
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

A Bounded Sub-Optimal Approach for
Multi-Agent Combinatorial Path Finding

Zhongqiang Ren1, Sivakumar Rathinam2 and Howie Choset1

Abstract—Multi-Agent Path Finding (MAPF) seeks collision-
free paths for multiple agents from start to goal locations. This
paper considers a generalization of MAPF called Multi-Agent
Combinatorial Path Finding (MCPF) where agents must collec-
tively visit a set of intermediate target locations before reaching
their goals. MCPF is challenging as it involves both planning
collision-free paths for multiple agents and target sequencing, i.e.,
assigning targets to and computing the visiting order for each
agent. A recent method Conflict-Based Steiner Search (CBSS)
is developed to solve MCPF to optimality, which, however, does
not scale well when the number of agents or targets is large
(e.g. 50 targets). While MAPF research has developed methods
to plan bounded sub-optimality paths for many agents, it remains
unknown how to find bounded sub-optimal solutions in the
presence of many targets. This paper fills this gap by developing
a method AK* for target sequencing (A for Approximation and
K* for K-best), which leverages approximation algorithms for
traveling salesman problems. AK* is motivated by MCPF, but is
a standalone method that can solve K-best routing problems in
general. We prove that AK* has worst-case polynomial runtime
complexity and finds bounded sub-optimal solutions. With AK*,
we develop two CBSS variants that find bounded sub-optimal
paths for MCPF. Our results verify the fast running speeds of
our methods with up to 200 targets.

Note to Practitioners—The motivation of this paper originates
from the need to plan conflict-free paths for multiple mobile
robots in cluttered environment in warehouse logistics, manu-
facturing and inspection. While existing methods for multi-agent
planning typically consider finding paths from starts to goals, this
paper investigates the case, where agents must collectively visit
a set of intermediate target locations before reaching their goals,
for the purpose of inspection, picking or placing parts, etc. To
solve the problem, this paper first develops an algorithm to find
K-best solutions for traveling salesman problems with bounded
sub-optimality, which then leads to two multi-agent planners that
can handle hundreds of targets and tens of agents. We provide
a Gazebo simulation to showcase the usage of the planner in a
warehouse like environment.

I. INTRODUCTION

Multi-Agent Path Finding (MAPF) computes an ensemble
of collision-free paths for multiple agents from their respective
start locations to their respective goal locations while minimiz-
ing a cost function defined over the paths. This paper considers
a generalization of MAPF where agents must also visit a given
set of intermediate target locations before reaching their goals.
This generalization called the Multi-Agent Combinatorial Path

This work was supported by National Science Foundation under Grant No.
2120219 and 2120529. (Corresponding author: Zhongqiang Ren.)

Zhongqiang Ren is with Shanghai Jiao Tong University in China. (email:
zhongqiang.ren@sjtu.edu.cn). Sivakumar Rathinam is with Texas A&M Uni-
versity in USA (email: srathinam@tamu.edu). Howie Choset is with Carnegie
Mellon University in USA. (email: choset@andrew.cmu.edu).

Digital Object Identifier (DOI):

Finding (MCPF) problem aims to find “start-target-goal” paths
for the agents rather than the “start-goal” paths present in
MAPF (Fig. 1(a)). MAPF and MCPF arise in applications
such as logistics [1] and surveillance [2]. Specifically, factory
environments [3], [4] often use multiple mobile robots to visit
target locations under a centralized management system [5]
for inspection or manufacturing. Consider mobile robots that
need to visit a set of target locations to collect finished
parts from machine centers to the storage. These robots may
have heterogeneous capabilities due to their different grippers
or payloads, and are thus subject to agent-target assignment
constraints. These robots share a cluttered environment and
need to find collision-free paths. In such settings, MCPF
naturally arises to optimize operations.

MCPF is challenging as it requires both collision avoidance
between agents (as present in MAPF), and target sequencing,
i.e., solving Traveling Salesman Problems (TSPs) to specify
the allocation and visiting orders of targets for all agents.
Both the TSP [6] and the MAPF [7] are NP-hard to solve
to optimality, and so is MCPF. To handle the challenges
in MCPF, our prior work [8] developed a method called
Conflict-Based Steiner Search (CBSS), which finds an optimal
solution to MCPF by leveraging the recent advances in the
research of both MAPF [9]–[11] and TSPs [12]–[15]. CBSS
is currently the only approach that can find an optimal or
bounded sub-optimal solution for MCPF. It works as follows:
First, it ignores the potential collision between the agents
by solving a multi-agent TSP to find a target sequence that
specifies the allocation and visiting order of the targets for
each agent. Next, CBSS fixes the target sequence for each
agent and plans the corresponding collision-free paths by using
Conflict-Based Search (CBS) [11] from the MAPF literature.
Finally, CBSS alternates between target sequencing and path
planning by generating new target sequences when needed
in order to ensure solution optimality bounds. To generate
new target sequences, CBSS solves a K-best TSP [15], [16],
which requires finding a set of K cheapest target sequences, as
opposed to an optimal target sequence, with K being a variable
that is determined during the search process (Fig. 1).

While CBSS finds an optimal solution to the MCPF, it does
not scale well as the number of agents or targets increase. The
main reason for the bottleneck is that as the number of agents
or targets in the problem increases, solving the K-best TSP to
optimality in the CBSS becomes computationally prohibitive.
While the number of potential collisions between the agents
increases as the number of agents increases, this issue can
be addressed through the latest advances in MAPF [17]–[19].
On the other hand, as the number of targets increases, finding



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2

Fig. 1. (a) An example of MCPF. The color of a target indicates the
assignment constraints, i.e., the subset of agents that are eligible to visit
each target. (b) The corresponding target sequencing problem in a complete
graph, where vio, v

i
d are the start and goal vertices of agents i = 1, 2, 3 and

vt1, vt2, vt3 are the target vertices that need to be visited. (c) A set of possible
solutions to the target sequencing problem.

bounded sub-optimal solutions for the K-best TSP is chal-
lenging. This article focuses on developing new approximate
methods for the K-best TSP, and as a result, new approximate
versions of CBSS that can handle MCPF with a large number
of targets and agents.

Conventionally, K-best TSPs are solved by a partition
method [15], [16], which iteratively creates new TSPs in a
systematic way and solves each of them to optimality by
invoking an exact TSP algorithm. However, since each gener-
ated TSP is computationally heavy to solve to optimality, this
partition method is computationally burdensome especially for
a large graph or a large K. To address this challenge, this
paper seeks to solve K-best TSPs by leveraging approximation
algorithms for TSPs [20]–[24] due to their fast running speeds
and solution quality guarantees. Specifically, approximation
algorithms often address TSPs by first solving a corresponding
simpler problem, such as finding a minimum spanning tree,
and then converting the result to a solution tour or path for
TSPs. Approximation algorithms enjoy worst-case polynomial
runtime complexities and are able to return bounded sub-
optimal solutions.

Although approximation algorithms for TSPs have been
studied for decades [20], [24], combining them with the parti-
tion method for K-best TSPs is under-explored and challenging
for the following reason. Most approximation algorithms for
TSPs require that the graph is metric, so that the edge
costs satisfy the triangle inequality. However, the partition
method [15], [16] needs to impose special edge constraints
on the graph, which breaks the triangle inequality, and makes
these approximation algorithms no more applicable. To handle
this difficulty, we develop a new partition method called AK*,
where “A” stands for Approximation and “K*” stands for K-
best. AK* can properly handle these edges constraints and
can thus fuse a variety of approximation algorithms with the
partition method to solve a family of K-best TSPs.

We prove that AK* can convert an approximation algorithm
for TSPs into its K-best version, while preserving the sub-
optimality bound and polynomial runtime guarantees. We
compare our AK* against an exact method for TSPs for

both single and multiple agents. Our results show that, AK*
requires down to 1% of the runtime of the corresponding exact
method in practice, while finding solutions that are about 50%
more expensive than the solutions found by the exact method.
Furthermore, AK* can quickly solve K-best TSPs with up to
20 agents and 200 targets, which are not solvable within a
minute using the existing exact method for K-best TSPs [8].

We then combine AK* with CBSS and develop two variants
of CBSS. The first variant is called CBSS-A (“A” stands
for Approximation), which is able to bypass the challenge
in target sequencing in the presence of many targets, by
replacing the exact method for K-best TSPs with our AK*.
The second variant is called CBSS-AF (“F” stands for focal
search), which combines CBSS-A with the technique of focal
search [25] in a similar way as in Enhanced Conflict-Based
Search (ECBS) [17] to improve the scalability with respect
to the number of agents by intelligently avoiding collision
between agents. We show that both CBSS-A and CBSS-
AF are guaranteed to find bounded sub-optimal collision-
free paths for the agents. We test CBSS-A and CBSS-AF
on instances with up to 30 agents and 80 targets with one
minute runtime limit for each instance, and both algorithms
often double or triple the success rates of the existing CBSS.
Finally, we simulate the planned path with mobile robots in a
warehouse in Gazebo/ROS and outline possible future work.

The main contribution of this paper is AK* that is able
to convert an approximation algorithms for TSPs to its K-
best counterpart, while preserving the solution sub-optimality
bounds and the polynomial runtime complexity. While our
main motivation is to improve CBSS to solve MCPF, AK*
is itself a standalone method that is independent from CBSS.
AK* has the potential to be used to solve other K-best
sequencing and routing problems that arise in robotics, such as
UAV routing [26], surveillance [27], and multi-agent robotic
assembly planning [4]. Besides AK*, additional contributions
are CBSS-A and CBSS-AF, two multi-agent path planners
that rely on AK*, to find bounded sub-optimal collision-free
paths for MCPF problems, while bypassing the challenge in
the presence of many targets or agents.

The rest of this paper reviews the related work in Sec. II and
describes the problem in Sec. III. We present AK* in Sec. IV
and prove its properties in Sec. V. We then present CBSS-A
and CBSS-AF in Sec. VI. Finally, we discuss the test result
in VII and conclude in VIII. We summarize the frequently
used notations and abbreviations in Table I.

II. RELATED WORK

A. Traveling Salesman Problems

The Traveling Salesman Problem (TSP), which seeks to find
a shortest tour for a single agent to visit each vertex in a graph,
is one of the most well-known NP-hard problems [6]. Closely
related to TSP, the Hamiltonian Path Problem (HPP) requires
finding a shortest path that visits each vertex in the graph from
a fixed start vertex to either a fixed or a unfixed goal vertex.
The multi-agent version of the TSP and HPP (denoted as
mTSP and mHPP, respectively) are harder to solve compared
to the (single-agent) TSP and HPP, since the vertices in the



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 3

graph must be allocated to each agent in addition to computing
the optimal visiting order of vertices for each agent. Without
causing confusion, we refer to all of TSP, HPP, mTSP and
mHPP simply as TSPs, and we distinguish between them when
needed during the presentation.

To solve TSPs, a variety of algorithms have been developed
ranging from exact methods (branch and bound, branch and
price) [6] to heuristics [14] and approximation algorithms [20],
trading off solution optimality for runtime efficiency. This
paper is particularly interested in approximation algorithms
for TSPs [20]–[24] due to both their worst-case polynomial
runtime complexity and sub-optimality bounds on solutions.
Approximation algorithms typically solve TSPs by first solv-
ing a simpler problem and then convert the result to a desired
solution path or tour [20], [22]. In practice, the approximation
algorithms can be used to either directly solve the TSPs, or to
provide an initial guess to start a heuristic algorithm for TSPs.

Most approximation algorithms for TSPs require the graph
to be metric or allow a vertex to be visited at least once
(as opposed to exactly once), since otherwise, there is no
polynomial-time constant-factor (i.e., constant sub-optimality
bound) approximation algorithm unless P=NP [28], [29].
Therefore, this paper considers TSPs on metric graphs and
allows each vertex to be visited at least once. As we will see,
in a MCPF problem and its corresponding target sequencing
problem, these assumptions can be readily satisfied.

B. Multi-Agent Path Finding and Target Sequencing

While being able to find a sequence of targets to visit for
the agents, algorithms for TSPs [12], [13], [30]–[32] typically
do not consider the collision avoidance constraints between
the agents, which are important for robotics especially when
the workspace is cluttered and crowded. To find collision-free
paths for multiple agents, a family MAPF algorithms have
been developed, which fall on a spectrum from coupled [33]
to decoupled [34], trading off completeness and optimality
for scalability. In the middle of this spectrum lies the pop-
ular dynamically-coupled methods such as subdimensional
expansion [10] and CBS [11], which begin by planning
for each agent a shortest path from the start to the goal
ignoring any potential collision and then couple agents for
planning only when necessary to resolve agent-agent collision.
These dynamically-coupled methods have been improved and
extended in many ways [35]–[38].

Some recent research combines MAPF with target assign-
ment and sequencing [8], [39]–[51]. Most of them either
consider target assignment only (without the need for com-
puting visiting orders of targets) [39]–[41], or compute the
visiting order given that each agent is pre-allocated a set of
targets [42]–[44]. Additionally, the multi-agent pick-up and
delivery problems [46]–[48], which finds collision-free paths
to fulfill a set of pick-up and delivery tasks, also require
assigning a sequence of tasks to each agent. For MCPF, on
the one hand, one can enumerate all possible target sequences
in a brute-force manner during the path planning in order
to ensure solution optimality [49], which is computational
burdensome. On the other hand, one can leverage heuristics,

such as a sequential method that first finds a target sequence
and then plans paths with the sequence fixed [47], [52], which
often enjoy good scalability but fail to provide solution quality
guarantees. The recent approach CBSS [8] lies in their middle
to provide solution optimality guarantees while avoiding the
expensive enumeration of target sequences, by generating new
target sequences only when necessary during path planning.

III. PROBLEM DEFINITIONS

A. Multi-Agent Combinatorial Path Finding Problem

Let index set I = {1, 2, . . . , N} denote a set of N
agents. All agents share a workspace that is represented as an
undirected graph GW = (V W , EW , cW ), where W stands for
workspace. Each vertex v ∈ V W represents a possible location
of an agent. Each edge e = (u, v) ∈ EW ⊆ V W × V W

represents an action that moves an agent between u and v.
cW : EW → (0,∞) maps an edge to its positive cost value.

Let the superscript i ∈ I over a variable denote the specific
agent to which the variable belongs (e.g. vi ∈ V W means
a vertex corresponding to agent i). Let vio, v

i
d ∈ V W denote

the initial/original vertex and the goal/destination vertex of
agent i respectively. Let Vo, Vd ⊂ V W denote the set of all
initial and goal vertices of the agents respectively, and let Vt ⊂
V W denote the set of target vertices. For each target v ∈ Vt,
let fA(v) ⊆ I denote the subset of agents that are eligible
to visit v; these sets are used to formulate the (agent-target)
assignment constraints.

Let πi(vi1, v
i
ℓ) denote a path for agent i between vertices

vi1 and viℓ, which is a list of adjacent vertices (vi1, v
i
2, . . . , v

i
ℓ)

in GW . Let g(πi(vi1, v
i
ℓ)) denote the cost of the path, which

is the sum of the costs of all edges present in the path:
g(πi(vi1, v

i
ℓ)) = Σj=1,2,...,ℓ−1c

W (vij , v
i
j+1).

All agents share a global clock and start to move along
their paths from time t = 0. Each action of the agents, either
wait or move along an edge, requires one unit of time. Any
two agents i, j ∈ I are in conflict if one of the following
two cases happens. The first case is a vertex conflict (i, j, v, t)
where two agents i, j ∈ I occupy the same vertex v at the
same time t. The second case is an edge conflict (i, j, e, t),
where two agents i, j ∈ I go through the same edge e from
opposite directions between times t and t+ 1.1

Problem 1 (MCPF Problem [8]). The MCPF problem seeks
to find a set of conflict-free paths for the agents such that (1)
each target v ∈ Vt is visited2 at least once by some agent in
fA(v), (2) the path for each agent i ∈ I starts at its initial
vertex and terminates at a unique goal vertex u ∈ Vd such that
i ∈ fA(u), and (3) the sum of the cost of all agents’ paths
reaches the minimum.

1Here, the edge cost can be an arbitrary positive real number while the
traversal time of each edge must be one. It is common in MAPF and its
variants [9] to assume that the cost of an edge is always equal to its traversal
time and is one for each edge.

2In MCPF, the notion that an agent i “visits” a target v ∈ Vt means (i)
there exists a time t such that agent i occupies v along its path, and (ii) the
agent i claims that v is visited. In other words, if a target v is in the middle
of the path of agent i and agent i does not claim v is visited, then v is not
considered as visited. Additionally, a visited target v can appear in the path
of another agent. For the rest of the paper, when we say an agent or a path
“visits” a target, we always mean the agent “visits and claims” the target.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

Notation Section Meaning
I , N Sec. III The index set I = {1, 2, · · · , N} that represents a set of N agents.
GW = (V W , EW , cW ) Sec. III A (workspace) graph with vertex set V W and edge set EW . Each edge (u, v) ∈ EW has a cost cW (u, v).
Vo, Vt, Vd Sec. III A set of initial vertices, a set of target vertices and a set of destination vertices, respectively.
πi,πi′ Sec. III A path of agent i in GW .
π,π′ Sec. III A joint path of all agents in GW .
g,g′ Sec. III The cost values.
G = (V,E, c) Sec. III A (target) graph with vertex set V and edge set E. Each edge (u, v) ∈ E has a cost c(u, v).
γi, γ Sec. III A target sequence of agent i, a joint (target) sequence of all agents, respectively.
{γ∗

k , k = 1, 2, · · · ,K} Sec. III A set of minimum cost joint sequences.
{γk, k = 1, 2, · · · ,K} Sec. III A set of joint sequences.
fA Sec. III Assignment constraints.
mHPP, HPP Sec. III Multi-Depot Multi-Terminal Hamiltonian Path Problem, (Single-Agent) Hamiltonian Path Problem.
SPPFP Sec. IV Shortest Path Problem with Forbidden Paths.
AK* Sec. IV An Approximation Approach for K-Best TSPs.
Ie,I′e Sec. IV A set of edges that must be included in the solution (joint sequence).
Oe,{o′e} Sec. IV A set of forbidden edges, i.e., edges that must be excluded from the solution (joint sequence).
πfp,Πfp Sec. IV A forbidden path, a set of forbidden paths.
R1,Rk ,R,R′ Sec. IV A node for AK* search, which represents a restricted mHPP instance.
D(Rk) Sec. V The domain of Rk , i.e., the set of all solutions (joint sequences) to the restricted mHPP represented by Rk .
CBSS Sec. VI Conflict-Based Steiner Search.
P ,P ′ Sec. VI A C-node for CBSS search.

TABLE I
FREQUENTLY USED NOTATIONS AND ABBREVIATIONS.

B. Target Sequencing Problems

Let G = (V,E, c) denote a complete undirected metric
(target) graph, where V is the set of all vertices, E is the set
of edges connecting any pair of vertices in V , and c : E →
(0,∞) is a cost function that maps each edge e = (u, v) ∈ E
to a positive cost value c(u, v) that represents the traversal cost
from u to v of any agent. G is a metric graph and the edges
satisfy the triangle inequality: c(u, v) + c(v, w) ≥ c(u,w) for
all u, v, w ∈ V . Here, G is a target graph and is different from
the aforementioned workspace graph GW . The vertex set V
of G is always the same as Vo ∪ Vt ∪ Vd, and there can be
vertices in GW that do not belong to any one of Vo, Vt, Vd

and thus do not belong to G. The edge costs in the GW and
G are related as follows. The cost c(u, v) of an edge (u, v)
in the target graph G is equal to the cost of a minimum cost
path in GW between u and v ignoring any possible collision.

Let γi(vi1, v
i
ℓ) denote a target sequence for agent i that

connects vertices vi1 and viℓ via a sequence of vertices
(vi1, v

i
2, . . . , v

i
ℓ) in G. Let cost(γi(vi1, v

i
ℓ)) denote the cost of

γi(vi1, v
i
ℓ), which is the sum of costs of all edges in the target

sequence, i.e., cost(γi(vi1, v
i
ℓ)) = Σj=1,2,...,ℓ−1c(v

i
j , v

i
j+1).

Similarly, let γ = γ(Vo, Vd) = {γi(vio, v
i
d),∀i ∈ I} denote

a joint (target) sequence that consists of N target sequences,
one target sequence for each agent i ∈ I . We denote γ(Vo, Vd)
and γi(Vo, Vd) simply as γ and γi when there is no ambiguity.
In this paper, when referring to a graph G, unless specified
otherwise, we mean a target graph with vertex set Vo∪Vt∪Vd,
and “a joint sequence γ in G” means a joint sequence that
starts from Vo, visits Vt, and ends at Vd while satisfying the
assignment constraint fA.

Problem 2 (Multi-Depot Multi-Terminal Weighted Hamilto-
nian Path Problem (mHPP)). Given a complete undirected
metric graph G = (V,E, c) and fA, the mHPP seeks to find
a joint sequence γ in G such that

∑
i∈I cost(γ

i) reaches the
minimum.

Remark 1. As a special case of mHPP, if vid = vio,∀i ∈ I
(i.e., each agent has a depot vertex at which its target
sequence starts and ends), this special case of mHPP is
called a Multi-Depot Multiple Traveling Salesman Problem
(mTSP) [12], [13]. If all agents share the same depot (i.e.,
vid = vio = v ∈ V ), the variant is called (Single-Depot)
Multiple Traveling Salesman Problem [12], [13]. Finally, if
there is only one agent (i.e., N = 1), the corresponding mHPP
and mTSP becomes the Traveling Salesman Problem (TSP)
and Hamiltonian Path Problem (HPP), respectively.

Problem 3 (K-Best mHPP). Given a complete undirected
metric graph G = (V,E, c) and the assignment constraints
fA, the K-Best mHPP seeks to find a set of K minimum
cost joint sequences {γ∗

1 , γ
∗
2 , · · · , γ∗

K} in G with cost(γ∗
1) ≤

cost(γ∗
2 ) ≤ · · · ≤ cost(γ∗

K).

Problem 4 (Approximated K-Best mHPP). Given a complete
undirected metric graph G = (V,E, c), vio, v

i
d ∈ G,∀i ∈ I and

fA, the Approximated K-Best mHPP seeks to find a set of K
joint sequences {γ1, γ2, · · · , γK} in G such that cost(γk) ≤
α · cost(γ∗

k) for k = 1, 2 · · · ,K, where γ∗
k is a k-th best

solution as defined in Problem 3 and α is a positive constant
real number. γk is called the approximated k-th best solution.

In Problem 4, the joint sequences γ1, γ2, · · · , γK are not
required to have monotonically non-decreasing costs. α is
often called the approximation factor, which is the same as the
sub-optimality bound of the solution returned. α is a number
that may vary when different approximation algorithms are
used to solve the problem.

IV. METHOD

This section presents AK* that solves Problem 4. We first
introduce the notions of restricted problems in Sec. IV-A,
which are required by AK*, before presenting AK*.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 5

A. Restricted Problems
Problem 5 (Restricted mHPP). Given a complete undirected
metric graph G = (V,E, c), let Ie, Oe ⊆ E denote two disjoint
subsets of edges, the Restricted mHPP seeks to find a minimum
cost joint sequence γ∗ in G such that Ie ⊆ γ∗ ⊆ E\Oe.

Here, “restricted” means there is a set of edges Ie that must
be included into the solution and another set of edges Oe that
must be excluded from the solution. For example, the leftmost
plot in Fig. 2(c) seeks a solution with Ie = ∅ and Oe = {e1}.

Problem 6 (Approximated Restricted mHPP). Given a com-
plete undirected metric graph G = (V,E, c), let Ie, Oe ⊆ E
denote two disjoint subsets of edges in G, the Approximated
Restricted mHPP seeks to find a joint sequence γ in G such
that (i) Ie ⊆ γ ⊆ E\Oe, and (ii) cost(γ) ≤ α · cost(γ∗),
where γ∗ is a minimum cost solution to the Restricted mHPP
defined in Problem 5.

Finally, we introduce the Shortest Path Problem with For-
bidden Paths (SPPFP) [53], [54], which will be used in AK*.

Problem 7 (Shortest Path Problem with Forbidden Paths
(SPPFP)). Given a undirected graph G = (V,E, c) (which is
not required to be complete or metric), a start vertex vstart ∈
V , a goal vertices vgoal ∈ V , and a set of forbidden paths
Πfp, where each path πfp ∈ Πfp is a sequence of adjacent
vertices in G connecting two vertices u1, u2 ∈ V , the SPPFP
problem seeks to find a minimum cost path π(vstart, vgoal)
in G such that (i) the cost of π(vstart, vgoal) is minimized
and (ii) no forbidden path in Πfp appears as a sub-path in
π(vstart, vgoal).

B. Two New Techniques in AK*
Our new partition method AK* (Alg. 1) runs a best-first

search by iteratively (i) partitioning the set of possible so-
lutions into subsets, (ii) finding an approximated solution in
each partitioned subset, and (iii) picking the minimum cost
one among these approximated solutions as the k-th solution,
where k increases from 1 to K as the search proceeds. Fig. 2
shows the workflow of an iteration in AK*. AK* is based on
the existing partition method [15] and has two new techniques
that handles Ie and Oe respectively to use approximation
algorithms for TSPs.

The first new technique (Sec. IV-D) is to use an Iterative
Graph Completion (IGC) process to handle the edges in Oe

that must be excluded from the solution. With IGC, the
resulting graph G′ is complete and metric and a constant-factor
approximation algorithm can be applied on G′.

The second new technique (Sec. IV-E) is to identify a
property (i.e., Lemma 1) of the edges Ie that must be included
into the solution. Lemma 1 allows AK* to (i) create a sub-graph
G′′ out of G′, (ii) invoke an approximation algorithm to find
a joint sequence γ′′ in G′′, and (iii) combine γ′′ with Ie to
form a joint sequence γ′ in G′, and γ′ is the desired solution
that includes Ie.

C. Technical Overview of AK*
1) Node: Let R = (G, Ie, oe, πc, γ) denote a node, which

corresponds to a Restricted mHPP instance and consists of

Fig. 2. An illustration of the partition method. In (a), the first best joint
sequence is obtained. (b) uses the oval to denote the domain D(R1) of the
mHPP (i.e., the set of all possible joint sequences that solve the mHPP), and
shows the partition, where D(R1) is divided into multiple sets and each set is
the domain of a new restricted mHPP represented by Rb, Rc, · · · . (c) shows
the restricted mHPP corresponding to Rb, Rc, · · · , which requires finding
a joint sequence that includes the edges in Ie and excludes the edge oe.
In (d), a bounded sub-optimal joint sequence γ (blue dot) is computed for
each restricted mHPP, and each yellow dot represents a minimum cost joint
sequence for that restricted mHPP. Among all blue dots, the minimum cost
one (with black solid circle) is the approximated 2nd best solution.

five elements, where G is a graph, Ie, oe, πc and γ are a
set of edges, an edge, a path and a joint sequence in G
respectively. The graphs in different nodes can be different
as we will see later. Let G(R), Ie(R), oe(R), πc(R), γ(R)
denote the respective elements in node R, and let γi(R)
denote the target sequence of agent i contained in γ(R).
We use an edge oe(R) instead of a set of edge Oe(R) in
a node because AK* only needs to exclude one edge from
the solution at a time. Let cost(R) denote the cost of node
R, which is the same as the cost of the joint sequence
cost(γ(R)). Let mHPP-Solve(G, Ie, Oe) denote the procedure
that uses an approximation algorithm to solve a Restricted
mHPP (Problem 5) in graph G with two sets of edges Ie
and Oe that must be included into and excluded from the
solution respectively. Here, mHPP-Solve is transparent to
AK* in a sense that different algorithms for mHPP can be
used to implement mHPP-Solve. AK* can also be used to
solve problems different from mHPP, such as mTSP, and TSP
by implementing mHPP-Solve with a different approximation
algorithm.

2) Initialization: AK* takes as input a complete undirected
graph, which is denoted as G1 for clarity. The goal of AK* is
to solve the Approximated K-best mHPP on G1. AK* begins
by creating an initial node R1 (Lines 1-2) with G(R1)← G1,
Ie(R1)← ∅, oe(R1)← NULL, πc ← ∅ and γ(R1)←mHPP-



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 6

Algorithm 1 Pseudocode for AK*
INPUT: G1 = ({Vo, Vt, Vd}, E1, c1), fA, and K.
OUTPUT: a set of approximated K-best joint sequences in G1.

1: γ1 ←mHPP-Solve(G1, ∅, ∅)
2: R1 ← (G1, Ie = ∅, oe = NULL, πc = ∅, γ ← γ1)
3: parent(R1)← NULL, S ← ∅
4: Add R1 into OPENR

5: while OPENR ̸= ∅ do
6: Rk ← OPENR.pop()
7: γk ←ReconstructSol (Rk, γ(Rk)), add γk into S
8: if k = K then
9: return S

10: Index the edges in γ(Rk) as {e1, e2, . . . , eℓ}
11: for all p ∈ {1, 2, . . . , ℓ} do
12: o′e ← ep
13: I ′e ← Ie(Rk)

⋃
{e1, e2, . . . , ep−1}

14: if o′e ∈ I ′e(Rk) then
15: continue
16: Πfp ← ∅
17: Πfp ←GetForbidPaths(Rk, o

′
e,Πfp)

18: (u, v)← o′e
19: π′

c ← SPPFP-Solve(G1,Πfp, u, v)
20: G′ ←CompleteGraph (G(Rk), o

′
e, π

′
c)

21: γ′ ← mHPP-Solve(G′, I ′e, ∅)
22: R′ ← (G′, I ′e, o

′
e, π

′
c, γ

′)
23: parent(R′)← Rk

24: Add R′ into OPENR

25: return failure

Solve(G(R1), ∅, ∅). Let parent denote the parent pointer of a
node, and parent(R1) is set to NULL to indicate that R1 has
no parent. The solution set S stores the approximated K-best
solutions found during the search. R1 is added to OPENR, a
priority queue of nodes, where nodes are prioritized based on
their costs from the minimum to the maximum (Line 4).

3) Iteration: Lines 5-24 is called an iteration of AK*.
In the k-th (k = 1, 2, · · · ,K) iteration, AK* first pops a
node Rk from OPENR, and the joint sequence γ(Rk) is the
approximated k-th best solution. γ(Rk) cannot be directly
added to the solution set S, because γ(Rk) is a joint sequence
in graph G(Rk) and needs to be reconstructed in graph G1

(see Sec. IV-F) before being added into S (Line 7). If k = K,
then S contains the approximated K-best solutions and AK*
terminates (Line 9). Otherwise, AK* indexes the edges in the
joint sequence γ(Rk) from 1 to ℓ, where ℓ is the total number
of edges in γ(Rk), i.e., the sum of number of edges in each
target sequence γi(Rk), i = 1, 2, · · · , N . Then, AK* iterates
these edges to create new nodes as follows.

4) Edges Must Be Included: When iterating the edges
ep, p = 1, 2, · · · , ℓ (Lines 11-24), for every ep, the subset
of edges {e1, e2, . . . , ep−1} is unioned with the set Ie(Rk),
to form I ′e, a new set of edges that must be included into the
solution (Line 13). Here, (i) γ(Rk) is a joint sequence that
includes all edges in Ie(Rk) and (ii) {e1, e2, . . . , ep−1} are
the first p− 1 edges in γ(Rk) based on the index. Therefore,
the new set I ′e is guaranteed to be a set of paths where each
path is a complete or partial target sequence in γ(Rk) (as
opposed to trees, cycles, stars, etc.). Fig. 3(a) and 3(c) show
an example, where the set I ′e = (e1, e2, e3) forms a set of two
paths {(e1, e2), (e3)}. This property of I ′e is summarized in
the following lemma.

Fig. 3. An illustration of the two new techniques in AK*. (a) shows a restricted
mHPP where edges in I′e must be included into and the edge o′e must be
excluded from the solution to be computed. (b) shows that AK* removes o′e
and then completes the graph by adding a new edge e′, which corresponds
to a minimum cost path that does not contain o′e. (c) shows that AK* creates
a new complete directed metric graph G′′ and finds a joint sequence γ′′ in
G′′ by solving a new mHPP using an approximation algorithm. Then γ′′ can
always be combined with I′e to form a joint sequence that is desired.

Lemma 1. In the k-th iteration of Alg. 1, on Line 13, the set
I ′e always forms a set of paths {γi

I′
e
, i = 1, 2, · · · , N} in graph

G(Rk), where each path corresponds to a target sequence with
the following features.

• If γi
I′
e

is not empty, then γi
I′
e

starts with vio.
• If γi+1

I′
e

is not empty, then γi
I′
e

ends with vid.
• If γi

I′
e

does not end with vid, then every γj
I′
e
, j ∈ I, j ≥ i

is empty.

5) Edges Must Be Excluded: The edge ep must be excluded
from the solution, which is re-denoted as o′e on Line 12 and is
called a forbidden edge. If o′e is already contained in I ′e(Rk)
(Line 14), then the corresponding Restricted mHPP, which
will be generated and solved on Line 21, is not solvable since
the same edge o′e cannot be both included into and excluded
from a solution at the same time, and the current iteration ends
(Line 15). Otherwise (i.e., o′e /∈ I ′e(Rk)), a Restricted mHPP
is created and solved (Line 17-21). Here, to exclude o′e from
the solution, deleting o′e from the graph G(Rk) would lead to
a graph that is not fully connected, and the triangle inequality
does not hold any more.3

6) Basic Graph Completion: To handle this difficulty, one
can complete the graph by finding a minimum cost path π′

connecting both vertices of edge o′e without using edge o′e,
and add a new edge e′ to replace o′e while setting the cost of

3In other words, deleting o′e from the graph is equivalent to modifying
the cost of the forbidden edge o′e = (u, v) to infinity from the computational
perspective, and the triangle inequality cost(u,w)+cost(w, v) ≥ cost(u, v)
does not hold for any w ∈ V,w ̸= u,w ̸= v, since cost(u,w)+ cost(w, v)
is finite and cost(u, v) = ∞. Take Fig. 3(a) and Fig. 3(b) for example, if edge
e4 = (vt2, v2d) is modified to have an infinity cost, then cost(vt2, vt3) +
cost(vt3, v2d) ≱ cost(vt2, v2d) = ∞.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 7

e′ to be the same as cost(π′). By doing so, the resulting graph
G′ is complete, undirected and metric, and approximation
algorithms can be applied to find a joint sequence γ′ in G′.
Later, if the computed γ′ includes e′, then the joint sequence
γ in G1 can be reconstructed by replacing e′ with π′. For
example, in Fig. 3(b), the black edge (u, v) is o′e and must be
excluded. The green dashed line ((u,w), (w, v)) is π′, which
becomes e′ the green solid line, and e′ completes the graph
after the removal of o′e.

7) Iterative Graph Completion (IGC): AK* has to conduct
the aforementioned graph completion process iteratively. We
explain the intuition with the example in Fig. 4: First, in an
iteration of Alg. 1, edge e1 must be excluded and the graph is
completed by finding path (e2, e3) as shown in Fig. 4(a). Then,
in a future iteration of Alg. 1, edge e′ in Fig. 4(b) must be
excluded. At this moment, the forbidden edge e′ corresponds
to a path (e2, e3) in Fig. 4(a), and to complete the graph, a path
connecting u, v without using both edge e1 and path (e2, e3) is
needed, as shown in Fig. 4(c). To find such a path π′′, we need
to solve a SPPFP as defined in Problem 7 with two forbidden
paths Πfp = {(e1), (e2, e3)}, and Fig. 4(d) shows π′′ in brown
dotted lines. We now introduce the IGC (Line 17-20 in Alg. 1),
which is detailed in Sec. IV-D. IGC begins by creating a set of
forbidden paths in G1 using GetForbidPaths, which iteratively
traces the parent nodes to reconstruct all the forbidden paths in
G1. After obtaining the forbidden paths, AK* creates a SPPFP
instance, which is solved in SPPFP-Solve (Line 19) to find a
minimum cost path π′

c connecting both vertices u, v of edge
o′e. Then, in CompleteGraph, an edge e′ corresponding to path
π′
c is added to G(Rk) to replace o′e, and the resulting graph is

denoted as G′, which is an undirected complete metric graph.
8) New Node Generation: After IGC, the procedure mHPP-

Solve is called to solve the restricted mHPP in G′ by lever-
aging an approximation algorithm to find a joint sequence γ′,
while ensuring all edges in Ie are included in γ′, which is
elaborated in Sec. IV-E. Then, a corresponding new node R′

(Line 22) is created and added to OPENR, and the parent of
R′ is pointed to Rk. AK* iterates until K joint sequences are
found (Line 9).

D. Handle The Edge That Must Be Excluded

We revisit IGC (i.e., Lines 17-20 in Alg. 1) with more details
and explain the pseudo-code of the key procedures.

1) Forbidden Paths Reconstruction: AK* invokes GetFor-
bidPaths on Line 17 in Alg. 1 and the inputs are: a node Rk, a
forbidden edge oe, and a set of forbidden paths Πfp. As shown
in Alg. 2, GetForbidPaths is a recursive procedure that aims to
eventually reconstruct the forbidden paths in G1. The path set
Πfp contains the forbidden paths that are reconstructed during
the recursive calls of Alg. 2.

GetForbidPaths first treats the edge oe as a path that
contains a single edge, and adds oe to the path set Πfp

(Line 2). Then, if Rk is NULL (Line 4), there is no further
reconstruction and Alg. 2 terminates. At this moment, all
forbidden paths in Πfp have been reconstructed in graph G1.
Otherwise (i.e., Rk ̸= NULL), GetForbidPaths iterates each
path π ∈ Πfp (Line 5) and each edge ej ∈ π (Line 7). If

Algorithm 2 Pseudocode for GetForbidPaths(Rk, oe,Πfp)
INPUT: Rk is a node in Alg. 1, oe is an edge, Πfp is a set of
paths.

1: if oe ̸= NULL then
2: add oe into Πfp

3: if Rk = NULL then
4: return Πfp

5: for all π ∈ Πfp do
6: (e1, e2, · · · , em)← π
7: for all ej ∈ {e1, e2, · · · , em} do
8: if oe(Rk) ̸= NULL and ej = oe(Rk) then
9: π′ ← make a copy of π

10: replace ej in π′ with πc(Rk)
11: replace π in Πfp with π′

12: return GetForbidPaths(parent(Rk), oe(Rk), Πfp)

Fig. 4. An illustration of why AK* needs to solve SPPFP for iterative graph
completion. In (a), edge e1 is forbidden (i.e., must be excluded from the
solution), and a minimum cost path (e2, e3) is found. In (b), a new edge e′

corresponding to the path (e2, e3) in (a) is created. In a future iteration, e′
is forbidden again. (c) shows that, at this moment, between vertices (u, v),
both the edge e1 and the path (e2, e3) are forbidden, and to complete the
graph, AK* needs to solve a SPPFP to find a minimum cost path between
(u, v) without using e1 and (e2, e3). (d) shows a minimum cost solution to
the SPPFP which is the path (e4, e5) in brown color.

ej = oe(Rk), then ej needs to be replaced with πc(Rk) in path
π (Lines 9-11). After Line 11, GetForbidPaths ensures that
any edge oe(Rk) that appears in any π ∈ Πfp is now replaced
with πc(Rk). Finally, GetForbidPaths makes a recursive call
on itself (Line 12) to further reconstruct the path in graph
G(parent(Rk)).

2) Minimum Cost Path Subject to Forbidden Paths: After
getting all the forbidden paths Πfp (Line 17), a minimum cost
path between (u, v) that does not use any path in Πfp as a
sub-path is then computed by solving a SPPFP as defined in
Problem 7. This SPPFP is always considered in graph G1 with
Πfp being the set of forbidden paths. To solve this SPPFP, this
paper uses a dynamic programming algorithm [54].

E. Handle The Edges That Must Be Included

In Alg. 1, when AK* reaches Line 21, the forbidden edge
o′e has been handled by IGC and the obtained graph G′ is a
complete undirected metric graph. In other words, any joint
sequence in G′ do not use the forbidden edge o′e. Then, on
Line 21, AK* seeks to find an approximated joint sequence
in G′ that includes all edges in I ′e. AK* calls mHPP-Solve,
which is described in Alg. 3 and consists of three steps.

1) New Graph Creation: mHPP-Solve first creates a new
graph G′′ by (i) removing the sub-graph induced by I ′e in G′,
i.e., removing the vertices from G′ that appear in the edges
in I ′e, and (ii) updating the initial/target/goal vertices in G′′.
An example can be found in Fig. 3(a) and Fig. 3(c), and we
explain this updating step as follows.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 8

Algorithm 3 Pseudocode for mHPP-Solve(G′, I ′e, O
′
e = ∅)

INPUT: G′ is a complete undirected metric graph, I ′e is a set of
edges that must be included into the solution, the third argument
Oe is always an empty set.

1: V ′′
o , V ′′

t , V ′′
d , G′′ ← RemoveEdges(G′, I ′e)

2: γG′′ ←ApproximationAlgorithm(G′′)
3: return CombineJointTargetSequence(γG′′ , I ′e)

Specifically, I ′e has features that were summarized in
Lemma 1. Let {γi

I′
e
, i = 1, 2, · · · , N} denote the list of paths

formed by I ′e. For each γi
I′
e
, i = 1, 2, · · · , N , let γi

I′
e
(j) denote

the j-th vertex in γi
I′
e
, and let γi

I′
e
(last) denote the last vertex

in γi
I′
e
. For each i = 1, 2, · · · , N , remove the vertices in

γi
I′
e
(j), j = 1, 2, · · · , |γi

I′
e
(j)| − 1 (i.e., from the first to the

second last vertices), as well as the edges incident on these
vertices, from G′. If the last vertex γi

I′
e
(last) is the same as vid,

then remove γi
I′
e
(last) from G′ as well. In this new graph G′′,

we create a new set of initial and goal vertices for the agents.
Let A ⊆ I denote the set of agents whose corresponding vid
remains in G′. Intuitively, agents that are not in A are the
ones whose target sequences are fully contained in I ′e and are
thus fixed, since I ′e are edges that must be included in the
solution. Let V ′′

o denote a set of new initial vertices of agents
that is constructed as follows. For each i ∈ A, if γi

I′
e

is empty,
then add vio into V ′′

o . Otherwise (i.e., γi
I′
e

is not empty), add
γi
I′
e
(last) into V ′′

o . Finally, we create a new set of goal vertices
V ′′
d by copying vid for each agent i ∈ A. Let V ′′

t ⊆ Vt denote
the subset of targets that remains in G′′.

2) Approximation Algorithm: mHPP-Solve then invokes
an existing approximation algorithm to find a joint target
sequence in G′′. Different approximation algorithms can be
used in the procedure ApproximationAlgorithm on Line 2 in
Alg. 3. We showcase two examples in Sec. IV-G.

3) Inclusion of Edges: Finally, mHPP-Solve combines the
solution (denoted as γG′′ ) computed by the approximation
algorithm in graph G′′ with the edges in I ′e. Note that
γG′′ = {γi

G′′ , i ∈ A}, and each γi
G′′ must start from the

corresponding new initial vertex of agent i in V ′′
o , which is

either γi
I′
e
(last) or vio. Therefore, γi

G′′ can be concatenated
with γi

I′
e

so that a target sequence γi from vio to vid is obtained
for each agent. For agents i ∈ I, i /∈ A, we know γi = γi

I′
e
,

which is a target sequence from vio to vid. All these γi, i ∈ I
then form a joint sequence γ that is returned by mHPP-Solve.

F. Solution Reconstruction

When a node Rk is popped from OPEN in Alg. 1, the cor-
responding joint sequence γ(Rk) is the k-th solution (Line 7)
to be returned. Here, γ(Rk) is a joint sequence in G(Rk)
and it needs to be reconstructed in G1 before being added
into the solution set S. To reconstruct γ(Rk) in G1, as shown
in Alg. 4, γ(Rk) is recursively reconstructed. Specifically, if
πc(Rk) of the input node Rk is NULL, then ReconstructSol
reaches the base case where G(Rk) is G1 and the current
joint sequence γ is returned. Otherwise (Line 3-9 in Alg. 4),
every edge ej in γ is checked if ej is the same as oe(Rk)
(Line 6). If yes, then ej needs to be replaced with πc(Rk)

Algorithm 4 Pseudocode for ReconstructSol (Rk, γ)
INPUT: Rk is a node in Alg. 1

1: if Rk = NULL then
2: return γ

3: for all γi ∈ γ do
4: (e1, e2, · · · , em)← γi

5: for all ej ∈ {e1, e2, · · · , em} do
6: if ej = oe(Rk) then
7: γi′ ← make a copy of γi

8: replace ej in γi′ with πc(Rk)
9: replace γi in γ with γi′

10: return ReconstructSol (parent(Rk), γ)

and the joint sequence γ is updated correspondingly. After
this replacement, a recursive call is made (Line 10) where the
current γ is further reconstructed in G(parent(Rk)), i.e., the
graph corresponding to the parent node of Rk.

G. Examples

In AK*, the ApproximationAlgorithm in Alg. 3 can be
implemented by using different approximation algorithms. We
discuss the following two examples.

The first example uses the algorithm in [22], which is
guaranteed to provide an 11/3 approximation ratio, i.e., the
returned solution γ has a cost cost(γ) ≤ 11

3 cost(γ∗) where
γ∗ is a minimum cost joint sequence. This 11/3-algorithm
can handle a special class assignment constraints: (i) Each
destination v ∈ Vd can only be visited by a unique agent
i ∈ I , i.e., fA(v) = {i}, i ∈ I). (ii) Each target v ∈ Vt can
either be visited by all agents (i.e., fA(v) = I), or can only
be visited by a specific agent (i.e., fA(v) = {i}, i ∈ I). This
implementation of AK* is referred to 11/3-AK* and will later
be used in Sec. VI-A.

The second example considers a (single-agent) TSP prob-
lem: where N = 1, Vo = {vo}, Vd = {vd} and vo = vd.
There are many approximation algorithms for the TSP. A
popular one among them is Christofides algorithm [20], which
has an approximation ratio of 3/2, and can be used to
implement ApproximationAlgorithm. This implementation of
AK* is referred to as Christofides-AK*.

V. ANALYSIS

AK* (i.e., Alg. 1) has worst-case polynomial runtime com-
plexity since (i) all procedures used in every iteration has
a polynomial runtime compleixty, (ii) AK* makes a finite
number of calls of these procedures in each iteration, and
(iii) AK* terminates within a finite number of iterations.
Let Capproxi denote the worst-case runtime complexity of
the ApproximationAlgorithm, which depends on the specific
approximation algorithm that is used.

Theorem 1. If K is finite and Capproxi is a polynomial
compleixty, then the worst-case runtime complexity of AK* is
polynomial.

For the rest of the analysis, we consider that K is given as
part of the problem input. In AK*, each node Rk corresponds
to a Restricted mHPP in graph G(Rk). Let D(Rk) denote the



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 9

domain of Rk with respect to the graph G(Rk), i.e., the set of
all possible joint sequences in G(Rk) that solve the Restricted
mHPP corresponding to Rk. In other words, every γ ∈ D(Rk)
is a joint sequence in G(Rk) that satisfies Ie(Rk) ⊆ γ ⊆
E\{oe(Rk)} where E is the edge set in G(Rk).

In every iteration of AK*, after a node Rk is popped
from OPENR, its domain D(Rk) is divided into multiple
subsets on Lines 10-13 in Alg. 1, where each subset is the
domain of a new Restricted mHPP that corresponds to a
node R′ with Ie(R

′) = I ′e and oe(R
′) = o′e (Line 22).

Let L = {R′
1, R

′
2, · · · , R′

ℓ} denote the list of nodes that
are generated on Lines 11-24 in Alg. 1. If R′

p for some
p ∈ {1, 2, · · · , ℓ} is not generated due to Line 14-15, let R′

p =
NULL and D(R′

p) = ∅. We show that this division of D(Rk)
is a partition of D(Rk)\{γ(Rk)}, i.e.,

⋃
p=1,2,··· ,ℓ D(R′

p) =
D(Rk)\{γ(Rk)} and p, j = 1, 2, · · · , ℓ, p ̸= j,D(R′

p) ∩
D(R′

j) = ∅, which is equivalent to the following lemma.

Lemma 2. For each γ ∈ D(Rk)\{γ(Rk)}, there exists a
unique D(R′

j), j = 1, 2, · · · , ℓ such that γ ∈ D(R′
j).

Proof. For an arbitrary joint sequence γ in G(Rk) that is
different from γ(Rk), we can introduce a binary vector
b ∈ Bℓ\1 of length ℓ to indicate if each edge in γ(Rk) is
included in γ, where B={0, 1} and 1 is a vector with all
component being one. Specifically, the j-th component b(j)
is one (or zero) if the j-th edge in γ(Rk) is included in
(or excluded from) γ. Obviously, b cannot be equal to 1,
since γ must be different from γ(Rk). Therefore, for each
γ ∈ D(Rk)\{γ(Rk)}, there exists a corresponding vector b ∈
Bℓ\1 (Claim 1). Lines 10-13 in Alg. 1 divides Bℓ\1 into the
following list of sets: LB = {(0,B, · · · ,B), (1, 0,B, · · · ,B),
(1, 1, 0,B, · · · ,B), · · · ,(1, 1, · · · , 1, 0)}, where B means the
corresponding component can be either zero or one. These sets
are mutually disjoint to each other (Claim 2). The j-th set in
LB corresponds to D(R′

j) in L. To show that this division is a
partition, we need to further show that every b ∈ Bℓ\1 belongs
to one of the sets (Claim 3), which is shown as follows. For
each b ∈ Bℓ\1, we can find the first component in b that is
zero. Without losing generality, let b(j) = 0 with j being a
specific number ranging from 1 to ℓ. Then the j-th set in LB

contains b. Putting these claims together, by Claim 1, for each
γ ∈ D(Rk)\{γ(Rk)}, there is a corresponding b ∈ Bℓ\1.
By Claim 3, this b belongs to one of the set in LB , let this
set be the j-th set, which corresponds to D(R′

j). Therefore,
γ ∈ D(R′

j). By Claim 2, the sets in L are mutually disjoint
to each other. The lemma is thus proved.

Following the previous notation that L = {R′
1, R

′
2, · · · , R′

ℓ}
is the list of nodes that are generated on Lines 11-24 in
Alg. 1. For an arbitrary p = 1, 2, · · · , ℓ, let γ∗ denote the
minimum cost joint sequence that solves the Restricted mHPP
represented by R′

p, and let γ′ denote the joint sequence
computed by Alg. 3. Same as the notation in Alg. 3, let G′, I ′e
denote the input to mHPP-Solve (i.e., Alg. 3). Additionally,
ApproximationAlgorithm is invoked on G′′, a graph that is
constructed on Line 1 in Alg. 3. Let γ∗

G′′ denote a minimum
cost joint sequence in G′′, and let γG′′ denote the joint
sequence computed by ApproximationAlgorithm in G′′. Let

α ≥ 1 denote the approximation ratio of the approximation
algorithm that implements ApproximationAlgorithm. As a
result, cost(γG′′) ≤ α cost(γ∗

G′′).

Lemma 3. The joint sequence γ′ returned by mHPP-Solve
satisfies cost(γ′) ≤ α cost(γ∗).

Proof. Edges in I ′e must be included into the computed joint
sequence. γ∗ must be the concatenation of I ′e and γ∗

G′′ , and
cost(γ∗) = cost(I ′e)+ cost(γ∗

G′′). This holds because if there
exists another γ∗∗ that is cheaper than γ∗, then by removing
I ′e from γ∗∗, we get a new joint sequence γ∗∗

G′′ in graph G′′

whose cost must be cheaper than γ∗
G′′ , which contradicts that

γ∗
G′′ is a minimum cost joint sequence in G′′.
Let cost(I ′e) denote the sum of costs of edge in I ′e. Then,

cost(γ) = cost(I ′e) + cost(γG′′) ≤ cost(I ′e) + α cost(γ∗
G′′) ≤

α(cost(I ′e) + cost(γ∗
G′′)) = α cost(γ∗). The first and the

second inequalities hold because α ≥ 1.

Lemma 4. Let {γ1, γ2, · · · , γk} denote the set of joint se-
quences stored in S in AK*. Then, at the beginning of each
iteration of AK* (i.e., before Line 6), the following equation
holds: (

⋃
Rj∈OPEN D(Rj)) ∪ S = D(R1).

Proof. We prove this by induction. Base case: at the beginning
of the first iteration, S = ∅ and the only node in OPEN is R1,
so the lemma holds.

Assumption: at the beginning of the k-th (k > 1) iteration,
the lemma holds.

Induction: during the k-th iteration, between Lines 5-24, a
joint sequence γ(Rk) is added to S. By Lemma 2, a partition
of D(Rk)\{γ(Rk)} is created and all corresponding nodes
R′

j , j = 1, 2, · · · , ℓ are added to OPEN. This lemma therefore
holds at the beginning of the (k + 1)-th iteration.

Theorem 2. Let {γ∗
1 , γ

∗
2 , · · · , γ∗

K} denote a set of K-best
joint sequences in G1, let S = {γ1, γ2, · · · , γK} denote the
set of joint sequences returned by AK*, then cost(γk) ≤
α cost(γ∗

k), k = 1, 2, · · · ,K (i.e., AK* solves the Approxi-
mated mHPP defined in Problem 4).

Proof. We prove by induction. Base case: during the initial-
ization, AK* computes γ1 based on G1 without any edge
constraints (i.e., Ie = ∅, oe = NULL). γ1 is added to the
solution set S on Line 7 in Alg. 1 and cost(γ1) ≤ α cost(γ∗

1).
Assumption: in the k-th iteration, after AK* finishes Line 7

in Alg. 1, this theorem holds, i.e., S contains {γ1, γ2, · · · , γk}
and cost(γj) ≤ α cost(γ∗

j ), j = 1, 2, · · · , k.
Induction: at the beginning of the (k+1)-th iteration (before

Line 6), by Lemma 4, we know that (
⋃

Rj∈OPEN D(Rj)) ∪
{γ1, γ2, · · · , γk} = D(R1), which means every possible joint
sequence in D(R1) must be either in (

⋃
Rj∈OPEN D(Rj)) or

in S. Since the size of set {γ∗
1 , γ

∗
2 , · · · , γ∗

k+1} is larger than
the size of S = {γ1, γ2, · · · , γk} by one, there must be at least
one joint sequence γ∗

j , j ≤ k+1 in {γ∗
1 , γ

∗
2 , · · · , γ∗

k+1} that is
not contained in S but is contained in (

⋃
Rj∈OPEN D(Rj)).

Without losing generality, let D(Rj), Rj ∈ OPEN denote
the set that contains γ∗

j . Then, by Lemma 3, cost(γ(Rj)) ≤
α cost(γ∗

j ). Since the popped node Rk+1 from OPEN on
Line 6 is the minimum cost node in OPEN, cost(Rk+1) =
cost(γ(Rk+1)) ≤ cost(γ(Rj)) ≤ α cost(γ∗

j ) ≤ α cost(γ∗
k+1).



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 10

Fig. 5. An illustration of the search process in CBSS [8]. CBSS finds a joint
sequence γ∗

1 , ignoring any agent-agent conflicts, and then runs Conflict-Based
Search. Here, the blue and the yellow agent runs into a vertex conflict. To
resolve the conflict, a constraint is created for either the blue or the yellow
agent and a minimum cost path satisfying all constraints for the agent is
replanned. During the conflict resolution, if the cost of the current search
exceeds a threshold value, a next-best joint sequence γ∗

2 is created and the
search continues. CBSS considers multiple joint sequences when needed and
the entire search is organized in a best-first manner.

Therefore, when γ(Rk+1) is added to S on Line 7 in the
(k + 1)-th iteration, this theorem still holds.

Corollary 1. Given a mHPP instance and a positive in-
teger K, the 11/3-AK* computes a set of K joint se-
quence {γ1, γ2, · · · , γK} and cost(γ∗

k) ≤ 11
3 cost(γ∗

k), k =
1, 2, · · · ,K, where γ∗

k is a k-th best solution for the given
mHPP instance.

Corollary 2. Given a TSP instance and a positive in-
teger K, the Christofides-AK* computes a set of K
tours {γ1, γ2, · · · , γK} and cost(γ∗

k) ≤ 3
2 cost(γ

∗
k), k =

1, 2, · · · ,K, where γ∗
k is a k-th best solution for the given

TSP instance.

VI. VARIANTS OF CONFLICT-BASED STEINER SEARCH

A. CBSS-A Algorithm

CBSS-A is conceptually visualized in Fig. 5 and shown
in Alg. 5. To solve MCPF, CBSS either creates a new joint
sequence, or plan paths based on the existing joint sequences.
Let P = (π, g,Ω) denote a C-node (C stands for CBSS),
which differs from the “node” in AK* in Sec. IV-C. Each C-
node consists of three elements:

• π = (π1, π2, . . . , πN ) is a joint path that connects the
vio ∈ Vo and vid ∈ Vd for each agent i ∈ I .

• g is the scalar cost value of π, i.e., g = g(π) =
Σi∈Ig(π

i).

Algorithm 5 Pseudocode for CBSS-A
INPUT: GW = (V W , EW , cW ), a workspace graph.
OUTPUT: a conflict-free joint path π in GW .

1: G1 = (V1, E1, c1)← CreateTargetGraph(GW )
2: γ∗

1 ← AK* (G1,fA,K = 1)
3: Ω← ∅, π, g ← LowLevelSearch (γ∗

1 , Ω)
4: Add Proot,1 = (π, g,Ω) to OPENC

5: while OPENC ̸= ∅ do
6: P = (π, g,Ω)← OPENC .pop()
7: P ′ = (π′, g′,Ω′)← CheckNewRoot(P , OPENC )
8: cft← DetectConflict(π′)
9: if cft = NULL then return π′

10: Ω← GenerateConstraints(cft)
11: for all ωi ∈ Ω do
12: Ω′′ = Ω′ ∪ {ωi}
13: π′′, g′′ ← LowLevelSearch (γ(P ′), Ω′′) ▷ only plan for

agent i.
14: Add P ′′ = (π′′, g′′,Ω′′) to OPENC

15: return failure

• Ω is a set of collision constraints. A collision constraint
is of form (i, v, t) (or (i, e, t)), which indicates agent i is
prevented from occupying vertex v (or traversing edge e)
at time t.

1) CBSS-A Overview: Both CBSS-A and CBSS are
based on Conflict-Based Search (CBS) [11], a two-level search
algorithm that includes a low-level search and a high-level
search. The low-level search (LowLevelSearch ) typically runs
A* to find a minimum cost path for an agent based on a target
sequence γi while satisfying a set of constraints on agent i. A
path πi follows a target sequence γi if πi visits all targets in
the same order as in γi. A joint path π follows a joint sequence
γ if every path πi ∈ π follows γi ∈ γ.

In Alg. 5, to initialize (Lines 1-4), CBSS-A first creates a
complete undirected metric graph G1, which will be used as
the input to AK*. CBSS-A then invokes AK* with K = 1
to compute γ1, the first joint sequence. Afterwards, CBSS-A
calls LowLevelSearch with an empty constraint set to plan a
minimum cost path for each agent i ∈ I by following γi

1 ∈ γ1,
ignoring any possible conflict between agents. Finally, CBSS-
A creates an initial C-node Proot,1 and add it to OPENC , a
priority queue of C-nodes where C-nodes are prioritized based
on their g-values from the minimum to the maximum. CBSS-
A resolves conflicts by creating a constraint-tree (CT) for each
joint sequence, and CBSS-A may create multiple CTs. This
initial C-node is denoted as Proot,1, which is the root C-node
of the first CT.

CBSS-A conducts the high-level search by first extract-
ing a minimum cost C-node P = (π, g,Ω) from OPEN
(Line 6). CBSS-A then determines whether a new root C-
node should be created (Line 7) by calling CheckNewRoot,
which is elaborated in the next paragraph. The returned C-
node P ′ = (π′, g′,Ω′) is either the input C-node P or a new
root C-node Proot,2 (or Proot,3, · · · ). CBSS-A then checks P ′

for a conflict (i, j, v, t) (or (i, j, e, t), which is handled in a
similar way and is thus omitted hereafter). If no conflict is
detected, π′ is returned and CBSS-A terminates. Otherwise,
two constraints ωi = (i, v, t) and ωj = (j, v, t) are created
based on the conflict (i, j, v, t) (Line 10), which means either



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 11

Algorithm 6 Pseudocode for CheckNewRoot
INPUT: P = (π, g,Ω), OPENC

OUTPUT: a C-node
1: r ← number of root C-nodes generated.
2: costγ,max ← max{cost(γ1), cost(γ2), · · · , cost(γr)}
3: if g ≤ (1 + ϵ)costγ,max then
4: return P
5: γ∗

r+1 ← AK* (G1, fA,K = r + 1)
6: π′, g′ ← LowLevelSearch (γ∗

r+1, ∅)
7: Proot,r+1 = (π′, g′, ∅)
8: if g ≤ g′ then
9: Add Proot,r+1 to OPENC

10: return P
11: Add P to OPENC

12: return Proot,r+1

agent i or agent j is not allowed to occupy vertex v at time
t in GW . For each ωi′ ∈ {ωi, ωj}, CBSS-A then creates a
new corresponding constraint set Ω′′, which is the union of
Ω′ and {ωi′}, and invokes the LowLevelSearch (Line 13) to
find a minimum cost path πi′ for agent i′ that satisfies Ω′′

while following the target sequence γi′ ∈ γ(P ′) where γ(P ′)
denotes the joint sequence of the root node of the CT that
contains P ′. A new joint path π′′ is created based on πi′

where all other agents’ paths in π′′ remain the same as in π′.
A new C-node P ′′ = (π′′, g(π′′),Ω′′) is created and added to
OPENC (Line 14) for future search.

2) Check for New Root: As shown in Alg. 6, Check-
NewRoot takes a C-node P = (π, g,Ω) and OPENC as
input and determines whether a new root C-node needs to
be generated. CheckNewRoot first finds the maximum cost
costγ,max of all joint sequences that have been computed so
far, and compares g against (1 + ϵ)costγ,max. Here, ϵ ≥ 0
is a user-defined hyper-parameter that tunes the behaviour of
the search. When ϵ increases, CBSS-A tends to deter the
generation of the next joint sequence during conflict resolution.
If g ≤ (1 + ϵ)costγ,max, the C-node P is returned for
expansion. Otherwise, a new joint sequence is generated by
calling AK* with K = r+1 and a new root C-node Proot,r+1

is created correspondingly. Then, the cheaper node among P
and Proot,r+1 is returned while the other is added to OPENC .

3) Relationship to CBSS: CBSS-A is similar to CBSS [8]
with the following two differences. First, while CBSS uses an
exact algorithm to compute K-best joint sequences, CBSS-A
uses AK* to compute approximated K-best joint sequences.
Second, in CBSS, the generated K-best joint sequences have
non-decreasing costs (as defined in Problem 3) and CBSS can
always use cost(γr) as costγ,max for comparison on Line 3 in
Alg. 6. In CBSS-A, the computed approximated K-best joint
sequences are not guaranteed to have non-decreasing costs.
CheckNewRoot needs to use the maximum cost of the joint
sequence among {γ1, γ2, · · · , γr} for comparison.

B. CBSS-AF Algorithm

CBSS-AF differs from the CBSS-A by employing focal
search [25] in both the high-level and the low-level search as
in ECBS [17], which is summarized as follows.

1) A Review of Focal Search: Focal search [25] is an A*-
like search algorithm that finds bounded sub-optimal solutions.
While A* uses an OPEN list to store and prioritize search
nodes for future expansion based on their f -values, focal
search further introduces another list called FOCAL. Let fmin

denote the minimum f -value of search nodes in OPEN at any
time during the search, FOCAL contains search nodes n in
OPEN that have f(n) ≤ (1 + w)fmin with w ∈ [0,∞] being
a weight parameter that is defined by the users. The FOCAL
list then prioritizes the contained search nodes based on a
different value d(n) which estimates the “distance-to-go”, i.e.,
the number of hops from n to the goal. Since fmin is a lower
bound on the optimal solution cost g∗, focal search guarantees
finding a solution whose cost is at most (1 + w)g∗.

2) Low-Level Search: When the low-level search is called
for an agent i with a constraint set Ω in a C-node P =
(π, g,Ω), the low-level search finds a bounded sub-optimal
path for agent i while satisfying all constraints in Ω that
is related to i by using the focal search. This focal search
defines d as the number of conflicts with respect to the paths
of all other agents in π, and seeks to minimize the number
of conflicts with other agents’ paths. When a solution path
πi is found, the low-level search returns both πi and f i

min,
i.e., the minimum f -value over all nodes in OPEN when
the search terminates, which is a lower bound on the cost
of an optimal solution path g∗i for agent i in that low-level
search. It is guaranteed that the cost of the returned path
satisfies: g(πi) ≤ (1 + w)f i

min ≤ (1 + w)g∗i. The focal
search minimizes the conflicts to be resolved by the high-level
search and therefore expedites the entire computation, rather
than speeding up the low-level search itself.

3) High-Level Search: The high-level search employs an-
other focal search to expedite the computation by selecting
a bounded sub-optimal C-node with the fewest number of
conflicts for expansion in every iteration. Specifically, the
high-level search stores C-nodes P in OPEN and prioritizes
them based on a lower bound value lb(P ) :=

∑
i∈I f

i
min(P )

where f i
min(P ) indicates the f i

min returned by the low-level
search for agent i when generating the C-node P . The FOCAL
list then stores C-nodes P = (π, g,Ω) in OPEN whose g-value
satisfies lb(P ) ≤ g ≤ (1+w)lb(P ), and prioritizes these nodes
P based on the number of conflicts in π from the minimum
to the maximum. Note that the number of conflicts indicates
the “distance-to-go” of the high-level search. Let γ(P ) denote
the joint sequence that the joint path π in P follows, and
let π∗

γ(P ) indicates the minimum cost conflict-free joint path
that follows γ(P ). Since the paths returned by the low-level
search is bounded sub-optimal for each agent, for a C-node
P = (π, g,Ω), we know that lb(P ) ≤ g(π) ≤ (1+w)lb(P ) ≤
(1 +w)g(π∗

γ(P )). Therefore, every node in the FOCAL list is
bounded sub-optimal, and the cost of the solution joint path
returned is at most (1 + w)g(π∗

γ(P )).

C. Bounded Sub-Optimal Joint Path

Let α denote the approximation ratio provided by the ap-
proximation algorithm used in AK*. Let ϵ denote the parameter
that defers the generation of the next-best joint target sequence.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 12

Let w denote the weight parameter of the FOCAL list in
CBSS-AF.

Theorem 3. For a solvable MCPF instance, let π∗ denote a
minimum cost conflict-free joint path of this MCPF instance.
Then, the joint path π returned by CBSS-A is guaranteed to
have a cost g(π) ≤ α(1 + ϵ)g(π∗).

The same proof in [8] can be applied here and we only
summarize the main idea. Same as CBSS, CBSS-A conducts
search along two directions: CBSS-A either computes a new
joint sequences, or resolving conflicts along joint paths that
follow the generated joint sequences. By Theorem 2, the
computed new joint sequence γr+1 is bounded sub-optimal
with respect to a (r + 1)-th best joint sequence γ∗

r+1 at any
time during the search. For conflict resolution, a CT is created
for each computed joint sequence, and C-nodes in CT that
are expanded have non-decreasing costs. The entire search
is conducted in a best-first manner by always extracting the
cheapest C-node from OPEN, and the first conflict-free joint
path found is thus guaranteed to be bounded sub-optimal.
For unsolvable instance, both CBSS and CBSS-A cannot
terminate in finite time since the underlying CBS search [11]
cannot terminate in finite time.

Corollary 3. When using 11/3-AK* to implement AK* in
CBSS-A, for a solvable MCPF instance, the computed
conflict-free joint path π by CBSS-A has a cost g(π) ≤
11
3 (1 + ϵ)g(π∗)

Theorem 4. For a solvable MCPF instance, let π∗ denote a
minimum cost conflict-free joint path of this MCPF instance.
Then, the joint path π returned by CBSS-AF is guaranteed
to have a cost g(π) ≤ α(1 + ϵ)(1 + w)g(π∗).

VII. EXPERIMENTAL RESULTS

We implement AK*, CBSS-A, CBSS-AF and the baselines
in Python. When implementing AK*, we use the graph data
structure and algorithms (e.g. minimum spanning tree) in
NetworkX, a popular Python package. We run all tests on a
laptop with an Intel Core i7-11800H CPU and 16GB RAM.

A. Experimental Results for AK*
We use a random 32x32 four-neighbor grid (Fig. 6). We

create instances by (i) randomly sampling N initial vertices
Vo, N goal vertices Vd and M target vertices Vt in the grid,
(ii) finding the shortest path between each pair of vertices
(u, v), u, v ∈ Vo ∪ Vt ∪ Vd, and (iii) using the path length as
the edge cost c(u, v). The assignment constraints are: each
goal vertex vd ∈ Vd is assigned to a unique agent (i.e.,
fA(vd) = {i}, i ∈ I), and all targets vt ∈ Vt are anonymous
(i.e, fA(vt) = I). The resulting target graph G1 is the input
graph to 11/3-AK*, and K = 10 for all tests. We generate
25 instances for each combination of N ∈ {1, 2, 5, 10} and
M ∈ {10, 20, 30, 40, 50}. We implement a transformation
algorithm (TFA) for mHPP [8], [13] as a baseline. This TFA
first transforms an mHPP to a single-agent asymmetric TSP,
then invokes LKH 2.0.9, a solver that can handle asymmetric
TSP, to obtain a tour τ to the asymmetric TSP, and finally

un-transforms the tour τ into a joint sequence γ. TFA ensures
that when τ is a minimum cost tour for the asymmetric TSP,
then the corresponding γ is a minimum cost joint sequence
for mHPP. We use TFA to compute γ∗

1 , an optimal4 solution
to mHPP and use 11/3-AK* to compute approximated K-best
(K = 10) joint sequences {γ1, γ2, · · · , γ10}.

1) Solution Costs: For each instance, let costavg denote the
average of {cost(γk), k = 1, 2, · · · , 10} and define the cost
ratio as CR := costavg/cost(γ

∗
1). We report the minimum,

median and maximum of CR over all instances for each
combination of N,M in Fig. 6(a) using the black error bars
against the left vertical axis. As shown in Fig. 6(a), CR is
always less than 2 in our tests, and is often less than 1.5, which
means 11/3-AK* can often compute solutions that are closer
to the optimum than the sub-optimality bound 11/3 (≈ 3.67).

2) Runtime: For each instance, let RTTFA denote the run-
time of TFA to compute γ∗

1 and let RTAK denote the runtime
of 11/3-AK* to compute γ1. Let RR := RTAK/RTTFA

denote the runtime ratio, and we report the minimum, median
and maximum of RR over all instances for each combination
of N,M in Fig. 6(a) using the red error bars against the
right vertical axis. As shown in Fig. 6(a), in our tests, when
N,M are small, RR is close to 1, which means 11/3-AK*
does not have runtime advantage in comparison with TFA. As
N,M increases, RR decreases obviously, which means 11/3-
AK* runs much faster than TFA and can handle more agents
and more targets in general. For example, when N = 10 and
M = 50, RR is less than 10−2, which means 11/3-AK* takes
less than 1% of the runtime required by TFA to compute γ1.

3) Runtime for SPPFP: SPPFP-Solve is an important pro-
cedure in 11/3-AK*. We report the average runtime per in-
stance (in seconds) of both the entire 11/3-AK* and of the pro-
cedure SPPFP-Solve in 11/3-AK*. Here, we run an additional
set of tests with N = 20 and M ∈ {40, 80, 120, 160, 200} for
11/3-AK* to verify its runtime when the number of agents and
targets further increases. As shown in Fig. 6(b), on average,
11/3-AK* takes less than a second to handle instances with
N ≤ 10 and M ≤ 50 and takes up to around 50 seconds to
handle instances with N = 20 and M = 200. In these tests,
we observe that procedure SPPFP takes from 23% to 48% of
the total runtime of 11/3-AK*.

To summarize, 11/3-AK* often runs much faster than the
baseline TFA when computing a solution to mHPP, especially
when N,M are large. The solutions computed by 11/3-
AK* are bounded sub-optimal and can be closer to the true
optimum than the theoretic sub-optimality bound. Finally, we
acknowledge that our implementation can be further expedited
by optimizing the software or using C/C++ instead of Python.

B. Experimental Results for CBSS-A and CBSS-AF

We then test CBSS-A and compare it against CBSS. We
fix the the number of agents N = 10. We use ϵ = 0.01
for both CBSS-A and CBSS. Additionally, we use CBSS
with ϵ = 0.5 as an additional baseline for comparison. The

4LKH is a heuristic algorithm for TSP and does not guarantee solution
optimality. In practice, LKH often computes an optimal solution.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 13

Fig. 6. Experimental results for K-best mHPP. (a) shows the minimum, median and maximum of cost ratios and runtime ratios over 25 instances for each
M and N . (b) shows the average runtime in seconds of both the entire 11/3-AK* and of the procedure SPPFP-Solve in 11/3-AK*.

Fig. 7. Experimental results of success rates. The curves are against show the
success rates of the algorithms. Our CBSS-A achieves higher success rates
than the baselines.

selection of ϵ = 0.5 is based on the observation that CBSS-
A often computes up to 50% more expensive solutions than
CBSS in practice (which will be discussed in Sec. VII-B2).
We use four different grid maps of various sizes from [9].
For each M ∈ {10, 20, 30, · · · , 80}, there are 25 instances.
The assignment constraints are: each destination vd ∈ Vd is
assigned to a unique agent (i.e., fA(vd) = {i}, i ∈ I), and all
targets vt ∈ Vt are anonymous (i.e, fA(vt) = I). We set a
runtime limit of 60 seconds for each instance.

Fig. 8. Experimental results of runtime. The bars show the average total
runtime and the average runtime for compute joint sequences (i.e., target
sequencing). CBSS-A reduces the runtime for target sequencing.

1) Success Rates and Runtime for Sequencing: As shown
by the red, black and green curves in Fig. 7, as M increases,
CBSS-A achieves higher success rates than CBSS ϵ = 0.01
and ϵ = 0.5. Furthermore, the black and red bars in Fig. 8
show the average total runtime and the average runtime
for target sequencing over the succeeded instances of each
algorithm (i.e., instances that the algorithm successfully solves
within the runtime limit). We omit the bar plot for CBSS



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 14

Fig. 9. Solution cost comparison between CBSS-A and CBSS. The solution
computed by CBSS-A are often 10%-50% more expensive than the solutions
computed by CBSS.

Fig. 10. Success rates of algorithms with N = 20, 30 in Random 32x32 map.
Our CBSS-A and CBSS-AF have higher success rates than the baselines.

ϵ = 0.5 to make the figure readable, and the bar plot for CBSS
ϵ = 0.5 is similar to the one for CBSS ϵ = 0.01. CBSS-A
requires less runtime than CBSS for solving mHPP to find
joint sequences. As M increases (e.g. when M = 80), CBSS
fails to compute the first joint sequence within the runtime
limit. In contrast, CBSS-A can still quickly compute joint
sequences and plan conflict-free paths. The reason is CBSS-A
employs AK* to bypass the computational challenge in target
sequencing when M is large. Additionally, we observe from
Fig. 7(b) that, as M increases, the success rate of CBSS-A
sometimes increases. A possible reason is that all the targets
are anonymous and having more targets can change the paths
of the agents. The changed paths may lead to fewer conflicts,
which may speed up the overall search.

2) Solution Costs: For each instance, let costCBSS and
costCBSS-A denote the solution cost computed by the respective
algorithm. Let costCBSS-A/costCBSS be the cost ratio. To
compare the solution quality, we report costCBSS, costCBSS-A
and the cost ratio for each instance that are successfully solved
within the runtime limit by both CBSS-A and CBSS. As
shown in Fig. 9, costCBSS-A is often up to 50% more expensive
than costCBSS.

3) Varying Number of Agents: We test our CBSS-A (ϵ =
0.01), CBSS-AF (ϵ = 0.01, w = 0.1), the existing CBSS and
a greedy baseline in the random 32x32 map with N = 20 and
N = 30, and the results are shown in Fig. 10. This greedy

Fig. 11. Gazebo simulation. (a) shows an oblique view of the simulated
warehouse. (b) shows both a top-down view of the simulated region and
the ROSBot model used in the simulation. (c) shows a four-neighbor grid
representation of the simulated region. (d) explains the markers used in (c).

baseline first assigns the targets to the nearest agent in a greedy
manner, then uses LKH to find the optimal visiting order for
each agent, and finally uses CBS to find conflict-free paths.
As N increases, the success rates of all algorithms decrease.
The algorithms spend more time in conflict resolution between
agents. CBSS-AF achieves higher success rates than all other
algorithms, and the reason is the employment of focal search
in CBSS-AF, which helps CBSS-AF resolve conflicts more
efficiently than the other algorithms. For example, when N =
30,M = 20, 30, 40, CBSS-AF often triples the success rates
of other algorithms.

To summarize, CBSS-A trades off solution quality for
runtime efficiency. CBSS-A can reduce the runtime for target
sequencing due to the usage of 11/3-AK*, and can achieve
higher success rates than CBSS in general. The solution cost
computed by CBSS-A is often up to 50% more expensive
than the solution cost computed by CBSS. CBSS-AF further
improves the success rates of CBSS-A especially when the
number of agents is large.

C. Gazebo Simulation

We demonstrate the usage of our planner in a simulated
warehouse in Gazebo/ROS, where the planned paths are
executed by differential drive robots to visit a set of target
locations. Fig. 11(a) and 11(b) show an oblique view and a
top-down view of the simulated warehouse, where the black
dashed lines mark the region that is used in the simulation. The
region is of size 30m×30m, containing ten agents (N = 10)



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 15

and 80 targets (M = 80). There are 10 starts, 10 goals
and 80 targets, in the corresponding target graph. We set the
assignment constraints as follows: each goal is assigned to
a unique agent; 40 targets are evenly assigned to all agents;
the remaining 40 targets are anonymous. Fig. 11(c) shows an
occupancy grid representation of the region and the planned
paths of the agents. The grid is of size 30×30, where each cell
is of size 1m×1m. This simulation uses the ROSBot model,
a differential drive robot. The uncertainty and disturbance in
robot motion is simulated using the default setting in Gazebo
but is not considered by the planner. We execute the planned
paths of the agents in a centralized manner where each agent
is required to follow the waypoints in its path while respecting
a shared global clock. The intelligent and robust execution of
a joint path is itself a research topic [55] and is beyond the
scope of this paper. Our multi-media attachment provides a
video of this simulation.

VIII. CONCLUSION AND FUTURE WORK

This paper considers K-best TSPs. First, we develop a new
partition method AK* that is able to convert an approximation
algorithms for TSPs to its K-best counterpart, while preserving
the solution sub-optimality bounds and the polynomial runtime
complexity. Our experimental results verify the fast running
speed of AK* and the bounded sub-optimality of the computed
solution. Second, based on AK*, we develop CBSS-A and
CBSS-AF, algorithms that can find bounded sub-optimal
collision-free paths for MCPF problems. CBSS-A and CBSS-
AF are able to bypass the challenge in target sequencing with
a large number of targets in MCPF problems, and CBSS-AF
is able to handle more agents than CBSS-A and CBSS by
leveraging the focal search technique.

There are several future work directions. First, one can
consider combining AK* with heuristic algorithms for TSPs by
first using AK* to find a set of approximated K-best solutions,
and then improving these K-best solutions via local search.
Heuristic algorithms can typically compute high-quality so-
lutions in practice but lacks worst-case guarantees. Combin-
ing the approximation method such as AK* with heuristic
algorithms may obtain both theoretic sub-optimality bounds
and high-quality solutions in practice. Second, the developed
CBSS-AF shows that the existing conflict resolution tech-
niques for MAPF can be leveraged to improve the scalability
of CBSS when the number of agents increases in MCPF.
Other techniques in MAPF such as [18] can be potentially
combined with CBSS and is worthwhile further investigation.
We note from our simulation that, the disturbance in robot
motion may affect the execution of the planned path. To handle
the disturbance, one can use a similar approach in [55] to
ensure collision-free execution of the planned paths, which is
part of our future work.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 2120219 and 2120529.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of
cooperative, autonomous vehicles in warehouses,” AI magazine, vol. 29,
no. 1, pp. 9–9, 2008.

[2] J. Keller, D. Thakur, M. Likhachev, J. Gallier, and V. Kumar, “Coordi-
nated path planning for fixed-wing uas conducting persistent surveillance
missions,” IEEE Transactions on Automation Science and Engineering,
vol. 14, no. 1, pp. 17–24, 2016.

[3] M. Schneier, M. Schneier, and R. Bostelman, Literature review of mobile
robots for manufacturing. US Department of Commerce, National
Institute of Standards and Technology . . . , 2015.

[4] K. Brown, O. Peltzer, M. A. Sehr, M. Schwager, and M. J. Kochenderfer,
“Optimal sequential task assignment and path finding for multi-agent
robotic assembly planning,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 441–447.

[5] C. Liu and A. Kroll, “A centralized multi-robot task allocation for indus-
trial plant inspection by using a* and genetic algorithms,” in Artificial
Intelligence and Soft Computing: 11th International Conference, ICAISC
2012, Zakopane, Poland, April 29-May 3, 2012, Proceedings, Part II 11.
Springer, 2012, pp. 466–474.

[6] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Traveling
Salesman Problem: A Computational Study (Princeton Series in Applied
Mathematics). Princeton, NJ, USA: Princeton University Press, 2007.

[7] J. Yu and S. M. LaValle, “Structure and intractability of optimal multi-
robot path planning on graphs,” in Twenty-Seventh AAAI Conference on
Artificial Intelligence, 2013.

[8] Z. Ren, S. Rathinam, and H. Choset, “CBSS: A new approach for
multiagent combinatorial path finding,” IEEE Transactions on Robotics,
pp. 1–15, 2023.

[9] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. Kumar et al., “Multi-agent pathfinding: Def-
initions, variants, and benchmarks,” arXiv preprint arXiv:1906.08291,
2019.

[10] G. Wagner and H. Choset, “Subdimensional expansion for multirobot
path planning,” Artificial Intelligence, vol. 219, pp. 1–24, 2015.

[11] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[12] T. Bektas, “The multiple traveling salesman problem: an overview of
formulations and solution procedures,” omega, vol. 34, no. 3, pp. 209–
219, 2006.

[13] P. Oberlin, S. Rathinam, and S. Darbha, “Today’s traveling salesman
problem,” IEEE robotics & automation magazine, vol. 17, no. 4, pp.
70–77, 2010.

[14] K. Helsgaun, “General k-opt submoves for the lin–kernighan tsp heuris-
tic,” Mathematical Programming Computation, vol. 1, no. 2, pp. 119–
163, 2009.

[15] E. S. van der Poort, M. Libura, G. Sierksma, and J. A. van der
Veen, “Solving the k-best traveling salesman problem,” Computers &
Operations Research, vol. 26, no. 4, pp. 409–425, 1999.

[16] H. W. Hamacher and M. Queyranne, “K best solutions to combinatorial
optimization problems,” Annals of Operations Research, vol. 4, no. 1,
pp. 123–143, 1985.

[17] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants of the
conflict-based search algorithm for the multi-agent pathfinding problem,”
in Seventh Annual Symposium on Combinatorial Search, 2014.

[18] J. Li, D. Harabor, P. J. Stuckey, H. Ma, G. Gange, and S. Koenig,
“Pairwise symmetry reasoning for multi-agent path finding search,”
Artificial Intelligence, vol. 301, p. 103574, 2021.

[19] S.-H. Chan, J. Li, G. Gange, D. Harabor, P. J. Stuckey, and S. Koenig,
“Flex distribution for bounded-suboptimal multi-agent path finding,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 9, 2022, pp. 9313–9322.

[20] N. Christofides, “Worst-case analysis of a new heuristic for the travelling
salesman problem,” Carnegie-Mellon Univ Pittsburgh Pa Management
Sciences Research Group, Tech. Rep., 1976.

[21] J. Hoogeveen, “Analysis of christofides’ heuristic: Some paths are more
difficult than cycles,” Operations Research Letters, vol. 10, no. 5, pp.
291–295, 1991.

[22] S. Yadlapalli, J. Bae, S. Rathinam, and S. Darbha, “Approximation al-
gorithms for a heterogeneous multiple depot hamiltonian path problem,”
in Proceedings of the 2011 American Control Conference. IEEE, 2011,
pp. 2789–2794.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 16

[23] G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha, “Min–max
tree covers of graphs,” Operations Research Letters, vol. 32, no. 4, pp.
309–315, 2004.

[24] G. Laporte, “The traveling salesman problem: An overview of exact and
approximate algorithms,” European Journal of Operational Research,
vol. 59, no. 2, pp. 231–247, 1992.

[25] J. Pearl and J. H. Kim, “Studies in semi-admissible heuristics,” IEEE
transactions on pattern analysis and machine intelligence, no. 4, pp.
392–399, 1982.

[26] R. Beard, T. McLain, M. Goodrich, and E. Anderson, “Coordinated
target assignment and intercept for unmanned air vehicles,” IEEE
Transactions on Robotics and Automation, vol. 18, no. 6, pp. 911–922,
2002.

[27] P. Sujit and D. Ghose, “Search using multiple uavs with flight time
constraints,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 40, no. 2, pp. 491–509, 2004.

[28] L. Trevisan, “Combinatorial optimization: exact and approximate algo-
rithms,” Standford University, 2011.

[29] S. Sahni and T. Gonzalez, “P-complete approximation problems,” Jour-
nal of the ACM (JACM), vol. 23, no. 3, pp. 555–565, 1976.

[30] W. Malik, S. Rathinam, and S. Darbha, “An approximation algorithm
for a symmetric generalized multiple depot, multiple travelling salesman
problem,” Operations Research Letters, vol. 35, pp. 747–753, 2007.

[31] K. Sundar and S. Rathinam, “Generalized multiple depot traveling
salesmen problem-polyhedral study and exact algorithm,” Computers &
Operations Research, vol. 70, pp. 39–55, 2016.

[32] J. Li, M. Zhou, Q. Sun, X. Dai, and X. Yu, “Colored traveling salesman
problem,” IEEE transactions on cybernetics, vol. 45, no. 11, pp. 2390–
2401, 2014.

[33] T. S. Standley, “Finding optimal solutions to cooperative pathfinding
problems,” in Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

[34] D. Silver, “Cooperative pathfinding.” 01 2005, pp. 117–122.
[35] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel, and

E. Shimony, “Icbs: improved conflict-based search algorithm for multi-
agent pathfinding,” in Twenty-Fourth International Joint Conference on
Artificial Intelligence, 2015.

[36] L. Cohen, T. Uras, T. Kumar, and S. Koenig, “Optimal and bounded-
suboptimal multi-agent motion planning,” in Proceedings of the Inter-
national Symposium on Combinatorial Search, vol. 10, no. 1, 2019, pp.
44–51.

[37] Z. Ren, S. Rathinam, and H. Choset, “Loosely synchronized search for
multi-agent path finding with asynchronous actions,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2021.

[38] ——, “A conflict-based search framework for multiobjective multiagent
path finding,” IEEE Transactions on Automation Science and Engineer-
ing, pp. 1–13, 2022.

[39] W. Hönig, S. Kiesel, A. Tinka, J. Durham, and N. Ayanian, “Conflict-
based search with optimal task assignment,” in Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent
Systems, 2018.

[40] H. Ma and S. Koenig, “Optimal target assignment and path finding for
teams of agents,” in Proceedings of the 2016 International Conference
on Autonomous Agents & Multiagent Systems, 2016, pp. 1144–1152.

[41] V. Nguyen, P. Obermeier, T. C. Son, T. Schaub, and W. Yeoh, “General-
ized target assignment and path finding using answer set programming,”
in Twelfth Annual Symposium on Combinatorial Search, 2019.

[42] P. Surynek, “Multi-goal multi-agent path finding via decoupled and
integrated goal vertex ordering,” in Proceedings of the International
Symposium on Combinatorial Search, vol. 12, no. 1, 2021, pp. 197–
199.

[43] H. Zhang, J. Chen, J. Li, B. C. Williams, and S. Koenig, “Multi-agent
path finding for precedence-constrained goal sequences,” in Proceed-
ings of the 21st International Conference on Autonomous Agents and
Multiagent Systems, 2022, pp. 1464–1472.

[44] X. Zhong, J. Li, S. Koenig, and H. Ma, “Optimal and bounded-
suboptimal multi-goal task assignment and path finding,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 10 731–10 737.

[45] Z. Ren, S. Rathinam, and H. Choset, “Ms*: A new exact algorithm
for multi-agent simultaneous multi-goal sequencing and path finding,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021.

[46] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig, “Lifelong multi-agent
path finding for online pickup and delivery tasks,” in Conference on
Autonomous Agents & Multiagent Systems, 2017.

[47] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-
agent pickup and delivery,” in 2019 AAMAS, 2019, pp. 1152–1160.

[48] Q. Xu, J. Li, S. Koenig, and H. Ma, “Multi-goal multi-agent pickup
and delivery,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2022, pp. 9964–9971.

[49] C. Henkel, J. Abbenseth, and M. Toussaint, “An optimal algorithm to
solve the combined task allocation and path finding problem,” arXiv
preprint arXiv:1907.10360, 2019.

[50] Z. Ren, A. Nandy, S. Rathinam, and H. Choset, “Dms*: Towards
minimizing makespan for multi-agent combinatorial path finding,” IEEE
Robotics and Automation Letters, vol. 9, no. 9, pp. 7987–7994, 2024.

[51] Y. Zhang, H. Wang, and Z. Ren, “A short summary of multi-agent
combinatorial path finding with heterogeneous task duration (extended
abstract),” in Seventeenth International Symposium on Combinatorial
Search, SOCS 2024, Kananaskis, Alberta, Canada, June 6-8, 2024,
A. Felner and J. Li, Eds. AAAI Press, 2024, pp. 301–302.

[52] J. Li, X. Meng, M. Zhou, and X. Dai, “A two-stage approach to path
planning and collision avoidance of multibridge machining systems,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47,
no. 7, pp. 1039–1049, 2016.

[53] D. Villeneuve and G. Desaulniers, “The shortest path problem with
forbidden paths,” European Journal of Operational Research, vol. 165,
no. 1, pp. 97–107, 2005.

[54] O. J. Smith and M. W. Savelsbergh, “A note on shortest path problems
with forbidden paths,” Networks, vol. 63, no. 3, pp. 239–242, 2014.

[55] W. Hönig, T. S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian, and
S. Koenig, “Multi-agent path finding with kinematic constraints,” in
Twenty-Sixth International Conference on Automated Planning and
Scheduling, 2016.

Zhongqiang (Richard) Ren (Member, IEEE) re-
ceived the dual B.E. degree from Tongji University,
Shanghai, China, and FH Aachen University of
Applied Sciences, Aachen, Germany, and the M.S.
and Ph.D. degrees from Carnegie Mellon University,
Pittsburgh, PA, USA. He is currently an assistant
Professor at the UM-SJTU Joint Institute, Shanghai
Jiao Tong University, Shanghai, China.

Sivakumar Rathinam (Senior Member, IEEE) re-
ceived the Ph.D. degree from the University of
California at Berkeley in 2007. He is currently a
Professor with the Mechanical Engineering Depart-
ment, Texas A&M University. His research interests
include motion planning and control of autonomous
vehicles, collaborative decision making, combinato-
rial optimization, vision-based control, and air traffic
control.

Howie Choset (Fellow, IEEE) received the under-
graduate degrees in computer science and business
from the University of Pennsylvania, Philadelphia,
PA, USA, and the M.S. and Ph.D. degrees in me-
chanical engineering from Caltech, Pasadena, CA,
USA. He is a Professor in the Robotics Institute,
Carnegie Mellon, Pittsburgh, PA, USA.


	Introduction
	Related Work
	Traveling Salesman Problems
	Multi-Agent Path Finding and Target Sequencing

	Problem Definitions
	Multi-Agent Combinatorial Path Finding Problem
	Target Sequencing Problems

	Method
	Restricted Problems
	Two New Techniques in AK*
	Technical Overview of AK*
	Node
	Initialization
	Iteration
	Edges Must Be Included
	Edges Must Be Excluded
	Basic Graph Completion
	Iterative Graph Completion (IGC)
	New Node Generation

	Handle The Edge That Must Be Excluded
	Forbidden Paths Reconstruction
	Minimum Cost Path Subject to Forbidden Paths

	Handle The Edges That Must Be Included
	New Graph Creation
	Approximation Algorithm
	Inclusion of Edges

	Solution Reconstruction
	Examples

	Analysis
	Variants of Conflict-Based Steiner Search
	CBSS-A Algorithm
	CBSS-A Overview
	Check for New Root
	Relationship to CBSS

	CBSS-AF Algorithm
	A Review of Focal Search
	Low-Level Search
	High-Level Search

	Bounded Sub-Optimal Joint Path

	Experimental Results
	Experimental Results for AK*
	Solution Costs
	Runtime
	Runtime for SPPFP

	Experimental Results for CBSS-A and CBSS-AF
	Success Rates and Runtime for Sequencing
	Solution Costs
	Varying Number of Agents

	Gazebo Simulation

	Conclusion and Future Work
	References
	Biographies
	Zhongqiang (Richard) Ren
	Sivakumar Rathinam
	Howie Choset


