TAPS with either linear or cosine annealing consistently improves diversity-
related metrics over the base decoding strategy. While cosine annealing achieves slightly higher scores in
most diversity metrics, the overall performance gap between the two schedules remains small, and both
variants exhibit comparable quality scores across creativity, coherence, writing quality, and relevance. These
results indicate that the effectiveness of TAPS is robust to the choice of annealing strategy, and that monotonic
noise decay—rather than a specific functional form—is the key factor in promoting diverse generation.
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Figure 6: Multi-aspect quality comparison on Novelty-Bench at temperature T = 0.8. We evaluate
generation quality across four dimensions: Product & Purchase Recommendations, Character & Entity
Naming, Subjective Rankings & Opinions, and Creativity. TAPS maintains strong and balanced performance
across all aspects, while some baseline methods, such as Diverse Prompt, exhibit noticeable quality
degradation despite increased diversity.

Table 12: Robustness study w.r.t. annealing strategy. We compare cosine versus linear noise decay on two
backbones while keeping other hyperparameters fixed.

Diversity metrics Quality (GPT-4o)
Backbone / Method IntraDistinct ↑ Div-BLEU ↑ Sent-BERT ↑ EAD ↑ Crea ↑ Coh ↑ WQ ↑ Rel ↑
LLaDA-8B-Instruct
Base (Normal) 57.82 65.11 33.53 57.60 6.25 5.66 6.04 6.76
TAPS (Linear Anneal) 59.06 66.32 34.82 58.44 6.30 5.74 6.03 6.73
TAPS (Cosine Anneal) 59.73 66.38 34.41 59.20 6.31 5.79 6.11 6.65
TraDo-8B-Instruct
Base (Normal) 76.02 89.60 56.63 77.65 5.03 5.17 5.06 5.92
TAPS (Linear Anneal) 76.88 89.87 57.09 78.04 5.08 5.17 5.10 5.81
TAPS (Cosine Anneal) 77.07 89.93 57.40 78.22 5.07 5.19 5.11 5.83

E. Additional Analysis
E.1 Examples on GSM8K Reasoning
In this section, we present qualitative comparisons between our method and the base model on GSM8K
problems with different levels of difficulty. We focus on two representative cases to illustrate how diversity-
enhancing perturbations interact with mathematical reasoning under repeated sampling.
For an easier problem, we show that our method substantially increases the diversity of generated solutions
while preserving correct reasoning, producing multiple valid reasoning paths that differ in their intermediate
steps and descriptions. For a more challenging problem, where the solution space contains multiple uncertain
or misleading paths, we demonstrate that injecting noise encourages broader exploration and helps prevent
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repeated sampling from collapsing into the same erroneous reasoning pattern. Together, these examples
provide concrete insight into how controlled exploration enables diverse reasoning paths and benefits
aggregation-based evaluation.

Example 1. Lloyd’s chickens produce 252 eggs per day. He sells eggs at $2 per dozen. How much money
does he make in one week?

TAPS 10 reasoning trajectories (accuracy 100%)
(1) Lloyd’s chickens produce 252 eggs per day. Since one dozen equals 12 eggs, 252 / 12 = 21 dozen eggs per
day. He sells each dozen for $2, so he makes 21 × $2 = $42 per day. In a week (7 days), he makes $42 × 7 =
$294. The answer is $294.
(2) 252 eggs per day equals 252 / 12 = 21 dozens of eggs. If Lloyd sells each dozen for $2, then he makes 21 ×
$2 = $42 per day. In a week, Lloyd makes $42 × 7 = $294. The answer is $294.
(3) Lloyd’s chickens produce 252 eggs per day. Since there are 12 eggs in a dozen, 252 / 12 = 21 dozens per
day. He sells them for $2 per dozen, so he makes $42 per day. Over 7 days, he earns $294. The answer is $294.
(4) 252 eggs per day means 252 × 7 = 1764 eggs per week. Dividing by 12 eggs per dozen gives 147 dozens
per week. At $2 per dozen, Lloyd earns $294 per week. The answer is $294.
(5) Lloyd produces 252 eggs per day, which is 21 dozens per day. Selling each dozen for $2 gives $42 per day.
Over a week, this totals $294. The answer is $294.
(6) Lloyd produces 21 dozens of eggs per day. Multiplying by 7 days gives 147 dozens per week. At $2 per
dozen, his weekly income is $294. The answer is $294.
(7) 252 eggs per day divided by 12 gives 21 dozens. If Lloyd sells 21 dozens per day at $2 per dozen, he earns
$42 per day. Over 7 days, this equals $294. The answer is $294.
(8) 252 eggs per day equals 21 dozens per day. Selling at $2 per dozen yields $42 per day. In one week, Lloyd
earns $294. The answer is $294.
(9) 252 eggs per day gives 21 dozens per day. Over 7 days, that is 147 dozens. At $2 per dozen, Lloyd earns
$294 per week. The answer is $294.
(10) 252 eggs per day yields 21 dozens. Selling each dozen for $2 gives $42 per day. Over a week, Lloyd earns
$294. The answer is $294.

Majority answer: $294 ✓
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Top-k 10 reasoning trajectories (accuracy 80%)
(1) 252 eggs per day are sold at $2 per dozen. Since 252/12 = 22 dozen eggs, Lloyd earns 22× $2 = $44 per
day. Over a week, he earns 44× 7 = $308. The answer is $308.
(2) 252 eggs per day is equal to 252 / 12 = 21 dozen eggs per day. In sells them for 2 per dozen, so he makes
21× 2 = $42 per day. In a week,7 days, he makes $42 ∗ 7 = $294. The answer is 294.
(3) 252 eggs per day equals 252/12 = 21 dozen eggs per day. Selling each dozen for $2 yields $42 per day. Over
7 days, Lloyd earns $294. The answer is $294.
(4) 252 eggs per day corresponds to 252/12 = 21 dozen eggs per day. Over a week, this is 21× 7 = 147 dozens.
At $2 per dozen, Lloyd earns $294 per week. The answer is $294.
(5) 252 eggs per day is equal to 252 / 12 = 21 dozen eggs per day. Lloyd sells sells each dozen for $2, so he
makes 21× $2 = $42 per day. In a week, he makes $42× 7 = $294. The answer is $294.
(6) 252 eggs per day equals 21 dozens per day. At $2 per dozen, Lloyd earns $42 per day. Over 7 days, he earns
$294. The answer is $294.
(7) 252 eggs per day gives 252/12 = 21 dozen eggs per day. Over a week, that is 21× 7 = 147 dozens. At $2
per dozen, Lloyd earns $294 per week. The answer is $294.
(8) Lloyd produces 252× 7 = 1664 eggs per week. Dividing by 12 gives 1664/12 = 132 dozens. At $2 per dozen,
he earns $264 per week. The answer is $264.
(9) 252 eggs per day equals 252/12 = 21 dozen eggs per day. Selling at $2 per dozen gives $42 per day. Over a
week, Lloyd earns $294. The answer is $294.
(10) 252 eggs per day equals 21 dozen eggs per day. Selling each dozen for $2 yields $42 per day. Over a week,
Lloyd earns $294. The answer is $294.

Majority answer: $294 ✓

Base Model 10 reasoning trajectories (accuracy 60%)
(1) 252 eggs per day equals 252 / 12 = 21 dozens per day. Over 7 days, this is 147 dozens per week. At $2 per
dozen, Lloyd makes $294 per week. The answer is $294.
(2) 252 eggs per day equals 252 / 12 = 21 dozen eggs per day. Selling at $2 per dozen yields $42 per day. Over
7 days, Lloyd makes $294 per week. The answer is $294.
(3) 252 eggs per day over 7 days gives 1764 eggs per week. The calculation is incorrect and concludes Lloyd
makes $254 per week.
(4) 252 eggs per day equals 21 dozen eggs per day. The reasoning incorrectly computes daily income as $84
and weekly income as $588. The answer is $588.
(5) 252 / 12 = 21 dozens per day. Selling at $2 per dozen yields $42 per day. Over 7 days, Lloyd makes $294.
The answer is $294.
(6) 252 eggs per day equals 21 dozens per day. Over 7 days, this is 147 dozens per week. At $2 per dozen, Lloyd
makes $294. The answer is $294.
(7) 252 eggs per day over 7 days yields 1764 eggs per week. Dividing by 12 gives 147 dozens per week. At $2
per dozen, Lloyd makes $294 per week. The answer is $294.
(8) The reasoning contains multiple arithmetic errors and concludes Lloyd makes $358 per week.
(9) The calculation incorrectly derives extremely large numbers and concludes Lloyd makes $2968 per week.
(10) The reasoning incorrectly doubles the egg count and concludes Lloyd makes $588 per week.

Majority answer: $294 ✓

Example 2. Steve and Tim decide to see who can get home from school the fastest. Steve lives further
away than Tim, so he is allowed to ride his bike. Steve lives 3 miles from the school and can bike at 440 feet
per minute. Tim lives 2 miles away from the school. If Tim can ride his skateboard at 264 feet per minute,
how long will the winner be waiting at their house before the loser finishes the race?
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TAPS 10 reasoning trajectories (accuracy 30%)
(1) Steve lives 3 miles from school. Converting miles to feet, the total distance is 5400 feet. Tim lives 2 miles
from school, which is 3600 feet. Time for Steve = 5400 / 440 = 12.5 minutes. Time for Tim = 3600 / 264 =
9.5 minutes. The difference is calculated as 13 minutes. The answer is 13 minutes.
(2) 2 miles equals 78720 feet. Tim’s time is computed as 78720 / 264 = 30 minutes. Steve travels 3 miles
(118080 feet) and is computed as 118080 / 440 = 262 minutes. The difference is 232 minutes. The answer is
232.
(3) Steve: 3 miles = 15,840 feet; 15,840 / 440 = 36 minutes. Tim: 2 miles = 10,560 feet; 10,560 / 264 = 40
minutes. The difference is 4 minutes. The answer is 4 minutes.
(4) 3 miles = 52,800 feet; 52,800 / 440 = 120 minutes. 2 miles = 24,000 feet; 24,000 / 264 = 90 minutes.
The difference is 30 minutes. The answer is 30 minutes.
(5) Steve travels 5280 feet at 440 feet per minute, and the time is computed as 110 minutes. Tim travels 3520
feet at 264 feet per minute. The answer is 11000.
(6) Steve: 15,840 / 440 = 36 minutes. Tim: 10,560 / 264 = 40 minutes. The difference is 4 minutes. The
answer is 4.
(7) Steve bikes 3 miles (15,840 feet) at 440 feet per minute, taking 36 minutes. Tim walks 2 miles (10,560 feet)
at 264 feet per minute, taking 40 minutes. The difference is 4 minutes. The answer is 4.
(8) Steve travels 14,520 feet at 440 feet per minute, taking 33 minutes. Tim travels 9,680 feet at 264 feet per
minute, taking 25 minutes. The winner waits 8 minutes. The answer is 8.
(9) Steve: 15,840 / 440 = 36 minutes. Tim: 10,560 / 264 = 40 minutes. The difference is 4 minutes. The
answer is 4 minutes.
(10) Steve travels 17,640 feet at 440 feet per minute, taking 40 minutes. Tim travels 11,760 feet at 264 feet per
minute, taking 45 minutes. The difference is 5 minutes. The answer is 5.

Majority answer: 4 minutes ✓
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Base Model 10 reasoning trajectories (accuracy 10%)
(1) Steve’s speed is 440 feet per minute and Tim’s speed is 264 feet per minute. Several intermediate calculations
are performed with inconsistent reasoning. The solution concludes that the winner will be waiting for 50
minutes. The answer is 50.
(2) Steve lives 3 miles away, converted to 5440 feet. At 440 feet per minute, Steve takes 13 minutes. Tim lives
2 miles away, converted to 2200 feet. At 264 feet per minute, Tim takes 8.5 minutes. The difference is 4.5
minutes. The winner waits 4.5 minutes.
(3) Steve lives 3 miles from school, converted to 10,400 feet. At 440 feet per minute, it takes him 24.8 minutes.
Tim lives 2 miles away, converted to 5280 feet. At 264 feet per minute, it takes him 20 minutes. The difference
is 4.8 minutes. The answer is 4.8 minutes.
(4) Steve lives 3 miles from school, which equals 15,840 feet. At 440 feet per minute, Steve takes 36 minutes.
Tim lives 2 miles away, which equals 10,560 feet. At 264 feet per minute, Tim takes 30 minutes. The solution
concludes that the winner waits 6 minutes. The answer is 6 minutes.
(5) Steve bikes 15,840 feet at 440 feet per minute, taking 36 minutes. Tim travels approximately 10,762 feet
at 264 feet per minute, taking about 38 minutes. The reasoning becomes inconsistent and concludes that the
winner waits about 8 minutes.
(6) Steve travels 20,800 feet at 440 feet per minute and is estimated to take several minutes due to incorrect
calculations. Tim travels 10,560 feet at 264 feet per minute, taking 40 minutes. The difference is reported as 5
minutes. The answer is 5 minutes.
(7) Steve travels 4280 feet at 440 feet per minute, taking about 10 minutes. Tim travels 6280 feet at 264 feet
per minute, taking about 23 minutes. The difference is incorrectly computed as 13 minutes. The answer is 13
minutes.
(8) Steve travels 15,840 feet at 440 feet per minute, taking 36 minutes. Tim travels 10,560 feet at 264 feet per
minute, taking 40 minutes. The winner waits 4 minutes. The answer is 4 minutes.
(9) Distances are converted inconsistently and mixed with unrelated arithmetic. Steve is estimated to finish in
under 1 minute, while Tim takes about 50 minutes. The reasoning is incoherent and no consistent conclusion is
reached.
(10) The problem statement is partially restated with incorrect unit conversions and arithmetic. The final
calculation is incomplete and no valid waiting time is obtained.

Majority answer: 50 minutes ×
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Top-k 10 reasoning trajectories (accuracy 30%)
(1) Steve lives 3 miles from school, which is 3× 5280 = 15840 feet. Tim lives 2 miles away, or 2× 5280 = 10560
feet. Steve’s time is 15840/440 = 36 minutes, while Tim’s time is 10560/264 = 40 minutes. The waiting
difference is 40− 36 = 4 minutes. The answer is 4 minutes.
(2) Steve takes 36 minutes to get home, while Tim takes 30 minutes. The difference is 36− 30 = 6 minutes.
The answer is 6 minutes.
(3) Steve takes 36 minutes and Tim takes 40 minutes. The waiting time is 44− 36 = 8 minutes. The answer is 8
minutes.
(4) Steve bikes 3 miles and Tim travels 2 miles, yielding a time difference of 15− 12 = 3 minutes. The answer is
3 minutes.
(5) After converting the distances and speeds, the time difference is computed as 1/140 minutes, which equals
3 seconds. The answer is 3 seconds.
(6) Steve takes 12 minutes and Tim takes 15 minutes to get home. The difference is 15− 12 = 3 minutes. The
answer is 3 minutes.
(7) Steve’s travel time is 36 minutes and Tim’s is 40 minutes. The difference is 40− 36 = 4 minutes. The answer
is 4 minutes.
(8) Steve takes 36 minutes and Tim takes 33 minutes. The difference is 36− 33 = 3 minutes. The answer is 3
minutes.
(9) Steve arrives in 36 minutes, while Tim arrives in 40 minutes. The winner waits 40− 36 = 4 minutes. The
answer is 4 minutes.
(10) Steve finishes in 36 minutes and Tim in 37 minutes. The waiting time is 1 minute. The answer is 1 minute.

Majority answer: 3 minutes ×

F. Limitations
While TAPS provides a simple and effective mechanism for enhancing diversity in diffusion language models,
it also has several limitations. First, TAPS applies perturbations uniformly at the representation level, without
distinguishing the relative importance of different tokens within a sequence. Prior work suggests that certain
tokens can play a decisive role in shaping the overall semantic trajectory of a sentence [52]. Incorporating
token-level importance or saliency into the perturbation process could further improve the effectiveness of
early-stage interventions.
Second, although TAPS generally maintains a favorable balance between diversity and quality, we observemild
degradation in certain quality metrics compared to the base model, particularly under higher temperature
settings where stochasticity is already amplified. This suggests that additional mechanisms for quality
preservation, such as adaptive perturbation strength or quality-aware scheduling, may be beneficial. We
leave the exploration of more fine-grained and quality-aware perturbation strategies to future work.

30


	Introduction
	Related work
	Methodology
	Preliminary
	Time-Annealed Perturbation Sampling

	Experiments
	Experiments Setup
	Results
	Diversity under Multi-Sample Generation
	Open-Ended Story Generation
	Preference-Aligned Creative Writing
	Reasoning Robustness

	Ablation Study

	Conclusion
	Implementation Details
	Hyperparameter Setting
	Framework and Baseline Implementation Details
	Backbone-Specific Generation Settings
	Evaluation Details

	Algorithm
	Additional Experiment Results
	A toy Experiment
	Token-level Mask-based Noise Injection
	Results under Different Temperatures

	Additional Ablation Study
	Studied Parameters
	Robustness w.r.t. Annealing Strategy

	Additional Analysis
	Examples on GSM8K Reasoning

	Limitations

