

Sian Xiao (He/Him)

Location: Dallas, TX | Phone: +1 2145979256, +86 13011225066
Email: silverchn@outlook.com | LinkedIn: linkedin.com/in/sianxiao

Education

Southern Methodist University , Dallas, TX	Aug. 24, 2020 – Aug. 6, 2024
• Ph.D. in Theoretical and Computational Chemistry	GPA: 4.0/4.0
• Dissertation: Computational Study of Protein Dynamics and Allostery through Molecular Modeling and Machine Learning	
Georgia Institute of Technology , Atlanta, GA	Aug. 21, 2022 – May. 1, 2025
• M.S. in Computer Science, online	GPA: 4.0/4.0
• Coursework: Software Dev Process, Computer Network, Data and Visual Analytics, Machine Learning for Trading, etc.	
Beijing University of Chemical Technology , Beijing, China	Sep. 1, 2015 – Jul. 12, 2019
• B.Eng. in Polymer Materials and Engineering	GPA: 88.0/100

Work Experience

Goldman Sachs , Dallas, TX	Starting Jan. 13, 2025
<i>Quantitative Strategist (Prime Risk), Full-time</i>	
• The job duties will be similar to previous internship experience but not fully determined yet.	
Southern Methodist University , Dallas, TX	Aug. 19, 2024 – Dec. 31, 2024
<i>Research Assistant, Full-time</i>	
• Conduct research on protein allostery mechanisms, specifically focusing on the ongoing <i>AsLOV2</i> study and collaborative work with Dr. Gennady Verkhivker on ABL Kinases.	
• Prepare computational laboratory materials and provide technical support for the graduate-level course CHEM6344: Computer-Aided Drug.	
Goldman Sachs , Dallas, TX	Jun. 10, 2024 – Aug. 16, 2024
<i>Quantitative Strategist (Prime Risk), Internship</i>	
• Analyze vulnerable market scenarios and funds vulnerable to them, to provide insights for manager from 5,000 hedge funds like Millennium.	
• Automate the analysis process to cluster and analyze based on groups of clients and scenarios, which can be customized by users.	
• Develop higher-level descriptors in risk factor decomposition to provide better explanation of market moves, focusing on Interest Rate.	
Southern Methodist University , Dallas, TX	Aug. 24, 2020 – May. 31, 2024
<i>Graduate Research Assistant – AI for Science</i>	
• Established and maintained one public website in Django for protein allosteric site prediction (>85% accuracy, SOTA).	
• Developed, assessed, and benchmarked deep learning models to assist traditional simulations (3 times faster).	
• Initiated automated and customized development workflow with CI/CD via GitHub Actions for the team.	

Research

Protein Allostery Mechanism Explanation with Computational Approaches	Aug. 2022 – May. 2024
• Wrote two review papers about the usage of emerging methods in protein allostery study to provide insights to this research field.	
• Utilized molecular dynamics simulations and statistical methods to study the allosteric mechanism of <i>AsLOV2</i> , SARS-COV-2 and ABL Kinases systems.	
Protein Conformation Exploration	
• Explored and benchmarked different models to assist conventional MD simulations to explore protein conformational spaces.	
• Designed an efficient, open-source adaptive sampling algorithm based on structure embeddings and outlier dissimilarity that is 3 times faster than conventional MD simulations method.	
Protein Allosteric Sites Prediction Server http://passer.smu.edu	Jun. 2021 – Jun. 2023
• Advanced the prediction accuracy of top 3 protein pockets and deployed the model to our Protein Allosteric Site Server (passer.smu.edu).	
• The web server can handle job submission and protein visualization within web pages and already has more than 54,000 visits from more than 70 countries with more than 7,500 executions.	