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Abstract

Tactile sensing is crucial for achieving human-level robotic capabilities in ma-
nipulation tasks [54]. As a promising solution, Vision-based tactile sensors
(VBTSs) [61, 37] offer high spatial resolution and cost-effectiveness, but present
unique challenges in robotics for their complex physical characteristics and vi-
sual signal processing requirements. The lack of efficient and accurate simulation
tools for VBTSs has significantly limited the scale and scope of tactile robotics re-
search [51, 8]. We present Taccel, a high-performance simulation platform that
integrates Incremental Potential Contact (IPC) and Affine Body Dynamics (ABD)
to model robots, tactile sensors, and objects with both accuracy and unprece-
dented speed, achieving a total of 915 FPS with 4096 parallel environments. Un-
like previous simulators that operate at sub-real-time speeds with limited paral-
lelization, Taccel provides precise physics simulation and realistic tactile sig-
nals while supporting flexible robot-sensor configurations through user-friendly
APIs. Through extensive validation in object recognition, robotic grasping, and
articulated object manipulation, we demonstrate precise simulation and success-
ful sim-to-real transfer. These capabilities position Taccel as a powerful tool
for scaling up tactile robotics research and development, potentially transforming
how robots interact with and understand their physical environment.

1 Introduction

The ability to physically interact with the environment through touch is fundamental to robotic
manipulation [3, 13]. While vision provides global scene understanding, tactile sensing captures
crucial local contact information [57] essential for precise manipulation. Among various tactile
sensing technologies [64, 25, 38, 26], vision-based tactile sensors (VBTSs) such as GelSight [61]
and 9DTact [37] have emerged as a central focus in tactile research. Their ability to provide high-
resolution tactile feedback through camera-captured deformation patterns of elastic gel pads, com-
bined with cost-effectiveness, has driven significant advances in robotics [66, 35, 47, 8, 65].

The primary challenge in scaling up VBTS-equipped robot simulation lies in accurately modeling
the hyperelastic soft gel pad and its contact [66, 12]. Current approaches follow two main directions:
rigid-body approximations [51, 56] and soft-body simulations [47, 8, 12, 21, 30, 66]. While rigid-
body methods efficiently support basic tasks like pick-and-place [1, 51], they cannot capture the
fine-grained contact and elastomer deformations essential for complex manipulation tasks [66, 12]
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and detailed force distribution analysis [40, 47]. Soft-body simulations offer higher fidelity but face
significant computational challenges that limit their practical application in large-scale experiments.
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Figure 1: Taccel demonstration of
tactile robotics simulation. An Allegro
Hand with four VBTSs performing a pre-
cision grasp on a mahjong tile. The de-
formation map precisely captures the tile’s
surface geometries.

An ideal VBTS simulator must simultaneously achieve:

• Precision: Precise modeling of robots, sensors, and ob-
jects with physically valid solutions, particularly main-
taining inversion-free and intersection-free states dur-
ing complex contact interactions; generation of real-
istic tactile signals across multiple resolutions, from
high-resolution RGB patterns and depth maps to low-
resolution marker movements.

• Scalability: Capability for large-scale parallelization for
extensive simulation data generation.

• Flexibility: Support for diverse robotic platforms and
sensor configurations, from parallel grippers to multi-
finger hands with varying sensor arrangements.

As detailed in Tab. 1, existing solutions often compromise
on precision, scalability, or flexibility. They typically pro-
duce suboptimal physics, operate slower than real-time with
limited parallel environments, or focus on specific sensor
setups or simple grippers. These limitations significantly
impede the broader application of tactile robotics.

To address these challenges, we present Taccel, a high-performance simulation platform for scal-
ing up robots with VBTS-integration. Built on state-of-the-art simulation techniques, Taccel pro-
vides dedicated components for simulating robots (Sec. 4), tactile sensors (Sec. 4.2), and tactile
signal generation (Sec. 4.3). Comprehensive evaluations (Sec. 5) demonstrate its characteristics:

• Precision: Taccel leverages advanced solid material simulation techniques (IPC [32] and
ABD [31]) for physical accuracy. IPC guarantees inversion- and intersection-free contact solu-
tions, while the integration of ABD allows for efficient and precise simulation.

• Scalability: With an efficient ABD-IPC implementation with NVIDIA Warp [41], Taccel
achieves unprecedented parallelization. On a single H100 GPU, it reaches over 900 FPS in to-
tal (4096 environments, 18ˆ wallclock time) for a peg-insertion task with dual sensors and 12.67
FPS (256 environments, 0.25ˆ wallclock time) in a dexterous grasping task with full-hand tactile
sensing.

• Flexibility: Taccel provides user-friendly APIs for seamless integration of diverse robotic plat-
forms and sensor configurations. Users can easily load and configure robots through Unified Robot
Description Format (URDF) with auxiliary configurations, supporting applications from simple
grippers to complex manipulation tasks, like the mahjong tile sensing task in Fig. 1.

Taccel’s utility is validated through three fundamental tactile-informed robotic tasks (Sec. 6). In
object classification, models trained solely on Taccel’s synthetic tactile signals demonstrate strong
generalization to real-world data without adaptation. In grasping experiments across four robotic
hand designs, we showcase the platform’s versatility in handling diverse robot configurations and

Table 1: Comprehensive comparison of FEM-based VBTS simulators. Soft Mat.: modeling of deformable
materials (FEM: Finite Element Methods). Stiff Mat.: modeling of stiff materials (Rigid: rigid body, ABD:
Affine Body Dynamics, MPM: Material Point Methods, PBD: Position-based Dynamics). Contact: collision
handling method (Virtual: approximated contact, Penalty: penalty-based, IPC: Incremental Potential Contact).
RGB Signal: RGB tactile pattern generation method (Look-up: look-up tables, DNN: Deep Neural Network,
!: not supported). Robot: range of supported robotic systems. The last two columns report parallel simulation
capabilities: maximum parallel environments and simulation speed relative to real-time in a peg insertion test,
with dual sensors in low/high resolutions, measured on an NVIDIA H100 80G GPU. Details are in Fig. 4.

Simulator Soft Mat. Stiff Mat. Contact RGB Signal Robot # Env Ò Sim Speed Ò

Taxim [46] - Rigid Virtual Look-up Sensor 1 -
DiffTactile [47] FEM MPM/PBD Penalty DNN Gripper 1 -

SAPIEN-IPC [8] FEM ABD IPC ! Gripper 256 / 4 0.81ˆ / 0.03ˆ

Taccel (Ours) FEM ABD IPC DNN Any 4096 / 64 18.30ˆ / 0.25ˆ
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tactile signal types. In articulated object manipulation tasks, we demonstrate Taccel’s physical
fidelity through close correspondence between simulated and real-world robot behavior.

Our key contributions include: (i) development of a high-performance simulation platform combin-
ing precise physics, realistic tactile signal generation, and massive parallelization; (ii) user-friendly
APIs enabling flexible robot-sensor integration and high-fidelity tactile signal synthesis; (iii) com-
prehensive evaluation of the platform’s precision and scalability; and (iv) extensive experimental
validation across diverse tactile robotic tasks. By enabling large-scale, high-fidelity simulation of
VBTS-equipped robots, Taccel aims to accelerate future research in tactile robotics.

2 Related Work

Early VBTS simulators focused on normal deformation scenarios, approximating hyperelastic be-
havior through geometric computations and surface modifications [17, 51, 56, 1, 46]. While efficient
in generating high-resolution tactile signals through physics-based rendering or look-up tables, these
approaches inadequately capture elastomer dynamics during complex manipulation tasks, especially
those involving tangential forces and continuous interactions [66].

Recent approaches have achieved higher physical fidelity by incorporating advanced solid material
simulation techniques. Methods using Material Point Methods (MPM) [49, 22, 23] and Finite Ele-
ment Methods (FEM) [32, 31] better model elastomer properties through time-integrated deforma-
tion computations [10, 8, 47, 12]. Notable improvements include the adoption of IPC [32] by several
simulators [12, 8], providing robust contact handling with guaranteed inversion- and intersection-
free solutions. Tab. 1 compares key features of representative approaches.

Taccel builds on these advances by combining IPC and ABD in a unified platform, achieving both
physical accuracy and computational efficiency while supporting diverse robot configurations and
enabling large-scale parallel simulation for robot learning applications.

A more comprehensive review on related works is in Sec. B concerning the VBTSs and tactile-
informed robotic tasks.

3 Unified IPC Simulation in Taccel

This section presents the unified IPC simulation framework in Taccel, detailing its mathematical
foundations. For complete derivations, we refer readers to Sec. 3 and the original works [31, 32, 9].

3.1 Problem Formulation and Soft Body Dynamics

We consider ns tetrahedralized soft bodies discretized into Ns vertices with positions
x1,x2, ...,xNs

in Cartesian space. The system state is represented by the stacked position vec-
tor x“ rxT

1 ,x
T
2 , ...,x

T
Ns

sT PR3Ns . Following Lagrangian mechanics, we express the system’s La-

grangian as Lpx, 9xq “T px, 9xq´V pxq, where T px, 9xq “ 1
2

9xTM 9x represents kinetic energy with

mass matrix M PR3Nsˆ3Ns . The potential energy V pxq comprises two terms: an elastic energy
Φpxq utilizing the Neo-Hookean constitutive model for hyperelastic materials (characterized by
Young’s modulus E and Poisson’s ratio ν), and external forces Eextpxq.

3.2 Frictional Contact

The Euler -– Lagrange equation BL
Bx px, 9xq´ d

dt
BL
B 9x

px, 9xq “ 0 is equivalent to the following Incremen-
tal Potential (IP) energy minimization problem [32] under the backward Euler integration scheme:

EIPpxq “
1

2
px´xn ´∆t 9xnqTMpx´xn ´∆t 9xnq`∆t2V pxq,

xn`1 “ argmin
x

EIPpxq,
(1)

where time is discretized into steps ttn “n∆t :n PNu with a fixed step size ∆tą 0, and xn “xptnq.

To ensure intersection-free trajectories, IPC augments the objective with log barrier functions
bpdkpxqq, which diverge to `8 as the distance dkpxq between contact primitive pair k approaches
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zero. Additionally, IPC introduces an approximate frictional potential energy Dkpx,xnq that cap-
tures frictional forces through its gradient. The full simulation thus minimizes the IPC energy:

EIPCpxq “EIPpxq`∆t2Bpxq`∆t2Dpx,xnq. (2)

with Bpxq “κ
ř

kPB
Akbpdkpxqq, Dpx,xnq “

ř

kPB
Dkpx,xnq, where κą 0 controls contact stiffness.

3.3 ABD and Unified Simulation

For na affine bodies, we introduce a reduced coordinate space y PR12na with an embedding map φ :
R12na ÑR3Na that projects reduced coordinates to full-space vertices φpyq [31], where Na denotes
the total vertex count of affine bodies’ surface meshes. Each affine body uses 12 Degree of Freedom
(DoF): three for translation (R3) and nine for affine deformation (R3ˆ3).

T py, 9yq “
1

2
9xTM 9x“

1

2
9φpyqTM 9φpyq “

1

2
pJ 9yqTMpJ 9yq “

1

2
9yT pJTMJq 9y“

1

2
9yTMy

9y, (3)

where J“ Bφ
By PR3Naˆ12na is the Jacobian, M is the full-space mass matrix, and My “JTMJ

is the reduced-space mass matrix. The potential energy V pyq includes an As-Rigid-As-Possible
(ARAP) term Φypyq “Φxpφpxqq with large κs to limit deformation, plus external forces Eextpyq.

Combining with Eq. (2) yields the unified IPC energy [9] for the full system state ty;xu P
R12na`3Ns :

EIPCpy;xq “EIPpxq`EIPpyq`∆t2Bpφpyq;xq`∆t2Dpφpyq;x,φpynq;xnq,

EIPpyq “
1

2
py´yn ´∆t 9ynqTMypy´yn ´∆t 9ynq`∆t2V pyq.

(4)

The next timestep’s configuration follows from minimizing the following barrier-augmented IP:

yn`1;xn`1 “ argmin
y;x

EIPCpy;xq. (5)

3.4 Kinematic Constraints

We express kinematic constraints as Sxx“ sx and Syy“ sy, where Sx PRcxˆ3Ns , sx PR3Ns for
soft bodies, and Sy PRcyˆ12na , sy PR12na for affine bodies. To enforce the constraints, we augment
EIPC using the Augmented Lagrangian method with Lagrangian multipliers λx PRcx ,λy PRcy :

EAL
IPCpy;xq “EIPCpy;xq`}pSxx´sxqTλx}22 `}pSyy´syqTλy}22. (6)

4 Robot and VBTS Simulation in Taccel

Building upon the unified ABD-IPC, Taccel implements robot and VBTS simulation through a
modular design that leverages the complementary strengths of affine- and soft-body dynamics.

4.1 Robot and Sensor Simulation

Robot Modeling For a robot with D-DoF, L links, and N vision-based tactile sensors (VBTSs),
Taccel constructs its kinematic model from a URDF specification, loading visual and collision
meshes as affine bodies (Sec. 3.3). Given the robot’s global transformation Tr and joint configuration
q PQ, forward kinematics yields the transformation of each link j in the world frame, r

lj
T pqq.

Tactile Sensors Modeling Each VBTS is simulated by a tetrahedral mesh as a soft volumetric
body (Sec. 3) for its gel pad, attached to its corresponding robot link. For the i-th sensor’s gel pad Gi

attached to link lj with local transformation
lj
Gi
T , we denote its outer surface as Si “ BG. The surface

comprises a reflective-coated region B`Gi and a sensor-attached region B´G. Contact interactions

during simulation cause gel pad deformation, transforming the coated surface B`G to B`G̃ and

marker positions to P̃i. These deformed quantities serve as the foundation for generating multiple
types of tactile signals, each suited for different robotic applications.
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Wrong collision Wrong collision 29K nodes (bolt and nut) 6K nodes (bolt and nut)

Penetration

≈64 envs / ≈4 envs >4096 envs / >256 envsInaccurate physics with rigid sim

PyBullet

(a) a bolt-and-nut test

(b) a so़ block pressing test

(d) a multi-environment parallellization test (low-res / high-res)

SAPIEN Taccel (Ours) w/o ABD Taccel (Ours)

DiাTactile SAPIEN-IPC Taccel (Ours)

(c) an articulated object manipulation task

#switch error > 600% #switch error = 1.1%

Isaac Sim Implementation

Taccel (Ours)

Taccel (Ours)

Accurate physics with so़ body sim

Penetration-free

Figure 2: Comprehensive evaluation of physics simulation capabilities across VBTS simulators. (a) Bolt-
nut assembly involving contact between non-convex objects, where Taccel achieves stable simulation; (b)
Soft block pressing test with soft-soft contacts, where Taccel maintains penetration-free interactions; (c)
Tactile-informed articulated object manipulation, where Taccel replicates real-world interactions with „ 1%

physical error; (d) Parallel environment test using a peg insertion task, showing Taccel’s scalability.

Robot Actions For scene initialization, we compute affine states through forward kinematics for
robot links and explicit state specification for stiff objects. Gel pad node positions are transformed to
the world frame, with all states written to x,y, and velocities 9x, 9y initialized to zero. Robot actions
are implemented through kinematic constraints. From joint space targets, we compute affine state
targets for links and node position targets for gel pad attached surfaces B´G, assembled as sx, sy.
Selection matrices Sx,Sy apply these constraints, with remaining states solved via time stepping.

4.2 Tactile Signal Simulation in Taccel

While many works directly generate tactile signals from the object geometry and frictional forces
during rigid body simulation for efficiency [51, 56, 1], this approach can lead to inauthentic signals
in dynamic scenarios. Instead, Taccel supports accurate simulation of high-resolution soft bodies
to fully capture the fine-grained contact and deformation patterns.

RGB Images and Depth Maps High-resolution tactile signals, including RGB images and depth
maps, are essential when fine-grained details like object texture and local geometries are required.
The signal generation process proceeds in two stages. First, we extract the depth and normal maps

dpu,vq, npu,vq for pixel coordinates pu, vq from the deformed coated surface B`G̃. Next, following the
method of Si et al. [47], we apply a Deep Neural Network (DNN) to generate RGB tactile signals
from the depth information. Specifically, for each pixel coordinate pu, vq, a pixel-to-pixel DNN
parameterized by θ maps the inputs to the pixel colors relative to a reference image (RGB signal of
undeformation gel pad): fθ

`

γpu, vq, npu,vq

˘

ÞÑ∆σpu,vq, which are added to the reference image to

obtain the final RGB image. γp¨, ¨q provides the 2D positional encoding of the pixel coordinate. The
model is trained on patches from 200 real tactile images and corresponding depth map annotations.

Markers Within B`Gi, mi markers are positioned at locations GiPi “ tppiq
k PR3, k “

1, . . . ,miuNi“1, each defined by barycentric coordinates in its triangle: p
piq
k “

ř3
u“1 αux

pi,kq
u , where

ř3
u“1 αu “ 1,αu P r0, 1s. Low-resolution tactile signals primarily track marker positions and their

movements by computing their new positions throughout the simulation (at time step t): p̃
piq
k ptq “

ř3
u“1 αux̃

pi,kq
u ptq, and projecting them on the tactile image. The marker flows, representing local

deformation patterns, are then computed as: ∆Pi “ tp̃piq
k ´p

piq
k u “ t∆p

piq
k u.

3D Tactile Signals The depth map and marker positions can be transformed into a dense or sparse
3D point cloud in the world frame using robot kinematics and sensor configurations. These 3D
tactile signals provide crucial spatial information for robotic manipulation tasks. We demonstrate
their effectiveness through the simulation of Tac-Man framework [66] in Sec. 6.3.
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We further demonstrate Taccel’s capability to scale up synthetic data generation of tactile signals
via robotic grasping simulations and explore object recognition model learning (Secs. 6.1 and 6.2).

4.3 API Designs in Taccel

Taccel provides intuitive Python APIs designed to make tactile robotics simulation accessible to
researchers while maintaining high performance through NVIDIA Warp [41]. The APIs allows for
seamless loading of robots from URDF files with automatic parsing, sensor configurations from
auxiliary files, and objects from mesh files. Users can efficiently reset simulation states or apply
kinematic targets to control the robots in familiar formats (NumPy arrays, PyTorch tensors). Further,
Taccel supports parallel simulation of multiple environments similar to Isaac Gym [43].

To foster community development, we will release Taccel codebase and documentations, while
maintaining active collaboration with researchers to incorporate feedback, add features, and expand
capabilities, ensuring its evolution as a comprehensive tool for tactile robotics research.

5 Performance Evaluation of Taccel

We evaluate Taccel through comprehensive benchmarks on its precision and efficiency. Our analy-
sis demonstrates that the combination of ABD and IPC provides significant advantages over existing
approaches (Sec. 5.1), generates high-quality tactile signals (Sec. 5.2), ensures precise frictions and
deformation solving for the gel pad (Sec. 5.3), and enables efficient scaling (Sec. 5.4).

5.1 Overall Comparisons

As illustrated in Fig. 2, Taccel achieves superior precision and efficiency through its unified ABD
and IPC framework, demonstrated across four challenging scenarios.

First, the bolt screwing task (Fig. 2a) demonstrates Taccel’s ability to handle complex physical
interactions between highly non-convex objects, where conventional simulators including PyBullet
and SAPIEN [55] fail to handle. This capability stems from our ABD formulation, which provides
an efficient approach to simulating dense rigid-soft body interactions. Alternative approaches either
model stiff objects as soft bodies, introducing excessive DoFs and computational overhead (Fig. 2a,
ours w/o ABD), or rely on RBD [14], which requires expensive nonlinear Continuous Collision
Detection (CCD) calculations to avoid intersection, significantly degrading performance.

Next, physical realism in Taccel is demonstrated through the soft block pressing scenario
(Fig. 2b), where our collision-free and intersection-free guarantees produce notably more realis-
tic deformations compared to penalty-based approaches. This precision extends to practical robotics
applications, as shown in the Tac-Man microwave manipulation task (Fig. 2c). Here, Taccel’s
accurate contact force solving enables faithful reproduction of gel pad-object handle interactions,
closely matching real-world execution patterns (detailed analysis in Sec. 6.3).

Finally, the computational efficiency of Taccel emerges from our optimized implementation of
the ABD and IPC algorithms, enabling unprecedented scaling capabilities. In a peg insertion task,
Taccel achieves parallel simulation of over 4096 environments on a single GPU with 80GB
VRAM—representing a 64-fold improvement over SAPIEN-IPC [8]. This opens new possibilities
for large-scale robotics simulation and learning; see also the comprehensive analysis in Sec. 5.4.

5.2 Tactile Signal Simulation

We evaluate the fidelity of tactile signals generated by Taccel with real-world samples. We press a
calibrated GelSight-type sensor perpendicullarly on 18 objects from a standard tactile shape testing
dataset [16] on a real-world setup (Fig. 3(a)) and in Taccel; see Sec. D.1 for setup details.

The qualitative and quantitative comparisons shown in Fig. 3(a) demonstrate Taccel’s ability to
produce highly realistic tactile patterns, achieving an average SSIM of 0.93 across all test objects.
Minor variations between simulated and real signals primarily stem from manufacturing tolerances
in the 3D-printed objects and challenges in precise camera calibration. Despite these practical limi-
tations, the results establish Taccel’s capability to generate high-fidelity tactile signals suitable for
VBTSs, with simulated patterns closely matching experimental measurements.
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Figure 3: Evaluations on the simulation precision. (a) Data collection setup, examples of the real and simu-
lated tactile patterns, and the sim-real SSIM distribution (violin plot) in the tactile signal evaluation. (b) Data
collection setup and the shear deformation magnitude trajectories in the frictions simulation evaluation.
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Figure 4: Parallel simulation performance analysis across environment scaling. (a) FPS achieved by
Taccel (FP64) and SAPIEN-IPC (FP32) on an NVIDIA H100 80G GPU. (b) Task visualizations. Sec. C.1
reports the VRAM occupancy in the low-resolution peg-insertion test.

5.3 Precision on Frictions and Shear Deformation

We further investigate Taccel’s precision on solving frictions and shear deformation. Fig. 3(b)
shows the evaluation setup: A VBTS-gripper grasps a fixed bar with various forces (causes tactile
depth d) then pulls back at 2mm{s, recording gel deformation represented by the marker deforma-
tions. We calibrate the object’s friction coefficient with one record and use two others with various
ds to compare the errors between simulated and real-world trajectories. Small sim-real errors (avg
28µm) tested on two bars with various frictions highlights Taccel’s fidelity on gel deformation
and frictions in both static and slipping cases.

5.4 Multi-environment Simulation

Efficient and stable parallel simulation of multiple environments is crucial for scaling up synthetic
data collection across diverse downstream tasks. To evaluate Taccel’s capabilities in this regard,
we designed three test cases of increasing complexity: (i) a dual-sensor (139 nodes per gel pad)
peg-insertion task adapted from SAPIEN-IPC [8], (ii) the peg-insertion task with higher solution
(1.5k nodes per gel pad), and (iii) a grasping task using a customized five-fingered dexterous hand
equipped with 17 gel pads wrapped around the hand links (5k nodes). These tasks involve continuous
contact and gel pad deformation, shedding light on how the simulator would perform on various
robotic tasks. Sec. D.2 provide more details on these tasks.

With a single NVIDIA H100 80G GPU, we benchmarked Taccel against SAPIEN-IPC. The
results in Fig. 4 showcase Taccel’s superior performance: in the low-resolution peg-insertion
task, Taccel achieves 915 FPS (18.30ˆ wallclock time) while managing over 4096 paral-
lel environments—a 16-fold improvement over the baseline using the same GPU memory, en-
abled by our efficient parallelization implementation. The high-resolution test further demonstrates
Taccel’s advantages, maintaining both stability and precision while consistently outperforming
the baseline. Even in the complex dexterous hand scenario, Taccel efficiently handles full-hand
tactile sensing, achieving 12.67 FPS across 256 environments.
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(c) A small ResNet is learned to perform object classification.

We observed that SAPIEN-IPC’s use of FP32 precision leads to convergence issues when solving
contact forces in Eq. (2), particularly in the logarithmic barrier energy term calculations, as indi-
cated by red outlines in Fig. 4. We further investigate this gap in the low-resolution peg-insertion
benchmark. We set the maximum Newton iterations to 50 and optimization residue tolerance set to
0.01m/s, i.e. the IPC solver performs conjugate gradient descent step until (i) the 50-step limit is
exceeded, or (ii) the optimization residue is below 0.01m/s. We report the key quantities including
the Newton iterations used, its optimization residue, total time spent for the simulation, and total
FPS in Tab. 2. Although each step takes longer for FP64, the convergence is much faster due be the
better precision, and thus the better simulation speed.

Noteworthy, while Taccel’s FP64 precision is ideal for HPC GPUs (which have a high 1:2
FP32:FP64 FLOPS ratio), it remains highly performant on more accessible consumer cards like
RTX 3090 and 4090; see Sec. C.2 for more details.

Table 2: Simulation Performance Comparison. Results are grouped by the number of parallel environments.
The number of Newton iterations (# Newton Its.) and optimization residue (Optim. Residue) are reported as
mean with standard deviation (in parentheses), calculated across the 200-step simulation.

Simulator # Envs # Newton Its. Ó Optim. Residue / (m/s) Ó Time / s Ó Total FPS Ò

Taccel (FP64) 1 1.59 (˘1.13) 7.64ˆ10´5 (˘6.55ˆ10´5) 69.78 2.87
SAPIEN-IPC (FP32) 1 24.09 (˘10.35) 0.001 (˘0.01) 82.41 2.43

Taccel (FP64) 16 2.83 (˘ 2.57) 1.87ˆ10´4 (˘2.09ˆ10´4) 141.92 22.55
SAPIEN-IPC (FP32) 16 50.0 (˘0.0) 0.11 (˘0.44) 291.46 10.98

Taccel (FP64) 64 3.45 (˘3.26) 2.04ˆ10´4 (˘2.20ˆ10´4) 196.71 65.07
SAPIEN-IPC (FP32) 64 50.0 (˘0.0) 0.20 (˘0.44) 668.95 19.13

6 Applications in Tactile Robotics

We demonstrate Taccel’s capabilities across three tactile-informed robotic tasks: training object
classification models with synthetic data (Sec. 6.1), generating a large-scale dataset through parallel
grasp simulations (Sec. 6.2), and manipulating articulated objects (Sec. 6.3). These applications
showcase how Taccel enables precise robotic simulation and scalable synthetic data generation.

6.1 Learning Object Classification Models

To demonstrate Taccel’s ability to generate synthetic training data that generalizes to real-world
scenarios, we developed a tactile-based object classification system. As shown in Fig. 5, our ap-
proach trains a DNN to classify objects using high-resolution tactile signals.

Table 3: Object classification and sim-to-real performance. Performance metrics include number of tactile
sensors (N ), Degree of Freedom (DoF), total sensing area (S.A.), average sensor-object contact area (C.A.)
with percentage of total sensing area in parentheses, and classification accuracy (Acc.).

(a) Sim-to-real results on mechanical part recognition.

Data DoF N S.A. / cm2 C.A. / cm2 Acc. Ò

Mech. 2 2 32.0 4.77 (14.92%) 86.50%
Mech. (Real) 2 2 32.0 5.69 (17.78%) 70.94%

(b) Results on various robotic hand configurations.

Data DoF N S.A. / cm2 C.A. / cm2 Acc. Ò

Gripper 2 2 32.0 5.05 (15.78%) 44.56%
Robotiq-3F 8 3 27.0 4.98 (18.43%) 44.61%

Allegro 16 4 23.0 7.67 (33.34%) 54.30%
F-TAC [65] 15 17 59.7 4.00 (6.700%) 42.54%
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(a) simulated 2D tactile signals (b) simulated 3D tactile signal

Figure 6: Examples of the synthesized grasps and the simulated tactile signals.

Following Yang et al. [58], we selected 10 mechanical parts with distinct fine-grained geometries
(illustrated in Fig. 5, top). We collect a training dataset 4K tactile depth maps of a tactile sensor
pressing on them within Taccel, each with object pose and tactile depth randomly sampled. We
also collect a real-world test set that consists of 160 depth maps for testing. Sec. D.3 illustrates more
details for the data collection protocol. We trained a ResNet-18 model [20] for 10-category object
classification using the simulated depth images. To enhance robustness, we augmented the depth
maps through random affine transformations, morphological operations (erosion and dilation), and
Gaussian filtering. The model is then directly evaluated them on the real-world samples, with each
sample tested 4 times with random shear deformation. As shown in Tab. 3, our model achieved
86.50% accuracy on the synthetic test set and 70.94% on real-world samples without any domain
adaptation. This modest sim-to-real gap demonstrates Taccel’s capability to generate precise tac-
tile signals that enable data-efficient training of transferable tactile perception models.

6.2 Robotic Grasping with Tactile Sensors

We investigate robotic grasping across different hand configurations with varying tactile sensor ar-
rangements. We first extend the DFC algorithm [39] for generating contact-oriented grasping poses
for four robotic hands, then simulate their tactile responses within Taccel, as illustrated in Fig. 6.
We generate grasps on 10 diverse objects from ContactDB [4], YCB [7], and adversarial object [42]
datasets. For each object, we generated grasps using 4 different robotic hands, producing „14k total
grasps. These were simulated in Taccel to generate tactile signals, with key metrics summarized in
Tab. 3. Fig. A1 provides an additional visualizations for the grasps across 4 robotic hands. Sec. D.4
explains the details of the modification to DFC.

Simulating robotic grasps with tactile sensors yields synthetic data extending the existing robotic
grasping datasets with tactile perception capabilities, serving as a foundation for various robotic
tasks. To demonstrate its utility, we implemented the object classification task described in Sec. 6.1,
adapting it to use the deformed coat’s point cloud as input and PointNet as the feature extractor.

The classification performances in Tab. 3 reveals an interesting trade-off: while robots differ in
sensor count and sensing area, higher dexterity (Allegro Hand) enables better object contact de-
spite fewer sensors. This enhanced contact leads to superior classification accuracy, highlighting
the balance between sensor count and dexterity in tactile hand design. These findings demonstrate
Taccel’s value in validating robotic hand designs before physical fabrication.

6.3 Articulated Object Manipulation

We consider articulated object manipulation, a challenging task where tactile perception provides
critical feedback on hand-object contact, informing object articulation and guiding robot actions [26,
66]. Sec. D.5 detailedly explain the algorithm.

Tac-Man’s effectiveness relies heavily on gel pad deformation for motion adaptation and tactile
feedback. While the original implementation by Zhao et al. used rigid body simulation with gripper
compliance approximations, it couldn’t authentically replicate gel pad deformation, contact dynam-
ics, and tactile feedback, resulting in significant sim-to-real gaps during large-scale verification.
Taccel overcomes these limitations through accurate simulation of sensor-object contact and gel
pad deformation. We simulate Tac-Man on three types of articulated objects: drawers with pris-
matic joints, cabinets with revolute joints, and bolt-nut pairs with helical joints. Fig. 7(a) shows the
manipulation sequences and corresponding tactile signals.

To evaluate sim-real correspondence, we compared our simulation against real-world Tac-Man ex-
ecution using a microwave (revolute joint) and drawer (prismatic joint), shown in Fig. 7(b-c). For
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comprehensive comparison, we also tested Tac-Man’s official implementation on these objects. We
use the “execution-recovery switch count” as our key metric, which tallies how often the agent
switch between the execution and recovery state when executing the Tac-Man algorithm (see Zhao
et al. [66] and Sec. D.5 for details). As demonstrated in Fig. 7, Taccel faithfully reproduces
real-world execution patterns, with execution-recovery switch counts averaging 68.75 and 0.0 for
revolute and prismatic settings, respectively—remarkably matching real-world observations. While
Isaac Sim successfully simulated the manipulation, its dynamics gap resulted in substantially higher
switch counts. These results highlight Taccel’s capability to authentically replicate physical inter-
actions in manipulation scenarios.

7 Summary

markers marker flow (8x length)

recovery execution

execution execution

execution execution

Real world

(a) Tac-Man simulation on three types of articulated objects

Isaac Sim Implementation Ours

Drawer (Prismatic) Cabinet (Revolute) Bolt and Nut (Helical)

recovery execution recovery execution

drawer

microwave oven

(b) comparisons among real-world execution, Isaac Sim simulation, 
and Taccel simulation

# switch = 0 # switch = 18.25 (±1.49) # switch = 0.0 (±0)

# switch = 68 # switch > 500 # switch = 68.75 (±2.38)

Figure 7: Tac-Man manipulation simulation. (a) Demonstra-
tion of Tac-Man’s execution-recovery cycles on three articu-
lated objects. (b) Three-way comparison among real-world ex-
ecution, Isaac Sim implementation from Zhao et al. [66], and
Taccel. The execution-recovery switch counts (#switch) demon-
strate Taccel’s accuracy in replicating real-world behavior
(1.10% error), compared to Isaac Sim’s higher counts.

We present Taccel, a flexible
and high-performance simulator for
VBTS-integrated robots. Its user-
friendly APIs enables precise and ef-
ficient simulation of complex tactile
robotic tasks with realistic tactile sig-
nals. Taccel excels in capturing in-
tricate deformation and contact dy-
namics of soft gel pads with un-
precedented stability, while support-
ing thousands of parallelized environ-
ments. These capabilities also posi-
tion Taccel as a powerful tool for
hand-sensor validating before fabri-
cation, potentially reducing develop-
ment time and costs.

Limitations Despite the high per-
formance of Taccel, its computa-
tional demands of large-scale simula-
tion remain challenging, with a ma-
jor bottleneck being the PCG-based
linear system solving. Possible reme-
dies include carefully relaxing con-
vergence tolerances, simplifying sim-
ulation protocols, and using larger
timesteps, enabled by IPC’s uncon-
ditionally stable solver. Besides, the
Neo-Hookean model itself may still
be insufficient in capturing all nec-
essary physical characteristics of the
gel pad. Further, the data-driven tac-
tile signal generation method is still trained from limited data and thus may not generalize to all
contact conditions. These limiations are to be addressed in future studies.

Broader Impact This paper focuses on fundamental research, with limited direct societal impact.
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A Unified ABD-IPC in Taccel

In Taccel, robot links are efficiently modeled as affine bodies to capture their primarily rigid mo-
tion, while VBTSs are simulated as soft bodies to accurately represent their deformation mechanics.
This natural division allows Taccel to balance computational efficiency with physical accuracy
while maintaining consistent contact handling through IPC.

We provide a more detailed derivation of the unified ABD-IPC algorithm underlying Taccel, as
previously briefed in Sec. 3.

A.1 Soft Body Dynamics

Recall that we consider ns tetrahedralized soft bodies with Ns vertices: x1,x2, ...,xNs
. The stacked

position vector x“ rxT
1 ,x

T
2 , ...,x

T
Ns

sT PR3Ns represents the system state, and thus the system’s

Lagrangian is Lpx, 9xq “T px, 9xq´V pxq with the kinetic energy T px, 9xq “ 1
2

9xTM 9x, given the mass

matrix M PR3Nsˆ3Ns . The potential energy V pxq is composed of the elastic energy Φpxq utilizing
the Neo-Hookean constitutive model for hyperelastic materials (characterized by Young’s modulus
E and Poisson’s ratio ν), and the external forces Eextpxq. The elastic energy is defined as Φpxq “
ş

Ω
Ψpxqdx, where Ψpxq denotes elastic energy density over the volume region Ω of all objects in

rest configuration.

A.2 Time Stepping

Substituting Lpx, 9xq into the Euler-Lagrange equation BL
Bx px, 9xq´ d

dt
BL
B 9x

px, 9xq “ 0 yields the gov-
erning dynamics:

M:x“ ´
dV

dx
pxq. (A1)

We temporally discretize Eq. (A1) using backward Euler:

xn`1 ´xn

∆t
“ 9xn`1,

Mp 9xn`1 ´ 9xnq

∆t
“ ´

dV

dx
pxn`1q, (A2)

where time is discretized into steps ttn “n∆t :n PNu with step size ∆tą 0, and xn “xptnq. Under
this discretization, Eq. (A1) can be formulated as:

d

dx
pEIPpxnqq “ 0. (A3)

If we define the incremental potential energy of the constrained system as:

EIPpxq “
1

2
px´xn ´∆t 9xnqTMpx´xn ´∆t 9xnq

`∆t2V pxq,
(A4)

then the general simulation problem in a conservative system can be reformulated as the minimiza-
tion problem:

xn`1 “ argmin
x

EIPpxq. (A5)

A.3 Frictional Contact

We employ IPC [32] to handle contact interactions. The method operates on surface contact pairs
B, comprising point-triangle and edge-edge pairs from the surface meshes of soft and affine objects.
For each contact pair k PB with distance dk ą 0, IPC defines two key energy terms. First, a barrier
energy that prevents interpenetration:

bpdkpxqq “ ´
´

dk ´ d̂
¯2

logp
dk

d̂
qItdkPp0,d̂qupdkq, (A6)

where d̂ą 0 is the distance threshold for contact force activation and Ip¨q is the indicator function.
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Second, an approximated friction potential energy:

Dkpx,xnq “µλn
kf0p‖uk‖q, (A7)

where xn represents the configuration at the previous timestep tn, λn
k is the magnitude of the lagged

normal contact force, and uk PR2 denotes the tangential relative displacement in the local contact
frame.

The friction transition function f0pxq “
şx

εv∆t
f1pyqdy`εv∆t uses:

f1pyq “

#

´ y2

ε2v∆t2
` 2y

εv∆t
, y P p0,∆tεvq,

1, y ě∆tεv,
(A8)

where εv ą 0 serves as a velocity threshold distinguishing between static and dynamic friction
regimes.

These contact and friction terms augment our incremental potential energy:

EIPCpxq “EIPpxq`∆t2Bpxq`∆t2Dpx,xnq, (A9)

with Bpxq “κ
ř

kPB
Akbpdkpxqq, Dpx,xnq “

ř

kPB
Dkpx,xnq, where κą 0 controls contact stiffness.

A.4 ABD and Unified Simulation

For na affine bodies, we introduce a reduced coordinate space y PR12na with an embedding map φ :
R12na ÑR3Na that projects reduced coordinates to full-space vertices φpyq [31], where Na denotes
the total vertex count of affine bodies’ surface meshes. Each affine body uses 12 DoF: three for
translation (R3) and nine for affine deformation (R3ˆ3).

T py, 9yq “
1

2
9xTM 9x“

1

2
9φpyqTM 9φpyq

“
1

2
pJ 9yqTMpJ 9yq “

1

2
9yT pJTMJq 9y“

1

2
9yTMy

9y,

(A10)

where J“ Bφ
By PR3Naˆ12na is the Jacobian, M is the full-space mass matrix, and My “JTMJ

is the reduced-space mass matrix. The potential energy V pyq includes an As-Rigid-As-Possible
(ARAP) term Φypyq “Φxpφpxqq with high stiffness κs to limit deformation, plus external forces
Eextpyq.

Combining with Eq. (A9), we obtain the unified affine-deformable coupled IPC energy [9] for the
full system state ty;xu PR12na`3Ns :

EIPCpy;xq “EIPpxq`EIPpyq`∆t2Bpφpyq;xq

`∆t2Dpφpyq;x,φpynq;xnq,
(A11)

where EIPpyq is defined as:

EIPpyq “
1

2
py´yn ´∆t 9ynqTMypy´yn ´∆t 9ynq

`∆t2V pyq.
(A12)

The next timestep’s configuration follows from minimizing this barrier-augmented incremental po-
tential:

yn`1;xn`1 “ argmin
y;x

EIPCpy;xq. (A13)

A.5 Kinematic Constraints

The kinematic constraints is expressed as

Sxx“ sx,Syy“ sy, (A14)

where Sx PRcxˆ3Ns , sx PR3Ns for soft bodies, and Sy PRcyˆ12na , sy PR12na for affine bodies.
The constraints are applied by selecting the constrained DoFs of the state vectors and specifying the
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constraint values with. To enforce these constraints, we employ the Augmented Lagrangian method
by augmenting EIPC to:

EAL
IPCpy;xq “EIPCpy;xq

`}pSxx´sxqTλx}22 `}pSyy´syqTλy}22,
(A15)

where λx PRcx and λy PRcy are Lagrangian multipliers.

Optimizing EAL
IPCpy;xq yields the solution to the constrained system:

yn`1;xn`1 “ argmin
y;x

EIPCpy;xq, (A16)

s.t. Sxx“ sx and Syy“ sy. (A17)

A.6 Guides on Setting the Materials Parameters for Gel Pads

We provide guidance on properly choosing the parameters of the gel pads, which plays a vital role
in vision-based tactile sensing. Emperically, the pad’s Poisson’s ratio ν is typically in r0.3, 0.45s,
within which the response variation is subtle. The Young’s modulus typically falls in r0.01, 10sMPa,
and the response remains almost constant within the same order of magnitude. For simulations
without measuring the parameters of the material, our practice is to start within the typical range
and carefully adjust them by inspecting the simulation scenes.

While the simulation is not overly sensitive to these parameters, we still recommend measuring
these parameters using standard techniques. For example, the sliding experiments for friction coef-
ficients [62] or tensile tests for elastic moduli [18, 27, 33].

B Additional Related Work

B.1 Robot Tactile Sensors

Tactile sensing plays a fundamental role in precise manipulation, as established by neuroscientific
studies [54, 29, 28, 3]. This understanding has driven the development of artificial tactile sensing
systems for robots [44]. Among these, VBTSs have gained prominence by offering high-resolution
sensing with cost-effectiveness and operational simplicity [61, 53, 37, 35]. While these sensors have
advanced robotic manipulation [45, 40, 66], their development remains constrained by the reliance
on physical hardware experimentation. Taccel addresses this limitation by providing a compre-
hensive simulation platform to accelerate research and development in tactile robotics.

B.2 Tactile-Informed Robotic Tasks

Tactile sensing enhances robotic capabilities across three fundamental domains through precise con-
tact interaction measurements:

Perception Tactile feedback enables sophisticated object understanding through contact-based
sensing. Applications include shear and slip detection [63, 11], object classification and pose estima-
tion [34, 58, 50, 2], material property inference [19, 24], and interaction reconstruction [50, 60, 57].
These perceptual capabilities form the foundation for advanced manipulation algorithms.

Grasping Stable grasping requires precise control of contact forces to balance external loads [15,
48]. Tactile sensing provides direct force-torque feedback essential for diverse grasping strate-
gies [39, 36, 59]. This tactile information complements vision-based approaches by enabling fine-
grained contact monitoring and in-hand adjustments [6, 5].

Manipulation Tactile feedback enables complex manipulation beyond basic pick-and-place op-
erations. Applications include precision tasks like peg insertion [8], object pivoting [21], and artic-
ulated object manipulation [67, 3]. Systems such as Tac-Man [66] and DoorBot [52] demonstrate
how tactile sensing guides contact geometry understanding and articulation control. This sensing
modality is particularly crucial for high-frequency object tracking during dexterous manipulation.

We validate Taccel’s capabilities through three representative applications: (i) multi-platform
robotic grasping with both rigid and soft objects, (ii) object classification using purely synthetic
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training data with strong real-world transfer, and (iii) articulated object manipulation including draw-
ers, cabinets, and bolt-nut assembly tasks, extending the Tac-Man framework [66].

C Additional Tests on Simulation Speed

C.1 VRAM Usage

Tab. A1 report the VRAM occupancy of the low-resolution peg-insertion test (Sec. 5.4). The GPU
memory (VRAM) scales linearly with the number of environments, enabling efficient scaling until
memory saturation.

Table A1: VRAM Usage of Taccel in the low-resolution peg-insertion test.

# Envs 1 16 256 1024 4096

VRAM / GiB 4.3 4.3 7.2 16.7 54.0

C.2 Simulation Speed on Various GPUs

Tab. A2 reports the simulation speed of the low-resolution peg-insertion test on various GPUs
(Sec. 5.4). While HPC GPUs with high FP32:FP64 ratio (1:2) is ideal for optimal performance,
desktop GPUs like the 3090 (FP32:FP64 ratio = 1:64) also deliver scalable performance, achieving
real-time performance (50FPS) with around 100 environments.

Table A2: Simulation speed of Taccel in the low-resolution peg-insertion task on various GPUs.

GPU H100 RTX 4090 RTX 3090 RTX 3090 RTX 3090

# Envs 256 256 256 128 64
Total FPS Ò 185.52 129.12 121.38 74.81 43.40

D Experiments Details

D.1 Real-world Data Collection for Tactile Signal Evaluation

For real-world data collection, our experimental setup consisted of a calibrated GelSight-type sensor,
mounted on a vertical rack for precise movement control, as shown in Fig. 3(a). A white mount is
fixed in the center of the platform to hold the test objects.

We 3D-print the 18 objects from a standard tactile shape testing dataset [16] at 0.2mm layer height.
For each object, we first fix it on the mount, slide the sensor along the rack to press its gel pad on
the object, and put a 500 g weight on the sensor to ensure an appropriate amount of gel deformation.
We record the RGB tactile patterns five times and compute their mean image to partially remove
the noise. We then replicated this pressing sequence in Taccel using a high-resolution soft body
gel pad (maximal cell volume Vmax « 10´12m3) to ensure signal fidelity. Sec. 5.2 compares the
similarity between the real-world and simulated tactile signals.

D.2 Multi-environment Simulation Test

Our multi-environment simulation test involves three scripted tasks. First, we implemented a peg-
insertion task adapted from SAPIEN-IPC [8], where two gel pads (139 nodes and 317 cells each) fol-
low a scripted trajectory. The trajectory involves 200 simulation steps, where the sensors squeeze the
peg and manipulate it around the hole. Next, we scaled this task to a higher resolution (1,533 nodes
and 5,360 cells each), which results in a larger system to solve. Finally, to demonstrate Taccel’s
potential for advanced robotics research, we created a scripted grasping task with a customized five-
fingered dexterous hand equipped with 17 gel pads covering the entire hand, totaling 5,157 nodes and
14,311 cells. The trajectory also involves 200 simulation steps, with the hand approaches, grasps,
lifts, maneuvers, and releases a stiff cylinder.
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(b) simulated 2D tactile signals

(c) simulated 3D tactile signal(a) synthesized grasps for four robotic hands

(b)

(c)

Figure A1: Examples of the synthesized grasps and the simulated tactile signals in 2D and 3D. (a) Diverse
grasps are synthesized and simulated for different objects and robotic hands. (b) An example of the 2D tactile
signals generated for a grasp with the Panda Hand. (c) An example of the 3D tactile signals generated for a
grasp with the Allegro Hand with Digit sensors.

D.3 Data Collection and Training Details for Learning Object Classification

In the object classification sim-to-real experiment, we collect tactile signals of grasping 10 3D-
printed mechanical parts in both simulation and the real world. We also train an object classification
model with the simulated data and evaluate it on the real data.

For each object, we simulated 200 grasp trials using a parallel gripper with randomized grasp-
ing poses. The gripper closes towards the object until the depth deformation exceeds a thresh-
old randomly sampled from τd „U r0.5, 1.5smm, and with each grasp yields 2 depth map sam-
ples after grasping. To ensure the granularity of the depth map, high-resolution gel pad models
maxV ě 10´12m3. The depth maps dpu,vq extracted from these simulated tactile signals yielded
approximately 4,000 training samples. We split the samples into a training set (85%) and a valida-
tion set (15%). The former is used to train the classification model, supervised by the NLL Loss,
using the Adam optimizer with a learning rate 1e-4 for 100 epochs. During training, we apply an
exponential LR scheduler.

For real-world validation, we collected tactile signals using a RobotiQ-2F85 parallel gripper
equipped with GelSight-type sensors. The test objects were 3D printed at 0.2mm layer height to
maintain high geometric fidelity. We gathered 8 grasps (16 depth maps) per object.

D.4 Dexterous Grasping

Our key modification to the DFC algorithm promotes perpendicular contact between gel pads and
object surfaces, optimizing for downstream tasks that rely on tactile perception.

Following Liu et al. [39], we synthesize grasping poses in the robot’s joint space q PQ relative to
the object frame by minimizing a modified Gibbs energy:

EpO, q, T q “EDFC `λcontactEcontactpO, q, T q. (A18)

The force-closure term EDFC maintains its original formulation [39], with added constraints to
ensure gel pad penetration depth ε (typically 0.5mm). We introduce a new contact term Econtact

that aligns the normals of gel pad contacts ci P B`Gi with their corresponding object surface normals
oi “ argminoPBO }o´ci}:

EcontactpO, q, T q “ 1´
〈

cK
i , o

K
i

〉

, (A19)

where p¨qK represents the surface normals of the gel pad and object surfaces.

Fig. A1 shows the examples of the synthesized grasps and the simulated tactile signals in both 2D
and 3D.
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D.5 Articulated Object Manipulation with Tac-Man

In the Tac-Man framework [66], the system alternates between execution and recovery phases. Dur-
ing execution, the system performs coarse manipulation actions (e.g., pulling backward) to gradu-
ally move the articulated object part. When the actual motion deviates from intended trajectories due
to articulation constraints, the gel pad deforms, creating contact deviation reflected in marker flow
magnitudes. Once these flows exceed threshold δ0, the system enters recovery mode to restore stable
contact by reducing deviation, before resuming execution. This execution-recovery cycle typically
requires tens of iterations to finish manipulation.

For our sim-real comparison, we manually created URDF models for the microwave oven and the
drawer to match real-world geometries and kinematics, maintaining identical initial grasping poses
across simulation and physical setups. Following Tac-Man’s implementation, we set δ0 “ 0.4mm
and α“ 0.6.
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