

A journey to the world of Numbers

Riccardo Brasca Shanwen Wang

July 8, 2025

Chapter 1

The integers

We construct the integers starting from the natural numbers \mathbb{N} . Since `lean` already has a type called \mathbb{Z} , we define a new type called `MyInt` that will be another definition of the integers.

1.1 The *preintegers*

`MyInt` will be a quotient of a type called `MyPreint`.

Definition 1. Let `MyPreint` be $\mathbb{N} \times \mathbb{N}$.

Definition 2. We define a relation R on `MyPreint` as follows: (a, b) and (c, d) are related if and only if

$$a + d = b + c$$

Lemma 3. R is a reflexive relation.

Proof. This follows by commutativity of addition in \mathbb{N} . □

Lemma 4. R is a symmetric relation.

Proof. This follows by commutativity of addition in \mathbb{N} . □

Lemma 5. R is a transitive relation.

Proof. Let x, y and z in `MyPreint` such that xRy and yRz . We can write $x = (a, b)$ and similarly for $y = (c, d)$ and $z = (e, f)$. By assumption we have $a + d = b + c$ and $c + f = d + e$. Adding these equalities we get

$$a + d + c + f = b + c + d + e$$

Since addition on \mathbb{N} is cancellative we get

$$a + f = b + e$$

as wanted. □

Lemma 6. We have that R is an equivalence relation. From now on, we will write $x \approx y$ for xRy .

Proof. Clear from Lemma 3, Lemma 4 and Lemma 5. □

Definition 7. We define an operation, called *negation* on MyPreint as follows: the negation of $x = (a, b)$ is (b, a) :

$$-x = -(a, b) = (b, a)$$

Lemma 8. If $x \approx x'$, then $-x \approx -x'$.

Proof. Let $x = (a, b)$ and $x' = (a', b')$, so by assumption $a + b' = b + a'$. By definition we have

$$-x = -(a, b) = (b, a) \text{ and } -x' = -(a', b') = (b', a')$$

We need to show $b + a' = b' + a$, which follows immediately from $a + b' = b + a'$. \square

Definition 9. We define an operation, called *addition* on MyPreint as follows: the addition of $x = (a, b)$ and $y = (b, c)$ is

$$x + y = (a, b) + (c, d) = (a + c, b + d)$$

Lemma 10. If $x \approx x'$ and $y \approx y'$, then $x + y \approx x' + y'$.

Proof. Let $x = (a, b)$, $y = (c, d)$, $x' = (a', b')$ and $y' = (c', d')$ such that $x \approx x'$ and $y \approx y'$. by assumption we have

$$a + b' = b + a' \text{ and } c + d' = d + c'$$

Adding these two equalities we get

$$a + b' + c + d' = b + a' + d + c'$$

and hence

$$a + c + b' + d' = b + d + a' + c'$$

that is $x + y = (a + c, b + d) \approx (a' + c', b' + d') = x' + y'$. \square

Definition 11. We define an operation, called *multiplication* on MyPreint as follows: the multiplication of $x = (a, b)$ and $y = (b, c)$ is

$$x * y = (a, b) * (c, d) = (a * c + b * d, a * d + b * c)$$

Lemma 12. If $x \approx x'$ and $y \approx y'$, then $x * y \approx x' * y'$.

Proof. Let $x = (a, b)$, $y = (c, d)$, $x' = (a', b')$ and $y' = (c', d')$ such that $x \approx x'$ and $y \approx y'$. by assumption we have

$$a + b' = b + a' \text{ and } c + d' = d + c'$$

Multiplying the first equality by c' and by d' we get

$$a * c' + b' * c' = b * c' + a' * c' \tag{1.1}$$

and

$$b * d' + a' * d' = a * d' + b' * d' \tag{1.2}$$

Multiplying the second equality by a and by b we get

$$a * c + a * d' = a * d + a * c' \tag{1.3}$$

and

$$b * d + b * c' = b * c + b * d' \tag{1.4}$$

Adding (1.1) and (1.4) we get

$$a * c' + b' * c' + b * d + b * c' = b * c' + a' * c' + b * c + b * d'$$

Adding (1.3) and (1.2) we get

$$a * c + a * d' + b * d' + a' * d' = a * d + a * c' + a * d' + b' * d'$$

Adding the last two equations and cancelling the terms appearing on both sides we finally have

$$b' * c' + b * d + a * c + a' * d' = a' * c' + b * c + a * d + b' * d'$$

that is $x * y \approx x' * y'$. \square

1.2 The integers

1.2.1 Definitions

Definition 13. We define our integers MyInt as

$$\text{MyInt} = \text{MyPreint} / \approx$$

We will write $\llbracket (a, b) \rrbracket$ for the class of (a, b) .

Definition 14. We define the zero of MyInt, denoted 0 as the class of $(0, 0)$.

Definition 15. We define the one of MyInt, denoted 1 as the class of $(1, 0)$.

1.2.2 Commutative ring structure

Definition 16. We define the negation of $x = \llbracket (a, b) \rrbracket$ in MyInt as

$$-x = \llbracket -(a, b) \rrbracket$$

Thanks to Lemma 8 this is well defined.

Definition 17. We define the addition of $x = \llbracket (a, b) \rrbracket$ and $y = \llbracket (c, d) \rrbracket$ in MyInt as

$$x + y = \llbracket (a, b) + (c, d) \rrbracket$$

Thanks to Lemma 10 this is well defined.

Definition 18. We define the multiplication of $x = \llbracket (a, b) \rrbracket$ and $y = \llbracket (c, d) \rrbracket$ in MyInt as

$$x * y = \llbracket (a, b) * (c, d) \rrbracket$$

Thanks to Lemma 12 this is well defined.

Lemma 19. *Addition on MyInt is associative.*

Proof. To prove the lemma it is enough to prove that, for all a, b, c, d, e and f in \mathbb{N} , we have

$$(\llbracket (a, b) \rrbracket + \llbracket (c, d) \rrbracket) + \llbracket (e, f) \rrbracket = \llbracket (a, b) \rrbracket + (\llbracket (c, d) \rrbracket + \llbracket (e, f) \rrbracket)$$

Unravelling the definitions this is

$$a + c + e + (b + (d + f)) = b + d + f + (a + (c + e))$$

that is true by associativity and commutativity in \mathbb{N} . \square

Proposition 20. MyInt with addition and multiplication is a commutative ring.

Proof. We have to prove various properties, namely:

- addition is associative (already done in Lemma 19)
- 0 works as neutral element for addition (on both sides)
- existence of an inverse for addition (we prove that $x + (-x) = (-x) + x = 0$)
- addition is commutative
- left and right distributivity of multiplication with respect to addition
- associativity of multiplication
- 1 works as neutral element for multiplication (on both sides)

All the proofs are essentially identical to the proof of Lemma 19 above. \square

Lemma 21. In MyInt we have $0 \neq 1$.

Proof. If $0 = 1$ by definition we would have $\llbracket (0, 0) \rrbracket = \llbracket (1, 0) \rrbracket$ so $0 + 1 = 0 + 0$ in \mathbb{N} , that is absurd. \square

Lemma 22. Let x and y in MyInt such that $x \neq 0$ and $y \neq 0$. Then $x * y \neq 0$.

Proof. It is enough to prove that, for all a, b, c and d in \mathbb{N} such that $a \neq b$ and $c \neq d$ we have $a * c + b * d \neq a * d + b * c$. If this is not the case we must have $a = b$ or $c = d$. (Can you see how to prove this in \mathbb{N} ? You cannot use subtraction!) and we are done. \square

Lemma 23. Let x, y and z in MyInt such that $x \neq 0$ and $y * x = z * x$. Then $y = z$.

Proof. We have $0 = y * x - z * x = (y - z) * x$. Since $x \neq 0$ we have by Lemma 22 that $y - z = 0$ and hence $y = z$. \square

1.2.3 The inclusion $i: \mathbb{N} \rightarrow \text{MyInt}$

Definition 24. We define a map

$$\begin{aligned} i: \mathbb{N} &\rightarrow \text{MyInt} \\ n &\mapsto \llbracket (n, 0) \rrbracket \end{aligned}$$

Lemma 25. We have that $i(0) = 0$.

Proof. Clear from the definition. \square

Lemma 26. We have that $i(1) = 1$.

Proof. Clear from the definition. \square

Lemma 27. For all a and b in \mathbb{N} we have that

$$i(a + b) = i(a) + i(b)$$

Proof. We have $i(a + b) = \llbracket (a + b, 0) \rrbracket$, $i(a) = \llbracket (a, 0) \rrbracket$ and $i(b) = \llbracket (b, 0) \rrbracket$, so we need to prove that

$$\llbracket (a + b, 0) \rrbracket = \llbracket (a, 0) \rrbracket + \llbracket (b, 0) \rrbracket$$

that is obvious from the definition. \square

Lemma 28. *For all a and b in \mathbb{N} we have that*

$$i(a * b) = i(a) * i(b)$$

Proof. We have $i(a * b) = \llbracket (a * b, 0) \rrbracket$, $i(a) = \llbracket (a, 0) \rrbracket$ and $i(b) = \llbracket (b, 0) \rrbracket$, so we need to prove that

$$\llbracket (a * b, 0) \rrbracket = \llbracket (a, 0) \rrbracket * \llbracket (b, 0) \rrbracket$$

By definition of multiplication we have

$$\llbracket (a, 0) \rrbracket * \llbracket (b, 0) \rrbracket = \llbracket (a * c + 0 * 0, a * 0 + 0 * b) \rrbracket$$

and the lemma follows. \square

Lemma 29. *We have that i is injective.*

Proof. Let a and b such that $i(a) = i(b)$. This means $\llbracket (a, 0) \rrbracket = \llbracket (b, 0) \rrbracket$ so $a + 0 = 0 + b$ and hence $a = b$. \square

1.2.4 The order

Definition 30. Let x and y in MyInt. We write $x \leq y$ if there exist a natural number n such that

$$y = x + i(n)$$

Lemma 31. *The relation \leq on MyInt is reflexive.*

Proof. We can just take $n = 0$. \square

Lemma 32. *The relation \leq on MyInt is transitive.*

Proof. Let x , y and z such that $x \leq y$ and $y \leq z$. It follows that there exist p and q such that $y = x + i(p)$ and $z = y + i(q)$. One can now take $p + q$ to show that $x \leq z$. \square

Lemma 33. *The relation \leq on MyInt is antisymmetric.*

Proof. Let x and y such that $x \leq y$ and $y \leq x$. It follows that there exist p and q such that $y = x + i(p)$ and $x = y + i(q)$. In particular

$$x = x + i(p) + i(q)$$

Since MyInt is a ring, we obtain $i(p) + i(q) = 0$. Moreover $i(p + q) = i(p) + i(q)$ and $i(0) = 0$, so $i(p + q) = i(0)$ and hence, since i is injective, $p + q = 0$. Now, p and q are natural numbers, so $p = q = 0$ and so $x = y$. \square

It follows that \leq is an order relation.

Lemma 34. *The order \leq on MyInt is a total order.*

Proof. Let x and y be in MyInt. We can write $x = \llbracket (a, b) \rrbracket$ and $y = \llbracket (c, d) \rrbracket$ and we need to prove that $\llbracket (a, b) \rrbracket \leq \llbracket (c, d) \rrbracket$ or $\llbracket (c, d) \rrbracket \leq \llbracket (a, b) \rrbracket$. Let's consider two cases (we use that the order on \mathbb{N} is total):

- if $a + d \leq b + c$ let e be such that $b + c = a + d + e$. We prove that $\llbracket (a, b) \rrbracket \leq \llbracket (c, d) \rrbracket$ using e . We have

$$\llbracket (a, b) \rrbracket + i(e) = \llbracket (a, b) \rrbracket + \llbracket (e, 0) \rrbracket = \llbracket (a + e, b + 0) \rrbracket = \llbracket (a + e, b) \rrbracket$$

We have that $\llbracket (a + e, b) \rrbracket = \llbracket (c, d) \rrbracket$ since

$$a + e + d = b + d$$

by our assumption on e and so $\llbracket (a, b) \rrbracket \leq \llbracket (c, d) \rrbracket$.

- the case $b + c \leq a + d$ is completely analogous.

□

Lemma 35. *We have that MyInt with \leq is a linear order*

Proof. Clear. □

Lemma 36. *In MyInt we have that $0 \leq 1$.*

Proof. We use 1 (as natural number). We need to prove that $0 + i(1) = 1$. Unravelling the definitions this is obvious. □

Lemma 37. *Given two natural numbers a and b , we have $i(a) \leq b$ if and only if $a \leq b$.*

Proof.

- If $i(a) \leq i(b)$, let n be such that $i(b) = i(a) + i(n) = i(a + n)$. We obtain $b = a + n$ by injectivity of i and so $a \leq b$.
- If $a \leq b$, let k be such that $b = a + k$. We can use k to show that $i(a) \leq i(b)$.

□

1.2.5 Interaction between the order and the ring structure

Lemma 38. *Let x , y and z in MyInt be such that $x \leq y$. Then $z + x \leq z + y$.*

Proof. Let n be such that $y = x + i(n)$. It's immediate that n also work to show that $z + x \leq z + y$. □

Lemma 39. *Let x and y in MyInt be such that $0 < x$ and $0 < y$. Then $0 < x * y$.*

Proof. By Lemma 22 we already know that $x * y \neq 0$, so it is enough to prove that $0 \leq x * y$. Since $0 < x$, we have in particular that $0 \leq x$, and let n be such that $x = 0 + i(n)$. Similarly, let m be such that $y = 0 + i(m)$. We have $0 + i(n) = i(n)$ and $0 + i(m) = i(m)$, so we need to prove that $0 \leq i(n) * i(m)$. We do so using $n * m$: we have

$$0 + i(n * m) = i(n * m) = i(n) * i(m)$$

as required. □

Chapter 2

The rationals

We can now define the rationals, starting with our copy of the integers MyInt.

We follow a similar path to the one for MyInt.

2.1 The *prerationals*

MyRat will be a quotient of a type called MyPrerat.

Definition 40. Let MyPrerat be $\text{MyInt} \times \text{MyInt} \setminus \{0\}$

Definition 41. We define a relation R on MyPrerat as follows: (a, b) and (c, d) are related if and only if

$$a * d = b * c$$

Lemma 42. R is a reflexive relation.

Proof. Exercice. □

Lemma 43. R is a symmetric relation.

Proof. Exercice. □

Lemma 44. R is a transitive relation.

Proof. Exercice. □

Lemma 45. We have that R is an equivalence relation. From now on, we will write $x \approx y$ for xRy .

Proof. Clear from Lemma 42, Lemma 43 and Lemma 44. □

Definition 46. We define an operation, called *negation* on MyPrerat as follows: the negation of $x = (a, b)$ is $(-a, b)$:

$$-x = -(a, b) = (-a, b)$$

Note that it is automatically well defined (meaning that second component of $(-a, b)$ is different from 0).

Lemma 47. If $x \approx x'$, then $-x \approx -x'$.

Proof. Exercice. □

Definition 48. We define an operation, called *addition* on MyPrerat as follows: the addition of $x = (a, b)$ and $y = (b, c)$ is

$$x + y = (a, b) + (c, d) = (a * d + b * c, b * d)$$

Do you see why it is well defined?

Lemma 49. If $x \approx x'$ and $y \approx y'$, then $x + y \approx x' + y'$.

Proof. Exercice. □

Definition 50. We define an operation, called *multiplication* on MyPrerat as follows: the multiplication of $x = (a, b)$ and $y = (b, c)$ is

$$x * y = (a, b) * (c, d) = (a * c, b * d)$$

Lemma 51. If $x \approx x'$ and $y \approx y'$, then $x * y \approx x' * y'$.

Proof. Exercice. □

Definition 52. We define an operation, called *negation* on MyPrerat as follows: the inverse of $x = (a, b)$ is:

$$\text{if } b \neq 0 \text{ then } x^{-1} = (b, a), \text{ otherwise } x^{-1} = (0, 1)$$

Note that x^{-1} is *always* defined!

Lemma 53. If $x \approx x'$, then $x^{-1} \approx x'^{-1}$.

Proof. Exercice. □

2.2 The rationals

2.2.1 Definitions

Definition 54. We define our rationals MyRat as

$$\text{MyRat} = \text{MyPrerat} / \approx$$

We will write $\llbracket (a, b) \rrbracket$ for the class of (a, b) .

Definition 55. We define the zero of MyRat, denoted 0 as the class of $(0, 1)$ (note that $1 \neq 0$ in MyInt).

Definition 56. We define the one of MyRat, denoted 1 as the class of $(1, 1)$ (note that $1 \neq 0$ in MyInt).

2.2.2 Commutative ring structure

Definition 57. We define the negation of $x = \llbracket (a, b) \rrbracket$ in MyInt as

$$-x = \llbracket -(a, b) \rrbracket$$

Thanks to Lemma 47 this is well defined.

Definition 58. We define the addition of $x = \llbracket (a, b) \rrbracket$ and $y = \llbracket (c, d) \rrbracket$ in MyInt as

$$x + y = \llbracket (a, b) + (c, d) \rrbracket$$

Thanks to Lemma 49 this is well defined.

Definition 59. We define the multiplication of $x = \llbracket (a, b) \rrbracket$ and $y = \llbracket (c, d) \rrbracket$ in MyInt as

$$x * y = \llbracket (a, b) * (c, d) \rrbracket$$

Thanks to Lemma 51 this is well defined.

Definition 60. We define the negation of $x = \llbracket (a, b) \rrbracket$ in MyInt as

$$x^{-1} = \llbracket (a, b)^{-1} \rrbracket$$

Thanks to Lemma 53 this is well defined.

Proposition 61. MyRat with addition and multiplication is a commutative ring.

Proof. We have to prove various properties, namely:

- addition is associative
- 0 works as neutral element for addition (on both sides)
- existence of an inverse for addition (we prove that $x + (-x) = (-x) + x = 0$)
- addition is commutative
- left and right distributivity of multiplication with respect to addition
- associativity of multiplication
- 1 works as neutral element for multiplication (on both sides)

All the proofs are essentially identical, going to MyInt, unravelling the definition and then checking the equality holds in MyInt. \square

Lemma 62. In MyRat we have $0 \neq 1$.

Proof. If $0 = 1$ by definition we would have $\llbracket (0, 1) \rrbracket = \llbracket (1, 1) \rrbracket$ so $0 * 1 = 1 * 0$ in MyInt, that is absurd. \square

Lemma 63. Let $x \neq 0$ be in MyRat. Then $x * x^{-1} = 1$.

Proof. Let $x = \llbracket (a, b) \rrbracket$, with $b \neq 0$. Since $x \neq 0$ we have $a \neq 0$ and so $x^{-1} = \llbracket (b, a) \rrbracket$. The lemma follows by definition of multiplication. \square

Proposition 64. MyRat with addition and multiplication is a field.

Proof. Clear because of Lemma 63. \square

2.2.3 The inclusion $i: \mathbb{N} \rightarrow \text{MyRat}$

Definition 65. We define a map

$$\begin{aligned} i: \mathbb{N} &\rightarrow \text{MyRat} \\ n &\mapsto \llbracket (\text{MyInt}.in, 1) \rrbracket \end{aligned}$$

Lemma 66. We have that $i(0) = 0$.

Proof. Clear from the definition. \square

Lemma 67. We have that $i(1) = 1$.

Proof. Clear from the definition. \square

Lemma 68. For all a and b in \mathbb{N} we have that

$$i(a + b) = i(a) + i(b)$$

Proof. We have $i(a + b) = \llbracket (\text{MyInt}.i(a + b), 1) \rrbracket = \llbracket (\text{MyInt}.i(a), 1) + (\text{MyInt}.i(b), 1) \rrbracket$, $i(a) = \llbracket (\text{MyInt}.i(a), 1) \rrbracket$ and $i(b) = \llbracket (\text{MyInt}.i(b), 1) \rrbracket$, so we need to prove that

$$\llbracket (\text{MyInt}.i(a), 1) + (\text{MyInt}.i(b), 1) \rrbracket = \llbracket (\text{MyInt}.i(a), 1) \rrbracket + \llbracket (\text{MyInt}.i(b), 1) \rrbracket$$

that is obvious from the definition (\cdot) . \square

Lemma 69. For all a and b in \mathbb{N} we have that

$$i(a * b) = i(a) * i(b)$$

Proof. Similar to the proof of Lemma 68. \square

Lemma 70. We have that i is injective.

Proof. Let a be such that $i(a) = 0$. This means $\llbracket (\text{MyInt}.ia, 1) \rrbracket = \llbracket (0, 1) \rrbracket$ so $(\text{MyInt}.ia) * 1 = 1 * 0$ and hence $\text{MyInt}.ia = 0$ so $a = 0$. \square

2.2.4 The inclusion $j: \text{MyInt} \rightarrow \text{MyRat}$

Definition 71. We define a map

$$\begin{aligned} j: \text{MyInt} &\rightarrow \text{MyRat} \\ n &\mapsto \llbracket (n, 1) \rrbracket \end{aligned}$$

Lemma 72. We have that $j(0) = 0$.

Proof. Clear from the definition. \square

Lemma 73. We have that $j(1) = 1$.

Proof. Clear from the definition. \square

Lemma 74. For all a and b in MyInt we have that

$$j(a + b) = j(a) + j(b)$$

Proof. Exercice. □

Lemma 75. For all a and b in \mathbb{N} we have that

$$j(a * b) = j(a) * j(b)$$

Proof. Exercice. □

Lemma 76. We have that j is injective.

Proof. Exercice. □

Lemma 77. Let n be a natural number. Then $\text{MyRat}.j(\text{MyInt}.i(n)) = \text{MyRat}.i(n)$.

Proof. It follows from unravelling all the definitions. □

Lemma 78. Let a and b be in MyInt with $b \neq 0$. Then $\llbracket(a, b)\rrbracket = j(a) * j(b)^{-1}$.

Proof. Exercice. □

2.2.5 Nonnegativity

Before defining the order on MyRat , let's define the notion of nonnegativity.

Definition 79. Given $x = (a, b)$ in MyRat , we say that x is *nonnegative* if $0 \leq a$ and $0 < b$.

Can you see why it corresponds to the “usual definition” when we think that $x = a/b$?

Lemma 80. We have that 0 in MyRat is nonnegative.

Proof. Obvious. □

Lemma 81. We have that 1 in MyRat is nonnegative.

Proof. Obvious. □

Lemma 82. Let x be in MyRat such that both x and $-x$ are nonnegative. Then $x = 0$.

Proof. Unravelling all the definitions we end up with a, b, c and d in MyInt such that $0 \leq a$, $0 < b$, $0 \leq c$, $0 < d$ and $-(a * d) = b * c$. This implies $a = 0$. □

Lemma 83. Let x be in MyRat such that x is not nonnegative. Then $-x$ is nonnegative.

Proof. Annoying but easy, left as an exercice. □

Lemma 84. Let x and y be in MyRat both nonnegative. Then $x + y$ is nonnegative.

Proof. Exercice. □

Lemma 85. Let x and y be in MyRat both nonnegative. Then $x * y$ is nonnegative.

Proof. Exercice. □

Lemma 86. Let x be in MyRat be nonnegative. Then x^{-1} is nonnegative.

Proof. Exercice. □

2.2.6 The order

Definition 87. Let x and y in MyRat. We write $x \leq y$ if $y - x$ is nonnegative.

Lemma 88. We have that $0 \leq x$ if and only if x is nonnegative.

Proof. Clear. □

Lemma 89. In MyRat we have that $0 \leq 1$.

Proof. Clear because of Lemma 81. □

Lemma 90. The relation \leq on MyRat is reflexive.

Proof. Clear because of Lemma 80. □

Lemma 91. The relation \leq on MyRat is transitive.

Proof. It follows from Lemma 84. □

Lemma 92. The relation \leq on MyRat is antisymmetric.

Proof. It follows from Lemma 82. □

It follows that \leq is an order relation.

2.2.7 Interaction between the order and the ring structure

Lemma 93. Let x , y and z in MyRat be such that $x \leq y$. Then $z + x \leq z + y$.

Proof. Clear from the definitions. □

Lemma 94. Let x and y in MyRat be such that $0 \leq x$ and $0 \leq y$. Then $0 \leq x * y$.

Proof. It follows from Lemma 85. □

We have proved that MyRat is an ordered ring.

2.2.8 Interaction between the order and the inclusions

Lemma 95. Let x and y in MyInt. We have that $j(x) \leq j(y)$ if and only if $x \leq y$.

Proof. Exercice. □

Lemma 96. Let x and y in \mathbb{N} . We have that $i(x) \leq i(y)$ if and only if $x \leq y$.

Proof. It follows immediately by Lemma 37, Lemma 95 and Lemma 77. □

2.2.9 The linear order structure

Lemma 97. *The order \leq on MyRat is a total order.*

Proof. This follows by Lemma 83. □

Lemma 98. *We have that MyRat with \leq is a linear order*

Proof. Clear from the lemma above. □

Lemma 99. *Let x and y in MyRat be such that $0 < x$ and $0 < y$. Then $0 < x * y$.*

Proof. Exercice. □

We now have that MyRat is a *strict ordered ring*: a nontrivial ring with a partial order such that addition is strictly monotone and multiplication by a positive number is strictly monotone.