
Contents

Minuit 2 7

1 Foreword 9

1.1 What M is intended to do . 9

1.2 What M is not intended to do . 9

1.3 Further remarks . 9

2 Introduction: M basic concepts 11

2.1 The organization of M . 11

2.2 Design aspects of M in . 11

2.3 Internal and external parameters . 12

2.3.1 The transformation for parameters with limits . 13

2.4 M strategy . 14

2.5 Parameter errors . 14

2.5.1 FCN normalization and the error definition . 14

2.5.2 The error matrix . 15

2.5.3 MINOS errors . 15

2.5.4 CONTOURS plotting . 15

3 M installation 17

3.1 M releases . 17

3.2 Install M using autoconf/make . 17

3.3 CVS code repository . 18

3.4 Create a tar.gz from CVS . 19

3.5 M versions . 19

3.5.1 From to . 19

3.5.2 Memory allocation and thread safety . 20

3.5.3 M parameters . 20

3.6 Interference with other packages . 20

3.7 Floating-point precision . 20

4 How to use M 21

4.1 The FCN Function . 21

4.1.1 FCNBase::operator()(const std::vector<double>&) . 21

4.1.2 FCNBase::up() . 21

4.1.3 FCN function with gradient . 22

1

2 CONTENTS

4.2 M parameters . 22

4.2.1 Minimal required interface . 22

4.2.2 MnUserParameters . 22

4.2.3 MnUserCovariance . 22

4.2.4 MnUserParameterState . 22

4.3 Input to M . 23

4.3.1 What the user must supply . 23

4.3.2 What the user can supply . 23

4.4 Running a M minimization . 23

4.4.1 Direct usage of minimizers . 23

4.4.2 Using an application (MnMigrad) . 24

4.4.3 Subsequent minimizations . 24

4.4.4 M fails to find a minimum . 24

4.5 The output from minimization . 24

4.5.1 The FunctionMinimum . 24

4.5.2 User representable format: MnUserParameterState . 24

4.5.3 Access values, errors, covariance . 24

4.5.4 Printout of the result . 24

4.5.5 Global correlation coefficients . 24

5 M application programming interface (API) 25

5.1 FunctionMinimum . 25

5.1.1 isValid() . 25

5.1.2 fval(), edm(), nfcn() . 25

5.2 MnContours . 25

5.2.1 MnContours(const FCNBase&, const FunctionMinimum&) . 26

5.2.2 operator() . 26

5.2.3 contour(. . .) . 26

5.3 MnEigen . 26

5.3.1 MnEigen() . 26

5.3.2 operator() . 26

5.4 MnHesse . 26

5.4.1 MnHesse() . 26

5.4.2 operator() . 26

5.5 MnMachinePrecision . 27

5.5.1 MnMachinePrecision() . 27

5.5.2 setPrecision(double eps) . 27

5.6 MnMigrad and VariableMetricMinimizer . 27

5.6.1 MnMigrad(const FCNBase&, const std::vector<double>&, const std::vector<double>&, unsigned
int) . 27

5.6.2 MnMigrad(const FCNBase&, const MnUserParameters&, unsigned int) 27

5.6.3 MnMigrad(const FCNBase&, const MnUserParameterState&, const MnStrategy&) 27

5.6.4 operator() . 27

CONTENTS 3

5.6.5 Parameter interaction . 27

5.6.6 VariableMetricMinimizer() . 28

5.6.7 minimize(const FCNBase&, . . .) . 28

5.7 MnMinimize and CombinedMinimizer . 28

5.8 MnMinos . 28

5.8.1 MnMinos(const FCNBase&, const FunctionMinimum&) . 28

5.8.2 operator() . 28

5.8.3 minos(unsigned int n, unsigned int maxcalls) . 28

5.8.4 Other methods . 28

5.9 MnPlot . 28

5.9.1 MnPlot() . 28

5.9.2 operator() . 29

5.10 MnScan and ScanMinimizer . 29

5.10.1 scan(unsigned int par, unsigned int npoint, double low, double high) 29

5.10.2 ScanMinimizer . 29

5.11 MnSimplex and SimplexMinimizer . 29

5.11.1 MnSimplex(const FCNBase&, const std::vector<double>&,
const std::vector<double>&, unsigned int) . 29

5.11.2 MnSimplex(const FCNBase&, const MnUserParameters&,
unsigned int) . 29

5.11.3 MnSimplex(const FCNBase&, const MnUserParameterState&,
const MnStrategy&) . 29

5.11.4 operator() . 30

5.11.5 Parameter interaction . 30

5.11.6 SimplexMinimizer() . 30

5.11.7 minimize(const FCNBase&, . . .) . 30

5.12 MnStrategy . 30

5.12.1 MnStrategy() . 30

5.12.2 MnStrategy(unsigned int level) . 30

5.12.3 setLowStrategy(), setMediumStrategy(), setHighStrategy() . 30

5.12.4 Other methods . 30

5.13 MnUserCovariance . 30

5.13.1 MnUserCovariance(const std::vector<double>&, unsigned int nrow) 31

5.13.2 MnUserCovariance(unsigned int nrow) . 31

5.13.3 MnUserCovariance::operator()(unsigned int, unsigned int) . 31

5.14 MnUserParameters . 31

5.14.1 add(. . .) . 31

5.14.2 setValue(. . .) . 31

5.14.3 setError(. . .) . 31

5.14.4 fix(. . .) . 31

5.14.5 release(. . .) . 31

5.14.6 setLimits(. . .) . 32

5.14.7 setUpperLimit(. . .) . 32

5.14.8 setLowerLimit(. . .) . 32

4 CONTENTS

5.14.9 removeLimits(. . .) . 32

5.14.10value(. . .) . 32

5.14.11 error(. . .) . 32

5.14.12 index(. . .) . 32

5.14.13name(. . .) . 32

5.15 MnUserParameterState . 32

5.15.1 MnUserParameterState(const std::vector<double>&,
const std::vector<double>&) . 32

5.15.2 MnUserParameterState(const MnUserParameters&) . 32

5.15.3 MnUserParameterState(const MnUserParameters&,
const MnUserCovariance&) . 33

5.15.4 parameters() . 33

5.15.5 covariance() . 33

5.15.6 globalCC() . 33

5.15.7 MnUserParameterState::isValid() and
MnUserParameterState::hasCovariance() . 33

5.15.8 MnUserParameterState::fval(), MnUserParameterState::edm(),
MnUserParameterState::nfcn() . 33

5.16 MnPrint.h . 33

5.16.1 operator<<(std::ostream&, const FunctionMinimum&) . 33

5.16.2 operator<<(std::ostream&, const MnUserParameters&) . 33

5.16.3 operator<<(std::ostream&, const MnUserCovariance&) . 33

5.16.4 operator<<(std::ostream&, const MnGlobalCorrelationCoeff&) 33

5.16.5 operator<<(std::ostream&, const MnUserParameterState&) . 34

5.16.6 operator<<(std::ostream&, const MinosError&) . 34

5.16.7 operator<<(std::ostream&, const ContoursErros&) . 34

6 How to get the right answer from M 35

6.1 Which minimizer to use . 35

6.1.1 MIGRAD . 35

6.1.2 MINIMIZE . 35

6.1.3 SCAN . 35

6.1.4 SIMPLEX . 35

6.2 Floating point precision . 36

6.3 Parameter limits . 36

6.3.1 Getting the Right Minimum with Limits . 36

6.3.2 Getting the right parameter errors with limits . 36

6.4 Fixing and releasing parameters . 36

6.5 Interpretation of parameter errors . 37

6.5.1 Statistical interpretation . 37

6.5.2 The reliability of M error estimates . 37

6.6 Convergence in MIGRAD, and positive–definiteness . 38

6.7 Additional trouble–shooting . 38

CONTENTS 5

7 A complete example 39

7.1 The user’s FCN . 39

7.1.1 GaussFunction.h . 39

7.1.2 GaussFcn.h . 40

7.1.3 GaussFcn.cpp . 40

7.2 The user’s main program . 41

6 CONTENTS

Minuit 2

*** Fred JAMES and Matthias WINKLER CERN, Geneva ***

7

8 CONTENTS

Chapter 1

Foreword

1.1 What M is intended to do

M is conceived as a tool to find the minimum value of a multi-parameter function (the “FCN”) and analyze the shape
of the function around the minimum. The principal application is foreseen for statistical analysis, working on chisquare
or log-likelihood functions, to compute the best-fit parameter values and uncertainties, including correlations between
the parameters. It is especially suited to handle difficult problems, including those which may require guidance in order
to find the correct solution.

1.2 What M is not intended to do

Although M will of course solve easy problems faster than complicated ones, it is not intended for the repeated solution
of identically parametrized problems (such as track fitting in a detector) where a specialized program will in general be
much more efficient.

1.3 Further remarks

M was initially written in Fortran around 1975-1980 at CERN by Fred James @bib-MINUIT. Its main field of usage is
statistical data analysis of experimental data recorded at CERN, but it is also used by people doing data analysis
outside CERN or outside high energy physics (HEP). In 2002 Fred James started a project aiming to re-implement M
in an object-oriented way using .

More information about recent developments, releases and installation can be obtained from the M homepage @bib-
C++MINUIT.

The names of M applications are written in capital letters (e.g. MIGRAD, MINOS, CONTOURS), the corresponding
names of the classes are written using sans-serif font type (MnMigrad, MnMinos, MnContours).

9

10 CHAPTER 1. FOREWORD

Chapter 2

Introduction: M basic concepts

[sec:intro]

2.1 The organization of M

The M package acts on a multiparameter objective function which is called — for historical reasons — the FCN function
(see [howto:fcn]). This function is usually a chisquared or a log–likelihood, but it could also be a mathematical function.
The FCN function needs to be written in for which M defines the pure abstract base class FCNBase as interface. The
user must define and implement the FCN function in a derived class from FCNBase. Sometimes this is done by an
intermediate program such as HippoDraw@bib-HippoDraw, in which case M is being used under the control of such an
intermediate program1. The value of the FCN function will in general depend on one or more variable parameters
whose meaning is defined by the user (or by the intermediate program), but whose trial values are determined by M .

To take a simple example, suppose the problem is to fit a polynomial through a set of data points. Then the user would
write a FCN which calculates the χ2 between a polynomial and the data; the variable parameters of FCN would be the
coefficients of the polynomials. Using objects for minimization from M , the user would request M to minimize the FCN
with respect to the parameters, that is, find those values of the coefficients which give the lowest value of chisquare.

The user must therefore supply, in addition to the function to be analyzed, via a set or sequence of M applications the
instructions which analysis is wanted. The instructions are coded in in the calling program (main.cpp), which allows
looping, conditional execution, and all the other possibilities of , but not interactivity, since it must be compiled before
execution.

2.2 Design aspects of M in

What M is:

• platform independent

• written in an object-oriented way using standard

• independent of any external package

The maintainability should be guaranteed with the choice of a modern computer language. Choosing object-oriented
technology M should profit from an increased flexibility and functionality and make it also extendable (recursivness,
new algorithms, new functionality).

What M does not:

• histogramming

• data handling

• graphics
1ROOT @bib-ROOT uses its own version of the Fortran M when this manual was written. However an interface for this version exists

and the library can be loaded dynamically on demand

11

12 CHAPTER 2. INTRODUCTION: M BASIC CONCEPTS

M is kept as a low-level package with optimal performance.

The main usages of M are

• from a user’s program (such as int main(). . .)

• from a graphical data analysis tool such as HippoDraw@bib-HippoDraw

The most important goals of M in are

• its numerical accuracy (equivalent to its Fortran version)

• its computational performance (equivalent to its Fortran version)

For the design of the application programming interface (API) of M a two-way strategy was imposed:

• a minimal required interface with minimum interaction with M objects and with appropriate usage of the standard
library (STL): the user’s implementation of the FCNBase class, initial parameter values and uncertainties are
provided by the to M user via std::vectors.

• a rich interface which provides the user with more functionality such as interaction with parameters.

The core of the minimization functionality and related tools (the kernel of M) should be clearly separated from the
user, who is interfacing via defined user interfaces (the API).

2.3 Internal and external parameters

Each of the parameters to the FCN is defined by the user as belonging to one of the following types:

• Freely variable: allowed to take on any value.

• Variable with double sided limits: allowed to vary only between two limits specified by the user.

• Variable with single sided limits: allowed to vary only between one upper or one lower limit specified by the user
and unlimited to the other side.

• Fixed: originally defined as variable, but now taking on only the value the parameter had at the moment it was
fixed, or a value later assigned by the user.

• Constant: taking on only one value as specified by the user.

When using the minimal required interface, all variable parameters are free and unbound.

The user, in his FCN, must of course be able to “see” all types of defined parameters, and he therefore has access to
what we call the external parameter list, that is, the parameters as he defined them. On the other hand, the internal M
minimizing routines only want to “see” variable parameters without limits, and so they have access only to the internal
parameter list which is created from the external list by the following transformation:

• Squeeze out all parameters that are not variable.

• Transform all variable parameters with limits, so that the transformed parameter can vary without limits. (See
the next section for details concerning this transformation.) Because this transformation is non-linear, it is
recommended to avoid putting limits on parameters where they are not needed.

As an example, suppose that the user has defined the following parameters:

• Parameter 0, constant.

• Parameter 1, freely variable.

• Parameter 2, variable with limits.

• Parameter 3, constant.

2.3. INTERNAL AND EXTERNAL PARAMETERS 13

• Parameter 4, freely variable.

Then the internal parameter list would be as follows:

• Internal parameter 0 = external parameter 1.

• Internal parameter 1 = external parameter 2, transformed appropriately.

• Internal parameter 2 = external parameter 4.

In the above example, M considers that the number of external parameters is 5, and the number of internal parameters
is 3. This is the number which determines, for example, the size of the error matrix of the parameters, since only
variable parameters have errors.

An important feature of M is that parameters are allowed to change types during the M minimization and analysis of a
FCN function. Several applications in M have methods available to make variable parameters fixed and vice-versa;
to impose, change, or remove limits from variable parameters; and even to define completely new parameters at any
time during a run. In addition, some M applications (notably the MINOS error analysis) cause one or more variable
parameters to be temporarily fixed during the calculation. Therefore, the correspondence between external and internal
parameter lists is in general a dynamic one, and the number of internal parameters is not necessarily constant.

For more details about parameter interaction see [api:parameters].

2.3.1 The transformation for parameters with limits

[intro:limits]

For variable parameters with double sided limits a (lower) and b (upper), M uses the following transformation:

Pint = arcsin
(

2 Pext − a
b− a

− 1
)

Pext = a+ b− a
2 (sinPint + 1)

so that the internal value Pint can take on any value, while the external value Pext can take on values only between the
lower limit a and the upper limit b. Since the transformation is necessarily non-linear, it would transform a nice linear
problem into a nasty non-linear one, which is the reason why limits should be avoided if not necessary. In addition, the
transformation does require some computer time, so it slows down the computation a little bit, and more importantly,
it introduces additional numerical inaccuracy into the problem in addition to what is introduced in the numerical
calculation of the FCN value. The effects of non-linearity and numerical roundoff both become more important as the
external value gets closer to one of the limits (expressed as the distance to nearest limit divided by distance between
limits). The user must therefore be aware of the fact that, for example, if he puts limits of (0, 1010) on a parameter,
then the values 0.0 and 1.0 will be indistinguishable to the accuracy of most machines.

For this purpose single sided limits on parameters are provided by M , with their transformation being:

Lower bound a:

Pint = ±
√

(Pext − a+ 1)2 − 1

Pext = a− 1 +
√
P 2

int + 1

Upper bound b:

Pint = ±
√

(b− Pext + 1)2 − 1

Pext = b+ 1−
√
P 2

int + 1

The transformation of course also affects the parameter error matrix, so M does a transformation of the error matrix
(and the “parabolic” parameter errors) when there are parameter limits. Users should however realize that the
transformation is only a linear approximation, and that it cannot give a meaningful result if one or more parameters is
very close to a limit, where ∂Pext/∂Pint ≈ 0. Therefore, it is recommended that:

• Limits on variable parameters should be used only when needed in order to prevent the parameter from taking
on unphysical values.

14 CHAPTER 2. INTRODUCTION: M BASIC CONCEPTS

• When a satisfactory minimum has been found using limits, the limits should then be removed if possible, in order
to perform or re-perform the error analysis without limits.

Further discussion of the effects of parameter limits may be found in the last chapter.

2.4 M strategy

At many places in the analysis of the FCN (the user provided function), M must decide whether to be “safe” and waste
a few function calls in order to know where it is, or to be “fast” and attempt to get the requested results with the
fewest possible calls at a certain risk of not obtaining the precision desired by the user. In order to allow the user to
influence these decisions, there is a M class MnStrategy (see [api:strategy]) which the user can use to put different
settings. In the current release, this MnStrategy can be instantiated with three different minimization quality levels for
low (0), medium (1) and high (2) quality. Default settings for iteration cycles and tolerances are initialized then. The
default setting is set for medium quality. Value 0 (low) indicates to M that it should economize function calls; it is
intended for cases where there are many variable parameters and/or the function takes a long time to calculate and/or
the user is not interested in very precise values for parameter errors. On the other hand, value 2 (high) indicates that
M is allowed to waste function calls in order to be sure that all values are precise; it is intended for cases where the
function is evaluated in a relatively short time and/or where the parameter errors must be calculated reliably. In
addition all constants set in MnStrategy can be changed individually by the user, e.g. the number of iteration cycles in
the numerical gradient.

2.5 Parameter errors

M is usually used to find the “best” values of a set of parameters, where “best” is defined as those values which minimize
a given function, FCN. The width of the function minimum, or more generally, the shape of the function in some
neighbourhood of the minimum, gives information about the uncertainty in the best parameter values, often called by
physicists the parameter errors. An important feature of M is that it offers several tools to analyze the parameter
errors.

2.5.1 FCN normalization and the error definition

Whatever method is used to calculate the parameter errors, they will depend on the overall (multiplicative) normalization
of FCN, in the sense that if the value of FCN is everywhere multiplied by a constant β, then the errors will be decreased
by a factor

√
β. Additive constants do not change the parameter errors, but may imply a different goodness-of-fit

confidence level.

Assuming that the user knows what the normalization of his FCN means, and also that he is interested in parameter
errors, the user can change the error definition which allows him to define what he means by one “error”, in terms
of the change in the FCN value which should be caused by changing one parameter by one “error”. If the FCN is
the usual chisquare function (defined below) and if the user wants the usual one-standard-deviation errors, then the
error definition (return value of the FCNBase::up() method, see [howto:errordef]) should be 1.0. If the FCN is a
negative-log-likelihood function, then the one-standard-deviation value for FCNBase::up() to return is 0.5. If the FCN
is a chisquare, but the user wants two-standard-deviation errors, then FCNBase::up() should return = 4.0, etc.

Note that in the usual case where M is being used to perform a fit to some experimental data, the parameter errors
will be proportional to the uncertainty in the data, and therefore meaningful parameter errors cannot be obtained
unless the measurement errors of the data are known. In the common case of a least-squares fit, FCN is usually defined
as a chisquare:

χ2(α) =
n∑
i=1

(f(xi, α)−mi)2

σ2
i

where α is the vector of free parameters being fitted, and the σi are the uncertainties in the individual measurements
mi. If these uncertainties are not known, and are simply left out of the calculation, then the fit may still have meaning,
but not the quantitative values of the resulting parameter errors. (Only the relative errors of different parameters with
respect to each other may be meaningful.)

If the σi are all overestimated by a factor β, then the resulting parameter errors from the fit will be overestimated by
the same factor β.

2.5. PARAMETER ERRORS 15

2.5.2 The error matrix

The M processors MIGRAD (MnMigrad, see [api:migrad]) and HESSE (MnHesse, see [api:hesse]) (normally) produce
an error matrix. This matrix is twice the inverse of the matrix of second derivatives of the FCN, transformed if
necessary into external coordinate space2, and multiplied by FCNBase::up(). Therefore, errors based on the M error
matrix take account of all the parameter correlations, but not the non-linearities. That is, from the error matrix alone,
two-standard-deviation errors are always exactly twice as big as one-standard-deviation errors.

When the error matrix has been calculated (for example by the successful execution of MIGRAD (MnMigrad::operator(),
see [api:migradop]) or HESSE (MnHesse::operator())) then the parameter errors printed by M are the square roots of
the diagonal elements of this matrix. The covariance or the correlations can be printed and shown via std::cout as the
ostream operator operator<< is overloaded. The eigenvalues of the error matrix can be calculated using MnEigen,
which should all be positive if the matrix is positive-definite (see below on MIGRAD and positive-definiteness).

The effect of correlations on the individual parameter errors can be seen as follows. When parameter n is fixed
(e.g. via the method MnMigrad::fix(n)), M inverts the error matrix, removes the row and column corresponding to
parameter n, and re-inverts the result. The effect on the errors of the other parameters will in general be to make
them smaller, since the component due to the uncertainty in parameter n has now been removed. (In the limit that a
given parameter is uncorrelated with parameter n, its error will not change when parameter n is fixed.) However the
procedure is not reversible, since M forgets the original error matrix, so if parameter n is then released (e.g. via the
method MnMigrad::release(n)), the error matrix is considered as unknown and has to be recalculated with appropriate
commands.

2.5.3 MINOS errors

The M processor MINOS (MnMinos, see [api:minos]) was probably the first, and may still be the only, generally
available program to calculate parameter errors taking into account both parameter correlations and non-linearities.
The MINOS error intervals are in general assymmetric, and may be expensive to calculate, especially if there are a lot
of free parameters and the problem is very non-linear.

MINOS can only operate after a good minimum has already been found, and the error matrix has been calculated, so
the MINOS error analysis will normally follow a MIGRAD minimization. The MINOS error for a given parameter is
defined as the change in the value of that parameter which causes F ′ to increase by the amount FCNBase::up(), where
F ′ is the minimum of FCN with respect to all other free parameters, and FCNBase::up() is the return value of the
error definition specified by the user (default = 1.).

The algorithm for finding the positive and negative MINOS errors for parameter n consists of varying parameter n,
each time minimizing FCN with respect to all the other npar - 1 variable parameters, to find numerically the two
values of parameter n for which the minimum of FCN takes on the values Fmin + up, where Fmin is the minimum of
FCN with respect to all npar parameters. In order to make the procedure as fast as possible, MINOS uses the error
matrix to predict the values of all parameters at the various sub-minima which it will have to find in the course of the
calculation, and in the limit that the problem is nearly linear, the predictions of MINOS will be nearly exact, requiring
very few iterations. On the other hand, when the problem is very non-linear (i.e., FCN is far from a quadratic function
of its parameters), is precisely the situation when MINOS is needed in order to indicate the correct parameter errors.

2.5.4 CONTOURS plotting

M offers a procedure for finding FCN CONTOURS (provided via the class MnContours, see [api:contours]).

The contour calculated by MnContours::operator() is dynamic, in the sense that it represents the minimum of FCN with
respect to all the other npar - 2 parameters (if any). In statistical terms, this means that MnContours takes account of
the correlations between the two parameters being plotted, and all the other variable parameters, using a procedure
analogous to that of MINOS. (If this feature is not wanted, then the other parameters must be fixed before calling
CONTOURS.) MnContours provides the actual coordinates of the points around the contour, suitable for plotting with
a graphics routine or by hand (using MnPlot, see [api:plot]). The points are given in counter-clockwise order around
the contour. Only one contour is calculated per command, and the level is Fmin + up. where up is the return value of
FCNBase::up() specified by the user (usually 1.0 by default). The number of points to be calculated is chosen by the user
(default is 20). As a by-product, CONTOURS provides the MINOS errors of the two parameters in question, since these
are just the extreme points of the contour (use the MnContours::contour(. . .) method in order to get the points of the
contour and the ones of the MINOS errors). MnContours::operator() returns a std::vector<std::pair<double,double>>
of (x,y) points. Using MnPlot::operator() will generate a text graphics plot in the terminal.

2The internal error matrix maintained by M is transformed for the user into external coordinates, but the numbering of rows and
columns is of course still according to internal parameter numbering, since one does not want rows and columns corresponding to parameters
which are not variable. The transformation therefore affects only parameters with limits; if there are no limits, internal and external error
matrices are the same.

16 CHAPTER 2. INTRODUCTION: M BASIC CONCEPTS

Chapter 3

M installation

3.1 M releases

To follow the current release process the user is referred to the M homepage @bib-C++MINUIT.

M was re–implemented in from 2002–2004, but the functionality is largely compatible with the one of the version. The
usage is different in the sense that the re–write from to was done by its signification and not literally (with minor
exceptions). Applications such as MIGRAD have a corresponding class MnMigrad, M “commands” became classes or
methods of classes according to their purpose. Users familiar with the version of M , who have not yet used releases
from the version, should however read this manual, in order to adapt to the changes as well as to discover the new
features and easier ways of using old features.

3.2 Install M using autoconf/make

For each release of M a tar.gz file is provided for downloading from the M homepage @bib-C++MINUIT. For non-UNIX
platforms please refer to the M homepage.

The necessary steps to follow are:

1. download the tar.gz by clicking on it from the release page

2. unzip it:

$ unzip Minuit-x.x.x.tar.gz

3. untar it:

$ tar xvf Minuit-x.x.x.tar

4. step down to the created Minuit-x.x.x directory:

$ cd Minuit-x.x.x/

5. run the “configure” script:

$./configure

6. run “make” to compile the source code:

$ make

7. run “make check” to create the executable example:

$ make check

8. run the executable example:

17

18 CHAPTER 3. M INSTALLATION

$ tests/MnTutorial/Quad4FMain.C

The output should look like that:

Minuit did successfully converge.

of function calls: 74
minimum function value: 1.12392e-09
minimum edm: 1.12392e-09
minimum internal state vector: LAVector parameters:

-1.82079e-05
-1.20794e-05
6.22382e-06
-3.0465e-05

minimum internal covariance matrix: LASymMatrix parameters:

4 1 2 2.70022e-18
1 5 3 1.87754e-17
2 3 6 2.29467e-17

2.70022e-18 1.87754e-17 2.29467e-17 1

ext. || name || type || value || error +/-

0 || x || free ||-1.821e-05 || 2
1 || y || free ||-1.208e-05 || 2.236
2 || z || free || 6.224e-06 || 2.449
3 || w || free ||-3.047e-05 || 1

MnUserCovariance:

4 1 2 2.70022e-18
1 5 3 1.87754e-17
2 3 6 2.29467e-17

2.70022e-18 1.87754e-17 2.29467e-17 1

MnUserCovariance parameter correlations:

1 0.223607 0.408248 1.35011e-18
0.223607 1 0.547723 8.39663e-18
0.408248 0.547723 1 9.36796e-18

1.35011e-18 8.39663e-18 9.36796e-18 1

MnGlobalCorrelationCoeff:

0.408248
0.547723
0.621261

0

3.3 CVS code repository

How to check out (–in) code from the CVS code repository is described at the M homepage @bib-C++MINUIT. To
get the source code from the CVS repository one needs to do:

3.4. CREATE A TAR.GZ FROM CVS 19

Kerberos IV authorization:

$ setenv CVSROOT :kserver:SEAL.cvs.cern.ch:/cvs/SEAL

$ cvs co MathLibs/Minuit

Anonymous read-only access (if it’s enabled by the librarian, see details):

$ setenv CVSROOT :pserver:anonymous@SEAL.cvs.cern.ch:/cvs/SEAL

$ cvs login

(Logging in to :pserver:anonymous@seal.cvs.cern.ch:2401/cvs/SEAL) CVS password:cvs

$ cvs co MathLibs/Minuit

(If you want to check out a tagged version SEAL_x_x_x of MINUIT, then do

$ cvs co -r SEAL_x_x_x MathLibs/Minuit)

3.4 Create a tar.gz from CVS

Once the sources are checked out from the CVS code repository,

1. change to the directory:

$ cd MathLibs/Minuit

2. run autogen:

$./autogen

3. create a new directory:

$ cd ..
$ mkdir Minuit-BUILD
$ cd Minuit-BUILD/

4. run configure:

$../Minuit/configure

5. create the tar.gz:

$ make dist

This will create a Minuit-x.x.x.tar.gz which can be distributed and used as described above.

3.5 M versions

The version numbers of M follow the release numbers of the SEAL project @bib-SEAL at CERN @bib-CERN.

3.5.1 From to

The program is entirely written in standard portable . M does not depend on any external library. In its minimal
usage the user must only provide an implementation of the FCNBase class to M and parameters and uncertainties in
form of std::vector containers.

20 CHAPTER 3. M INSTALLATION

3.5.2 Memory allocation and thread safety

Differently to the version of M , the version has its own memory manager (StackAllocator. The user can select between
the standard dynamic memory allocation and deallocation (default) and performance-optimized stack–like allocation
(optional). However, the library is not thread save using stack–allocation.

3.5.3 M parameters

Differently to the version of M there is no limit on the number of parameters, variable or non-variable. Memory
allocation is done dynamically according to the actual needs and “on demand”. There is no protection against an upper
limit on the number of parameters, however the “technological” limitations of M can be seen around a maximum of 15
free parameters at a time.

3.6 Interference with other packages

The new M has been designed to interfere as little as possible with other programs or packages which may be loaded at
the same time. M is thread safe by default. Optionally the user can select a different way of dynamically allocating
memory in the class StackAllacator for M , in which case (and after an entire recompiliation of the whole library) the
thread safety is lost.

3.7 Floating-point precision

[install:epsmac]

M is entirely based on double precision. The actual floating point precision of double precision (32–bit or 64–bit) is
platform dependent and can even vary on the same platform, depending on whether a floating point number is read
from memory a CPU register.

The argument of the user’s implementation of FCNBase::operator() is therefore a std:vector<double>. M expects that
the calculations inside FCN will be performed approximately to the same accuracy.

The accuracy M expects is called machine precision (MnMachinePrecision, see [api:epsmac]) and can be printed on
demand using std::cout. If the user fools M by making internal FCN computations in single precision, M will interpret
roundoff noise as significant and will usually either fail to find a minimum, or give incorrect values for the parameter
errors.

It is therefore recommended to make sure that all computations in FCN, as well as all methods and functions called by
FCN, are done in double precision. If for some reason the computations cannot be done to a precision comparable
with that expected by M , the user must inform M of this situation with setting a different machine precision via the
MnMachinePrecision::setPrecision(double) method.

With reduced precision, the user may find that certain features sensitive to first and second differences (HESSE,
MINOS, CONTOURS) do not work properly, in which case the calculations must be performed in higher precision.

Chapter 4

How to use M

[howto:howto]

4.1 The FCN Function

[howto:fcn]

The user must always implement a derived class of FCNBase (the “FCN”) which calculates the function value to be
minimized or analyzed.

Figure 4.1:

Note that when M is being used through an intermediate package such as HippoDraw @bib-HippoDraw, then the user’s
FCN may be supplied by the this package.

The name of the user’s class to implement the FCNBase interface may be chosen freely (in documentation we give it
the generic name FCN).

4.1.1 FCNBase::operator()(const std::vector<double>&)

The meaning of the vector of parameters std::vector<double> in the argument of FCNBase::operator() are of course
defined by the user, who uses the values of those parameters to calculate his function value. The order and the position
of these parameters is strictly the one specified by the user when supplying the starting values for minimization.

The starting values must be specified by the user, either via an std::vector<double> or the MnUserParameters
(see [api:parameters]) supplied as input to the M minimizers such as VariableMetricMinimizer or MnMigrad (see
[api:migrad]). Later values are determined by M as it searches for the minimum or performs whatever analysis is
requested by the user.

4.1.2 FCNBase::up()

[howto:errordef] Returns the value of up (default value = 1.), defining parameter errors. M defines parameter errors as
the change in parameter value required to change the function value by up. Normally, for chisquared fits up = 1, and
for negative log likelihood, up = 0.5.

21

22 CHAPTER 4. HOW TO USE M

Figure 4.2:

4.1.3 FCN function with gradient

By default first derivatives are calculated numerically by M . In case the user wants to supply his own gradient calculator
(e.g. analytical derivatives), he needs to implement the FCNGradientBase interface.

The size of the output vector is the same as of the input one. The same is true for the position of the elements (first
derivative of the function with respect to the nth variable has index n in the output vector).

4.2 M parameters

Interaction with the parameters of the function are essential both for M and the user. Different interfaces are provided,
depending on the level of interaction.

4.2.1 Minimal required interface

Starting values of parameters and uncertainties can be provided to M by the user via std::vector<double> vector
containers. Any interaction with the parameters before minimization (fix, release, limits, etc.) is not possible then.

Optionally if the user wants to provide starting values for the covariance, he has to provide the values in a
std::vector<double> vector container stored in upper triangular packed storage format (see [api:covariance]).

4.2.2 MnUserParameters

A more functional interface to the user parameters is provided through M via the class MnUserParameters. The user
can add parameters giving them a name and starting values. More information can be found in [api:parameters].

4.2.3 MnUserCovariance

The user can (optionally) provide a covariance matrix as input using the class MnUserCovariance. More information
can be found in [api:covariance].

4.2.4 MnUserParameterState

The MnUserParameterState contains the parameters (MnUserParameters) and covariance (MnUserCovariance). The
MnUserParameterState has to main purposes:

• It can be used as input to minimization.

• The result of the minimization is transformed into the user representable format by M .

For more explanations see [api:state].

4.3. INPUT TO M 23

4.3 Input to M

The following input combinations to M are possible:

• FCN + parameters + uncertainties

• FCN with gradient + parameters + uncertainties

• FCN + parameters + covariance

• FCN with gradient + parameters + covariance

For each of these combinations the user can chose between a minimal required interface (using std::vector containers)
for the parameters and uncertainties or a more functional one provided by M . If the user wants to interact with the
parameters before minimization (fixing, adding/removing limits), the minimal required interface cannot be used.

4.3.1 What the user must supply

The user must supply to M

• a valid implementation of the FCNBase base class

• parameters with their starting values

• expected uncertainties on the parameters

The input parameters can be simply defined via an std::vector<double>, which means that all parameters are variables.
If the user wants fix a parameter or put limits on it before minimization, he has to instantiate a MnUserParameters
object and then add parameters one by one, giving them a name, value, uncertainty. Once all parameters are added
to MnUserParameters, he can fix a parameter or put limits on another one before handing them over to Minit for
minimization.

4.3.2 What the user can supply

Optionally the user can supply his own gradient calculator by implementing the FCNGradientBase interface or
supply a full covariance matrix for input if one is available. The covariance matrix can be supplied in form of a
std::vector<double> in packed storage format (upper triangular), or in a more user-friendly way by using the interface
provided by the MnUserCovariance.

4.4 Running a M minimization

Two use cases are addressed for minimization:

• The user just wants the function to be minimized in one go.

• The user wants to minimize the FCN in several minimization steps, re-using the result of the preceeding
minimization in the next step and change parameters in between (fix/release/put limits on them, etc.).

How M minimizations can be performed is shown in [example:main].

4.4.1 Direct usage of minimizers

Minimizers such as the VariableMetricMinimizer are designed as state-less minimization engines, which means that
they do not depend on the current function and its parameters. Any FCN function can be minimized with the same
minimizer. The interface is restricted to minimization and no parameter interaction is possible.

24 CHAPTER 4. HOW TO USE M

4.4.2 Using an application (MnMigrad)

MnMigrad uses the VariableMetricMinimizer for minimization but allows as well for parameter interaction by the user.
An instance of MnMigrad is specific to the current FCN and user parameters. Any parameter interaction of the user
between two minimization steps will make use of the result of the preceeding minimization in an optimal way. The
interface for parameters (see [api:parameters], [api:covariance] and [api:state]) is forwardedin MnMigrad.

4.4.3 Subsequent minimizations

M takes care that all information is treated in an optimal and correct wayif the user interacts with the parameters
between two minimizations. MnMigrad retains the result of the last minimization and uses this as input for the next
step. Between two minimization requests to MnMigrad the user can fix or release parameters, put limits on them or
remove limits from them. Each instance of a MnMigrad object maintains its own state and one can have multiple
instances of MnMigrad objects.

4.4.4 M fails to find a minimum

If M fails to find a minimum, the user is notified by a warning message isued by M when running into troubles.
Problems can be:

• a bug in M

• an error in the FCN

• a highly difficult problem (usually strong correlations among parameters)

• floating–point precision

4.5 The output from minimization

4.5.1 The FunctionMinimum

The output of the minimizers is the FunctionMinimum. The FunctionMinimum contains the result of the minimization
in both internal parameter representation and external parameter representation.

4.5.2 User representable format: MnUserParameterState

On request, the result of the minimzation is transformed into a user representable format for parameters and errors,
the MnUserParameterState.

4.5.3 Access values, errors, covariance

The result can be accessed via methods like MnUserParameterState::value(unsigned int n) and MnUserParameter-
State::error(unsigned int n), where n is the index of the parameter in the list of parameters defined by the user.

4.5.4 Printout of the result

The FunctionMinimum can be printed on the output simply via std::cout. It will print both the internal and external
state, that is parameters, errors and the covariance matrix (if available). It also tells the user if M did converge or not
by issueing an appropriate message. If a covariance matrix is available, the global correlation coefficients are printed as
well.

4.5.5 Global correlation coefficients

The global correlation coefficient for parameter n is a number between zero and one which gives the correlation between
parameter n and that linear combination of all other parameters which is most strongly correlated with n.

Chapter 5

M application programming interface
(API)

[api:api]

5.1 FunctionMinimum

[api:fm] The FunctionMinimum is the output of the minimizers and contains the minimzation result. The state at
the minimum is available both in internal and external representations. For the external representations the return
methods

• FunctionMinimum::userState(),

• FunctionMinimum::userParameters() and

• FunctionMinimum::userCovariance()

are provided. These can be used as new input to a new minimization after some manipulation. The parameters and/or
the FunctionMinimum can be printed using std::cout.

5.1.1 isValid()

In general, if the method bool FunctionMinimum::isValid() returns “true”, the minimizer did find a minimum without
running into troubles. However, in some cases it may happen that a minimum cannot be found, then the return value
will be “false”. Reasons for the minimization to fail are

• the number of allowed function calls has been exhausted

• the minimizer could not improve the values of the parameters (and knowing that it has not converged yet)

• a problem with the calculation of the covariance matrix

Additional methods for the analysis of the state at the minimum are provided.

5.1.2 fval(), edm(), nfcn()

The method double FunctionMinimum::fval() returns the function value at the minimum, the method double Function-
Minimum::edm() returns the expected vertical distance to the minimum EDM and unsigned int FunctionMinimum::nfcn()
returns the total number of function calls during the minimization.

5.2 MnContours

[api:contours]

25

26 CHAPTER 5. M APPLICATION PROGRAMMING INTERFACE (API)

5.2.1 MnContours(const FCNBase&, const FunctionMinimum&)

Construct an MnContours object from the user’s FCN and a valid FunctionMinimum. Additional constructors for user
specific MnStrategy settings are provided.

5.2.2 operator()

The method MnContours::operator()(unsigned int parx, unsigned int pary, unsigned int npoints = 20) const
calculates one function contour of FCN with respect to parameters parx and pary. The return value is a
std::vector<std::pair<double,double> > of (x,y) points. FCN minimized always with respect to all other n - 2 variable
parameters (if any). M will try to find npoints points on the contour (default 20). To calculate more than one contour,
the user needs to set the error definition [howto:errordef] in its FCN to the appropriate value for the desired confidence
level and call the method MnContours::operator() for each contour.

5.2.3 contour(. . .)

MnContours::contour(unsigned int parx, unsigned int pary, unsigned int npoints = 20) causes a CONTOURS error
analysis and returns the result in form of ContoursError. As a by-product ContoursError keeps the MinosError
information of parameters parx and pary. The result ContoursError can be easily printed using std::cout.

5.3 MnEigen

[api:eigen] MnEigen calculates and the eigenvalues of the user covariance matrix MnUserCovariance.

5.3.1 MnEigen()

MnEigen is instantiated via default constructor.

5.3.2 operator()

operator()(const MnUserCovariance&) const will perform the calculation of the eigenvalues of the covariance matrix
and return the result in form of a std::vector<double>. The eigenvalues are ordered from the smallest first to the
largest eigenvalue.

5.4 MnHesse

[api:hesse]

With MnHesse the user can instructs M to calculate, by finite differences, the Hessian or error matrix. That is, it
calculates the full matrix of second derivatives of the function with respect to the currently variable parameters, and
inverts it.

5.4.1 MnHesse()

The default constructor of MnHesse() will use default settings of MnStrategy. Other constructors with user specific
MnStrategy settings are provided as well.

5.4.2 operator()

The MnHesse::operator() is overloaded both for internal (M) and external (user) parameters. External parameters can
be specified as std::vector<double> or as MnUserParameters. The return value is always a MnUserParameterState.

The optional argument maxcalls specifies the (approximate) maximum number of function calls after which the
calculation will be stopped.

5.5. MNMACHINEPRECISION 27

5.5 MnMachinePrecision

[api:epsmac]

5.5.1 MnMachinePrecision()

M determines the nominal precision itself in the default constructor MnMachinePrecision().

5.5.2 setPrecision(double eps)

Informs M that the relative floating point arithmetic precision is eps. The method can be used to override M ’s own
determination, when the user knows that the FCN function value is not calculated to the nominal machine accuracy.
Typical values of eps are between 10−5 and 10−14.

5.6 MnMigrad and VariableMetricMinimizer

[api:migrad]

MnMigrad provides minimization of the function by the method of MIGRAD, the most efficient and complete single
method, recommended for general functions (see also [api:minimize]), and the functionality for parameters interaction.
It also retains the result from the last minimization in case the user may want to do subsequent minimization steps with
parameter interactions in between the minimization requests. The minimization is done by the VariableMetricMinimizer.
Minimization of the function can be done by directly using the VariableMetricMinimizer if no parameters interaction is
required. The minimization produces as a by-product the error matrix of the parameters, which is usually reliable
unless warning messages are produced.

5.6.1 MnMigrad(const FCNBase&, const std::vector<double>&, const std::vector<double>&,
unsigned int)

Constructor for the minimal required interface: FCN and starting values for parameters and uncertainties. Optional
the strategy level in MnStrategy can be specified.

5.6.2 MnMigrad(const FCNBase&, const MnUserParameters&, unsigned int)

Constructor for high level parameters interface. Optional the strategy level in MnStrategy can be specified.

5.6.3 MnMigrad(const FCNBase&, const MnUserParameterState&, const MnStrat-
egy&)

Constructor from a full state (parameters + covariance) as starting input plus the desired strategy.

5.6.4 operator()

[api:migradop] MnMigrad::operator()(unsigned int maxfcn, double tolerance) causes minimization of the FCN and
returns the result in form of a FunctionMinimum. The optional argument maxfcn specifies the (approximate) maximum
number of function calls after which the calculation will be stopped even if it has not yet converged. The optional
argument tolerance specifies the required tolerance on the function value at the minimum. The default tolerance
value is 0.1, and the minimization will stop when the estimated vertical distance to the minimum (EDM) is less than
0.001∗tolerance∗up (see [howto:errordef]).

5.6.5 Parameter interaction

MnMigrad retains the result after each minimization (MnUserParameterStae, see [api:state]) and forwards the interface.

28 CHAPTER 5. M APPLICATION PROGRAMMING INTERFACE (API)

5.6.6 VariableMetricMinimizer()

The VariableMetricMinimizer is instantiated using default constructor.

5.6.7 minimize(const FCNBase&, . . .)

The VariableMetricMinimizer provides several overloaded methods minimize with return value FunctionMinimum.
Together with the user FCN (either an implementation of FCNBase or FCNGradientBase) the user has to give as
input the parameters with starting values in one of the defined formats (std::vector<double>, MnUserParameters or
MnUserParameterState).

5.7 MnMinimize and CombinedMinimizer

[api:minimize]

Causes minimization of the function by the method of MIGRAD, as does the MnMigrad class, but switches to the
SIMPLEX method if MIGRAD fails to converge. Constructor arguments, methods arguments and names of methods
are the same as for MnMigrad or MnSimplex and VariableMetricMinimizer or SimplexMinimizer.

5.8 MnMinos

[api:minos] Causes a MINOS error analysis to be performed on the parameter whose number is specified. MINOS errors
may be expensive to calculate, but are very reliable since they take account of non-linearities in the problem as well as
parameter correlations, and are in general asymmetric. The optional argument maxcalls specifies the (approximate)
maximum number of function calls per parameter requested, after which the calculation will be stopped for that
parameter.

5.8.1 MnMinos(const FCNBase&, const FunctionMinimum&)

Construct an MnMinos object from the user’s FCN and a valid FunctionMinimum. Additional constructors for user
specific MnStrategy settings are provided.

5.8.2 operator()

MnMinos::operator()(unsigned int n, unsigned int maxcalls) causes a MINOS error analysis for external parameter n.
The return value is a std::pair<double,double> with the lower and upper bounds of parameter n.

5.8.3 minos(unsigned int n, unsigned int maxcalls)

MnMinos::minos(unsigned int n, unsigned int maxcalls) causes a MINOS error analysis for external parameter n and
returns a MinosError with the lower and upper bounds of parameter n and additional information in case that one
bound could not be found. The result MinosError can be easily printed using std::cout.

5.8.4 Other methods

Additional methods exist to ask for one side of MINOS errors only.

5.9 MnPlot

[api:plot] MnPlot prints the result of CONTOURS or SCAN on a text terminal.

5.9.1 MnPlot()

The default constructor initializes default settings for the text window size.

5.10. MNSCAN AND SCANMINIMIZER 29

5.9.2 operator()

MnPlot::operator()(const std::vector<std::pair<double,double> >&) prints a vector of (x,y) points on the text
terminal. operator()(double xmin, double ymin, const std::vector<std::pair<double,double> >&) prints in addition
the coordinates of the (x,y) values at the minimum.

5.10 MnScan and ScanMinimizer

[api:scan]

MnScan scans the value of the user function by varying one parameter. It is sometimes useful for debugging the user
function or finding a reasonable starting point. Constructor arguments, methods arguments and names of methods are
the same as for MnMigrad and VariableMetricMinimizer.

5.10.1 scan(unsigned int par, unsigned int npoint, double low, double high)

Scans the value of the user function by varying parameter number par, leaving all other parameters fixed at the current
value. If par is not specified, all variable parameters are scanned in sequence. The number of points npoints in the
scan is 40 by default, and cannot exceed 100. The range of the scan is by default 2 standard deviations on each side of
the current best value, but can be specified as from low to high. After each scan, if a new minimum is found, the best
parameter values are retained as start values for future scans or minimizations. The curve resulting from each scan can
be plotted on the output terminal using MnPlot [api:plot] in order to show the approximate behaviour of the function.

5.10.2 ScanMinimizer

Although the SCAN method is not intended for minimization it can be used as a minimizer in its most primitive form.

5.11 MnSimplex and SimplexMinimizer

[api:simplex]

SIMPLEX is a function minimization method using the simplex method of Nelder and Mead. MnSimplex provides
minimization of the function by the method of SIMPLEX and the functionality for parameters interaction. It also
retains the result from the last minimization in case the user may want to do subsequent minimization steps with
parameter interactions in between the minimization requests. The minimization is done by the SimplexMinimizer.
Minimization of the function can be done by directly using the SimplexMinimizer if no parameters interaction is
required. As SIMPLEX is a stepping method it does not produce a covariance matrix.

5.11.1 MnSimplex(const FCNBase&, const std::vector<double>&,
const std::vector<double>&, unsigned int)

Constructor for the minimal required interface: FCN and starting values for parameters and uncertainties. Optional
the strategy level in MnStrategy can be specified.

5.11.2 MnSimplex(const FCNBase&, const MnUserParameters&,
unsigned int)

Constructor for high level parameters interface. Optional the strategy level in MnStrategy can be specified.

5.11.3 MnSimplex(const FCNBase&, const MnUserParameterState&,
const MnStrategy&)

Constructor from a full state (parameters + covariance) as starting input plus the desired strategy.

30 CHAPTER 5. M APPLICATION PROGRAMMING INTERFACE (API)

5.11.4 operator()

MnSimplex::operator()(unsigned int maxfcn, double tolerance) causes minimization of the FCN and returns the result
in form of a FunctionMinimum. Minimization terminates either when the function has been called (approximately)
maxfcn times, or when the estimated vertical distance to minimum (EDM) is less than tolerance*up. The default value
of tolerance is 0.1. (see [howto:errordef]).

5.11.5 Parameter interaction

MnSimplex retains the result after each minimization (MnUserParameterStae, see [api:state]) and forwards the interface
for parameter interaction.

5.11.6 SimplexMinimizer()

The SimplexMinimizer() is instantiated using default constructor.

5.11.7 minimize(const FCNBase&, . . .)

The SimplexMinimizer provides several overloaded methods minimize with return value FunctionMinimum. Together
with the user FCN (either an implementation of FCNBase or FCNGradientBase) the user has to give as input
the parameters with starting values in one of the defined formats (std::vector<double>, MnUserParameters or
MnUserParameterState).

5.12 MnStrategy

[api:strategy] Sets the strategy to be used in calculating first and second derivatives and in certain minimization
methods. In general, low values of level mean fewer function calls and high values mean more reliable minimization.
Currently allowed values are 0 (low), 1 (default), and 2 (high).

5.12.1 MnStrategy()

Default constructor, sets all settings according to level$ = 1.$

5.12.2 MnStrategy(unsigned int level)

Explicit constructor for predefined settings of desired level 0 (low), 1 (default), or 2 (high).

5.12.3 setLowStrategy(), setMediumStrategy(), setHighStrategy()

Methods to set specific strategy level.

5.12.4 Other methods

In addition, methods for individual settings such as setGradientNCycles() are provided.

5.13 MnUserCovariance

[api:covariance] MnUserCovariance is the external covariance matrix designed for the interaction of the user. The result
of the minimization (internal covariance matrix) is converted into the user representable format. It can also be used as
input prior to the minimization. The size of the covariance matrix is according to the number of variable parameters
(free and limited).

5.14. MNUSERPARAMETERS 31

5.13.1 MnUserCovariance(const std::vector<double>&, unsigned int nrow)

Construct from data, positions of the elements in the array are arranged according to the packed storage format. The
size of the array must be nrow ∗ (nrow + 1)/2. The array must contain the upper triangular part of the symmetric
matrix packed sequentially, column by column, so that arr(0) contains covar(0,0), arr(1) and arr(2) contain covar(0,1)
and covar(1,1) respectively, and so on. The number of rows (colums) has to be specified.

5.13.2 MnUserCovariance(unsigned int nrow)

Specify the number of rows (colums) at instantiation. It will allocate an array of the length nrow ∗ (nrow + 1)/2 and
inititalize it to 0. Elements can then be set using the method operator()(unsigned int, unsigned int).

5.13.3 MnUserCovariance::operator()(unsigned int, unsigned int)

Individual elements can be accessed via the operator(), both for reading and writing.

5.14 MnUserParameters

[api:parameters] MnUserParameters is the main class for user interaction with the parameters. It serves both as input
to the minimization as well as output as the result of the minimization is converted into the user representable format
in order to allow for further interaction. Parameters for M can be added (defined) specifying a name, value and initial
uncertainty.

5.14.1 add(. . .)

The method MnUserParameters::add(. . .) is overloaded for three kind of parameters:

• add(const char*, double, double) for adding a free variable parameter

• add(const char*, double, double, double, double) for adding a variable parameter with limits (lower and upper)

• add(const char*, double) for adding a constant parameter

When adding parameters, M assigns indices to each parameter which will be the same as in the std::vector<double> in
the FCNBase::operator(). That means the first parameter the user adds gets index 0, the second index 1, and so on.
When calculating the function value inside FCN, M will call FCNBase::operator() with the elements at their positions.

5.14.2 setValue(. . .)

[api:setvalue] setValue(unsigned int parno, double value) or setValue(const char* name, double value) set the value of
parameter parno or with name name to value. The parameter in question may be variable, fixed, or constant, but
must be defined.

5.14.3 setError(. . .)

[api:seterror] setError(unsigned int parno, double error) or setError(const char* name, double error) set the error
(sigma) of parameter parno or with name name to value.

5.14.4 fix(. . .)

[api:fix] fix(unsigned int parno) or fix(const char* name) fixes parameter parno or with name name.

5.14.5 release(. . .)

[api:release] release(unsigned int parno) or release(const char* name) releases a previously fixed parameter parno or
with name name.

32 CHAPTER 5. M APPLICATION PROGRAMMING INTERFACE (API)

5.14.6 setLimits(. . .)

[api:setlimits] setLimits(unsigned int n, double low, double up) or setLimits(const char* name, double low, double up)
sets the lower and upper bound of parameter n or with name name.

However, if low is equal to up, an error condition results.

5.14.7 setUpperLimit(. . .)

[api:setupperlimits] setUpperLimit(unsigned int n, double up) or setUpperLimit(const char* name, double up) sets the
upper bound of parameter n or with name name. The parameters does not have a lower limit.

5.14.8 setLowerLimit(. . .)

[api:setlowerlimits] setLowerLimit(unsigned int n, double low) or setLowerLimit(const char* name, double low) sets the
lower bound of parameter n or with name name. The parameters does not have an upper limit.

5.14.9 removeLimits(. . .)

[api:removelimits] removeLimits(unsigned int n) or removeLimits(const char* name) removes all possible limits on
parameter n or with name name. The parameter can then vary in both directions without any bounds.

5.14.10 value(. . .)

value(unsigned int n) or value(const char* name) return the current value of parameter n or with name name.

5.14.11 error(. . .)

error(unsigned int n) or error(const char* name) return the current uncertainty (error) of parameter n or with name
name.

5.14.12 index(. . .)

index(const char* name) returns the index (current position) of the parameter with name name in the list of defined
parameters. The index is the same as for the calculation of the function value in the user’s FCN (FCNBase::operator()).

5.14.13 name(. . .)

name(unsigned int n) returns the name of the parameter with index n.

5.15 MnUserParameterState

[api:state] The class MnUserParameterState contains the MnUserParameters and the MnUserCovariance. It can be
created on input by the user, or by M itself as user representable format of the result of the minimization.

5.15.1 MnUserParameterState(const std::vector<double>&,
const std::vector<double>&)

Construct a state from starting values specified via std::vector<double>. No covariance is available.

5.15.2 MnUserParameterState(const MnUserParameters&)

Construct a state from starting values specified via MnUserParameters. No covariance is available.

5.16. MNPRINT.H 33

5.15.3 MnUserParameterState(const MnUserParameters&,
const MnUserCovariance&)

Construct a state from starting values specified via MnUserParameters and MnUserCovariance.

5.15.4 parameters()

The method parameters() returns a const reference to the MnUserParameters data member.

5.15.5 covariance()

The method covariance() returns a const reference to the MnUserCovariance data member.

5.15.6 globalCC()

The method globalCC() returns a const reference to the MnGlobalCorrelationCoeff data member.

5.15.7 MnUserParameterState::isValid() and
MnUserParameterState::hasCovariance()

isValid() returns true if the the state is valid, false if not. hasCovariance returns true if the the state has a valid
covariance, false otherwise.

5.15.8 MnUserParameterState::fval(), MnUserParameterState::edm(),
MnUserParameterState::nfcn()

After minimization:

• fval() returns the function value at the minimum

• edm() returns the expected vertival distance to the minimum EDM

• nfcn() returns the number of function calls during the minimization

5.16 MnPrint.h

[api:os] The following std::ostream operator<< output operators are defined in the file MnPrint.h.

5.16.1 operator<<(std::ostream&, const FunctionMinimum&)

Prints out the the values of the FunctionMinimum, internal parameters and external parameters (MnUserParameter-
State), the function value, the expected distance to the minimum and the number of fucntion calls.

5.16.2 operator<<(std::ostream&, const MnUserParameters&)

Prints out the MnUserParameters.

5.16.3 operator<<(std::ostream&, const MnUserCovariance&)

Prints out the MnUserCovariance.

5.16.4 operator<<(std::ostream&, const MnGlobalCorrelationCoeff&)

Prints out the MnGlobalCorrelationCoeff.

34 CHAPTER 5. M APPLICATION PROGRAMMING INTERFACE (API)

5.16.5 operator<<(std::ostream&, const MnUserParameterState&)

Prints out the whole MnUserParameterState: MnUserParameters, MnUserCovariance and MnGlobalCorrelationCoeff.

5.16.6 operator<<(std::ostream&, const MinosError&)

Prints out the MinosError of a given parameter.

5.16.7 operator<<(std::ostream&, const ContoursErros&)

Prints out the MinosError of the two parameters and plots a line printer graphic of the contours on the output terminal.

Chapter 6

How to get the right answer from M

The goal of M — to be able to minimize and analyze parameter errors for all possible user functions with any number
of variable parameters — is of course impossible to realise, even in principle, in a finite amount of time. In practice,
some assumptions must be made about the behaviour of the function in order to avoid evaluating it at all possible
points. In this chapter we give some hints on how the user can help M to make the right assumptions.

6.1 Which minimizer to use

One of the historically interesting advantages of M is that it was probably the first minimization program to offer
the user a choice of several minimization algorithms. This could be taken as a reflection of the fact that none of the
algorithms known at that time were good enough to be universal, so users were encouraged to find the one that worked
best for them. Since then, algorithms have improved considerably, but M still offers several, mostly so that old users
will not feel cheated, but also to help the occasional user who does manage to defeat the best algorithms. M currently
offers four applications which can be used to find a smaller function value, in addition to MINOS, which will retain a
smaller function value if it stumbles on one unexpectedly. The objects which can be used to minimize are:

6.1.1 MIGRAD

This is the best minimizer for nearly all functions. It is a variable-metric method with inexact line search, a stable
metric updating scheme, and checks for positive-definiteness. It will run faster if you instantiate it with a low–level
MnStrategy and will be more reliable if you instantiate it with a high–level MnStrategy (although the latter option
may not help much). Its main weakness is that it depends heavily on knowledge of the first derivatives, and fails
miserably if they are very inaccurate. If first derivatives are a problem, they can be calculated analytically inside FCN
(see [howto:fcn]) or if this is not feasible, the user can try to improve the accuracy of M ’s numerical approximation by
adjusting values of MnMachinePrecision and/or MnStrategy (see [api:epsmac] and [api:strategy]).

6.1.2 MINIMIZE

This is equivalent to MIGRAD, except that if MIGRAD fails, it reverts to SIMPLEX and then calls MIGRAD again.

6.1.3 SCAN

This is not intended to minimize, and just scans the function, one parameter at a time. It does however retain the best
value after each scan, so it does some sort of highly primitive minimization.

6.1.4 SIMPLEX

This genuine multidimensional minimization routine is usually much slower than MIGRAD, but it does not use first
derivatives, so it should not be so sensitive to the precision of the FCN calculations, and is even rather robust with
respect to gross fluctuations in the function value. However, it gives no reliable information about parameter errors, no
information whatsoever about parameter correlations, and worst of all cannot be expected to converge accurately to
the minimum in a finite time. Its estimate of the expected distance to the minimum EDM is largely fantasy, so it would
not even know if it did converge.

35

36 CHAPTER 6. HOW TO GET THE RIGHT ANSWER FROM M

6.2 Floating point precision

M figures out at execution time the machine precision [api:epsmac], and assumes that FCN provides about the same
precision. That means not just the length of the numbers used and returned by FCN, but the actual mathematical
accuracy of the calculations. Section [install:epsmac] describes what to do if this is not the case.

6.3 Parameter limits

Putting limits (absolute bounds) on the allowed values for a given parameter, causes M to make a non-linear
transformation of its own internal parameter values to obtain the (external) parameter values passed to FCN. To
understand the adverse effect of limits, see [intro:limits].

Basically, the use of limits should be avoided unless needed to keep the parameter inside a desired range.

If parameter limits are needed, in spite of the effects described in Chapter One, then the user should be aware of the
following techniques to alleviate problems caused by limits.

6.3.1 Getting the Right Minimum with Limits

If MIGRAD converges normally to a point where no parameter is near one of its limits, then the existence of limits has
probably not prevented M from finding the right minimum. On the other hand, if one or more parameters is near its
limit at the minimum, this may be because the true minimum is indeed at a limit, or it may be because the minimizer
has become “blocked” at a limit. This may normally happen only if the parameter is so close to a limit (internal value
at an odd multiple of ±π2 that M prints a warning to this effect when it prints the parameter values.

The minimizer can become blocked at a limit, because at a limit the derivative seen by the minimizer ∂F/∂Pint is zero
no matter what the real derivative ∂F/∂Pext is.

∂F

∂Pint
= ∂F

∂Pext

∂Pext

∂Pint
= ∂F

∂Pext
= 0

For a stepping method (like SIMPLEX) this seldom poses any problem, but a method based on derivatives (MIGRAD)
may become blocked at such a value. If this happens, it may be necessary to move the value of the parameter in
question a significant distance from the limit (e.g. with MnMigrad::setValue(. . .)) and restart the minimization, perhaps
with that parameter fixed temporarily.

6.3.2 Getting the right parameter errors with limits

[answer:right-errors]

In the best case, where the minimum is far from any limits, M will correctly transform the error matrix, and the
parameter errors it reports should be accurate and very close to those you would have got without limits. In other
cases (which should be more common, since otherwise you wouldn’t need limits), the very meaning of parameter errors
becomes problematic. Mathematically, since the limit is an absolute constraint on the parameter, a parameter at its
limit has no error, at least in one direction. The error matrix, which can assign only symmetric errors, then becomes
essentially meaningless. On the other hand, the MINOS analysis is still meaningful, at least in principle, as long as
MIGRAD (which is called internally by MINOS) does not get blocked at a limit. Unfortunately, the user has no control
over this aspect of the MINOS calculation, although it is possible to get enough printout from the MINOS result to be
able to determine whether the results are reliable or not.

6.4 Fixing and releasing parameters

When M needs to be guided to the “right” minimum, often the best way to do this is with the methods e.g. MnMi-
grad::fix(. . .) and MnMigrad::release(. . .). That is, suppose you have a problem with ten free parameters, and when
you minimize with respect to all at once, M goes to an unphysical solution characterized by an unphysical or unwanted
value of parameter number four. One way to avoid this is to fix parameter four at a “good” value (not necessarily the
best, since you presumably don’t know that yet), and minimize with respect to the others. Then release parameter four
and minimize again. If the problem admits a “good” physical solution, you will normally find it this way. If it doesn’t
work, you may see what is wrong by the following sequence (where xxx is the expected physical value for parameter
four):

6.5. INTERPRETATION OF PARAMETER ERRORS 37

MnMigrad migrad(...);
migrad.setValue(4, xxx);
migrad.fix(4);
FunctionMinimum min = migrad();
migrad.release(4);
MnScan scan(...);
std::vector<std::pair<double, double> > points = scan(4);

where SCAN gives you a picture of FCN as a function of parameter four alone, the others being fixed at their current
best values. If you suspect the difficulty is due to parameter five, then add

MnContours contour(...);
std::vector<std::pair<double, double> > points = contour(4, 5);

to see a two-dimensional picture.

6.5 Interpretation of parameter errors

There are two kinds of problems that can arise: The reliability of M ’s error estimates, and their statistical
interpretation, assuming they are accurate.

6.5.1 Statistical interpretation

For discussuion of basic concepts, such as the meaning of the elements of the error matrix, parabolic versus MINOS
errors, the appropriate value for up (see [howto:errordef]), and setting of exact confidence levels, see (in order of
increasing complexity and completeness):

• “Interpretation of the Errors on Parameters”, see Part 3 of this write-up.

• “Determining the Statistical Significance of Experimental Results”@bib-MIN81.

• “Statistical Methods in Experimental Physics”@bib-EADIE.

6.5.2 The reliability of M error estimates

M always carries around its own current estimates of the parameter errors, which it will print out on request, no matter
how accurate they are at any given point in the execution. For example, at initialization, these estimates are just the
starting step sizes as specified by the user. After a MIGRAD or HESSE step, the errors are usually quite accurate,
unless there has been a problem. If no mitigating adjective is given in the printout of the errors, then at least M
believes the errors are accurate, although there is always a small chance that M has been fooled. Some visible signs
that M may have been fooled are:

• Warning messages produced during the minimization or error analysis.

• Failure to find new minimum.

• Value of EDM too big. For a “normal” minimization, after MIGRAD, the value of EDM is usually more than
three orders of magnitude smaller than up, unless a looser tolerance has been specified.

• Correlation coefficients exactly equal to zero, unless some parameters are known to be uncorrelated with the
others.

• Correlation coefficients very close to one (greater than 0.99).
This indicates both an exceptionally difficult problem, and one which has been badly parametrized so that
individual errors are not very meaningful because they are so highly correlated.

• Parameter at limit. This condition, signalled by a M warning message, may make both the function minimum
and parameter errors unreliable. See section [answer:right-errors], Getting the right parameter errors with limits

The best way to be absolutely sure of the errors, is to use “independent” calculations and compare them, or compare
the calculated errors with a picture of the function if possible. For example, if there is only one free parameter, SCAN
allows the user to verify approximately the function curvature. Similarly, if there are only two free parameters, use
CONTOURS. To verify a full error matrix, compare the results of MIGRAD with those (calculated afterward) by
HESSE, which uses a different method. And of course the most reliable and most expensive technique, which must be
used if asymmetric errors are required, is MINOS.

38 CHAPTER 6. HOW TO GET THE RIGHT ANSWER FROM M

6.6 Convergence in MIGRAD, and positive–definiteness

MIGRAD uses its current estimate of the covariance matrix of the function to determine the current search direction, since
this is the optimal strategy for quadratic functions and “physical” functions should be quadratic in the neighbourhood
of the minimum at least. The search directions determined by MIGRAD are guaranteed to be downhill only if the
covariance matrix is positive–definite, so in case this is not true, it makes a positive–definite approximation by adding an
appropriate constant along the diagonal as determined by the eigenvalues of the matrix. Theoretically, the covariance
matrix for a “physical” function must be positive–definite at the minimum, although it may not be so for all points far
away from the minimum, even for a well–determined physical problem. Therefore, if MIGRAD reports that it has
found a non-positive–definite covariance matrix, this may be a sign of one or more of the following:

• A non–physical region. On its way to the minimum, MIGRAD may have traversed a region which has
unphysical behaviour, which is of course not a serious problem as long as it recovers and leaves such a region.

• An underdetermined problem. If the matrix is not positive–definite even at the minimum, this may mean
that the solution is not well–defined, for example that there are more unknowns than there are data points, or
that the parametrization of the fit contains a linear dependence. If this is the case, then M (or any other program)
cannot solve your problem uniquely, and the error matrix will necessarily be largely meaningless, so the user
must remove the underdeterminedness by reformulating the parametrization. M cannot do this itself, but it can
provide some hints (contours, global correlation coefficients, eigenvalues) which can help the clever user to find
out what is wrong.

• Numerical inaccuracies. It is possible that the apparent lack of positive–definiteness is in fact only due to
excessive roundoff errors in numerical calculations, either in FCN or in M . This is unlikely in general, but
becomes more likely if the number of free parameters is very large, or if the parameters are badly scaled (not all of
the same order of magnitude), and correlations are also large. In any case, whether the non–positive–definiteness
is real or only numerical is largely irrelevant, since in both cases the error matrix will be unreliable and the
minimum suspicious.

6.7 Additional trouble–shooting

When M just doesn’t work, some of the more common causes are:

• Precision mismatch. Make sure your FCN uses internally the same precision as M .
If the problem is only one of precision, and not of word length mismatch, an appropriate MnMachinePreci-
sion::setPrecision() may fix it.

• Trivial bugs in FCN. The possibilities for bugs are numerous. Probably the most common among physicists
inexperienced in is the confusion between double and int types, which you can sometimes get away with, but not
always. 1 M can spot some trivial bugs itself, and issues a warning when it detects an unusual FCN behaviour.
Such a warning should be taken seriously.
M also offers some tools (especially SCAN) which can help the user to find trivial bugs.

• An ill–posed problem. For questions of parameter dependence, see the discussion above on postive–definiteness.
Other mathematical problems which can arise are: excessive numerical roundoff — be especially careful of
exponential and factorial functions which get big very quickly and lose accuracy; starting too far from the
solution — the function may have unphysical local minima, especially at infinity in some variables; incorrect
normalization — in likelihood functions, the probability distributions must be normalized or at least have an
integral which is independent of the values of the variable parameters.

• A bug in M . This is unlikely, but it happens. If a bug is suspected, and all other possible causes can be
eliminated, please try to save a copy of the input and output files, listing of FCN, and other information that
may be relevant, and send them to fred.james@cern.ch.

1For example, if a and b are double precision variables, the statement a = 2*b is not good programming, but happens to do what the
user probably intended, whereas the statement a = b + 2/3 almost certainly will not do what the user intended.

Chapter 7

A complete example

[example:example]

Here a full example of a fit is presented, following the example DemoGaussSim.cpp.

7.1 The user’s FCN

The implementation of FCNBase by the user’s GaussFcn is shown here.

7.1.1 GaussFunction.h

The user’s model function is a Gaussian.

#ifndef MN_GaussFunction_H_
#define MN_GaussFunction_H_

#include <math.h>

class GaussFunction {

public:

GaussFunction(double mean, double sig, double constant) :
theMean(mean), theSigma(sig), theConstant(constant) {}

~GaussFunction() {}

double m() const {return theMean;}
double s() const {return theSigma;}
double c() const {return theConstant;}

double operator()(double x) const {

return
c()*exp(-0.5*(x-m())*(x-m())/(s()*s()))/(sqrt(2.*M_PI)*s());

}

private:

double theMean;
double theSigma;
double theConstant;

};
#endif // MN_GaussFunction_H_

39

40 CHAPTER 7. A COMPLETE EXAMPLE

7.1.2 GaussFcn.h

The user’s FCN (GaussFcn) to calculate the χ2 (combining the user’s data with the user’s model).

#ifndef MN_GaussFcn_H_
#define MN_GaussFcn_H_

#include "Minuit/FCNBase.h"

#include <vector>

class GaussFcn : public FCNBase {

public:

GaussFcn(const std::vector<double>& meas,
const std::vector<double>& pos,

const std::vector<double>& mvar) : theMeasurements(meas),
thePositions(pos),

theMVariances(mvar),
theErrorDef(1.) {}

~GaussFcn() {}

virtual double up() const {return theErrorDef;}
virtual double operator()(const std::vector<double>&) const;

std::vector<double> measurements() const {return theMeasurements;}
std::vector<double> positions() const {return thePositions;}
std::vector<double> variances() const {return theMVariances;}

void setErrorDef(double def) {theErrorDef = def;}

private:

std::vector<double> theMeasurements;
std::vector<double> thePositions;
std::vector<double> theMVariances;
double theErrorDef;

};

#endif //MN_GaussFcn_H_

7.1.3 GaussFcn.cpp

The actual implementation of the FCNBase::operator() (called by Minuit):

#include "GaussFcn.h"
#include "GaussFunction.h"

#include <cassert>

double GaussFcn::operator()(const std::vector<double>& par) const {

assert(par.size() == 3);
GaussFunction gauss(par[0], par[1], par[2]);

double chi2 = 0.;
for(unsigned int n = 0; n < theMeasurements.size(); n++) {

chi2 += ((gauss(thePositions[n]) - theMeasurements[n]) *
(gauss(thePositions[n]) - theMeasurements[n]) /

7.2. THE USER’S MAIN PROGRAM 41

theMVariances[n]);
}

return chi2;
}

7.2 The user’s main program

[example:main]

This is the main program DemoGaussSim.cpp:

#include "GaussFcn.h"
#include "GaussDataGen.h"
#include "Minuit/FunctionMinimum.h"
#include "Minuit/MnUserParameterState.h"
#include "Minuit/MinimumPrint.h"
#include "Minuit/MnMigrad.h"
#include "Minuit/MnMinos.h"
#include "Minuit/MnContours.h"
#include "Minuit/MnPlot.h"

#include <iostream>

int main() {

// generate the data (100 data points)
GaussDataGen gdg(100);

std::vector<double> pos = gdg.positions();
std::vector<double> meas = gdg.measurements();
std::vector<double> var = gdg.variances();

// create FCN function
GaussFcn theFCN(meas, pos, var);

// create initial starting values for parameters
double x = 0.;
double x2 = 0.;
double norm = 0.;
double dx = pos[1]-pos[0];
double area = 0.;
for(unsigned int i = 0; i < meas.size(); i++) {

norm += meas[i];
x += (meas[i]*pos[i]);
x2 += (meas[i]*pos[i]*pos[i]);
area += dx*meas[i];

}
double mean = x/norm;
double rms2 = x2/norm - mean*mean;
double rms = rms2 > 0. ? sqrt(rms2) : 1.;

{
// demonstrate minimal required interface for minimization
// create Minuit parameters without names

// starting values for parameters
std::vector<double> init_par;
init_par.push_back(mean);
init_par.push_back(rms);
init_par.push_back(area);

42 CHAPTER 7. A COMPLETE EXAMPLE

// starting values for initial uncertainties
std::vector<double> init_err;
init_err.push_back(0.1);
init_err.push_back(0.1);
init_err.push_back(0.1);

// create minimizer (default constructor)
VariableMetricMinimizer theMinimizer;

// minimize
FunctionMinimum min =

theMinimizer.minimize(theFCN, init_par, init_err);

// output
std::cout<<"minimum: "<<min<<std::endl;

}

{
// demonstrate standard minimization using MIGRAD
// create Minuit parameters with names
MnUserParameters upar;
upar.add("mean", mean, 0.1);
upar.add("sigma", rms, 0.1);
upar.add("area", area, 0.1);

// create MIGRAD minimizer
MnMigrad migrad(theFCN, upar);

// minimize
FunctionMinimum min = migrad();

// output
std::cout<<"minimum: "<<min<<std::endl;

}

{
// demonstrate full interaction with parameters over subsequent
// minimizations

// create Minuit parameters with names
MnUserParameters upar;
upar.add("mean", mean, 0.1);
upar.add("sigma", rms, 0.1);
upar.add("area", area, 0.1);

// access parameter by name to set limits...
upar.setLimits("mean", mean-0.01, mean+0.01);

// ... or access parameter by index
upar.setLimits(1, rms-0.1, rms+0.1);

// create Migrad minimizer
MnMigrad migrad(theFCN, upar);

// fix a parameter...
migrad.fix("mean");

// ... and minimize
FunctionMinimum min = migrad();

// output
std::cout<<"minimum: "<<min<<std::endl;

7.2. THE USER’S MAIN PROGRAM 43

// release a parameter...
migrad.release("mean");

// ... and fix another one
migrad.fix(1);

// and minimize again
FunctionMinimum min1 = migrad();

// output
std::cout<<"minimum1: "<<min1<<std::endl;

// release the parameter...
migrad.release(1);

// ... and minimize with all three parameters
// (still with limits!)
FunctionMinimum min2 = migrad();

// output
std::cout<<"minimum2: "<<min2<<std::endl;

// remove all limits on parameters...
migrad.removeLimits("mean");
migrad.removeLimits("sigma");

// ... and minimize again with all three parameters
// (now without limits!)
FunctionMinimum min3 = migrad();

// output
std::cout<<"minimum3: "<<min3<<std::endl;

}

{
// demonstrate MINOS error analysis

// create Minuit parameters with names
MnUserParameters upar;
upar.add("mean", mean, 0.1);
upar.add("sigma", rms, 0.1);
upar.add("area", area, 0.1);

// create Migrad minimizer
MnMigrad migrad(theFCN, upar);

// minimize
FunctionMinimum min = migrad();

// create MINOS error factory
MnMinos minos(theFCN, min);

{
// 1-sigma MINOS errors
std::pair<double,double> e0 = minos(0);
std::pair<double,double> e1 = minos(1);
std::pair<double,double> e2 = minos(2);

// output
std::cout<<"1-sigma minos errors: "<<std::endl;
std::cout<<"par0: "

<<min.userState().value("mean")<<" "
<<e0.first<<" "<<e0.second<<std::endl;

44 CHAPTER 7. A COMPLETE EXAMPLE

std::cout<<"par1: "
<<min.userState().value(1)<<" "
<<e1.first<<" "<<e1.second<<std::endl;

std::cout<<"par2: "<<min.userState().value("area")
<<" "<<e2.first<<" "
<<e2.second<<std::endl;

}

{
// 2-sigma MINOS errors
theFCN.setErrorDef(4.);
std::pair<double,double> e0 = minos(0);
std::pair<double,double> e1 = minos(1);
std::pair<double,double> e2 = minos(2);

// output
std::cout<<"2-sigma minos errors: "<<std::endl;
std::cout<<"par0: "

<<min.userState().value("mean")
<<" "<<e0.first<<" "<<e0.second<<std::endl;

std::cout<<"par1: "
<<min.userState().value(1)
<<" "<<e1.first<<" "<<e1.second<<std::endl;

std::cout<<"par2: "
<<min.userState().value("area")
<<" "<<e2.first<<" "<<e2.second<<std::endl;

}
}

{
// demonstrate how to use the CONTOURs

// create Minuit parameters with names
MnUserParameters upar;
upar.add("mean", mean, 0.1);
upar.add("sigma", rms, 0.1);
upar.add("area", area, 0.1);

// create Migrad minimizer
MnMigrad migrad(theFCN, upar);

// minimize
FunctionMinimum min = migrad();

// create contours factory with FCN and minimum
MnContours contours(theFCN, min);

// 70% confidence level for 2 parameters contour
// around the minimum
theFCN.setErrorDef(2.41);
std::vector<std::pair<double,double> > cont =

contours(0, 1, 20);

// 95% confidence level for 2 parameters contour
theFCN.setErrorDef(5.99);
std::vector<std::pair<double,double> > cont4 =

contours(0, 1, 20);

// plot the contours
MnPlot plot;
cont4.insert(cont4.end(), cont.begin(), cont.end());
plot(min.userState().value("mean"),

min.userState().value("sigma"),

7.2. THE USER’S MAIN PROGRAM 45

cont4);
}

return 0;
};

	Minuit 2
	Foreword
	What M is intended to do
	What M is not intended to do
	Further remarks

	Introduction: M basic concepts
	The organization of M
	Design aspects of M in
	Internal and external parameters
	The transformation for parameters with limits

	M strategy
	Parameter errors
	\mbox{FCN} normalization and the error definition
	The error matrix
	\mbox{MINOS} errors
	\mbox{CONTOURS} plotting

	M installation
	M releases
	Install M using autoconf/make
	CVS code repository
	Create a tar.gz from CVS
	M versions
	From to
	Memory allocation and thread safety
	M parameters

	Interference with other packages
	Floating-point precision

	How to use M
	The \mbox{FCN} Function
	FCNBase::operator()(const std::vector<double>&)
	FCNBase::up()
	\mbox{FCN} function with gradient

	M parameters
	Minimal required interface
	MnUserParameters
	MnUserCovariance
	MnUserParameterState

	Input to M
	What the user must supply
	What the user can supply

	Running a M minimization
	Direct usage of minimizers
	Using an application (MnMigrad)
	Subsequent minimizations
	M fails to find a minimum

	The output from minimization
	The FunctionMinimum
	User representable format: MnUserParameterState
	Access values, errors, covariance
	Printout of the result
	Global correlation coefficients

	M application programming interface (API)
	FunctionMinimum
	isValid()
	fval(), edm(), nfcn()

	MnContours
	MnContours(const FCNBase&, const FunctionMinimum&)
	operator()
	contour(…)

	MnEigen
	MnEigen()
	operator()

	MnHesse
	MnHesse()
	operator()

	MnMachinePrecision
	MnMachinePrecision()
	setPrecision(double eps)

	MnMigrad and VariableMetricMinimizer
	MnMigrad(const FCNBase&, const std::vector<double>&, const std::vector<double>&, unsigned int)
	MnMigrad(const FCNBase&, const MnUserParameters&, unsigned int)
	MnMigrad(const FCNBase&, const MnUserParameterState&, const MnStrategy&)
	operator()
	Parameter interaction
	VariableMetricMinimizer()
	minimize(const FCNBase&, …)

	MnMinimize and CombinedMinimizer
	MnMinos
	MnMinos(const FCNBase&, const FunctionMinimum&)
	operator()
	minos(unsigned int n, unsigned int maxcalls)
	Other methods

	MnPlot
	MnPlot()
	operator()

	MnScan and ScanMinimizer
	scan(unsigned int par, unsigned int npoint, double low, double high)
	ScanMinimizer

	MnSimplex and SimplexMinimizer
	MnSimplex(const FCNBase&, const std::vector<double>&, const std::vector<double>&, unsigned int)
	MnSimplex(const FCNBase&, const MnUserParameters&, unsigned int)
	MnSimplex(const FCNBase&, const MnUserParameterState&, const MnStrategy&)
	operator()
	Parameter interaction
	SimplexMinimizer()
	minimize(const FCNBase&, …)

	MnStrategy
	MnStrategy()
	MnStrategy(unsigned int level)
	setLowStrategy(), setMediumStrategy(), setHighStrategy()
	Other methods

	MnUserCovariance
	MnUserCovariance(const std::vector<double>&, unsigned int nrow)
	MnUserCovariance(unsigned int nrow)
	MnUserCovariance::operator()(unsigned int, unsigned int)

	MnUserParameters
	add(…)
	setValue(…)
	setError(…)
	fix(…)
	release(…)
	setLimits(…)
	setUpperLimit(…)
	setLowerLimit(…)
	removeLimits(…)
	value(…)
	error(…)
	index(…)
	name(…)

	MnUserParameterState
	MnUserParameterState(const std::vector<double>&, const std::vector<double>&)
	MnUserParameterState(const MnUserParameters&)
	MnUserParameterState(const MnUserParameters&, const MnUserCovariance&)
	parameters()
	covariance()
	globalCC()
	MnUserParameterState::isValid() and MnUserParameterState::hasCovariance()
	MnUserParameterState::fval(), MnUserParameterState::edm(), MnUserParameterState::nfcn()

	MnPrint.h
	operator<<(std::ostream&, const FunctionMinimum&)
	operator<<(std::ostream&, const MnUserParameters&)
	operator<<(std::ostream&, const MnUserCovariance&)
	operator<<(std::ostream&, const MnGlobalCorrelationCoeff&)
	operator<<(std::ostream&, const MnUserParameterState&)
	operator<<(std::ostream&, const MinosError&)
	operator<<(std::ostream&, const ContoursErros&)

	How to get the right answer from M
	Which minimizer to use
	\mbox{MIGRAD}
	\mbox{MINIMIZE}
	\mbox{SCAN}
	\mbox{SIMPLEX}

	Floating point precision
	Parameter limits
	Getting the Right Minimum with Limits
	Getting the right parameter errors with limits

	Fixing and releasing parameters
	Interpretation of parameter errors
	Statistical interpretation
	The reliability of M error estimates

	Convergence in \mbox{MIGRAD}, and positive–definiteness
	Additional trouble–shooting

	A complete example
	The user's \mbox{FCN}
	GaussFunction.h
	GaussFcn.h
	GaussFcn.cpp

	The user's main program

