1 SigMF Specification Version v1.2.6
1.1 Abstract

SigMF specifies a way to describe sets of recorded digital signal samples with metadata written in JSON.
SigMF can be used to describe general information about a collection of samples, the characteristics of the
system that generated the samples, features of signals themselves, and the relationship between different
recordings.

1.2 Copyright Notice

This document is available under the CC-BY-SA License. Copyright of contributions to SigMF are retained
by their original authors. All contributions under these terms are welcome.

1.3 Table of Contents

1 SigMF Specification Version v1.2.6
1.1 Abstract . . . . . . o
1.2 Copyright Notice . . . . . . . . . e
1.3 Table of Contents . . . . . . . . . . . . e e e e e e
1.4 Introduction . . . . . . . . . . . e e e e
1.5 Conventions Used in this Document . . . . . . . . .. .. ... .. . .
1.6 Specification Overview . . . . . . . . . L e
1.7 SigMF File Types . . . . . . o o o
1.8 SigMF Dataset Format . . . . . . . . . . ...
1.9 SigMF Metadata Format . . . . . . . . . ... .
1.9.1 Datatypes . . . . . . . .
1.9.2 Namespaces . . . . . . . v ottt e e e
1.10 Global Object . . . . . . . . o
1.10.1 datatype . . . . . . . e
1.10.2 sample_rate . . . . . . . e
1.10.3 author . . . . . . . . e
1.10.4 collection . . . . . . . . e
1.10.5 dataset . . . . . .. e
1.10.6 data_doi . . . . . . .. e e
1.10.7 description . . . . . . . L e e
1.10.8 hw . . . o o e
1.10.9 license . . . . . . . . o e
1.10.10metadata_only . . . . . ... oL e
1.10.11meta_doi . . . . . . . . .
1.10.12num_channels . . . . . . . . e e
1.10.130ffset . . . . . o e e e
1.10.14recorder . . . . . ..o e e e e
1.10.15shabl12 . . . . o L o e
1.10.16trailing__bytes . . . . . . . .. L e e
110 I7VErsion . . . o v v v o e e e e e e e e e e e
1.10.18 geolocation . . . . . . . . L
1.10.19extensions . . . . . . ... e e e e

© 00 00 0000000 OOIT~ITI~JJJJO0O O ULUT i WNRFE =

SigMF Specification Version v1.2.6 1


http://creativecommons.org/licenses/by-sa/4.0/

1.11 Captures Array . . . . . ..
1.11.1 sample_start . . . .
1.11.2 datetime . . . . . . .
1.11.3 frequency . ... ..
1.11.4 global index . . . .
1.11.5 header_ bytes . . . .
1.11.6 geolocation . . . ..

1.12 Annotations Array . . . . .
1.12.1 sample_start . . . .
1.12.2 sample_count . . . .
1.12.3 freq_lower_ edge . .
1.12.4 freq upper_edge . .
1.12.5 label . . . . ... ..
1.12.6 comment . ... ..
1.12.7 generator . . .. ..
1.12.8 wuid . . .. ... ..

1.13 SigMF Collection Format .
1.13.1 version . . . . .. ..
1.13.2 description . . . . .
1.13.3 author . . . .. ...
1.13.4 collection_doi. . . .
1.13.5 license . . . . . ...
1.13.6 extensions . . . . ..
1.13.7 streams . ... ...

1.14 SigMF Recording Objects .

1.15 Licensing . . . .. ... ..

1.16 SigMF Compliance . . . . .

1.16.1 SigMF Schema Compliance . . . . . . . . . . . . . ...
1.16.2 SigMF Recording Compliance . . . . . . . . . ... ..
1.16.3 SigMF Collection Compliance . . . . . . . . .. . ..
1.16.4 SigMF Application Compliance . . . . . . . . . . ... .

1.17 Citing SigMF . . . . .. ..
1.18 Acknowledgements . . . . .

2 Extensions

2.1 Antenna . ... .. ... ..
2.1.1 antenna:model . . .
2.1.2 antenna:type . . ..

2.1.3 antenna:low_frequency . . . . . ... .
2.1.4 antennachigh frequency . . . . . . . . . ... L

2.1.,5 antenna:gain . . . .

2.1.6 antenna:horizontal gain_ pattern . . . . . . . . . . .. ... L o o
2.1.7 antenna:vertical gain_pattern . . . . . ... ... Lo Lo oo
2.1.8 antenna:horizontal beam width . . . . .. .. . .. ... ... ...
2.1.9 antenna:vertical beam width . . . . . .. ... ...

2.1.10 antenna:cross_ polar__

discrimination . . . . . . . . ... ... ...

2.1.11 antenna:voltage standing wave_ratio . . . . . . . .. ... ... ... . ... ... ..

2.1.12 antenna:cable loss .
2.1.13 antenna:steerable . .
2.1.14 antenna:mobile . . .
2.1.15 antenna:hagl . . ..

2.1.16 antenna:azimuth_angle . . . . . . . . . . ...
2.1.17 antenna:elevation_angle . . . . . . . ... Lo e

2.1.18 antenna:polarization

SigMF Specification Version v1.2.6

10
10
11
11
12
12
13
13
13
14
14
14
14
14
14
14
15
16
16
16
16
16
16
16
17
17
17
17
17
18
18
18

18
18
19
19
19
19
19
19
20
20
20
20
20
20
20
20
20
20
21
21



2.1.19 antenna:azimuth_angle . . . . . . . . . . ... 21
2.1.20 antenna:elevation_angle . . . . . . ..o 21
2.1.21 antennathagl . . . . . . . . 21

1.4 Introduction

Sharing sets of recorded signal data is an important part of science and engineering. It enables multiple
parties to collaborate, is often a necessary part of reproducing scientific results (a requirement of scientific
rigor), and enables sharing data with those who do not have direct access to the equipment required to
capture it.

Unfortunately, these datasets have historically not been very portable, and there is not an agreed upon
method of sharing metadata descriptions of the recorded data itself. This is the problem that SigMF solves.

By providing a standard way to describe data recordings, SigMF facilitates the sharing of data, prevents
the "bitrot" of datasets wherein details of the capture are lost over time, and makes it possible for different
tools to operate on the same dataset, thus enabling data portability between tools and workflows.

1.5 Conventions Used in this Document

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in RFC 2119.

JSON keywords are used as defined in ECMA-404.

Augmented Backus-Naur form (ABNF) is used as defined by RFC 5234 and updated by RFC 7405.

Fields defined as "human-readable", a "string", or simply as "text" SHALL be treated as plaintext where
whitespace is significant, unless otherwise specified. Fields defined "human/machine-readable" SHOULD be
short, simple text strings without whitespace that are easily understood by a human and readily parsed by
software.

Specific keywords with semantic meaning in the context of this specification are capitalized after being
introduced (e.g., Recording).

1.6 Specification Overview

The SigMF specification fundamentally describes two types of information: datasets, and metadata associated
with those datasets. Taken together, a Dataset with its SigMF metadata is a SigMF Recording .

Datasets, for purposes of this specification, are sets of digital measurements generically called samples in
this document. The samples can represent any time-varying source of information. They MAY, for example,
be digital samples created by digital synthesis or by an Analog-to-Digital Converter. They could also be
geolocation coordinates from a GNSS receiver, temperature readings from a thermal sensor, or any other
stored digital measurement information.

Metadata describes the Dataset with which it is associated. The metadata includes information meant
for the human users of the Dataset, such as a title and description, and information meant for computer
applications (tools) that operate on the Dataset.

This specification defines a schema for metadata using a core namespace that is a reserved name and
can only be defined by this specification. Other metadata MAY be described by extension namespaces. This
specification also defines a model and format for how SigMF data should be stored at-rest (on-disk) using

JSON.

1.7 SigMF File Types

There are two fundamental filetypes defined by this specification: files with metadata, and the files that
contain the Datasets described by the metadata. There are two types of files containing metadata, a SigMF
Metadata file, and a SigMF Collection file. There are also two types of Datasets, a SigMF Dataset
file, and a Non-Conforming Dataset file, abbreviated as NCD . NCDs are a mechanism to support using

SigMF Specification Version v1.2.6 3


https://tools.ietf.org/html/rfc2119
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc7405

SigMF Archive
Optional
[xyz.sigmf]

tar file that contains everything below

SigMF Collection
Optional
[xyz.sigmf-collection]

Links multiple Recordings

SigMF Recording
(The base SigMF object)

Includes one Meta file and one Data file:

SigMF Metadata Data File

[xyz.sigmf-meta] [xyz.sigmf-data]

valid SigMF metadata to describe data that is not valid SigMF and formatted according to SigMF Dataset
requirements.

The primary unit of SigMF is a SigMF Recording , which comprises a Metadata file and the Dataset file
it describes. Collections are an optional feature that are used to describe the relationships between multiple
Recordings.

Collections and multiple Recordings can be packaged for easy storage and distribution in a SigMF

Archive .
Rules for all files:

1. All filetypes MUST be stored in separate files on-disk.

2. It is RECOMMENDED that filenames use hyphens to separate words rather than whitespace or
underscores.

Rules for SigMF Metadata files:

1. A Metadata file MUST only describe one Dataset file.

2. A Metadata file MUST be stored in UTF-8 encoding.

3. A Metadata file MUST have a .sigmf-meta filename extension.

4. A Metadata file MUST be in the same directory as the Dataset file it describes.

5. It is RECOMMENDED that the base filenames (not including file extension) of a Recording’s Metadata
and Dataset files be identical.

SigMF Specification Version v1.2.6 4



Rules for SigMF Dataset files:

1. The Dataset file MUST have a .sigmf-data filename extension.
Rules for SigMF Non-Conforming Dataset files:

1. The NCD file MUST NOT have a .sigmf-data filename extension.
Rules for SigMF Collection files:

1. The Collection file MUST be stored in UTF-8 encoding.

2. The Collection file MUST have a .sigmf-collection filename extension.

3. The sigmf-collection file MUST be either in the same directory as the Recordings that it references,
or in the top-level directory of an Archive (described in later section).

Rules for SigMF Archive files:

1. The Archive MUST use the tar archive format, as specified by POSIX.1-2001.

2. The Archive file’s filename extension MUST be .signmf .

3. The Archive MUST contain at least one SigMF Recording.

4. The Archive MAY contain one .sigmf-collection file in the top-level directory.

5. SigMF Archives MAY contain additional files (not specified by SigMF), and arbitrary directory structures,
but the SigMF files within the Archive MUST adhere to all rules above when the archive is extracted.

1.8 SigMF Dataset Format

There are four orthogonal characteristics of sample data: complex or real, floating-point or integer, bit-width,
and endianness. The following ABNF rules specify the Dataset formats defined in the Core namespace.
Additional Dataset formats MAY be added through extensions.

dataset-format = (real / complex) ((type endianness) / byte)

real = "r"
complex = "c"

type = floating-point / signed-integer / unsigned-integer
floating-point = "£32" / "f64"

signed-integer = "i32" / "ii16"

unsigned-integer = "u32" / "ulé"

endianness = little-endian / big-endian

little-endian = "_le"
big-endian = "_be"
byte = l|i8|l Ilu8l|

So, for example, the string "c£32_le" specifies "complex 32-bit floating-point samples stored in little-
endian", the string "rul6_be" specifies "real unsigned 16-bit samples stored in big-endian", and the string

"cu8" specifies "complex unsigned byte".

Only IEEE-754 single-precision and double-precision floating-point types are supported by the SigMF Core
namespace. Note that complex data types are specified by the bit width of the individual I/Q components,
and not by the total complex pair bitwidth (like Numpy).

SigMF Specification Version v1.2.6 5



The samples SHOULD be written to the Dataset file without separation, and the Dataset file MUST
NOT contain any other characters (e.g., delimiters, whitespace, line-endings, EOF characters).

Complex samples MUST be interleaved, with the in-phase component first (i.e., I[0] Q[0] I[1]

Qf1] ... I[n] Q[nl).

When core:num_channels in the Global Object (described below) indicates that the Recording contains
more than one channel, samples from those channels MUST be interleaved in the same manner with the same
index from each channel’s sample serially in the Recording. This is intended for use in situations where the
native SigMF datatypes are not appropriate, such as audio or oscilloscope channels. For best compatibility, is
RECOMMENDED that native complex type datatypes be used whenever possible (e.g.: RF data). The data

type specified by core:data_ type applies to all channels of data. For multiple channels of I3 data (e.g., array
processing), it is RECOMMENDED to use SigMF Collections.

1.9 SigMF Metadata Format

SigMF metadata fundamentally takes the form of key/value pairs: "namespace:name": value,

Metadata field names in the top level global Object, captures segment Objects, or annotations

Objects MUST be of this form. All fields other than those at the top level which contain a : delimiter
SHALL only use letters, numbers, and the _ character; all other characters are forbidden. Field names
MUST NOT start with a number and MUST NOT not be C++20 or Python 3.10 keywords.

When stored on-disk (at-rest), these rules apply:

1. The Metadata file MUST be written in JSON, as specified by ECMA-404.
2. The entire contents of the Metadata file MUST be contained within a single top-level JSON Object.

3. The top-level Object MUST contain three JSON Objects named global , captures ,and annotations .

4. Metadata key/value pairs SHALL NOT be assumed to have carried over between capture or annotation
segments. If a name/value pair applies to a particular segment, then it MUST appear in that segment,
even if the value is unchanged relative to the previous segment.

All SigMF metadata is defined using the structural concepts of JSON, and when stored on-disk, metadata
MUST be proper JSON to be SigMF compliant.

1.9.1 Datatypes

The values in each key/value pair MUST be one of the following datatypes.

Type Long-form Name Description

int integer Signed 64-bit integer.

uint unsigned long Unsigned 64-bit integer.

double double-precision floating-point A 64-bit float as defined by IEEE 754.

string string A string of characters, as defined by the JSON standard.
boolean boolean Either true or false, as defined by the JSON standard.
null null null , as defined by the JSON standard.

array JSON array An array of other values, as defined by the JSON standard.
object JSON object An object of other values, as defined by the JSON standard.
GeoJSON  GeoJSON point Object A single GeoJSON point Object as defined by RFC 7946.

SigMF Specification Version v1.2.6 6


https://ecma-international.org/publications-and-standards/standards/ecma-404/

1.9.2 Namespaces

Namespaces provide a way to further classify key/value pairs in metadata. This specification defines the
core namespace. Only this specification can add fields to the Core namespace.

The goal of the Core namespace is to capture the foundational metadata necessary to work with SigMF
data. Some keys within the Core namespace are OPTIONAL, and others are REQUIRED. The REQUIRED
fields are those that are minimally necessary to parse and process the Dataset, or that have obvious defaults
that are valid. All other fields are OPTIONAL, though they can be strongly RECOMMENDED.

Extension Namespaces

Fields not defined in the Core namespace MAY be defined in extension namespaces. The SigMF
specification defines some extension namespaces to provide canonical definitions for commonly needed
metadata fields that do not belong in Core. These canonical extension namespaces can be found in the

extensions/ directory of the official SigMF repository. Other extension namespaces MAY be defined by
the user as needed.

1. An extension namespace MUST be defined in a single file, named meta-syntactically as N.sigmf-ext.md ,

where N is the name of the extension.
2. A N.sigmf-ext.md file MUST be a Github-Flavored Markdown file stored in UTF-8 encoding.

3. Extensions MUST have version numbers. It is RECOMMENDED that extensions use Semantic
Versioning.

4. An extension namespace MAY define new top-level SigMF Objects, key/value pairs, new files, new
Dataset formats, or new datatypes.

5. New key/value pairs defined by an extension namespace MUST be defined in the context of a specific
SigMF top-level Object - i.e., global , captures, annotations, or a new user-defined Object.

6. It is RECOMMENDED that an extension namespace file follow the structure of the canonical extension
namespaces.

1.10 Global Object

The global object consists of key/value pairs that provide information applicable to the entire Dataset. It
contains the information that is minimally necessary to open and parse the Dataset file, as well as general
information about the Recording itself.

SigMF Specification Version v1.2.6 7


https://semver.org
https://semver.org

Field Required Type Short Description

datatype Required string The SigMF Dataset format of the stored samples in the Dataset
file

sample_ rate number The sample rate of the signal in samples per second

author string A text identifier for the author potentially including name,
handle, email, and/or other ID like Amateur Call Sig

collection string The base filename of a ‘collection‘ with which this Recording is
associated

dataset string The full filename of the Dataset file this Metadata file describes,
used ONLY with Non-Conforming Datasets

data_ doi string The registered DOI (ISO 26324) for a Recording’s Dataset file

description string A text description of the SigMF Recording

hw string A text description of the hardware used to make the Recording

license string A URL for the license document under which the Recording is
offered

metadata_ only boolean Indicates the Metadata file is intentionally distributed without
the Dataset

meta_ doi string The registered DOT (ISO 26324) for a Recording’s Metadata file

num__channels integer ~ Number of interleaved channels in the Dataset file, if omitted

this is implied to be 1, for multiple channels of IQ data, it is
RECOMMENDED to use SigMF Collections instead of num_ -
channels for widest application support

offset integer  The index number of the first sample in the Dataset

recorder string The name of the software used to make this SigMF Recording

shab12 string The SHA512 hash of the Dataset file associated with the SigMF
file

trailing_ bytes integer ~ The number of bytes to ignore at the end of a Dataset, used
ONLY with Non-Conforming Datasets

version Required string The version of the SigMF specification used to create the Meta-
data file, in the format X.Y.Z

geolocation object The location of the Recording system (note, using the Captures
scope ‘geolocation’ field is preferred)

extensions array The ‘core:extensions field in the Global Object is an array of

extension objects that describe SigMF extensions

1.10.1 datatype

The SigMF Dataset format of the stored samples in the Dataset file.
examples: [cf32_le’, 'ril6_le’|

default: cf32 le

type: string

1.10.2 sample_ rate

The sample rate of the signal in samples per second.
exclusiveMinimum: 0

maximum: 1000000000000

type: number

1.10.3 author

A text identifier for the author potentially including name, handle, email, and/or other ID like Amateur Call
Sign

SigMF Specification Version v1.2.6 8



examples: ["Bruce Wayne bruce@waynetech.com’, "Bruce (K3X)’]
type: string

1.10.4 collection

The base filename of a collection with which this Recording is associated. This field is used to indicate
that this Recording is part of a SigMF Collection (described later in this document). It is strongly RECOM-
MENDED that if you are building a Collection, that each Recording referenced by that Collection use this
field to associate up to the relevant sigmf-collection file.

type: string

1.10.5 dataset

The full filename of the Dataset file this Metadata file describes, used ONLY with Non-Conforming Datasets.
If provided, this string MUST be the complete filename of the Dataset file, including the extension. The
Dataset file must be in the same directory as the .sigmf-meta file; note that this string only includes the
filename, not directory. If a Recording does not have this field, it MUST have a compliant SigMF Dataset
(NOT a Non-Conforming Dataset) which MUST use the same base filename as the Metadata file and use
the .sigmf-data extension. If a SigMF Recording or Archive is renamed this field MUST also be updated,
because of this it is RECOMMENDED that Compliant SigMF Recordings avoid use of this field. This field
SHOULD NOT be used in conjunction the core:metadata_only field. If both fields exist and the file
specified by core:dataset exists, then core:metadata_only SHOULD be ignored by the application.
type: string

1.10.6 data_ doi

The registered DOI (ISO 26324) for a Recording’s Dataset file.
type: string

1.10.7 description

A text description of the SigMF Recording.
type: string

1.10.8 hw

A text description of the hardware used to make the Recording.
type: string

1.10.9 license

A URL for the license document under which the Recording is offered. (RFC 3986)
examples: ['https://creativecommons.org/licenses/by-sa/4.0/’]

format: uri

type: string

1.10.10 metadata_ only

Indicates the Metadata file is intentionally distributed without the Dataset. This field should be defined and
set to true to indicate that the Metadata file is being distributed without a corresponding .sigmf-data
file. This may be done when the Dataset will be generated dynamically from information in the schema, or
because just the schema is sufficient for the intended application. A metadata only distribution is not a
SigMF Recording. If a Compliant SigMF Recording uses this field, it MAY indicate that the Dataset was
dynamically generated from the metadata. This field MAY NOT be used in conjunction with Non-Conforming
Datasets or the core:dataset field.

type: boolean

SigMF Specification Version v1.2.6 9



1.10.11 meta_ doi

The registered DOI (ISO 26324) for a Recording’s Metadata file.
type: string

1.10.12 num_ _channels

Number of interleaved channels in the Dataset file, if omitted this is implied to be 1, for multiple channels of
1Q data, it is RECOMMENDED to use SigMF Collections instead of num_ channels for widest application
support.

default: 1

minimum: 1

maximum: 9223372036854775807

type: integer

1.10.13 offset

The index number of the first sample in the Dataset. If not provided, this value defaults to zero. Typically
used when a Recording is split over multiple files. All sample indices in SigMF are absolute, and so all other
indices referenced in metadata for this recording SHOULD be greater than or equal to this value.

default: 0

minimum: 0

!comment: The maximum value for this property is equal to 2763 - 1, making it easy to fit into a signed
64-bit integer.

maximum: 9223372036854775807

type: integer

1.10.14 recorder

The name of the software used to make this SigMF Recording.
type: string

1.10.15 sha512

The SHA512 hash of the Dataset file associated with the SigMF file.
type: string

1.10.16 trailing bytes

The number of bytes to ignore at the end of a Dataset, used ONLY with Non-Conforming Datasets. This
field is used with Non-Conforming Datasets to indicate some number of bytes that trail the sample data in
the NCD file that should be ignored for processing. This can be used to ignore footer data in non-SigMF
filetypes.

type: integer

minimum: 0

maximum: 9223372036854775807

1.10.17 wversion

The version of the SigMF specification used to create the Metadata file, in the format X.Y.Z.
type: string

1.10.18 geolocation

The location of the Recording system (note, using the Captures scope geolocation field is preferred).

See the geolocation field within the Captures metadata for details. While using the Captures scope

SigMF Specification Version v1.2.6 10



geolocation is preferred, fixed recording systems may still provide position information within the Global

object so it is RECOMMENDED that applications check and use this field if the Captures geolocation
field is not present.

type: object

required: ['type’, 'coordinates’]

properties: {’type’: {’type’: ’string’, ’enum’: ['Point’]}, ’coordinates’: {’type’: ’array’, 'minltems’: 2,
'maxItems”: 3, ’items’: {’type’: ’'number’}}, ’bbox’: {’type’: ’array’, 'minltems’ 4, ’items’: {’type’:
‘number’}}}

1.10.19 extensions

The core:extensions field in the Global Object is an array of extension objects that describe SigMF
extensions. Extension Objects MUST contain the three key/value pairs defined below, and MUST NOT
contain any other fields.

Name Required Type Description

name true string The name of the SigMF extension namespace.
version  true string The version of the extension namespace specification used.
optional true boolean If this field is false , then the application MUST support this

extension in order to parse the Recording; if the application
does not support this extension, it SHOULD report an error.

In the example below, extension-01 is optional, so the application may ignore it if it does not support
extension-01 . But extension-02 is not optional, so the application must support extension-02 in
order to parse the Recording.

"global": {
"core:extensions" : [
{
"name": "extension-01",
"yversion": "0.0.5",
"optional": true
},
{
"name": "extension-02",
"yversion": "1.2.3",
"optional": false
}
]
}
type: array
default: ||

1.11 Captures Array

The captures Object is an array of capture segment objects that describe the parameters of the signal

capture. It MUST be sorted by the value of each capture segment’s core:sample_start key, ascending.

Capture Segment Objects are composed of key/value pairs, and each Segment describes a chunk of samples
that can be mapped into memory for processing. Each Segment MUST contain a core:sample_start

key/value pair, which indicates the sample index relative to the Dataset where this Segment’s metadata
applies. The fields that are described within a Capture Segment are scoped to that Segment only and need

SigMF Specification Version v1.2.6 11



to be explicitly declared again if they are valid in subsequent Segments. While it is recommended there be at
least one segment defined, if there are no items in the captures array it is implied that a single capture exists

with core:sample_start equal to zero (no other metadata is implied), i.e., "captures": [] implies

"captures": ["core:sample_start": 0] .

Field Required Type Short Description

sample_start Required integer  Index of first sample of this chunk

datetime string An ISO-8601 string indicating the timestamp of the sample
index specified by sample_ start

frequency number The center frequency of the signal in Hz

global _index integer  The index of the sample referenced by ‘sample_start® relative
to an original sample stream

header_ bytes integer ~ The number of bytes preceding a chunk of samples that are not
sample data, used for NCDs

geolocation object The location of the recording system at the start of this Captures

segment, as a single RFC 7946 GeoJSON ‘point‘ Object

1.11.1 sample_ start

Index of first sample of this chunk. This field specifies the sample index where this Segment takes effect
relative to the recorded Dataset file. If the Dataset is a SigMF Dataset file, this field can be immediately
mapped to physical disk location since conforming Datasets only contain sample data.

default: 0

minimum: 0

maximum: 9223372036854775807

type: integer

1.11.2 datetime

An ISO-8601 string indicating the timestamp of the sample index specified by sample start. This key/value
pair MUST be an ISO-8601 string, as defined by [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt), where
the only allowed time-offset is Z, indicating the UTC/Zulu timezone. The ABNF description is:

date-fullyear = 4DIGIT

date-month = 2DIGIT ; 01-12

date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on month/year
time-hour = 2DIGIT ; 00-23

time-minute = 2DIGIT ; 00-59

time-second = 2DIGIT ; 00-58, 00-59, 00-60 based on leap second rules
time-secfrac = "." 1xDIGIT

time-offset = "zZ"

partial-time = time-hour ":" time-minute ":" time-second [time-secfrac]
full-date = date-fullyear "-" date-month "-" date-mday

full-time = partial-time time-offset

date-time = full-date "T" full-time

Thus, timestamps take the form of YYYY-MM-DDTHH:MM:SS.SSSZ , where any number of digits for fractional
seconds is permitted.

examples: ['1955-11-05T14:00:00.000Z’]

type: string

SigMF Specification Version v1.2.6 12



1.11.3 frequency

The center frequency of the signal in Hz.
type: number

minimum: -1000000000000
maximum: 1000000000000

examples: [915000000, 2400000000]

1.11.4 global__index

The index of the sample referenced by sample_start relative to an original sample stream. The entirety
of which may not have been captured in a recorded Dataset. If omitted, this value SHOULD be treated
as equal to sample_start . For example, some hardware devices are capable of ’counting’ samples at the
point of data conversion. This sample count is commonly used to indicate a discontinuity in the datastream
between the hardware device and processing. For example, in the below Captures array, there are two
Segments describing samples in a SigMF Dataset file. The first Segment begins at the start of the Dataset
file. The second segment begins at sample index 500 relative to the recorded samples (and since this is a
conforming SigMF Dataset, is physically located on-disk at location sample_start * sizeof (sample) ),

but the global_index reports this was actually sample number 1000 in the original datastream, indicating
that 500 samples were lost before they could be recorded.

"captures": [

{
"core:sample_start": O,
"core:global_index": O
3,
{
"core:sample_start": 500,
"core:global_index": 1000
X

1,

type: integer
minimum: 0
maximum: 9223372036854775807

SigMF Specification Version v1.2.6 13



1.11.5 header_ bytes

The number of bytes preceding a chunk of samples that are not sample data, used for NCDs. This field
specifies a number of bytes that are not valid sample data that are physically located at the start of where
the chunk of samples referenced by this Segment would otherwise begin. If omitted, this value SHOULD be
treated as equal zero. If included, the Dataset is by definition a Non-Conforming Dataset. For example, the
below Metadata for a Non-Conforming Dataset contains two segments describing chunks of 8-bit complex
samples (2 bytes per sample) recorded to disk with 4-byte headers that are not valid for processing. Thus, to
map these two chunks of samples into memory, a reader application would map the 500 samples (equal to

1000 bytes ) in the first Segment, starting at a file offset of 4 bytes , and then the remainder of the file

through EOF starting at a file offset of 1008 bytes (equal to the size of the previous Segment of samples
plus two headers).

{
"global": {
"core:datatype": "cu8",
"core:version": "1.2.0",
"core:dataset": "non-conforming-dataset-0l.dat"
1,
"captures": [
{
"core:sample_start": O,
"core:header_bytes": 4,
3,
{
"core:sample_start": 500,
"core:header_bytes": 4,
b
1,
"annotations": []
X

type: integer
minimum: 0
maximum: 9223372036854775807

1.11.6 geolocation
The location of the recording system at the start of this Captures segment, as a single RFC 7946 GeoJSON
point Object. For moving emitters, this provides a rudimentary means to manage location through different

captures segments. While core:geolocation is also allowed in the Global object for backwards compatibility
reasons, adding it to Captures is preferred. Per the GeoJSON specification, the point coordinates use the
WGS84 coordinate reference system and are longitude , latitude (REQUIRED, in decimal degrees), and

altitude (OPTIONAL, in meters above the WGS84 ellipsoid) - in that order. An example including the
altitude field is shown below:

"captures": {
"core:geolocation": {

"type": "Point",
"coordinates": [-107.6183682, 34.0787916, 2120.0]

SigMF Specification Version v1.2.6 14



GeoJSON permits the use of *Foreign Members* in GeoJSON documents per RFC 7946 Section 6.1. Because
the SigMF requirement for the geolocation field is to be a valid GeoJSON point Object, users MAY
include *Foreign Member* fields here for user-defined purposes (position valid indication, GNSS SV counts,
dillution of precision, accuracy, etc). It is strongly RECOMMENDED that all fields be documented in a
SigMF Extension document. *Note:* Objects named geometry or properties are prohibited Foreign
Members as specified in RFC 7946 Section 7.1.

type: object

required: [type’, 'coordinates’]

properties: {’type’: {’type’: ’string’, ’enum’: ['Point’]}, ’coordinates’: {’type’: ’array’, 'minltems’: 2,
‘maxItems’: 3, ’items’: {’type’: ’number’}}, ’bbox’: {’type’: ’array’, 'minltems’: 4, ’items’: {’type’:
‘number’}}}

1.12 Annotations Array

The annotations Object is an array of annotation segment objects that describe anything regarding the
signal data not part of the Captures and Global objects. It MUST be sorted by the value of each Annotation
Segment’s core:sample_start key, ascending. Annotation segment Objects contain key/value pairs and
MUST contain a core:sample_start key/value pair, which indicates the first index at which the rest of
the Segment’s key/value pairs apply. There is no limit to the number of annotations that can apply to
the same group of samples. If two annotations have the same sample_start , there is no defined ordering
between them. If sample_count is not provided, it SHOULD be assumed that the annotation applies from

sample_start through the end of the corresponding capture, in all other cases sample_count MUST be
provided.

Field Required Type Short Description

sample start Required integer  The sample index at which this Segment takes effect

sample__count integer  The number of samples that this Segment applies to

freq_lower edge number The frequency (Hz) of the lower edge of the feature described
by this annotation

freq_upper__edge number The frequency (Hz) of the upper edge of the feature described
by this annotation

label string A short form human/machine-readable label for the annotation

comment string A human-readable comment, intended to be used for longer
comments (it is recommended to use ‘label* for shorter text)

generator string Human-readable name of the entity that created this annotation

uuid string RFC-4122 unique identifier

1.12.1 sample_ start

The sample index at which this Segment takes effect.
default: 0

minimum: 0

maximum: 9223372036854775807

type: integer

1.12.2 sample_ count

The number of samples that this Segment applies to.
type: integer

minimum: 0

maximum: 9223372036854775807

SigMF Specification Version v1.2.6 15



1.12.3 freq_lower_ edge

The frequency (Hz) of the lower edge of the feature described by this annotation. The freq_lower_edge

and freq_upper_edge fields SHOULD be at RF if the feature is at a known RF frequency. If there is
no known center frequency (as defined by the frequency field in the relevant Capture Segment Object),
or the center frequency is at baseband, the freq_lower_edge and freq_upper_edge fields SHOULD be

relative to baseband. It is REQUIRED that both freq_lower_edge and freq_upper_edge be provided,
or neither; the use of just one field is not allowed.

type: number

minimum: -1000000000000

maximum: 1000000000000

1.12.4 freq_upper_ edge

The frequency (Hz) of the upper edge of the feature described by this annotation.
type: number

minimum: -1000000000000

maximum: 1000000000000

1.12.5 label

A short form human/machine-readable label for the annotation. The label field MAY be used for any
purpose, but it is RECOMMENDED that it be limited to no more than 20 characters as a common use is a
short form GUI indicator. Similarly, it is RECOMMENDED that any user interface making use of this field
be capable of displaying up to 20 characters.

type: string

1.12.6 comment

A human-readable comment, intended to be used for longer comments (it is recommended to use label for
shorter text).

type: string

1.12.7 generator

Human-readable name of the entity that created this annotation.

type: string

1.12.8 wuuid

RFC-4122 unique identifier.
format: uuid
type: string

1.13 SigMF Collection Format

The sigmf-collection file contains metadata in a single top-level Object called a collection . The
Collection Object contains key/value pairs that describe relationships between SigMF Recordings.

The Collection Object associates SigMF Recordings together by specifying SigMF Recording Objects in
the core:streams JSON array. Each Object describes a specific associated SigMF Recording.

The following rules apply to SigMF Collections:
1. The Collection Object MUST be the only top-level Object in the file.

SigMF Specification Version v1.2.6 16



2. Keys in the Collection Object SHOULD use SigMF Recording Objects when referencing SigMF
Recordings.
3. SigMF Recording Objects MUST contain both a name field, which is the base-name of a SigMF

Recording, and a hash which is the SHA512 hash of the Recording Metadata file [base-name] .sigmf-meta .
4. SigMF Recording Objects MUST appear in a JSON array.

Example top-level.sigmf-collection file:

{
"collection": {
"core:version": "1.2.0",
"core:extensions" : [
{
"name": "antenna",
"version": "1.0.0",
"optional": true
}
1,
"antenna:hagl": 120,
"antenna:azimuth_angle": 98,
"core:streams": [
{
"name": "example-channel-O-basename",
"hash": "b4071db26£f5c7b0c70£5066eb9bc3a8b506df0f5af09991bad81£63f97£7£48e9396584bc1c296650
},
{
"name": "example-channel-1-basename",
"hash": "7132aa240e4d8505471cded716073141ae190£763bfca3c27edd8484348d6693d0e8d3427d0bf 1990
}
]
}
}
Field Required Type Short Description
version Required string  The version of the SigMF specification used to create the Col-
lection file
description string A text description of the SigMF Collection
author string A text identifier for the author potentially including name,
handle, email, and/or other ID like Amateur Call Sign
collection_ doi string  The registered DOI (ISO 26324) for a Collection
license string A URL for the license document under which this Collection
metadata is offered
extensions array  The ‘core:extensions’ field in the Global Object is an array of
extension objects that describe SigMF extensions
streams array  An ordered array of SigMF Recording Tuples, indicating multiple

recorded streams of data (e.g., channels from a phased array)

1.13.1 version

The version of the SigMF specification used to create the Collection file.
examples: ['1.2.0’]
type: string

SigMF Specification Version v1.2.6 17



1.13.2 description

A text description of the SigMF Collection.
default:
type: string

1.13.3 author

A text identifier for the author potentially including name, handle, email, and/or other ID like Amateur Call
Sign.

default:

examples: ['Bruce Wayne bruce@waynetech.com’, 'Bruce (K3X)’]

type: string

1.13.4 collection__doi

The registered DOI (ISO 26324) for a Collection.
default:
type: string

1.13.5 license

A URL for the license document under which this Collection metadata is offered.
default:

examples: ['https://creativecommons.org/licenses/by-sa/4.0/’]

type: string

1.13.6 extensions

The core:extensions field in the Global Object is an array of extension objects that describe SigMF
extensions. Extension Objects MUST contain the three key/value pairs defined in Table (FIX REF), and
MUST NOT contain any other fields.

default: ||

type: array

1.13.7 streams

An ordered array of SigMF Recording Tuples, indicating multiple recorded streams of data (e.g., channels
from a phased array).

default: ||

type: array

1.14 SigMF Recording Objects

SigMF Recording Objects reference the base-name of the SigMF Recording and the SHA512 hash of the
Metadata file, and SHOULD BE specified as a JSON Object:

{

"name": "example-channel-O-basename",
"hash": "b4071db26£5c7b0c70£5066eb9. . ."
b

Recording Tuples are also permitted and have a similar form. The order of the tuple: [ name , hash | is
REQUIRED when using tuples:

["example-channel-0O-basename", "b4071db26f5c7b0c70£5066e..."]

SigMF Specification Version v1.2.6 18



Tuples will be removed in SigMF version 2.0, so JSON Objects are RECOMMENDED. Additional optional
user fields MAY be added to SigMF Recording Objects if they are defined in a compliant SigMF extension.
Additional fields are NOT permitted in tuples.

1.15 Licensing

Open licenses are RECOMMENDED but you can specify any license. You can refer to resources provided by
the Open Data Commons when deciding which open license fits your needs best. Cornell University has also
created a guide to help you make these choices.

1.16 SigMF Compliance

The term ’SigMF Compliant’ is used throughout this document, which can take on one of several contextually
dependent meanings. In order for a schema, Recording, or application to be 'SigMF Compliant’, specific
conditions MUST be met, outlined in the following sections. Provided the below criteria are met, an
application or Recording can indicate that it is ’SigMF Compliant’.

1.16.1 SigMF Schema Compliance

In order to be ’SigMF Compliant’, a schema MUST meet the following requirements:

1. Adheres to and supports the metadata file naming conventions, objects , namespaces , and names
specified by this document.

2. MUST contain all REQUIRED fields with the correct datatype listed the core namespace, and any
namespace listed in the extensions array.

3. MUST NOT contain fields that are not outlined in the core or a listed extensions namespace.

1.16.2 SigMF Recording Compliance
In order to be 'SigMF Compliant’, a Recording MUST meet the following requirements:
1. The Recording’s schema file MUST be SigMF Compliant.
2. Adheres to and supports the file naming conventions and Dataset formats specified in this document.

3. Stores data using the on-disk representation described by the datatype .

Recordings with Non-Conforming Datasets MAY have SigMF Compliant schema, but cannot be SigMF
Compliant Recordings.

1.16.3 SigMF Collection Compliance
In order to be 'SigMF Compliant’, a Collection must meet the following requirements:

1. The collection MUST contain only compliant Recordings.

2. The Collection Object MUST only contain SigMF key/value pairs provided by the core specification or
a compliant SigMF extension.

SigMF Specification Version v1.2.6 19


https://opendatacommons.org/
https://data.research.cornell.edu/content/intellectual-property#data-licensing

1.16.4 SigMF Application Compliance

In order to be ’SigMF Compliant’, an application MUST meet the following requirements:

1.

Is capable of parsing and loading SigMF Compliant Recordings. Support for SigMF Collections and
Archives is RECOMMENDED but not REQUIRED.

Adheres to and supports the file rules, Dataset formats, objects , namespaces , and names specified
by this document.

MUST be able to ignore any object or namespace not specified by this document and still function
normally.

. Capture Segments referring to non-existent samples SHOULD be ignored.

MUST treat consecutive Capture Segments whose metadata is equivalent for purposes of that application
(i-e., it may be different in values ignored by the application such as optional values or unknown
extensions) as it would a single segment.

MUST support parsing ALL required fields in the core namespace, and defines which optional fields
are used by the application.

MUST define which extensions are supported, parses ALL required fields in listed extension namespaces,
and defines which optional fields are used. This definition can be in user documentation or within the
code itself, though explicit documentation is RECOMMENDED.

Support for ALL SigMF Datatypes is NOT REQUIRED as certain datatypes may not make sense for a
particular application, but Compliant applications MUST define which datatypes are supported, and
be capable of loading Compliant Recordings using supported datatypes.

Compliant applications are NOT REQUIRED to support Non-Conforming Datasets or Metadata Only
schema files, but it is RECOMMENDED that they parse the respective metadata fields in the global
Object to provide descriptive messages to users regarding why the files are not supported.

Support for SigMF Collections is OPTIONAL for SigMF Compliant applications, however it is RECOM-
MENDED that applications implementing SigMF make use of Collections when appropriate for interoperability
and consistency.

1.17 Citing SigMF

To cite the SigMF specification, we recommend the following format:

The Signal Metadata Format (SigMF), <release>, <date of release>, https://signmf.org

1.18 Acknowledgements

This specification originated at the DARPA Brussels Hackfest 2017.

2

2.1

Extensions

Antenna

The following names are specified in the antenna namespace and should be used in the global object:

SigMF Specification Version v1.2.6 20



Field Required Type Short Description

antenna:model Required string Antenna make and model number

antenna:type string Antenna type

antenna:low_ frequency number Low frequency of operational range, in Hz

antenna:high_ frequency number High frequency of operational range, in Hz

antenna:gain number Antenna gain in direction of maximum radia-
tion or reception, in units of dBi

antenna:horizontal gain_ pattern array Antenna gain pattern in horizontal plane from
0 to 359 degrees in 1 degree steps, in units of
dBi

antenna:vertical gain_ pattern array Antenna gain pattern in vertical plane from -90
to +90 degrees in 1 degree steps, in units of dBi

antenna:horizontal beam width number Horizontal 3-dB beamwidth, in degrees

antenna:vertical beam width number  Vertical 3-dB beamwidth, in degrees

antenna:cross_ polar_ discrimination number  Cross-polarization discrimination

antenna:voltage standing wave_ratio number Voltage standing wave ratio, in units of volts

antenna:cable loss number Cable loss for cable connecting antenna and
preselector, in dB

antenna:steerable boolean Defines if the antenna is steerable or not

antenna:mobile boolean Defines if the antenna is mobile or not

antenna:hagl number  Antenna phase center height above ground level,

in meters

2.1.1 antenna:model

Antenna make and model number. E.g. ARA CSB-16, L-com HG3512UP-NF.

type: string

2.1.2 antenna:type

Antenna type. E.g. dipole, biconical, monopole, conical monopole

type: string

2.1.3 antenna:low__frequency

Low frequency of operational range, in Hz.
type: number

2.1.4 antenna:high_frequency
High frequency of operational range, in Hz.

type: number

2.1.5 antenna:gain

Antenna gain in direction of maximum radiation or reception, in units of dBi.

type: number

2.1.6 antenna:horizontal gain_ pattern

Antenna gain pattern in horizontal plane from 0 to 359 degrees in 1 degree steps, in units of dBi.

type: array

SigMF Specification Version v1.2.6

21



2.1.7 antenna:vertical_gain_ pattern
Antenna gain pattern in vertical plane from -90 to +90 degrees in 1 degree steps, in units of dBi.
type: array

2.1.8 antenna:horizontal beam_ width
Horizontal 3-dB beamwidth, in degrees.

type: number

2.1.9 antenna:vertical beam_ width

Vertical 3-dB beamwidth, in degrees.

type: number

2.1.10 antenna:cross_ polar_ discrimination
Cross-polarization discrimination.

type: number

2.1.11 antenna:voltage_ standing_wave_ ratio
Voltage standing wave ratio, in units of volts.

type: number

2.1.12 antenna:cable_ loss

Cable loss for cable connecting antenna and preselector, in dB.
type: number

2.1.13 antenna:steerable

Defines if the antenna is steerable or not.

type: boolean

2.1.14 antenna:mobile

Defines if the antenna is mobile or not.

type: boolean

2.1.15 antenna:hagl

Antenna phase center height above ground level, in meters.
type: number

The following names are specified in the antenna namespace and should be used in the annotations object:

Field Required Type Short Description

antenna:azimuth__angle number Angle of main beam in azimuthal plane from North, in degrees
antenna:elevation_ angle number  Angle of main beam in elevation plane from horizontal, in degrees
antenna:polarization string E.g

2.1.16 antenna:azimuth_ angle

Angle of main beam in azimuthal plane from North, in degrees.
type: number

SigMF Specification Version v1.2.6 22



2.1.17 antenna:elevation__angle

Angle of main beam in elevation plane from horizontal, in degrees.
type: number

2.1.18 antenna:polarization

E.g. "vertical", "horizontal", "slant-45", "left-hand circular", "right-hand circular".
type: string

The following fields are specificed in SigMF Collections:

Field Required Type Short Description

antenna:azimuth_ angle number Angle of main beam in azimuthal plane from North, in degrees

antenna:elevation_ angle number  Angle of main beam in elevation plane from horizontal, in degrees

antenna:hagl number Nominal antenna phase center height above ground level, in
meters

2.1.19 antenna:azimuth_ angle

Angle of main beam in azimuthal plane from North, in degrees.
type: number

2.1.20 antenna:elevation__angle

Angle of main beam in elevation plane from horizontal, in degrees.
type: number

2.1.21 antenna:hagl

Nominal antenna phase center height above ground level, in meters.
type: number

SigMF Specification Version v1.2.6 23



	SigMF Specification Version v1.2.6
	Abstract
	Copyright Notice
	Table of Contents
	Introduction
	Conventions Used in this Document
	Specification Overview
	SigMF File Types
	SigMF Dataset Format
	SigMF Metadata Format
	Datatypes
	Namespaces

	Global Object
	datatype
	sample_rate
	author
	collection
	dataset
	data_doi
	description
	hw
	license
	metadata_only
	meta_doi
	num_channels
	offset
	recorder
	sha512
	trailing_bytes
	version
	geolocation
	extensions

	Captures Array
	sample_start
	datetime
	frequency
	global_index
	header_bytes
	geolocation

	Annotations Array
	sample_start
	sample_count
	freq_lower_edge
	freq_upper_edge
	label
	comment
	generator
	uuid

	SigMF Collection Format
	version
	description
	author
	collection_doi
	license
	extensions
	streams

	SigMF Recording Objects
	Licensing
	SigMF Compliance
	SigMF Schema Compliance
	SigMF Recording Compliance
	SigMF Collection Compliance
	SigMF Application Compliance

	Citing SigMF
	Acknowledgements

	Extensions
	Antenna
	antenna:model
	antenna:type
	antenna:low_frequency
	antenna:high_frequency
	antenna:gain
	antenna:horizontal_gain_pattern
	antenna:vertical_gain_pattern
	antenna:horizontal_beam_width
	antenna:vertical_beam_width
	antenna:cross_polar_discrimination
	antenna:voltage_standing_wave_ratio
	antenna:cable_loss
	antenna:steerable
	antenna:mobile
	antenna:hagl
	antenna:azimuth_angle
	antenna:elevation_angle
	antenna:polarization
	antenna:azimuth_angle
	antenna:elevation_angle
	antenna:hagl



