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Tools for verifying leakage descriptions of hardware aim to ensure that a given hardware design doesn’t leak
secrets via its microarchitecture, when executing programs with appropriate countermeasures. However,
existing techniques for proving correctness of leakage descriptions are based on non-constructive proofs via
non-interference. As a result, they often rely on expensive solvers that offer little help when verification fails
or require handwritten invariants, which are difficult to come up with and even harder to debug.

In this paper, we present a new approach to leakage verification which we call simulation-based leakage
proofs. To show that a leakage description correctly captures a hardware design using a simulation-based proof,
the user constructs a simulator—another hardware design that must faithfully replicate all attacker-observable
behavior from explicitly leaked secrets. Simulation-based proofs therefore offer a constructive alternative to
classic non-interference proofs, exposing a proof object—the simulator, witnessing the correctness claim. As
simulators are just programs, we can write, execute and debug them like any other program, making them
easy to use. We also show that they can be checked locally, which makes proof checking fast.

We implement simulation-based leakage proofs in PANTOMIME, a tool that supports writing processors
and their leakage proofs in Haskell; we report on using PANTOMIME to write and verify AIMCORE, a 5-stage
in-order processor, its leakage description, and simulator, as well as a side-channel hardened version of the
core. We show that PANTOMIME verifies them efficiently (it checks AIMCORE in under 40s).
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1 Introduction

Context. Side-channel attacks via cache and timing can leak secrets used in private computa-
tions [25, 28, 33, 35, 51]. To prevent side-channels in software, programmers use countermeasures
like branch balancing [1, 7, 50] or constant-time (or data-oblivious) programming [2, 10, 13, 49].
Whether these countermeasures are effective crucially depends on the underlying hardware. Unfor-
tunately, modern hardware designs are mind-bendingly complex due to their highly parallel nature,
their many microarchitectural optimizations like fast paths [3], pre-fetching [14], and speculative
execution [24, 31, 37], and their various micro-architectural buffers [45, 46]. This complexity makes
it hard to manually audit even simple designs to check whether software with appropriate defenses
will truly execute securely.

Problem. To increase our confidence that hardware designs are keeping up their end of the promise,
a string of recent work formally verifies existing open-source hardware designs against descriptions
of their intended leakage [4, 5, 19-21, 23, 42-44, 47]. However, existing techniques all rely on classic
non-interference proofs. As a result, they make heavy use of expensive solvers—either to find
inductive invariants [43, 44, 47], or to exhaustively explore the design’s state space [23, 42]. As an
alternative to fully automated proofs via solvers, one can instead ask the user to supply missing
inductive invariants by hand. In fact, several existing methods already require users to supply
certain hard-to-find invariants manually [21, 47]. While this helps with scaling, it places a heavy
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burden on the user: inductive invariants are difficult to come up with by hand and even harder to
debug when they are wrong [30]. This is especially true for hardware designers, unless they also
happen to be experts in formal verification.

Our Solution. In this paper, we propose a new proof technique called simulation-based leak-
age proofs. Based on insights borrowed from cryptography [11, 27], a simulation-based leakage
proof demonstrates the correctness of a leakage description by constructing a simulator—another
hardware circuit which must faithfully replicate all attacker-observable behavior of the original
design, while only being granted access to explicitly leaked secrets. Simulation-based proofs are
a constructive alternative to classic non-interference proofs [22], exposing an executable proof
object—the simulator, witnessing the correctness claim. As simulators are just programs, they can
be written, debugged, and executed like any other hardware design, making them a good candidate
for proofs that are written alongside the design by the hardware developers themselves.

Simulation-Based Leakage Proofs. To show that a hardware circuit c is secure via a simulation-
based leakage proof, we first have to provide a precise description of its intended leakage in the form
of a circuit leak. For example, if c is an adder with a fast path on input o, the leakage description leak
reveals whether or not the input is 0. Next, we model the attacker’s view of the computation as a
circuit obs. For example, obs may reveal the time it takes to complete the computation by indicating
whether an output was produced in a given clock cycle. To prove that the leakage description leak
faithfully captures everything an attacker can learn about potential secret information processed
by c, we have to construct a simulator circuit sim such that the original circuit composed with the
attacker observation function obs, written as c o obs, is indistinguishable from the composition of
the leakage description leak and the simulator sim, written as leak o sim. In our example, simulator
sim reproduces the timing behavior of ¢ by delaying inputs that don’t take the fast path. The
existence of a simulator means that we can reconstruct all attacker-observable behavior from
information that has been explicitly leaked. In turn, this means the attacker learns no more than
what is specified via the explicit leakage description. We prove that simulation-based proofs are
equivalent in expressiveness to traditional non-interference, establishing them as a sound and
complete proof method.

Functional Programs as Hardware. While simulation-based leakage proofs can be applied to
hardware designs written in any language, we present a concrete instance of our proof method for
circuits expressed as functional programs. Building on a long line of work connecting functional
programs and hardware [9, 40], we represent the hardware’s single clock tick transition function
as a functional program that takes a state and input to a state and output.

Equivalence Via State Projection. Next, we construct a proof system for proving equivalence
between circuits via local single-step reasoning. As our proofs generally require us to prove an
equivalence between functions of different state types (i.e., simulator and implementation), this proof
system is centered around a new state projection rule, which allows changing the type of a circuit’s
state as long as this change doesn’t affect its observable behavior, thereby establishing a refinement
relation between the two circuits [26]. State projection proofs offer an executable alternative to
classic invariant-based reasoning, which allows for easy debugging. Except for state projection
functions—which translate between the states of different types and have to be provided by the
user—checking correctness of a simulator using the state projection rule can be fully automated via
an SMT solver.

Automation via SMT. While writing simulators by hand is often instructive—especially when
debugging faulty leakages—we show that one can further reduce the proof burden of simulation-
based proofs. We propose a sound and complete check for the existence of simulators in our proof
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system, which can be discharged via an SMT query. With this check, the user only has to provide
the type of the simulator, but not the simulator itself.

Implementation and Evaluation. We implemented our method in PANTOMIME, a tool for writing
processors and proofs in Haskell (including support for higher-order functions, type classes, abstract
data types, and monads). Hardware written with PANTOMIME can be extracted to hardware descrip-
tion languages like Verilog and VHDL using CAaSH [8]. To prove equivalence between simulator
and implementation, we developed a new symbolic execution engine based on Grisette [29]. The
engine proves function equivalence between expressions in GHC Core using the state projection
rule and interprets CAaSH data types to accurately model the behavior of the extracted hardware.
We used PANTOMIME to write AIMCORE, a 5-stage RISC-V CPU that supports the full base integer
instruction set, and a side-channel hardened version of the processor. We show that PANTOMIME
can efficiently verify their leakage descriptions, and that leakage descriptions for more secure
processors are smaller. Unlike existing work [42, 47], our proofs are constructive exhibiting leakage
descriptions and their simulators as a proof artifact. Our leakages are executable and can be run
alongside the hardware to log or monitor leakage (even in silicone). Proof checking takes seconds,
rather than hours, and proofs are computational, which makes them easier to debug,.

Contributions. In summary, we make the following contributions.

¢ Simulation-Based Proofs: A new, constructive approach for verifying leakage descriptions
of hardware circuits.

e Soundness and Completeness: A proof showing that simulation-based proofs are sound
and complete with respect to classic non-interference.

o State Projection and Automation: A proof rule which allows us to prove the equivalence
of circuits with different types and a condition that proves existence of a simulator without
having to write its implementation.

e PANTOMIME: An implementation of simulation-based leakage proofs in Haskell via a GHC
plugin that symbolically executes GHC Core and interprets hardware data types in CAaSH.

o AIMCORE: A 5-stage RISC-V processor, its leakage description and simulator, resulting in
the first processor with a constructive and executable leakage proof.

2 Overview

We illustrate our technique on a simple adder with a fast path (§ 2.1) and discuss how to state (§ 2.2)
and verify (§ 2.3) its leakage proof.

2.1 ASimple Adder and its Leakage Description

Circuits. We treat hardware designs as functional programs. A circuit is a pair of a step
function of type (S,I)-> (S,0) and an initial state of type S. Here S represents the circuit’s
state (e.g., the current values of all its registers), I and 0 represent its inputs and outputs,
and (S,I) and (S,0) represent pairs combining the circuit’s state with its input of type I
and output of type 0, respectively—see Figure 1. We define an alias for circuits as follows:

type Circuit s i o
= ((s, 1) => (s, 0), s) [(.,>—>—><-,@>J

Adder. Our running example is an adder that com-

putes the sum of two integer inputs a and b. The Fig. 1. Circuits take a pair of type (5,1), and
adder has a fast path: if its first input 2 is @ (in which "eturn a pair of type (S,0); they also have an
case the result is just its second input b), the adder initial state of type S.

produces an output right away in the same clock cycle. Otherwise, the adder needs some additional
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time to compute a + b and outputs the result one cycle later. The timing difference between the
paths may leak information about the inputs to an attacker. The step function add for the adder is
defined as follows:

add :: (Maybe Int, (Maybe Int, Maybe Int)) -> (Maybe Int, Maybe Int)
add (_, (Just @, Just b)) = (Nothing, Just b)

add (_, (Just a, Just b)) (Just (a + b), Nothing)

add (s, _) (Nothing, s)

The adder’s internal state S is an optional integer of type Maybe Int, whose values are either Nothing
or Just v, where v has type Int. When taking the slow path, the adder stores the intermediary
result of the computation in its state. The adder’s input is a pair of optional integers and its output
is a single optional integer. An input with value Nothing means no input is available; for example,
when the client of the adder is waiting for the result of another computation.

Computing the Output. When add’s first input component is Just 0, we take the fast path (line
2): we update the state to Nothing—there’s nothing to save—and output Just b. If it’s non-zero, we
take the slow path (line 3): we set the state to Just (a + b) to keep track of the sum that will be
output in the next clock cycle and output Nothing to signal a pending result. If either of the inputs
is Nothing (line 4), neither of the branches applies: we output the stored value, if any, and reset the
state to Nothing.

From Circuits to Transducers. Circuits describe how hardware evolves from one clock tick to
the next. The operator mealy, shown in Figure 2, transforms a circuit into a transducer—a function
of type [1] -> [0], which maps streams of inputs to streams of outputs. On input, mealy applies
the circuit to update its state and to produce an output, which is then prepended onto the outputs
produced by recursively processing the remaining inputs.

Running the Adder. For circuit (add, Nothing) and in-
puts

is = [(Just 1, Just 1), (Nothing, Nothing),
(Just @, Just 1), (Nothing, Nothing)]

the operator mealy produces the following output:

mealy (add, Nothing) is

> [LDGEIE o USE 2, JUSE 1o LoBiR ] Fig. 2. mealy transforms a circuit into

transducer by saving the output state as

Attacker View. Since we are interested in the timing be- .
input for the next cycle.

havior of the circuit, we model an attacker that can observe
whether add produces an output in a given clock cycle. We
model this with function isJust, shown below, defining our observation function as obs = isJust.

isJust (Just _) = True
isJust _ = False

Composing the circuit add with obs produces the combined circuit add_obs, which records the
attacker-observable view of a computation. This circuit outputs True in a given clock cycle if and
only if an output was produced by add. To build add_obs, we must first define circuit composition.

Sequential Composition. Two circuits c1 :: Circuit s1 i ioandc2 :: Circuit s2 io o may
be composed to form a new circuit c1 oc2 :: Circuit (s1, s2) i o that first executes c1 and then
c2. Figure 3 illustrates circuit composition; in short, circuit composition uses circuit c1’s output as
input to circuit c2, and combines their individual states.
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Fig. 3. For circuits c1, and c2, we write c1 o c2 for their sequential composition; we omit initial states.

Lifting. We cannot directly apply circuit composition to obs since it is not a circuit: it doesn’t have
state. Instead, for any function f :: i -> o, we write lift f to turn f into a circuit by augmenting
it with an empty state: 1ift f :: Circuit () i o.

Combining the Circuits. We now have the machinery to produce add_obs, capturing the attacker-
observable view of a computation:

add_obs :: Circuit (Maybe Int, ()) (Maybe Int, Maybe Int) Bool
add_obs = (add, Nothing) o (lift obs)

The obs observation function describes an attacker that can observe the transducer corresponding
to circuit add_obs. Observation function obs models a timing attacker: for a given initial state and
sequence of inputs, the attacker can see whether an output has been produced in each clock cycle.
For example, running add_obs’s transducer on the inputs is produces the following output list:

mealy add_obs is
> [False, True, True, False]

Modeling Leakage. Next, we want to capture which information about the circuit’s inputs is
leaked to the attacker via an explicit leakage description. The adder leaks information about its
operands via timing: if a is 0, the fast-path computation produces an output in the same clock
cycle; otherwise the output is delayed by one cycle. By observing the presence (or absence) of an
output, the attacker can therefore determine whether a is 0. We capture this leakage via function
leak, which takes the same inputs as add—a pair of optional integers—and returns a pair of type
(Maybe Bool, Bool) that describes the component-wise input leakage. The first component of the
leakage says whether the first input was a proper integer a, in which case we also learn whether
a == 0. The second component only says whether the second input was a proper integer, but we
learn nothing about its value. We give the definition of leak below:

leak :: (Maybe Int, Maybe Int) -> (Maybe Bool,Bool)
leak (Just a, i2) = (Just (a == @), isJust 1i2)
leak (Nothing, i2) = (Nothing, isJust i2)

Applying 1ift leak on inputs is using mealy produces the following outputs:

mealy (lift leak) is
>[(Just False, True),(Nothing, False),(Just True, True),(Nothing, False)]

While the leakage and observation are pure, stateless functions in this example, they can be arbitrary
stateful computations, in general.

2.2 Proving Correctness via a Simulator Circuit

Our leakage description must contain enough information to reconstruct the full observable
behavior of the adder for an attacker observing timing. To prove this, we build a simulator—a
circuit that computes the observable behavior of the adder (as defined by obs) solely from the
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leakage description leak. The existence of a simulator guarantees that a timing attacker can learn
no information beyond what is leaked explicitly via leak when observing the circuit add. Indeed,
if leak were missing any relevant information, the simulator could not faithfully reproduce add’s
observable behavior.

Simulator. In our proof system, the simulator is a proof artifact produced by the user. We define
a step function sim for the simulator, which will closely follow the definition of add. However,
sim’s internal state is of type Bool instead of Maybe Int. This is sufficient; the simulator only needs
to keep track of whether there is a pending computation from a previous cycle—it doesn’t need
to know the value. The simulator accepts an input of type (Maybe Bool, Bool), matching leak’s
output, and produces a Bool, matching add_obs’s output.

sim :: (Bool, (Maybe Bool, Bool)) -> (Bool, Bool)
sim (_, (Just True, True)) = (False, True)

sim (_, (Just False, True)) = (True, False)

sim (s, _) = (False, s)

If the leakage is (Just True, True) (line 2), sim simulates the fast path: its state is updated to
False—there is no new pending computation—and it outputs True to indicate that the current cycle
yielded an output. If the leakage is (Just False, True) (line 3), sim simulates the slow path: its
state is set to True to reflect that there is a pending computation and it outputs False to indicate
that the current cycle yielded no new output. Otherwise (line 4), it outputs the saved state—which
is True if there’s a pending computation and False otherwise—and sets the new state to False.

Combining the Circuits. Composing leak with sim produces the combined circuit that forwards
the result of leak to the simulator:

leak_sim :: Circuit ((), Bool) (Maybe Int, Maybe Int) Bool
leak_sim = (lift leak) o (sim, False)

Correctness of the Leakage Description. Circuits add_obs and leak_sim both take a pair of
optional integers as an input and produce a Boolean as an output. The transducers mealy add_obs
and mealy leak_sim thus have the same type: [ (Maybe Int, Maybe Int)] -> [Bool]. Indeed, if the
simulator is constructed correctly, the two transducers should coincide as functions. To prove
that leak correctly captures circuit add’s leakage with respect to obs, we need to prove that the
transducers of circuits add_obs and circuit leak_sim behave the same.

Different Types. However, when we view add_obs and leak_sim at the level of circuits, they are
not equal: indeed, we cannot even compare them as they have different types. add_obs’s state has
type (Maybe Int, ()), whereas leak_sim’s state has type ((), Bool). Fortunately, equivalence at
the circuit level is not our ultimate goal; we only need the underlying transducers to be equal.

The State Projection Rule. Based on this observation, we introduce the state projection rule to
reason about transducer equivalence of circuits with different state types: if information can be
removed from the circuit’s state—thereby changing its type—without affecting its input/output
behavior, then the tranducer’s behavior is also unaffected. Indeed, if we look back at the definition
of add, we can see that the integer value v stored in the state of form Just v is irrelevant in circuit
add_obs. Lines (2) — (3) do not depend on the state at all. Line (4) does output v, but we discard the
result in add_obs due to the output projection with obs.
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Fig. 4. Proof obligation for the correctness of a leakage 1eak with respect to an implementation impl and its
observation obs, due to the state projection rule. Wires are annotated above with their type. We use = for
input/output equality.

2.3 Proof Checking via State Projection

Projection Function. We define the projection function proj using function isJust from before.
This function discards add_obs’s unit state and applies isJust to discard the actual computation
result, only remembering whether there is a value or not; finally it adds leak_sim’s unit state.

proj :: (Maybe Int, ()) -> ((), Bool)
proj (s, _) = ((), isJust s)

Applying the State Projection Rule. The state projection rule asks us to show that applying
the projection to the output state of add_obs yields the same result as applying it to the input state
of leak_sim, thereby showing that leak_sim can compute the same result as add_obs without the
information we removed. We illustrate this proof obligation in Figure 4. As the resulting functions
have the same type, we can prove their equivalence using standard methods, e.g., an SMT solver.

Summary. To sum up, we’ve shown that the simulator reconstructs the observable behavior of add,
confirming that function leak correctly captures add’s leakage. To apply the state projection rule,
a PANTOMIME user only has to supply a state projection function, which removes the irrelevant
part of the circuit state. In our implementation, we prove function equivalence using PANTOMIME’s
symbolic execution engine, described in § 5.

Proving Existence of a Simulator. While simulators allow running and debugging leakages
and serve as a proof artifact for the security of the design, it may sometimes be sufficient to show
existence of a relevant simulator. We give a set of conditions (Lemma 3.11) that prove existence of
a simulator if and only its correctness can be shown using the state projection rule. With these
conditions, whose check can be automated via an SMT solver, we can provide significant automation
for simulation-based proofs: the user only has to write the state projection, but not the actual
implementation of the simulator.

3 Simulation-Based Leakage Proofs
3.1 Language

We now formalize our proof method in a core language (Figure 5) based on first-order simply-typed
lambda calculus (STLC), extended with records (labeled product types) and variants (sum types).
Since STLC does not allow recursion, it is a good match for describing the single-step behavior of
hardware, which must be loop-free. Our type system is a version of the standard STLC (as described,
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e.g., in [36]) restricted to first-order and slightly adapted to our purposes. Our language satisfies the
preservation property: the type of an expression is invariant across evaluation. The language features
the usual STLC staples: constants, variables, lambda abstractions, and applications. Constants are
composed of bitstrings and of binary, unary, and equality operators—for example, the operator +;
adds two bitstrings of type Word8, and the operator =3 compares two Word8 bitstrings for equality,
returning a Boolean. Labels in variant and record types are denoted by 1 and are assumed to be
unique within the same record or variant type. We omit type annotations on function binders as
they are not important in our setting. The substitution operator [x = e] performs a capture-avoiding

substitution of free occurrences of the variable x with term e. We write k; to represent a vector of

—_—

expressions k1, Ko, . . ., ky. Records are constructed with {1; = e; }, wherein each term e; is assigned
the corresponding label 1;. For a record e, e.1 accesses its field with label 1. Term 1 e constructs an
inhabitant of a variant type with label 1.

Syntactic Sugar. We elaborate let p = a in e according to the choice of patternp: let x = aine
is elaborated to e[x = a], and let {1y =ps,...,1, =pn} = ain e elaborates to let p; = a.l;

in ... inlet py = a.l, in e. Weelaborate Ap. eto A x. let p = x in e.If the size of a bitstring is
clear from the context, we omit leading zeros. Finally, e; bop e, should be understood as bop e; e;.

Base Types w == Word8,Word16,... base types
Core Types s u= W base types Terms e == c conftants
| Bool Booleans I x variables
— | true | false Booleans
| {11_51} records | if e then e else e, branching
| (1 :si) variants | {liTei)} records
Types T u= s core types | el fields
| s—or functions | 1le variants
Bitstrings b == 0...0,0...1,... bitstrings | case e of m matching
Operators bop = +g,—g,+16,--- binary ops | Ax.e abstraction
uop = ~g, ~16,. .. unary ops | ere application
eq u=  =g,=s,... equality Patterns p = X variables
Constants c == b | bop bitstrings | {li =pi} records
| uop | eq operators

Fig. 5. Syntax of types and terms in our core language.

Evaluation. Selected evaluation rules for the core language are given in Appendix A. Evaluation
is based on a reduction relation e ~» e. The rules are standard; for example, the BETA rule reduces
an application: (Ax. e1) e, ~» e[x = e;]. We write [e] to represent the unique term obtained by
exhaustive application of the evaluation rules to e.

Unit, Product, and Option Types. We encode the unit type () as the empty record type with no
fields. For types t1 and t,, we encode the product type (t1, t;) asthe record type {fst : ty, snd : t,}.
For type t, we encode the option type Maybe t as the variant type (Just : t, Nothing : ()).

Example 3.1: Consider the term

ex : (Word32,Maybe Word32) — (Word32,Word32)
ex =A(s,i). (s+ 1,case i of Just a — s + a, Nothing — s).

Then we have [ex @ Nothing]] = (1,0) and [ex @ (Just 1)] = (1,1).
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3.2 Circuits, Transducers, Leakage Description, and State Projection

Circuits. Circuits describe the behavior of a hardware design in a single clock tick. A circuit is a
pair of an internal state and a computation that updates the internal state and produces an output
based on the current state and an input.

Definition 3.1 (Circuit). Let S, I, O be core types in our language. A circuit of input type I and
output type O is a term of type ((S,I) — (S,0),S), where S is the internal state type.

If the state s is clear from the context, we sometimes drop the state and denote the circuit (c, s) by c.
Example 3.2: The pair (ex, @) is a circuit with state Word32, input Maybe Word32, and output Word32
that increments its state at each clock tick. It outputs the sum of its input and current state when
the input is non-empty, and outputs its state otherwise.

Transducers. The Mealy function M transforms a circuit into a transducer that applies one input
per clock tick from a list of inputs and produces a corresponding list of outputs. Transducers
therefore represent the actual input/output behavior of sequential hardware.

Definition 3.2 (Mealy). Let (¢, s) : ((S,I) — (S,0),S) be a circuit, and let is : [I] be a list of inputs.
We build a list of outputs M, 5)(is) : [O] recursively as follows:

D ifis =[],
M. (is) = {o i M) (is’) ifis =i:is’and (s',0) = [c (s,1)]

Here [] is the empty list and : denotes the cons operator on lists.

Thus, the transducer applies the circuit computation ¢ to the first input i of the input list is to
compute a new state s” and an output o. It prepends o to the list of outputs and then recursively
computes the remaining outputs using the new state s’ and the remaining inputs is’.

Example 3.3: Running the circuit (ex, 0) on the list of inputs is = [Just 1,Nothing, Just 2, Just 3]
yields the outputs M ey 0) (is) = [1, 1,4, 6].

Definition 3.3 (Mealy Equivalence of Circuits). Two circuits (cy, s1) : ((S1,I) — (S1,0),5) and
(o, 82) : ((Sg,I) — (S,,0), 52) are Mealy-equivalent, denoted (cy, s1) =p (c2, 52), if for any input
sequence is : [I], we have M., s,)(is) = Mc, s,) (is).

Sequential Composition. To define leakage descriptions, we first define sequential circuit com-
position.

Definition 3.4 (Sequential Composition). The sequential composition of two circuits (¢, s1) :
((S1,I1) = (51,01),81) and (cz, 52) : ((S2, 01) = (S2, 02), S) is the circuit (cq © ¢z, (51, 52)), where
c1 © ¢y is defined by

€i1ocC: ((51,52),11) - ((51,52),02)
c1ocy=A((s1,52),i1). let (s7,01) =¢1 57 i1 in let (s),02) = ¢z 52 07 in ((s],s5), 02).

Leakage. We now have the machinery needed to define leakage.

Definition 3.5 (Leakage). Let (c,s¢) : ((S,1) — (S,0),S) be a circuit, and let (obs, so) : ((S,, 0) —
(S0, 00), So) be an observation. A circuit (leak,s;) : ((S,.I) — (S1,01),S)) is a leakage for (c,sc)
with respect to (obs, s,) if there exists a simulator (sim, ss) : ((Ss, O1) = (Ss, 0,), Ss) such that

(¢, s¢) o (0bs, sp) =p (leak,sp) o (sim, s).

Next we adapt contract equivalence [47]—a prior non-interference based notion of leakage—to our
setting and show that it is equivalent to our definition.
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Definition 3.6 (Contracts). Let (c,s) : ((S,I) — (5,0),S) and (0bs, s5) : ((So, 0) = (S5, 0o), So)
be circuits. A circuit (leak, s;) : ((S;,I) — (S, 01),S)) is a contract for (c, s.) with respect to (obs, s,)
if for all input sequences is, is” : [I], we have that

M(leak, s1) (iS) = M(leak, s1) (iS,) implies M(c, sc) o (obs, so) (is) = M(c, sc) o (obs,so) (l'S/).

Theorem 3.7 (Leakage and Contract Equivalence). Let (c,s¢) : ((S,I) — (S,0),S) and (obs,s,) :
((S0,0) = (So,0),S,) be circuits, and assume that the type O, is inhabited. A circuit (leak, s;) :
((S1,1) = (S1,01),S1) is a leakage for (c, s;) with respect to (obs,s,) if and only if it is a contract.
We give the proof of Theorem 3.7 in appendix B. The left-to-right direction can be understood as
soundness and the right-to-left direction as completeness of our approach.

State Projections. In practice, establishing the Mealy equivalence of circuits requires an invariant
that suitably relates the internal states of the two circuits. Our leakage descriptions as well as the
associated simulators proceed in lockstep with the original circuit and share the same stream of
inputs. In this setting, a particularly useful invariant for showing Mealy equivalence arises from
the state projection function, an example of which we have already seen in § 2. Showing that the
state projection function indeed gives rise to an invariant requires proving the equivalence of two
functions. In particular, we are interested in observable function equivalence rather than syntactic
equivalence. For example, the functions Ai. i + @ and A i. @ + i should be equivalent.
Definition 3.8 (Observational Equivalence). Two closed terms e, e’ of the same type 7 are observa-
tionally equivalent, written e ~ €’, if one of the following holds:

(1) 7 =sisa core type and [e] = [¢’].

(2) 7 =s; — 1 is a function type and for any two closed terms e;, e] : s; such that e; ~ e,

we havee e ~ e’ e].

Example 3.4: The three functions Ai.1+0,11.0+ i, 11i. i of type Word — Word are observation-
ally equivalent since they return the same result on any input. Similarly, the two functions A b. b
and Ab. if b then true else false of type Bool — Bool are observationally equivalent as each
function returns the same result on both true and false.
Definition 3.9 (State Projection Rule). Given two circuits (c1,51) : ((Si,I) — (S,0),5;) and
(c2,82) : ((SZ,I) — (S, O),Sz), and a function p : S; — S, define

Clp : (SI:I) - (SZ’O) PCZ : (519‘[) - (SZaO)

c1p =A(sq,1). let (s7,0) =¢; (s1,1) in (p s7,0) pea =A(sq,1). ¢2 (p s1,1).

We say that (cy, s1) state-reduces to (cz, s2), written (cq, s1) < (ca, $2), if p 51 =~ s and ¢1p =~ pc,. In
this case, we call p the state projection function witnessing this reduction.

Example 3.5: In the adder example from § 2, we showed that add_obs < leak_sim, ie., that add_obs
state-reduces to leak_sim using the state projection function proj, by the observational equivalence
between the two functions below:

clp (s, i) = let (s', o) = add_obs s i in (proj s', o)

pc2 (s, i) = leak_sim (proj s) i

Our goal was to show that the transducers of add_obs and leak_sim are equal, which would confirm
that 1ift leak is a suitable leakage for add with respect to obs. This is guaranteed by the following:

Theorem 3.10 (State Reduction implies Mealy Equivalence). Given two circuits (c1,s1) : ((S1,1) —
(8,0),81) and (cz,52) : ((S2.I) = (S,0),S2), if (c1,51) = (ca,52) then (c1,51) =pm (c2, 52).
We prove Theorem 3.10 in appendix B.
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Example 3.6: Revisiting the adder (§ 2), circuit 1ift leak is a leakage description for add under
1ift obs since there is a simulator sim such that add o (1ift obs) < (lift leak) o sim.

By an argument similar to the proof of Theorem 3.7, we can show that for a fixed state projection
function, which in particular fixes the simulator states, the existence of a simulator can be deter-
mined via a simple non-interference check, using the three conditions below. Intuitively, condition
(1) requires that the projection of the initial state matches the initial state of the leakage; condition
(2) requires that the leakage updates its state in a way that’s consistent with the implementation;
condition (3) is a non-interference condition that requires that all pairs of inputs and states that
produce the same leakage must produce the same observation. We give the proof in appendix B.
Lemma 3.11 (Simulator Existence). Fix two circuits (¢,s¢) : ((S,I) — (S,0),S) and (obs,s,) :
((SO, 0) — (S0, 0,), So) such that the type O, is inhabited, the intended leakage (leak, s;) : ((Sl, I —
(S1,01),S1), and the intended state projection function p : (S,S,) — (S1,Ss). A simulator (sim, s;) :
((S5,O1) = (S5, 00), Ss) such that

(c,s¢) o (0bs,s,) — (leak, s;) o (sim, ss)
via the state projection function p exists if and only if the following conditions are satisfied:

(1) Initial State Correspondence: We have [fst (p (s¢,s0))] = [si]-
(2) Tick State Correspondence: For all ((s1,s2),1) : ((S,S,),I), we have

[let ((t1,t2),_) =coobs ((s1,82),0) in let (vy,_) =p (t1,tp) invq] =
[let (ui,_) =p (s1,s2) in let (vq,_) = leak (uq,i) in v4].
(3) Projection Coherence: For all ((s1,s),1), ((s1,55),1") : ((S,50), 1), if
[let (uj,uz) = p (s1,82) in let (L, 01) = leak (uy,i) in (up01)] =
[let (uj,uy) =p (s1,s5) in let (L, 07) = leak (uj,i") in (u}, 0])]
then we have

[let ((t1,t2),00) =c o obs ((s1,52),i) in let (,vp) =p (t1,t2) in (v2,00)] =
[let ((t],t5),00) =coobs ((s1,s5),i) in let (L, vy) =p (1], t5) in (v5, 00)]-

Constructing a Simulator through Inversion. If all conditions hold, we can automatically
construct a simulator. For this, we need an inversion function which maps simulator state and
leakage output (Ss, O;) to a preimage ((S, S,), I). Applying c o obs to the preimage and projecting
the resulting state back to Ss using p, then yields the simulator. In theory, one can always construct
a simulator using this method by defining an inversion function which iterates all possible values of
((S,S5),I) until it finds a preimage that maps to the given (Ss, O;). Indeed, this is intuition behind
our proof. In practice, the resulting simulator is of little use due to the potentially huge search
space. The user can however manually construct a more efficient inversion function by exploiting
the structure of the circuits at hand. This leads to a general paradigm of constructing simulators
through inversion.

Example 3.7: Revisiting the adder (§ 2), we can construct an inversion function as follows:

inv_ss ss = if ss then Just @ else Nothing

inv (ss, (Just True, True)) = (inv_ss ss, (Just @, Just 0))
inv (ss, (Just False, True)) = (inv_ss ss, (Just 7, Just 0))
inv (ss, (Nothing, True)) = (inv_ss ss, (Nothing, Just 0))
inv (ss, (_, False)) = (inv_ss ss, (Just 7, Nothing))

sim = mapFst (snd . proj) . add_obs . inv
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Function inv reconstructs a preimage state and input that would produce the given simulator state
ss and leakage output ol. The specific non-zero integer values (like 7) are arbitrary since the leakage
abstracts away the concrete values, only preserving the relevant information for simulation.

4 Case Study: Pipelined Processor

This section shows how to construct a simulation based-leakage proof for a minimalistic three
stage pipelined processor with a single register. While we use a Haskell-like syntax for readability,
the processor is fully expressible in our core language.

4.1 The Processor

Instruction Set. We encode instructions as the variant type below:
data Instr = Add Word8 | Clr | Out | Jmp Word8 | Bz Word8

Add adds a Word8 value to the register, C1r resets it @, Out outputs its current value, Jmp jumps to a
Word8 address, and Bz branches if the register is 0, adding its Words offset to the current program
counter.

Toplevel Circuit and State. We encode the processor as a circuit proc that takes a raw Word16
instruction, and returns a pair: an optional Maybe Word32 output and the new Word8 program counter.

proc :: (State, Wordl6) -> (State, (Maybe Word32, Word8))
We encode the processor’s state in the following record type:

data State = State
{ reg :: Word32 , fePC :: Word8, exPC :: Word8, exInstr :: Instr
, WbRes :: Maybe Word32 , wbOut :: Maybe Word32 }

Here, fePC and exPC are the program counters in the fetch and execute stage; reg holds the register
value; exInstr holds the instruction in the execute stage; we will explain the others as we go.

Pipeline. Each instruction passes through three pipeline stages. Fetch decodes a raw Word16
instruction into an Instr (exInstr). Execute runs the instruction fetched last cycle, optionally
producing either a register update (wbRes), an output value (wbOut), or the next program counter.
Writeback commits the operations of the instruction fetched two cycles ago by updating the register
state or outputting its value, if applicable. For brevity, we disuss only the execute stage in detail;
the other stages and their composition are shown in Appendix C.

Execute Stage. The execute stage (Listing 1) executes the instruction fetched and decoded in the
last cycle; this instruction is stored in register exInstr. For the Add and C1r instructions, we store
the result of the computation in wbRes. This value is then commited in the writeback stage. For
Out, we store the register value in wbOut, to be output by the writeback stage. For Bz and Jnp, we
compute the appropriate jump target and output it to a wire connected to the fetch stage.

4.2 Observation, Leakage, and Simulator

Observation. The observation function projects out the program counter:

obs :: (Maybe Word32, Word8) -> Word8

obs (_, pc) = pc

This encodes an attacker that can observe the control flow of the program (and therefore, its timing).

Leakage. Since the attacker only sees the program counter, we only need to simulate the control
flow. For Jmp we need to know the target address, and for Bz the offset. For all other instructions, the
program counter increases by 1. This suggests the following leakage (i.e., input for the simulator):
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execute :: (State, ()) -> (State, Maybe Word38)
execute (state@State { exInstr, reg, exPC 3}, _) = do
let wbRes = case exInstr of

Add imm -> Just (reg + word8ToWord32 imm)
Clr =-> Just 0

-> Nothing
let wbOut = case exInstr of
OQut -> Just reg
-> Nothing
let jump = case exInstr of
Bz off | reg == @ -> Just (exPC + off)
Jmp addr -> Just addr
-> Nothing

(state { wbRes, wbOut 3}, jump)
Listing 1. Execute Stage.

leak :: (LState, Wordl16) -> (LState, LInstr)

leak (LState { reg, exInstr, wbRes }, rawInstr) = do
let reg' = case wbRes of Just value -> value; Nothing -> reg
let wbRes' = case exInstr of

Add imm -> Just (reg' + word8ToWord32 imm)
Clr -> Just 0

-> Nothing
let (exInstr', leakInstr) = case exInstr of
Jmp addr -> (Add @, LJmp addr)
Bz off | reg' == @ -> (Add @, LBr off)
-- Bz off | reg == 0 -> (Add 0, LBr off)

-- * Wrong leakage produces counterexample
_ —-> (decode rawlInstr, LOther)
(LState { reg = reg', exInstr = exInstr', wbRes = wbRes' }, leakInstr)

Listing 2. Leakage.

data LInstr = LJmp Word8 | LBr Word8 | LOther

The leakage circuit (Listing 2) must produce a leakage of type LInstr from raw Word16 instructions.
To determine when to branch, leak keeps track of the register value. Like the processor, it decodes
and stores instructions for subsequent execution—this suggests the following state for leak:

data LState = LState{reg :: Word32, exInstr :: Instr, wbRes :: Maybe Int}

To construct the leakage instructions, the leakage function first updates the current register file
with the writeback result, if present. For the register operations Add and Cl1r, it computes the register
update accordingly. Given a control flow instruction, it leaks the instruction, if the target is taken,
placing a no-op instruction in the pipeline to stall (like proc). For the remaining instructions, it
simply decodes the next instruction and leaks that this instruction does not branch via LOther. We
do not need any code handling Out, as the attacker cannot observe outputs.
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Simulator. The simulator circuit receives the LInstr as produced by the leakage function and uses
it to faithfully reproduce the program counter. Its state is the part of the original state that was not
used in the leakage, minus wbOut, as it does not influence the program counter.

data SState = SState { fePC :: Word8, exPC :: Word8 }

For brevity, we include the code of the simulator only in Appendix C. The circuit itself is quite
straightforward: it executes the leakage instructions provided by leak, only computing the values
of the program counter.

State Projection. To show the leakage correctly captures the processor, we must prove that
the circuit proc_obs = proc o (1ift obs) reduces to the circuit leak_sim = leak o sim, via a state-
projection. The state projection is a straightforward function that divides the processor state into
leakage and simulator states.

proj :: State -> (LState, SState)
proj State { reg, wbRes, exInstr, fePC, exPC } = do
(LState { reg, wbRes, exInstr }, SState { fePC, exPC })

Counterexamples. Errors in the leakage or simulator can be quite subtle. Consider the comment
in leak, where the code branches based on the current register instead of the new one. PANTOMIME
rejects this leakage and returns the following counterexample to state projection equivalence.

counterexample = State
{ exInstr = Bz 8, exPC = @, reg = 10, wbRes = Just @, fePC =1, ... }
Since both leakages and simulators are executable, PANTOMIME lets us run the counterexample.

proc_obs +— LState { exInstr = Add @, fePC = 8, ... }
leak_sim — LState { exInstr = Out, fePC = 2, ... }

The execution shows that the original processor takes the branch and places a no-op in the pipeline,
whereas the leakage does not take the branch and executes the next instruction.

5 Implementation

PaNTOMIME is a full-path symbolic execution engine for GHC Core—the internal language of GHC,
which is based on System Fc [41]. We implement PANTOMIME as a GHC Core plugin, which verifies
that a circuit’s leakage specification is correct, given an annotation, as shown below.

{-# ANN check (Theory axioms) #-}

check :: s -> i -> Bool
check = compose Pantomime
{observation = obs, leakage = leak, simulator = sim, projection = proj}

To check the specification, PANTOMIME generates constraints, as described in Definition 3.9 and
queries an SMT solver for their validity. Alternatively, the user can also omit the simulator, in
which case PANTOMIME checks the conditions from Lemma 3.11. In case of a violation, PANTOMIME
returns a counterexample, as described in § 4. As PANTOMIME symbolically executes GHC Core, it
allows hardware designs, leakages and simulators to use the full range of functional programming
techniques supported by Haskell. This includes monads, typeclasses, and GADTs—provided they
can be synthesized to hardware. We implemented PANTOMIME in ~7600 lines of Haskell.

PCoRE. PANTOMIME represents Haskell programs in a core calculus called PCore. PCoRE closely
matches GHC Core, but allows for symbolic variables which make SMT-solver types available
within the calculus. Concretely, PCORE uses symbolic variables in place of the concrete literals. For
example, the expression x & (y + 1) :: SymWordN 64 represents a 64-bit bitvector, where x and y are
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symbolic variables representing literals of type SymWordN 64. Symbolic values can contain case-splits
over symbolic Booleans, which we capture via the Union data type, following Grisette [29].

Constraint Generation. To create constraints for a function, PANTOMIME generates new symbolic
expressions for its arguments and then evaluates the function on them, which yields a symbolic
constraint of Union datatype. Evaluation follows the rules of GHC core. We illustrate this process
using function add, from § 2. PANTOMIME first generates fresh symbolic arguments for the function,
starting with the first argument of type Maybe Int.

let state = If s.isN Nothing (Just s.val) :: Maybe Int

This symbolic expression captures an arbitrary value of type Maybe Int. The symbolic Boolean
variable s.isN decides whether the data constructor is Nothing or Just. The symbolic bitvector
variable s.val captures an arbitrary bitvector value whose size matches the platform size of Int.
PAaNTOMIME builds a similar expression for the second input of type (Maybe Int, Maybe Int) :

let input = ( If 1.0.isN Nothing (Just i.0.val)

2 , If i.1.isN Nothing (Just i.1.val))

PANTOMIME uses these expressions to evaluate add. For simplicity, we focus on the first output of
add, which is the state for its next cycle. Symbolically evaluating add on the freshly constructed
input yields a case-statement with three patterns. The first pattern requires that both parts of the
input are Just and the Int value is equal to @ — this represents the fast path.

let patl = If (!(i.@.isN |] 1.1.isN) && i.@0.val == @) Nothing pat2

The second pattern only requires both inputs to be Just — this captures the slow-pass.

let pat2 = If !1(i.@.isN || i.1.isN) (Just (i.@.val + i.1.val)) pat3

The last pattern represents the default case, without further conditions let pat3 = Nothing.

Merging Constraints. To avoid a blowup in constraint size, PANTOMIME merges equivalent data
constructors, and applies simplifications. For this, it first sorts patterns according into a fixed
ordering. Let us for example order Nothing before Just. Then, the second pattern becomes:

let pat2' = If (i.0.isN || i.1.isN) Nothing (Just (i.@.val + i.1.val))

We can now merge pat2' into pat1:

1 let pat1' =

2 If ((i.@.isN || i.1.isN) || (!(i.@.isN || i.71.isN) && i.@.val == 0))

3 Nothing (Just (i.@.val + i.1.val))

Using the transformation x || (!x & y) = x || y. we can simplify the constraint into its final
form.

> fst $ add state input
If (i.0.isN |] i.1.isN || i.@.val = @) Nothing (Just (i.@.val + i.1.val))

™o

Solver Types and User Axioms. PANTOMIME uses CAaSH which offers types such as unsigned
bitvector type Unsigned n, and functions such as addition addU and bitwise-or orU, to express hard-
ware. When symbolically interpreting CAaSH code, we want the SMT solver to interpret Unsigned
as bitvectors; similarly addU and orU should be interpreted as their respective bitvector operation.
In PANTOMIME, the user can directly encode this mapping via an annotation. For example, the
following annotation maps Unsigned n and its operations to their respective bitvector equivalents.

1 axioms = PluginAxioms { typeAxioms = [Unsigned +— BitVector]
2 , termAxioms = [addU +~ addBV, orU +— orBV] }
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6 Evaluation
We evaluate PANTOMIME by asking a series of research questions.

RQ1: Can we use PANTOMIME to write/verify a RISC-V processor? We answer RQ1 in the
affirmative by reporting on implementing and verifying AIMCoRE using PANTOMIME. AIMCORE
is a 5-stage in-order pipelined processor that implements the RISC-V V2.1 RV32I Base Integer
Instruction Set [48]. It has been thoroughly tested against the official RISC-V test suites [38] and
is capable of running actual software, including cryptographic benchmarks testing libsodium’s
ChaCha20, BLAKE2b, and SHA-256 [17] and wolfSSL’s ECDSA [34]. The core also supports essential
syscalls for program termination, printing, and reading entropy from system randomness. AIMCORE
consists of around 800 lines of Haskell and extracts to around 2400 lines of Verilog. Its design builds
on the simpler processor in § 4 and consists of five pipeline stages. The core receives values from
memory and the register file as inputs and produces memory and register file accesses as outputs.
Programs are stored alongside values in memory. The core forwards values from the wb and mem
stages to the exe stage (see proc below); pipeline stalls arise only from memory operations and
branches.

Processor in Haskell. Since the core is written in Haskell, it can make use of expressive monad
abstractions and elide explicit passing of inputs, outputs, and state; the complete processor pipeline
is specified simply as a sequence of its individual stages:!

proc :: State -> Input -> (State, Output)
proc = execRWS (wb >> mem >> exe >> de >> fetch)

Since proc consists only of combinatorial logic, it can be directly compiled into an HDL using a
tool like CAaSH and then synthesized.

Observation. We model an attacker that can observe the program counter, revealing control flow
and timing. In a given cycle, the processor may access a memory value instead of fetching an
instruction; our attacker observation model reflects this by exposing the program counter only
during instruction fetches by wrapping the output type in the Maybe functor:

obs :: Output -> Maybe Address

Leakage. As in § 4, we write a leakage circuit that takes as input the processor’s input (a memory
read and two register file reads) and constructs the leakage:

leak :: LState -> Input -> (LState, Leak)

Since the register file and memory are external to the core, the core’s pipeline structure affects
when inputs are requested: for instance, de must request register operands one cycle before exe
needs them. Similarly, the result of a load request issued by mem appears in wb in the following
cycle. Since jump and branch addresses (and, by extension, the program counter) can result from
arbitrary computation, leak must faithfully replicate the processor’s architectural state, which
requires matching the timing of requests to the register file and memory. Rather than distilling the
core’s timing behavior into separate logic, we capture it implicitly by structurally matching leak to
proc—like in our case-study. leak therefore has a 5-stage pipeline structure. Our leakage shares
this pipeline structure with other formal leakage descriptions, e.g., [12, 16].

ISA Interpreter. To compute addresses, leak calls a black-box ISA interpreter that implements the
ISA spec. So, 1eak must only explicitly replicate the timing behavior of proc—all actual computation
is delegated to the black-box interpreter, which is reusable across different leakage models. As a

lexecRWS runs the RWS monad, which automatically threads the processor’s input, state, and output through the pipeline.



PANTOMIME : Constructive Leakage Proofs via Simulation 17

result, leak is easy to write for hardware designers: it looks just like proc, but with all computation
abstracted away—retaining only the core’s input timing, stalling, and value-forwarding.

Table 1. AIMCore compared with the processors verified in LeaVe [47].

AIMCore (Our work) Processors verified by LeaVe [47]

Standard Secure Sodor DarkRISCV-3 Ibex-small
Architecture
ISA RV321 RV32I RV32E RV32IMC
Pipeline stages 5 2 3 2
Code size (loc) 800 Haskell / 2400 Verilog 400 Chisel / 2000 Verilog 620 Verilog 2500 Verilog
Forwarding v X X v
Security Properties & Proof
Proof effort 180 loc simulator; 30 loc projection 1 loc simulator; 20 loc projection 16 manual invariants 13 manual invariants 59 manual invariants
Verification Time 38.8 sec (w/ sl@ulator) 35 sec (w/ S‘f“ulatm) 97.8 min 11.1 min 118.7 min

40.1 sec (w/o simulator) 5.5 sec (w/o simulator)

Unconditional proof v v X X X

Leakage Datatype. The leakage data-type Leak that leak computes is a tuple defined as:

data LInstr = LJmp | LLoad RegId | LStore | LOther
type Leak = (LInstr, (Maybe Regld, Maybe RegId), Maybe Address)

It consists of three components: (1) the leakage instruction L Instr, (2) (Maybe RegId, Maybe RegId),
a pair of optional registers that the core instruction corresponding to the given leakage instruction
may depend on, and (3) Maybe Address, the address of a jump or branch. L Jmp has no Address payload
because leak does not yet know the jump target when it needs to issue the leakage instruction.
Instead, we leak jump addresses later—when they become available—using the third component of
Leak. This approach also eliminates the need for a separate instruction for conditional branches: 1eak
outputs jump target Nothing for conditional branches that end up not being taken. The simulator
uses an instruction’s register dependencies to stall when the core stalls. Instructions LLoad and
Lstore are needed to determine stalls. LLoad includes its destination register to determine load
dependencies, and LStore has no payload. All other instructions act as a no-op, represented with
LOther. As such, our leakage description captures the constant-time discipline.

Simulator. The simulator sim takes as input the leakage Leak and outputs the program counter:
sim :: SState -> Leak -> (SState, Maybe Address)

Like leak, sim focuses on timing: it must know when leak sends a jump address and when the core
outputs the program counter (instead of the address for a memory access). So, sim too structurally
mirrors proc: it’s a 5-stage pipeline. sim’s pipeline is simple—it models only the core’s stalling
behavior (which also determines when leak sends a jump address).

RQ2: Do processors with more defenses have simpler leakage? In addition to the standard
core, we also support a version of the core with a general security policy for hardware-based
taint-tracking, inspired by [16]. This policy introduces a custom syscall that allows marking values
in a specified memory region as secret. Any subsequent values that were computed using these
secrets become tainted. To enforce constant-time software execution, the CPU immediately halts
if a program attempts to branch on a tainted value. This mechanism provides strong security
guarantees against timing side-channels by preventing secret-dependent control flow.

The core is parameterized by an applicative functor that wraps values; different instantiations
implement different security policies. The PubSec applicative tags values as Public or Secret and
propagates secrecy through computations, while the Identity applicative does not track secrecy.
We instantiate the core with PubSec for the secure variant and Identity for the standard variant.
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For the secure version of the core, the leakage definition is extremely simple: it’s just the original
input with any secret values censored (by setting them to a default value, like 0). The simulator is
then just the original core composed with the projection function, which censors all secret values.
This is an instance of the inversion paradigm from Lemma 3.11 with the inversion function being
the identity. This short leakage definition demonstrates that with more secure processors, the
leakage becomes simpler to define and reason about, as the core’s inherent security guarantees can
withstand a more permissive leakage model. As a consequence of having a simpler leakage, the
time taken to verify the secure core is also significantly reduced.

RQ3: What’s the proof effort of verification with PANToMIME? Table 1 reports proof statistics
for AIMCoRE and processors verified in LeaVe [47]. Writing a simulator is optional -PANTOMIME
can directly check for the existence of a simulator—but simulators are executable programs that the
user can step through, making them especially useful for debugging hardware, leakages, and the
simulator itself (see § 4). This also means our proofs benefit from a broad ecosystem of programming
aids—from static type checking to property-based testing frameworks like QuickCheck [15] (which
we used extensively during development). For the normal version of AIMCORE, the proof effort
totals around 200 lines of Haskell: 180 lines for the simulator and only around 30 lines for the
state projection function. The secure version of AIMCORE requires only around 20 lines of Haskell
for the state projection function.? Because PANTOMIME can simply check for the existence of a
simulator, the actual required proof effort in both cases is just writing the state projection functions.

State projection functions are straightforward field-by-field mappings from the full processor
state to the leakage and simulator states, censoring secret data which the simulator cannot reproduce.
The projection logic is intuitive for hardware designers since it directly corresponds to selecting
which parts of the processor state are visible to the attacker; LeaVe proofs are invariant-based
assertions about the state space and inter-variable relations that the solver can’t automatically
discover. These kinds of assertions are notoriously challenging to derive and debug, often requiring
expertise beyond hardware design.

RQ4: How does AIMCORE compare to other verified processors? Table 1 shows a comparison
between AIMCoRE and the processors verified in LeaVe. AIMCORE is similar in complexity to other
verified cores. While the other cores implement 2-, and 3-stage pipelines, AIMCORE implements a
more complex 5-stage pipeline. The largest processor in LeaVe, Ibex, implements further instruc-
tions outside the integer base-set, e.g., instructions for manipulating CSR registers, multiplication
and division, and support for compressed instructions. We note that these extensions (except for
multiplication and division), have been disabled during verification. Ibex and AIMCORE are compa-
rable in size when measured in lines of code. Finally, we note that LeaVe’s proofs are conditional
on functional correctness, and often make other assumptions e.g., that instructions are memory
aligned, or that certain instructions are not used. By contrast, our proofs are unconditional.

RQ5: How long does PANTOMIME take to verify correctness? Table 1 reports the verification
time for AIMCORE using PANTOMIME, alongside results for processors verified by LeaVe. LeaVe
doesn’t report on the hardware used for benchmarking; for AIMCoRE, we benchmarked using a
consumer-grade AMD Ryzen 7 9700X CPU. While the verification results are not directly comparable
as they concern different designs, PANTOMIME’s verification time for AIMCORE is two orders of
magnitude lower than LeaVe’s time for Ibex-small. We attribute this to the fact that LeaVe has to
rely on expensive solvers to compute inductive invariants, while PANTOMIME only has to perform
one-step equivalence checking between implementation and simulator. As a result, PANTOMIME
allows users to check proofs interactively—as they write the core—simplifying development.

The leakage circuits (which aren’t parts of the proof) for the normal and secure core are about 300 and 10 lines of Haskell
respectively, and both rely on an ISA interpreter that’s a further 70 lines.
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RQ6: Can leakages detect software bugs? As our leakages are executable, AIMCORE can generate
detailed leakage logs during execution. When running test software, users can enable a debug mode
that executes multiple instances of the same program in lockstep and verifies all instances produce
identical leakage traces. Upon detecting a divergence in the leakage traces, AIMCORE pinpoints the
instruction where the divergence occurs, along with the differing leakage values.

To demonstrate this capability, we used AIMCORE to check the constant-time behavior of
cryptographic algorithms in the latest versions of libsodium (v1.0.20), and wolfSSL (v5.8.2) on
AIMCoRE. When executing an ECDSA key generation program using wolfSSL (with compiler
optimizations enabled), we discover that the program exhibits leakage divergences during execution.

By tracing the PC values at the point of divergence, we identified that the leak occurs in an
inlined sp_256_get_entry_256_9 function. Although the source code employs constant-time defense
techniques to remove secret-dependent branches, the compiler’s optimizations can undo them,
causing timing leaks [39]. The program also exhibits leakage divergences when compiled without
optimizations. In this case, GCC introduces a variant-time routine for multiplication as RV32I lacks
native multiplication instructions. To the best of our knowledge, this leakage is previously unknown
and not specific to AIMCoRe. We suspect this would also apply on other cores with variable-time
multiplication opcodes. While we simulate PANTOMIME in software for our experiments, its leakage
trace can be used to check leakages (e.g., via fuzzing) at native speed in hardware.

7 Discussion and Limitations

Executable Leakages. PANTOMIME focuses on executable leakages that operate over the same
input/output sequence as the hardware. This limits the level of abstraction a leakage can achieve,
which may make it harder for programmers to understand how to program the hardware securely.
We show that executable leakages are useful: they can be run together with the hardware to monitor
leakage (even in silicone); more secure processors have easy-to-understand leakage descriptions;
beyond processors, they are applicable to other circuits like specialized accelerators that don’t offer
an instruction set architecture. Unlike other methods [19, 42, 47], they do not rely on functional
correctness assumptions, which increases our confidence in their correctness. In the future, we
want to use them as targets for symbolic execution of cryptographic software [6], and explore
refinement proofs for relating them to leakage at the level of an instruction set architecture.

State Projection Proofs and Inductive Invariants. PANTOMIME only supports proofs via the
state projection rule. Intuitively, the state projection rule supports proofs where the equivalence
is established by erasing information in implementation and observation state to derive leakage
and simulator state. Leakages that do not fit this pattern cannot be proven via our rule. We give an
example in Appendix D. The state projection rule establishes an invariance between leakage and
simulator, and implementation and observation — the projected parts of their state need to be equal.
This is similar to inductive invariants establishing equality between different copies of the same
program, as used by non-interference based methods for leakage verification. PANTOMIME allows
programmers to establish equivalence computationally, via the projection function. We believe that
this is easier for hardware designers without experience in formal methods.

Leakage Description and Observation. Users specify attacker observations (via a circuit obs),
similar to other approaches [19, 42, 47]. This description serves as ground-truth specification of
the attacker capabilities. PANTOMIME verifies that the leakage description (circuit leak) correctly
captures everything that’s leaked via the attacker observation. Insufficient leakage descriptions
result in a verification failure that yields a counterexample (see § 4). Leakage descriptions can be
arbitrary stateful circuits. In practice, their output type reflects the intended high-level leakage of
the processor. E.g., in AIMCORE, this type specifies the reason for leakage (control-flow or memory).
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Translation to Verilog. We trust CAaSH to not introduce further side-channels via compilation to
hardware. We have manually inspected the generated Verilog code to ensure that the compiled code
closely matches its description in Haskell. Indeed, CAaSH already provides cycle-level descriptions
of the circuit that are very close to the extracted hardware description. We leave equivalence proofs
between the Haskell description and the Verilog target as future work.

8 Related Work

Verifying Security Properties of RTL Designs. UPEC [21] detects transient execution vul-
nerabilities in RTL designs (or proves their absence), but is restricted to fixed properties, while
PANTOMIME can express arbitrary leakage properties via (stateful) observation functions and leak-
ages. ConjunCT [19] and UPEC-DIT [18] identify subsets of a processor’s instruction set that
are data-oblivious in the sense that their operands do not affect the timing of the computation.
H-Houdini [20] checks for the same property, but scales better by proposing a new invariant
synthesis approach that exploits locality, e.g., due to pipelining. While these techniques scale well,
they offer limited guarantees: since branch instructions trivially affect timing, these instruction are
not data-oblivious. Hence, these techniques cannot guarantee safety of code involving branches,
as is used, e.g., in constant-time code in cryptographic libraries. SecVerilog [53] extends Verilog
with a type system to statically check timing-sensitive information flow. SpecVerilog [52] builds
upon SecVerilog’s type system to express information-flow safety under speculative execution.
Unlike PANTOMIME, these techniques all use classical non-interference reasoning and do not provide
executable leakages and proof artifacts.

Verifying Leakage Descriptions. Iodine [43] proves secret-independent timing in hardware,
given usage assumptions expressed on inputs and internal wires. Xenon [44] synthesizes such
usage assumptions semi-automatically. LeaVe [47] verifies a restricted form of leakage contracts
(Definition 3.6) of RTL designs. Like Iodine and Xenon, LeaVe expresses leakage via stateless leakage
monitors that can observe internal processor state. Unlike Iodine, assumptions in LeaVe can only
be expressed on wires that represent final computation results at instruction retirement. Under
the assumption that the processor is functionally correct (i.e., implements its ISA), this allows
LeaVe to link leakage at the hardware level to leakage at the ISA level. However, there are no
(executable) artifacts that represent ISA level leakage and the functional correctness assumption is
often left unverified, making end-to-end correctness arguments difficult. Contract Shadow Logic
[42] follows a similar approach to LeaVe, but uses exhaustive state space exploration via model
checking instead of inductive invariants to validate contracts, which limits its scalability. Both
Contract Shadow Logic and LeaVe use classic non-interference reasoning and rely on expensive
solvers or handwritten invariants. By contrast, PANTOMIME uses constructive simulation-based
proofs which yield executable artifacts, and make debugging easier.

Synthesizing Leakage Descriptions. [32] synthesizes leakage contracts using a user-supplied
lists of "contract atoms," which represent potential leakage sources, along with a set of test cases.
However, [32] does not prove the correctness of the leakage contracts it synthesizes. RTL2MpyPATH
[23] uses model checking to enumerate microarchitectural paths of an instruction through the
processor and records which instructions may influence the path choice. It requires designers to
annotate with yFSMs—microarchitectural finite state machines that govern updates of the processor
state and relies on exhaustive state space exploration which limits scalability. As the technique
builds on classic non-interference it doesn’t yield executable leakages and proof artifacts.

Simulation-based Proofs in Crypto. In designing our approach, we were inspired by simulation-
based proofs in cryptography [27] (as used e.g., in Universal Composability [11]). However, beyond
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the common idea of using simulators, the two proof methods diverge significantly. In cryptogra-
phy, the aim is often to show that a (potentially active) adversary—with bounded computational
resources—can learn nothing of interest about the secrets processed in a cryptographic protocol.
By contrast, we use simulators to precisely characterize the side-channel leakage of a processors
against a passive attacker—one that can observe side-channels (e.g., timing), but cannot actively
influence the computation.

9 Conclusion

We introduced simulation-based leakage proofs, a new approach to leakage verification of hardware,
where security is proved by constructing a simulator—another hardware design that must faithfully
replicate all attacker-observable behavior from explicitly leaked secrets. Simulation-based proofs
offer a constructive alternative to classic non-interference proofs, exposing a proof object—the
simulator, witnessing the correctness claim. We realized this approach in the PANTOMIME verification
tool and used it to verify the AIMCore RISC-V CPU, as well as a side-channel hardened version of
the processor. Proof checking with PANTOMIME takes seconds, rather than hours, and leakages and
their proofs are computational, making them easy to run and debug.
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