Chapter 1: Interpretation, Interpretability and
Explainability; and why does it all matter?

What factors are What level of
appropriate and fair ‘accuracy' is fair for
for this context? this decision?

What historical
reference points are
appropriate and fair
for this decision?

What unjust biases
exist in the
construction of the
historical data?

Source Data

available about individuals
possibly be used in the decision.

Best estimates os the facto)
to

/

N

’ Training Data
I’ History of the contextual decision as®
1 told by individuals who tracked and |
b recorded the decision. ,

~
N
Ay
-
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Algorithm
Rules, policy, principles, ethical
norms, laws suggesting the
relative importance of factors to

_/

a decision.

What are the
appropriate rules/
policies to apply
in this context?

What are the
ethical norms?

Outcome
Best approximation

of intended output.
For example, Risk
assessment.

How is effective
defined for this
decision?

Is the outcome
biased unjustly?
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Fairness

Are predictions made without
discernible bias?

Equity

Justice
Diversity Inclusion

. Privacy
Accountability
Can we trace these predictions reliably Secu”ty Safety
back to something or someone? Certainty  Robustness  Reliability
Transparency Explainability Interpretability
Can we explain how and
why predictions are made? Consistency Clarity Credibility
IN IN
v v

White Box Model Black Box Model

Has simple mechanisms Has complex mechanisms
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Chapter 2: Key Concepts of Interpretability
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count mean std min
age 70000.0 53.304309 6.755152 29.564122
gender 70000.0 1.349571 0.476838 1.000000
height 70000.0 164.359229 8.210126 55.000000
weight 70000.0 74.205690 14.395757 10.000000
ap_hi 700000 128.817286 154.011419 -150.000000
ap_lo 70000.0 96630414 188.472530 -70.000000
cholesterol 70000.0 1.366871 0.680250 1.000000
gluc 70000.0 1.226457 0.572270 1.000000
smoke 70000.0 0.088129 0.283484 0.000000
alco 70000.0 0.053771 0.225568 0.000000
active 70000.0 0.803729 0.387179 0.000000
cardio 70000.0 0.489700 0.500003 0.000000
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Chapter 3: Interpretation Challenges

Select Component to Graph

0: Predicted (0.32) | Actual (1.0)

Predicted 0.32 | Actual 1.00
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DISTANCE (1660.00)
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mip

linear_poly 0.952433

random_forest 0.952112
linear_interact 0.949004
decision_tree 0.932791
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mip
gradient_boosting
decision_tree
random_forest

logistic

ridge

0.983297
0.938783
0.9786
0.97289
0.925115

0.890447

0.982895
0.937879
0.978381
0.965123
0.925561

0.891255

True Positive Rate

= ROC curve (area = 0.81)

04 0.6 0.8
False Positive Rate
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feature

CRS_DEP_TIME
DEP_TIME
DEP_DELAY
TAXILOUT
WHEELS_OFF
CRS_ARR_TIME
CRS_ELAPSED_TIME
DISTANCE
WEATHER_DELAY
NAS_DELAY
SECURITY_DELAY
LATE_AIRCRAFT_DELAY
DEP_AFPH
ARR_AFPH
DEP_MONTH
DEP_DOW
DEP_RFPH
ARR_RFPH
ORIGIN_HUB
DEST_HUB
PCT_ELAPSED_TIME

coel

0.00454956
-0.00525032
0.894124
0.125274
-0.0006468
-0.000369914
-0.0126273
0.000676793
-0.906354
-0.674053
-0.917398
-0.929841
-0.0152963
0.000548174
-0.039835
-0.0182132
-0.469474
0.373844
-1.02909
-0.394899
45.0116



OLS Regression Resuits

Oep. Variable:  CARRIER_DELAY R-squared: 0921
Model: OLS  Adj. R-squared: 0921
Method: Least Squares F-statistic: ~ 4.257e+05
Date: Wed, 02 Sep 2020 Prob (F-statistic): 0.00
Timo: 13:32:20 Log-Likelihood: -26574e+06
No. Observations: 764597 AlC: 53150406
Df Residuals: 764575 BIC: 53150408
Df Model: 2
Covariance Type: nonrobust
coef  stderr t P>t [0.025
const -37.8618 0125 -301.763 0000 -38.108
CRS_DEP.YIME 00045 7.24e-05 62872 0000 0.004
DEP_TIME -0.0053 9.19¢-05 -572116 0000 -0.005
DEP_DELAY  0.894Y 0000 2951086 0000 0894
DEPAFPH -0.0153 0000 -47725 0000 -0016
DEP_RFPH 04696 0017 -27353 0000 -0503
TAXILOUT 01283 0001 104120 0000 0123
WHEELS OFF -0.0006 6.7e-05 -9646 0000 -0.001
CRS_ELAPSED_TIME -0.0126 0.001 -19132 0000 -0014
PCT_ELAPSED_TIME 450113 0117 384073 0000 44.782
DISTANCE 00007 8.02e-05 8429 0000 0001
CRS_ARR_TIME -00004 218e-05 -16939 0000 -0000
ARR_AFPH  0.0005 0.000 1651 0099 -0.000
ARR RFPH 03739 0013 28.386 0000 0348
WEATHER DELAY -09064 0001 -995366 0000 -0.908
NAS_DELAY -0.674Y 0001 -829129 0000 -0676
SECURITY_DELAY -09174 0.005 -167.857 0000 -0928
LATE_AIRCRAFT DELAY -09298 0001 -1827.018 0000 -0931
DEP_MONTH -00397 0.003 -15019 0000 -0.045
DEP_DOW -0.0180 0.004 -4005 0000 -0.027
ORIGIN_HUB  -1.0297 0027 -38589 0000 -1.081
DEST_HUB -0.3949 0026 -15047 0000 -0.446
Omnibus: 211121387 Durbin-Watson: 200
Prob(Omnibus): 0000 Jarque-Bera (JB): 24359701834
Skew: 0.098 Prob(JB): 0.00
Kurtosis: 30651 Cond. No. 5690404

0.975)
-37.616
0.005

0.895
-0.015
-0.436

0128
-0.001

-0.0n
45241

0.001
-0.000

0.001

0.400

-0672
-0.907
-0.929
-0.034
-0.009
-0.977
-0.343



feature

DEP_DELAY

" LATE_AIRCRAFT_DELAY

a
]
20

12
18
17

WEATHER_DELAY
NAS_DELAY
PCT_ELAPSED _TIME
SECURITY_DELAY
TAXI_OUT
CRS_DEP_TIME
DEP_TIME
DEP_AFPH
ORIGIN_HUB
ARR_RFPH
DEP_RFPH
CRS_ELAPSED_TIME
CRS_ARR_TIME
DEP_MONTH
DEST_HUB

Coef.
0.894124
-0.929841
-0.806354
-0.674053
45.0116
-0.817398
0125274
0.00454956
-0.00525032
-0.0152963
-1.02909
0.373844
=0.469474
-0.N26273
=0.000369914
-0.038835
-0.394899

Std.Err.
0000302980
0.000508937
0.000910567
0.000812964
011711895
000546544
000120321
7.23674e-05
9.19302¢-05
0.000320506
0.0266686
0.0131708
0.0171688
0.000659852
2.18388e-05
0.00264082
0.0262564

t

295109
-1827.03
-9895.373
-828.13
384.076
-167.855
10417
62,8675
-57.121
=47.7256
-38.5879
283844
~27.3446
-19.1366
=16.9384
-15.0844
=15.0401

Pa|t]

o o o o o o o o o o

3.89612e-177
1.50325e-164
1.3083e-81
2.4083¢-64
2.08773e-51
4.07781e-51

[0.025
0.89353
-0.930839
-0.908138
-0.675646
44.7819
-0.92811
0122916
0.00440772
-0.0054305
-0.0159245
-1.08136
0.34803
-0.503124
-0.0139206
~0.000412717
-0.045011
-0.44636

0.875]
0.894717
-0.928844
-0.904569
-0.67246
45.2413
-0.906686
0127633
0.00468139
-0.00507014
-0.0146681
-0.976818
0.339658
-0.435824
-0.011334
-0.00032711
-0.0346591
-0.343437

2951.09

1827.03

167.855
104117
62.8675
571121
47.7256
3B8.5878

27.3448
19.1366
16.9384
15.0844
15.0401
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feature
CRS_DEP_TIME
DEP_TIME
DEP_DELAY
TAXILOUT
WHEELS_OFF
CRS_ARR_TIME
CRS_ELAPSED_TIME
DISTANCE
WEATHER_DELAY
NAS_DELAY
SECURITY_DELAY
LATE_AIRCRAFT_DELAY
DEP_AFPH
ARR_AFPH
DEP_MONTH
DEP_DOW
DEP_RFPH
ARR_RFPH
ORIGIN_HUB
DEST_HUB
PCT_ELAPSED_TIME

coel_lincar

coef_ridge
0.00501961

-0.00441738
894124 0.894292

0.125274 0125165

¥ 0000232365
-0.000369914 LTS
0126273 LRI T
00021406
-0.906168
-0.67396
-0.917398
-0.929537
-0.0152963
0.000548174
-0.0398301
-0.018213
-0.469473
0.373847
RIVE]  -1.02909
-0.394899 -0.394898
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Ridge coefficients

10 104 10° 107 10° 10’ 10}

LATE_AIRCRAFT_DELAY <= 11.5
gini = 0.469
samples = 116436
value = [72680, 43756]

NAS_DELAY <= 27.5
gini = 0,491

samples = 61425
value = [26486, 34939]




2

feature

DEP_DELAY
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PCT_ELAPSED_TIME
WEATHER_DELAY

NAS_DELAY

SECURITY_DELAY

DISTANCE

CRS_ELAPSED_TIME

TAXI.OUT
WHEELS_OFF
DEP_AFPH
CRS_ARR_TIME
DEP_TIME
ARR_AFPH
DEP_MONTH
DEP_DOW
DEP_RFPH
ARR_RFPH
ORIGIN_HUB
DEST_HUB
CRS_DEP_TIME

importance
0.527482
0.199153
0.105381
0.101649
0.0627577
0.00199756
0.000993382
0.000280958
0.000238682
3.46469e-05
3.10537e-05
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rule type cool support importance
120 LATE_AIRCRAFT_DELAY <= 222.5 & WEATHER_DELAY <= 166.0 & DEP_DELAY > 3440  rule 207.248 0.0016835 8.49625
80 DEP_DELAY > 4775 & LATE AIRCRAFT DELAY <= 3335 rule 170948  0.00112233 5.72377
53 WEATHER_DELAY > 2550 & DEP_DELAY > 4905  rule -333579 0.000187056 456188
n LATE_AIRCRAFT_DELAY linear -0.383065 1 448841
2 DEP_DELAY linear 0.162592 1 425384
a6 LATE_AIRCRAFT_DELAY <= 198.0 & DEP_DELAY <= 788.0 & DEP_DELAY > 3415  rule -958115 0.00149645 3.70359
57 DEP_DELAY > 12060 rule 254.29 0.000187056 3.47755
L] DEP_DELAY > 300.0 & DEP_DELAY > 576.5 & LATE_AIRCRAFT_DELAY <= 1585  nule 121199 0.000748223 331401
(1) DEP_DELAY > 8805  rule 102969 0.000748223 281552
147 DEP_DELAY <= 375 & DEP_DELAY <= 3705 rule -9.13357 0.898429 2.7591
LATE_AIRCRAFT_DELAY <= 19.5 & DEP_DELAY <= 849.0 & DEP_DELAY > 66.5 &
52 NAS_DELAY > 435 rule -41.4699 000430228 271422
WEATHER_DELAY <= 61.0 & DEP_DELAY <= 849.0 & LATE_AIRCRAFT_DELAY <= 195 &
2 DEP_DELAY > 270.0 & NAS_DELAY <= 43.5 & DEP_DELAY > 665  "'® 99.00675. 0000748223 = =2.70718
WEATHER_DELAY <= 61.0 & DEP_DELAY <= 849.0 & LATE_AIRCRAFT_DELAY <= 195 &
153 NAS_DELAY <= 43,5 & DEP_DELAY > 109.0 & DEP_DELAY > 665 & DEP_DELAzY <= rule 29733 0.00598578 2.29348
70.0
WEATHER_DELAY > 61.0 & DEP_DELAY <= 849.0 & LATE_AIRCRAFT_DELAY <= 19.5 &
169 NAS_DELAY <= 43.5 & DEP_DELAY > 66.5 rule -459107 0.00224467 21721
DEP_DELAY > 117.0 & WEATHER_DELAY <= 10.0 & DEP_DELAY <= 2250 &
162 LATE_AIRCRAFT_DELAY <= 56.5 & DEP_DELAY <= 459.0 & DEP_DELAY > 685& rule 28.4973 0.00467639 19442
NAS_DELAY <= 66.0
LATE_AIRCRAFT_DELAY <= 32.5 & NAS_DELAY <= 40.5 & DEP_DELAY <= 4915 &
e DEP_DELAY > 575 & DEP_DELAY <= 245.5 & WEATHER DELAY <= 200 ¢ 121724 00226337 181044
51 DEP_DELAY <= 20.5 & DEP_DELAY <= 68.5 & DEP_DELAY <= 4590 rule -456733 0.846053 164834
White Properties that Increase Interpretability Task Performance Rank
Model Class - . .
Box? A Expl.  Linear M Non “\Regul. | Regr. Classif. Regr. Classif.
«  Linear Regression ® | (] @ @ ® < X
«  Regularized Regression ) @ @ @ @ v «
«  Logistic Regression ® Q @ @ @ X «
«/  Gaussian Naive Bayes @ @ @ @ @ X «
«  Polynomial Regression Q Q @ Q () 4 <
«  RuleFit ® o @ @ €] ¢ <
«  Decision Tree @ @ @ @ @® < <
«  k-Nearest Neighbors Q @ @ @ @ « «
% Random Forest @ @ @ @ ® < «
3 Gradient Boosted Trees | @ @ Q@ @ @ ¢ «
3¢ Multi-layer Perceptron @ @ @ @ [ &
White Box Glass Box
Interpretability High
Predictive Performance

Execution Speed Performance
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Chapter 4: Fundamentals of Feature Importance and
Impact

ICE Curves
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N
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name diimp  dt_rank
birthn 0.851533 1
testelapse 0.0137081 3
age 0.00667898 7
Q1 0025340 2
introelapse 0.00505607 8
@13 0.0080825 4
country GB 0 21
country NZ 0 93
84 gender_undefined 0 87
country_IE 0 a2
name first_coef_norm
birthn -0.412945
age 2764
Q1 0.110523
ais ::‘> m"'{)’,‘"" e
Q16
Q20
EST1
Q4
CSN1
country GB
country_|E
country_NZ

87

84

gender_other

gender_undefined

gh_imp gb_rank

0.371305
0.0335579
0.030532
0.0236222
0.0297233
0.014516

0.000755431
0.00103713
0.00031631
0.000596172

middle_coef_norm
1.3538
-0.0265002
0.0224566
-0.0382582
-0.0542339
0.0508594
-0.0622704
-0.0576418
-0.0699186

-0.00138172
0.000314903
-0.000394417
0.000394679

-9.94834e-05

1 0.198748
2 0.0275725
3 0.024830
<] 0.01592308
4 0.0224896
7 0.0113429

91 0.00194744
80 0.000736748
94 0.000302447
92 0.000499432

ri_imp ri_rank

e ;M ®m W M

93

avg_rank
1

233333
4.33333
4.66667

6
6.33333

90.6667
91.3333
91.6667
92.3333

last_coef_norm coef_weighted_avg

0.499431
0.0804694
0.0540604

0.0427518
0.0385124
0.0382996

0.0371717
0.0324218
0.0303448

-0.149019

0.000352116
0.000136968
0.000127852
0.000126324
4.75334e-05
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name

birthn
Q1
Q13
AGR3
Q16
Q7
Q25
Q17

OPN9
EXT5

gender_male
introelapse
EXT8

Q8

name

birthn
Q1
Q13
AGR3
Q16
Q7
Q25
Q17
OPN9

first_coef_norm middle_coef_norm
-0.315215
-0.0122606

0.0899109
TYENEN  -0.0337293

-0.00558213
-0.0363935
0.0644172
0.0343628
-0.00978912

0.0447374

0.0064997
-0.00239968
0.00484121
-0.00324433
0.0039999

first_coef_norm middle_coef_norm
-0.315215
0.0899109 -0.0122606
64803 EEEIEEYZLE
-0.00558213
-0.0363935
00644172
00343628

-0.00978912

0.0447374

last_coef_norm coef_weighted_avg

0.475483
0.0757905
0.0476102
0.0357299
0.0333487
0.0305362
0.0295807
0.0294317

0.0275268
0.0030811

0.00229827
0.00229491
0.00223465

0.0018961

last_coef_norm coef_weighted_avg

-0.307128 0.475483
0.0757905
0.0476102

-0.307128

0.0523123

0.0523123 0.0357299
0.0333487
0.0305362
0.0295807
0.0294317

0.0275268
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24
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21
79
25

EXT5
gender_male
introelapse
EXT8

Q8

name
birthn
Q1
age
Q13
Q4
Q17
AGR3
Q25
EXT2

OPN1
Q22
source
Q26
Q23

dt_imp

0.1385
0.00832
0.00107
0.00098

0.00119
0.00032

0.0064997

-0.00239968

0.00484121

-0.00324433

0.0039999
gb_imp rf_imp log_imp
010735 0.07604 0.11818
0.00688 0.00428 0.00509
0.00327 0.00496 0.00713
-0.00252  -6e-05 0.00428
000274 0.00163 0.00178
-0.00201 0.00255 0.00122
-7e-05 -0.00156  0.00109
-6e-05 -0.00087 0.00106
0.00073  0.00161 0.00075
-0.00035 -0.00175 -0.00062
-0.00279 -0.00025 0.00019
-0.00048 6e-05 0.00094
-0.00144 -0.00216 0.00015
-0.00169 -0.00012  -7e-05
Accuracy_test
decision_tree  (,325630
gradient_boosting  0.388483
random_forest 0.40958
logistic  (0,383053
ida  0.409265
mip 0.37977

Ida_imp
0.08199
001103

-0.00122
0.00235
0.0006
0.00179
0.00339
0.00112
-0.00076

-0.00018
-0.00207
-0.00135
-0.00211

-0.0017

mip_imp
0.11172
0.0093
0.00183
0.00499
0.00214
0.00273
0.0039
0.00465
0.00348

0.00088
0.00242
-0.0017
0.0007
-0.00028

0.0030811
0.00229827
0.00229491
0.00223465

0.0018961

avg_imp
0.10563
0.00749
0.00284
0.00167
0.00148
0.00124
0.00118
0.00098
0.00097

-0.00031
-0.00042
-0.00042

-0.0006
-0.00064



PDP for feature "# of Births"

Number of unique grid points: 5
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PDP for feature "Age"

Number of unique grid points: 10
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Question #1

Question #1

PDP interact for "# of Births" and "Question #1"

MNumber of unique grid points: (# of Births: 5, Question #1: &)
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Time taking test (minutes)

Time taking test (minutes)

PDP interact for "Age" and "Time taking test (minutes)"
Mumber of unique grid points: {(Age: 10, Time faking test (minutes). 10)
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Chapter 5: Global Model-Agnostic Interpretation
Methods

rule  type oo support  importance

4 co2TailpipeGpm  linear  -0,034222 1000000 3865460
a0 fuelType_Electricity > 0.5  rule 18383562 0006206 1444470
wa Co2TailpipeGpm <= 367.0 & fuelType_Electricity > 0.5 -&#‘lﬂSw: E mle 20776127 0003546 1235005
148 atvType EV > 05 & pvd > 420 rule 15512440 0003546 0922113
193 eng_dscr PRl > 0.5 & displ <= 0.30000001192092806  rule 12607181 0005319 0.8917024
. fuelType_Diesel linear 2.967849 1000000 0488102
9% hpv > 45.0 & colTallpipeGpm <= 285 mle 7200693 0003546 0428034

co2TailpipeGpm > 124.0 & trans_spd > 0.5 & atvType_Other > 0.5 &
127 cylinders > 1.5 & co2TallpipeGpm <= 4085 & colTallpipeGpm <=  rule -7168212 0.003546 0426103
3025

co2TailpipeGpm <= 250.53571319580078 & co2TailpipeGpm <=
it 320.5 & coZTailpipeGpm <= 4105 & co2TallpipeGpm > 405 e 3457322 0015071 0.421223

e ?CIassjﬂuLSporLUtiiw_WhidI_ZWD:-U.EEnoiTmpipIGpr:;; rule 7574405 0002660 0390100
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2 TailpipeGpm
HuelType_Diesel

fueiType_Other

oylinders

v

dive_Front-Wheel

ghgScore

aspl

@2

iy

wa
VClass_Standard_Sport_Utility_Vehicle_aWD
#rans_spd

alvType_Olher

phevBlended
VClass_Small_Sport_Utiity_Vehicle_2WD
VClass_Sport_Utility_Vehicie_2WD
VCiass_Midsize_Cars

dive_AlHWheel

EXPLAINER METHOD “UNIFIED”
TreeExplainer TreeSHAP

(Lundberg et al. 2019)

DeepLIFT
DeepExplainer PO
GradientExplainer Integrated Gradients

{Sundararajan et al. 2017)
LinearExplainer Shapely Regression Values

(Lipovetsky & Conklin 2001}
KernelExplainer LIME

(Ribeiro et al. 2016)
SamplingExplainer Shapely Sampling Values

{Strumbelj & Konenenko 2013)

PermutationExplainer
PartitionExplainer

AdditiveExplainer®
vigh

HuelType_Diesel

Feature value
g

eng_dscr_FFS

1 ' Low
Ed a @ @ 00

SHAP value (impact on model output)

COMPATIBILITY WITH...

XGBoost, LightGBM, CatBoost, Pyspark,
sklearn.tree.”, sklearn.ensemble.”
tf.keras.Model, torch.nn.Module

tfkeras.Model, torch.nn.Madule

sklearn.linear_model.*

Model-Agnostic

Figh

Feature value

SHAP value (impact on mogel output)



Feature value
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SHAP value for

co2TailpipeGpm

&

]

spsarman
0.0000

400 600 |00
co2TailpipeGpm

cylinders-sco2TailpipeGpm

COrYL:

=

.29

@

41

g

cylinders

1.88

0.787 p-val:



SHAF value for

Tailpipe CO2 in grams/mile

gpearman ghgscore-scylinders

0.0000

2083
T.250
5417
3.083
1.750

-0.083

corr: -0.117 p-val:

Combined MPG (comb08)
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SHAP value for

02

spearman

ghgScore-sco2

9.083

7.250

1.750

corr: 0.942 p-val: 0.0000



SHAP value for

Tailpipe CO2 in grams/mile (nn.'!Taipiperm)

ghgScore

spearman ghgScore-»year

EPA GHG Score (ghgScore)

2015

2010

2009

corr: 0.744 p-val: 0.0000

Combined MPG (comb08)
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First-order ALE of feature 'ghgScore’
Bins : 3 - Monte-Carlo : 50
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Chapter 6: Local Model-Agnostic Interpretation
Methods

29

2220

an

company

5150

5150

5150

L 8

Zotter

Zotter

Zotter
Zotter
Zotter

base vz

0.2535 0.3535 ). 4535 0.5535 0.6535

DD . W

earthy =0 sour=0 floral = 0.5757 spicy = 0.5925 intense = 0.5635 creamy =
company jocation review date country of bean origin  ¢ocoa_percent rating counts of ingrodients beans €ocoa butter
USA 2019 Madagascar  76.000000 3.750000 3 have bean have_cocoa butter
USA 2019 O ise  76.000000 3500000 3 have_bean have_cocoa_butter
USA 2019 Tanzania 76.000000 3.250000 3 have_bean have_cocoa_butter
France 2012 Peru  63.000000 3750000 4 have bean have_cocoa_butter
France 2012 Bolivia 70.000000 3.500000 4 have_bean have_cocoa_butter
Austria 2014 Blend 80.000000 2750000 4 have bean have_cocoa butter
Austria 2017 Colombia 75.000000 3.750000 3 have_bean have_cocoa_butter
Austria 2018 Belize 72000000 3.500000 3 have_bean have_cocoa_butter
Austria 2018 Congo 70.000000 3.250000 3 have_bean have_cocoa_ butter
Austria 2018 Blend 75.000000 3.000000 3 have bean have_cocoa butter

2224 rows x 14 columns

first_taste second_taste  third_taste fourth_taste
&0 oily vegetal nutty coCoa
81 aily vanilla melon cocoa
az rich sour  mild smoke nan
83 fruity sour nan nan
&4 high roast high astringnet nan nan
BE  smokey savory nan nan
BB sandy roasty nutty nam
a7 roasty brownie nutty nan
88 red wine rich cocoa long nan

8 creamy fruit cOCoa nan

0

have_not_vax

have_not_va

have_not_va

have_not v

have_not_va

have_not_vax
have_not_va

have_not_va
have_not v



Accuracy_train:
Precision_test:
ROC-AUC_test:
©.3399

.7315
0.6772
0.7449

Accuracy_test:
Recall_test:
F1_test:

0.6962
0.4414
0.5344  MCC_test:



cocoa_percent
review_date
country_of_bean_origin_Other
tastes_cocoa
tastes_sweet
tastes_creamy
counts_of_ingredients
company_location_U.S.A
tastes_rich

cocoa_butter
tastes_berry
company_location_Other
tastes_sour
tastes_earthy
tastes_fruit

tastes_fatty

tastes_molasses
tastes_intense

tastes_mild

03 02 -01 00 01 02 03
SHAP value (impact on model output)

Feature value



cocoa_percent

review_date
company_location_France
tastes_cocoa
country_of_bean_onigin_Other
tastes_sweet
counts_of_ingredients

lecithin

tastes_berry

tastes_earthy

tastes_mild
company_location_ U.S.A
tastes_nutty

tastes_spice

tastes_sandy

tastes_roasty
country_of_bean_origin_Venezuela
vanilla

company_location_Other
country_of_bean_origin_Ecuador

00 01 02 03 04 0s 06 07
Model output value



00 01 02 03 04 0s 06 o7
“_

tastes_berry () e
cocoa_percent _,-"’(70)
review_date g /'/ (2,013)
company_location_France /-/ (1)
counts_of_ingredients N, (4)
lecithin \'\ (1)
country_of_bean_ongin_Other / (0}
company_location_U S A ! 0
tastes_sweet I! (0)
country_of_bean_ongin_Venezuela j (B
vanilla (0)
company_location_Other (0)
tastes_sticky (0)
sweetener_without_sugar (0)
country_of bean_ongin_Blend {0)
company_location_U k. (0)
tastes_molasses (0}
tastes_floral {0)
company_location_Canada (0)
sugar (1)
00 o1 02 03 04 os 06 07

Model output value



5 24

rating 4.00 2.75

y 1.00 0.00

y_pred 1.00 0.00

review_date 201300 2015.00
cocoa_percent 70.00 70.00
counts_of_ingredients 4.00 4.00
cocoa_butter 1.00 1.00

vanilla 0.00 0.00

lecithin 1.00 1.00

salt 0.00 0.00

sugar 1.00 1.00
sweetener_without_sugar 0.00 0.00
company_location_Canada 0.00 0.00

company_location_France 1.00 1.00

country_of_bean_origin_Other 0.00 100
country_of_bean_origin_Peru 0.00 0.00
country_of_bean_origin_Venezuela 1.00 0.00

tastes_earthy 0.00 1.00

tastes_berry 1.00 0.00
tastes_vanilla 0.00 0.00
tastes_creamy 0.00 0.00

higher 2 lower
base value model output value

0.77
00 01 02 06 o7 08

2018001 01 percent = 70.0

(umpaFy lacation U5 Aeubtdy_bf | e \_origin_Other & maar{y location_France = JJW\ew date = tastes_berry = 1.0

higher 2 lower
model output value base value
0.26
-01 oo 03 04 05

counts_of ingredient$ = 4.0

company Incatmn US.A =0 ﬂanna _percent = YDcﬁmpany location_France = 1.4 ﬂre:ew date = 2015.0 tastes_earthy = 1.0 country_of_bean_origin_Other/ = 1.0




Prediction probabilitics Not Highly Recomm. Highly Recomm.
tastes_ri

Not Highly Re... 038
Highly Recomm. —

Feature Value

tastes_rich=0

tastes_creamy=0

tastes_cocoas()
URE) cocoa_percent
tastes_berry=l
Qases_sour=)

astes_yweer=)

tastes_molasses=(0 txmes_molasscs

Prediction probabilities
Not Highly Re...
Highly Recomm.

Feature Value

tastes_rich=0
tastes_creamy=0
tastes_cocoa=0

tastes_berryw(

cocos,_percent

tastes_sweet=0

taste  th-idf

305 raspberry 0.59
259 nut 0.49
265 oily 0.46
64 caramel 0.45
274 papaya 0.00
135 edge 0.00
134 easy 0.00
133 easter 0.00
415 yogurt 0.00

416 rows x 2 columns



True Posstive Rate

00 02 04 06
False Positrve Rate
Accuracy_train: 0.7953 Accuracy_test:
Precision_test: 0.6233 Recall_test:
ROC-AUC_test: 0.7328 F1_test:
0.3084
Prediction probabslities Mot Highly Recomm.  Highly Recomm.
Nt Highty Re... [0 ] "
Highty Recomm. ‘,_

s ROC curve (area = 0. 73)

08 10

0.6798
0.4793
0.5419 MCC_test:

Text with highlighted words
ity nut ESFRRIE] raspberry



Prodictian probabalie Mot Highly Recomm.
Bick Highly Re... | 0.6
Highiy Riecomm.

Prediction probabilities Not Highly Recomm. Highly Recomm.
le:
Not Highly Re... o
ighly Recomm. NN 0.95 iy
rich
o8
reamy
008

Prediction probabilities Not “lghly Recomm,

Not Highly Re... [N 0.99
Highly Recomm.

Prediction probabilities

5
Not Highly Re... [N 0.57 o
Highly Recomm. [ 0.43

Highly Recomm,

Highly Recomm.

Highly Recomm.

Text with highlighted words
burnt wead parthy choco

Text with highlighted words
creamy rich COMPIEX fruity

Text with highlighted words
sour IR ooy OISSS

Text with highlighted words
nasty disgusting gross stuff
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| I I | I | | I | Low
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SHAP value (impact on model output)
higher = lower
model output value base value
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Feature value

M

earthy = 0.4255 woody = 0.5179 | creamy =0 | cocoa =0



Chapter 7: Anchor and Counterfactual Explanations

Feature X PN PFM-x PP
o age 23 23.000000 0.000000 0.000000
4 priors_.count 2 2.000000 0.000000 0.000000
5 sex_Female O 0.397589 0.397589 0.000000
& sex_Male 1 1.000000 0.000000 0.000000

7 race_African-American 1 0.457206 -0.542794 0.000000
16 ¢_charge_degree_(F7) 1 1.000000 0.000000 0.000000

032

0.30

19.89% 028

026

- 0.24
-0.22
— - 16.58%

-0.20

-018



Caucasian Confusion Matrix

- 040
40.43% 16.36% 033
030
025
19.29% 23.93%
020
0 1

African-American
Caucasian FPR:

Ratio FPRs:

African-American Confusion Matrix

=-  20.91% 23.71%

- - 13.92%

FPR: 53.1%
28.8%
1.84 x

-0.40

-0.35

-0.30



True Positive Rate

0z

Accuracy_train:
Precision_test:

ROC-AUC_test:
0.6162

©.87906
8.8277

0.8927
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Chapter 8: Visualizing Convolutional Neural
Networks
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Chapter 9: Interpretation Methods for Multivariate
Forecasting and Sensitivity Analysis
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672 model: Hourly RMSE distribution
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Integrated Gradient Attribution Map for Holiday Afternoon for the 672 model
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Integrated Gradient Attribution Map for Holiday Afternoon for the 672 model
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Integrated Gradient Attribution Map for Peak Morning for the 672 model
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Integrated Gradient Attribution Map for Peak Morning for the 672 model
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Chapter 10: Feature Selection and Engineering for

Interpretability
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Chapter 11: Bias Mitigation and Causal Inference
Methods
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Treatment: Payment Plam &
Lower Credit Limit
Coefficient Results

point_estimate stderr zstat pwvalue ci_lower ci_upper
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Chapter 13: Adversarial Robustness
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Chapter 14: What's Next for Machine Learning
Interpretability?




aim:
@HA@N@SFH@ EVALULATING MODEL / CHECKING ASSUMPTIONS / DETECTING PROBLEMS / UNDERSTANDING DATA

Concerns Interpretation Methods
Equity «Class Balance [EN R EAIEEI R
FAIRNESS ) « Comparing Metrics [/ [ [
Justice (FPR, FNR)
Diversity - Comparing Plots [71 {11 [
. (Confusion Matrix, ROC Curve, PR Curve)
Inclusion « Group Fairness Metrics / Individual Fairness Metrics [

(SPD, DI, AOD, EOD, DFBA, CDD)
« Contour / Heat Probability Maps |71
« Sampling Bias Evaluations

ACCOUNTABILITY Reliability « Out-of-sample Evaluations [:1|
. « Sensitivity Analysis
Certainty (Sobol, Mtc)),rris, FXST) n
Security « Causal Inference Methods ]
(DRL, DML, Forest Based, Meta-Learners)
« Evasion Adversarial Robustness Evaluations [
Robustness (FSGM, PGD, C&W, Adversarial Patches, Boundary, PDG, B&B, DeepFool..)
« Inference, Extraction & Poisoning Adversarial Robustness Evaluations

Safety

Rilvcy + Anomaly Detection / Metrics
« Privacy Metrics
TRANSPARENCY Interpretability « Feature Importance Methods [1]2]3]4]5]8]5]10]:2]
. . (SHAP, Permutation, Model-specific)
Explainability - Dimensionality Reduction Methods [=1 1]
Consistency (PCA, t-SNE, VAE, DIP-VAE)
_ « Glass-box Models [£1]
Credibility (EBM, Skoped-Rules)
Clarity « Partial Dependence Plots & similar [4]5]7]9]11]12]
(ICE, ALE, SHAP Dependence)
« White-box Surrogates |51 [T [

(Logistic Regression, Linear Regression, Rule Models, CART, KNN, ProfWeight)
« Confirming with Statistical Tests & Correlations |51 [1] [
(Spearman, Point-biserial, Cramér's V, Z-test)
+ Local Interpretation [6|7]9]
(Decision Regions, ICE, Anchors, Counterfactuals, WIT, CEM, SHAP)
+ Deep Learning-specific BER
(IG, Saliency Maps, Grad-CAM, SmoothGrad, Semantic Segmentation)
« Explainability Metrics
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Reducing Complexity Feature Selection [ Regularization [“1/[[F]
Enhancing Reliability Drift Detection Adversarial Training [ Adv. Postprocessing Defenses
ACCOUNTABILITY Data Augmentation [ENIFIEE]  Adv. Transformer Defenses Adv. Detection Defenses
Prediction Confidence Intervals
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Reducing Complexity Feature Selection [ Regularization [
Adv. Preprocessing Defenses []
Mitigating Bias Feature Engineering [ [ Monotonic Constraints 7] Calibrating/Equalizing Odds [/ [
(+ interaction/bi-variate constraints)
Ensuring Privacy Data A izati Fed d Learning Privacy-Preserving Inference
Differential Pr wacy All Inference-attack Adversarial Defenses
TRANSPARENCY Reducing Complexity Feature Selection [ Reqularization [0 [
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