
Verifying Properties of Index Arrays in a Purely-Functional
Data-Parallel Language

NIKOLAJ HEY HINNERSKOV, University of Copenhagen, Denmark
ROBERT SCHENCK, Northeastern University, USA
COSMIN OANCEA, University of Copenhagen, Denmark

In functional data-parallel programs, index array computations are separated (fissioned) into sequences of
bulk-parallel operators—map, prefix sum, scatter—and used to gather or scatter data array elements, thus
determining data array properties. This programming style is problematic for general-purpose verification
frameworks (e.g., Dafny, F*, Liquid Haskell), which are flexible and powerful, but require verbose annotations
and non-trivial user proofs, making them inaccessible to non-experts. We present a compiler approach to
verifying array properties with high automation, democratizing verification of data-parallel programs for users
without verification expertise. We support a small but powerful predefined set of properties—ranges, injectivity,
bijectivity, monotonicity, filtering, partitioning—that enable the compiler to (automatically) reason at a higher
level of abstraction. We evaluate our approach on challenging applications with non-linear indexing, including
graph algorithms, Cooley-Tukey FFT, filtering, multi-way partitioning, and flattened irregular-nested parallel
programs that are difficult to verify, such as batch operations on arrays of different sizes.

CCS Concepts: • Software and its engineering→ Functional languages; Parallel programming lan-
guages.

Additional Key Words and Phrases: Pure functional language, data parallel, array programming, verification

1 Introduction
High-performance array languages (e.g., Futhark [23], Accelerate [44], Lift [17], DaCe [3], JAX [7])
and machine learning frameworks (e.g., TensorFlow [1], MLX [19], PyTorch [33]) express parallel
algorithms by composing bulk-parallel operators such as map, scan (prefix sum), scatter (irregular
write), and gather (irregular read). Unlike loops in imperative programming or folds in functional
programming, where computation is typically manually fused, these operators stay separate.
General-purpose verification frameworks like Dafny [24], F* [41], and Liquid Haskell [35, 47]

can encode data-parallel programs but lack native support and specialization for bulk-parallel
operators. Proving even simple array properties often requires verbose annotations and manual
inductive proofs, if the proof is possible at all. Scatter is the most challenging construct. For example,
partitioning arrays is implemented by scattering array elements to computed target positions, or by
using scatter to compute reordering indices then gathering elements using those indices. Proving
this produces a valid partition requires recognizing that the scatter indices—which map each index
𝑖 to its target position—form a permutation (i.e., the inverse of the final arrangement), and in
the gather case, that gather inverts this index mapping. Users of general-purpose verifiers must
encode this relationship manually, breaking automation—and even having done so, frameworks
like Dafny may still fail to verify it (see Section 2.1.3). Likewise, verifying a two-way partition
requires auxiliary lemmas and proof hints specific to the code (Section 2.1.1). Moreover, small
implementation changes may require fundamentally different proof strategies (if a proof is possible
at all with the changes), further undermining automation (Section 2.1.2).
To address these shortcomings, this paper presents PropProp—a compiler-based system that

automatically verifies data parallel programs written as purely functional array computations over
bulk-parallel operators. PropProp (P2 for short), implemented in the Futhark compiler, allows users

Authors’ Contact Information: Nikolaj Hey Hinnerskov, nhey@900901.xyz, University of Copenhagen, Denmark; Robert
Schenck, r@bert.lol, Northeastern University, USA; Cosmin Oancea, cosmin.oancea@di.ku.dk, University of Copenhagen,
Denmark.

https://orcid.org/0000-0001-7559-0939
https://orcid.org/0000-0001-5848-8166
https://orcid.org/0000-0001-5421-6876
https://orcid.org/0000-0001-7559-0939
https://orcid.org/0000-0001-5848-8166
https://orcid.org/0000-0001-5848-8166
https://orcid.org/0000-0001-5421-6876

2 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin Oancea

to annotate functions with pre- and postconditions using a small but powerful set of predefined
properties: ranges, injectivity, bijectivity, monotonicity, and filtering/partitioning. P2 is not a general-
purpose theorem prover; supporting arbitrary properties and user proofs is an explicit non-goal.
Instead, it leverages the fixed semantics of bulk-parallel operators to enable high automation
verification for common array properties.

The key idea is to infer index functions from integer arrays in the source program—piecewise
functions from indices to the elements at those indices, where elements are represented by guarded
expressions built from a carefully chosen algebra of primitives, including sums (of array slices) and
inverses of bijective index functions (which enable reasoning about permutations). Translating
bulk-parallel computations into index functions reduces verification to reasoning about inequalities
using a set of high-level rewrite rules, which is easier to automate than an inductive approach.

This approach scales to challenging scenarios without extra proof machinery. For example, P2 can
reason about jagged arrays (arrays of variable-length rows)—represented as flat data arrays along
with independent auxiliary arrays that encode the irregular shape, which are computed as part of
the program (Section 3.4). P2 also reasons about nested parallel operations over irregular rows that
have been manually flattened into regular bulk-parallel operations (e.g., segmented scan [4]).

P
2 works by translating source functions into index functions and then verifies and infers prop-

erties about them. It consists of three architectural components: (1) the index function layer, which
translates each function into an index function (2) the property layer, which tracks and proves
properties over the index functions, and (3) the algebra layer, which reasons about and dispatches
low-level algebraic queries (generated by the property layer when proving properties) using a
Fourier-Motzkin elimination-based solver. The three components are deeply interconnected to pro-
mote high automation. For example, the index function layer exploits bijectivity and monotonicity
properties (established by the property layer) to produce meaningful index functions for scatter
that enable the derivation of filtering/partitioning properties and flat expression of jagged arrays.

We make the following contributions:

• Index functions: A translation from bulk-parallel programs to guarded index functions en-
abling equational reasoning about data-parallel array programs and inference of segmented
structure from flattened irregular nested parallel operations (Sections 3.1, 3.4 and 4.2).

• Property reasoning: A property system that automatically proves array properties, includ-
ing injectivity and bijectivity for scatters, enabling reasoning about permutations, partitions
and filters of data arrays (Sections 3.2, 4.1 and 4.3).

• Algebraic solver:An extension of Fourier–Motzkin elimination with tactics for overlapping
sums, indexing, and mutually exclusive guards to automatically discharge (in)equalities
over index-function guards (Sections 3.3 and 4.4).

• Implementation: An implementation of P2 in the Futhark compiler, evaluated on a set
of diverse data-parallel benchmarks that exercise the entire system, with P

2 automatically
verifying all indexing, scatters, and annotated properties. The evaluation demonstrates utility
for optimizing compilers by eliminating redundant bounds checks and array initializations
(Section 5). The source code is available in the artifact and it will be open-sourced.

2 Source language and motivation
P
2 analyzes array programs expressed in a purely functional language using second-order array

combinators (SOACs) [23], which include map, scan and scatter. SOACs are bulk-parallel array
operations parameterized by user-defined functions: they express the first-order primitives found
in most array languages and frameworks such as vectorized operations (using map), reductions
and cumulative sums (using scan), scatters, and gathers (using map:map (𝜆𝑖. 𝑥𝑠 [𝑖]) idx). The types

Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 3

and semantics of map and scan are:

map : (𝛼 → 𝛽) → []𝛼 → []𝛽 scan : (𝛼 → 𝛼 → 𝛼) → 𝛼 → []𝛼 → []𝛼
map 𝑓 [𝑥1, . . . , 𝑥𝑛] = [𝑓 𝑥1, . . . , 𝑓 𝑥𝑛] scan 𝑓⊙ 𝑒⊙ [𝑥1, . . . , 𝑥𝑛] = [𝑥1, . . . , 𝑓⊙ (. . . (𝑓⊙ 𝑥1 𝑥2) . . .) 𝑥𝑛]

where []𝛼 is an array of elements of type 𝛼 and 𝑓⊙ is an associative binary function with neutral
element 𝑒⊙ (e.g., 0 is the neutral element for +). For convenience, we overload map to be variadic.
For example, map (𝜆𝑥 𝑦. 𝑥 + 𝑦) [x1, . . . , xn] [y1, . . . , yn] = [𝑥1 + 𝑦1, . . . , 𝑥𝑛 + 𝑦𝑛].
The most complex array operator is scatter, which has the type and semantics:

scatter : []𝛼 → []i64 → []𝛼 → []𝛼
𝑧 = scatter y idx x ≡ 𝑧 [𝑖] =

{
x [𝑗] if ∃ 𝑗 ∈ [0, |x |) . idx [𝑗] = 𝑖

y [𝑖] otherwise
(1)

The result z of scatter is a copy of y updated in place at indices idx with the corresponding values
from x, but ignoring updates to indices that are out of bounds in z. Scatter writes these locations
all at once—if different in-bounds values are written to the same location, the result is unspecified.
This leads to the following precondition: for any two duplicate indices in idx, the values in x must
be the same (∀𝑗, 𝑘 ∈ [0, |x |) . idx [𝑗] = idx [𝑘] ⇒ 𝑥 [𝑗] = 𝑥 [𝑘]). This precondition is not checked
statically in existing array languages and frameworks. In practice, it is typically satisfied because
indices in idx are unique or because all values in x are equal (e.g., an array of zeros). Scatter also
requires that |idx | = |x |. Its work is proportional to the number of updates, |x |.

Source language. The source language permits defining top-level functions with the syntax

def f (𝑥1 : 𝜏1 | 𝑒∗pre1) (𝑥2 : 𝜏2 | 𝑒∗pre2) . . . (𝑥3 : 𝜏3 | 𝑒∗pre3) : 𝜏 | 𝜆𝑦. 𝑒∗post =
let z1 = 𝑒∗1 in let z2 = 𝑒∗2 in . . . let res = 𝑒∗res in res

where 𝑒∗ is an expression that includes function and operator application, conditionals, let-bindings,
and SOACs (see Appendix A for a grammar). The function body is in A-normal form [37]: it
essentially consists of a list of non-nested let-expressions followed by one or more result variables.
We also require that all variable names are unique. The function parameter (𝑥 : 𝜏1 | 𝑒∗pre1) says that
𝑥 has type 𝜏1 and is subject to precondition 𝑒∗pre1 , which is assumed when analyzing the function’s
body and is checked at the call site. The return type 𝜏 | 𝜆𝑦. 𝑒∗post says that the function return has
type 𝜏 and satisfies the postcondition 𝑒∗post , which is proved by P

2. The pre- and postconditions are
source-level expressions which notably include the properties in Fig. 8 (encoded as source-level
Boolean functions). A special shape function shp(·) returns array dimensions, with |x | = shp(𝑥)1
denoting the size of x’s first dimension; scalars are treated as unit-length arrays. The source
language does not permit irregular (jagged) arrays or anonymous functions (except in SOACs).
Instead, irregular arrays may be represented as a pairing of a data and shape array (see Section 3.4).

Motivating example. Most data-parallel array programs chain array operations over the inputs
and intermediate variables, with gathers and scatters introducing indirect indexing. The program in
Fig. 1 partitions an array xs according to a predicate p, placing elements that satisfy p before those
that do not, while preserving the original element order within each group. Each computational step
is a separate array operation: the target indices for elements satisfying the predicate are computed
by mapping p over xs (line 3), converting booleans to integers (line 4), computing prefix sums via
scan (line 6), and subtracting one (line 9). Failing elements are handled similarly using the negated
predicate (line 5), with indices offset by 𝑠𝑝𝑙𝑖𝑡—the count of successful elements (lines 8, 9). Finally,
scatter reorders the data array all at once. Fig. 1 (right) shows a trace of the program.
Analyzing index arrays informs properties about programs as a whole: array primitives like

scatters and gathers propagate properties on index arrays to arrays of any type (e.g., data arrays).

4 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin Oancea

1 def partition (𝑝 : f64 → bool) (𝑥𝑠 : []f64)
2 : []f64 | 𝜆𝑦𝑠. Part ys xs (𝜆𝑖. 𝑝 𝑥𝑠 [𝑖]) =

3 let mask = map (𝜆𝑥. 𝑝 𝑥) xs
4 let left = map (𝜆𝑐. if 𝑐 then 1 else 0) mask
5 let right = map (𝜆𝑥. 1 − 𝑥) left
6 let n_left = scan (𝜆𝑥 𝑦. 𝑥 + 𝑦) 0 left
7 let n_right = scan (𝜆𝑥 𝑦. 𝑥 + 𝑦) 0 right
8 let split = if |xs | > 0 then 𝑛_𝑙𝑒 𝑓 𝑡 [|xs | − 1] else 0
9 let idx = map (𝜆𝑐 𝑙 𝑟 . if 𝑐 then 𝑙 − 1 else 𝑠𝑝𝑙𝑖𝑡 + 𝑟 − 1)

10 𝑚𝑎𝑠𝑘 𝑛_𝑙𝑒 𝑓 𝑡 𝑛_𝑟𝑖𝑔ℎ𝑡

11 let zeros = map (𝜆𝑥. 0) xs
12 let ys = scatter zeros idx xs in 𝑦𝑠

Example program trace

>>> let xs = [1,4,2,4,3]

>>> partition (𝜆𝑥. 𝑥 == 4) xs

mask = [false,true,false,true,false]

left = [0, 1, 0, 1, 0]

right = [1, 0, 1, 0, 1]

n_left = [0, 1, 1, 2, 2]

n_right = [1, 1, 2, 2, 3]

split = 2

idx = [2, 0, 3, 1, 4]

zeros = [0, 0, 0, 0, 0]

ys = [4, 4, 1, 2, 3]

Fig. 1. A source program implementing partition using SOACs.

1 method partition_inds(p: int −> bool, xs: seq<int>)
2 returns (split: int, idx: seq<int>)
3 ensures |xs| == |idx| && (...)
4 ensures forall i, j :: 0 <= i < j < |xs| ==>
5 (p(xs[i]) && p(xs[j]) ==> idx[i] < idx[j])
6 && (!p(xs[i]) && !p(xs[j]) ==> idx[i] < idx[j])
7 && (p(xs[i]) && !p(xs[j]) ==> idx[i] < idx[j])
8 && (!p(xs[i]) && p(xs[j]) ==> idx[i] > idx[j])
9 { var mask := map(x => p(x), xs);
10 var left := map(c => if c then 1 else 0, mask);
11 var right := map(b => 1 − b, left);
12 var n_left := scan((x,y) => x + y, 0, left);
13 var n_right := scan((x,y) => x + y, 0, right);
14 split := if |xs| > 0 then n_left[|xs|−1] else 0;
15 var indsF := map(t => t + split, n_right);
16 idx := map3((c,l,r) => if c then l−1 else r−1,
17 mask, n_left, indsF);
18 // Lemmas needed to prove postconditions.
19 SumOverPositiveIsMonotonic(left, n_left);
20 SumOverPositiveIsMonotonic(right, n_right);
21 ComplementarySums(left,n_left,right,n_right); }

lemma ComplementarySums(xs:seq<int>,
sum_xs: seq<int>, ys: seq<int>, sum_ys: seq<int>)

// sum_xs is a sum over xs.
requires (|xs|==|sum_xs|) && (0 < |xs| ==> sum_xs[0] == xs[0])
requires forall i:: 1<=i<|xs| ==> sum_xs[i]==xs[i]+sum_xs[i−1]
// sum_ys is a sum over ys.
requires (|ys|==|sum_ys|) && (0 < |ys| ==> sum_ys[0] == ys[0])
requires forall i:: 1<=i<|ys|==> sum_ys[i]==ys[i]+sum_ys[i−1]
// xs and ys are complementary booleans.
requires |xs| == |ys|
requires forall i :: 0 <= i < |xs| ==> 0 <= xs[i] <= 1
requires forall i :: 0 <= i < |ys| ==> ys[i] == 1 − xs[i]
ensures forall i :: 0<=i<|xs| ==> sum_xs[i]+sum_ys[i] == i+1

{ if xs == [] { assert ys == []; }
else if |xs| == 1 { assert sum_xs[0] + sum_ys[0] == 1; }
else {

ComplementarySums(xs[..|xs|−1], sum_xs[..|xs|−1],
ys[..|xs|−1], sum_ys[..|xs|−1]);

assert (sum_xs[|xs|−1] + sum_ys[|xs|−1]
== 1 + sum_xs[|xs|−2] + sum_ys[|xs|−2]);

} }

Fig. 2. partition_inds in Dafny: the left column shows the code; the right column shows one of the lemmas.

For example, idx is actually a permutation of the indices of xs (0 . . . |xs | − 1). By proving and
propagating this information, a compiler can reason that the output array ys is a permutation of xs
and use this for verification and optimization (e.g., zeros does not need to be initialized since all of
its elements are overwritten). In this case, our analysis is further able to prove that the permutation
forms a partition according to 𝑝 , as denoted by the postcondition 𝜆𝑦𝑠. Part ys xs (𝜆𝑖. 𝑝 𝑥𝑠 [𝑖]) .

2.1 Challenges of verifying partition in Dafny
This section is a case study on verifying partition using Dafny [24]—an industrial-strength verifica-
tion framework (e.g., used at AWS [11]) with good support for reasoning about data-dependent
array accesses. We built a library of SOACs in Dafny. For example, map is defined as:

function map<T1,T2>(f: T1 -> T2, xs: seq<T1>) : (ys: seq<T2>)

ensures (|xs| == |ys|) && (forall i :: 0 <= i < |xs| ==> ys[i] == f(xs[i]))

{ seq(|xs|, i requires 0 <= i < |xs| => f(xs[i]) }

Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 5

2.1.1 Verifying properties of scatter indices. The left column in Fig. 2 shows Dafny code for
partition_inds, which constitutes the primary verification burden for partition. Dafny is able
to verify the specified properties on idx (lines 3-8), which include the length of idx equals the
length of xs (line 3), the indices of the elements that succeed/fail under the predicate form strictly
monotonic sequences (line 5/6) and any succeeding index is smaller than any failed index (lines 7-8).
Verifying the postcondition requires applying two user-defined lemmas (lines 19-21). To illustrate,
the user-guided inductive proof of the ComplementarySums lemma is shown in the right column
of Fig. 2 Although Dafny verifies the postcondition, this experiment demonstrates that it requires
non-trivial manual effort—in particular, coming up with the needed lemmas.

2.1.2 Small alterations require new proof strategy. Dafny’s verification process is brittle on SOAC-
based programs—small changes to the implementation may require an entirely new proof strategy
or may even make the proof intractable. We illustrate with two simple examples.

The first example rewrites partition_inds such that the scattered indices of the elements that
fail under the predicate are computed with a reverse prefix sum:

var left_rev := seq(|left|, i requires 0 <= i < |left| => left[n-1-i]);

var n_left_at_and_after := scan((x,y) => x + y, 0, left_rev);

var indsF := map2((i,t) => i + t + 1, seq(|xs|, i => i), n_left_at_and_after);

In this form, proving the necessary index properties requires proving a query of the form:

0 ≤ 𝑗 < 𝑖 < |𝑥𝑠 | ∧ 𝑚𝑎𝑠𝑘 [𝑗] = 0 ∧ 𝑚𝑎𝑠𝑘 [𝑖] = 1 ⇒ 𝑗 +∑ |𝑥𝑠 |−1
𝑘=𝑗+1 𝑚𝑎𝑠𝑘 [𝑘] > ∑𝑖−1

𝑘=0𝑚𝑎𝑠𝑘 [𝑘] (2)

which is challenging to solve because the quantified variables 𝑗 and 𝑖 occur in the bounds of their
corresponding summed slices. In fact—even when using a lemma over a recursive definition of sum
in which the bounds are passed as arguments—we were unable to prove this query in Dafny.
The second example refers to the properties of exclusive prefix sum: sum𝑒𝑥𝑐 [𝑎1, . . . , 𝑎𝑛] =

[0, 𝑎1, 𝑎1 + 𝑎2, . . . , 𝑎1 + . . . + 𝑎𝑛−1]. It can be implemented by shifting the array elements right
and then applying an inclusive scan:

var inp_rot := map(i => if 1 <= i < |inp| then inp[i-1] else 0, seq(|inp|, i => i));

var inp_exc_scan := scan((x,y) => x + y, 0, inp_rot);

Dafny proves that each element o inp_exc_scan is a partial sum over inp_rot (via the three
queries |inp| > 0 ⇒ inp_rot[0] = 0, 0 < 𝑖 < |inp| ⇒ inp_rot[𝑖] = inp[𝑖 − 1], and 0 ≤ 𝑖 <

|inp| ⇒ inp_exc_scan[𝑖] =∑𝑖
𝑘=0 inp_rot[𝑘]) but it cannot prove that they are partial sums over

the inp array: 0 ≤ 𝑖 < |inp| ⇒ inp_exc_scan[𝑖] =∑𝑖−1
𝑘=0 inp[𝑘].

2.1.3 Dafny cannot reason about scatter. The left column of Fig. 3 shows the pre- and postconditions
of our scatter implementation in Dafny, ensuring the semantics given in Eq. (1). The bottom
side of the left column shows partition as presented in Fig. 1; scatter is applied to the indices
idx resulting from the successfully verified call to partition_inds (line 11). However, the verified
properties of scatter and idx are not transferable to the result array ys; e.g., Dafny cannot prove
that the indices smaller than the split point correspond to elements that succeed under the predicate
(line 14) and the others to the ones that fail (line 15).

To assist Dafny’s reasoning, we can make the permutation explicit by altering the implementation
of partition (shown on the right of Figure 3) such that the scatter (at line 6) produces the inverse
permutation of idx, denoted𝜎 = 𝑖𝑑𝑥−1, by scattering at indices in idx the value array [0, . . . , |𝑥𝑠 |−1]
(denoted 𝑖𝑜𝑡𝑎 at line 5). The result 𝑦𝑠 is obtained by gathering the elements of 𝑥𝑠 using the indices
of 𝜎 (line 7). In this version, Dafny is able to verify the postconditions if 𝜎 is assumed to be an
inverse of idx (line 11). Dafny is unable to verify this assumption, even when guided by intermediate

6 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin Oancea

1 method scatter<T>(ys: seq<T>, idx: seq<int>, vs: seq<T>)
2 returns (zs: seq<T>)
3 requires (|idx| == |vs|) && (injective(idx) || replicated(vs))
4 ✓ ensures (|ys| == |zs|) &&
5 (forall k :: 0≤k<|idx| && 0 ≤ idx[k] < |zs|⇒ zs[idx[k]] == vs[k])
6 ✓ ensures forall i :: 0 ≤ i < |zs|⇒
7 ((zs[i] == ys[i]) || (exists k :: 0 ≤ k < |idx| && idx[k] == i && zs[i] == vs[k]))
8 { ... }
9
10 method partition(p:int−>bool, xs:seq<int>) returns (ys: seq<int>) {
11 var split, idx := partition_inds(p, xs);
12 var dest := seq(|xs|, i requires 0 <= i < |xs| => 0);
13 ys := scatter(dest, idx, xs);
14 × assert (forall i :: 0 ≤ i < split⇒ p(ys[i]));
15 × assert (forall i :: split ≤ i < |xs|⇒ !p(ys[i]));
16 }

method partition(p: int −> bool, xs: seq<int>)
returns (ys: seq<int>) {

var split, idx := partition_inds(p, xs);
var dest := seq(|xs|, i requires 0≤i<|xs| => 0);
var iota := seq(|xs|, i requires 0≤i<|xs| => i);
var 𝜎 := scatter (dest, idx, iota);
ys := seq(|xs|, i requires 0≤i<|xs| => xs[𝜎[i]]);

× assert
(forall i :: 0 ≤ i < |xs|⇒ idx[𝜎[i]] == i);

assume
(forall i :: 0 ≤ i < |xs|⇒ idx[𝜎[i]] == i);

// These fail without the assumption above.
✓ assert (forall i :: 0 ≤ i < split⇒ p(ys[i]));
✓ assert (forall i :: split ≤ i < |xs|⇒ !p(ys[i]));

}

Fig. 3. The left column shows the implementation of scatter and partition in Dafny. The right column

zooms in to identify the core challenge to verification, namely the inverse property. Lines marked with × and

✓ fail and succeed, respectively. Succeeding lines that come after assume would fail without that assumption.

assertions establishing that 0 ≤ 𝑖 < |𝑥𝑠 | ⇒ 𝜎 [𝑖𝑑𝑥 [𝑖]] == 𝑖 , which should allow Dafny to infer that
𝜎’s elements are unique. (Dafny is able to show that 0 ≤ 𝑖 < 𝑗 < |𝑥𝑠 | ⇒ 𝜎 [𝑖𝑑𝑥 [𝑖]] ≠ 𝜎 [𝑖𝑑𝑥 [𝑗]],
but can’t show 0 ≤ 𝑖 < 𝑗 < |𝑥𝑠 | ⇒ 𝜎 [𝑖] ≠ 𝜎 [𝑗].) Not all scatters can be rewritten like this:
out-of-bounds indices are ignored, so the indices do not necessarily form a permutation.

3 Overview
The key idea behind P

2 is to transform array programs into a representation where properties
become algebraic (in)equalities over index functions—functions that map the indices of an array to
its values. As we’ll see in this section, this index-centric transformation enables automatic reasoning
about scatter-gather patterns that require manual proof writing in general-purpose tools.

We present P2 as a transformation P from type-checked source programs to index functions and
properties over these index functions: P : source program → index functions × properties.
P
2 translates each function definition (def) to an index function and then verifies and infers

properties over it. To scale the analysis, P2 reuses inferred properties at call sites: formal parameters
are substituted with actual arguments in the index function, and the postcondition is propagated
into the caller’s context.

idx = 𝜆 (𝑖 : 0.. |xs |)
ys = 𝜆 (𝑖 : 0.. |xs |) . [true] ∗ 𝑥𝑠 (𝑖𝑑𝑥−1 (𝑖)) Bij idx 0.. |xs | 0.. |xs | ∀𝑖, 𝑗 ∈ 0.. |xs | .

(𝑖 < 𝑗 ⇒ 𝑖𝑑𝑥 (𝑖) ≠ 𝑖𝑑𝑥 (𝑗)) ∧ (0 ≤ 𝑖𝑑𝑥 (𝑖) < |xs |)

index function layer
property layer

algebra layer

The above figure shows P2’s three constituent components: the index function layer, the property
layer, and the algebra layer and how these interact to verify the partition program. The index
function layer translates programs to index functions via inference rules, applying them by querying
the property layer to verify rule premises. The property layer records and proves properties using
a two-level strategy: a higher level infers new properties from proven ones; a lower level proves
new properties by reducing them to equivalent algebraic (in)equalities, which are dispatched to the
algebra layer. The algebra layer normalizes algebraic expressions and solves (in)equalities using a
Fourier-Motzkin elimination-based solver. In the following sections, we’ll walk through how each
of P2’s components work and interact to verify the partition program (see Figs. 1 and 4).

Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 7

P(def partition (𝑝 : f64 → bool) (𝑥𝑠 : []f64) = . . .)
mask = 𝜆 (𝑖 : 0..𝑛) . [true] ∗ 𝑝 (xs (𝑖))
left = 𝜆 (𝑖 : 0..𝑛) . [true] ∗ 𝑝 (xs (𝑖))
right = 𝜆 (𝑖 : 0..𝑛) . [true] ∗ (1 − 𝑝 (𝑥𝑠 (𝑖)))
.
.
.

n_right = 𝜆 (𝑖 : 0..𝑛) . [true] ∗ (𝑖 + 1 − ∑𝑖
𝑗=0 (𝑝 (xs (𝑖))))

.

.

.

idx = 𝜆 (𝑖 : 0..𝑛) .

{
[𝑝 (xs (𝑖))] ∗∑𝑖−1

𝑗=0 (𝑝 (xs (𝑗)))
[¬𝑝 (xs (𝑖))] ∗ (𝑖 +∑𝑛−1

𝑗=𝑖+1 (𝑝 (xs (𝑗))))

zeros = 𝜆 (𝑖 : 0..𝑛) . [true] ∗ 0

ys = 𝜆 (𝑖 : 0..𝑛) . [true] ∗ 𝑥𝑠 (𝑖𝑑𝑥−1 (𝑖))

Notation: 𝑛 = |xs | .

P(let n_right = scan (𝜆𝑥 𝑦. 𝑥 + 𝑦) 0 right)

1. 𝜆 (𝑖 : 0..𝑛) .

{
[𝑖 = 0] ∗ right (𝑖)
[𝑖 ≠ 0] ∗ (⟲ + right (𝑖))

2. 𝜆 (𝑖 : 0..𝑛) . [true] ∗ (right (0) +∑𝑖
𝑗=1 (right (𝑖)))

3. 𝜆 (𝑖 : 0..𝑛) . [true] ∗∑𝑖
𝑗=0 (right (𝑖))

4. 𝜆 (𝑖 : 0..𝑛) . [true] ∗∑𝑖
𝑗=0 ([true] ∗ (1 − 𝑝 (xs (𝑖))))

5. 𝜆 (𝑖 : 0..𝑛) . [true ∧ true] ∗∑𝑖
𝑗=0 (1 − 𝑝 (xs (𝑖)))

6. 𝜆 (𝑖 : 0..𝑛) . [true] ∗ (∑𝑖
𝑗=0 (1) −

∑𝑖
𝑗=0 (𝑝 (xs (𝑖))))

7. 𝜆 (𝑖 : 0..𝑛) . [true] ∗ (𝑖 + 1 − ∑𝑖
𝑗=0 (𝑝 (xs (𝑖))))

Fig. 4. P
2
transforms programs to index functions, enabling algebraic reasoning about properties.

3.1 Index function layer
The index function layer translates each function definition (def) by first populating P

2’s environ-
ment with argument information. Preconditions on formal arguments are assumed and entered into
the property environment (partition has no preconditions). The boolean values false and true are
syntactic sugar for 0 and 1, respectively. Scalars are treated as unit-length arrays. The postcondition,
𝜆𝑦𝑠. Part ys xs (𝜆𝑖. 𝑝 𝑥𝑠 [𝑖]) , is treated after the body has been analyzed.

Translation. Function bodies are translated one let-binding at a time into index functions. Since
bodies are A-normal, each let-binding applies a SOAC or other source construct to earlier bindings.
For example, P2 first translates the scan operation defining n_right into an index function (Fig. 4):

n_right = 𝜆 (𝑖 : 0..|xs |) . [𝑖 = 0] ∗ right (𝑖) + [𝑖 ≠ 0] ∗ (⟲ + right (𝑖))

The index function, denoted by a lambda abstraction, consists of a domain (𝑖 : 0..|xs |), which
says that indices 𝑖 range from 0 to |xs | − 1 and a guarded expression that defines the value at each
index. The guards must partition the domain; for any index in the domain, exactly one guard
is true. Here, the guarded expression has two guards [𝑖 = 0] and [𝑖 ≠ 0] with corresponding
expressions right (𝑖) and ⟲ + right (𝑖) that define the value at index 𝑖 when their guard holds. The
⟲ symbol represents the recurrence introduced by scan; normalization transforms it into a prefix
sum. In general, conditionals are lifted into guards—producing mutually exclusive and collectively
exhaustive predicates over the index function domain.
Formal arguments like xs and 𝑝 are treated as uninterpreted functions, which exhibit function

congruence and may be the subject of properties in the environment. Variables are overloaded: xs
is used to refer both to the source-level array as well as the corresponding index function that P2
reasons with. For example, xs(𝑖) is an application of the function xs to the index 𝑖 , while xs[𝑖] is
source-level expression that indexes into the array xs.

Normalization. Rewrite rules normalize all expressions: n_right is normalized through the rewrite
sequence shown in Fig. 4. Each step applies a rewrite rule (introduced in Sections 4.2 and 4.4):
(1) Scan introduces a recurrence ⟲ based on scan’s semantics; (2) RecSum (strength reduction)
converts the recurrence to a closed-form sum; (3) JoinSums2 absorbs the base term into the sum;
(4) Sub replaces right (𝑖) with its guarded expression; (5) Hoist hoists the nested guard [true] to
the outer guarded expression; (6) SplitSum splits the sum; and (7) SumConst eliminates a sum.

8 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin Oancea

Together, substitution and hoisting of guarded expressions enables P2 to automatically track
positional dependencies backwards to the formal arguments of a function. Each index function
shown in Fig. 4 has been produced by our system, and a user can inspect those functions to get an
idea for what knowledge P2 has inferred about the program. For example, idx’s index function says
that if 𝑝 (xs(𝑖)) is true, index 𝑖 maps to the count of preceding true elements; if false, index 𝑖 maps
to 𝑖 plus the count of subsequent true elements.

Handling scatter. Scatter is the only source construct requiring multiple translation rules due to
its determinism side condition in Eq. (1). For example, at line 12 in Fig. 1, the indices idx used to
update the destination array zeros are a permutation of zeros’ indices. Semantically, the result is
ys[idx [𝑖]] = xs[𝑖] for each index 𝑖 . The rule below exploits this by verifying the equivalent premise
that idx is a bijection over zeros’ index function domain:

Scatter2
Γ ⊢ Bij idx 0..|xs | 0..|xs | fresh 𝑖

Γ ⊢ scatter zeros idx xs → 𝜆 (𝑖 : 0..|xs |) . [true] ∗ xs(idx−1 (𝑖))

The bijection property Bij idx 0..|xs | 0..|xs | says that idx |idx−1 (0.. |xs |) bijectively maps to 0..|xs |, where
idx |idx−1 (0.. |xs |) restricts the domain of idx to indices that map to 0..|xs | (i.e., ignoring elements
outside this range in the underlying array). This restriction captures scatter’s semantics, which
ignores out-of-bounds values in the source array. To verify the bijection, P2 queries the property
layer (Section 3.2), which proves the property and reports back to the index function layer. The
index function layer then exploits idx’s invertibility to produce ys’ index function in Fig. 4. A more
general scatter rule appears in Appendix B.1.1. When no rule applies to a scatter, we create an
uninterpreted index function over the destination array’s indices by indexing into a fresh name.

This final index function for ys is bound to partition in the environment—ready for verification
against its postcondition—along with information about its parameters and preconditions.

3.2 Property layer
The property layer proves properties needed by the index function layer and verifies pre- and
postconditions. It operates at two levels: proving properties using high-level reasoning (e.g., partition
preserves range) and decomposing properties into low-level algebraic queries for the algebra layer.

Low-level algebraic reasoning. To prove the Bij idx 0..|xs | 0..|xs | property required above, the
property layer decomposes it into its proof obligation (i.e., its definition) and dispatches this to the
algebra layer: injectivity (∀𝑖, 𝑗 ∈ 0..|xs | . 𝑖 < 𝑗 ⇒ idx (𝑖) ≠ idx (𝑗)) and surjectivity (∀𝑖 ∈ 0..|xs | . 0 ≤
idx (𝑖) < |xs |). These are discharged by our algebraic solver (Sections 3.3 and 4.4), after which the
bijection property is recorded into the environment.
After traversing the body and populating its environments with inferred facts, P2 verifies the

postcondition under the constructed context. For partition, verifying 𝜆𝑦𝑠. Part ys xs (𝜆𝑖. 𝑝 𝑥𝑠 [𝑖])
proceeds in two steps. First, P2 checks that ys’s index function has the form 𝜆 (𝑖 : 0..𝑛) . [true] ∗
𝑥𝑠 (𝑧−1 (𝑖)) for some index array 𝑧 (here 𝑧 = idx). Second, it proves the partition property by

Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 9

def filter (𝑝 : i64 → bool) (xs : []f64) : []f64 | 𝜆𝑦𝑠. Filt ys xs (𝜆𝑖. 𝑝 𝑖)
Analogous to partition in Fig. 1; uses scatter.

def get_smallest_edges (edges : []i64 | Range edges 0.. |H |) (is : []i64 | Inj is (−∞) ..∞∧ Equiv |edges | |is |)
(H : []i64) : []i64 | 𝜆𝑒𝑑𝑔𝑒𝑠′ . Inj edges′ (−∞) ..∞

let edges′ = filter (𝜆𝑖. 𝐻 [𝑒𝑑𝑔𝑒𝑠 [𝑖]] = 𝑖𝑠 [𝑖]) edges in 𝑒𝑑𝑔𝑒𝑠′

Fig. 5. A simplified excerpt from a maximal matching algorithm.

establishing the corresponding inverse-partition property on idx (shown in Fig. 8) via the queries

Bij idx 0..|xs | 0..|xs | (bijective)
∀𝑖, 𝑗 ∈ 0..|xs | . ((𝑝 (xs(𝑖)) ∨ ¬𝑝 (xs(𝑖)))

∧ (𝑖 < 𝑗 ∧ 𝑝 (xs(𝑖)) ∧ 𝑝 (xs(𝑗)) ⇒ idx (𝑖) < idx (𝑗))
∧ (𝑖 < 𝑗 ∧ 𝑝 (xs(𝑖)) ∧ ¬𝑝 (xs(𝑗)) ⇒ idx (𝑖) < idx (𝑗))
∧ (𝑖 < 𝑗 ∧ ¬𝑝 (xs(𝑖)) ∧ ¬𝑝 (xs(𝑗)) ⇒ idx (𝑖) < idx (𝑗))
∧ (𝑖 < 𝑗 ∧ ¬𝑝 (xs(𝑖)) ∧ 𝑝 (xs(𝑗)) ⇒ idx (𝑖) > idx (𝑗)))

(partition)

The property layer proves each formula by querying the environment: (bijective) follows immedi-
ately from the environment, while (partition) is dispatched to the algebraic solver.

High-level property reasoning. A key component of P2’s property reasoning is property propaga-
tion. Properties about range, injectivity, bijectivity, and filtering are all preserved under permutation.
Since partition has the Part property in its postcondition (which P

2 verified), applying it to an input
array xs (e.g., let ys = partition 𝑝 𝑥𝑠) with any of these properties automatically propagates them
to 𝑦𝑠 for further exploitation. Property propagation enables inference over uninterpreted functions
by propagating index array properties to data arrays (e.g., in the above example, 𝑦𝑠’ index function
may be uninterpreted) and reduces the annotation burden in general.
P
2 can be used to extend compilers with more sophisticated property-based reasoning, such

as reasoning about partitions across conditionals (Appendix B.2.2) and verifying properties over
uninterpreted expressions without direct propagation. To illustrate this latter point, consider the
function get_smallest_edges in Fig. 5, which filters edges by indexing into an array𝐻 that stores the
smallest index for each edge. Although the input edges may contain duplicates, we must verify that
the filtered output 𝑒𝑑𝑔𝑒𝑠′ has unique values (i.e., Inj edges′ (−∞)..∞). From filter’s postcondition,
𝑒𝑑𝑔𝑒𝑠′ is a filtered permutation of edges where elements satisfying 𝐻 (edges(𝑖)) = is(𝑖) are kept. P2
applies the property rule FilterInj (Fig. 11) that generates a proof obligation that augments the
injectivity proof obligation with the filter predicate. This yields the query

∀𝑖, 𝑗 ∈ 0..|edges | . 𝐻 (edges(𝑖)) = is(𝑖) ∧ 𝐻 (edges(𝑗)) = is(𝑗) ∧ edges(𝑖) = edges(𝑗) ⇒ 𝑖 = 𝑗

Enriching this querywith transitive equalities derived from edges(𝑖) = edges(𝑗), yields𝐻 (edges(𝑖)) =
𝐻 (edges(𝑗)) and crucially 𝑖𝑠 (𝑖) = 𝑖𝑠 (𝑗). Since is is injective (from the precondition), 𝑖𝑠 (𝑖) = 𝑖𝑠 (𝑗)
implies 𝑖 = 𝑗 , which proves the injectivity of edges′ through the injectivity of is. We implement
this high-level reasoning example and use it to verify the maximal matching program in the
Problem-Based Benchmark Suite [2] (Section 5). See Appendix C.3 for more details.

3.3 Algebra layer
P
2’s algebra layer extends Fourier-Motzkin elimination [16, 49] with reasoning about sums, indexing

and mutually exclusive boolean variables. Zooming in on the (partition) query above, P2 substitutes
applications of idx for its guarded expressions in Fig. 4, conjoining guards with the antecedent of

10 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin Oancea

def flags (s : i64[] | Range s 0..∞)
(𝑥 : []i64 | Equiv |s | |x |)
: []i64 | 𝜆𝑓 . Equiv |f | (sum s) =

let srotated = map (𝜆𝑖. . . .) (0.. |s |)
let ssum = scan (𝜆𝑥 𝑦. 𝑥 + 𝑦) 0 srotated
let idx = map (𝜆𝑠𝑖𝑧𝑒 𝑖. . . .) s ssum
let n =

if |s | > 0 then s[|s | − 1] + 𝑠sum [|s | − 1] else 0
let zeros = map (𝜆𝑥. 0) (0..n)
let f = scatter zeros idx x in 𝑓

(a) Computing the flag array.

1. 𝜆 (𝑖1 : 0.. |s | × 𝑖2 : 0..𝑠 (𝑖1)) .{
[
∑𝑖1−1

𝑗=0 (𝑠 (𝑗)) + 𝑖2 = 0 ∨ 𝑓 (∑𝑖1−1
𝑗=0 (𝑠 (𝑗)) + 𝑖2)] ∗ 𝑦 (. . .)

[
∑𝑖1−1

𝑗=0 (𝑠 (𝑗)) + 𝑖2 ≠ 0 ∧ ¬𝑓 (∑𝑖1−1
𝑗=0 (𝑠 (𝑗)) + 𝑖2)] ∗ (⟲ +𝑦 (. . .))

2. 𝜆 (𝑖1 : 0.. |s | × 𝑖2 : 0..𝑠 (𝑖1)) .
{
[𝑖2 = 0] ∗ 𝑦 (∑𝑖1−1

𝑗=0 (𝑠 (𝑗)) + 𝑖2)
[𝑖2 ≠ 0] ∗ (⟲ + 𝑦 (. . .))

3. 𝜆 (𝑖1 : 0.. |s | × 𝑖2 : 0..𝑠 (𝑖1)) .
{
[𝑖2 = 0] ∗ (𝑖1 + 1)
[𝑖2 ≠ 0] ∗ (⟲ +0)

4. 𝜆 (𝑖1 : 0.. |s | × 𝑖2 : 0..𝑠 (𝑖1)) . [true] ∗ (𝑖1 + 1)

(b) Rewrites for a segmented sum using 𝑓 = 𝑦 = flags.

Fig. 6. P
2
infers and propagates flattened irregular structure.

the query. For example, for the third conjunct of the (partition) query, the system rewrites
(𝑖 < 𝑗 ∧ 𝑝 (xs(𝑖)) ∧ ¬𝑝 (xs(𝑗)) ⇒ idx (𝑖) < idx (𝑗))

by substituting idx for the guarded expressions in Fig. 4 (highlighted in green).

(𝑖 < 𝑗∧𝑝 (xs(𝑖))∧¬𝑝 (xs(𝑗))∧ 𝑝 (xs(𝑖)) ∧ ¬𝑝 (xs(𝑗)) ⇒ ∑𝑖−1
𝑘=0(𝑝 (xs(𝑘))) < 𝑗 +∑ |xs |−1

𝑘=𝑗+1 (𝑝 (xs(𝑘))))
This corresponds to Eq. (2)—the failing query in Section 2.1.2. P2 checks the inequality on the RHS
of the guard, to do so it exploits its environment of properties, which are converted into ranges and
equivalences to make them amenable to Fourier-Motzkin elimination. Performing this translation
for the properties that are relevant to the third conjunct yields the following algebraic environment:

Ranges︷ ︸︸ ︷
0 ≤ 𝑗 < 𝑖 < |xs |
∀𝑘 . 0 ≤ 𝑝 (xs(𝑘)) ≤ 1

Equivalences︷ ︸︸ ︷
𝑝 (xs(𝑖)) = 1
𝑝 (xs(𝑗)) = 0

Inequality to solve︷ ︸︸ ︷∑𝑖−1
𝑘=0(𝑝 (xs(𝑘))) < 𝑗 +∑ |xs |−1

𝑘=𝑗+1 (𝑝 (xs(𝑘))) (3)

Standard Fourier-Motzkin elimination fails to verify the inequality, yielding 𝑖 < 𝑗 + 0 when
maximizing the LHS and minimizing the RHS under the ranges. Notice that the RHS term 𝑗 is
an upper bound for

∑𝑗−1
𝑘=0 (𝑝 (xs(𝑘))), which overlaps with the LHS sum

∑𝑖−1
𝑘=0 (𝑝 (xs(𝑘))). Hence,

the RHS is an upper bound on those terms on the LHS and also includes 𝑝 (xs(𝑖)) = 1 since 𝑗 < 𝑖 .
The standard method cannot reason about overlapping sums nor exploit the equivalences in the
environment because neither of the sums include the terms 𝑝 (xs(𝑖)) or 𝑝 (xs(𝑗)). P2 uses a three-step
tactic to eliminate overlap between sums and facilitate the use of equivalences and ranges:
Step 1 Extend sums to include terms with known equivalences.
Step 2 Simplify sums (e.g., eliminate overlap between terms of different signs and absorb terms).
Step 3 Split sums to separate out terms with known equivalences or more specialized ranges.
Step 1 rewrites the inequality in Eq. (3) to

∑ 𝑖
𝑘=0 (𝑝 (xs(𝑘))) − 1 < 𝑗 +∑ |xs |−1

𝑘= 𝑗 (𝑝 (xs(𝑘))) − 0 . Step
2 simplifies this to 0 < 𝑗 + 1 +∑ |xs |−1

𝑘= 𝑖 + 1 (𝑝 (xs(𝑘))) −
∑ 𝑗 − 1

𝑘=0 (𝑝 (xs(𝑘))). Step 3 does nothing here,
but the result is now solvable by Fourier-Motzkin: 0 < 𝑗 + 1 + 0 − 𝑗 ⇐⇒ 0 < 1.

3.4 Segmented parallel operations
High-performance array languages typically only support regular arrays due to hardware mapping
constraints, therefore jagged arrays must be represented as flat data arrays with auxiliary arrays
encoding shape. For example, the flag auxiliary array for the jagged array [[𝑥1, 𝑥2], [], [𝑥3, 𝑥4, 𝑥5],
[𝑥6, 𝑥7, 𝑥8]] is [1, 0, 3, 0, 0, 4, 0, 0] where each non-zero element denotes the start of a row (thereby
encoding the shape). Flag arrays are used to lift bulk-parallel operations to irregular arrays. For

Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 11

Variable 𝑥,𝑦, 𝑧, 𝑖, 𝑗, 𝑘

Constant 𝑛,𝑚 ∈ Z
Term 𝑡 ::= 𝑛 | 𝑠 | 𝑠 · 𝑡

Expression 𝑒 ::= 𝑡 | 𝑡 + 𝑒
𝑡1 + . . . + 𝑡𝑛 =

𝑛∑︁
𝑗=1

𝑡 𝑗 =


𝑡1...
𝑡𝑛

Fig. 7. Polynomial expression syntax parameterized by symbols 𝑠 .

example, segmented scan [4]—which scans each jagged row—is implemented as a scan with lifted
operator on the flag (𝑓) and data arrays (𝑦):

seg_sum 𝑓 𝑦 = scan (𝜆(𝑓1, 𝑦1) (𝑓2, 𝑦2). (𝑓1 + 𝑓2, if 𝑓2 > 0 then 𝑦2 else 𝑦1 +𝑦2)) (0, 0) (zip f y) (4)

In our context, one of the challenges of verifying flattened programs is establishing the connection
between the data array and the auxiliary arrays they compute. To illustrate, Fig. 6a computes a flag
array. The inferred index function, shown below, represents irregular arrays through a 2D index
domain where the inner dimension depend on the outer one:

flags = 𝜆 (𝑖1 : 0..|s | × 𝑖2 : 0..𝑠 (𝑖)) . [𝑖2 = 0] ∗ 𝑥 (𝑖1) + [𝑖2 ≠ 0] ∗ 0. (5)

The syntax × denotes that the two dimensions correspond to one flat dimension in the source
program. This representation also captures empty rows: when 𝑖1 = 1, then 0..𝑠 (𝑖) = 0..0 = ∅. The
crucial point is that P2 is able recover the original 2D irregular structure in the index function
inferred from the flattened program. Indeed, we can see this explicitly by writing flags as an
irregular nested array: flags =map (𝜆𝑖.map (𝜆 𝑗 . if 𝑗 = 0 then 𝑥 (𝑖) else 0) 0..s(i)) 0..|s |.

Inferring this two-dimensional structure from flattened source programs is essential for proving
queries over index functions. Since these representations require flag arrays produced via scatter
with data-dependent writes, we infer this structure by matching scatters whose in-bounds indices
are monotonically increasing (i.e., indices that define row offsets for non-empty rows).
Another auxiliary array is the segment ids: [1, 1, 3, 3, 3, 4, 4, 4], which can be computed with a

segmented scan over a flag array. The index function inferred for seg_sum in Eq. (4) is

𝜆 (𝑖0 : 0..|f |) . [𝑖0 = 0 ∨ 𝑓 (𝑖0) > 0] ∗ 𝑦 (𝑖0) + [𝑖0 ≠ 0 ∧ 𝑓 (𝑖0) ≤ 0] ∗ (⟲ + 𝑦 (𝑖0)) (6)

from which—in the case of segment ids—P2 derives the index function as 𝜆 (𝑖1 : 0..|s | × 𝑖2 :
0..𝑠 (𝑖1)) . [true] ∗ (𝑖1 + 1) by substituting 𝑓 and 𝑦 for flag arrays. Figure 6b shows key rewrites:
(1) propagate flags’ flat domain into Eq. (6), expressing 𝑖0 as row offset

∑𝑖1−1
𝑗=0 (𝑠 (𝑗)) plus row index 𝑖2;

(2) substitute 𝑓 and simplify; (3) substitute flags for 𝑦, yielding a recurrence with base cases at each
irregular row and recurrent cases replicating the previous value. Details appear in Appendix C.1.
This approach enables lifting partition over each row of a flat irregular array (Section 5.1.1).

4 Formalization
We begin the formalization by introducing common concepts.
Expressions 𝑒 are polynomials over symbols 𝑠 (Fig. 7). The index function and algebra layers

both use this polynomial representation, but over different symbols 𝑠 . Symbol and term
order in expressions is syntactically irrelevant, and expression multiplication is defined by
distribution over addition. For example: 𝑥 · (𝑦+𝑥 · (1+𝑦)) = 𝑥 ·𝑦+𝑥 ·𝑥 · (1+𝑦) = 𝑥 ·𝑦+𝑥2+𝑥2 ·𝑦.
Sums

∑
and cases syntax { are shorthand for addition of terms (e.g., used for idx’s index

function in Fig. 4), and 𝑒1 − 𝑒2 is sugar for 𝑒1 + (−1) · 𝑒2.
𝑌 and 𝑍 denote contiguous integer sets. For example, 𝑌 = 0..𝑛 is the set of integers from 0 to 𝑛 − 1.
𝑥 |𝑌 is the restriction of index function 𝑥 to a smaller domain 𝑌 : 𝑥 |𝑌 is a new index function

identical to the original index function 𝑥 except it is defined only over domain 𝑌 ⊆ dom(𝑥).

12 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin Oancea

Property Proof obligation

Range x 𝑌 ∀𝑖 ∈ 0.. |x | . 𝑥 (𝑖) ∈ 𝑌

Mono 𝑥 ≺ ∀𝑖, 𝑗 ∈ 0.. |x | . 𝑖 < 𝑗 ⇒ 𝑥 (𝑖) ≺ 𝑥 (𝑗)
Equiv 𝑥 𝑦 |x | = |y | ∧ ∀𝑖 ∈ 0.. |x | . 𝑥 (𝑖) = 𝑦 (𝑖)
Inj x 𝑌 ∀𝑖, 𝑗 ∈ 0.. |x | . 𝑥 (𝑖) ∈ 𝑌 ∧ 𝑥 (𝑖) = 𝑥 (𝑗) ⇒ 𝑖 = 𝑗

∨ ∀𝑖, 𝑗 ∈ 0.. |x | . 𝑥 (𝑖) ∈ 𝑌 ∧ 𝑥 (𝑗) ∈ 𝑌 ∧ 𝑖 ≠ 𝑗 ⇒ 𝑥 (𝑖) ≠ 𝑥 (𝑗)
Bij x 𝑌 𝑍 Inj x 𝑌 ∧ 𝑍 ⊆ 𝑌 ∧ |𝑍 | = | {𝑥 (𝑖) ∈ 𝑌 | 𝑖 ∈ 0.. |x | } |
InvFiltPart x Z 𝑝𝑓 (𝑝1, . . . , 𝑝𝑛) Bij x 𝑍 𝑍 ∧ |𝑍 | =∑

𝑗 ∈0..|x | 𝑝𝑓 (𝑖)
∧ ∀𝑞, 𝑟 ∈ {1, . . . , 𝑛} . ∀𝑖, 𝑗 ∈ 0.. |x | .(

𝑞 ≠ 𝑟 ⇒ ¬𝑝𝑞 (𝑖) ∨ ¬𝑝𝑟 (𝑖)
)

∧
(
𝑖 < 𝑗 ∧ 𝑞 ≤ 𝑟 ∧ 𝑝𝑞 (𝑖) ∧ 𝑝𝑟 (𝑗) ∧ 𝑝𝑓 (𝑖) ∧ 𝑝𝑓 (𝑗) ⇒ 𝑥 (𝑖) < 𝑥 (𝑗)

)
∧

(
𝑖 < 𝑗 ∧ 𝑞 > 𝑟 ∧ 𝑝𝑞 (𝑖) ∧ 𝑝𝑟 (𝑗) ∧ 𝑝𝑓 (𝑖) ∧ 𝑝𝑓 (𝑗) ⇒ 𝑥 (𝑖) > 𝑥 (𝑗)

)
FiltPart y x 𝑝𝑓 (𝑝1, . . . , 𝑝𝑛) InvFiltPart z (0..∑j∈0..|x | pf (i)) 𝑝𝑓 (𝑝1, . . . , 𝑝𝑛)

where 𝑦 ↦→ 𝜆 (𝑖 : 0..
∑

𝑗 ∈0..|x | 𝑝𝑓 (𝑖)) . true ⇒ 𝑥 (𝑧−1 (𝑖))
Filt y x 𝑝 FiltPart y x 𝑝 (𝜆𝑖. true)
Part y x 𝑝 FiltPart y x (𝜆𝑖. true) (𝑝, 𝜆𝑖.¬𝑝 (𝑖))

Fig. 8. Array properties and the sufficient conditions to establish them.

𝑥 |𝑥−1 (𝑌) is the restriction of index function 𝑥 to the preimage of a (smaller) codomain 𝑌 : 𝑥 |𝑥−1 (𝑌)
is a new index function identical to the original index function 𝑥 except it is defined only
over domain 𝑥−1 (𝑌) = {𝑖 ∈ dom(𝑥) | 𝑥 (𝑖) ∈ 𝑌 }.

Environments (Γ) map variables to index functions and properties, with subenvironments ΓIxfn
for index functions, ΓRange for ranges, and so on for each property in Fig. 8. Unbound
variables map to ∅. We write Γ, 𝑥 ↦→ 𝑓 to extend ΓIxfn mapping 𝑥 to 𝑓 , and Γ,Range x 0..𝑒
to extend ΓRange, etc. Range and Equiv properties are combined by a process described in
Section 4.4. Environments are extended with predicates directly: Γ, 𝑒1 = 𝑒2, 0 ≤ 𝑖 < 𝑗 < 𝑛

adds equivalences derived from 𝑒1 = 𝑒2 to ΓEquiv and ranges from 0 ≤ 𝑖 < 𝑗 < 𝑛 to ΓRange.
Query (Γ, 𝑝) asks the question: Is 𝑝 true under environment Γ? Our solver either returns Yes or

Unknown (Section 4.4). When used in inference rule premises, the answer must be Yes.
𝑒1 [𝑥/𝑒2] substitutes 𝑒2 for 𝑥 in 𝑒1.
fv(·) and bv(·) denote free and bound variables of an object, respectively.

4.1 Array properties
P
2 proves properties from a small, curated set to ensure tractable reasoning. Figure 8 presents

each property and its proof obligation—a conjunction of properties and/or algebraic (in)equalities
that must be verified to establish the property. Properties are expressed over (array) variables but
reasoned about using their corresponding index functions.

Range 𝑥 𝑌 says that the values of array 𝑥 are in𝑌 . Mono 𝑥 ≺ says that array 𝑥 ’s values are ordered
according to the relation ≺. Equiv 𝑥 𝑦 says that the index functions of 𝑥 and𝑦 are equivalent. Inj x 𝑌
says that index function 𝑥 |𝑥−1 (𝑌) is injective. Bij x 𝑌 𝑍 says that index function 𝑥 |𝑥−1 (𝑌) is bijective
and the image of 𝑥 |𝑥−1 (𝑌) is 𝑍 (a subset of 𝑌). No indices are mapped into 𝑌 −𝑍 , enabling the user to
specify, e.g., that all non-negative values (𝑌 = 0..∞) map bijectively to 𝑍 = 0..𝑛 with Bij x 0..∞ 0..𝑛.
Because filtering and partitioning compose commutatively, they’re unified into one property.

Predicates 𝑝 are index functions from indices to booleans. FiltPart 𝑦 𝑥 𝑝 𝑓 (𝑝1, . . . , 𝑝𝑛) says that 𝑦 is
equivalent to 𝑥 with indices filtered by 𝑝 𝑓 and𝑛+1-way partitioned by (𝑝1, . . . , 𝑝𝑛), yielding an index
function of the form 𝑥 (𝑧−1 (𝑖)) that the proof obligation matches on. InvFiltPart x Z 𝑝 𝑓 (𝑝1, . . . , 𝑝𝑛)

Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 13

Index fun. 𝑓 ::= 𝜆 (𝐷) . 𝑒

Domain 𝐷 ::= 𝑖 : 0..𝑒
Symbol 𝑠 ::= 𝑥 | [𝑝] ∗ 𝑒 | 𝑥 (𝑒) | 𝑥−1 (𝑒) | ∑𝑒

𝑥=𝑒 (𝑒) | ⟲ | 𝑝
Predicate 𝑝 ::= 𝑥 | true | false | ¬𝑝 | 𝑝 ∧ 𝑝 | 𝑝 ∨ 𝑝 | 𝑒 ≤ 𝑒 | 𝑥 (𝑒) | ⟲

C ::= □ | C + 𝑒 | C · 𝑡 | [C] ∗ 𝑒 | [𝑝] ∗ C | 𝑥 (C) | 𝑥−1 (C) | ∑𝑒
𝑥=C (𝑒) | ∑C

𝑥=𝑒 (𝑒)
| ∑𝑒

𝑥=𝑒 (C) | ¬C | C ∧ 𝑝 | 𝑝 ∧C | C ∨ 𝑝 | 𝑝 ∨ C | C ≤ 𝑒 | 𝑒 ≤ C

Fig. 9. Index function and expression syntax. Reduction context grammar (C).

is the dual: it captures scatter/gather behavior where 𝑥 is used as the index array. For exam-
ple, scatter z x y where |z | = |Z | and map (𝜆𝑖. 𝑦 [𝑖]) (x |x−1 (Z))

−1 are equivalent to filtering
𝑦 by 𝑝 𝑓 and partitioning by (𝑝1, . . . , 𝑝𝑛). P2 verifies: (1) 𝑝 𝑓 holds for exactly |𝑍 | indices in 𝑥 ,
and (2) 𝑥 |𝑥−1 (𝑍) permutes 𝑍 such that each partition occupies a contiguous range: indices sat-
isfying 𝑝 𝑓 ∧ 𝑝1 map to 0, 1, . . . ,

∑
𝑖∈𝑍 (𝑝 𝑓 (𝑖) ∧ 𝑝1 (𝑖)) − 1; indices satisfying 𝑝 𝑓 ∧ 𝑝2 map to∑

𝑖∈𝑍 (𝑝 𝑓 (𝑖) ∧ 𝑝1 (𝑖)), . . . ,
∑

𝑖∈𝑍 (𝑝 𝑓 (𝑖) ∧ 𝑝1 (𝑖)) +
∑

𝑖∈𝑍 (𝑝 𝑓 (𝑖) ∧ 𝑝2 (𝑖)) − 1; and so on for each
𝑝 𝑗 in sequence. Filt 𝑦 𝑥 𝑝 and Part 𝑦 𝑥 𝑝 are aliases for filtering and 2-way partitioning.

4.2 Index function layer
Index functions have the form 𝜆 (𝐷) . 𝑒 where 𝐷 is the domain and 𝑒 is a guarded expression
(Fig. 9). Guarded expressions are polynomials (i.e., sums of products) defined piecewise by guards—
predicates 𝑝 in Iverson brackets [·]—that must partition the domain, though this is not enforced
syntactically (see Section 3.1 for details). Reduction contexts C define where a subexpression occurs
in an expression (shown in Fig. 9). C⟨𝑒⟩ denotes the expression obtained by replacing □ with 𝑒 in
the context C. For example, if C = [𝑝1]∗𝑒1+ [𝑝2]∗𝑥1 (□), then C⟨𝑒2⟩ is C = [𝑝1]∗𝑒1+ [𝑝2]∗𝑥1 (𝑒2).
We may omit writing trivial guards and coefficients: [true] ∗ 𝑡 = 𝑡 and [𝑝] ∗ 1 = [𝑝]. Guard

multiplication yields logical conjunction: [𝑝1] ∗ 1 · [𝑝2] ∗ 𝑒1 = [𝑝1 ∧ 𝑝2] ∗ 𝑒1. Hence each term in an
expression has at most one guard. Together with expression multiplication, this combines guards:

([𝑥]∗𝑦+ [¬𝑥]∗1) · ([𝑧]∗0+ [¬𝑧]∗𝑦) = [𝑥∧𝑧]∗0+ [𝑥∧¬𝑧]∗𝑦2+ [¬𝑥∧𝑧]∗2+ [¬𝑥∧¬𝑧]∗𝑦 (7)

such that the partition of the domain is maintained. Scalars are single element arrays: 𝜆 () . 𝑔

abbreviates 𝜆 (𝑖 : 0..1) . 𝑔. Comparisons are syntactic sugar: 0 ≤ 𝑒1 < 𝑒2 is (0 ≤ 𝑒1) ∧ (𝑒1 + 1 ≤ 𝑒2).
Inference rules match to expressions and index functions via unification with bound variables [39].

4.2.1 Source language conversion. Figure 10 gives rules for converting the source language to index
functions. The judgment Γ ⊢ 𝑒∗ → 𝑓 states that source expression 𝑒∗ has index function 𝑓 under
environment Γ. Arrays are assumed to be one-dimensional (this restriction is lifted in Section 4.2.3).
Idx converts array indexing with bounds checking. Var converts variables to index functions.
Map and Scan convert the corresponding SOACs by binding the lambda’s argument to the array
argument’s index function with the outer dimension dropped, extending the environment with the
now-captured index variable 𝑖’s range, and then deriving the lambda body. For Scan, two guards are
introduced for the base and recursive cases, where the accumulator is replaced by the recurrence
symbol⟲ (illustrated in the derivation of n_left in Fig. 4.) Index functions introduced by the SOAC
rules inherit the array argument’s domain, so that array shapes are propagated from the formal
arguments of a function. Each rule implicitly returns a new environment; the proper judgment is
Γ ⊢ 𝑒∗ → (Γ, 𝑓) where the returned environment has been extended with any properties proven in
the rule premises or inferred in Let using the rules in Section 4.3. The complete conversion rules are
in Appendix B.1.1. Untranslatable expressions are treated as uninterpreted functions by introducing
an index function that indexes a fresh name over some domain (possibly of unknown size).

14 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin Oancea

Γ ⊢ 𝑒∗ → 𝑓

Let

Γ ⊢ 𝑒∗1 { 𝑓1
Γ, 𝑥 ↦→ 𝑓1 ⊢ 𝑒∗2 { 𝑓2

Γ ⊢ let x = 𝑒∗1 in 𝑒∗2 → 𝑓2
Idx

Γ ⊢ 𝑒∗ { 𝜆 () . 𝑒

Query (Γ, 0 ≤ 𝑒 < |x |)
Γ ⊢ 𝑥 [𝑒∗] → 𝜆 () . 𝑥 (𝑒)

Var
fresh 𝑖

Γ ⊢ 𝑥 → 𝜆 (𝑖 : 0.. |x |) . 𝑥 (𝑖)

Map
Γ (𝑥2) = 𝜆 (𝑖 : 0..𝑒1) . 𝑒2 Γ, 𝑥1 ↦→ 𝜆 () . 𝑒2,Range i 0..𝑒1 ⊢ 𝑒∗ { 𝜆 () . 𝑒3

Γ ⊢ map (𝜆𝑥1 . 𝑒∗) x2 → 𝜆 (𝑖 : 0..𝑒1) . 𝑒3

Scan
Γ (𝑥3) = 𝜆 (𝑖 : 0..𝑒1) . 𝑒2 Γ, 𝑥2 ↦→ 𝜆 () . 𝑒2,Range i 0..𝑒1 ⊢ 𝑒∗1 { 𝜆 () . 𝑒3

Γ ⊢ scan (𝜆𝑥1 𝑥2 . 𝑒∗1) 𝑒∗2 x3 → 𝜆 (𝑖 : 0..𝑒1) . [𝑖 = 0] ∗ 𝑒2 + [𝑖 ≠ 0] ∗ 𝑒3 [𝑥1/⟲]

Γ ⊢ 𝑓 → 𝑓RecSum
⟲ does not occur in 𝑒2 nor in

∑
𝑗 𝑡 𝑗 fresh 𝑥

Γ ⊢ 𝜆 (𝑖 : 0..𝑒1) . [𝑖 = 0] ∗ 𝑒2 + [𝑖 ≠ 0] ∗ (⟲ +∑
𝑗 𝑡 𝑗) → 𝜆 (𝑖 : 0..𝑒1) . 𝑒2 [𝑖/0] +

∑
𝑗

∑𝑖
𝑥=1 (𝑡 𝑗 [𝑖/𝑥])

Γ ⊢ 𝑒 → 𝑒

Sub
Γ (𝑥) = 𝜆 (𝑖 : 0..𝑒2) . 𝑒3

Γ ⊢ C⟨𝑥 (𝑒1) ⟩ → C⟨ (𝑒3 [𝑖/𝑒1]) ⟩
Hoist

Γ ⊢ [
∨

𝑗 𝑝 𝑗] { [true] bv(C) ∩
(⋃

𝑗 fv(𝑝 𝑗)
)
= ∅

Γ ⊢ C⟨∑𝑗 [𝑝 𝑗] ∗ 𝑒 𝑗 ⟩ → (∑𝑗 [𝑝 𝑗] ∗ 1) · (C⟨𝑒 𝑗 ⟩)

Fig. 10. Converting the source language to index functions (selected rules). Normalization (selected rules).

4.2.2 Normalization. Figure 10 shows normalizing rewrite rules that are applied to a fixed point
after each source language conversion step. RecSum rewrites recurrences introduced by scan into
closed-form sums, as seen in rewrite (2) of n_left in Fig. 4. The rule requires that⟲ appears exactly
once in the recurrence step and not in the base case ([𝑖 = 0]) or summed terms. (Note

∑
is distinct

from the sum symbol
∑
.) Sub substitutes index functions into other index functions by reduction

over indexing symbols, yielding nested guarded expressions. Multiplication of expressions and
guards naturally distributes nested guards over the outer guards, while preserving the mutually
exclusive and collectively exhaustive (MECE) property as shown in Eq. (7). Hoist moves guards that
are nested inside a symbol to the root of the sorrounding expression (the context C), provided that no
guard depends on a variable bound in C. The MECE property of guards ensures the transformation’s
validity: exactly one term in the sum

∑
𝑗 [𝑝 𝑗] equals 1 while all others equal 0. Together, Sub and

HoistGuards enable P2 to track positional dependencies backwards to the formal arguments of a
top-level definition. Appendix B.1.2 includes rewrites that simplify terms under assumption of their
guards, join guards in disjunction when all of their terms are equivalent under either of the guards,
query predicates to prove them true, and falsify and eliminate contradictory guards, and similarly.

4.2.3 Multi-dimensional arrays. The source language allows multi-dimensional arrays with re-
shaping via flatten : [] []𝛼 → []𝛼 , which collapses two dimensions into one. To support this, we
augment the index function grammar (Fig. 9) with multiple arguments and flattened dimensions:

𝐷 ::= 𝑖 : 0..𝑒 | 𝑖 : 0..𝑒, 𝐷 | 𝑖 : 0..𝑒 × 𝐷 𝑠 ::= . . . | 𝑥 (𝑒, . . . , 𝑒) | %𝐷 (𝑒idx) | . . .

where 𝑖 : 0..𝑒 × 𝐷 denotes multiple dimensions flattened into one, and %𝐷 (𝑒idx) is used to rewrite
an index expression in terms of a flat domain 𝐷’s index variables. Rules Flatten and PropFlatten
(Appendix B.1.4) use these to syntactically preserve and propagate shape information about flattened
arrays. Existing rules (Fig. 10) require few changes: Var creates domains matching array shapes, Idx
checks bounds per dimension, other rules require minor arity changes to match array ranks (which
we require to be statically known), and flat and multi-dimensional domains must be matched alike.

Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 15

PreserveInj
Γ
FiltPart

(𝑥1) = (𝑥2, 𝑓1, (𝑓2, . . . , 𝑓𝑛)) Γ ⊢ Inj x2 𝑌
Γ ⊢ Inj x1 𝑌

InjSubset
ΓInj (𝑥) = 𝑌2 Query (Γ, 𝑌1 ⊆ 𝑌2)

Γ ⊢ Inj x 𝑌1

InjMono<
Γ ⊢ Mono 𝑥 |𝑥−1 (𝑌) <

Γ ⊢ Inj x 𝑌

FilterInj
Γ
FiltPart

(𝑥1) = (𝑥2, (𝜆 (𝑖2 : 0..𝑒1) . 𝑝), (𝑓1, . . . , 𝑓𝑛)) Γ (𝑥2) = 𝜆 (𝑖1 : 0..𝑒1) . 𝑒2
Γ ⊢ 𝜆 (𝑖1 : 0..𝑒1) . [𝑝 [𝑖2/𝑖1]] ∗ 𝑥2 (𝑖1) + [¬𝑝 [𝑖2/𝑖1]] ∗ ⊥ { 𝑓 fresh 𝑥3 Γ, 𝑥3 ↦→ 𝑓 , 𝑝 [𝑖2/𝑖1] ⊢ Inj x3 𝑌

Γ ⊢ Inj x1 𝑌

InjConcat
Γ (𝑥1) = 𝑓1 ++ 𝑓2 fresh 𝑥2, 𝑥3

Γ, 𝑥2 ↦→ 𝑓1, 𝑥3 ↦→ 𝑓2 ⊢ Inj x2 𝑌 Γ, 𝑥2 ↦→ 𝑓1, 𝑥3 ↦→ 𝑓2 ⊢ Inj x3 𝑌 Γ, 𝑥2 ↦→ 𝑓1, 𝑥3 ↦→ 𝑓2 ⊢ DisjointImg x2 x3
Γ ⊢ Inj x1 𝑌

Fig. 11. Verifying properties using other properties (selected rules.) Each rule implicitly returns a new envi-

ronment recording properties proven; the proper judgment is Γ ⊢ 𝑃 → Γ where 𝑃 is a property. The proof

obligation for DisjointImg x y is ∀𝑖 ∈ dom(𝑥) . ∀𝑗 ∈ dom(𝑦) . 𝑥 (𝑖) ≠ 𝑦 (𝑗).

As explained in Section 3.4, we infer structure from flattened programs via scatter. Rule Scatter3
covers the case where in-bounds written indices (𝑥idx) are strictly monotonically increasing,1
producing a flat jagged array representation where rows start at the written indices. Importantly,
the representation supports empty rows (corresponding to out-of-bound indices when [¬𝑝] implies
that the row is empty: 𝑒row [𝑖1/𝑖1 + 1] − 𝑒row = 0). The number of rows equals the index array length;
otherwise, inference would be statically intractable. Judgments Γ ⊢ 𝑒∗ → Safe (Appendix B.1.3)
verify that scatter matches the deterministic semantics in Eq. (1).
Scatter3

Γ ⊢ scatter xdst xidx xsrc → Safe fresh 𝑥⊥, 𝑘, 𝑙, 𝑖2

Γ ⊢ 𝜆 (𝑖1 : 0..|xidx |) .
{
[𝑥idx (𝑖) ∈ 0..|xdst |] ∗ 𝑥idx (𝑖)
[𝑥idx (𝑖) ∉ 0..|xdst |] ∗ 𝑥⊥

{ 𝜆 (𝑖1 : 0..|xidx |) .
{
[𝑝] ∗ 𝑒row
[¬𝑝] ∗ 𝑥⊥

Query (Γ, 𝑒row [𝑖1/0] = 0)
Query (Γ, 𝑒row [𝑖1/|xidx |] = |xdst |) Query ((Γ, 0 ≤ 𝑗 < 𝑘 < |xidx |), 0 ≤ 𝑒row [𝑖1/ 𝑗] ≤ 𝑒row [𝑖1/𝑘] ≤ |xdst |)

Γ ⊢ scatter xdst xidx xsrc → 𝜆 (𝑖1 : 0..|xidx | × 𝑖2 : 0..(𝑒row [𝑖1/𝑖1 + 1] − 𝑒row)) .
{
[𝑖2 = 0 ∧ 𝑝] ∗ 𝑥src (𝑖1)
[𝑖2 ≠ 0 ∨ ¬𝑝] ∗ 𝑥dst (𝑒row + 𝑖2)

4.2.4 Concatenation. Concatenation of arrays 𝑥 and 𝑦 manifests to an index function:

𝑧 = 𝜆 (𝑖1 : 0..(|x | + |y |)) . [𝑖1 < |x |] ∗ 𝑥 (𝑖1) + [𝑖1 >= |x |] ∗ 𝑦 (𝑖1 − |xs |)

We record a dual form 𝑧 = 𝑓𝑥 ++ 𝑓𝑦 tracking 𝑧 as a concatenation of 𝑥 and 𝑦’s index functions 𝑓𝑥
and 𝑓𝑦 . The manifested form handles indexing 𝑧 (𝑒), while some properties are provable only on the
concatenated form (Sections 4.3 and 5.1.2). Scatter3 requires that the first written index is 0 and the
last is the destination array’s length (out of bounds). This can be relaxed by prepending/appending
index functions covering elements before the first write (0..𝑒row [𝑖1/0]) and elements after the
last write (𝑒row [𝑖1/|xidx |] ..|xdest |), where empty ranges eliminate unnecessary concatenations. This
makes the irregular index function invariant to whether 𝑒row uses inclusive or exclusive scan.

4.3 Property layer
Properties are verified either by expanding the proof obligations listed in Fig. 8 into (in)equalities
discharged by the algebra layer (low-level reasoning), or by reasoning in terms of other properties
in the environment (high-level reasoning).

1Checked via scatter safety (implying injectivity of in-bounds indices) and the last query (establishing non-strict monotonicity
of 𝑒row).

16 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin Oancea

Set of variables 𝑋

Array 𝑎 ::= 𝑥 | ∨⊥𝑋
Symbol 𝑠 ::= 𝑥 | 𝑎[𝑒] | ∑𝑎[𝑒 : 𝑒]

Legal range example
3 ≤ 𝑛 ≤ ∞
𝑛 ≤ 3 · 𝑖 ≤ {5 · 𝑛,𝑛2 }

𝑖 + 𝑛 ≤ 𝑗 ≤ 𝑖2

{𝑖 + 1, 5} ≤ ∑
𝑋 [𝑖 : 𝑖 + 𝑗] ≤ 𝑗 − 1

Illegal range example
𝑖 ≤ 𝑛 ≤ 𝑖 · 𝑖
𝑛 ≤ 2 · 𝑖 ≤ 2 · 𝑛 − 5

Algorithm 1 Solve(Δ, 𝑒 ≤ 0)
1 let 𝑒′ = Apply PeelOnRange to Simplify(Δ, 𝑒)
2 if 𝑒′ is a constant 𝑛 ∈ Z and 𝑛 ≤ 0 then return Yes else return Unknown

3 let 𝑠 = PickSym(Δ, 𝑒′)
4 factorize 𝑒′ by 𝑠 yielding the form 𝑠 · 𝑒1 + 𝑒2
5 lookup ΔRange (𝑠) =min𝐿 ≤ 𝑛 · 𝑠 ≤ max𝑈
6 for each (𝑙,𝑢) ∈ 𝐿 ×𝑈 do
7 if Solve(Δ, −𝑒1 ≤ 0) then if Solve(Δ,𝑢 · 𝑒1 + 𝑛 · 𝑒2 ≤ 0) then return Yes

8 if Solve(Δ, 𝑒1 ≤ 0) then if Solve(Δ, 𝑙 · 𝑒1 + 𝑛 · 𝑒2 ≤ 0) then return Yes

9 return Unknown

Fig. 12. Algebraic language syntax and solver algorithm.

Low-level algebraic reasoning. Proof obligations are reified as solver queries as explained in
Sections 3.2 and 3.3. The proof obligations of Range, Equiv, Mono, Inj, and Bij generalize to 𝑛

dimensions by replacing 𝑖 and 𝑗 for vectors ®𝑖 and ®𝑗 of size 𝑛 and changing ordering on these to be
lexical. For example, the proof obligation forMono 𝑥 ≺ expands to 2𝑛 − 1 distinct queries:

∀®𝑖, ®𝑗 ∈ dom(𝑥) . ®𝑖 < ®𝑗 ⇒ 𝑥 (®𝑖) ≺ 𝑥 (®𝑗)
≡ ∀®𝑖, ®𝑗 ∈ dom(𝑥) . (𝑖1 < 𝑗1 ⇒ 𝑥 (®𝑖) ≺ 𝑥 (®𝑗)) ∧ (𝑖1 = 𝑗1 ∧ 𝑖2 < 𝑗2 ⇒ 𝑥 (®𝑖) ≺ 𝑥 (®𝑗))

∧ · · · ∧ (𝑖1 = 𝑗1 ∧ · · · ∧ 𝑖𝑛−1 = 𝑗𝑛−1 ∧ 𝑖𝑛 < 𝑗𝑛 ⇒ 𝑥 (®𝑖) ≺ 𝑥 (®𝑗))
where omitted dimensions further expand to all possible combinations of < and ≥. For example,
®𝑖2 < ®𝑗2 and ®𝑖2 ≥ ®𝑗2 are both tried in the first conjunct of the lexical expansion. Flat arrays are similar.

High-level property reasoning. Figure 11 shows the property rules. ΓPart and ΓFilt are aliases for
ΓFiltPart with the filter and partitioning predicates being 𝜆𝑖. true, respectively. Premises like Γ ⊢
Inj x 𝑌 may use either level of reasoning. PreserveInj propagates injectivity over filter/partitioning.
InjSubset concludes that 𝑥 |𝑥−1 (𝑌1)

is injective if 𝑌1 ⊆ 𝑌2 and 𝑥 |𝑥−1 (𝑌2)
is injective. FilterInj proves

injectivity of 𝑥1 via 𝑥2, which 𝑥1 filters/partitions. The filter predicate is used to refine the values
of 𝑥2, possibly ignoring those that would violate injectivity: ∀𝑖, 𝑗 ∈ |x2 | . 𝑝 (𝑖) ∧ 𝑝 (𝑗) ∧ 𝑥2 (𝑖) ∈
𝑌 ∧ 𝑥2 (𝑗) ∈ 𝑌 ∧ 𝑥 (𝑖) = 𝑥 (𝑗) ⇒ 𝑖 = 𝑗 . We reify this as an index function to leverage both reasoning
levels rather than directly invoking the solver. These three rules work even when 𝑥1 is uninterpreted
(a formal argument or untranslatable source expression). InjMono< proves injectivity via strict
monotonicity (recording both). InjConcat verifies injectivity via concatenated functions, requiring
that the functions’ images are disjoint. Additional rules in Appendix B.2 include: filtering preserves
range and monotonicity; partitioning preserves bijectivity; bijectivity implies injectivity; range
inference over filtering/partitioning (like FilterInj); monotonicity over concatenation. Properties
can also be inferred from source code (e.g., combining the ranges of each branch in an conditional).

We allow properties to be expressed over the rows of arrays by introducing the property, For (𝑖1 :
0..𝑒1) 𝑃 , where 𝑃 is a property from Fig. 8 that may depend on 𝑖1. P2 verifies For properties by
creating a new index function where the outer dimension is dropped, and then verifies 𝑃 over
this function where 𝑖1 is a free variable. (Shown in Appendix B.2.1.) The For property composes
to express properties over inner dimensions. Flattened domains are handled by matching the
outermost iterator in the flat dimension.

4.4 Algebra layer
The algebra layer solves (in)equalities over the guarded expressions of index functions by lowering
the expressions to a simplified algebraic language (Fig. 12). The algebraic symbols 𝑠 include variables,
array indexing and sum slices,

∑
𝑥 [𝑒1 : 𝑒2], which are sums over inclusive slices of arrays that enable

Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 17

binder-free reasoning over sums. In this section, expressions 𝑒 are over algebraic symbols. 𝑎 denotes
either an array variable 𝑥 or a disjunction of mutually exclusive boolean arrays ∨⊥{𝑥1, . . . , 𝑥𝑛}.
∨⊥{𝑥1, . . . , 𝑥𝑛}[𝑖] is equivalent to 𝑥1 [𝑖] ∨ · · · ∨ 𝑥𝑛 [𝑖] since 𝑥1, . . . , 𝑥𝑛 are mutually exclusive.
The algebraic context Δ consists of four maps (1) ΔRange from symbols to ranges; (2) ΔEquiv

from symbols to equivalent expressions; (3) Δ⊥ from variables to their disjoint predicates (used to
propagate the MECE property of the guards into the environment); and, finally, (4) ΔUntrans is a
bidirectional map between unlowerable expressions and fresh variables that represent them.

ΔRange and ΔEquiv are constructed to be cycle-free: when adding a range or equivalence on a
symbol, the symbol must not depend on any of the symbols appearing in the transitive closure
of its ranges and equivalences. A symbol depends on another symbol if its leading variable (Ap-
pendix B.3.1) is in the free variables of the other symbol. For example, if ΔEquiv is empty then the
binding 𝑖 ↦→ 𝑥 [𝑖] is rejected because 𝑖 ∈ {𝑥, 𝑖}, but 𝑥 [𝑖] ↦→ 𝑖 is accepted because the leading variable
𝑥 ∉ fv(𝑖). Ranges are similarly rewritten into several candidates. If multiple legal candidates exist,
one is selected by a set of heuristics, e.g., the one appearing latest in program order, or by giving
preference to starting a new range over refining an existent one with a bound that depends on a
symbol of unknown range.

4.4.1 Solver algorithm. Inequalities are reduced to form 𝑒 ≤ 0 and solved by the adaptation of
Fourier-Motzkin elimination [16, 49] presented in Algorithm 1. It starts by simplifying 𝑒 as presented
in Section 4.4.2; this is essential in enabling Fourier-Motzkin elimination—which is usually only
over variables—for our symbols, which include array slices and indexing. PeelOnRange, peels off
the last term in a sum slice if that term has a more specialized range than the one of the whole
array. Line 2 is the base case, where 𝑒′ is a constant. If not, PickSym selects the next symbol 𝑠
to eliminate by choosing the symbol in 𝑒′ whose range transitively depends on the most distinct
symbols. Ranges are further refined based on existent knowledge, e.g., if array 𝑥 is strictly positive,
then a lower bound of

∑
𝑥 [𝑙 : 𝑢] is 𝑢 − 𝑙 + 1, if the latter is provably positive; similarly, an upper

bound of the boolean-array disjunction
∑∨⊥𝑋 [𝑙 : 𝑢] is also 𝑢 − 𝑙 + 1. Finally, lines 3–8 attempt to

prove sufficient conditions satisfying the target inequality by suitably replacing 𝑠 with its bounds.

4.4.2 Simplification strategy. Our simplification strategy has three steps. Step 1 extends sum slices
to include terms that have equivalences in ΔEquiv, which enables Step 2 to simplify across sum-sum
or sum-element terms. Step 3 splits sums to peel off elements that have known equivalences. The
rules used in each stage and the algorithm that applies them appear in Appendix B.3.2.

Step 1 applies rules Eqiv1–2, EmptySum and ExtendSum. Eqiv1 substitutes symbols bound in
ΔEquiv with their equivalent rewrites. Eqiv2 replaces ∨⊥𝑋 [𝑒] with 1 whenever ∃𝑥 ∈ 𝑋 such that
ΔEquiv (𝑥 [𝑒]) = 1. EmptySum replaces sums of provably empty slices with 0. ExtendSum extends a
sum slice to include a start/end element bound in ΔEquiv, e.g.,

∑
𝑎[𝑒1 : 𝑒2] →

∑
𝑎[𝑒1 − 1 : 𝑒2] − 𝑒3

when the slice is nonempty: ΔEquiv (𝑎[𝑒1 − 1]) = 𝑒3 and 𝑒1 ≤ 𝑒2 + 1.
Step 2 joins sums that are disjoint (JoinSums1–4 in Appendix B.3) and eliminates and extracts

overlaps between sums (ElimSumOverlap and ExtractSumOverlap). For example, JoinSums4
simplifies two overlapping sum slices over mutually-exclusive boolean arrays, whose array variables
do not overlap, but are mutually disjoint (in the same Δ⊥ class).

JoinSums4
𝑋 ∩ 𝑌 = ∅ ⋃

𝑥∈𝑋 Δ⊥ (𝑥) =
⋃

𝑦∈𝑌 Δ⊥ (𝑦) Solve(Δ, 𝑒1 ≤ 𝑒3 ≤ 𝑒2 ≤ 𝑒4)
Δ ⊢ 𝑡 ·∑(∨⊥𝑋) [𝑒1 : 𝑒2] + 𝑡 ·∑(∨⊥𝑌) [𝑒3 : 𝑒4]

→ 𝑡 ·∑(∨⊥𝑋) [𝑒1 : 𝑒3 − 1] + 𝑡 ·∑(∨⊥ (𝑋 ∪ 𝑌)) [𝑒3 : 𝑒2] + 𝑡 ·∑(∨⊥𝑌) [𝑒2 + 1 : 𝑒4]

JoinSums1 rewrites two contiguous sum slices into one. JoinSums2 (JoinSums3) extend a sum slice
to include the next (previous) element of the array. ElimSumOverlap eliminates the common part

18 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin Oancea

1. Query Queryidx (Γ, idx (𝑖1) < idx (𝑖2)) where Γ = Γ′, 0 ≤ 𝑖1 < |xs |, 0 ≤ 𝑖2 < 𝑖1, 𝑝 (xs (𝑖1)), ¬𝑝 (xs (𝑖2))
Γ
Ixfn

(𝑖𝑑𝑥) = 𝜆 (𝑖 : 0.. |xs |) . [𝑝 (xs (𝑖))] ∗∑𝑖−1
𝑗=0 (𝑝 (xs (𝑗))) + [¬𝑝 (xs (𝑖))] ∗ (𝑖 +∑𝑛−1

𝑗=𝑖+1 (𝑝 (xs (𝑗))))

2. Build
context

ΔUntrans = {𝑥1 ↔ 𝑝 (xs (□)), 𝑥2 ↔ ¬𝑝 (xs (□), 𝑥 |xs | ↔ |xs | }
Δ⊥ = {𝑥1 ↦→ {𝑥2}, 𝑥2 ↦→ {𝑥1}}

ΔEquiv = {𝑥1 [𝑖1] ↦→ 1, 𝑥1 [𝑖2] ↦→ 0,
𝑥2 [𝑖1] ↦→ 0, 𝑥2 [𝑖2] ↦→ 1}

ΔRange =


min{0} ≤ 1 · 𝑥1 ≤ max{1}
min{0} ≤ 1 · 𝑥2 ≤ max{1}

min{0} ≤ 1 · 𝑥 |xs | ≤ max{∞}
min{0} ≤ 1 · 𝑖1 ≤ max{𝑥 |xs | − 1}
min{0} ≤ 1 · 𝑖2 ≤ max{𝑖1 − 1}


3. Lower Lower(idx (𝑖1) < idx (𝑖2))

= Lower([𝑝 (xs (𝑖1)) ∧ 𝑝 (xs (𝑖2)] ∗ (∑𝑖1−1
𝑗=0 (𝑝 (xs (𝑗))) < ∑𝑖2−1

𝑗=0 (𝑝 (xs (𝑗))))
+ [𝑝 (xs (𝑖1)) ∧ ¬𝑝 (xs (𝑖2))] ∗ (∑𝑖1−1

𝑗=0 (𝑝 (xs (𝑗))) < 𝑖2 +
∑𝑛−1

𝑗=𝑖2+1 (𝑝 (xs (𝑗)))) + . . .)
= (Δ, ∑∨⊥{𝑥1} [0 : 𝑖1 − 1] < 𝑖2 +

∑∨⊥{𝑥1} [𝑖2 + 1 : 𝑥 |xs | − 1])

4. Solve Solve(Δ, ∑∨⊥{𝑥1} [0 : 𝑖1 − 1] < 𝑖2 +
∑∨⊥{𝑥1} [𝑖2 + 1 : 𝑥 |xs | − 1])

Fig. 13. Lowering the query discussed in Section 3.3.

of two overlapping sum slices that are subtracted from each other. ExtractSumOverlap extends
this treatment of sum-slice subtraction to mutually-exclusive boolean arrays (∨⊥𝑋).

Step 3 peels off elements from sums that have known equivalences (or more specialized ranges)
by applying EmptySum followed by a fixpoint application of rules SingletonSum, PeelEqiv1-2,
EmptyDisjunction. They collapse a singleton slice to an index, replace symbols bound in ΔEquiv,
peel off an index from the start/end of a sum, and eliminate empty sets from ∨⊥ disjunctions.

4.4.3 Lowering. Lowering a query to the algebra layer has two stages (Fig. 13). First, the algebraic
context Δ is built from the environment Γ and the index function associated with the query. In
Fig. 13, 𝑥1 and 𝑥2 are fresh names for unlowerable expressions (guards) that map to reduction
contexts (Fig. 9). E.g., 𝑥1⟨0⟩ is the unlowerable expression 𝑝 (xs(0))), so 𝑥1 and 𝑥2 are parametric over
𝑖—which we simply treat as arrays (i.e., 𝑥1 [0]). Next, the query expression is lowered. Specifically, we
treat each term [𝑝]∗𝑒 as an implication for inequalities nested inside guarded expressions: either (1)
𝑝 must be falsifiable under Γ (see FalsifyGuard in Appendix B.1.2), or, (2) assuming 𝑝 by extending
Δ to Δ′ with any ranges and equivalences in 𝑝 , Solve(Δ′, 𝑒) must return Yes. The bottom of Fig. 13
shows the only term that reaches case (2) (i.e., the expression guarded by [𝑝 (xs(𝑖1)) ∧ ¬𝑝 (xs(𝑖2))]).
All other terms are invalidated by (1) since 𝑝 (xs(𝑖1)) and ¬𝑝 (xs(𝑖2)) are assumed true in Δ.

5 Evaluation
We implement P2 in the Futhark compiler supporting𝑛D regular arrays and 2D flat jagged arrays.We
support additional source constructs: tuples, (un)zip, concat, analysis over loops and histograms [22],
and exponentiation with integer base. The implementation prints index functions for each let-
binding and reports failing queries with corresponding index functions and source variables.

5.1 Experimental evaluation
We demonstrate P2’s ability to statically verify properties of bulk-parallel operations in 10 challeng-
ing Futhark programs that exercise different parts of our system. We demonstrate that dynamic
verification of bounds checking and scatter’s safety may incur big runtime overheads for GPU exe-
cution; our approach verifies them statically. Case studies demonstrate proving filter and partition
properties (Section 5.1.1), verifying that scatters adhere to deterministic semantics (Sections 3.2,
5.1.1 and 5.1.2), and obviating dynamic bounds checks in indexing and gathers (all subsections).

Experimental overview. The benchmarks include Futhark implementations of real-world algo-
rithms, such as the maximal matching graph algorithm from Problem Based Benchmark Suite [2]

Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 19

% of
Properties & Check Compile

Program annotations Safe #S #A time time
max_match Range, Equiv, Inj, FP ✓ 6 14 1.6s 65%
MIS Range ✓ 3 35 7.9s 95%
FFT Inj ✓ 1 1 0.2s 16%
primes Range, FP ✓ 2 12 2.1s 82%
kmeans_ker Range ✓ 0 3 0.1s 13%
partition Equiv, FP ✓ 1 1 0.2s 31%
partition3 Equiv, FP ✓ 1 2 0.8s 64%
seg_partition Range, Equiv, FP ✓ 1 3 2.2s 83%
filter Equiv, FP ✓ 1 3 0.1s 21%
filter_irreg Range, Equiv, InvFP ✓ 1 3 0.8s 63%

Program Dyn. Speedup
& Data (𝑚𝑠) Static +Opt
kmeans_ker
movielens 280 2.2×
nytimes 315 1.9×
scrna 861 2.2×

partition2

50M 12 4.4× 1.08×
100M 38 7.0× 1.08×
200M 135 12.2× 1.05×

Fig. 14. Left: Summary of evaluated programs. FP abbreviates FiltPart. Safe indicates whether all indexing

and scatters are verified. #S and #A denote scatters and annotations. Check time measures P
2
’s runtime

(Apple M4 chip). Right: NVIDIA A100 performance with dynamic checks (Dyn.) as baseline. Static shows

speedup over dynamic checks. +Opt additionally removes scattered array initialization (speedup over Static).

(max_match) as well as the maximal independent set algorithm (MIS), the Cooley-Tukey FFT algo-
rithm [12] (FFT), sparse 𝑘-means [38] (kmeans_ker), and an optimal work-depth implementation
of prime sieve [5] (primes). We also evaluate widely-used kernels such as filter, two- and three-way
partitioning (partition3) and segmented filters (filter_seg) and partitions (seg_partition). For exam-
ple, partition and seg_partition are key components of radixsort and quicksort. To our knowledge,
none of these benchmarks have been verified in the data-parallel context. The most challenging to
verify are the ones that flatten irregular nested parallelism: seg_partition and primes.

Verification checks that array indexing is within bounds and that scatters are safe, in addition
to other specified properties. Figure 14 (left) summarizes the evaluation, including the number of
scatters and the kind of properties for each benchmark. Check times span from under 1 second
up to 8 seconds, increasing with complex index functions requiring many normalization rewrites
(e.g., seg_partition) or many annotations (e.g., MIS). Figure 14 (right) compares dynamic versus
static verification on an NVIDIA A100 GPU. Futhark inserts dynamic bounds checks in CUDA
kernels [21]. For kmeans_ker, static verification achieves roughly 2× speedup on datasets movie-
lens [20], nytimes, and scrna [29] (using parameters from [38]) by eliminating dynamic checks.
Futhark does not dynamically verify scatter determinism in Eq. (1). For partition2, we manually
implement dynamic scatter checks using reduce-by-index [22] to match the program’s asymptotic
work. Static verification achieves 4–12× speedup on random float arrays of 50–200 million elements.
Dynamic checking uses atomic updates that thrash the L2 cache, exacerbating the overhead. The
static version is further optimized (+Opt) by leaving the scattered array uninitialized—safe because
P
2 automatically proves all locations are overwritten—yielding an additional 5–8% speedup.
We select two of the above benchmarks to illustrate P2’s capabilities: solving queries over complex

nested expressions in Section 5.1.1, and, in Section 5.1.1, reasoning over concatenated forms.

5.1.1 seg_partition. This is a segmented version of partition that partitions each row of a flattened
irregular array (Section 3.4). The postcondition asserts that 𝑝 partitions each row:

def seg_partition (𝑠 : []i64 | Range s 0..∞) (𝑥 : []f64 | Equiv |x | (sum 𝑠)) (𝑝 : []bool | Equiv |x | |p |)
: []f64 | 𝜆𝑦. For (𝑘 : 0..|s |) (Part y x (𝜆𝑖. 𝑝 [𝑖]))

20 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin Oancea

The implementation lifts partition using segmented operations like seg_ids (Section 3.4). The
inferred index functions have a flattened domain propagated from flags (Fig. 6a):

idx = 𝜆 (𝑖1 : 0..|s | × 𝑖2 : 0..𝑠 (𝑖1)) .


[𝑝 (∑𝑖1−1

𝑗1=0 (𝑠 (𝑗1)) + 𝑖2)] ∗
∑𝑖1−1

𝑗1=0 (𝑠 (𝑗1)) +
∑∑𝑖1−1

𝑗1=0 (𝑠 (𝑗1))+𝑖2−1
𝑗1=

∑𝑖1−1
𝑗2=0 (𝑠 (𝑗2))

(𝑝 (𝑗1))

[¬𝑝 (∑𝑖1−1
𝑗1=0 (𝑠 (𝑗1)) + 𝑖2)] ∗

∑𝑖1−1
𝑗1=0 (𝑠 (𝑗1)) + 𝑖2 +

∑∑𝑖1
𝑗1=0 (𝑠 (𝑗1))−1

𝑗1=
∑𝑖1−1

𝑗2=0 (𝑠 (𝑗2))+𝑖2+1
(𝑝 (𝑗1))

seg_partition = 𝜆 (𝑖1 : 0..|s | × 𝑖2 : 0..𝑠 (𝑖1)) . 𝑥 (idx−1 (
∑𝑖1−1

𝑗=0 (𝑠 (𝑗)) + 𝑖2))

Verifying the postcondition requires proving partition properties like bijectivity over each row’s
restricted domain, e.g., Bij idx

∑𝑖1−1
𝑗=0 (𝑠 (𝑗))..∑𝑖1

𝑗=0(𝑠 (𝑗)) . The solver applies the three-step method
from Section 4.4.2. The sum-slice simplifications are critical here because boundaries are themselves
sums. See Appendix C.2 for the implementation and an illustrative lowered query with solving steps.

def fft (𝑛 : 𝑖64 | Range n 1..∞) (. . .) (𝑥 : []f32 | Equiv |x | 2𝑛) =
loop 𝑥 for 𝑞 < 𝑛 do
let iss1 =map (𝜆𝑘.map (𝜆𝑗 . 𝑘 ∗ 2𝑞+1 + 𝑗) 0..2q) 0..2n−q−1
let iss2 =map (𝜆𝑘.map (𝜆𝑗 . 𝑘 ∗ 2𝑞+1 + 𝑗 + 2𝑞) 0..2q) 0..2n−q−1
let is = (flatten 𝑖𝑠𝑠1) ++ (flatten 𝑖𝑠𝑠2)
let vs = . . . in scatter x is vs

is = 𝜆 (𝑖1 : 0..2n−q × 𝑖2 : 0..2q) .{
[𝑖1 < 2𝑛−𝑞−1] ∗ 𝑖1 · 2q+1 + 𝑖2

[𝑖1 ≥ 2𝑛−𝑞−1] ∗ 𝑖1 · 2q+1 + 𝑖2 + 2q −2n+𝑞

5.1.2 FFT. The Cooley-Tukey FFT algorithm produces scatter indices is comprising strictly mono-
tonic segments (e.g., [0, 1, 4, 5, . . .] ++[2, 3, 6, 7, . . .]). To verify scatter safety, we must prove that
is is injective. Concatenation manifests the term −2n+𝑞 in the second guarded expression above,
which makes disjointness of the guards unprovable for our solver, even when exploiting the inferred
2D structure in the flattened domain. However, P2 further exploits the dual unmanifested form:
is = 𝜆 (𝑖1 : 0..2n−q−1 × 𝑖2 : 0..2q) . 𝑖1 · 2q+1 + 𝑖2 ++ 𝜆 (𝑖1 : 0..2n−q−1 × 𝑖2 : 0..2q) . 𝑖1 · 2q+1 + 𝑖2 + 2q

Using InjConcat (Fig. 11), we prove that each constituent index function is injective and their
images are disjoint. For (𝑖1, 𝑖2), (𝑗1, 𝑗2) ∈ 0..2𝑛−𝑞−1 × 0..2𝑞 , the solver verifies that 𝑖1 · 2𝑞+1 + 𝑖2 <

𝑗1 ·2𝑞+1+ 𝑗2+2𝑞 when (𝑖1, 𝑖2) ≤ (𝑗1, 𝑗2) lexicographically, and 𝑖1 ·2𝑞+1+𝑖2 > 𝑗1 ·2𝑞+1+ 𝑗2+2𝑞 otherwise.

6 Related work and concluding remarks
Liquid types and Liquid Haskell. Liquid types are refinement types [35] automatically discharged by
SMT solvers [46]. Refinement reflection [47] allows source functions in refinements and automates
definition unfolding, but still requires manual proofs for our class of programs (like Dafny in
Section 2.1). For instance, Liquid Haskell experts2 explained that automatically verifying that
let is = map (\c-> if c then 1 else 0) cs in zipWith (\c i-> if c then i-1 else 1) cs is

produces positive integers requires fusion to maintain positional correlation between cs and
is—contrary to the bulk-parallel programming style. It can be proved by manually defining and
applying a user lemma, which is unintuitive for non-experts. We could not verify partition’s data-
parallel implementation and verifying three-way and flat-parallel batch partitioning (seg_partition
in Section 5.1.1) are harder still. In contrast, P2 uses index functions to automatically infer positional
correlations and prove array properties without structural constraints or proof writing.

𝐹★ and Pulse. F★ [41] is a proof assistant with dependent and refinement types, combining SMT
automation with interactive proving. It automates term reasoning via reductions but still requires
manual proofs for properties our system handles automatically. Pulse [42], embedded in F★, uses
concurrent separation logic [9] to reason about concurrent mutable state. For example, verifying
2We are thankful for their help and will thank them in the acknowledgments (if permitted).

Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 21

in-place partitioning for quicksort checks buffers against a pivot and ensures non-overlap, but
doesn’t extend to data-parallel contexts using bulk operations and scatter.
Linear Array Logics. Dependent ML [50] and ATS [51] restrict dependent values to limited

languages for decidability. Dependent ML enables static array bounds checking via linear con-
straints [52]. ATS allows explicit proof terms but requires intertwining proof and program. Daca et
al.’s [13] logic for counting and partitioning, Bradley et al.’s [8] for index ranges and sortedness
using Presburger arithmetic, and Qube [43] for array indexing and shape matching are restricted
to linear indexing. We target programs with non-linear indexing via gather/scatter (see Section 5).
Dependence analysis. P2 is inspired by work in automatic loop optimization where suitable

representations for access patterns [27, 36] are key to scaling interprocedural analysis, either
statically [18, 48] or via static-dynamic combinations [30, 36] for non-affine code. Dynamic analyses
use transformations like program slicing and hoisting to extract and check sufficient conditions at
runtime for statically irreducible queries, often establishing array properties such as permutation [15,
40], injectivity [14, 36], and monotonicity [31, 32]. By establishing array properties early, our
approach could simplify dependence analyses and eliminate runtime overheads.
Verified compiler transformations.Work on verifying scheduling DSLs like Halide [34] includes

improvements to its term rewriting system [28], validation of affine specifications [10], and
HaliVer [45], which verifies specifications using linear indexing and low-level generated code via
permission-based separation logic [6] for memory safety. Bounded translation validation tools like
Alive2 [25, 26] verify LLVM code transformations. These directions are complementary to our work.

Conclusions. To our knowledge, P2 is the first effort to fully automatically verify integer array
properties—such as monotonicity, bijectivity, filtering, and partitioning—in a data-parallel context
that supports non-linear indexing produced by prefix sums, scatters and gathers. Our evaluation
demonstrates verification of ten challenging (previously unreported) data-parallel benchmarks,
including programs resulting from flattening iregular-nested parallelism.

22 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin Oancea

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, Magdalen Dobson, and Yihan Sun. 2022. The problem-based
benchmark suite (PBBS), V2. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Seoul, Republic of Korea) (PPoPP ’22). Association for Computing Machinery, New York, NY, USA,
445–447. doi:10.1145/3503221.3508422

[3] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N. Ziogas, Timo Schneider, and Torsten Hoefler. 2019. Stateful
Dataflow Multigraphs: A Data-Centric Model for Performance Portability on Heterogeneous Architectures. In Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’19). ACM,
Article 81, 14 pages. doi:10.1145/3295500.3356173

[4] Guy E. Blelloch. 1989. Scans as Primitive Parallel Operations. Computers, IEEE Transactions 38, 11 (1989), 1526–1538.
[5] Guy E Blelloch. 1996. Programming parallel algorithms. Commun. ACM 39, 3 (1996), 85–97.
[6] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. 2005. Permission accounting in separation

logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Long
Beach, California, USA) (POPL ’05). Association for Computing Machinery, New York, NY, USA, 259–270. doi:10.1145/
1040305.1040327

[7] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula,
Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. 2018. JAX: composable transformations of Python+
NumPy programs.

[8] Aaron R Bradley, Zohar Manna, and Henny B Sipma. 2006. What’s decidable about arrays?. In Verification, Model
Checking, and Abstract Interpretation: 7th International Conference, VMCAI 2006, Charleston, SC, USA, January 8-10,
2006. Proceedings 7. Springer, 427–442.

[9] Stephen Brookes and Peter W O’Hearn. 2016. Concurrent separation logic. ACM SIGLOG News 3, 3 (2016), 47–65.
[10] Basile Clément and Albert Cohen. 2022. End-to-end translation validation for the halide language. 6, OOPSLA1,

Article 84 (April 2022), 30 pages. doi:10.1145/3527328
[11] Byron Cook. 2018. Formal reasoning about the security of amazon web services. In International Conference on

Computer Aided Verification. Springer, 38–47.
[12] James W. Cooley and John W. Tukey. 1965. An Algorithm for the Machine Calculation of Complex Fourier Series.

Math. Comp. 19, 90 (1965), 297–301. http://www.jstor.org/stable/2003354
[13] Przemysław Daca, Thomas A Henzinger, and Andrey Kupriyanov. 2016. Array folds logic. In International Conference

on Computer Aided Verification. Springer, 230–248.
[14] Francis H. Dang, Hao Yu, and Lawrence Rauchwerger. 2002. The R-LRPD Test: Speculative Parallelization of Partially

Parallel Loops. In Proceedings of the 16th International Parallel and Distributed Processing Symposium (IPDPS ’02). IEEE
Computer Society, USA.

[15] Chen Ding and Ken Kennedy. 1999. Improving cache performance in dynamic applications through data and
computation reorganization at run time. In Proceedings of the ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation (Atlanta, Georgia, USA) (PLDI ’99). Association for Computing Machinery, New
York, NY, USA, 229–241. doi:10.1145/301618.301670

[16] Joseph Fourier. 1827. Histoire de l’Académie, partie mathématique (1824). Mémoires de l’Académie des sciences de
l’Institut de France 7 (1827).

[17] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and Christophe Dubach. 2018. High Performance
Stencil Code Generation with Lift. In Int. Symposium on Code Generation and Optimization (CGO) (Vienna, Austria)
(CGO 2018). ACM, 100–112. doi:10.1145/3168824

[18] Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and Monica S. Lam. 2005. Interprocedural
Parallelization Analysis in SUIF. Trans. on Prog. Lang. and Sys. (TOPLAS) 27(4) (2005), 662–731.

[19] Awni Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. 2023. MLX: Efficient and flexible machine
learning on Apple silicon. https://github.com/ml-explore

[20] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Trans. Interact.
Intell. Syst. 5, 4, Article 19 (Dec. 2015), 19 pages. doi:10.1145/2827872

[21] Troels Henriksen. 2021. Bounds checking on GPU. International Journal of Parallel Programming 49, 6 (2021), 761–775.

https://www.tensorflow.org/
https://doi.org/10.1145/3503221.3508422
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/3527328
http://www.jstor.org/stable/2003354
https://doi.org/10.1145/301618.301670
https://doi.org/10.1145/3168824
https://github.com/ml-explore
https://doi.org/10.1145/2827872

Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 23

[22] Troels Henriksen, Sune Hellfritzsch, Ponnuswamy Sadayappan, and Cosmin Oancea. 2020. Compiling Generalized
Histograms for GPU. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article 97, 14 pages.

[23] Troels Henriksen, Niels GW Serup, Martin Elsman, Fritz Henglein, and Cosmin E Oancea. 2017. Futhark: purely
functional GPU-programming with nested parallelism and in-place array updates. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 556–571.

[24] K Rustan M Leino. 2010. Dafny: An automatic program verifier for functional correctness. In International conference
on logic for programming artificial intelligence and reasoning. Springer, 348–370.

[25] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021. Alive2: bounded translation
validation for LLVM. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA,
65–79. doi:10.1145/3453483.3454030

[26] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2018. Practical verification of peephole
optimizations with Alive. Commun. ACM 61, 2 (Jan. 2018), 84–91. doi:10.1145/3166064

[27] Sungdo Moon and Mary W. Hall. 1999. Evaluation of predicated array data-flow analysis for automatic parallelization.
In Proceedings of the Seventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Atlanta,
Georgia, USA) (PPoPP ’99). Association for Computing Machinery, New York, NY, USA, 84–95. doi:10.1145/301104.
301112

[28] Julie L. Newcomb, Andrew Adams, Steven Johnson, Rastislav Bodik, and Shoaib Kamil. 2020. Verifying and improving
Halide’s term rewriting system with program synthesis. Proc. ACM Program. Lang. 4, OOPSLA, Article 166 (Nov. 2020),
28 pages. doi:10.1145/3428234

[29] Corey J Nolet, Divye Gala, Edward Raff, Joe Eaton, Brad Rees, John Zedlewski, and Tim Oates. 2022. GPU semiring
primitives for sparse neighborhood methods. Proceedings of Machine Learning and Systems 4 (2022), 95–109.

[30] Cosmin E. Oancea and Lawrence Rauchwerger. 2012. Logical Inference Techniques for Loop Parallelization. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation (Beijing,
China) (PLDI ’12). ACM, New York, NY, USA, 509–520. doi:10.1145/2254064.2254124

[31] Cosmin E. Oancea and Lawrence Rauchwerger. 2013. A Hybrid Approach to Proving Memory Reference Monotonicity.
In Languages and Compilers for Parallel Computing, Sanjay Rajopadhye and Michelle Mills Strout (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 61–75.

[32] Cosmin E. Oancea and Lawrence Rauchwerger. 2015. Scalable Conditional Induction Variables (CIV) Analysis. In
Proceedings of the 13th Annual IEEE/ACM International Symposium on Code Generation and Optimization (San Francisco,
California) (CGO ’15). IEEE Computer Society, Washington, DC, USA, 213–224. http://dl.acm.org/citation.cfm?id=
2738600.2738627

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. CoRR abs/1912.01703 (2019). arXiv:1912.01703
http://arxiv.org/abs/1912.01703

[34] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
2013. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Seattle, Washington, USA) (PLDI ’13). ACM, New York, NY, USA, 519–530. doi:10.1145/2491956.2462176

[35] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid types. In Proceedings of the 29th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (New York, NY, USA, 2008-06-07) (PLDI ’08). Association
for Computing Machinery, 159–169. doi:10.1145/1375581.1375602

[36] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. 2002. Hybrid analysis: static & dynamic memory reference
analysis. In Proceedings of the 16th International Conference on Supercomputing (ICS ’02). Association for Computing
Machinery, 274–284. doi:10.1145/514191.514229

[37] Amr Sabry and Matthias Felleisen. 1992. Reasoning About Programs in Continuation-passing Style. SIGPLAN Lisp
Pointers V, 1 (Jan. 1992), 288–298.

[38] Robert Schenck, Ola Rønning, Troels Henriksen, and Cosmin E. Oancea. 2022. AD for an array language with nested
parallelism. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and
Analysis (Dallas, Texas) (SC ’22). IEEE Press, Article 58, 15 pages. doi:10.1109/SC41404.2022.00063

[39] Wilfried Sieg and Barbara Kauffmann. 1993. Unification for quantified formulae. Carnegie Mellon [Department of
Philosophy].

[40] Michelle Mills Strout and Paul D. Hovland. 2004. Metrics and models for reordering transformations. In Proceedings of
the 2004 Workshop on Memory System Performance (Washington, D.C.) (MSP ’04). Association for Computing Machinery,

https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3166064
https://doi.org/10.1145/301104.301112
https://doi.org/10.1145/301104.301112
https://doi.org/10.1145/3428234
https://doi.org/10.1145/2254064.2254124
http://dl.acm.org/citation.cfm?id=2738600.2738627
http://dl.acm.org/citation.cfm?id=2738600.2738627
https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/514191.514229
https://doi.org/10.1109/SC41404.2022.00063

24 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin Oancea

New York, NY, USA, 23–34. doi:10.1145/1065895.1065899
[41] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan

Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, et al. 2016. Dependent types and multi-monadic
effects in F. In Proceedings of the 43rd annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. 256–270.

[42] Nikhil Swamy, Guido Martínez, and Aseem Rastogi. 2023. Proof-Oriented Programming in F.
[43] Kai Trojahner and Clemens Grelck. 2009. Dependently typed array programs don’t go wrong. The Journal of Logic

and Algebraic Programming 78, 7 (2009), 643–664. doi:10.1016/j.jlap.2009.03.002 The 19th Nordic Workshop on
Programming Theory (NWPT 2007).

[44] Lars B. van den Haak, Trevor L. McDonell, Gabriele K. Keller, and Ivo Gabe de Wolff. 2020. Accelerating Nested Data
Parallelism: Preserving Regularity. In Euro-Par 2020: Parallel Processing, Maciej Malawski and Krzysztof Rzadca (Eds.).
Springer International Publishing, Cham, 426–442.

[45] Lars B. van den Haak, Anton Wijs, Marieke Huisman, and Mark van den Brand. 2024. HaliVer: Deductive Verification
and Scheduling Languages Join Forces. In Tools and Algorithms for the Construction and Analysis of Systems, Bernd
Finkbeiner and Laura Kovács (Eds.). Springer Nature Switzerland, Cham, 71–89.

[46] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement types for
Haskell. SIGPLAN Not. 49, 9 (Aug. 2014), 269–282. doi:10.1145/2692915.2628161

[47] Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala.
2018. Refinement reflection: complete verification with SMT. 2 (2018), 1–31. Issue POPL. doi:10.1145/3158141

[48] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Tenllado, and Francky Catthoor.
2013. Polyhedral Parallel Code Generation for CUDA. ACM Trans. Archit. Code Optim. 9, 4, Article 54 (Jan. 2013),
23 pages. doi:10.1145/2400682.2400713

[49] H Paul Williams. 1986. Fourier’s Method of Linear Programming and its Dual. The American Mathematical Monthly
93, 9 (1986), 681–695. arXiv:https://doi.org/10.1080/00029890.1986.11971923 doi:10.1080/00029890.1986.11971923

[50] Hongwei Xi. 2007. Dependent ML An approach to practical programming with dependent types. Journal of Functional
Programming 17, 2 (2007), 215–286. doi:10.1017/S0956796806006216

[51] Hongwei Xi. 2017. Applied type system: An approach to practical programming with theorem-proving. arXiv preprint
arXiv:1703.08683 (2017).

[52] Hongwei Xi and Frank Pfenning. 1998. Eliminating array bound checking through dependent types. In Proceedings of
the ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation (Montreal, Quebec, Canada)
(PLDI ’98). Association for Computing Machinery, New York, NY, USA, 249–257. doi:10.1145/277650.277732

https://doi.org/10.1145/1065895.1065899
https://doi.org/10.1016/j.jlap.2009.03.002
https://doi.org/10.1145/2692915.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/2400682.2400713
https://arxiv.org/abs/https://doi.org/10.1080/00029890.1986.11971923
https://doi.org/10.1080/00029890.1986.11971923
https://doi.org/10.1017/S0956796806006216
https://doi.org/10.1145/277650.277732

	Abstract
	1 Introduction
	2 Source language and motivation
	2.1 Challenges of verifying partition in Dafny

	3 Overview
	3.1 Index function layer
	3.2 Property layer
	3.3 Algebra layer
	3.4 Segmented parallel operations

	4 Formalization
	4.1 Array properties
	4.2 Index function layer
	4.3 Property layer
	4.4 Algebra layer

	5 Evaluation
	5.1 Experimental evaluation

	6 Related work and concluding remarks
	References

