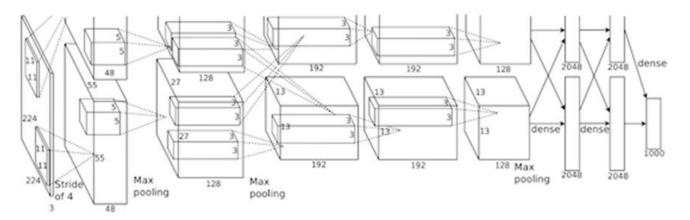
Train longer, generalize better: closing the generalization gap in large batch training of neural networks

Elad Hoffer*, Itay Hubara*, Daniel Soudry

*Equal contribution

Better models - parallelization is crucial

Model parallelism:Split model (same data)



AlexNet [Krizhevsky et al. 2012]: model split on two GPUs

Data parallelism:Split data (same model)

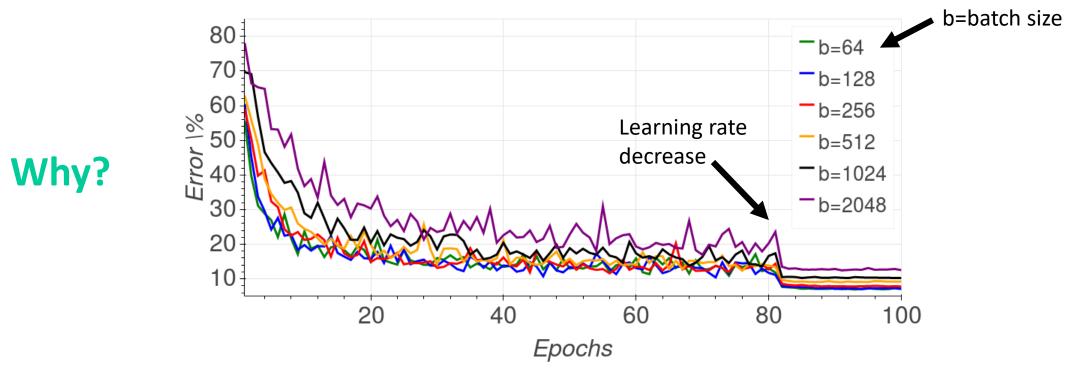
$$\Delta \mathbf{w} \propto -\frac{1}{b} \sum_{n=1}^{b} \nabla_{\mathbf{w}} L_n (\mathbf{w})$$

SGD: weight update proportional to gradients averaged over mini batch

Can we increase batch size and improve parallelization?

Large batch size hurts generalization?

Dataset: CIFAR10, Architecture: Resnet44, Training: SGD + momentum (+ gradient clipping)

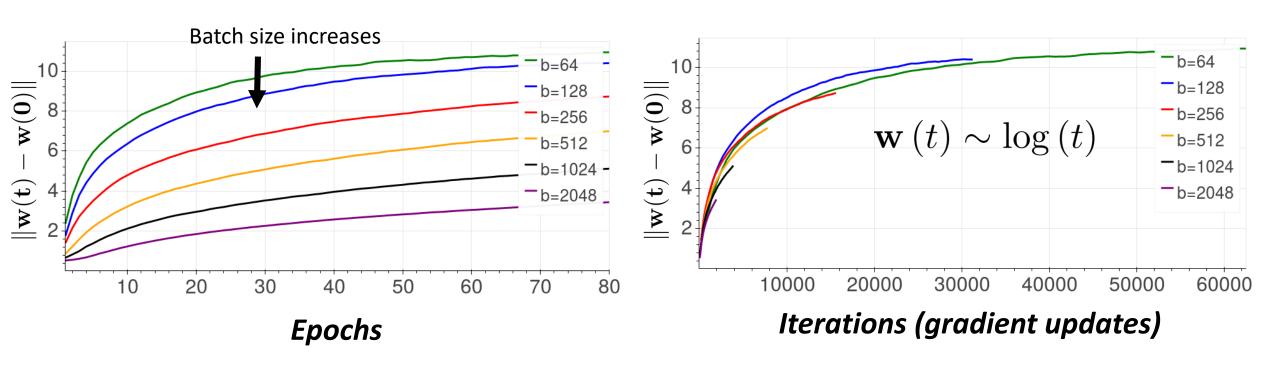


 Generalization gap persisted in models trained "without any budget or limits, until the loss function ceased to improve"
[Keskar et al. 2017]

Observation

Weight distances from initialization increase

logarithmically with iterations



Why logarithmic behavior? Theory later...

Experimental details

- We experiment with various datasets and models
- Optimizing using SGD + momentum + gradient clipping
 - Usually generalize better than adaptive methods (e.g Adam)
 - Grad clipping effectively creates a "warm-up" phase
- Noticeable generalization gap between small and large batch

Network	Dataset	SB	LB
F1 (Keskar et al., 2017)	MNIST	98.27%	97.05%
C1 (Keskar et al., 2017)	Cifar10	87.80%	83.95%
Resnet44 (He et al., 2016)	Cifar10	92.83%	86.10%
VGG (Simonyan, 2014)	Cifar10	92.30%	84.1%
C3 (Keskar et al., 2017)	Cifar100	61.25%	51.50%
WResnet16-4 (Zagoruyko, 2016)	Cifar100	73.70%	68.15%

Closing the generalization gap (2/4)

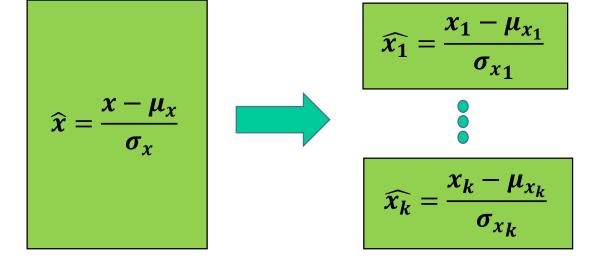
- Adapt learning rate. In CIFAR $\propto \sqrt{b}$
 - Idea: mimic small batch gradient statistics (dataset dependent)
- Noticeably improves generalization, the gap remains

Network	Dataset	SB	LB	+LR
F1 (Keskar et al., 2017)	MNIST	98.27%	97.05%	97.55%
C1 (Keskar et al., 2017)	Cifar10	87.80%	83.95%	86.15%
Resnet44 (He et al., 2016)	Cifar10	92.83%	86.10%	89.30%
VGG (Simonyan, 2014)	Cifar10	92.30%	84.1%	88.6%
C3 (Keskar et al., 2017)	Cifar100	61.25%	51.50%	57.38%
WResnet16-4 (Zagoruyko, 2016)	Cifar100	73.70%	68.15%	69.05%

Closing the generalization gap (3/4)

Ghost batch norm

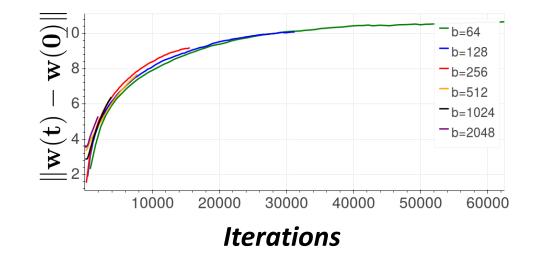
- Idea again: mimic small batch size statistics
- Also: reduces communication bandwidth
- Further improves generalization without incurring overhead



Network	Dataset	SB	LB	+LR	+GBN
F1 (Keskar et al., 2017)	MNIST	98.27%	97.05%	97.55%	97.60%
C1 (Keskar et al., 2017)	Cifar10	87.80%	83.95%	86.15%	86.4%
Resnet44 (He et al., 2016)	Cifar10	92.83%	86.10%	89.30%	90.50%
VGG (Simonyan, 2014)	Cifar10	92.30%	84.1%	88.6%	91.50%
C3 (Keskar et al., 2017)	Cifar100	61.25%	51.50%	57.38%	57.5%
WResnet16-4 (Zagoruyko, 2016)	Cifar100	73.70%	68.15%	69.05%	71.20%

Graph indicates: not enough iterations?

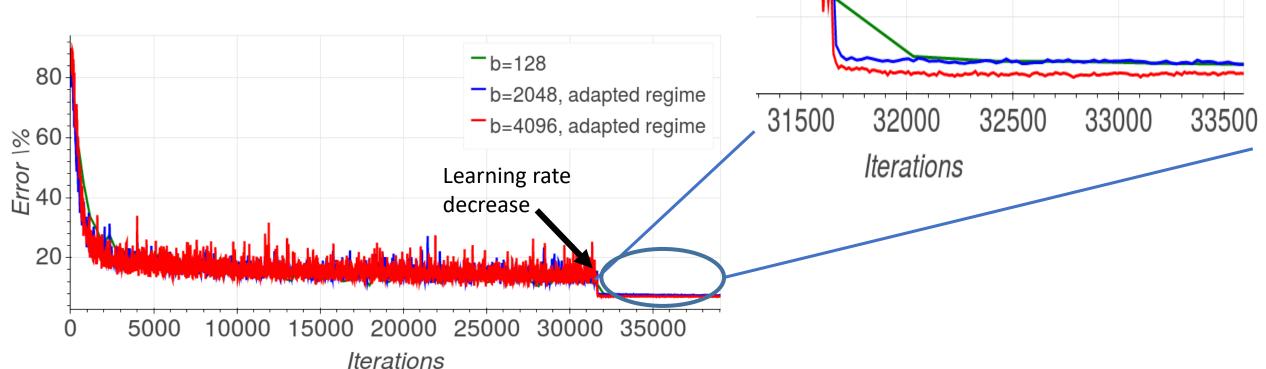
- Using these modifications distance from initialization now better matched
- However, graph indicates: insufficient iterations with large batch



Network	Dataset	SB	LB	+LR	+GBN
F1 (Keskar et al., 2017)	MNIST	98.27%	97.05%	97.55%	97.60%
C1 (Keskar et al., 2017)	Cifar10	87.80%	83.95%	86.15%	86.4%
Resnet44 (He et al., 2016)	Cifar10	92.83%	86.10%	89.30%	90.50%
VGG (Simonyan, 2014)	Cifar10	92.30%	84.1%	88.6%	91.50%
C3 (Keskar et al., 2017)	Cifar100	61.25%	51.50%	57.38%	57.5%
WResnet16-4 (Zagoruyko, 2016)	Cifar100	73.70%	68.15%	69.05%	71.20%

Train longer, generalize better

• With sufficient iterations in "plateau" region, generalization gap vanish:



Closing the generalization gap (4/4)

- Regime Adaptation train so that the number of iterations is fixed for all batch sizes (train longer number of epochs)
 - Completely closes the generalization gap

Network	Dataset	SB	LB	+LR	+GBN	+RA
F1 (Keskar et al., 2017)	MNIST	98.27%	97.05%	97.55%	97.60%	98.53%
C1 (Keskar et al., 2017)	Cifar10	87.80%	83.95%	86.15%	86.4%	88.20%
Resnet44 (He et al., 2016)	Cifar10	92.83%	86.10%	89.30%	90.50%	93.07%
VGG (Simonyan, 2014)	Cifar10	92.30%	84.1%	88.6%	91.50%	93.03%
C3 (Keskar et al., 2017)	Cifar100	61.25%	51.50%	57.38%	57.5%	63.20%
WResnet16-4 (Zagoruyko, 2016)	Cifar100	73.70%	68.15%	69.05%	71.20%	73.57%

ImageNet (AlexNet):

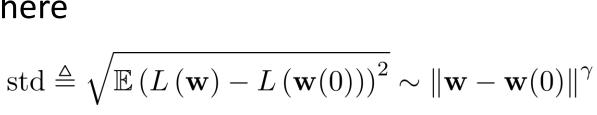
LB size	Dataset	SB	LB^8	+LR ⁸	+GBN	+RA
4096 8192	ImageNet ImageNet					

Why weight distances increase logarithmically?

Hypothesis:

During initial high learning rate phase:

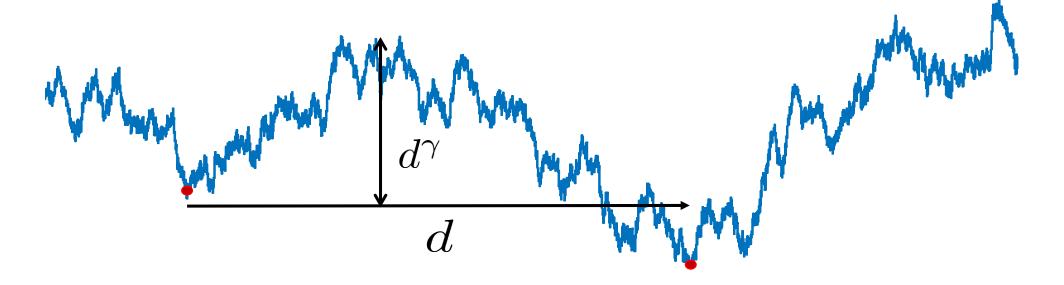
"random walk on a random potential" where



Marinari et al., 1983: $\mathbf{w}\left(t\right) \sim \log^{\frac{1}{\gamma}}\left(t\right)$ "ultra-slow diffusion"

Loss surface: $L(\mathbf{w})$ 0.01 달 0.005

Ultra-slow diffusion: Basic idea



Time to pass tallest barrier: $t \propto \exp(d^{\gamma})$ $\Rightarrow d \propto \log^{\frac{1}{\gamma}}(t)$

Summary so far

• Q: Is there inherent generalization problem with large batches?

A: Observed: no, just adjust training regime.

Q: What is the mechanism behind training dynamics?

A: Hypothesis: "random walk on a random potential"

Q: Can we reduce the total wall clock time?

A: Yes, in some models

Significant speed-ups possible

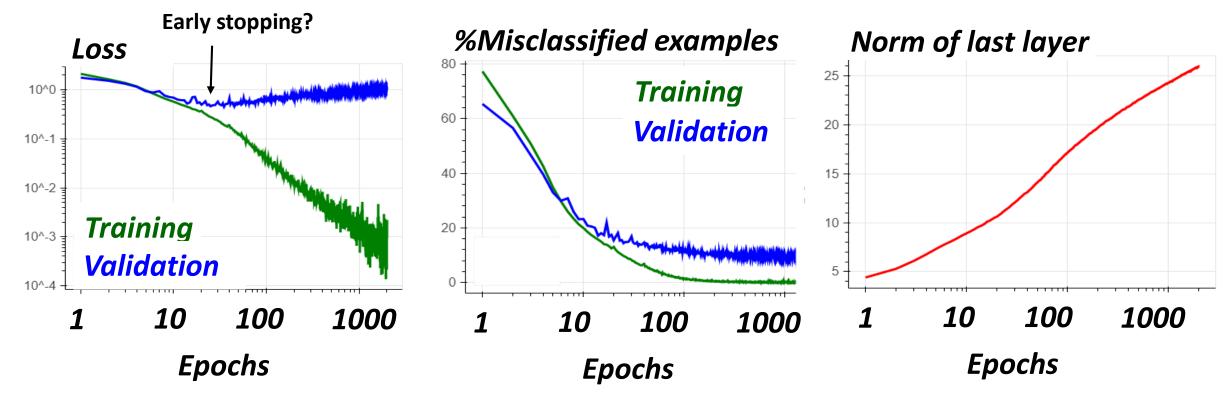
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Goyal et al. (Facebook whitepaper, two weeks after us)

- Large scale experiments: ResNet over ImageNet, 256 GPUs
- Similar methods, except learning rate
- X29 times faster than a single worker
- More followed:
 - Large Batch Training of Convolutional Networks (You et al.)
 - ImageNet Training in Minutes (You et al.)
 - Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes (Akiba et al.)

Why "Overfitting" is good for generalization?

 In contrast to common practice: good generalization results from many gradient updates in an "overfitting regime"



Why "Overfitting" is good for generalization?

- Can be shown to happen for logistic regression on separable data!
- Explanation there (proved):

Slow convergence to max-margin solution

The Implicit Bias of Gradient Descent on Separable Data (Arxiv 2017)

Daniel Soudry, Elad Hoffer, Nati Srebro

Thank you for your time! Questions?

Code: https://github.com/eladhoffer/bigBatch