Rust Design Patterns

the rust-unofficial authors

Contents

1

2

3

Introduction
1.1 Translations o e e e e e e e e e e e e e e e e e e

Idioms
2.1 Use borrowed types for arguments L e
2.2 Concatenating strings with format!o ..
2.3 ConStruCtors o v v v i e e e e e e e e e e e
24 TheDefaultTrait o . o i i ittt e e e e
2.5 Collections are smart pointers o o v it e e e e e e e
2.6 Finalisationindestructorso Lo e e e
2.7 mem::{take(_), replace(_)} tokeep owned values in changed enums
2.8 On-Stack DynamicDispatch
29 FFIIdioms o e e e
29.1 ErrorHandlinginFFI. e
2.9.2 Accepting Strings e e e e e
2.9.3 PassingStrings e e e e
2.10 Iterating over an Option. Lo e
2.11 Passvariablestoclosure e
2.12 #[non_exhaustive] and private fields for extensibility
2.13 Easy doc initializationo
2.14 Temporary mutability Lo
2.15 Return consumed argument ON €XTOT « « o« v v v v v b e e e e e e e

Design Patterns

3.1 Behavioural Patterns e e e
311 Command e e e e e e e e e
3.1.2 Interpreter e e e e e e e e e e e e e e
313 Newtype o o o o e e e e
3.14 RAIlwithguards e
3.1.5 Strategy (aka Policy)
316 VISItOr o e e e e e e e e

3.2 Creational Patterns L e
3.2.1 Builder e
322 Fold o e e

3.3 Structural Patterns L. e e e
3.3.1 Struct decomposition for independent borrowing
3.3.2 Prefersmallcrates e e e
3.3.3 Contain unsafetyinsmallmodules.
3.3.4 Use custom traits to avoid complex type bounds

34 FFIPatterns o o o i it e e e e e e e e e e e e e e
34.1 Object-Based APIS e e e e

3.4.2 Type Consolidation into Wrappers

4 Anti-patterns

4.1 Clone to satisfy the borrow checker
#! [deny(warnings)]
4.3 Deref polymorphism

Functional Usage of Rust

5.1 Programming paradigms
5.2 Generics as Type Classes
5.3 Functional Language Optics

Additional resources
6.1 Design principles

65
65
66
68

71
71
72
77

85

Chapter 1

Introduction

Participation

If you are interested in contributing to this book, check out the contribution guidelines.

News

* 2025-12-14: New pattern added: Use custom traits to avoid complex type bounds
* 2024-03-17: You can now download the book in PDF format.

Design patterns

In software development, we often come across problems that share similarities regardless of the
environment they appear in. Although the implementation details are crucial to solve the task at
hand, we may abstract from these particularities to find the common practices that are generically
applicable.

Design patterns are a collection of reusable and tested solutions to recurring problems in engineering.
They make our software more modular, maintainable, and extensible. Moreover, these patterns pro-
vide a common language for developers, making them an excellent tool for effective communication
when problem-solving in teams.

Keep in mind: Each pattern comes with its own set of trade-offs. It's crucial to focus on why you
choose a particular pattern rather than just on how to implement it.!

Design patterns in Rust

Rust is not object-oriented, and the combination of all its characteristics, such as functional elements,
a strong type system, and the borrow checker, makes it unique. Because of this, Rust design patterns
vary with respect to other traditional object-oriented programming languages. That's why we decided
to write this book. We hope you enjoy reading it! The book is divided in three main chapters:

* Idioms: guidelines to follow when coding. They are the social norms of the community. You
should break them only if you have a good reason for it.
* Design patterns: methods to solve common problems when coding.

Thttps://www.infoq.com/podcasts/software-architecture-hard-parts/ (Archive)

https://github.com/rust-unofficial/patterns/blob/master/CONTRIBUTING.md
https://rust-unofficial.github.io/patterns/rust-design-patterns.pdf
https://www.infoq.com/podcasts/software-architecture-hard-parts/
https://web.archive.org/web/20240124025806/https://www.infoq.com/podcasts/software-architecture-hard-parts/

* Anti-patterns: methods to solve common problems when coding. However, while design patterns
give us benefits, anti-patterns create more problems.

Last change: 2026-01-03, commit: f279f35

1.1 Translations

We are utilizing mdbook-i18n-helper. Please read up on how to add and update translations in their
repository

External translations

o fA{AP
If you want to add a translation, please open an issue in the main repository.
Last change: 2026-01-03, commit: f279f35

https://github.com/rust-unofficial/patterns/commit/f279f35
https://github.com/google/mdbook-i18n-helpers
https://github.com/google/mdbook-i18n-helpers#creating-and-updating-translations
https://github.com/google/mdbook-i18n-helpers#creating-and-updating-translations
https://fomalhauthmj.github.io/patterns/
https://github.com/rust-unofficial/patterns
https://github.com/rust-unofficial/patterns/commit/f279f35

Chapter 2

Idioms

Idioms are commonly used styles, guidelines and patterns largely agreed upon by a community.
Writing idiomatic code allows other developers to understand better what is happening.

After all, the computer only cares about the machine code that is generated by the compiler. Instead,
the source code is mainly beneficial to the developer. So, since we have this abstraction layer, why
not make it more readable?

Remember the KISS principle: ”Keep It Simple, Stupid”. It claims that “most systems work best if they
are kept simple rather than made complicated; therefore, simplicity should be a key goal in design,
and unnecessary complexity should be avoided”.

Code is there for humans, not computers, to understand.
Last change: 2026-01-03, commit: f279f35

2.1 Use borrowed types for arguments

Description

Using a target of a deref coercion can increase the flexibility of your code when you are deciding
which argument type to use for a function argument. In this way, the function will accept more input

types.

This is not limited to slice-able or fat pointer types. In fact, you should always prefer using the
borrowed type over borrowing the owned type. Such as &str over &String, &[T] over &Vec<T>,
or &T over &Box<T>.

Using borrowed types you can avoid layers of indirection for those instances where the owned
type already provides a layer of indirection. For instance, a String has a layer of indirection, so a
&String will have two layers of indirection. We can avoid this by using &str instead, and letting
&String coerce to a &str whenever the function is invoked.

Example

For this example, we will illustrate some differences for using &String as a function argument versus
using a &str, but the ideas apply as well to using &Vec<T> versus using a &[T] or using a &Box<T>
versus a &T.

Consider an example where we wish to determine if a word contains three consecutive vowels. We
don't need to own the string to determine this, so we will take a reference.

https://en.wikipedia.org/wiki/Programming_idiom
https://en.wikipedia.org/wiki/KISS_principle
https://github.com/rust-unofficial/patterns/commit/f279f35

The code might look something like this:

fn three_vowels(word: &String) -> bool {
let mut vowel_count = 0;
for ¢ in word.chars() {
match c {
at | 'e' | it] ‘o' | 'u' => {
vowel_count += 1;
if vowel_count >= 3 {
return true;

}
}
_ => vowel_count = 0,
}
}
false
}
fn main() {
let ferris = "Ferris".to_string();
let curious = "Curious".to_string();

println!("{}: {}", ferris, three_vowels(&ferris));
println!("{}: {}", curious, three_vowels(&curious));

// This works fine, but the following two lines would fail:
// println!("Ferris: {}", three_vowels("Ferris"));
// println!("Curious: {}", three_vowels("Curious"));

}

This works fine because we are passing a &String type as a parameter. If we remove the comments
on the last two lines, the example will fail. This is because a &stx type will not coerce to a &String
type. We can fix this by simply modifying the type for our argument.

For instance, if we change our function declaration to:
fn three_vowels(word: &str) -> bool {
then both versions will compile and print the same output.

Ferris: false
Curious: true

But wait, that's not all! There is more to this story. It's likely that you may say to yourself: that
doesn't matter, I will never be using a & 'static str as an input anyways (as we did when we used
"Ferris"). Even ignoring this special example, you may still find that using &str will give you more
flexibility than using a &String.

Let's now take an example where someone gives us a sentence, and we want to determine if any of
the words in the sentence contain three consecutive vowels. We probably should make use of the
function we have already defined and simply feed in each word from the sentence.

An example of this could look like this:

fn three_vowels(word: &str) -> bool {
let mut vowel_count = 0;
for c in word.chars() {
match c {

'at | 'e' | 'i' | 'o!

vowel_count += 1;

1

if vowel_count >= 3 {
return true;
}
}
_ => vowel_count = 0,
}
}
false
}

fn main() {
let sentence_string =
"Once upon a time, there was a friendly curious crab named
o Ferris".to_string();
for word in sentence_string.split(' ') {
if three_vowels(word) {
println! ("{word} has three consecutive vowels!");

}
}

Running this example using our function declared with an argument type &str will yield
curious has three consecutive vowels!

However, this example will not run when our function is declared with an argument type &String.
This is because string slices are a &str and not a &String which would require an allocation to be
converted to &String which is not implicit, whereas converting from String to &str is cheap and
implicit.

See also

* Rust Language Reference on Type Coercions

» For more discussion on how to handle String and &stx see this blog series (2015) by Herman J.
Radtke III

 Steve Klabnik's Blogpost on "When should I use String vs &str?'

Last change: 2026-01-03, commit: f279f35

2.2 Concatenating strings with format!

Description

It is possible to build up strings using the push and push_str methods on a mutable String, or
using its + operator. However, it is often more convenient to use format!, especially where there is a
mix of literal and non-literal strings.

Example

fn say_hello(name: &str) -> String {
// We could construct the result string manually.
// let mut result = "Hello ".to_owned();
// result.push_str(name);
// result.push('!");

https://doc.rust-lang.org/reference/type-coercions.html
https://web.archive.org/web/20201112023149/https://hermanradtke.com/2015/05/03/string-vs-str-in-rust-functions.html
https://archive.ph/LBpD0
https://github.com/rust-unofficial/patterns/commit/f279f35

// result

// But using format! is better.
format!("Hello {name}!")

Advantages

Using format! is usually the most succinct and readable way to combine strings.

Disadvantages

It is usually not the most efficient way to combine strings - a series of push operations on a mutable
string is usually the most efficient (especially if the string has been pre-allocated to the expected size).

Last change: 2026-01-03, commit: 27935

2.3 Constructors

Description

Rust does not have constructors as alanguage construct. Instead, the convention is to use an associated
function new to create an object:

/// Time in seconds.
/117
/// # Example
/1]
/117
/// let s = Second::new(42);
/// assert_eq! (42, s.value());
TS
pub struct Second {
value: u64,

}

impl Second {
// Constructs a new instance of [Second’].
// Note this is an associated function - no self.
pub fn new(value: u64) -> Self {
Self { value }
}

/// Returns the value in seconds.

pub fn value(&self) -> u64 {
self.value

}

Default Constructors

Rust supports default constructors with the Default trait:

https://github.com/rust-unofficial/patterns/commit/f279f35
https://doc.rust-lang.org/stable/book/ch05-03-method-syntax.html#associated-functions
https://doc.rust-lang.org/stable/book/ch05-03-method-syntax.html#associated-functions
https://doc.rust-lang.org/stable/std/default/trait.Default.html

/// Time in seconds.
/17
/// # Example
/17
/117
/// let s = Second::default();
/// assert_eq! (@, s.value());
TS
pub struct Second {
value: u64,

}

impl Second {
/// Returns the value in seconds.
pub fn value(&self) -> u64 {
self.value
}
}

impl Default for Second {
fn default() -> Self {
Self { value: 0 }
}
}

Default can also be derived if all types of all fields implement Default, like they do with Second:

/// Time in seconds.
/17
/// # Example
/17
/117
/// let s = Second::default();
/// assert_eq! (@, s.value());
TS
#[derive(Default)]
pub struct Second {
value: u64,

}

impl Second {
/// Returns the value in seconds.
pub fn value(&self) -> u64 {
self.value
}
}

Note: It is common and expected for types to implement both Default and an empty new constructor.
new is the constructor convention in Rust, and users expect it to exist, so if it is reasonable for the
basic constructor to take no arguments, then it should, even if it is functionally identical to default.

Hint: The advantage of implementing or deriving Default is that your type can now be used where
a Default implementation is required, most prominently, any of the *or_default functions in the
standard library.

https://doc.rust-lang.org/stable/std/?search=or_default
https://doc.rust-lang.org/stable/std/?search=or_default

See also

* The default idiom for a more in-depth description of the Default trait.
» The builder pattern for constructing objects where there are multiple configurations.
* API Guidelines/C-COMMON-TRAITS for implementing both, Default and new.

Last change: 2026-01-03, commit: 27935

2.4 The Default Trait

Description

Many types in Rust have a constructor. However, this is specific to the type; Rust cannot abstract over
“everything that has a new () method”. To allow this, the Default trait was conceived, which can be
used with containers and other generic types (e.g. see Option: :unwrap_or_default()). Notably,
some containers already implement it where applicable.

Not only do one-element containers like Cow, Box or Arc implement Default for contained Default
types, one can automatically #[derive (Default)] for structs whose fields all implement it, so the
more types implement Default, the more useful it becomes.

On the other hand, constructors can take multiple arguments, while the default () method does not.
There can even be multiple constructors with different names, but there can only be one Default
implementation per type.

Example

use std::{path::PathBuf, time::Duration};

// note that we can simply auto-derive Default here.
#[derive(Default, Debug, PartialEq)]
struct MyConfiguration {
// Option defaults to None
output: Option<PathBuf>,
// Vecs default to empty vector
search_path: Vec<PathBuf>,
// Duration defaults to zero time
timeout: Duration,
// bool defaults to false
check: bool,
}

impl MyConfiguration {
// add setters here

}

fn main() {
// construct a new instance with default values
let mut conf = MyConfiguration::default();
// do something with conf here
conf.check = true;
println!("conf = {conf:#?}");

// partial initialization with default values, creates the same instance

10

https://rust-lang.github.io/api-guidelines/interoperability.html#types-eagerly-implement-common-traits-c-common-traits
https://github.com/rust-unofficial/patterns/commit/f279f35
https://doc.rust-lang.org/stable/std/default/trait.Default.html
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default

let confl = MyConfiguration {
check: true,
..Default: :default()

b

assert_eq!(conf, confl);
}
See also

* The constructor idiom is another way to generate instances that may or may not be *default”
* The Default documentation (scroll down for the list of implementors)

* Option: :unwrap_or_default()

* derive(new)

Last change: 2026-01-03, commit: 279135

2.5 Collections are smart pointers

Description

Use the Deref trait to treat collections like smart pointers, offering owning and borrowed views of
data.

Example

use std::ops::Deref;

struct Vec<T> {
data: RawVec<T>,

}

impl<T> Deref for Vec<T> {
type Target = [T];

fn deref(&self) -> &[T] {

}
}

A Vec<T> is an owning collection of Ts, while a slice (&[T]) is a borrowed collection of Ts. Implement-
ing Deref for Vec allows implicit dereferencing from &Vec<T> to &[T] and includes the relationship
in auto-dereferencing searches. Most methods you might expect to be implemented for Vecs are
instead implemented for slices.

Also String and &stxr have a similar relation.

Motivation

Ownership and borrowing are key aspects of the Rust language. Data structures must account for
these semantics properly to give a good user experience. When implementing a data structure that
owns its data, offering a borrowed view of that data allows for more flexible APIs.

11

https://doc.rust-lang.org/stable/std/default/trait.Default.html
https://doc.rust-lang.org/stable/std/option/enum.Option.html#method.unwrap_or_default
https://crates.io/crates/derive-new/
https://github.com/rust-unofficial/patterns/commit/f279f35
https://doc.rust-lang.org/std/ops/trait.Deref.html

Advantages

Most methods can be implemented only for the borrowed view, they are then implicitly available for
the owning view.

Gives clients a choice between borrowing or taking ownership of data.

Disadvantages

Methods and traits only available via dereferencing are not taken into account when bounds checking,
so generic programming with data structures using this pattern can get complex (see the Borrow
and AsRef traits, etc.).

Discussion

Smart pointers and collections are analogous: a smart pointer points to a single object, whereas a
collection points to many objects. From the point of view of the type system, there is little difference
between the two. A collection owns its data if the only way to access each datum is via the collection
and the collection is responsible for deleting the data (even in cases of shared ownership, some kind
of borrowed view may be appropriate). If a collection owns its data, it is usually useful to provide a
view of the data as borrowed so that it can be referenced multiple times.

Most smart pointers (e.g., Foo<T>) implement Deref<Target=T>. However, collections will usually
dereference to a custom type. [T] and str have some language support, but in the general case, this
is not necessary. Foo<T> can implement Deref<Target=Bar<T>> where Bar is a dynamically sized
type and &Bar<T> is a borrowed view of the data in Foo<T>.

Commonly, ordered collections will implement Index for Ranges to provide slicing syntax. The target
will be the borrowed view.

See also

* Deref polymorphism anti-pattern.
¢ Documentation for Deref trait.

Last change: 2026-01-03, commit: £279f35

2.6 Finalisation in destructors

Description

Rust does not provide the equivalent to finally blocks - code that will be executed no matter how a
function is exited. Instead, an object's destructor can be used to run code that must be run before
exit.

Example
fn baz() -> Result<(), ()> {

}
fn baxr() -> Result<(), ()> {

struct Foo;

12

https://doc.rust-lang.org/std/ops/trait.Deref.html
https://github.com/rust-unofficial/patterns/commit/f279f35

impl Drop for Foo {
fn drop(&mut self) {
println!("exit");

}

let _exit = Foo;
baz()?;

Ok(())

Motivation

If a function has multiple return points, then executing code on exit becomes difficult and repetitive
(and thus bug-prone). This is especially the case where return is implicit due to a macro. A common
case is the ? operator which returns if the result is an Exr, but continues if it is Ok. ? is used as an
exception handling mechanism, but unlike Java (which has finally), there is no way to schedule
code to run in both the normal and exceptional cases. Panicking will also exit a function early.

Advantages

Code in destructors will (nearly) always be run - copes with panics, early returns, etc.

Disadvantages

It is not guaranteed that destructors will run. For example, if there is an infinite loop in a function
or if running a function crashes before exit. Destructors are also not run in the case of a panic in
an already panicking thread. Therefore, destructors cannot be relied on as finalizers where it is
absolutely essential that finalisation happens.

This pattern introduces some hard to notice, implicit code. Reading a function gives no clear indication
of destructors to be run on exit. This can make debugging tricky.

Requiring an object and Drop impl just for finalisation is heavy on boilerplate.

Discussion

There is some subtlety about how exactly to store the object used as a finalizer. It must be kept alive
until the end of the function and must then be destroyed. The object must always be a value or
uniquely owned pointer (e.g., Box<Foo>). If a shared pointer (such as Rc) is used, then the finalizer
can be kept alive beyond the lifetime of the function. For similar reasons, the finalizer should not be
moved or returned.

The finalizer must be assigned into a variable, otherwise it will be destroyed immediately, rather
than when it goes out of scope. The variable name must start with _ if the variable is only used as a
finalizer, otherwise the compiler will warn that the finalizer is never used. However, do not call the
variable _ with no suffix - in that case it will be destroyed immediately.

In Rust, destructors are run when an object goes out of scope. This happens whether we reach the
end of block, there is an early return, or the program panics. When panicking, Rust unwinds the

13

stack running destructors for each object in each stack frame. So, destructors get called even if the
panic happens in a function being called.

If a destructor panics while unwinding, there is no good action to take, so Rust aborts the thread
immediately, without running further destructors. This means that destructors are not absolutely
guaranteed to run. It also means that you must take extra care in your destructors not to panic, since
it could leave resources in an unexpected state.

See also

RAII guards.
Last change: 2026-01-03, commit: £279f35

2.7 mem::{take(_), replace(_)} to keep owned values in
changed enums

Description

Say we have a &mut MyEnum which has (at least) two variants, A { name: String, x: u8 } andB
{ name: String }. Now we want to change MyEnum: : Ato a Bif x is zero, while keeping MyEnum: : B
intact.

We can do this without cloning the name.

Example

use std::mem;

enum MyEnum {
A { name: String, x: u8 },
B { name: String },

}

fn a_to_b(e: &mut MyEnum) {
if let MyEnum::A { name, x: 0 } = e {
// This takes out our "name’ and puts in an empty String instead
// (note that empty strings don't allocate).
// Then, construct the new enum variant (which will
// be assigned to "*e’).
*e = MyEnum::B {
name: mem: :take(name),

}
}

This also works with more variants:
use std::mem;
enum MultiVariateEnum {

A { name: String },

B { name: String },
C,

14

https://github.com/rust-unofficial/patterns/commit/f279f35

Dr
}

fn swizzle(e: &mut MultiVariateEnum) {
use MultiVariateEnum: :*;
*e = match e {

A { name } => B {
name: mem: :take(name),

B { name } => A {
name: mem: :take(name),

O N
1l
A\
N O

l
A\

Motivation

When working with enums, we may want to change an enum value in place, perhaps to another
variant. This is usually done in two phases to keep the borrow checker happy. In the first phase, we
observe the existing value and look at its parts to decide what to do next. In the second phase we
may conditionally change the value (as in the example above).

The borrow checker won't allow us to take out name of the enum (because something must be there.)
We could of course .clone() name and put the clone into our MyEnum: : B, but that would be an
instance of the Clone to satisfy the borrow checker anti-pattern. Anyway, we can avoid the extra
allocation by changing e with only a mutable borrow.

mem: : take lets us swap out the value, replacing it with its default value, and returning the previous
value. For String, the default value is an empty String, which does not need to allocate. As a result,
we get the original name as an owned value. We can then wrap this in another enum.

NOTE: mem: : replace is very similar, but allows us to specify what to replace the value with. An
equivalent to our mem: : take line would be mem: : replace(name, String::new()).

Note, however, that if we are using an Option and want to replace its value with a None, Option’s
take () method provides a shorter and more idiomatic alternative.

Advantages

Look ma, no allocation! Also you may feel like Indiana Jones while doing it.

Disadvantages

This gets a bit wordy. Getting it wrong repeatedly will make you hate the borrow checker. The
compiler may fail to optimize away the double store, resulting in reduced performance as opposed
to what you'd do in unsafe languages.

Furthermore, the type you are taking needs to implement the Default trait. However, if the type
you're working with doesn't implement this, you can instead use mem: : replace.

15

Discussion

This pattern is only of interest in Rust. In GC'd languages, you'd take the reference to the value by
default (and the GC would keep track of refs), and in other low-level languages like C you'd simply
alias the pointer and fix things later.

However, in Rust, we have to do a little more work to do this. An owned value may only have one
owner, so to take it out, we need to put something back in — like Indiana Jones, replacing the artifact
with a bag of sand.

See also

This gets rid of the Clone to satisfy the borrow checker anti-pattern in a specific case.
Last change: 2026-01-03, commit: £279f35

2.8 On-Stack Dynamic Dispatch

Description

We can dynamically dispatch over multiple values, however, to do so, we need to declare multiple
variables to bind differently-typed objects. To extend the lifetime as necessary, we can use deferred
conditional initialization, as seen below:

Example

use std::io;
use std::fs;

let readable: &mut dyn io::Read = if arg == "-" {
&mut io::stdin()

} else {
&mut fs::File::open(arg)?

b

Motivation

Rust monomorphises code by default. This means a copy of the code will be generated for each type
it is used with and optimized independently. While this allows for very fast code on the hot path, it
also bloats the code in places where performance is not of the essence, thus costing compile time and
cache usage.

Luckily, Rust allows us to use dynamic dispatch, but we have to explicitly ask for it.

Advantages

We do not need to allocate anything on the heap. Neither do we need to initialize something we won't
use later, nor do we need to monomorphize the whole code that follows to work with both File or
Stdin.

16

https://github.com/rust-unofficial/patterns/commit/f279f35

Disadvantages

Before Rust 1.79.0, the code needed two let bindings with deferred initialization, which made up
more moving parts than the Box-based version:

let readable: Box<dyn io::Read> = if arg == "-" {
Box: :new(io: :stdin())
} else {

Box: :new(fs::File: :open(arg)?)
b

Luckily, this disadvantage is now gone. Yay!

Discussion

Since Rust 1.79.0, the compiler will automatically extend the lifetimes of temporary values within &
or &mut as long as possible within the scope of the function.

This means we can simply use a &mut value here without worrying about placing the contents into
some let binding (which would have been needed for deferred initialization, which was the solution
used before that change).

We still have a place for each value (even if that place is temporary), the compiler knows the size of
each value and each borrowed value outlives all references borrowed from it.

See also

* Finalisation in destructors and RAII guards can benefit from tight control over lifetimes.
* For conditionally filled Option<&T>s of (mutable) references, one can initialize an Option<T>
directly and use its .as_ref () method to get an optional reference.

Last change: 2026-01-03, commit: f279f35

2.9 FFIIdioms

Writing FFI code is an entire course in itself. However, there are several idioms here that can act as
pointers, and avoid traps for inexperienced users of unsafe Rust.

This section contains idioms that may be useful when doing FFL

1. Idiomatic Errors - Error handling with integer codes and sentinel return values (such as NULL
pointers)

2. Accepting Strings with minimal unsafe code
3. Passing Strings to FFI functions
Last change: 2026-01-03, commit: f279f35

2.9.1 Error Handling in FFI
Description

In foreign languages like C, errors are represented by return codes. However, Rust's type system
allows much more rich error information to be captured and propagated through a full type.

17

https://doc.rust-lang.org/std/option/enum.Option.html#method.as_ref
https://github.com/rust-unofficial/patterns/commit/f279f35
https://github.com/rust-unofficial/patterns/commit/f279f35

This best practice shows different kinds of error codes, and how to expose them in a usable way:

1. Flat Enums should be converted to integers and returned as codes.
2. Structured Enums should be converted to an integer code with a string error message for detail.
3. Custom Error Types should become ”transparent”, with a C representation.

Code Example
Flat Enums
enum DatabaseError {
IsReadOnly = 1, // user attempted a write operation
IOExrror = 2, // user should read the C errno() for what it was

FileCorrupted = 3, // user should run a repair tool to recover it

}

impl From<DatabaseExrror> for libc::c_int {
fn from(e: DatabaseError) -> libc::c_int {
(e as i18).into()

}

Structured Enums

pub mod errors {
enum DatabaseError {
IsReadOnly,
IOExrroxr(std::io::Error),
FileCorrupted(String), // message describing the issue
}

impl From<DatabaseError> for libc::c_int {
fn from(e: DatabaseError) -> libc::c_int {
match e {
DatabaseError::IsReadOnly => 1,
DatabaseError::IOError(_) => 2,
DatabaseError: :FileCorrupted(_) => 3,

}

pub mod c_api {
use super: :errors::DatabaseError;
use core: :ptr,

#[no_mangle]
pub extern "C" fn db_error_description(
e: Option<ptr::NonNull<DatabaseError>>,
) -> Option<ptr::NonNull<libc::c_char>> {
// SAFETY: we assume that the lifetime of ‘e’ is greater than
// the current stack frame.
let error = unsafe { e?.as_ref() };

let error_str: String = match error {

18

DatabaseError::IsReadOnly => {
format! ("cannot write to read-only database")
}
DatabaseError: :IOError(e) => {
format! ("I/0 Error: {e}")
}
DatabaseError::FileCorrupted(s) => {
format!("File corrupted, run repair: {}", &s)
}

let error_bytes = error_str.as_bytes();

let c_error = unsafe {
// SAFETY: copying error_bytes to an allocated buffer with a '\0@'
// byte at the end.
let buffer =
o ptr::NonNull::<u8>::new(libc::malloc(error_bytes.len() +
o 1).cast())?;

buffer
.as_ptr()
.copy_from_nonoverlapping(error_bytes.as_ptr(),
< error_bytes.len());
buffer.as_ptr().add(error_bytes.len()).write(0_u8);
buffer
b

Some(c_error.cast())

Custom Error Types

struct ParseError {
expected: char,
line: u32,
ch: ule6,

}

impl ParseError {
/* ... */
}

/* Create a second version which is exposed as a C structure */
#[xepr(C)]
pub struct parse_error {
pub expected: libc::c_char,
pub line: u32,
pub ch: ul6,
}

impl From<ParseError> for parse_error {
fn from(e: ParseError) -> parse_error {

19

let ParseError { expected, line, ch } = e;
parse_error { expected, line, ch }

Advantages

This ensures that the foreign language has clear access to error information while not compromising
the Rust code's API at all.

Disadvantages

It's a lot of typing, and some types may not be able to be converted easily to C.
Last change: 2026-01-03, commit: f279f35

2.9.2 Accepting Strings
Description

When accepting strings via FFI through pointers, there are two principles that should be followed:

1. Keep foreign strings borrowed”, rather than copying them directly.
2. Minimize the amount of complexity and unsafe code involved in converting from a C-style
string to native Rust strings.

Motivation

The strings used in C have different behaviours to those used in Rust, namely:

* Cstrings are null-terminated while Rust strings store their length

* C strings can contain any arbitrary non-zero byte while Rust strings must be UTF-8

* Cstrings are accessed and manipulated using unsafe pointer operations while interactions
with Rust strings go through safe methods

The Rust standard library comes with C equivalents of Rust's String and &str called CString and
&CStr, that allow us to avoid a lot of the complexity and unsafe code involved in converting between
C strings and Rust strings.

The &CStrx type also allows us to work with borrowed data, meaning passing strings between Rust
and C is a zero-cost operation.

Code Example

pub mod unsafe_module {

20

https://github.com/rust-unofficial/patterns/commit/f279f35

/// - points to memory ending in a null byte
/// - won't be mutated for the duration of this function call
#[no_mangle]
pub unsafe extern "C" fn mylib_log(msg: *const libc::c_char, level:
o libc::c_int) {

let level: crate::LogLevel = match level { /* ... */ };

// SAFETY: The caller has already guaranteed this is okay (see the
// "# Safety section of the doc-comment).
let msg_str: &str = match std::ffi::CStr::from_ptr(msg).to_str() {
Ok(s) => s,
Exrr(e) => {
crate: :log_error("FFI string conversion failed");

return;
}
b
crate::log(msg_str, level);
}
}
Advantages

The example is written to ensure that:

1. The unsafe block is as small as possible.
2. The pointer with an "untracked” lifetime becomes a ”tracked” shared reference

Consider an alternative, where the string is actually copied:
pub mod unsafe_module {
// other module content
pub extern "C" fn mylib_log(msg: *const libc::c_char, level: libc::c_int)
o A
// DO NOT USE THIS CODE.
// IT IS UGLY, VERBOSE, AND CONTAINS A SUBTLE BUG.
let level: crate::LogLevel = match level { /* ... */ };
let msg_len = unsafe { /* SAFETY: strlen is what it is, I gquess? */
libc::strlen(msq)
Y
let mut msg_data = Vec::with_capacity(msg_len + 1);
let msg_cstr: std::ffi::CString = unsafe {
// SAFETY: copying from a foreign pointer expected to live
// for the entire stack frame into owned memory
std::ptr::copy_nonoverlapping(msg, msg_data.as_mut(), msg_len);

msg_data.set_len(msg_len + 1);

std::ffi::CString: :from_vec_with_nul(msg_data).unwrap()

21

}

let msg_str: String = unsafe {
match msg_cstr.into_string() {
Ok(s) => s,
Err(e) => {
crate::log_error("FFI string conversion failed");
return;

b
crate: :log(&msg_str, level);

}
This code is inferior to the original in two respects:

1. There is much more unsafe code, and more importantly, more invariants it must uphold.
2. Due to the extensive arithmetic required, there is a bug in this version that causes Rust
undefined behaviour.

The bug here is a simple mistake in pointer arithmetic: the string was copied, all nsg_1len bytes of it.
However, the NUL terminator at the end was not.

The Vector then had its size set to the length of the zero padded string -- rather than resized to it,
which could have added a zero at the end. As a result, the last byte in the Vector is uninitialized
memory. When the CString is created at the bottom of the block, its read of the Vector will cause
undefined behaviour!

Like many such issues, this would be difficult issue to track down. Sometimes it would panic because
the string was not UTF - 8, sometimes it would put a weird character at the end of the string, sometimes
it would just completely crash.

Disadvantages

None?

Last change: 2026-01-03, commit: £279f35

2.9.3 Passing Strings
Description

When passing strings to FFI functions, there are four principles that should be followed:

1. Make the lifetime of owned strings as long as possible.

2. Minimize unsafe code during the conversion.

3. If the C code can modify the string data, use Vec instead of CString.

4. Unless the Foreign Function API requires it, the ownership of the string should not transfer to
the callee.

Motivation

Rust has built-in support for C-style strings with its CString and CStr types. However, there are
different approaches one can take with strings that are being sent to a foreign function call from a
Rust function.

22

https://github.com/rust-unofficial/patterns/commit/f279f35

The best practice is simple: use CString in such a way as to minimize unsafe code. However, a
secondary caveat is that the object must live long enough, meaning the lifetime should be maximized.
In addition, the documentation explains that “round-tripping” a CString after modification is UB, so
additional work is necessary in that case.

Code Example

pub mod unsafe_module {
// other module content

extern "C" {
fn seterr(message: *const libc::c_char);
fn geterr(buffer: *mut libc::c_char, size: libc::c_int) ->
o libc::c_int;

}

fn report_error_to_ffi<S: Into<String>>(err: S) -> Result<(),
o std::ffi::NulExrror> {
let c_err = std::ffi::CString::new(err.into())?;

unsafe {
// SAFETY: calling an FFI whose documentation says the pointer is
// const, so no modification should occur
seterr(c_err.as_ptr());

}

Ok(())

// The lifetime of c_err continues until here

}

fn get_error_from_ffi() -> Result<String, std::ffi::IntoStringError> {
let mut buffer = vec![0u8; 1024];
unsafe {
// SAFETY: calling an FFI whose documentation implies
// that the input need only live as long as the call
let written: usize = geterr(buffer.as_mut_ptr(), 1023).into();

buffer.truncate(written + 1);

}
std::ffi::CString: :new(buffer).unwrap().into_string()
}
}
Advantages

The example is written in a way to ensure that:

1. The unsafe block is as small as possible.
2. The CString lives long enough.
3. Errors with typecasts are always propagated when possible.

A common mistake (so common it's in the documentation) is to not use the variable in the first block:

23

pub mod unsafe_module {
// other module content

fn report_error<S: Into<String>>(err: S) -> Result<(), std::ffi::NulError>

- A
unsafe {
// SAFETY: whoops, this contains a dangling pointer!
seterr(std: :ffi::CString: :new(err.into())?.as_ptr());
}
Ok(())
}

}

This code will result in a dangling pointer, because the lifetime of the CString is not extended by the
pointer creation, unlike if a reference were created.

Another issue frequently raised is that the initialization of a 1k vector of zeroes is ”slow”. However,
recent versions of Rust actually optimize that particular macro to a call to zmalloc, meaning it is as
fast as the operating system's ability to return zeroed memory (which is quite fast).

Disadvantages

None?
Last change: 2026-01-03, commit: f279f35

2.10 Iterating over an Option

Description

Option can be viewed as a container that contains either zero or one element. In particular, it
implements the IntoIterator trait, and as such can be used with generic code that needs such a

type.

Examples

Since Option implements IntoIterator, it can be used as an argument to .extend():
let turing = Some("Turing");
let mut logicians = vec!["Curry", "Kleene", "Markov"];

logicians.extend(turing);

// equivalent to
if let Some(turing_inner) = turing {
logicians.push(turing_inner);

}
If you need to tack an Option to the end of an existing iterator, you can pass it to . chain():

let turing = Some("Turing");
let logicians = vec!["Curry", "Kleene", "Markov"];

for logician in logicians.iter().chain(turing.iter()) {

24

https://github.com/rust-unofficial/patterns/commit/f279f35
https://doc.rust-lang.org/std/iter/trait.Extend.html#tymethod.extend
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.chain

println!("{logician} is a logician");
}

Note that if the Option is always Some, then it is more idiomatic to use std: :iter: :once on the
element instead.

Also, since Option implements IntoIterator, it's possible to iterate over it using a for loop. This is
equivalent to matching it with if let Some(..), and in most cases you should prefer the latter.

See also

* std::iter::onceis an iterator which yields exactly one element. It's a more readable alter-
native to Some (foo) .into_itex ().

* Iterator::filter_map is a version of Iterator: :map, specialized to mapping functions
which return Option

* The ref_slice crate provides functions for converting an Option to a zero- or one-element
slice.

* Documentation for Option<T>
Last change: 2026-01-03, commit: f279f35

2.11 Pass variables to closure

Description

By default, closures capture their environment by borrowing. Or you can use a move-closure to move
the whole environment. However, often you want to move just some variables to the closure, give it
a copy of some data, pass by reference, or perform some other transformation.

Use variable rebinding in a separate scope for that.

Example
Use

use std::rc::Rc;

let numl Rc::new(1);
let num2 Rc::new(2);
let num3 = Rc::new(3);
let closure = {
// “numl® is moved
let num2 = num2.clone(); // "num2 is cloned

let num3 = num3.as_ref(); // "num3 is borrowed
move || {
*numl + *num2 + *num3;
}
b
instead of

use std::rc::Rc;

let numl = Rc::new(1);

25

https://doc.rust-lang.org/std/iter/fn.once.html
https://doc.rust-lang.org/std/iter/fn.once.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter_map
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
https://crates.io/crates/ref_slice
https://doc.rust-lang.org/std/option/enum.Option.html
https://github.com/rust-unofficial/patterns/commit/f279f35

let num2 = Rc::new(2);
let num3 Rc::new(3);

let num2_cloned = num2.clone();
let num3_borrowed = num3.as_xref();
let closure = move || {
*numl + *num2_cloned + *num3_borrowed;

},

Advantages

Copied data are grouped together with the closure definition, so their purpose is more clear, and they
will be dropped immediately even if they are not consumed by the closure.

The closure uses the same variable names as the surrounding code, whether data are copied or
moved.

Disadvantages

Additional indentation of the closure body.
Last change: 2026-01-03, commit: f279f35

2.12 #[non_exhaustive] and private fields for extensibility

Description

A small set of scenarios exist where a library author may want to add public fields to a public struct
or new variants to an enum without breaking backwards compatibility.

Rust offers two solutions to this problem:

* Use #[non_exhaustive] on structs, enums, and enum variants. For extensive documentation
on all the places where #[non_exhaustive] can be used, see the docs.

* You may add a private field to a struct to prevent it from being directly instantiated or matched
against (see Alternative)

Example

mod a {

#[non_exhaustive]
pub struct S {

pub foo: i32,
}

#[non_exhaustive]

pub enum AdmitMoreVariants {
VariantA,
VariantB,
#[non_exhaustive]
VariantC {

a: String,

},

26

https://github.com/rust-unofficial/patterns/commit/f279f35
https://doc.rust-lang.org/reference/attributes/type_system.html#the-non_exhaustive-attribute

}

fn print_matched_variants(s: a::S) {
// Because S is “#[non_exhaustive]’, it cannot be named here and
// we must use .. in the pattern.
let a::S { foo: _, .. } = s;

let some_enum = a::AdmitMoreVariants: :VariantA;

match some_enum {
a::AdmitMoreVariants::VariantA => println!("it's an A"),
a::AdmitMoreVariants::VariantB => println!("it's a b"),

// .. required because this variant is non-exhaustive as well
a::AdmitMoreVariants::VariantC { a, .. } => println!("it's a c"),

// The wildcard match is required because more variants may be
// added in the future
_ => println!("it's a new variant"),

Alternative: Private fields for structs

#[non_exhaustive] only works across crate boundaries. Within a crate, the private field method
may be used.

Adding a field to a struct is a mostly backwards compatible change. However, if a client uses a pattern
to deconstruct a struct instance, they might name all the fields in the struct and adding a new one
would break that pattern. The client could name some fields and use . . in the pattern, in which case
adding another field is backwards compatible. Making at least one of the struct's fields private forces
clients to use the latter form of patterns, ensuring that the struct is future-proof.

The downside of this approach is that you might need to add an otherwise unneeded field to the
struct. You can use the () type so that there is no runtime overhead and prepend _ to the field name
to avoid the unused field warning.

pub struct S {

pub a: i32,
// Because b’ is private, you cannot match on 'S’ without using ".. and
o ST
// cannot be directly instantiated or matched against
_b: (),
}
Discussion

On structs, #[non_exhaustive] allows adding additional fields in a backwards compatible way.
It will also prevent clients from using the struct constructor, even if all the fields are public. This
may be helpful, but it's worth considering if you want an additional field to be found by clients as a
compiler error rather than something that may be silently undiscovered.

#[non_exhaustive] can be applied to enum variants as well. A #[non_exhaustive] variant
behaves in the same way as a #[non_exhaustive] struct.

27

Use this deliberately and with caution: incrementing the major version when adding fields or variants
is often a better option. #[non_exhaustive] maybe appropriate in scenarios where you're modeling
an external resource that may change out-of-sync with your library, but is not a general purpose tool.

Disadvantages

#[non_exhaustive] can make your code much less ergonomic to use, especially when forced to
handle unknown enum variants. It should only be used when these sorts of evolutions are required
without incrementing the major version.

When #[non_exhaustive] is applied to enums, it forces clients to handle a wildcard variant. If there
is no sensible action to take in this case, this may lead to awkward code and code paths that are only
executed in extremely rare circumstances. If a client decides to panic! () in this scenario, it may
have been better to expose this error at compile time. In fact, #[non_exhaustive] forces clients to
handle the ”Something else” case; there is rarely a sensible action to take in this scenario.

See also

* RFC introducing #[non_exhaustive] attribute for enums and structs
Last change: 2026-01-03, commit: f279f35

2.13 Easy doc initialization

Description

If a struct takes significant effort to initialize when writing docs, it can be quicker to wrap your
example with a helper function which takes the struct as an argument.

Motivation

Sometimes there is a struct with multiple or complicated parameters and several methods. Each of
these methods should have examples.

For example:

struct Connection {
name: String,
stream: TcpStream,

}

impl Connection {
/// Sends a request over the connection.

/117

/1] # Example

/// " “no_run

/117 // Boilerplate are required to get an example working.

/17 let connection = Connection { name: "foo".to_owned(), stream };
/17 let request = Request::new("RequestId", RequestType::Get,

~ "payload");

/// let response = connection.send_request(request);

/// assert!(response.is_ok());

TS

#

/// # let stream = TcpStream::connect("127.0.0.1:34254");
#
#

28

https://github.com/rust-lang/rfcs/blob/master/text/2008-non-exhaustive.md
https://github.com/rust-unofficial/patterns/commit/f279f35

fn send_request(&self, request: Request) -> Result<Status, SendErr> {
/1

}

/// Oh no, all that boilerplate needs to be repeated here!
fn check_status(&self) -> Status {
/7

}

Example

Instead of typing all of this boilerplate to create a Connection and Request, it is easier to just create
a wrapping helper function which takes them as arguments:

struct Connection {
name: String,
stream: TcpStream,
}

impl Connection {
/// Sends a request over the connection.
vy
/// # Example
TR
/// # fn call_send(connection: Connection, request: Request) {
/// let response = connection.send_request(request);
/// assert!(response.is_ok());
/1] # }
/177
fn send_request(&self, request: Request) -> Result<Status, SendErr> {
//
}
}

Note in the above example the line assert! (response.is_ok()); will not actually run while
testing because it is inside a function which is never invoked.

Advantages

This is much more concise and avoids repetitive code in examples.

Disadvantages

As example is in a function, the code will not be tested. Though it will still be checked to make sure it
compiles when running a cargo test. So this pattern is most useful when you need no_run. With
this, you do not need to add no_xrun.

Discussion

If assertions are not required this pattern works well.

If they are, an alternative can be to create a public method to create a helper instance which is
annotated with #[doc (hidden)] (so that users won't see it). Then this method can be called inside
of rustdoc because it is part of the crate's public APIL.

29

Last change: 2026-01-03, commit: f279f35

2.14 Temporary mutability

Description

Often it is necessary to prepare and process some data, but after that data are only inspected and
never modified. The intention can be made explicit by redefining the mutable variable as immutable.

It can be done either by processing data within a nested block or by redefining the variable.

Example

Say, vector must be sorted before usage.
Using nested block:

let data = {
let mut data = get_vec();
data.sort();
data

3,

Using variable rebinding:

let mut data = get_vec();
data.sort();
let data = data;

Advantages

Compiler ensures that you don't accidentally mutate data after some point.

Disadvantages

Nested block requires additional indentation of block body. One more line to return data from block
or redefine variable.

Last change: 2026-01-03, commit: f279f35
2.15 Return consumed argument on error

Description

If a fallible function consumes (moves) an argument, return that argument back inside an error.

Example

pub fn send(value: String) -> Result<(), SendError> ({
println!("using {value} in a meaningful way");

30

https://github.com/rust-unofficial/patterns/commit/f279f35
https://github.com/rust-unofficial/patterns/commit/f279f35

// Simulate non-deterministic fallible action.

use std::time::SystemTime;

let period = SystemTime: :now()
.duration_since(SystemTime: :UNIX_EPOCH)

.unwrap();

if period.subsec_nanos() % 2 == 1 {
0k(())

} else {

Err(SendError(value))
}
}

pub struct SendError(String);

fn main() {
let mut value = "imagine this is very long string".to_string();

let success = 's: {
// Try to send value two times.
for _in 0..2 {
value = match send(value) {
Ok(()) => break 's true,
Exr(SendError(value)) => value,

}
}
false
i
println!("success: {success}");
}
Motivation

In case of error you may want to try some alternative way or to retry action in case of non-
deterministic function. But if the argument is always consumed, you are forced to clone it on every
call, which is not very efficient.

The standard library uses this approach in e.g. String: : from_utf8 method. When given a vector
that doesn't contain valid UTF-8, a FromUtf8Exrror is returned. You can get original vector back
using FromUtf8Exrror: :into_bytes method.

Advantages

Better performance because of moving arguments whenever possible.

Disadvantages

Slightly more complex error types.
Last change: 2026-01-03, commit: 27935

31

https://github.com/rust-unofficial/patterns/commit/f279f35

Chapter 3

Design Patterns

Design patterns are “general reusable solutions to a commonly occurring problem within a given
context in software design”. Design patterns are a great way to describe the culture of a programming
language. Design patterns are very language-specific - what is a pattern in one language may be
unnecessary in another due to a language feature, or impossible to express due to a missing feature.

If overused, design patterns can add unnecessary complexity to programs. However, they are a great
way to share intermediate and advanced level knowledge about a programming language.

Design patterns in Rust

Rust has many unique features. These features give us great benefit by removing whole classes of
problems. Some of them are also patterns that are unique to Rust.

YAGNI

YAGNI is an acronym that stands for You Aren't Going to Need It. It's a vital software design
principle to apply as you write code.

The best code I ever wrote was code I never wrote.

If we apply YAGNI to design patterns, we see that the features of Rust allow us to throw out many
patterns. For instance, there is no need for the strategy pattern in Rust because we can just use traits.

Last change: 2026-01-03, commit: f279{35

3.1 Behavioural Patterns

From Wikipedia:

Design patterns that identify common communication patterns among objects. By doing
so, these patterns increase flexibility in carrying out communication.

Last change: 2026-01-03, commit: f279f35

32

https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Strategy_pattern
https://doc.rust-lang.org/book/traits.html
https://github.com/rust-unofficial/patterns/commit/f279f35
https://en.wikipedia.org/wiki/Behavioral_pattern
https://github.com/rust-unofficial/patterns/commit/f279f35

3.1.1 Command
Description

The basic idea of the Command pattern is to separate out actions into its own objects and pass them
as parameters.

Motivation

Suppose we have a sequence of actions or transactions encapsulated as objects. We want these actions
or commands to be executed or invoked in some order later at different time. These commands
may also be triggered as a result of some event. For example, when a user pushes a button, or on
arrival of a data packet. In addition, these commands might be undoable. This may come in useful
for operations of an editor. We might want to store logs of executed commands so that we could
reapply the changes later if the system crashes.

Example

Define two database operations create table and add field. Each of these operations is a com-
mand which knows how to undo the command, e.g., drop table and remove field. When a user
invokes a database migration operation then each command is executed in the defined order, and
when the user invokes the rollback operation then the whole set of commands is invoked in reverse
order.

Approach: Using trait objects

We define a common trait which encapsulates our command with two operations execute and
rollback. All command structs must implement this trait.

pub trait Migration {
fn execute(&self) -> &str;
fn rollback(&self) -> &str;
}

pub struct CreateTable;
impl Migration for CreateTable {
fn execute(&self) -> &str {
"create table"

}

fn rollback(&self) -> &str {
"drop table"

}

}

pub struct AddField;
impl Migration for AddField ({
fn execute(&self) -> &str {
"add field"
}
fn rollback(&self) -> &str {
"remove field"
}
}

struct Schema {

33

commands: Vec<Box<dyn Migration>>,

}

impl Schema {
fn new() -> Self {
Self { commands: vec![] }

}

fn add_migration(&mut self, cmd: Box<dyn Migration>) ({
self.commands.push(cmd) ;

}

fn execute(&self) -> Vec<&str> {
self.commands.iter().map(|cmd| cmd.execute()).collect()
}
fn rollback(&self) -> Vec<&str> {
self.commands
.iter()
.rev() // reverse iterator's direction
.map(|cmd| cmd.rollback())
.collect()

}

fn main() {
let mut schema = Schema: :new();

let cmd = Box::new(CreateTable);
schema.add_migration(cmd) ;

let cmd = Box::new(AddField);
schema.add_migration(cmd) ;

assert_eq!(vec!["create table", "add field"], schema.execute());
assert_eq!(vec!["remove field", "drop table"], schema.rollback());

Approach: Using function pointers

We could follow another approach by creating each individual command as a different function and
store function pointers to invoke these functions later at a different time. Since function pointers
implement all three traits Fn, FnMut, and FnOnce we could as well pass and store closures instead of
function pointers.

type FnPtr = fn() -> String;
struct Command {
execute: FnPtr,
rollback: FnPtr,
}

struct Schema {
commands: Vec<Command>,

}

impl Schema {

34

fn new() -> Self {
Self { commands: vec![] }

fn add_migration(&mut self, execute: FnPtr, rollback: FnPtr) {
self.commands.push(Command { execute, rollback });

fn execute(&self) -> Vec<String> {
self.commands.iter().map(|cmd| (cmd.execute)()).collect()

fn rollback(&self) -> Vec<String> {
self.commands
Jiter()
.rev()
.map(|cmd| (cmd.rollback)())
.collect()

}

fn add_field() -> String {
"add field".to_string()
}

fn remove_field() -> String {
"remove field".to_string()
}

fn main() {
let mut schema = Schema: :new();
schema.add_migration(|| "create table".to_string(), || "drop

o table".to_string());
schema.add_migration(add_field, remove_field);
assert_eq!(vec!["create table", "add field"], schema.execute());
assert_eq!(vec!["remove field", "drop table"], schema.rollback());

Approach: Using Fn trait objects

Finally, instead of defining a common command trait we could store each command implementing
the Fn trait separately in vectors.

type Migration<'a> = Box<dyn Fn() -> &'a str>;

struct Schema<'a> {
executes: Vec<Migration<'a>>,
rollbacks: Vec<Migration<'a>>,

}

impl<'a> Schema<'a> {
fn new() -> Self {
Self {
executes: vec![],
rollbacks: vec![],

35

fn add_migration<E, R>(&mut self, execute: E, rollback: R)
where

E: Fn() -> &'a str + 'static,

R: Fn() -> &'a str + 'static,

self.executes.push(Box: :new(execute));
self.rollbacks.push(Box: :new(rollback));

}

fn execute(&self) -> Vec<&str> {
self.executes.iter().map(|cmd| cmd()).collect()

}

fn rollback(&self) -> Vec<&str> {
self.rollbacks.iter().rev().map(|cmd| cmd()).collect()

}

}

fn add_field() -> &'static str {
"add field"

}

fn remove_field() -> &'static str {
"remove field"

}

fn main() {
let mut schema = Schema: :new();

schema.add_migration(|| "create table", || "drop table");
schema.add_migration(add_field, remove_field);
assert_eq!(vec!["create table", "add field"], schema.execute());
assert_eq!(vec!["remove field", "drop table"], schema.rollback());
}
Discussion

If our commands are small and may be defined as functions or passed as a closure then using function
pointers might be preferable since it does not exploit dynamic dispatch. But if our command is a
whole struct with a bunch of functions and variables defined as separated module then using trait
objects would be more suitable. A case of application can be found in actix, which uses trait objects
when it registers a handler function for routes. In case of using Fn trait objects we can create and
use commands in the same way as we used in case of function pointers.

As performance, there is always a trade-off between performance and code simplicity and organisa-
tion. Static dispatch gives faster performance, while dynamic dispatch provides flexibility when we
structure our application.

See also

* Command pattern
* Another example for the command pattern
Last change: 2026-01-03, commit: f279{35

36

https://actix.rs/
https://en.wikipedia.org/wiki/Command_pattern
https://web.archive.org/web/20210223131236/https://chercher.tech/rust/command-design-pattern-rust
https://github.com/rust-unofficial/patterns/commit/f279f35

3.1.2 Interpreter
Description

If a problem occurs very often and requires long and repetitive steps to solve it, then the prob-
lem instances might be expressed in a simple language and an interpreter object could solve it by
interpreting the sentences written in this simple language.

Basically, for any kind of problems we define:

* A domain specific language,
* A grammar for this language,
* An interpreter that solves the problem instances.

Motivation

Our goal is to translate simple mathematical expressions into postfix expressions (or Reverse Polish
notation) For simplicity, our expressions consist of ten digits 0, ..., 9 and two operations +, -. For
example, the expression 2 + 4 istranslated into 2 4 +.

Context Free Grammar for our problem

Our task is translating infix expressions into postfix ones. Let's define a context free grammar for a
set of infix expressions over 0, ..., 9, +, and -, where:

* Terminal symbols: @, ..., 9, +, -

* Non-terminal symbols: exp, texrm

* Start symbol is exp

» And the following are production rules

exp -> exp + term

exp -> exp - term

exp -> term

texrm -> 0 | 1 | 2| 3|4 |5|6]7]8]29

NOTE: This grammar should be further transformed depending on what we are going to do with
it. For example, we might need to remove left recursion. For more details please see Compilers:
Principles,Techniques, and Tools (aka Dragon Book).

Solution

We simply implement a recursive descent parser. For simplicity's sake, the code panics when an
expression is syntactically wrong (for example 2-34 or 2+5- are wrong according to the grammar
definition).

pub struct Interpreter<'a> {
it: std::str::Chars<'a>,

}

impl<'a> Interpreter<'a> {
pub fn new(infix: &'a str) -> Self {
Self { it: infix.chars() }
}

fn next_char(&mut self) -> Option<char> {
self.it.next()
}

37

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools

pub fn interpret(&mut self, out: &mut String) ({
self.term(out);

while let Some(op) = self.next_char() {
if op == '+' [| op == -
self.term(out);
out.push(op);
} else {
panic!("Unexpected symbol '{op}'");
}

}

fn term(&mut self, out: &mut String) {
match self.next_char() {
Some(ch) if ch.is_digit(10) => out.push(ch),
Some(ch) => panic!("Unexpected symbol '{ch}'"),
None => panic!("Unexpected end of string"),

}

pub fn main() {
let mut intr = Interpreter::new("2+3");
let mut postfix = String::new();
intr.interpret (&mut postfix);
assert_eq! (postfix, "23+");

intr = Interpreter::new("1-2+3-4");
postfix.clear();
intr.interpret (&mut postfix);
assert_eq! (postfix, "12-3+4-");

Discussion

There may be a wrong perception that the Interpreter design pattern is about design grammars for
formal languages and implementation of parsers for these grammars. In fact, this pattern is about
expressing problem instances in a more specific way and implementing functions/classes/structs
that solve these problem instances. Rust language has macro_rules! that allow us to define special
syntax and rules on how to expand this syntax into source code.

In the following example we create a simple macro_rules! that computes Euclidean length of n
dimensional vectors. Writing norm! (x,1,2) might be easier to express and more efficient than
packing x, 1,2 into a Vec and calling a function computing the length.

macro_rules! norm {
($($element:expr),*) => {

{
let mut n = 0.0;
$(
n += ($element as f64)*(%$element as f64);
)-k
n.sqrt()

38

https://en.wikipedia.org/wiki/Euclidean_distance

b
}

fn main() {
let x = -3f64;
let y = 4f64;

assert_eq! (3f64, norm!(x));

assert_eq! (564, norm!(x, y));

assert_eq! (0f64, noxm! (@, @, Q0));

assert_eq! (1f64, norm!(@.5, -0.5, 0.5, -0.5));

See also

* Interpreter pattern
* Context free grammar
e macro_rules!

Last change: 2026-01-03, commit: 27935

3.1.3 Newtype

What if in some cases we want a type to behave similar to another type or enforce some behaviour
at compile time when using only type aliases would not be enough?

For example, if we want to create a custom Display implementation for String due to security
considerations (e.g. passwords).

For such cases we could use the Newtype pattern to provide type safety and encapsulation.

Description

Use a tuple struct with a single field to make an opaque wrapper for a type. This creates a new type,
rather than an alias to a type (type items).

Example

use std::fmt::Display;

// Create Newtype Password to override the Display trait for String
struct Password(String);

impl Display for Password {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
er-te|(f’ "****************")
}
}

fn main() {
let unsecured_password: String = "ThisIsMyPassword".to_string();
let secured_password: Password = Password(unsecured_password.clone());
println!("unsecured_password: {unsecured_password}");

39

https://en.wikipedia.org/wiki/Interpreter_pattern
https://en.wikipedia.org/wiki/Context-free_grammar
https://doc.rust-lang.org/rust-by-example/macros.html
https://github.com/rust-unofficial/patterns/commit/f279f35

println!("secured_password: {secured_password}");

}

unsecured_password: ThisIsMyPassword
SeCUIed paSSWOId: kkhkkkhkhkkhkhkkkhkikk*k

Motivation

The primary motivation for newtypes is abstraction. It allows you to share implementation details
between types while precisely controlling the interface. By using a newtype rather than exposing the
implementation type as part of an API, it allows you to change implementation backwards compatibly.

Newtypes can be used for distinguishing units, e.g., wrapping 64 to give distinguishable Miles and
Kilometres.

Advantages

The wrapped and wrapper types are not type compatible (as opposed to using type), so users of the
newtype will never 'confuse' the wrapped and wrapper types.

Newtypes are a zero-cost abstraction - there is no runtime overhead.

The privacy system ensures that users cannot access the wrapped type (if the field is private, which it
is by default).

Disadvantages

The downside of newtypes (especially compared with type aliases), is that there is no special language
support. This means there can be a lot of boilerplate. You need a 'pass through' method for every
method you want to expose on the wrapped type, and an impl for every trait you want to also be
implemented for the wrapper type.

Discussion

Newtypes are very common in Rust code. Abstraction or representing units are the most common
uses, but they can be used for other reasons:

* restricting functionality (reduce the functions exposed or traits implemented),
* making a type with copy semantics have move semantics,
* abstraction by providing a more concrete type and thus hiding internal types, e.g.,

pub struct Foo(Bar<T1l, T2>);

Here, Bar might be some public, generic type and T1 and T2 are some internal types. Users of our
module shouldn't know that we implement Foo by using a Bar, but what we're really hiding here is
the types T1 and T2, and how they are used with Bar.

See also

* Advanced Types in the book

* Newtypes in Haskell

» Type aliases

* derive_more, a crate for deriving many builtin traits on newtypes.
* The Newtype Pattern In Rust

Last change: 2026-01-03, commit: 279135

40

https://doc.rust-lang.org/book/ch19-04-advanced-types.html?highlight=newtype#using-the-newtype-pattern-for-type-safety-and-abstraction
https://wiki.haskell.org/Newtype
https://doc.rust-lang.org/stable/book/ch19-04-advanced-types.html#creating-type-synonyms-with-type-aliases
https://crates.io/crates/derive_more
https://web.archive.org/web/20230519162111/https://www.worthe-it.co.za/blog/2020-10-31-newtype-pattern-in-rust.html
https://github.com/rust-unofficial/patterns/commit/f279f35

3.1.4 RAII with guards
Description

RAII stands for ”Resource Acquisition is Initialisation” which is a terrible name. The essence of the
pattern is that resource initialisation is done in the constructor of an object and finalisation in the
destructor. This pattern is extended in Rust by using a RAII object as a guard of some resource and
relying on the type system to ensure that access is always mediated by the guard object.

Example

Mutex guards are the classic example of this pattern from the std library (this is a simplified version
of the real implementation):

use std::ops: :Deref;
struct Foo {}

struct Mutex<T> {
// We keep a reference to our data: T here.

/..

}

struct MutexGuard<'a, T: 'a> {
data: &'a T,
/..

}

// Locking the mutex is explicit.
impl<T> Mutex<T> {
fn lock(&self) -> MutexGuard<T> {
// Lock the underlying 0S mutex.
/..

// MutexGuard keeps a reference to self
MutexGuard {

data: self,

/..

}

// Destructor for unlocking the mutex.
impl<'a, T> Drop for MutexGuard<'a, T> {
fn drop(&mut self) {
// Unlock the underlying 0S mutex.
/..

}
// Implementing Deref means we can treat MutexGuard like a pointer to T.
impl<'a, T> Deref for MutexGuard<'a, T> {

type Target = T;

fn deref(&self) -> &T {

41

https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

self.data

}

fn baz(x: Mutex<Foo>) {
let xx = x.lock();
xx.foo(); // foo is a method on Foo.
// The borrow checker ensures we can't store a reference to the
» underlying
// Foo which will outlive the guard xx.

// x is unlocked when we exit this function and xx's destructor is
< executed.

Motivation

Where a resource must be finalised after use, RAII can be used to do this finalisation. If it is an error
to access that resource after finalisation, then this pattern can be used to prevent such errors.

Advantages

Prevents errors where a resource is not finalised and where a resource is used after finalisation.

Discussion

RAII is a useful pattern for ensuring resources are properly deallocated or finalised. We can make
use of the borrow checker in Rust to statically prevent errors stemming from using resources after
finalisation takes place.

The core aim of the borrow checker is to ensure that references to data do not outlive that data. The
RAII guard pattern works because the guard object contains a reference to the underlying resource
and only exposes such references. Rust ensures that the guard cannot outlive the underlying resource
and that references to the resource mediated by the guard cannot outlive the guard. To see how this
works it is helpful to examine the signature of deref without lifetime elision:

fn deref<'a>(&'a self) -> &'a T {
/..
}

The returned reference to the resource has the same lifetime as self ('a). The borrow checker
therefore ensures that the lifetime of the reference to T is shorter than the lifetime of self.

Note that implementing Deref is not a core part of this pattern, it only makes using the guard object
more ergonomic. Implementing a get method on the guard works just as well.

See also

Finalisation in destructors idiom

RAII is a common pattern in C++: cppreference.com, wikipedia.
Style guide entry (currently just a placeholder).

Last change: 2026-01-03, commit: f279f35

42

http://en.cppreference.com/w/cpp/language/raii
https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
https://doc.rust-lang.org/1.0.0/style/ownership/raii.html
https://github.com/rust-unofficial/patterns/commit/f279f35

3.1.5 Strategy (aka Policy)
Description

The Strategy design pattern is a technique that enables separation of concerns. It also allows to
decouple software modules through Dependency Inversion.

The basic idea behind the Strategy pattern is that, given an algorithm solving a particular problem, we
define only the skeleton of the algorithm at an abstract level, and we separate the specific algorithm’s
implementation into different parts.

In this way, a client using the algorithm may choose a specific implementation, while the general
algorithm workflow remains the same. In other words, the abstract specification of the class does
not depend on the specific implementation of the derived class, but specific implementation must
adhere to the abstract specification. This is why we call it "Dependency Inversion”.

Motivation

Imagine we are working on a project that generates reports every month. We need the reports to be
generated in different formats (strategies), e.g., in JSON or P1lain Text formats. But things vary over
time, and we don't know what kind of requirement we may get in the future. For example, we may
need to generate our report in a completely new format, or just modify one of the existing formats.

Example

In this example our invariants (or abstractions) are Formatter and Report, while Text and Json
are our strategy structs. These strategies have to implement the Formatter trait.

use std::collections: :HashMap;
type Data = HashMap<String, u32>;

trait Formatter {
fn format(&self, data: &Data, buf: &mut String);
}

struct Report;

impl Report {
// Write should be used but we kept it as String to ignore error handling
fn generate<T: Formatter>(g: T, s: &mut String) {
// backend operations...
let mut data = HashMap: :new();
data.insert("one".to_string(), 1);
data.insert("two".to_string(), 2);
// generate report
g.format(&data, s);

}

struct Text;
impl Formatter for Text {
fn format(&self, data: &Data, buf: &mut String) ({
for (k, v) in data {
let entry = format!("{k} {vi\n");
buf.push_str(&entry);

43

https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Dependency_inversion_principle

}

struct Json;
impl Formatter for Json {
fn format(&self, data: &Data, buf: &mut String) {
buf.push('[');
for (k, v) in data.into_iter() {
let entry = format!(x#"{{"{}":"{}"}}"#, k, v);
buf.push_str(&entry);
buf.push(',");
}
if !data.is_empty() {
buf.pop(); // remove extra , at the end
}
buf.push('1");

}

fn main() {
let mut s = String::from("");
Report::generate(Text, &mut s);
assert!(s.contains("one 1"));
assert!(s.contains("two 2"));

s.clear(); // reuse the same buffer
Report::generate(Json, &mut s);
assert!(s.contains(xr#"{"one":"1"}"#));
assert!(s.contains(r#"{"two":"2"}"#));

Advantages

The main advantage is separation of concerns. For example, in this case Report does not know
anything about specific implementations of Json and Text, whereas the output implementations
does not care about how data is preprocessed, stored, and fetched. The only thing they have to
know is a specific trait to implement and its method defining the concrete algorithm implementation
processing the result, i.e., Formatter and format(...).

Disadvantages

For each strategy there must be implemented at least one module, so number of modules increases
with number of strategies. If there are many strategies to choose from then users have to know how
strategies differ from one another.

Discussion

In the previous example all strategies are implemented in a single file. Ways of providing different
strategies includes:

 Allin one file (as shown in this example, similar to being separated as modules)
» Separated as modules, E.g. formatter: : json module, formatter: : text module
* Use compiler feature flags, E.g. json feature, text feature

44

« Separated as crates, E.g. json crate, text crate

Serde crate is a good example of the Strategy pattern in action. Serde allows full customization of
the serialization behavior by manually implementing Serialize and Deserialize traits for our
type. For example, we could easily swap serde_json with serde_cbor since they expose similar
methods. Having this makes the helper crate serde_transcode much more useful and ergonomic.

However, we don't need to use traits in order to design this pattern in Rust.
The following toy example demonstrates the idea of the Strategy pattern using Rust closures:

struct Adder;
impl Adder {
pub fn add<F>(x: u8, y: u8, f: F) -> u8
where
F: Fn(u8, u8) -> u8,
{
f(x, y)
}
}

fn main() {
let arith_adder = |x, y| x +vy;

let bool_adder = |x, y| {
if x ==11]]y==1¢{
1
} else {
0
}
i
let custom_adder = [x, y| 2 * x +vy;

assert_eq! (9, Adder::add(4, 5, arith_adder));

assert_eq! (0, Adder::add(0, 0, bool_adder));

assert_eq! (5, Adder::add(1, 3, custom_adder));
}

In fact, Rust already uses this idea for Options's map method:
fn main() {
let val = Some("Rust");

let len_strategy = |s: &str| s.len();
assert_eq! (4, val.map(len_strategy).unwrap());

let first_byte_strategy = |s: &str| s.bytes().next().unwrap();
assert_eq! (82, val.map(first_byte_strategy).unwrap());

See also

» Strategy Pattern

* Dependency Injection

* Policy Based Design

* Implementing a TCP server for Space Applications in Rust using the Strategy Pattern

Last change: 2026-01-03, commit: 27935

45

https://serde.rs/custom-serialization.html
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Modern_C++_Design#Policy-based_design
https://web.archive.org/web/20231003171500/https://robamu.github.io/posts/rust-strategy-pattern/
https://github.com/rust-unofficial/patterns/commit/f279f35

3.1.6 Visitor
Description

A visitor encapsulates an algorithm that operates over a heterogeneous collection of objects. It allows
multiple different algorithms to be written over the same data without having to modify the data (or
their primary behaviour).

Furthermore, the visitor pattern allows separating the traversal of a collection of objects from the
operations performed on each object.

Example

// The data we will visit
mod ast {
pub enum Stmt {
Expr(Expr),
Let(Name, Expr),

pub struct Name {
value: String,

pub enum Expr {
IntLit(i64),
Add (Box<Expr>, Box<Expr>),
Sub (Box<Expr>, Box<Expr>),

}

// The abstract visitor
mod visit {
use ast::*;

pub trait Visitor<T> {
fn visit_name(&mut self, n: &Name) -> T;
fn visit_stmt(&mut self, s: &Stmt) -> T;
fn visit_expr(&mut self, e: &Expr) -> T;

}

use ast::*;
use visit::*;

// An example concrete implementation - walks the AST interpreting it as code.
struct Interpreter;
impl Visitor<i64> for Interpreter {

fn visit_name(&mut self, n: &Name) -> i64 {

panic!()

}

fn visit_stmt(&mut self, s: &Stmt) -> i64 {
match *s {

Stmt: :Expr(ref e) => self.visit_expr(e),
Stmt::Let(..) => unimplemented! (),

46

}

fn visit_expr(&mut self, e: &Expr) -> i64 {
match *e {
Expr::IntLit(n) => n,
Expr::Add(xef lhs, ref rhs) => self.visit_expr(lhs) +
«~ self.visit_expr(rhs),
Expr::Sub(ref lhs, ref rhs) => self.visit_expr(lhs) -
~ self.visit_expr(rhs),

}

One could implement further visitors, for example a type checker, without having to modify the AST
data.

Motivation

The visitor pattern is useful anywhere that you want to apply an algorithm to heterogeneous data.
If data is homogeneous, you can use an iterator-like pattern. Using a visitor object (rather than a
functional approach) allows the visitor to be stateful and thus communicate information between
nodes.

Discussion

It is common for the visit_* methods to return void (as opposed to in the example). In that case it
is possible to factor out the traversal code and share it between algorithms (and also to provide noop
default methods). In Rust, the common way to do this is to provide walk_* functions for each datum.
For example,

pub fn walk_expr(visitor: &mut Visitor, e: &Expr) {
match *e {

Expr::IntLit(_) => {}

Expr::Add(xef lhs, ref rhs) => {
visitor.visit_expr(lhs);
visitor.visit_expr(rhs);

}

Expr::Sub(xref lhs, ref rhs) => {
visitor.visit_expr(lhs);
visitor.visit_expr(rhs);

}

In other languages (e.g., Java) it is common for data to have an accept method which performs the
same duty.

See also

The visitor pattern is a common pattern in most OO languages.

Wikipedia article

The fold pattern is similar to visitor but produces a new version of the visited data structure.
Last change: 2026-01-03, commit: f279f35

47

https://en.wikipedia.org/wiki/Visitor_pattern
https://github.com/rust-unofficial/patterns/commit/f279f35

3.2 Creational Patterns

From Wikipedia:

Design patterns that deal with object creation mechanisms, trying to create objects in a
manner suitable to the situation. The basic form of object creation could result in design
problems or in added complexity to the design. Creational design patterns solve this
problem by somehow controlling this object creation.

Last change: 2026-01-03, commit: 27935

3.2.1 Builder
Description

Construct an object with calls to a builder helper.

Example

#[derive(Debug, PartialEq)]
pub struct Foo {
// Lots of complicated fields.

bar: String,
}
impl Foo {
// This method will help users to discover the builder
pub fn builder() -> FooBuilder ({
FooBuilder: :default()
}
}
#[dexrive (Default)]

pub struct FooBuilder {
// Probably lots of optional fields.
bar: String,

}

impl FooBuilder {
pub fn new(/* ... */) -> FooBuilder {
// Set the minimally required fields of Foo.
FooBuilder {
bar: String::from("X"),
}
}

pub fn name(mut self, bar: String) -> FooBuilder ({
// Set the name on the builder itself, and return the builder by
< value.
self.bar = bar;
self
}

// If we can get away with not consuming the Builder here, that is an

48

https://en.wikipedia.org/wiki/Creational_pattern
https://github.com/rust-unofficial/patterns/commit/f279f35

// advantage. It means we can use the FooBuilder as a template forx
«~ constructing
// many Foos.
pub fn build(self) -> Foo {
// Create a Foo from the FooBuilder, applying all settings in
- FooBuilder
// to Foo.
Foo { bar: self.bar }

}

#[test]
fn builder_test() {
let foo = Foo {
bar: String::from("Y"),
}
let foo_from_builder: Foo =
o FooBuilder::new().name(String::from("Y")) .build();
assert_eq!(foo, foo_from_builder);

Motivation

Useful when you would otherwise require many constructors or where construction has side effects.

Advantages

Separates methods for building from other methods.
Prevents proliferation of constructors.
Can be used for one-liner initialisation as well as more complex construction.

When you add new fields to the target struct, you can update the builder to leave client code backwards
compatible.

Disadvantages

More complex than creating a struct object directly, or a simple constructor function.

Discussion

This pattern is seen more frequently in Rust (and for simpler objects) than in many other languages
because Rust lacks overloading and default values for function parameters. Since you can only have
a single method with a given name, having multiple constructors is less nice in Rust than in C++, Java,
or others.

This pattern is often used where the builder object is useful in its own right, rather than being just
a builder. For example, see std: :process: :Command is a builder for Child (a process). In these
cases, the T and TBuilder naming pattern is not used.

The example takes and returns the builder by value. It is often more ergonomic (and more efficient)
to take and return the builder as a mutable reference. The borrow checker makes this work naturally.
This approach has the advantage that one can write code like

49

https://doc.rust-lang.org/std/process/struct.Command.html
https://doc.rust-lang.org/std/process/struct.Child.html

let mut fb = FooBuilder::new();
fb.a();

fb.b();
let f = fb.build();

as well as the FooBuilder: :new().a().b().build() style.

I~

See also

» Description in the style guide

* derive_bhuilder, a crate for automatically implementing this pattern while avoiding the boiler-
plate.

* Constructor pattern for when construction is simpler.

* Builder pattern (wikipedia)

* Construction of complex values

Last change: 2026-01-03, commit: 27935

3.2.2 Fold
Description

Run an algorithm over each item in a collection of data to create a new item, thus creating a whole
new collection.

The etymology here is unclear to me. The terms 'fold' and 'folder' are used in the Rust compiler,
although it appears to me to be more like a map than a fold in the usual sense. See the discussion
below for more details.

Example

// The data we will fold, a simple AST.
mod ast {
pub enum Stmt {
Expr(Box<Expr>),
Let(Box<Name>, Box<Expr>),
}

pub struct Name {
value: String,

}
pub enum Expr {
IntLit(i64),

Add (Box<Expr>, Box<Expr>),
Sub(Box<Expr>, Box<Expr>),

}
// The abstract folder
mod fold {

use ast::*;

pub trait Folder {

50

https://web.archive.org/web/20210104103100/https://doc.rust-lang.org/1.12.0/style/ownership/builders.html
https://crates.io/crates/derive_builder
https://en.wikipedia.org/wiki/Builder_pattern
https://web.archive.org/web/20210104103000/https://rust-lang.github.io/api-guidelines/type-safety.html#c-builder
https://github.com/rust-unofficial/patterns/commit/f279f35

// A leaf node just returns the node itself. In some cases, we can do
S this
// to inner nodes too.
fn fold_name(&mut self, n: Box<Name>) -> Box<Name> { n }
// Create a new inner node by folding its children.
fn fold_stmt(&mut self, s: Box<Stmt>) -> Box<Stmt> {
match *s {
Stmt::Expr(e) => Box::new(Stmt::Expr(self.fold_expr(e))),
Stmt::Let(n, e) => Box::new(Stmt::Let(self.fold_name(n),
<~ self.fold_expr(e))),
}

}
fn fold_expr(&mut self, e: Box<Expr>) -> Box<Expr> { ... }

}

use fold::*;
use ast::*;

// An example concrete implementation - renames every name to 'foo'.
struct Renamer;
impl Folder for Renamer ({
fn fold_name(&mut self, n: Box<Name>) -> Box<Name> {
Box: :new(Name { value: "foo".to_owned() })
}
// Use the default methods for the other nodes.

}

The result of running the Renamer on an AST is a new AST identical to the old one, but with every
name changed to foo. A real life folder might have some state preserved between nodes in the struct
itself.

A folder can also be defined to map one data structure to a different (but usually similar) data
structure. For example, we could fold an AST into a HIR tree (HIR stands for high-level intermediate
representation).

Motivation

It is common to want to map a data structure by performing some operation on each node in the
structure. For simple operations on simple data structures, this can be done using Iterator: :map.
For more complex operations, perhaps where earlier nodes can affect the operation on later nodes,
or where iteration over the data structure is non-trivial, using the fold pattern is more appropriate.

Like the visitor pattern, the fold pattern allows us to separate traversal of a data structure from the
operations performed to each node.

Discussion

Mapping data structures in this fashion is common in functional languages. In OO languages, it would
be more common to mutate the data structure in place. The 'functional’ approach is common in Rust,
mostly due to the preference for immutability. Using fresh data structures, rather than mutating old
ones, makes reasoning about the code easier in most circumstances.

The trade-off between efficiency and reusability can be tweaked by changing how nodes are accepted
by the fold_* methods.

51

In the above example we operate on Box pointers. Since these own their data exclusively, the original
copy of the data structure cannot be re-used. On the other hand if a node is not changed, reusing it is
very efficient.

If we were to operate on borrowed references, the original data structure can be reused; however, a
node must be cloned even if unchanged, which can be expensive.

Using a reference counted pointer gives the best of both worlds - we can reuse the original data
structure, and we don't need to clone unchanged nodes. However, they are less ergonomic to use and
mean that the data structures cannot be mutable.

See also

Iterators have a fold method, however this folds a data structure into a value, rather than into a
new data structure. An iterator's map is more like this fold pattern.

In other languages, fold is usually used in the sense of Rust's iterators, rather than this pattern. Some
functional languages have powerful constructs for performing flexible maps over data structures.

The visitor pattern is closely related to fold. They share the concept of walking a data structure
performing an operation on each node. However, the visitor does not create a new data structure
nor consume the old one.

Last change: 2026-01-03, commit: f279f35

3.3 Structural Patterns

From Wikipedia:

Design patterns that ease the design by identifying a simple way to realize relationships
among entities.

Last change: 2026-01-03, commit: f279f35

3.3.1 Struct decomposition for independent borrowing
Description

Sometimes a large struct will cause issues with the borrow checker - although fields can be borrowed
independently, sometimes the whole struct ends up being used at once, preventing other uses.
A solution might be to decompose the struct into several smaller structs. Then compose these
together into the original struct. Then each struct can be borrowed separately and have more flexible
behaviour.

This will often lead to a better design in other ways: applying this design pattern often reveals smaller
units of functionality.

Example

Here is a contrived example of where the borrow checker foils us in our plan to use a struct:

struct Database {
connection_string: String,
timeout: u32,
pool_size: u32,

52

https://github.com/rust-unofficial/patterns/commit/f279f35
https://en.wikipedia.org/wiki/Structural_pattern
https://github.com/rust-unofficial/patterns/commit/f279f35

fn print_database(database: &Database) {
println!("Connection string: {}", database.connection_string);
println!("Timeout: {}", database.timeout);
println!("Pool size: {}", database.pool_size);

}

fn main() {
let mut db = Database {
connection_string: "initial string".to_string(),
timeout: 30,
pool_size: 100,
i

let connection_string = &mut db.connection_string;
print_database(&db);
*connection_string = "new string".to_string();

}
The compiler throws following errors:

let connection_string = &mut db.connection_string;
————————————————————————— mutable borrow occurs here
print_database(&db);
AAN immutable borrow occurs here
*connection_string = "new string".to_string();
------------------ mutable borrow later used here

We can apply this design pattern and refactor Database into three smaller structs, thus solving the
borrow checking issue:

// Database is now composed of three structs - ConnectionString, Timeout and
«» PoolSize.

// Let's decompose it into smaller structs

#[derive(Debug, Clone)]

struct ConnectionString(String);

#[derive(Debug, Clone, Copy)]
struct Timeout(u32);

#[derive(Debug, Clone, Copy)]
struct PoolSize(u32);

// We then compose these smaller structs back into "Database’
struct Database {

connection_string: ConnectionString,

timeout: Timeout,

pool_size: PoolSize,
}

// print_database can then take ConnectionString, Timeout and Poolsize struct
~ 1instead
fn print_database(connection_str: ConnectionString, timeout: Timeout,
< pool_size: PoolSize) {
println!("Connection string: {connection_str:?}");
println!("Timeout: {timeout:?}");
println!("Pool size: {pool_size:?}");

53

}

fn main() {

let mut db = Database {
connection_string: ConnectionString("localhost".to_string()),
timeout: Timeout(30),
pool_size: PoolSize(100),

b

let connection_string = &mut db.connection_string;
print_database(connection_string.clone(), db.timeout, db.pool_size);
*connection_string = ConnectionString("new string".to_string());

Motivation

This pattern is most useful, when you have a struct that ended up with a lot of fields that you want to
borrow independently. Thus having a more flexible behaviour in the end.

Advantages

Decomposition of structs lets you work around limitations in the borrow checker. And it often
produces a better design.

Disadvantages

It can lead to more verbose code. And sometimes, the smaller structs are not good abstractions, and
so we end up with a worse design. That is probably a 'code smell', indicating that the program should
be refactored in some way.

Discussion

This pattern is not required in languages that don't have a borrow checker, so in that sense is
unique to Rust. However, making smaller units of functionality often leads to cleaner code: a widely
acknowledged principle of software engineering, independent of the language.

This pattern relies on Rust's borrow checker to be able to borrow fields independently of each other.
In the example, the borrow checker knows that a.b and a. c are distinct and can be borrowed
independently, it does not try to borrow all of a, which would make this pattern useless.

Last change: 2026-01-03, commit: 279135

3.3.2 Prefer small crates
Description

Prefer small crates that do one thing well.

Cargo and crates.io make it easy to add third-party libraries, much more so than in say C or C++.
Moreover, since packages on crates.io cannot be edited or removed after publication, any build that
works now should continue to work in the future. We should take advantage of this tooling, and use
smaller, more fine-grained dependencies.

54

https://github.com/rust-unofficial/patterns/commit/f279f35

Advantages

* Small crates are easier to understand, and encourage more modular code.

* Crates allow for re-using code between projects. For example, the url crate was developed as
part of the Servo browser engine, but has since found wide use outside the project.

* Since the compilation unit of Rust is the crate, splitting a project into multiple crates can allow
more of the code to be built in parallel.

Disadvantages

* This can lead to ”dependency hell”, when a project depends on multiple conflicting versions
of a crate at the same time. For example, the url crate has both versions 1.0 and 0.5. Since
the Url from url:1.0 and the Url from url:@.5 are different types, an HTTP client that uses
url:@.5 would not accept Url values from a web scraper that uses url:1.0.

» Packages on crates.io are not curated. A crate may be poorly written, have unhelpful documen-
tation, or be outright malicious.

» Two small crates may be less optimized than one large one, since the compiler does not perform
link-time optimization (LTO) by default.

Examples

The url crate provides tools for working with URLs.
The num_cpus crate provides a function to query the number of CPUs on a machine.

The ref_slice crate provides functions for converting &T to &[T]. (Historical example)

See also

* crates.io: The Rust community crate host

Last change: 2026-01-03, commit: f279f35

3.3.3 Contain unsafety in small modules
Description

If you have unsafe code, create the smallest possible module that can uphold the needed invariants
to build a minimal safe interface upon the unsafety. Embed this into a larger module that contains
only safe code and presents an ergonomic interface. Note that the outer module can contain unsafe
functions and methods that call directly into the unsafe code. Users may use this to gain speed
benefits.

Advantages

* This restricts the unsafe code that must be audited
* Writing the outer module is much easier,; since you can count on the guarantees of the inner
module

Disadvantages

* Sometimes, it may be hard to find a suitable interface.
» The abstraction may introduce inefficiencies.

55

https://crates.io/crates/url
https://crates.io/crates/num_cpus
https://crates.io/crates/ref_slice
https://crates.io/
https://github.com/rust-unofficial/patterns/commit/f279f35

Examples

* The toolshed crate contains its unsafe operations in submodules, presenting a safe interface
to users.

* std's String class is a wrapper over Vec<u8> with the added invariant that the contents must
be valid UTF-8. The operations on String ensure this behavior. However, users have the option
of using an unsafe method to create a String, in which case the onus is on them to guarantee
the validity of the contents.

See also

» Ralf Jung's Blog about invariants in unsafe code
Last change: 2026-01-03, commit: f279f35

3.3.4 Use custom traits to avoid complex type bounds
Description

Trait bounds can become somewhat unwieldy, especially if one of the Fn traits’ is involved and there
are specific requirements on the output type. In such cases the introduction of a new trait may help
reduce verbosity, eliminate some type parameters and thus increase expressiveness. Such a trait can
be accompanied with a generic imp1 for all types satisfying the original bound.

Example

Let's imagine some sort of monitoring or information gathering system. The system retrieves values
of various types from diverse sources. It may derive from them some sort of status indicating issues.
For example, the total amount of free memory should be above a certain theshold, and the user with
the id @ should always be named ”root”.

For management reasons, we probably want type erasure on the top level. However, we also need
to provide specific (user configurable) assesments for specific types of data sources (e.g. thresholds
and ranges for numerical types). And since sources for these values are diverse, we may choose to
supply data sources as closures that return a value when called. Because we are probably getting
those values from the operating system, we are likely confronted with operations that may fail.

We thus may have settled on the following types and traits for handling specific values:

use std::fmt::Display;

struct Value<G: FnMut() -> Result<T, Error>, S: Fn(&T) -> Status, T: Display>

- A
value: Option<T>,
getter: G,
status: S,

}

impl<G: FnMut() -> Result<T, Error>, S: Fn(&T) -> Status, T: Display> Value<gG,
o S,T>{
pub fn update(&mut self) -> Result<(), Error> {
(self.getter) () .map(|v| self.value = Some(v))
}

1i.e. Fn, FnOnce and FnMut

56

https://docs.rs/toolshed
https://www.ralfj.de/blog/2018/08/22/two-kinds-of-invariants.html
https://github.com/rust-unofficial/patterns/commit/f279f35

pub fn value(&self) -> Option<&T> {
self.value.as_ref()
}

pub fn status(&self) -> Option<Status> {
self.value().map(&self.status)
}
}

//

enum Status {
//

}

struct Error {
/!

}

With these types, we will need to repeat the trait bounds for G in at least a few places. Readability
suffers, partially due the the fact that the getter returns a Result. Introducing a bound for *getters”
allows a more expressive bound and eliminate one of the type parameters:

trait Getter {
type Output: Display;

fn get_value(&mut self) -> Result<Self::Output, Error>;
}

impl<F: FnMut() -> Result<T, Error>, T: Display> Getter for F {
type Output = T;

fn get_value(&mut self) -> Result<Self::Output, Error> {
self()
}
}

struct Value<G: Getter, S: Fn(&G::Output) -> Status> {
value: Option<G: :Output>,

getter: G,
status: S,
}
//
Advantages

Introducing a new trait can help simplify type bounds, particularly via the elimination of type
parameters. A good name for the new trait will also make the bound more expressive. The new trait,
an abstraction, also offers opportunities in itself, including:

* additional, specialized types implementing the new trait (e.g. representing an idendity of some
sort) as well as other useful traits such as Default and
+ additional methods, as long as they can be implemented for all relevant types.

57

Disadvantages

Introducing new items such as the trait means we need to find an appropriate name and place for it.
It also means one more item users of the original functionality need to investigate?. Depending on
presentation, it may not be obvious right away that a simple closure may be used as a Getter in the
example above.

Last change: 2026-01-03, commit: f279f35

3.4 FFI Patterns

Writing FFI code is an entire course in itself. However, there are several idioms here that can act as
pointers, and avoid traps for inexperienced users of unsafe Rust.

This section contains design patterns that may be useful when doing FFL

1. Object-Based API design that has good memory safety characteristics, and a clean boundary of
what is safe and what is unsafe

2. Type Consolidation into Wrappers - group multiple Rust types together into an opaque ”object”
Last change: 2026-01-03, commit: f279f35

3.4.1 Object-Based APIs
Description

When designing APIs in Rust which are exposed to other languages, there are some important design
principles which are contrary to normal Rust API design:

1. All Encapsulated types should be owned by Rust, managed by the user, and opaque.

2. All Transactional data types should be owned by the user, and transparent.

3. All library behavior should be functions acting upon Encapsulated types.

4. Alllibrary behavior should be encapsulated into types not based on structure, but provenance/life-
time.

Motivation

Rust has built-in FFI support to other languages. It does this by providing a way for crate authors to
provide C-compatible APIs through different ABIs (though that is unimportant to this practice).

Well-designed Rust FFI follows C API design principles, while compromising the design in Rust as
little as possible. There are three goals with any foreign API:

1. Make it easy to use in the target language.
2. Avoid the API dictating internal unsafety on the Rust side as much as possible.
3. Keep the potential for memory unsafety and Rust undefined behaviour as small as possible.

Rust code must trust the memory safety of the foreign language beyond a certain point. However,
every bit of unsafe code on the Rust side is an opportunity for bugs, or to exacerbate undefined
behaviour.

For example, if a pointer provenance is wrong, that may be a segfault due to invalid memory access.
But if it is manipulated by unsafe code, it could become full-blown heap corruption.

The Object-Based API design allows for writing shims that have good memory safety characteristics,
and a clean boundary of what is safe and what is unsafe.

2meaning they may need to read more documentation

58

https://github.com/rust-unofficial/patterns/commit/f279f35
https://github.com/rust-unofficial/patterns/commit/f279f35

Code Example

The POSIX standard defines the API to access an on-file database, known as DBM. It is an excellent
example of an “object-based” API.

Here is the definition in C, which hopefully should be easy to read for those involved in FFI. The
commentary below should help explain it for those who miss the subtleties.

strxuct DBM;
typedef struct { void *dptr, size_t dsize } datum;

int dbm_clearerr(DBM *);

void dbm_close(DBM *);

int dbm_delete(DBM *, datum);
int dbm_erroxr (DBM *);

datum dbm_fetch(DBM *, datum);

datum dbm_firstkey(DBM *);

datum dbm_nextkey(DBM *);

DBM *dbm_open(const char *, int, mode_t);
int dbm_store(DBM *, datum, datum, int);

This API defines two types: DBM and datum.

The DBM type was called an “encapsulated” type above. It is designed to contain internal state, and
acts as an entry point for the library's behavior.

It is completely opaque to the user, who cannot create a DBM themselves since they don't know its
size or layout. Instead, they must call dbm_open, and that only gives them a pointer to one.

This means all DBMs are “owned” by the library in a Rust sense. The internal state of unknown size is
kept in memory controlled by the library, not the user. The user can only manage its life cycle with
open and close, and perform operations on it with the other functions.

The datum type was called a "transactional” type above. It is designed to facilitate the exchange of
information between the library and its user.

The database is designed to store "unstructured data”, with no pre-defined length or meaning. As a
result, the datum is the C equivalent of a Rust slice: a bunch of bytes, and a count of how many there
are. The main difference is that there is no type information, which is what void indicates.

Keep in mind that this header is written from the library's point of view. The user likely has some
type they are using, which has a known size. But the library does not care, and by the rules of C
casting, any type behind a pointer can be cast to void.

As noted earlier, this type is transparent to the user. But also, this type is owned by the user. This has
subtle ramifications, due to that pointer inside it. The question is, who owns the memory that pointer
points to?

The answer for best memory safety is, ”the user”. But in cases such as retrieving a value, the user
does not know how to allocate it correctly (since they don't know how long the value is). In this case,
the library code is expected to use the heap that the user has access to -- such as the C library malloc
and free -- and then transfer ownership in the Rust sense.

This may all seem speculative, but this is what a pointer means in C. It means the same thing as Rust:
”user defined lifetime.” The user of the library needs to read the documentation in order to use it
correctly. That said, there are some decisions that have fewer or greater consequences if users do it
wrong. Minimizing those are what this best practice is about, and the key is to transfer ownership of
everything that is transparent.

59

https://web.archive.org/web/20210105035602/https://www.mankier.com/0p/ndbm.h

Advantages

This minimizes the number of memory safety guarantees the user must uphold to a relatively small
number:

1. Do not call any function with a pointer not returned by dbm_open (invalid access or corruption).

2. Do not call any function on a pointer after close (use after free).

3. The dptr on any datum must be NULL, or point to a valid slice of memory at the advertised
length.

In addition, it avoids a lot of pointer provenance issues. To understand why, let us consider an
alternative in some depth: key iteration.

Rust is well known for its iterators. When implementing one, the programmer makes a separate type
with a bounded lifetime to its owner, and implements the Iterator trait.

Here is how iteration would be done in Rust for DBM:

stxuct Dbm { ... }

impl Dbm {
/ALY
pub fn keys<'it>(&'it self) -> DbmKeysIter<'it> { ... }
/* 00 *]

}

struct DbmKeysIter<'it> {
owner: &'it Dbm,

}

impl<'it> Iterator for DbmKeysIter<'it> { ... }

This is clean, idiomatic, and safe. thanks to Rust's guarantees. However, consider what a straightfor-
ward API translation would look like:

#[no_mangle]

pub extern "C" fn dbm_iter_new(owner: *const Dbm) -> *mut DbmKeysIter {
// THIS API IS A BAD IDEA! For real applications, use object-based design
< 1dnstead.

}

#[no_mangle]

pub extern "C" fn dbm_iter_next(
iter: *mut DbmKeysIter,
key_out: *const datum

) -> libc::c_int {
// THIS API IS A BAD IDEA! For real applications, use object-based design
< 1dnstead.

}

#[no_mangle]

pub extern "C" fn dbm_iter_del(*mut DbmKeysIter) ({
// THIS API IS A BAD IDEA! For real applications, use object-based design
< idnstead.

}

This API loses a key piece of information: the lifetime of the iterator must not exceed the lifetime of
the Dbm object that owns it. A user of the library could use it in a way which causes the iterator to
outlive the data it is iterating on, resulting in reading uninitialized memory.

This example written in C contains a bug that will be explained afterwards:

60

int count_key_sizes(DBM *db) {
BUG
datum key;
int len = 0;

if (!dbm_iter_new(db)) {
dbm_close(db);
return -1;

}

int 1;
while ((1 = dbm_iter_next(owner, &key)) >= 0) {
free(key.dptr);
len += key.dsize;
if (1 == 0) {
dbm_close(owner) ;

}
}
ifl >=0 {
return -1;
} else {
return len;
}

}
This bug is a classic. Here's what happens when the iterator returns the end-of-iteration marker:

1. The loop condition sets 1 to zero, and enters the loop because @ >= 0.

2. The length is incremented, in this case by zero.

3. The if statement is true, so the database is closed. There should be a break statement here.
4. The loop condition executes again, causing a next call on the closed object.

The worst part about this bug? If the Rust implementation was careful, this code will work most of
the time! If the memory for the Dbm object is not immediately reused, an internal check will almost
certainly fail, resulting in the iterator returning a -1 indicating an error. But occasionally, it will
cause a segmentation fault, or even worse, nonsensical memory corruption!

None of this can be avoided by Rust. From its perspective, it put those objects on its heap, returned
pointers to them, and gave up control of their lifetimes. The C code simply must ”play nice”.

The programmer must read and understand the API documentation. While some consider that
par for the course in C, a good API design can mitigate this risk. The POSIX API for DBM did this by
consolidating the ownership of the iterator with its parent:

datum dbm_firstkey(DBM *);
datum dbm_nextkey(DBM *);

Thus, all the lifetimes were bound together, and such unsafety was prevented.

Disadvantages

However, this design choice also has a number of drawbacks, which should be considered as well.

First, the API itself becomes less expressive. With POSIX DBM, there is only one iterator per object,
and every call changes its state. This is much more restrictive than iterators in almost any language,
even though it is safe. Perhaps with other related objects, whose lifetimes are less hierarchical, this
limitation is more of a cost than the safety.

61

Second, depending on the relationships of the API's parts, significant design effort may be involved.
Many of the easier design points have other patterns associated with them:

» Wrapper Type Consolidation groups multiple Rust types together into an opaque “object”

» FFI Error Passing explains error handling with integer codes and sentinel return values (such
as NULL pointers)

» Accepting Foreign Strings allows accepting strings with minimal unsafe code, and is easier to
get right than Passing Strings to FFI

However, not every API can be done this way. It is up to the best judgement of the programmer as to
who their audience is.

Last change: 2026-01-03, commit: f279{35

3.4.2 Type Consolidation into Wrappers
Description

This pattern is designed to allow gracefully handling multiple related types, while minimizing the
surface area for memory unsafety.

One of the cornerstones of Rust's aliasing rules is lifetimes. This ensures that many patterns of access
between types can be memory safe, data race safety included.

However, when Rust types are exported to other languages, they are usually transformed into pointers.
In Rust, a pointer means ”the user manages the lifetime of the pointee.” It is their responsibility to
avoid memory unsafety.

Some level of trust in the user code is thus required, notably around use-after-free which Rust can do
nothing about. However, some API designs place higher burdens than others on the code written in
the other language.

The lowest risk API is the “consolidated wrapper”, where all possible interactions with an object are
folded into a "wrapper type”, while keeping the Rust API clean.

Code Example

To understand this, let us look at a classic example of an API to export: iteration through a collection.
That API looks like this:

1. The iterator is initialized with first_key.

2. Each call to next_key will advance the iterator.

3. Calls to next_key if the iterator is at the end will do nothing.

4. As noted above, the iterator is "wrapped into” the collection (unlike the native Rust API).

If the iterator implements nth () efficiently, then it is possible to make it ephemeral to each function
call:

struct MySetWrapper {
myset: MySet,
iter_next: usize,

}

impl MySetWrapper {
pub fn first_key(&mut self) -> Option<&Key> {
self.iter_next = 0;
self.next_key()

62

https://github.com/rust-unofficial/patterns/commit/f279f35

}
pub fn next_key(&mut self) -> Option<&Key> {
if let Some(next) = self.myset.keys().nth(self.iter_next) {
self.iter next += 1;
Some (next)
} else {
None
}

}

As a result, the wrapper is simple and contains no unsafe code.

Advantages

This makes APIs safer to use, avoiding issues with lifetimes between types. See Object-Based APIs for
more on the advantages and pitfalls this avoids.

Disadvantages

Often, wrapping types is quite difficult, and sometimes a Rust API compromise would make things
easier.

As an example, consider an iterator which does not efficiently implement nth (). It would definitely
be worth putting in special logic to make the object handle iteration internally, or to support a
different access pattern efficiently that only the Foreign Function API will use.

Trying to Wrap Iterators (and Failing) To wrap any type of iterator into the API correctly, the
wrapper would need to do what a C version of the code would do: erase the lifetime of the iterator,
and manage it manually.

Suffice it to say, this is incredibly difficult.
Here is an illustration of just one pitfall.
A first version of MySetWrapper would look like this:

struct MySetWrapper {
myset: MySet,
iter_next: usize,

iterator: Option<NonNull<KeysIter<'static>>>,

}

With transmute being used to extend a lifetime, and a pointer to hide it, it's ugly already. But it gets
even worse: any other operation can cause Rust undefined behaviour.

Consider that the MySet in the wrapper could be manipulated by other functions during iteration,
such as storing a new value to the key it was iterating over. The API doesn't discourage this, and in
fact some similar C libraries expect it.

A simple implementation of myset_store would be:

pub mod unsafe_module {

63

pub fn myset_store(myset: *mut MySetWrapper, key: datum, value: datum) ->
o libc::c_int {
// DO NOT USE THIS CODE. IT IS UNSAFE TO DEMONSTRATE A PROBLEM.

let myset: &mut MySet = unsafe {
// SAFETY: whoops, UB occurs in here!
&mut (*myset).myset

b

/* ...check and cast key and value data... */

match myset.store(casted_key, casted_value) {
ok(_) => 0,
Err(e) => e.into(),

}

If the iterator exists when this function is called, we have violated one of Rust's aliasing rules.
According to Rust, the mutable reference in this block must have exclusive access to the object. If the
iterator simply exists, it's not exclusive, so we have undefined behaviour! 3

To avoid this, we must have a way of ensuring that mutable reference really is exclusive. That
basically means clearing out the iterator's shared reference while it exists, and then reconstructing it.
In most cases, that will still be less efficient than the C version.

Some may ask: how can C do this more efficiently? The answer is, it cheats. Rust's aliasing rules are
the problem, and C simply ignores them for its pointers. In exchange, it is common to see code that
is declared in the manual as ”not thread safe” under some or all circumstances. In fact, the GNU C
library has an entire lexicon dedicated to concurrent behavior!

Rust would rather make everything memory safe all the time, for both safety and optimizations that
C code cannot attain. Being denied access to certain shortcuts is the price Rust programmers need to

pay.
Last change: 2026-01-03, commit: f279{35

3For the C programmers out there scratching their heads, the iterator need not be read during this code to cause the UB.
The exclusivity rule also enables compiler optimizations which may cause inconsistent observations by the iterator's shared
reference (e.g. stack spills or reordering instructions for efficiency). These observations may happen any time after the
mutable reference is created.

64

https://manpages.debian.org/buster/manpages/attributes.7.en.html
https://manpages.debian.org/buster/manpages/attributes.7.en.html
https://github.com/rust-unofficial/patterns/commit/f279f35

Chapter 4

Anti-patterns

An anti-pattern is a solution to a “recurring problem that is usually ineffective and risks being highly
counterproductive”. Just as valuable as knowing how to solve a problem, is knowing how not to solve
it. Anti-patterns give us great counter-examples to consider relative to design patterns. Anti-patterns
are not confined to code. For example, a process can be an anti-pattern, too.

Last change: 2026-01-03, commit: f279f35

4.1 Clone to satisfy the borrow checker

Description

The borrow checker prevents Rust users from developing otherwise unsafe code by ensuring that
either: only one mutable reference exists, or potentially many but all immutable references exist. If
the code written does not hold true to these conditions, this anti-pattern arises when the developer
resolves the compiler error by cloning the variable.

Example

let mut x = 5;

let y = &mut (x.clone());

println! ("{x}");

Motivation

It is tempting, particularly for beginners, to use this pattern to resolve confusing issues with the
borrow checker. However, there are serious consequences. Using .clone() causes a copy of the

65

https://en.wikipedia.org/wiki/Anti-pattern
https://github.com/rust-unofficial/patterns/commit/f279f35

data to be made. Any changes between the two are not synchronized -- as if two completely separate
variables exist.

There are special cases -- Rc<T> is designed to handle clones intelligently. It internally manages
exactly one copy of the data. Invoking .clone() on Rc produces a new Rc instance, which points
to the same data as the source Rc, while increasing a reference count. The same applies to Arc, the
thread-safe counterpart of Rc.

In general, clones should be deliberate, with full understanding of the consequences. If a clone is
used to make a borrow checker error disappear, that's a good indication this anti-pattern may be in
use.

Even though .clone() is an indication of a bad pattern, sometimes it is fine to write inefficient
code, in cases such as when:

* the developer is still new to ownership

* the code doesn't have great speed or memory constraints (like hackathon projects or prototypes)

+ satisfying the borrow checker is really complicated, and you prefer to optimize readability over
performance

If an unnecessary clone is suspected, The Rust Book's chapter on Ownership should be understood
fully before assessing whether the clone is required or not.

Also be sure to always run cargo clippy in your project, which will detect some cases in which
.clone() is not necessary.

See also

* mem::{take(_), replace(_)} tokeep owned valuesin changed enums
* Rc<T> documentation, which handles .clone() intelligently

* Arc<T> documentation, a thread-safe reference-counting pointer

* Tricks with ownership in Rust

Last change: 2026-01-03, commit: f279{35
4.2 #![deny(warnings)]

Description

A well-intentioned crate author wants to ensure their code builds without warnings. So they annotate
their crate root with the following:

Example

#! [deny (warnings)]

Advantages

It is short and will stop the build if anything is amiss.

66

https://doc.rust-lang.org/book/ownership.html
http://doc.rust-lang.org/std/rc/
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://web.archive.org/web/20210120233744/https://xion.io/post/code/rust-borrowchk-tricks.html
https://github.com/rust-unofficial/patterns/commit/f279f35

Drawbacks

By disallowing the compiler to build with warnings, a crate author opts out of Rust's famed stability.
Sometimes new features or old misfeatures need a change in how things are done, thus lints are
written that warn for a certain grace period before being turned to deny.

For example, it was discovered that a type could have two impls with the same method. This was
deemed a bad idea, but in order to make the transition smooth, the overlapping-inherent-impls
lint was introduced to give a warning to those stumbling on this fact, before it becomes a hard error
in a future release.

Also sometimes APIs get deprecated, so their use will emit a warning where before there was none.
All this conspires to potentially break the build whenever something changes.

Furthermore, crates that supply additional lints (e.g. rust-clippy) can no longer be used unless the
annotation is removed. This is mitigated with --cap-lints. The - -cap-lints=warn command line
argument, turns all deny lint errors into warnings.

Alternatives

There are two ways of tackling this problem: First, we can decouple the build setting from the code,
and second, we can name the lints we want to deny explicitly.

The following command line will build with all warnings set to deny:
RUSTFLAGS="-D warnings" cargo build

This can be done by any individual developer (or be set in a CI tool like Travis, but remember that
this may break the build when something changes) without requiring a change to the code.

Alternatively, we can specify the lints that we want to deny in the code. Here is a list of warning lints
that is (hopefully) safe to deny (as of rustc 1.48.0):

#! [deny (
bad_style,
const_err,
dead_code,
improper_ctypes,
non_shorthand_field_patterns,
no_mangle_generic_items,
overflowing_literals,
path_statements,
patterns_in_fns_without_body,
private_in_public,
unconditional_recursion,
unused,
unused_allocation,
unused_comparisons,
unused_parens,
while true

)]

In addition, the following allowed lints may be a good idea to deny:

#! [deny (
missing_debug_implementations,
missing_docs,
trivial_casts,

67

https://github.com/rust-lang/rust-clippy
https://doc.rust-lang.org/rustc/lints/levels.html#capping-lints

trivial_numeric_casts,
unused_extern_crates,
unused_import_braces,
unused_qualifications,
unused_results

)]

Some may also want to add missing-copy-implementations to their list.

Note that we explicitly did not add the deprecated lint, as it is fairly certain that there will be more
deprecated APIs in the future.

See also

* A collection of all clippy lints

* deprecate attribute documentation

» Type rustc -W help for a list of lints on your system. Also type rustc --help for a general
list of options

* rust-clippy is a collection of lints for better Rust code

Last change: 2026-01-03, commit: f279{35

4.3 Deref polymorphism

Description

Misuse the Deref trait to emulate inheritance between structs, and thus reuse methods.

Example

Sometimes we want to emulate the following common pattern from OO languages such as Java:

class Foo {
void m() { ... }
}

class Bar extends Foo {}

public static void main(String[] args) {
Bar b = new Bar();
b.m();

}

We can use the deref polymorphism anti-pattern to do so:

use std::ops::Deref;

struct Foo {}

impl Foo {
fn m(&self) {
//..
}
}

68

https://rust-lang.github.io/rust-clippy/master
https://doc.rust-lang.org/reference/attributes.html#deprecation
https://github.com/rust-lang/rust-clippy
https://github.com/rust-unofficial/patterns/commit/f279f35

struct Bar {
f: Foo,
}

impl Deref for Bar {
type Target = Foo;
fn deref(&self) -> &Foo {
&self.f
}
}

fn main() {
let b =
b.m();

Bar { f: Foo {} };

}

There is no struct inheritance in Rust. Instead we use composition and include an instance of Foo in
Bar (since the field is a value, it is stored inline, so if there were fields, they would have the same
layout in memory as the Java version (probably, you should use #[repx (C)] if you want to be sure)).

In order to make the method call work we implement Deref for Bar with Foo as the target (returning
the embedded Foo field). That means that when we dereference a Bar (for example, using *) then
we will get a Foo. That is pretty weird. Dereferencing usually gives a T from a reference to T, here
we have two unrelated types. However, since the dot operator does implicit dereferencing, it means
that the method call will search for methods on Foo as well as Bar.

Advantages

You save a little boilerplate, e.g.,

impl Bar {
fn m(&self) {
self.f.m()
}

Disadvantages

Most importantly this is a surprising idiom - future programmers reading this in code will not expect
this to happen. That's because we are misusing the Deref trait rather than using it as intended (and
documented, etc.). It's also because the mechanism here is completely implicit.

This pattern does not introduce subtyping between Foo and Bar like inheritance in Java or C++ does.
Furthermore, traits implemented by Foo are not automatically implemented for Bar, so this pattern
interacts badly with bounds checking and thus generic programming.

Using this pattern gives subtly different semantics from most OO languages with regards to self.
Usually it remains a reference to the sub-class, with this pattern it will be the 'class' where the method
is defined.

Finally, this pattern only supports single inheritance, and has no notion of interfaces, class-based
privacy, or other inheritance-related features. So, it gives an experience that will be subtly surprising
to programmers used to Java inheritance, etc.

69

Discussion

There is no one good alternative. Depending on the exact circumstances it might be better to re-
implement using traits or to write out the facade methods to dispatch to Foo manually. We do intend
to add a mechanism for inheritance similar to this to Rust, but it is likely to be some time before it
reaches stable Rust. See these blog posts and this RFC issue for more details.

The Deref trait is designed for the implementation of custom pointer types. The intention is that
it will take a pointer-to-T to a T, not convert between different types. It is a shame that this isn't
(probably cannot be) enforced by the trait definition.

Rust tries to strike a careful balance between explicit and implicit mechanisms, favouring explicit
conversions between types. Automatic dereferencing in the dot operator is a case where the er-
gonomics strongly favour an implicit mechanism, but the intention is that this is limited to degrees
of indirection, not conversion between arbitrary types.

See also

* Collections are smart pointers idiom.
* Delegation crates for less boilerplate like delegate or ambassador
* Documentation for Deref trait.

Last change: 2026-01-03, commit: f279f35

70

http://aturon.github.io/blog/2015/09/18/reuse/
http://smallcultfollowing.com/babysteps/blog/2015/10/08/virtual-structs-part-4-extended-enums-and-thin-traits/
https://github.com/rust-lang/rfcs/issues/349
https://crates.io/crates/delegate
https://crates.io/crates/ambassador
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://github.com/rust-unofficial/patterns/commit/f279f35

Chapter 5

Functional Usage of Rust

Rust is an imperative language, but it follows many functional programming paradigms.

In computer science, functional programming is a programming paradigm where programs
are constructed by applying and composing functions. It is a declarative programming
paradigm in which function definitions are trees of expressions that each return a value,
rather than a sequence of imperative statements which change the state of the program.

Last change: 2026-01-03, commit: £279f35

5.1 Programming paradigms

One of the biggest hurdles to understanding functional programs when coming from an imperative
background is the shift in thinking. Imperative programs describe how to do something, whereas
declarative programs describe what to do. Let's sum the numbers from 1 to 10 to show this.

Imperative

let mut sum = 0;

for i in 1..11 {
sum += i;

}

println! (" {sum}");

With imperative programs, we have to play compiler to see what is happening. Here, we start with a
sum of @. Next, we iterate through the range from 1 to 10. Each time through the loop, we add the
corresponding value in the range. Then we print it out.

sum

1

3

6
10
15
21
28
36
45

OO UIbd WN -

71

https://en.wikipedia.org/wiki/Functional_programming
https://github.com/rust-unofficial/patterns/commit/f279f35

i sum
10 55

This is how most of us start out programming. We learn that a program is a set of steps.

Declarative
println!("{}", (1..11).fold(®, |a, b| a + b));

Whoal! This is really different! What's going on here? Remember that with declarative programs we
are describing what to do, rather than how to do it. fold is a function that composes functions. The
name is a convention from Haskell.

Here, we are composing functions of addition (this closure: |a, b| a + b) with a range from 1 to
10. The 0 is the starting point, so a is @ at first. b is the first element of the range, 1. @ + 1 = 1listhe
result. So now we fold again, witha = 1,b = 2andso1l + 2 = 3isthe next result. This process
continues until we get to the last element in the range, 10.

a b result
0 1 1
1 2 3
3 3 6
6 4 10
10 5 15
15 6 21
21 7 28
28 8 36
36 9 45
45 10 55

Last change: 2026-01-03, commit: f279{35

5.2 Generics as Type Classes

Description

Rust's type system is designed more like functional languages (like Haskell) rather than imperative
languages (like Java and C++). As a result, Rust can turn many kinds of programming problems into
static typing” problems. This is one of the biggest wins of choosing a functional language, and is
critical to many of Rust's compile time guarantees.

A key part of this idea is the way generic types work. In C++ and Java, for example, generic types are
a meta-programming construct for the compiler. vector<int> and vector<char> in C++ are just
two different copies of the same boilerplate code for a vector type (known as a template) with two
different types filled in.

In Rust, a generic type parameter creates what is known in functional languages as a ”type class
constraint”, and each different parameter filled in by an end user actually changes the type. In other
words, Vec<isize> and Vec<char> are two different types, which are recognized as distinct by all
parts of the type system.

72

https://en.wikipedia.org/wiki/Function_composition
https://github.com/rust-unofficial/patterns/commit/f279f35

This is called monomorphization, where different types are created from polymorphic code. This
special behavior requires imp1 blocks to specify generic parameters. Different values for the generic
type cause different types, and different types can have different imp1 blocks.

In object-oriented languages, classes can inherit behavior from their parents. However, this allows
the attachment of not only additional behavior to particular members of a type class, but extra
behavior as well.

The nearest equivalent is the runtime polymorphism in Javascript and Python, where new members
can be added to objects willy-nilly by any constructor. However, unlike those languages, all of Rust's
additional methods can be type checked when they are used, because their generics are statically
defined. That makes them more usable while remaining safe.

Example

Suppose you are designing a storage server for a series of lab machines. Because of the software
involved, there are two different protocols you need to support: BOOTP (for PXE network boot), and
NFS (for remote mount storage).

Your goal is to have one program, written in Rust, which can handle both of them. It will have
protocol handlers and listen for both kinds of requests. The main application logic will then allow a
lab administrator to configure storage and security controls for the actual files.

The requests from machines in the lab for files contain the same basic information, no matter what
protocol they came from: an authentication method, and a file name to retrieve. A straightforward
implementation would look something like this:

enum AuthInfo {
Nfs(crate: :nfs::AuthInfo),
Bootp(crate: :bootp: :AuthInfo),
}

struct FileDownloadRequest {
file_name: PathBuf,
authentication: AuthInfo,

}

This design might work well enough. But now suppose you needed to support adding metadata that
was protocol specific. For example, with NFS, you wanted to determine what their mount point was
in order to enforce additional security rules.

The way the current struct is designed leaves the protocol decision until runtime. That means any
method that applies to one protocol and not the other requires the programmer to do a runtime
check.

Here is how getting an NFS mount point would look:

struct FileDownloadRequest {
file_name: PathBuf,
authentication: AuthInfo,
mount_point: Option<PathBuf>,
}

impl FileDownloadRequest {

73

pub fn mount_point(&self) -> Option<&Path> {
self.mount_point.as_ref()
}
}

Every caller of mount_point () must check for None and write code to handle it. This is true even if
they know only NFS requests are ever used in a given code path!

It would be far more optimal to cause a compile-time error if the different request types were
confused. After all, the entire path of the user's code, including what functions from the library they
use, will know whether a request is an NFS request or a BOOTP request.

In Rust, this is actually possible! The solution is to add a generic type in order to split the API.
Here is what that looks like:
use std::path::{Path, PathBuf};

mod nfs {
#[dexrive(Clone)]
pub(crate) struct AuthInfo(String); // NFS session management omitted
}
mod bootp {
pub(crate) struct AuthInfo(); // no authentication in bootp
}

// Keep the module private to prevent outside users from inventing their own
< protocols.
mod proto_trait {

use super: :{bootp, nfs};

use std::path::{Path, PathBuf};

pub(crate) trait ProtoKind {
type AuthInfo;
fn auth_info(&self) -> Self::AuthInfo;

}

pub struct Nfs {
auth: nfs::AuthInfo,
mount_point: PathBuf,

}
impl Nfs {
pub(crate) fn mount_point(&self) -> &Path {
&self .mount_point
}
}

impl ProtoKind for Nfs {
type AuthInfo = nfs::AuthInfo;
fn auth_info(&self) -> Self::AuthInfo {
self.auth.clone()
}

74

pub struct Bootp(); // no additional metadata

impl ProtoKind for Bootp {
type AuthInfo = bootp::AuthInfo;
fn auth_info(&self) -> Self::AuthInfo {
bootp: :AuthInfo()

}
}

use proto_trait::ProtoKind; // keep internal to prevent impls
pub use proto_trait::{Bootp, Nfs}; // re-export so callers can see them

struct FileDownloadRequest<P: ProtoKind> {
file _name: PathBuf,
protocol: P,

}

// all common API parts go into a generic impl block
impl<P: ProtoKind> FileDownloadRequest<P> {
fn file_path(&self) -> &Path {
&self.file_name

}

fn auth_info(&self) -> P::AuthInfo {
self.protocol.auth_info()
}
}

// all protocol-specific impls go into their own block
impl FileDownloadRequest<Nfs> {
fn mount_point(&self) -> &Path {
self.protocol.mount_point()
}
}

fn main() {
// your code here

}
With this approach, if the user were to make a mistake and use the wrong type;

fn main() {
let mut socket = crate::bootp::listen()?;
while let Some(request) = socket.next_request()? {
match request.mount_point().as_ref() {
"/secure" => socket.send("Access denied"),
_ =>{} // continue on...

}
// Rest of the code here

}

They would get a syntax error. The type FileDownloadRequest<Bootp> does not implement
mount_point (), only the type FileDownloadRequest<Nfs> does. And that is created by the NFS

75

module, not the BOOTP module of course!

Advantages

First, it allows fields that are common to multiple states to be de-duplicated. By making the non-shared
fields generic, they are implemented once.

Second, it makes the imp1 blocks easier to read, because they are broken down by state. Methods
common to all states are typed once in one block, and methods unique to one state are in a separate
block.

Both of these mean there are fewer lines of code, and they are better organized.

Disadvantages

This currently increases the size of the binary, due to the way monomorphization is implemented in
the compiler. Hopefully the implementation will be able to improve in the future.

Alternatives

* If a type seems to need a ”split API” due to construction or partial initialization, consider the
Builder Pattern instead.

 If the API between types does not change -- only the behavior does -- then the Strategy Pattern
is better used instead.

See also

This pattern is used throughout the standard library:

* Vec<u8> can be cast from a String, unlike every other type of Vec<T>.!

* Iterators can be cast into a binary heap, but only if they contain a type that implements the Ord
trait.?

« The to_string method was specialized for Cow only of type str.?

It is also used by several popular crates to allow API flexibility:

* The embedded-hal ecosystem used for embedded devices makes extensive use of this pattern.
For example, it allows statically verifying the configuration of device registers used to control
embedded pins. When a pin is put into a mode, it returns a Pin<MODE> struct, whose generic
determines the functions usable in that mode, which are not on the Pin itself. *

* The hyper HTTP client library uses this to expose rich APIs for different pluggable requests.
Clients with different connectors have different methods on them as well as different trait
implementations, while a core set of methods apply to any connector. °

* The “type state” pattern -- where an object gains and loses API based on an internal state
or invariant -- is implemented in Rust using the same basic concept, and a slightly different
technique. °

Last change: 2026-01-03, commit: f279{35

1See: impl From<CString> for Vec<u8>

2See: impl<T: Ord> Fromlterator<T> for BinaryHeap<T>

3See: impl<'_> ToString for Cow<'_, str>

4Example: https://docs.rs/stm32f30x-hal/0.1.0/stm32f30x_hal/gpio/gpioa/struct.PA0.html
5See: https://docs.rs/hyper/0.14.5/hyper/client/struct.Client.html

6See: The Case for the Type State Pattern and Rusty Typestate Series (an extensive thesis)

76

https://github.com/rust-unofficial/patterns/commit/f279f35
https://doc.rust-lang.org/1.59.0/src/std/ffi/c_str.rs.html#803-811
https://web.archive.org/web/20201030132806/https://doc.rust-lang.org/stable/src/alloc/collections/binary_heap.rs.html#1330-1335
https://doc.rust-lang.org/stable/src/alloc/string.rs.html#2235-2240
https://docs.rs/stm32f30x-hal/0.1.0/stm32f30x_hal/gpio/gpioa/struct.PA0.html
https://docs.rs/hyper/0.14.5/hyper/client/struct.Client.html
https://web.archive.org/web/20210325065112/https://www.novatec-gmbh.de/en/blog/the-case-for-the-typestate-pattern-the-typestate-pattern-itself/
https://web.archive.org/web/20210328164854/https://rustype.github.io/notes/notes/rust-typestate-series/rust-typestate-index

5.3 Functional Language Optics

Optics is a type of API design that is common to functional languages. This is a pure functional
concept that is not frequently used in Rust.

Nevertheless, exploring the concept may be helpful to understand other patterns in Rust APIs, such
as visitors. They also have niche use cases.

This is quite a large topic, and would require actual books on language design to fully get into its
abilities. However their applicability in Rust is much simpler.

To explain the relevant parts of the concept, the Serde-API will be used as an example, as it is one
that is difficult for many to understand from simply the API documentation.

In the process, different specific patterns, called Optics, will be covered. These are The Iso, The Poly
Iso, and The Prism.

An API Example: Serde

Trying to understand the way Serde works by only reading the API is a challenge, especially the first
time. Consider the Deserializer trait, implemented by any library which parses a new data format:

pub trait Deserializer<'de>: Sized {
type Error: Error;

fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>;

fn deserialize_bool<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>;

// remainder omitted

}
And here's the definition of the Visitor trait passed in generically:

pub trait Visitor<'de>: Sized {
type Value;

fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
where
E: Error;

fn visit_ub4<E>(self, v: u64) -> Result<Self::Value, E>
where
E: Exrror;

fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: Error;

// remainder omitted

}

There is a lot of type erasure going on here, with multiple levels of associated types being passed
back and forth.

77

But what is the big picture? Why not just have the Visitoxr return the pieces the caller needs in a
streaming APIL, and call it a day? Why all the extra pieces?

One way to understand it is to look at a functional languages concept called optics.

This is a way to do composition of behavior and Eroprieties that is designed to facilitate patterns
common to Rust: failure, type transformation, etc.

The Rust language does not have very good support for these directly. However, they appear in the
design of the language itself, and their concepts can help to understand some of Rust's APIs. As a
result, this attempts to explain the concepts with the way Rust does it.

This will perhaps shed light on what those APIs are achieving: specific properties of composability.

Basic Optics
The Iso

The Iso is a value transformer between two types. It is extremely simple, but a conceptually important
building block.

As an example, suppose that we have a custom Hash table structure used as a concordance for a
document.® It uses strings for keys (words) and a list of indexes for values (file offsets, for instance).

A key feature is the ability to serialize this format to disk. A ”quick and dirty” approach would be to
implement a conversion to and from a string in JSON format. (Errors are ignored for the time being,
they will be handled later.)

To write it in a normal form expected by functional language users:

case class ConcordanceSerDe {
serialize: Concordance -> String
deserialize: String -> Concordance

}

The Iso is thus a pair of functions which convert values of different types: serialize and
deserialize.

A straightforward implementation:

use std::collections: :HashMap;

struct Concordance {
keys: HashMap<String, usize>,
value_table: Vec<(usize, usize)>,
}

struct ConcordanceSerde {}

impl ConcordanceSerde {
fn serialize(value: Concordance) -> String {
todo! ()
}

fn deserialize(value: String) -> Concordance {
todo! ()

7School of Haskell: A Little Lens Starter Tutorial
8Concordance on Wikipedia

78

https://web.archive.org/web/20221128190041/https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://en.wikipedia.org/wiki/Concordance_(publishing)

}

This may seem rather silly. In Rust, this type of behavior is typically done with traits. After all, the
standard library has FromStr and ToStringin it.

But that is where our next subject comes in: Poly Isos.

Poly Isos

The previous example was simply converting between values of two fixed types. This next block
builds upon it with generics, and is more interesting.

Poly Isos allow an operation to be generic over any type while returning a single type.

This brings us closer to parsing. Consider what a basic parser would do ignoring error cases. Again,
this is its normal form:

case class Sexde[T] {
deserialize(String) -> T
serialize(T) -> String

}

Here we have our first generic, the type T being converted.

In Rust, this could be implemented with a pair of traits in the standard library: FromStr and
ToString. The Rust version even handles errors:

pub trait FromStr: Sized {
type Err;

fn from_str(s: &str) -> Result<Self, Self::Err>;
}

pub trait ToString {
fn to_string(&self) -> String;
}

Unlike the Iso, the Poly Iso allows application of multiple types, and returns them generically. This is
what you would want for a basic string parser.

At first glance, this seems like a good option for writing a parser. Let's see it in action:

use anyhow;
use std::str::FromStr;

struct TestStruct {
a:. usize,
b: String,

}

impl FromStr for TestStruct {
type Exrr = anyhow: :Error;
fn from_str(s: &str) -> Result<TestStruct, Self::Exr> {
todo! ()
}

79

impl ToString for TestStruct {
fn to_string(&self) -> String {
todo! ()
}
}

fn main() {
let a = TestStruct {
a. 5,
b: "hello".to_string(),
}
println! ("Our Test Struct as JSON: {}", a.to_string());
}

That seems quite logical. However, there are two problems with this.

First, to_string does not indicate to API users, ”this is JSON.” Every type would need to agree on a
JSON representation, and many of the types in the Rust standard library already don't. Using this is a
poor fit. This can easily be resolved with our own trait.

But there is a second, subtler problem: scaling.

When every type writes to_string by hand, this works. But if every single person who wants their
type to be serializable has to write a bunch of code -- and possibly different JSON libraries -- to do it
themselves, it will turn into a mess very quickly!

The answer is one of Serde's two key innovations: an independent data model to represent Rust
data in structures common to data serialization languages. The result is that it can use Rust's code
generation abilities to create an intermediary conversion type it calls a Visitor.

This means, in normal form (again, skipping error handling for simplicity):

case class Sexrde[T] {
deserialize: Visitor[T] -> T
serialize: T -> Visitor[T]

}

case class Visitor[T] {
toJson: Visitor[T] -> String
fromJson: String -> Visitor[T]

}
The result is one Poly Iso and one Iso (respectively). Both of these can be implemented with traits:

trait Serde {
type V;
fn deserialize(visitor: Self::V) -> Self;
fn serialize(self) -> Self::V;

}

trait Visitor {
fn to_json(self) -> String;
fn from_json(json: String) -> Self;

}

Because there is a uniform set of rules to transform Rust structures to the independent form, it is
even possible to have code generation creating the Visitor associated with type T:

#[derive(Default, Sexde)] // the "Serde" derive creates the trait impl block

80

struct TestStruct {
a:. usize,
b: String,

generate_visitor!(TestStruct);
But let's actually try that approach.

fn main() {
let a = TestStruct { a: 5, b: "hello".to_string() };
let a_data = a.serialize().to_json();
println!("Our Test Struct as JSON: {a_data}");
let b = TestStruct::deserialize(
generated_visitor_for!(TestStruct)::from_json(a_data));

}

It turns out that the conversion isn't symmetric after all! On paper it is, but with the auto-generated
code the name of the actual type necessary to convert all the way from String is hidden. We'd need
some kind of generated_visitor_for! macro to obtain the type name.

It's wonky, but it works... until we get to the elephant in the room.
The only format currently supported is JSON. How would we support more formats?

The current design requires completely re-writing all of the code generation and creating a new
Serde trait. That is quite terrible and not extensible at all!

In order to solve that, we need something more powerful.

Prism
To take format into account, we need something in normal form like this:

case class Sexde[T, F] {
serialize: T, F -> String
deserialize: String, F -> Result[T, Error]

}

This construct is called a Prism. It is “one level higher” in generics than Poly Isos (in this case, the
”intersecting” type F is the key).

Unfortunately because Visitor is a trait (since each incarnation requires its own custom code), this
would require a kind of generic type boundary that Rust does not support.

Fortunately, we still have that Visitor type from before. What is the Visitor doing? Itis attempting
to allow each data structure to define the way it is itself parsed.

Well what if we could add one more interface for the generic format? Then the Visitor is just an
implementation detail, and it would ”bridge” the two APIs.

In normal form:

case class Serde[T] {
serialize: F -> String
deserialize F, String -> Result[T, Error]

}

case class VisitorForT {
build: F, String -> Result[T, Error]

81

decompose: F, T -> String

}

case class SerdeFormat[T, V] {

toString: T, V -> String

fromString: V, String -> Result[T, Error]
}

And what do you know, a pair of Poly Isos at the bottom which can be implemented as traits!

Thus we have the Serde API:

1. Each type to be serialized implements Deserialize or Serialize, equivalent to the Serde

class

2. They get a type (well two, one for each direction) implementing the Visitor trait, which is
usually (but not always) done through code generated by a derive macro. This contains the
logic to construct or destruct between the data type and the format of the Serde data model.

3. The type implementing the Deserializer trait handles all details specific to the format, being

”driven by” the Visitor.

This splitting and Rust type erasure is really to achieve a Prism through indirection.

You can see it on the Deserializer trait

pub trait Deserializer<'de>: Sized {
type Error: Error;

fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>

where
V: Visitor<'de>;

fn deserialize_bool<V>(self, visitor: V) -> Result<V::Value,
where
V: Visitor<'de>;

// remainder omitted

}

And the visitor:

pub trait Visitor<'de>: Sized {
type Value;

fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
where
E: Exrror;

fn visit_u64<E>(self, v: ub64) -> Result<Self::Value, E>
where

E: Error;
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where

E: Error;

// remainder omitted

82

Self::Error>

And the trait Deserialize implemented by the macros:

pub trait Deserialize<'de>: Sized {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>;

}
This has been abstract, so let's look at a concrete example.
How does actual Serde deserialize a bit of JSON into struct Concordance from earlier?

1. The user would call a library function to deserialize the data. This would create a Deserializer
based on the JSON format.

2. Based on the fields in the struct, a Visitor would be created (more on that in a moment) which
knows how to create each type in a generic data model that was needed to represent it: Vec
(list), u64 and String.

3. The deserializer would make calls to the Visitor as it parsed items.

4. The Visitor would indicate if the items found were expected, and if not, raise an error to
indicate deserialization has failed.

For our very simple structure above, the expected pattern would be:

. Begin visiting a map (Serde's equivalent to HashMap or JSON's dictionary).
. Visit a string key called “keys”.

. Begin visiting a map value.

. For each item, visit a string key then an integer value.
. Visit the end of the map.

. Store the map into the keys field of the data structure.
. Visit a string key called ”value_table”.

. Begin visiting a list value.

. For each item, visit an integer.

10. Visit the end of the list

11. Store the list into the value_table field.

12. Visit the end of the map.

OO UTb WN =

But what determines which “observation” pattern is expected?

A functional programming language would be able to use currying to create reflection of each type
based on the type itself. Rust does not support that, so every single type would need to have its own
code written based on its fields and their properties.

Serde solves this usability challenge with a derive macro:
use serde: :Deserialize;
#[derive (Deserialize)]
struct IdRecord {
name: String,

customer_id: String,
}

That macro simply generates an impl block causing the struct to implement a trait called
Deserialize.

This is the function that determines how to create the struct itself. Code is generated based on the
struct's fields. When the parsing library is called - in our example, a JSON parsing library - it creates
aDeserializer and calls Type: :deserialize with it as a parameter.

The deserialize code will then create a Visitor which will have its calls “refracted” by the

83

Deserializer. Ifeverything goes well, eventually that Visitoxr will construct a value corresponding
to the type being parsed and return it.

For a complete example, see the Serde documentation.

The result is that types to be deserialized only implement the “top layer” of the API, and file formats
only need to implement the ”bottom layer”. Each piece can then ”just work” with the rest of the
ecosystem, since generic types will bridge them.

In conclusion, Rust's generic-inspired type system can bring it close to these concepts and use their
power, as shown in this API design. But it may also need procedural macros to create bridges for its
generics.

If you are interested in learning more about this topic, please check the following section.

See Also

* lens-rs crate for a pre-built lenses implementation, with a cleaner interface than these examples

* Serde itself, which makes these concepts intuitive for end users (i.e. defining the structs) without
needing to understand the details

* luminance is a crate for drawing computer graphics that uses similar API design, including
procedural macros to create full prisms for buffers of different pixel types that remain generic

* An Article about Lenses in Scala that is very readable even without Scala expertise.

» Paper: Profunctor Optics: Modular Data Accessors

* Musli is a library which attempts to use a similar structure with a different approach, e.g. doing
away with the visitor

Last change: 2026-01-03, commit: 279135

84

https://serde.rs/deserialize-struct.html
https://crates.io/crates/lens-rs
https://serde.rs
https://github.com/phaazon/luminance-rs
https://web.archive.org/web/20221128185849/https://medium.com/zyseme-technology/functional-references-lens-and-other-optics-in-scala-e5f7e2fdafe
https://web.archive.org/web/20220701102832/https://arxiv.org/ftp/arxiv/papers/1703/1703.10857.pdf
https://github.com/udoprog/musli
https://github.com/rust-unofficial/patterns/commit/f279f35

Chapter 6

Additional resources

A collection of complementary helpful content

Talks

* Design Patterns in Rust by Nicholas Cameron at the PDRust (2016)
» Writing Idiomatic Libraries in Rust by Pascal Hertleif at RustFest (2017)
* Rust Programming Techniques by Nicholas Cameron at LinuxConfAu (2018)

Books (Online)

* The Rust API Guidelines
Last change: 2026-01-03, commit: f279{35

6.1 Design principles

A brief overview over common design principles

SOLID

« Single Responsibility Principle (SRP): A class should only have a single responsibility, that is,
only changes to one part of the software's specification should be able to affect the specification
of the class.

* Open/Closed Principle (OCP): ”Software entities ... should be open for extension, but closed for
modification.”

 Liskov Substitution Principle (LSP): "Objects in a program should be replaceable with instances
of their subtypes without altering the correctness of that program.”

* Interface Segregation Principle (ISP): ’Many client-specific interfaces are better than one general-
purpose interface.”

* Dependency Inversion Principle (DIP): One should "depend upon abstractions, [not] concre-
tions.”

85

https://www.youtube.com/watch?v=Pm_oO0N5B9k
https://www.youtube.com/watch?v=0zOg8_B71gE
https://www.youtube.com/watch?v=vqavdUGKeb4
https://rust-lang.github.io/api-guidelines
https://github.com/rust-unofficial/patterns/commit/f279f35
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle

CRP (Composite Reuse Principle) or Composition over inheritance

“a the principle that classes should favor polymorphic behavior and code reuse by their composition
(by containing instances of other classes that implement the desired functionality) over inheritance
from a base or parent class” - Knoernschild, Kirk (2002). Java Design - Objects, UML, and Process

DRY (Don’t Repeat Yourself)

”Every piece of knowledge must have a single, unambiguous, authoritative representation within a
system”

KISS principle

most systems work best if they are kept simple rather than made complicated; therefore, simplicity
should be a key goal in design, and unnecessary complexity should be avoided

Law of Demeter (LoD)

a given object should assume as little as possible about the structure or properties of anything else
(including its subcomponents), in accordance with the principle of information hiding”

Design by contract (DbC)

software designers should define formal, precise and verifiable interface specifications for soft-
ware components, which extend the ordinary definition of abstract data types with preconditions,
postconditions and invariants

Encapsulation

bundling of data with the methods that operate on that data, or the restricting of direct access to
some of an object's components. Encapsulation is used to hide the values or state of a structured
data object inside a class, preventing unauthorized parties' direct access to them.

Command-Query-Separation (CQS)

“Functions should not produce abstract side effects...only commands (procedures) will be permitted
to produce side effects.” - Bertrand Meyer: Object-Oriented Software Construction

Principle of least astonishment (POLA)

a component of a system should behave in a way that most users will expect it to behave. The
behavior should not astonish or surprise users

Linguistic-Modular-Units

“Modules must correspond to syntactic units in the language used.” - Bertrand Meyer: Object-Oriented
Software Construction

Self-Documentation

“The designer of a module should strive to make all information about the module part of the module

itself.” - Bertrand Meyer: Object-Oriented Software Construction

86

https://en.wikipedia.org/wiki/Composition_over_inheritance
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/Law_of_Demeter
https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://en.wikipedia.org/wiki/Principle_of_least_astonishment

Uniform-Access

“All services offered by a module should be available through a uniform notation, which does not
betray whether they are implemented through storage or through computation.” - Bertrand Meyer:
Object-Oriented Software Construction

Single-Choice

“Whenever a software system must support a set of alternatives, one and only one module in the
system should know their exhaustive list.” - Bertrand Meyer: Object-Oriented Software Construction

Persistence-Closure

“Whenever a storage mechanism stores an object, it must store with it the dependents of that object.
Whenever a retrieval mechanism retrieves a previously stored object, it must also retrieve any
dependent of that object that has not yet been retrieved.” - Bertrand Meyer: Object-Oriented Software
Construction

Last change: 2026-01-03, commit: f279f35

87

https://github.com/rust-unofficial/patterns/commit/f279f35

	Introduction
	Translations

	Idioms
	Use borrowed types for arguments
	Concatenating strings with format!
	Constructors
	The Default Trait
	Collections are smart pointers
	Finalisation in destructors
	mem::{take(_), replace(_)} to keep owned values in changed enums
	On-Stack Dynamic Dispatch
	FFI Idioms
	Error Handling in FFI
	Accepting Strings
	Passing Strings

	Iterating over an Option
	Pass variables to closure
	#[non_exhaustive] and private fields for extensibility
	Easy doc initialization
	Temporary mutability
	Return consumed argument on error

	Design Patterns
	Behavioural Patterns
	Command
	Interpreter
	Newtype
	RAII with guards
	Strategy (aka Policy)
	Visitor

	Creational Patterns
	Builder
	Fold

	Structural Patterns
	Struct decomposition for independent borrowing
	Prefer small crates
	Contain unsafety in small modules
	Use custom traits to avoid complex type bounds

	FFI Patterns
	Object-Based APIs
	Type Consolidation into Wrappers

	Anti-patterns
	Clone to satisfy the borrow checker
	#![deny(warnings)]
	Deref polymorphism

	Functional Usage of Rust
	Programming paradigms
	Generics as Type Classes
	Functional Language Optics

	Additional resources
	Design principles

