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Abstract

We present a weakly-supervised data augmenta-
tion approach to improve Named Entity Recog-
nition (NER) in a challenging domain: extract-
ing biomedical entities (e.g., proteins) from the
scientific literature. First, we train a neural NER
(NNER) model over a small seed of fully-labeled
examples. Second, we use a reference set of en-
tity names (e.g., proteins in UniProt) to identify
entity mentions with high precision, but low re-
call, on an unlabeled corpus. Third, we use the
NNER model to assign weak labels to the corpus.
Finally, we retrain our NNER model iteratively
over the augmented training set, including the
seed, the reference-set examples, and the weakly-
labeled examples, which improves model per-
formance. We show empirically that this aug-
mented bootstrapping process significantly im-
proves NER performance, and discuss the factors
impacting the efficacy of the approach.

1. Introduction

The increasing wealth of available biomedical data fuels
numerous machine learning applications. Unfortunately,
much of this data is unlabeled, unstructured and noisy.
Supervised learning achieves the best task performance,
but obtaining training labels is expensive. Crowd-sourcing
could provide labels at scale, but may not be appropriate for
acquiring high-quality labels in technical domains that re-
quire expert annotators, such as biomedicine. In this paper,
we explore augmented bootstrapping methods that leverage
automatically assigned noisy labels obtained from a large
unlabeled corpus.

The biomedical literature is a high-impact domain with
scarce annotations. Unlocking the knowledge in this data
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requires machine reading systems that automatically ex-
tract important concepts in the text, such as entities and
their relations. A critical component of such systems is
reliable Named Entity Recognition (NER), which aims to
identify parts of the text that refer to a named entity (e.g., a
protein). In line with advancements in many domains, most
state-of-the-art NER approaches use a deep neural network
model that relies on a large labeled training set (Fakhraei &
Ambite, 2018)), which is not usually available in biomedi-
cal domains. To address label scarcity, we propose a frame-
work to train any effective neural NER model by leveraging
partially labeled data. We do this by creating an augmented
training set using a small fully-labeled seed set, and an un-
labeled corpus set, which we weakly and automatically la-
bel, and then refine its labels via an iterative process.

Our main contributions include: (1) An augmented boot-
strapping approach combining information from a refer-
ence set with iterative refinements of soft labels to improve
NER performance in a challenging domain (biomedicine)
where manual labelling is expensive. (2) An analysis of
factors affecting performance in a controlled experimental
setup. (3) An analysis of reference-based automated ap-
proaches to labeling data, showing that naive labeling de-
creases performance and how to overcome it.

2. Related Work

Many effective NER systems assume a fully-supervised
setting to train a neural network model (Liu et al., 2018}
Ma & Hovy, 2016} |[Lample et al.| 2016). Recently, distant
supervision has been applied to language-related tasks such
as phrase mining (Shang et al., 2018a), relation extraction
(Mintz et al.l [2009), and entity extraction (He, [2017). For
NER, [Fries et al.|(2017)) automatically generated candidate
annotations on an unlabeled dataset using weak labellers.
Ren et al.|(2015) and He|(2017) used knowledge bases and
linguistic features to tag entities. Our approach combines
knowledge extracted from an external reference set with
noisy predicted labels and refines them iteratively.

Using a reference set, Ratner et al.| (2017) proposed
heuristic-based functions to label data with low accuracy.
Shang et al.| (2018aib) described techniques to automat-
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ically tag phrases based on biomedical knowledge bases,
such as MeSH and CTD .

However, in NER systems with weak supervision,
wrongly-labeled entities negatively affects the overall per-
formance (Shang et al.l 2018b). Our proposed iterative
training technique is able to make the learning process
more robust to noisy labels.

Our method is closely related to bootstrapping. |Yarowsky
(1995) introduced the bootstrapping technique by training
a tree-based classifier for word-sense disambiguation on
labeled seed data and then using it to predict on an unla-
beled corpus which further is used for training the model
iteratively until convergence. Later [Kozareva) (2006) boot-
strapped statistical classifiers for NER. |Abney| (2004) and
Haffari & Sarkar|(2007) applied bootstrapping for language
processing, and (Reed et al.,[2015)) for image classification.

We propose an augmented bootstrapping technique for the
state-of-the-art neural NER model applied to biomedical
literature. In contrast to standard bootstrapping techniques
that use hard labels, we refine soft label values, which
may be more suitable for noisy data. More importantly,
we further augment the bootstrapping process via a sim-
ple domain-independent data annotation scheme based on
a reference set, which is in contrast to the hand-crafted do-
main specific rules or the linguistic or morphological char-
acteristics used in standard bootstrapping approaches.

3. Reference-set Labelling and Augmented
Bootstrapping

Our main goal is to use easily available external informa-
tion to leverage unlabeled data and reduce the need for
an expensive, fully-labeled dataset. We assume to have a
small fully-annotated seed dataset D that has every token
tagged by entity type and a larger unlabeled corpus D..
We seek to automatically generate an augmented dataset by
partially, and possibly noisily, labeling D.. We show that
training a (Neural) NER system over the combined seed
and augmented datasets achieves the performance of sys-
tems trained with an order of magnitude more labels.

3.1. Leveraging Reference Sets and Iterative Label
Refinement

We propose an iterative solution to improve NER by label-
ing the corpus dataset using two complementary sources of
information. First, we train an NER model using the small
seed dataset D and use it to label the unlabeled corpus
D.; we call this set of labels predicted labels. Second, we
use search policies over a reference set to find mentions
of entity names in the unlabeled corpus D,.; we call these
set of labels reference-based labels. We combine the seed,
the predicted and the reference-based labels to fine-tune the
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Figure 1: Architecture: NNER+Augmented Bootstrapping.

NER model by resuming training from the previous model
state. We then use the updated model to iteratively refine
the predicted labels portion of the corpus set.

Figure [T] and Algorithm [I] show the overall process of our
method. We use soft scores (between 0 and 1) to label the
corpus set, instead of the binary labels produced by the
CRF layer used in state-of-the-art NER models. Our aim
is to let the model iteratively reinforce the weak signals in
the soft scores to improve the label quality.

Algorithm 1: Assignment algorithm

Function IterativeTrain (Ds, D.)
Input: Labeled seed data (D)

Input: Unlabeled corpus (D.)
Output: Iteratively trained model (M g)
Train model M on Dy
foriinl...K do

DUV* L Predict using M;_1

Dy_l) < Relabel Dgi_l)*

s.t.

if token € Reference Set then

scoTesqq(token) < 1

end

Train model M; on D, + Dﬁi_l)
end
return M g

3.2. Base NER Model and Soft Labeling

Recent high-performing neural NER (NNER) models
(Lample et al., 2016;|Ma & Hovyl [2016) use Bi-directional
LSTM (BiLSTM) layers trained on character and word em-
beddings. The character embeddings are learned over the
training data and concatenated with GloVe word embed-
dings (Pennington et al., 2014). The final tag scores are
passed to a linear chain CRF layer which produces the most
probable sequence of tags. We use an open-source Tensor-
flow implementation of this model (Genthial, 2017), which
achieves state-of-the-art NER performance on the CoNLL
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200 dataset. To produce soft scores for each tag in our ex-
periments, we replace the CRF layer with a softmax layer.
Entities found via the reference set receive a score of 1. In
order to evaluate our initial predictions, we apply argmax
to the output tag probabilities from the softmax layer and
generate the most probable labels. We use the final refined
dataset to train an unmodified NNER (BiLSTM+CRF with-
out a Softmax layer) model which has the CRF in the out-
put layer. The code of the model architecture and iterative
training will be made available upon paper publication.

4. Experimental Analysis and Results

We show the effectiveness of our approach in a challenging
NER task, extracting protein mentions from the biomedical
literature, and systematically evaluate the contribution of
the different techniques.

We use the BioCreative VI Bio-ID dataset (Arighi et al.|
2018), which contains 13,573 annotated figure captions
corresponding to 3,658 figures from 570 full length arti-
cles from 22 journals, for a total of 102,717 annotations.
The Bio-ID dataset is split into a training set of 38,344 sen-
tences, a development set of 4,243 sentences, and a test set
with 14,079 sentences. The tokens are tagged using the
BIO scheme (Beginning, Inside and Outside of entities).

The Bio-ID dataset provides us with a controlled environ-
ment where we can evaluate our methods, since it provides
ground truth on the labels. The rationale of the following
experiments is to simulate our desired data augmentation
scenario, which is to search for sentences containing rele-
vant bioentities (e.g., proteins) in a large unlabeled corpus,
such as PubMed Central. We evaluate our three main tech-
niques, namely (1) using a reference set of entity names
(i.e., protein names from UniProt), (2) predicting labels for
unknown tokens using a NNER system trained in a small
fraction of the data, and (3) refining the label predictions by
fine-tuning the NNER system iteratively. We focus on pro-
tein/gene annotations for simplicity (51,977 mentions with
5,284 distinct entities).

Our experimental evaluation appears in Table [T} which
shows Precision, Recall and F over the Bio-ID test set for
different conditions. Experiments E1 and E2 show results
of the NNER system trained over the full Bio-ID training
dataset, which on the test set achieves F; of 8§2.99% (BiL-
STM+Softmax) and 83.34% (BiLSTM+CRF). This simu-
lates the performance over a large amount of labeled data
and is our gold standard upper limit. For the remaining ex-
periments, we train an NNER system over a small dataset, a
randomly selected 3% subset of the Bio-ID training dataset,
which mimics a low resource setting of 1,150 sentences
with 1,258 protein/gene tags. We call the NNER model

"https://www.clips.uantwerpen.be/conll2003/ner/

trained on 3% of the data as NNER-3%. We use the NNER-
3% model to predict labels for unknown tokens (noisily,
since its accuracy is not perfect). Then, we apply different
data augmentation techniques over the remaining 97% of
the Bio-ID training dataset, which simulates the accessibil-
ity of a large unlabeled corpus.

Experiment E3 shows the results for a simple baseline
where we train our NNER system over the 3% seed com-
bined with one true protein label per sentence for the re-
maining 97% of the Bio-ID training dataset, which removes
~60% of the protein labels. This experiment simulates an
augmentation method with perfect precision, but a recall of
only 40%. Experiment E4 uses a CRF in the model’s out-
put layer for the same scenario, which results in a ~9 point
increase on F to reach ~58% (although precision suffers).
Even in this somehow unrealistic scenario that includes
many of the available labels, the overall performance is sig-
nificantly diminished from the the system trained on 100%
of the data (~25 percentage points below in F).

Experiments E5 and E6 show the effect of our iterative la-
bel refinement method. We first train NNER-3% on the
seed data. Then we combine the seed, with the perfect pre-
cision (but partial, 40%) labels as in experiments E3 and
E4, and with the noisy predicted labels for the remaining
tokens on the training dataset. Surprisingly, training over
only 3% of the data already achieves a good F} of 72.91%
for the BiILSTM+Softmax architecture and 76.21% for the
BiLSTM+CREF architecture. When we retrain this base sys-
tem iteratively on the remaining data, the accuracy of the
predicted labels increases, which leads to an improvement
of ~3-4 percentage points in Fy (to 77.58% for the BiL-
STM+Softmax and 79.75% for the BILSTM+CRF). Thus,
the iterative label refinement method reduces the distance
to the 100% trained system (E1, E2) from 25 to 4 percent-
age points, which is a substantial improvement.

Table[2]shows the evolution of the iterative label refinement
procedure for experiments E5 and E6. We train NNER-3%
(Iter 0) and use it to predict labels for unknown tokens re-
peatedly, which yields a jump in performance in the first
iteration (Iter 1), since the predicted labels are informative,
and then a more gradual improvement as the labels are in-
creasingly refined.

Finally, the remaining experiments (E7, E8, E9) simulate
the more realistic scenario we seek, where we search for
sentences in a large corpus to be labeled automatically. In
experiment E7, we simply use our reference set to directly
search for exact mentions in the corpus. Specifically, we
search in a case sensitive way for protein/gene names from
UniProt in the 97% dataset that simulates our large unla-
beled corpus (condition C1 in Table [I). Matching tokens
are tagged as protein mentions for training. Since we know
the true labels, we can compute the precision (=59.23%)
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Training Data Output Results
True Ref-Set Predicted Iterative p R Fl
Labels Lookup Labels Refinement

= El 100% No No No Softmax 78.73 87.73 82.99

E E2 100% No No No CRF 80.75 86.09 83.34

g E3 40% No No No Softmax 78.70 36.05 49.45

& E4 40% No No No CRF 68.51 51.31 58.67
Seed Seed + Augmentation

P R F1 P R F1

2 E5 3%+40% No Yes (57%) Yes Softmax 67.60 79.14 7291 68.37 89.66 77.58

s E6 3%+40% No Yes (57%) Yes CRF 6794 86.77 76.21 72.79 88.92 79.75

i E7 3% Cl Yes (97%) Yes Softmax 69.71 7596 72770 61.60 84.71 71.33

Z E8 3% C2 Yes (97%) Yes Softmax 69.71 7596 7270 7030 84.23 76.63

= E9 3% C2 Yes (97%) Yes CRF 69.71 7596 7270 71.03 8574 77.70

Table 1: Experimental Evaluation. [C1 = Exact search (P=59.23, R=18.66). C2 = Removed words in English dictionary
and words less than 4 characters; case-insensitive search (P=90.20, R=39.35)]

Table 2: Performance of iterative refinement (ES, E6).

BiLSTM+Softmax BiLSTM+CRF

Iter P R F1 P R F1
0 6760 79.14 7291 84.14 66.49 74.28
1 6847 8561 76.08 67.94 86.77 76.21
2 68.92 8654 76.73 68.73 88.59 77.41
3 68.86 8778 77.18 68.69 8891 7751
4 69.13 88.11 7747 70.26  88.18 78.21
5 69.13 88.00 7743 69.48 88.78 77.95
6 6891 8859 7752 70.09 88.79 78.34
7 6844 8838 77.15 70.35 89.63 78.83
8 6826 89.29 7737 69.73 89.41 78.36
9 68.01 89.02 77.11 69.30 89.88 78.26
10 6837 89.66 77.58 7229 8892 179.75

and recall (=18.66%) of this selection technique, which in
fact, is quite poor. The iterative training technique, which
produced good results in the previous experiments, shows
a decreased performance (F; =72.70 for NNER-3% and
71.33% when using the augmented dataset). The low pre-
cision of the reference set search produces low quality aug-
mented data, which in turn reduces performance.

For experiments E8 and E9, we refined the reference set
search to increase its precision. After error analysis, we
discovered that many protein names were ambiguous. For
example, the token ANOVA is a name of protein QQUNW
in UniProt, and also a well-known statistical procedure.
Thus, we removed all protein names that appear in an En-
glish dictionary from our search. More drastically, we also
removed protein names with fewer than 4 characters to
avoid capturing acronyms that may not really be protein
names. Finally, we also relaxed the matching strategy to

be case insensitive and also to allow for partial matches
(condition C2 in Table [I). For example, when searching
for TIGAR, we will accept “Flag-tagged-TIGAR”. This
selection technique improves precision to 90.20%) and re-
call to 39.35% on identifying correct proteins in Bio-ID.
We constructed our augmented training dataset combining
the seed, the reference-set matches, and the labels predicted
by NNER-3%, and applied our iterative bootstrapping pro-
cedure. This method achieves a I of 76.63% for BilL-
STM+Softmax and of 77.70% for BILSTM+CRF.

In summary, through these experiments we show that using
a small labeled dataset and our automatic data augmented
bootstrapping procedure (experiments E8, E9), we achieve
a performance approaching that of a system trained with
over 30 times more labeled data.

5. Conclusion and Future Directions

We proposed a method to improve NER with limited la-
beled data, which is often the case in technical domains,
such as biomedicine. Our method combines bootstrapping
and weakly-labeled data augmentation by using a small
fully-labeled seed dataset and a large unlabeled corpus, au-
tomated labelling using a reference set, and an iterative la-
bel refinement process. Our experimental evaluation shows
performance equivalent to systems trained with an order of
magnitude more labeled data.

In future work, we aim to explore additional bootstrapping
methods for other challenging datasets. We plan to ap-
ply the findings of these controlled experiments to a much
larger, in-the-wild scenario where we use all the available
labeled data as the seed and operate over a large corpus
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(e.g., all of PubMed, PubMed Central) to improve state-of-
the-art biomedical NER performance.
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