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Abstract

In 1975, a breakthrough result of L. Valiant showed that parsing context free grammars
can be reduced to Boolean matrix multiplication, resulting in a running time of O(nω) for
parsing where ω ≤ 2.373 is the exponent of fast matrix multiplication, and n is the string
length. Recently, a remarkable result of Abboud, Backers and V. Williams (FOCS 2015)
showed that this is essentially optimal; moreover, a combinatorial o(n3) algorithm is unlikely
to exist for the general parsing problem. Language edit distance is a significant generalization
of the parsing problem, which computes the minimum edit distance of a given string (insertion,
deletion and substitution) to any valid string in the language. Clearly, the lower bound
for parsing rules out any algorithm running in o(nω) time that can return a nontrivial
multiplicative approximation of the language edit distance problem. However, combinatorial
algorithms with cubic running time, or algorithms that use fast matrix multiplication, are
often not desirable in practice.

To break this nω hardness barrier, in this paper we study additive approximation al-
gorithms for language edit distance. We propose a generic technique of amnesic dynamic
programming which, given any high-dimensional dynamic programming problem, selectively
forgets some of the intermediate states. By performing fewer look-ups, this speeds up the
running time at the cost of returning an approximate answer. We believe that this technique
will find widespread applications.

Our main result is an O(n2)-time additive approximation algorithm for computing
language edit distance to an important subclass of context free grammars, known as ultralinear
grammars, using this method of amnesic dynamic programming. Starting with the regular
languages, which can be parsed in linear time, one well-known hierarchy of languages in
increasing order of expressiveness is: linear languages (quadratic parsing time), metalinear
and superlinear languages (quadratic parsing time), ultralinear languages (current parsing
time O(nω)/ O(n3) fast matrix multiplication/combinatorial), and finally the context free
languages. Interestingly, we show that the same conditional lower bound for parsing context
free grammars holds for the class of ultralinear grammars as well – this clearly exhibits the
demarcation where parsing becomes hard. Therefore, no multiplicative approximation in
o(nω) time is possible for the ultralinear language edit distance problem. Finally, we derive
quadratic-time language edit distance algorithms for the linear, metalinear and superlinear
languages, and show matching conditional lower bounds.
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1 Introduction

Developing fast algorithms for dynamic programming (DP) is of paramount interest due to the
universality of DP-based algorithms and their frequent high time complexity. Many techniques
such as the Four-Russians method have been developed in the literature towards this goal
[21, 1, 49]. Unfortunately, their speed-up gains have mostly been restricted to only poly-
logarithmic factors. There are many applications, however, where one can tolerate some
suboptimality. Thus, if we allow for an approximate answer, a major improvement in running
time may be possible. In this paper, we propose one such technique of amnesic dynamic
programming to achieve precisely this.

The technique of DP is motivated by the concept of memoization. It implements a recursive
procedure, but stores the results from each computed subproblem in a table which can be accessed
multiple times, often leading to a dramatic improvement from exponential to polynomial running
time. Still maintaining and accessing the entire DP table can be costly both in terms of time and
space. High-degree of polynomial time and space complexity are therefore common drawbacks
of a DP algorithm.

The idea of amnesic dynamic programming is simple: instead of maintaining the entire DP
table, we selectively forget states of the dynamic programming, therefore computing only a partial
table. When computing a solution for a subproblem, there are therefore less look-ups to do. Such
a notion of amnesic DP has previously been used [46, 17], however, with the motivation of saving
space. For example, Saks and Seshadri obtained an elegant amnesic DP algorithm for computing
distance to monotonicity reducing the space requirement from O(n) to O(logn), n being the
input size [46]. While the best DP algorithm for distance to monotonicity has a running time
of O(n logn), their algorithm runs in time O(n(logn)2). Nonetheless, we believe that amnesic
dynamic programming can be instrumental in developing fast approximation for problems with
higher-dimensional DPs. In this paper, we use the fundamental problem of language edit distance
to showcase the strength of this technique. We design a simple deterministic amnesic DP, and
provide a framework for analysis. Our framework can be utilized to analyze more complex
randomized strategies of forgetting DP states, and can find many more applications.

Language Edit Distance, Hardness of Parsing & an nω barrier. Introduced by Chomsky
in 1956 [Cho59], context-free grammars (CFG) play a fundamental role in the development
of formal language theory [2, 29], compiler optimization [22, 53], natural language processing
[35, 40], with diverse applications in areas such as computational biology [43, 9], machine learning
[26, 37, 5] and databases [31, 19, 44]. Parsing CFG is a basic computer science question, that
given a CFG G over an alphabet Σ, and a string x ∈ Σ∗, |x| = n, determines if x belongs to the
language L(G) generated by G. The canonical parsing algorithms such as Cocke-Younger-Kasimi
(CYK) [2], Earley parser, [15] etc. are based on a natural dynamic programming, and run in
O(n3) time1. In 1975, in a theoretical breakthrough, Valiant proved a reduction from parsing to
Boolean matrix multiplication: the parsing problem can be solved in O(nω) time [48]. Despite
decades of efforts, these running times have remain literally unchanged.

Nearly three decades after Valiant’s result, Lee came up with an ingenious reduction from
the Boolean matrix multiplication to CFG parsing, that for the first time indicated why known
parsing algorithms may be optimal [33]. A remarkable recent result of Abboud, Backurs and V.
Williams made her claims concrete [4]. Basing on a conjecture of hardness of computing large
cliques in graphs, they ruled out any improvement beyond Valiant’s algorithm; moreover there
can be no combinatorial algorithm for CFG parsing that runs in truly subcubic O(n3−ε) time for
ε > 0 [4]. Combinatorial algorithms with cubic running time, or algorithms that use fast matrix
multiplication are often impractical. Therefore, a long-line of research in the parsing community

1dependency on the grammar size if not specified is either |G| as in most combinatorial algorithms, or |G|2 as
in most algebraic algorithms.
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has sought to discover subclasses of context free grammars that are sufficiently expressive yet
admit efficient parsing time [34, 32, 23]. Unfortunately, there still exist important subclasses of
CFG for which neither better parsing algorithms are known, nor there exist conditional lower
bounds to rule out the possibilities.

A generalization of CFG parsing, introduced by Aho and Peterson in 1972 [3], is language
edit distance (LED) which can be defined as follows.

Definition (Language Edit Distance (LED)). Given a formal language L(G) generated by a
grammar G over alphabet Σ, and a string x ∈ Σ∗, compute the minimum number of edits
(insertion, deletion and substitution) needed on x to convert it to a valid string in L(G).

LED is among the most fundamental and best studied problems related to strings and
grammars [3, 39, 44, 45, 12, 4, 41, 8, 28]. It also generalizes two basic problems in computer
science: parsing and string edit distance computation. Aho and Peterson presented a dynamic
programming algorithm for LED that runs in O(n3) time [3], which was improved to O(|G|n3)
by Myers in 1985 [39]. Only recently these bounds have been improved by Bringmann, Grandoni,
Saha, and V. Williams to give the first truly subcubic O(n2.8244) algorithm for LED [12]. When
considering approximate answers, a multiplicative (1 + ε)-approximation for LED has been
presented in [45], that runs in O( nω

poly(ε)) time.
These subcubic algorithms for LED crucially use fast matrix multiplication, and hence are

not practical. Due to the hardness of parsing [33, 4], LED cannot be approximated within any
multiplicative factor in time o(nω). Moreover, there cannot be any combinatorial multiplicative
approximation algorithm that runs in O(n3−ε) time for any ε > 0 [4]. LED provides a very
generic framework for modeling problems with vast applications [31, 27, 51, 36, 42, 40, 20]. A
fast exact or approximate algorithm for it is likely to have tangible impact, yet there seems to be
a bottleneck to improve its running time beyond O(nω) or design a truly subcubic combinatorial
algorithm even with approximation. Can we break this nω barrier?

Additive Approximation & Hierarchy within CFG. One possible approach to break this
barrier is to allow additive approximation. Since the hardness of multiplicative approximation
arise from the lower bound of parsing, it is possible to go below nω and design a purely
combinatorial algorithm for LED with additive approximation. Such a result will have immense
theoretical and practical significance. Due to the close connection of LED with matrix products,
all-pairs shortest paths and other graph algorithms [45, 12], this may imply new algorithms for
many other fundamental problems. In this paper, we make a significant progress in this direction.
While, we are not yet able to tackle the entire class of CFGs, we consider an important subclass of
CFG, known as the ultralinear grammar [55, 14, 34, 11, 38] and show (1) an Ω(nω) hardness result
for parsing ultralinear grammars, and (2) an additive approximation for language edit distance
to ultralinear grammar than runs in O(|G|n2) time using amnesic dynamic programming.

Let us use G = (Q,Σ, P, S) to denote a grammar where Q is the set of nonterminals, Σ is
the alphabet or terminals, P is the set of productions, and S is a special nonterminal designated
as the start state.

Definition (ultralinear). A grammar G = (Q,Σ, P, S) is said to be ultralinear if there is a
partition Q = Q1 ∪Q1 ∪ · · · ∪Qk such that for every X ∈ Qi, the productions of X consist of
linear productions X → αA|Aα|α for A ∈ Qi and α ∈ Σ, or non-linear productions of the form

X → w, where w ∈ (Σ ∪Q1 ∪Q2 ∪ · · · ∪Qi−1)∗

If we allow k to be ∞ then we get the entire class of context free grammars. In fact, for any
k, we can restrict any context free grammar G to a k-ultralinear grammar G′, L(G′) ⊆ L(G),
and the results of our paper holds for such a L(G′). It is precisely this procedure of creating
a k-ultralinear grammar G′ from a CFG G that we use in our proof of hardness for parsing
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ultralinear languages (Theorem 13). For example, if G is the well-known Dyck Languages [44, 8],
the language of well-balanced parenthesis, L(G′) contains the set of all parentheses strings
with at most k-levels of nesting. As an another example, consider RNA-folding [12, 49, 56]
which is a basic problem in computational biology and can be modeled by grammars. L(G′)
for RNA-folding denotes the set of all RNA strings with at most k-nested folds. In typical
applications, we do not expect k to be too large [19, 31, 6].

The ultralinear languages are precisely the class of languages that are accepted by a
finite-turn pushdown automata [16], forming a powerful link between the theory of for-
mal languages and automata theory. They are also known as the non-terminal bounded
grammars. Moreover, they are a part of an important hierarchy shown in Figure 1.

Figure 1: CFG Hierarchy & Our Results

Starting with the regular languages, which can be
parsed in linear time, the hierarchy successively moves
to more expressive grammars: linear languages (see
Section 2), metalinear and superlinear languages (see
Section 6), ultralinear languages, and finally to the
context free languages. It is known that ultralinear lan-
guages strictly contain the metalinear languages [10],
metalinear languages generalize linear languages which
in turn contain regular languages.

It is known that the edit distance to regular lan-
guages can be computed in O(|G|2n) time [50], however
no such fast algorithms have been developed for com-
puting the edit distance to any of these more expressive
languages. Among our other results we develop lan-
guage edit distance algorithms to linear, metalinear,
and superlinear languages that run in time quadratic in n. Moreover, we show matching lower
bound assuming the Strong Exponential Time Hypothesis [24, 25].

Interestingly, till date there exists no parsing algorithm for the ultralinear grammars that
run in time o(nω), while O(n2) algorithm exists for the metalinear grammars. In addition, there
is no combinatorial algorithm that runs in o(n3) time. In this paper, we derive conditional lower
bound exhibiting why a faster algorithm has so far been elusive for the ultralinear grammars,
clearly demarking the boundary where parsing becomes hard!

1.1 Results & Techniques

Lower Bounds. Our first hardness result is a lower bound for the problem of linear language
edit distance. We show that a truly subquadratic time algorithm for linear language edit distance
would refute the Strong Exponential Time Hypothesis (SETH). This further builds on a growing
family of “SETH-hard” problems – those for which lower bounds can be proven conditioned on
SETH. We prove this result by reducing binary string edit distance, which has been shown to
be SETH-hard [13, 7], to linear language edit distance. The grammar in our construction has
constant size, and thus demonstrates a tight reduction.

Theorem (12). There exists no algorithm to compute the minimum edit distance between a
string x, |x| = n, and a linear language L(G) in o(n2−ε) time for any constant ε > 0, unless
SETH is false.

Our second, and primary hardness contribution is a conditional lower bound on the recognition
problem for ulralinear languages. Our result builds closely off of the work of Abboud, Backurs
and V. Williams [4], who demonstrate that finding an o(n3)-time combinatorial algorithm or
any o(nω)-algorithm for context free language recognition would result in faster algorithms
for the k-clique problem and falsify a well-known conjecture in graph algorithms. We modify
the grammar in their construction to be ultralinear. We then demonstrate the same hardness
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result for our grammar, showing that for any ultralinear grammar G it is unlikely that any
o(poly(|G|)nc) algorithm exists for the ultralinear language recognition problem, where c = 3
for combinatorial algorithms and c = ω for any algorithm. Precisely, we prove the following
theorem.

Theorem (13). There is a ultralinear grammar G`U = GU such that if we can solve the membership
problem for string of length n in time O(|GU |αnc), where α > 0 is some fixed constant, then we
can solve the k-clique problem on a graph with n nodes in time O(nc(k+3)+3α).

Upper Bounds. We provide the first quadratic time algorithms for linear (Theorem 5),
superlinear (Theorem 15), and metalinear language edit distance (Theorem 16), running in
O(|P |n2), O(|P |n2) and O(|P |2n2) time respectively. This exhibits a large family of grammars
for which edit distance computation can be done faster than for general context free grammars,
as well as for other well known grammars such as the Dyck grammar [4]. Along with our lower
bound for the ultralinear language parsing, this demonstrates a clear division between those
grammars for which edit distance can be efficiently calculated, and those for which the problem
is likely to be fundamentally hard. Our algorithms build progressively off the construction of
a linear language edit distance graph, reducing the problem of edit distance computation to
computing shortest path on a graph with O(|P |n2) edges (Section 2).

Our main contribution is an additive approximation for language edit distance, which utilizes
the technique of amnesic dynamic programming. We first present a cubic time exact algorithm,
and then show a general procedure for modifying this algorithm, equivalent to forgetting states of
the underlying dynamic programming, into a family of amnesic dynamic programming algorithms
which produce additive approximations of the edit distance, and provide a tool for proving
general bounds on any such algorithm. We believe that our amnesic technique can be applied
to wide range of potential dynamic programming approximation algorithms, and lends itself
particularly well to randomization. We then present two explicit schemes for forgetting dynamic
programming states. In particular, for any k-ultralinear grammar, after fixing a sensitivity
constant γ, we demonstrate an O(2kγ) additive approximation in O(|P |(n2 + (nγ )3)) time, and
an O(kγ) additive approximation in O(|P |(n2 + n3

γ2 )) time.

Theorem 1. If A is a γ-uniform grid approximation, then the edit distance computed by A
satisfies

|OPT | ≤ |A| ≤ |OPT |+O(2kγ)

and it runs in in O(|P |(n2 + (nγ )3)) time.

Theorem 2. Let A be any γ-non-uniform grid approximation, then the edit distance computed
by A satisfies

|OPT | ≤ |A| ≤ |OPT |+O(kγ)

and it runs in O
(
|P |
(
n2 + n3

γ2
))

time.

2 Linear Grammar Edit Distance in Quadratic Time

Definition (linear grammar). A grammar G = (Q,Σ, P, S) is said to be linear if every
production is of the form A → αB or, A → Bα, or A → α for A,B ∈ Q, and α ∈ Σ. Such
productions are referred to as linear productions.

Note that if we can only have productions of the form A→ αB (or A→ Bα but not both)
then the corresponding language is regular, and all regular languages can be generated in this
manner. However, there are linear languages that are not regular. Therefore, regular languages

4



are a strict subclass of linear languages. Being a natural extension of the regular languages, the
properties and applications of linear languages are of much interest[18, 47].

Given a linear grammar G = (Q,Σ, P, S), and a string x = x1x2 . . . xn ∈ Σ∗, we give an
O(n2|P |) algorithm to compute edit distance between x and G in this section. The primary
motivation for doing this will be to develop a construction that will lie at the heart of our main
approximation algorithm in Section 3.

Definition. For any nonterminal A ∈ Q, define null(A) to be the length of the shortest string
in Σ∗ derivable from A.

For the algorithms in this paper, it will be necessary to pre-compute the values of null(A).
This occurs in the case where we would like to compute the cost of deriving ε from A, since the
minimum edit distance between ε and the set of strings derivable from A is precisely null(A).
Since this cost consists of deleting a whole string produced by A, null(A) can be thought of as a
set of deletion errors. Computing this can be done in multiple ways, and the running time is
independent of n. The following theorem will allow us to pre-compute and store the value of
null(A) for all A ∈ Q, before running the language edit distance algorithms, thus we assume for
the rest of the paper that this has already been done.

Theorem 3. The set of values {null(A) |A ∈ Q} can be computed in O(|Q||P | log(|Q|)) time.

Algorithm. Fundamental to our algorithm is the construction of a weighted digraph T =
T (G, x) from G and x with a designated vertex S1,n as the source and t as the sink such that
the weight of the shortest path between them will be the minimum language edit distance of x
to G. When the grammar and input string are fixed, we omit the arguments and simply write T .

Figure 2: Clouds corresponding
to Linear Grammar Edit Distance
Graph Construction. Each cloud
contains a vertex for every non-
terminal

Construction. The vertices of T consist of
(n

2
)
clouds, each

corresponding to a unique substring of x. We use the notation
(i, j) to represent the clouds, 1 ≤ i ≤ j ≤ n, corresponding to
the substring xixi+1....xj . Each cloud will contain a vertex for
every nonterminal in Q. Label the nonterminals Q = {S =
A1, A2, . . . , Aq} where |Q| = q, then we denote the vertex
corresponding to Ak in (i, j) by Ai,jk . We will add a new sink
node t, and use S1,n as the source node s. The edges of T
will correspond to the productions in G. Thus the vertex set
of T is V (T ) = {Ai,jk | 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ q}∪{t}. Each
path from a nonterminal Ai,jk in (i, j) to t corresponds to the
production of a legal string w, that is a string that can be
derived starting from Ak and following the productions of P ,
and a sequence of editing procedures to edit w to xixi+1 . . . xj .
For any cloud (i, j), edges will exist between two nonterminals
in (i, j), and from nonterminals in (i, j) to nonterminals in
(i + 1, j) and (i, j − 1). Our goal will be to find the shortest path from S1,n, the starting
nonterminal S in cloud (1, n), to the sink t.
Adding the edges. Each edge in T is directed, has a weight in Z+ and a label from
{x1, x2, .., xn, ε} ∪ {ε(α) | α ∈ Σ}. If u, v are two vertices in T , then we use the notation
u

`−−−−→
w(u,v)

v to denote the existence of an edge from u to v with weight w(u, v) and edge label `.

Given input x1x2 . . . xn, for all nonterminals Ak, At and every 1 ≤ i ≤ j ≤ n, the construction is
as follows:

• Legal Productions: For i 6= j, then if Ak → xiAt is a production, add the edge
Ai,jk

xi−→
0
Ai+1,j
t to T . If Ak → Atxj is a production, add the edge Ai,jk

xj−→
0
Ai,j−1
t to T .
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• Completing Productions: If Ak → xi is a production, add the edge Ai,ik
xi−→
0
t to T . If

Ak → xiAt or Ak → Atxi is a production, add the edge Ai,ik
xi−−−−−→

null(At)
t to T .

• Insertion: If Ak → xiAk is not a production, add the edge Ai,jk
xi−→
1

Ai+1,j
k to T . If

Ak → Akxj is not a production, add Ai,jk
xj−→
1
Ai,j−1
k . {these are called insertion edges.}

• Deletion: For every production Ak → αAt or Ak → Atα, add the edge Ai,jk
ε(α)−−→

1
Ai,jt .

{these are called deletion edges.}
• Replacement: For every production Ak → αAt, if α 6= xi, then add the edge Ai,jk

xi−→
1

Ai+1,j
t to T . For every production Ak → Atα, if α 6= xj , add Ai,jk

xj−→
1
Ai,j−1
t to T . For any

Ak such that Ak → xi is not a production, but Ak → α is a production with α ∈ Σ, add
the edge Ai,ik

xi−→
1
t to T .{these are called substitution or replacement edges.}

The goal is then to find the shortest path from S = A1,n
1 → t. We now prove that the weight

of this shortest path is the minimum language edit distance from x to G.

Remark 1. This approach based on shortest path computation is slightly different from that taken
by Aho and Peterson [3], which uses the construction of a covering grammar. We can also follow
[3] and add error-producing rules corresponding to insertion, deletion and substitution errors.
These do not keep the grammar linear any more. However, we can still modify the algorithm
of [3] somewhat, and get the desired running time. In order to find the edit distance between
substring xixi+1....xj and G, it is enough to compute the distance of xi, and xi+1xi+2.....xj to G,
and the edit distance of xixi+1...xj−1 and xj to G, and take the minimum of the two. Since, time
spent on each substring is constant, and there are O(n2) substrings, this results in an O(|P |n2)
algorithm. This alternate approach taken here is better suited to the specific graph constructions
utilized in this paper for more involved approximation algorithms to follow.

Theorem 4. For every Ak ∈ Q and every 1 ≤ i ≤ j ≤ n, the cost of the shortest path of from
Ai,jk to the sink t ∈ T is d if and only if d is the minimum edit distance between the string
xi . . . xj and the set of strings which can be derived from Ak.

Theorem 5. The cost of the shortest path from S1,n to t in the graph T is the minimum edit
distance which can be computed in O(|P |n2) time.

Proof. The cost of the shortest path follows immediately from the previous theorem. Now
there are O(n2) vertices in the graph for every nonterminal A ∈ Q. Hence, there are a total
of O(|Q|n2) vertices. Let Pk denote the set of productions involving Ak on the left hand side.
Then, for each Ai,jk , the total out degree of that node is O(|Pk|). Hence the total number of
edges emanating from cloud (i, j) is O(|P |), resulting in a total of O(|P |n2) edges. Since the
maximum edge weight is bounded by 1, utilizing the best known single-source shortest path
algorithm gives a O(E(T ) + V (T )) = O(|P |n2)2 runtime algorithm to compute the weight of
the shortest path from S1,n to t, which is the minimum edit distance from x to t.

3 Context Free Language Edit Distance
In this section, we develop an algorithm which utilizes the graph construction presented in
Section 2 to compute the language edit distance of a string x = x1 . . . xn to any context free
grammar G = (Q,Σ, P, S). Our algorithm has a cubic running time in n, and thus is not itself
an improvement on that of Aho and Peterson [3]. However, by building off of our construction,
we will be able to provide additive approximations of the edit distance in the next section that

2We assume |P | ≥ |Q|, that is each nonterminal is involved in at least one production on the left.
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runs in quadratic time. The bounds given by our approximation algorithms will be particularly
useful if G is an ultralinear grammar.

Let us first recall some notations that will be useful in the following sections. Given a
context-free grammar G = (Q,Σ, P, S), we first introduce a normal form which we will assume
for the rest of the paper. The normal form is same as the Chomsky Normal Form, except that
we allow for the addition of linear productions. We show in Lemma 2 in Appendix that any
k-ultralinear grammar can be converted into a k∗-ultralinear language in this normal form, where
k∗ ≤ k log(p), and p is the maximum number of nonterminals on the right hand side of any
production.
Definition. A context-free grammar G is in normal form if for any nonterminal A ∈ Q, all
productions with A on the left hand side are of the form: (1) A→ βB | Bβ | β, or (2) A→ CD
where β ∈ Σ is any terminal, and B,C,D ∈ Q. Productions of the first type are called linear
productions, and productions of the second type are called non-linear productions.

Note that as a result, any word produced by a k-ultralinear grammar in this normal form
must be derived using no more than 2k non-linear productions of type (2). Note that if we
consider only the linear productions of the form given by (1), we can construct the linear
grammar edit distance graph T using the same procedure as in Section 2.

Sketch of the Algorithm: Our algorithm makes crucial use of our earlier construction of
the linear language edit distance graph T . The essential idea is that, when tasked with deriving
some substring xi . . . xj from a nonterminal A ∈ Q using a sequence of productions in P , and
error productions corresponding to edit edges, there are two possibilities for the first production.
Either the first production is a linear production, creating xi or xj with cost 0 if it is a legal
production and cost 1 if it is an error production, or it is a non-linear production of the form
A → CD. In the later case, no terminal is produced and we are now tasked with deriving
x(i : j) = xi . . . xj from CD. The first case is handled by the original construction of the graph
T . In the second case, C must derive some substring x(i : `) and D must derive x(`+ 1 : j),
each of which is a substring of size less than or equal to that of x(i : j) (equal in the case that
either one of C or D must derive all of x(i : j), and the other derives no terminal). To handle
this situation, our algorithm computes shortest path on T in phases, where in each phase we
compute shortest path to all substrings of a certain length, so that when computing the cost of
the above non-linear production, we will have already computed the minimum cost of deriving
x(i : `) from C and x(`+ 1 : j) from D over all i ≤ ` ≤ j − 1.

Let PL, PNL ⊂ P be the subsets of (legal) linear and non-linear productions respectively.
Then for any nonterminal A ∈ Q, the grammar GL = (Q,Σ, PL, A) is linear, and we denote the
corresponding linear language edit distance graph T (GL, x) = T , as constructed in Section 2.
Let Li be the set of clouds in T which correspond to substrings of length i. In other words:

Li = {(k, j) ∈ T | j − k + 1 = i}
Then L1, . . . , Ln is a layered partition of T . Let t be the sink of T .
We write T R to denote the graph T where the direction of each edge is reversed. We call

this the edge-reversed linear edit distance graph. The idea then is to compute the single source
shortest path from the sink to every vertex of T R in n phases, where each phase corresponds to
substrings of x of different length. Our algorithm will maintain the property that if Ap,q is any
nonterminal in cloud (p, q), then the weight of the shortest path from t to Ap,q is precisely the
minimum edit distance between the string xpxp+1 . . . xq and the set of strings that are legally
derivable from A.

Let LRi denote the edge reversed subgraph of Li. In other words, LRi is the subgraph of T R
with the same vertex set as Li. Our algorithm will add some additional edges to LRi , and from t

to LRi , for all 1 ≤ i ≤ n, resulting in an augmented subgraph which we denote LRi . We then
compute single source shortest path from t on LRi ∪ {t}. The algorithm is as follows:
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Algorithm: Context Free-Exact

1. Base Case. strings of length 1. For every non-linear production A→ BC, and every
1 ≤ ` ≤ n, add the edges A`,` ←−−−−−

null(B)
C`,` and A`,` ←−−−−

null(C)
B`,` to LR1 . Note that the

direction of the edges are reversed because we are adding edges to LR1 and not L1. Call
the resulting augmented graph LR1 .

2. Solve single source shortest path from t to every vertex in LR1 ∪ {t}. Store the value of the
shortest path from t to every vertex in LR1 , and an encoding of the path itself.
Induction Hypothesis. For any 1 ≤ p ≤ q ≤ n and Ap,q ∈ Lq−p+1, we write Tp,q(A) to
denote the weight of the shortest path from t to Ap,q.

Having computed shortest paths from t to every vertex in the subgraphs LR1 , . . . , L
R
i−1, we

now consider LRi .

3. Induction. strings of length i. For every edge from a vertex Ap,q in Li to a vertex
Bp+1,q or Bp,q−1 in Li−1 with cost γ ∈ {0, 1}, add an edge from t to Ap,q ∈ LRi with cost
Tp+1,q(B) + γ or Tp,q−1(B) + γ, respectively. These are simply the linear production edges
created in the linear grammar edit distance algorithm.

4. Now, for every non-linear production A→ BC and every vertex Ap,q ∈ LRi , add an edge
from t to Ap,q in LRi with cost c where

c = min
p≤`<q

Tp,`(B) + T`+1,q(C)

Additionally, to later recover the derivation, we store the specific ` which yields the
minimum value of the above equation.

5. For every non-linear production A→ BC, add the edge Ap,q ←−−−−−
null(B)

Cp,q and Ap,q ←−−−−
null(C)

Bp,q to LRi . Note again that the direction of the edges are reversed because we are adding
edges to LRi and not Li.

6. After adding the edges in steps 3-5, we call the resulting graph LRi . Then compute shortest
path from t to every vertex in the subgraph LRi ∪ {t}, and store the values of the shortest
paths, along with an encoding of the paths themselves.

7. Repeat for i = 1, 2, . . . , n. Return the value T1,n(S).

Theorem 6. For any nonterminal A ∈ Q and 1 ≤ p ≤ q ≤ n, the weight of the shortest path
from Ap,q ∈ Li to t is the minimum edit distance between the substring xp . . . xq and the set of
strings which can be legally produced from A.

Runtime. For every cloud in the graph, we add at most O(|P |) new edges originating at
vertices in that cloud. Thus the total number of edges which we run a shortest path algorithm
on in steps 2 and 6 is still O(|P |n2), the same order as the size of the original LRi . Thus the
total time required to run shortest path in steps 2 and 6 for all i = 1, . . . , n is O(|P |n2). Now for
each of the O(n2) clouds in T , running steps 1, 3 and 5 takes O(|P |) time since we add O(|P |)
new edges in each cloud, each in constant time. In step 4, for each production in |P | and each of
the O(n2) clouds, the algorithm takes a minimum over at most n values to compute the cost c,
thus this step takes O(|P |n3) time. Thus the total runtime is O(|P |n2 + |P |n3) = O(|P |n3).
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4 Context Free Language Edit Distance Approximation

Now this cubic time algorithm itself is not an improvement on that of Aho and Peterson [3].
However, by strategically modifying the construction of the subgraphs Li by *forgetting* to
compute some of the non-linear edge weights, we can obtain an additive approximation of the
minimum edit distance. We introduce a family of approximation algorithms which do just this,
and prove a strong general bound on their behavior. In particular, for any k-ultralinear language,
we give explicit O(k

√
n) and O(2kn1/3) additive approximations from this family which run in

quadratic time. We expect that using the general bounds for specific grammars where more is
known about the structure of the derivations will allow for even better approximations.

Furthermore, as shown in our construction in the proof of hardness of parsing ultralinear
grammars (Section 5), for any k we can restrict any context free grammar G to a k-ultralinear
grammar G′ such that L(G′) ⊆ L(G) contains all words that have a derivation tree of height
≤ k. Thus our technique gives a general method to construct and prove bounds on the language
edit distance to any such set L(G′) ⊂ L(G).

Family of Approximation Algorithms. We now introduce a family F of approximation
algorithms which utilizes the structure of our exact algorithm from Section 3 .

Definition. For any Context Free Language edit distance approximation algorithm A, we say
that A is in the family F if it follows the same procedure as in the exact algorithm with the
following modifications:

1. Subset of non-linear productions. A constructs the non-linear production edges in
step 4 for the vertices in some subset of the total set of clouds {(p, q) | 1 ≤ p ≤ q ≤ n}.

2. Subset of splitting points. For every cloud that A computes non-linear production
edge for in step 4, when computing the edge weight c it takes minimum over only a subset
of all possible splitting points.

Figure 3: Non-uniform edges are computed
only for a subset of the clouds (colored black).
Moreover only a subset of the splitting points
are considered while computing the cost.

By forgetting to construct all non-linear pro-
duction edges, and by taking a minimum over
fewer values when we do construct non-linear pro-
duction edges, the time taken by our algorithm
to construct new edges can be substantially re-
duced. Note that since we do not remove any
of the O(|P |n2) vertices of T , running shortest
path in steps 2 and 6 of the algorithm still takes
O(|P |n2) time, thus this is a lower bound on the
runtime of our approximation algorithm no mat-
ter how many edges we forget to construct. We
now give two explicit examples of how steps 1 and
2 can be implemented. We later prove explicit
bounds on the approximations of these examples
in Theorems 1 and 2. In both examples a sensitivity parameter, γ, is first chosen. We use |OPT |
to denote the optimum language edit distance, and |A| to denote the edit distance computed by
an approximation algorithm A.

Example 1. An approximation algorithm A ∈ F is a γ-uniform grid approximation if for all
i = n, (n− γ), (n− 2γ), . . . , (n− bnγ cγ) (see Figure 3 (left))

1. A constructs non-linear production edges only for an evenly-spaced 1/γ fraction of the
clouds in Li, and no others, where γ is a specified sensitivity parameter.
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2. Furthermore, for every non-linear edge constructed, A considers only an evenly-spaced 1/γ
fraction of the possible break points.

Here if i or (n − i + 1) (the number of substrings of length i) is not evenly divisible by γ, we
evenly space the clouds/breakpoints until no more will fit.

We will later see that the running time of such a γ-uniform grid approximation is O(|P |(n2 +
(nγ )3), and for any k-ultralinear grammar G it gives an additive approximation of O(2kγ). Thus
by setting γ = n1/3, we get an O(2kn1/3)-approximation in O(|P |n2) time (Theorem 1).

Now for i = 0, 1, . . . , log(n), set Ni = {Lj | n
2i+1 ≤ j ≤ n

2i }. Let N ′i ⊂ Ni be an evenly-spaced
2i

γ fraction of the Lj ’s in Ni. Then:

Example 2. An approximation algorithm A ∈ F is a γ-non-uniform grid approximation if, for
every Lj ∈ N ′i , A computes non-linear production edges for a 2i

γ evenly-spaced fraction of the
clouds in Lj. Furthermore, in any cloud for which A computes non-linear production edges, A
considers only an evenly-spaced 2i

γ fraction of all possible break points. (see Figure 3 (right))

We will see that the running time of a γ-non-uniform grid approximation is O(|P |(n2 + n3

γ2 )),
and for any k-ultralinear grammar G gives an additive approximation of O(kγ). Hence setting
γ =
√
n, we get an additive approximation of O(k

√
n) in quadratic time (Theorem 2).

4.1 Analysis.

The rest of this section will be devoted to proving bounds on the performance of approximation
algorithms in F . We use T OPT to denote the graph which results from adding all the edges
specified in the exact algorithm to T . Recall that T is the graph constructed from the linear
productions in G. For A ∈ F , we write T A to denote the graph which results from adding the
edges specified by the approximation algorithm A. Note that since A functions by forgetting to
construct a subset of the non-linear edges created by the exact algorithm, we have that the edge
sets satisfy E(T ) ⊂ E(T A) ⊂ E(T OPT ).

High-level Steps of the Analysis The analysis follows the following steps.

1. We define the notion of a binary production-edit tree which is a binary tree representing
the execution of the optimum algorithm, and similarly, a binary production-edit tree to
represent the execution of our approximation algorithm A ∈ F . Each internal node in
the tree is denoted by [Ap,q, Br,s, c] and represents a path in T of only linear productions
from Ap,q to Br,s with a total cost of c. If the algorithm takes a non-linear edge B → CD,
with splitting point l ∈ [r, s), then two children of [Ap,q, Br,s, c] are created that start
at Cr,l and Dl+1,s respectively. The leaf nodes represent path to the sink – for instance
[Ap,q, t, c], that starts at Ap,q, follows only linear edges in T and incurs a cost of c. Using
such trees, one can concisely represent the entire execution of both the optimal, and the
approximation algorithm.

2. For an approximation algorithm A ∈ F , we define precision functions α(p, q) which gives
an upper bound on the minimum `1 distance from the cloud (p, q) to a cloud (r, s),
p ≤ r ≤ s ≤ q, for which A constructs non-linear edges, and β(p, q) gives an upper bound
on the maximum distance between the splitting points considered by A for constructing
the non-linear edges at the cloud (r, s).

3. Finally, we define a production-edit tree mapping, which will map the production-edit tree
of the optimal algorithm, TOPT , to a production edit tree of our approximation algorithm,
T, which we will have to construct. Using the mapping, we will bound the cost of T in
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terms of the cost of the optimal tree TOPT and the precision functions α(p, q), β(p, q).
Constructing the tree T and bounding its cost is a three part process. In Lemma 1, we
show how to construct a single node of T given a node of TOPT . Then in Theorem 8,
we repeatedly use Lemma 1 to construct the entire tree T from the top down. During
this process, we accumulate a set of inequalities which bound the costs of the nodes we
construct. Finally, in Theorem 9 we sum over this set of inequalities to obtain a bound on
the entire cost of T, from which our final theorem, Theorem 10, follows.

Binary Production-Edit Tree. We now introduce the main structure which we will use to
compare the solution produced by the exact algorithm to the solution produced by an A ∈ F .
The intuition is as follows. The normal form we have imposed on our grammar G partitions
the set of productions into linear productions and non-linear productions with exactly two
nonterminals on the right hand side, so in any derivation we need only consider each of these
cases. Since all error productions are linear, the process of deriving an input string x from
our grammar, possibly using error productions along the way, can be represented through a
certain binary tree T, where each node stores a sequence of linear productions. These sequences
of linear productions are just sequences of edges created in step 3 of the exact algorithm (the
linear edges), or equivalently a path in the linear grammar edit distance graph T . The root
of T consists of a sequence of linear productions made starting from S in some derivation of
x. Once the first non-linear production is made, A→ BC, the sequence of linear productions
stored in the root terminates, and left and right children of the root of T are created, starting at
the nonterminals B and C respectively. Then starting from each of B and C, a new sequence of
linear productions is stored in the corresponding nodes of T, each terminating when the first
non-linear production is made, and so on. We formalize this in the following definition.

Definition. A Binary Production-Edit Tree T for G and x is a binary tree which satisfies the
following properties:

1. Each node of T stores a path in the linear graph T = T (G, x). The path given by the root
of T must start at the source vertex S1,n of T .

2. For any node v ∈ T, let Ap,q, Br,s be the starting and ending vertices of the corresponding
path. If Br,s is not the sink of T , then v must have two children, vr, vl, such that there
exists a production B → CD for some nonterminals C,D ∈ Q so that the starting vertices
of the paths given by vl and vr are Cr,` and D`+1,s respectively, where ` is some splitting
point r− 1 ≤ ` ≤ s. If ` = r− 1 or ` = s, then one of the children will be in the same cloud
(r, s) as the ending cloud of the path given by v, and the other will be called a nullified
node. This corresponds to the case where one of the null edges created in step 5 of the
exact algorithm is taken with a cost of either null(C) or null(D), indicating that one of
either C or D will be nullified.

3. Now if v ∈ T is any node such that the corresponding path ends at the sink t of T , then v
is a leaf of T. Conversely, a node v is a leaf of T if and only if it is either a nullified node,
or it corresponds to such a path ending at the sink of T .

Note. Since we are now dealing with two *types* of graphs, to avoid confusion whenever we are
talking about a vertex Ap,q in any of the edit-distance graphs for which our algorithms compute
shortest path (such as T , T A, T OPT , TNL, ect), we will use the term vertex. When speaking
about any production-edit tree T, we will use the term node to describe the elements of the
vertex set of T.

We can completely describe the output of the exact algorithm or of any A ∈ F by such a
tree T. If at any point, one of the non-linear edges constructed in steps 4 or 5 is used along a
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path taken in the algorithm, then the node in T corresponding to that path terminates and
two children are created. Thus each path given by a node in T will terminate either when a
non-linear production A→ BC is made, or when the sink is reached via linear edges alone. A
node of the first type will have two children, a right child given by a path in T beginning at
B ∈ Q, and the left by a path in T beginning at C ∈ Q. A node of the second type corresponds
to a leaf in the tree.

To represent a node in T that is a path of cost c from Ap,q to either Br,s, or t, we will use the
notation [Ap,q, Br,s, c], or [Ap,q, t, c], respectively. We use this notation since we will only need
to consider the starting and ending vertices of such a path and its resulting cost. If one of the
arguments is either unknown or irrelevant, we write · as a placeholder. In the case of a nullified
node, corresponding to the nullification of A ∈ Q, we write [A, t, null(A)] to denote the node.

We can now represent any sequence of edits produced by a language edit distance algorithm
by such a production-edit tree, where the edit distance is given by the sum of the costs stored
in the nodes of the tree. In particular, we have a tree TOPT given by a solution produced by
an optimal algorithm. For any production-edit tree T, we denote the associated total cost by
‖T‖. To be precise, if [·, ·, c1], . . . , [·, ·, ck] is the set of all nodes in T, then ‖T‖ =

∑k
i=1 ci. Notice

that given a fixed approximation algorithm A ∈ F , only certain production-edit trees T could
actually correspond to the solution that A produces, giving rise to a natural definition.

Definition (Production-Edit Trees for A). For an approximation algorithm A ∈ F , let DA be
the set of production-edit trees T which satisfy the following constraints:

1. If [Ap,q, Br,s, ·] is a node in a T, where A,B ∈ Q, then A must compute non-linear edges
for the cloud (r, s) ∈ T A.

2. If [Cr,`, ·, ·], [D`+1,s, ·, ·] are the left and right children of a node [Ap,q, Br,s, ·] respectively,
then A must compute the splitting point ` for the non-linear edges in the cloud (r, s) ∈ T A.

The set DA is then the set of all production-edit trees which utilize only the non-linear
productions and splitting points which correspond to edges that are actually constructed by the
approximation algorithm A in T A. Upon termination, any A ∈ F will return the value ‖TA‖
where TA ∈ DA is the tree corresponding to the shortest path from t to S1,n in T A. Now we
would like for this shortest path to corresponds to an optimal T ∈ DA. In other words, we would
like to show that A returns the production-edit tree TA such that TA = arg minT∈TA ‖T‖. We
now do precisely this.

Theorem 7. Fix any A ∈ F , and let c be the edit distance returned after running the approxi-
mation algorithm A. Then if T is any production edit tree in DA, we have c ≤ ‖T‖

Note that since the edges of T A are a subset of the edges of T OPT considered by an exact
algorithm OPT , we also have c ≥ ‖TOPT ‖. To prove an upper bound on c, it then suffices to
construct a explicit T ∈ DA, and put a bound on the size of ‖T‖. Thus, in the remainder of our
analysis our goal will be to construct such a T ∈ DA.

Precision Functions. We now fix such an approximation algorithm A, and define associated
precision functions α(p, q), β(p, q). These functions will provide an upper bound on how poorly
the graph T A approximates T OPT near the cloud (p, q). Specifically, α(p, q) controls the
approximation factor due to step 1 (not computing non-linear edges), and β(p, q) controls the
approximation factor due to step 2 of A ∈ F (not computing splitting points). First, for any
two clouds (p, q) and (r, s) with p ≤ r and q ≥ s, define the distance between clouds to be
dc((p, q), (r, s)) = (r − p) + (q − s). This is essentially the `1 norm, with the exception that we
require x(r : s) to be a substring of x(p : q).
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Definition (Precision Functions). For any cloud (p, q) ∈ T A, let α(p, q) be any upper bound
on the minimum distance dc((p, q), (r, s)) such that A computes non-linear edge weights for
the cloud (r, s). Let β(p, q) be an upper bound on the maximum distance between any two
splitting points which are considered by A in the construction of the non-linear production
edges originating in a cloud (r, s) such that A computes non-linear edge weights for (r, s) and
dc((p, q), (r, s)) ≤ α(p, q). Furthermore, the precision functions satisfy α(p, q) ≥ α(p′, q′) and
β(p, q) ≥ β(p′, q′) whenever (q − p) ≥ (q′ − p′).

While the approximation algorithms presented in this paper are deterministic, the definitions
of α(p, q) and β(p, q) allow the remaining theorems to be easily adapted to algorithms which
randomly select A from some specified distribution over F .

Constructing a tree T ∈ DA similar to TOPT . Our goal will now be to construct a tree
T ∈ DA for some A ∈ F . We will do this by considering each node v of TOPT , and constructing
a corresponding node u in T, such that the path stored in u imitates the path in v as closely as
possible. A perfect imitation may not be feasible if the path corresponding to v ends having
taken a non-linear production edge in a cloud that A does not compute non-linear edges for.
Every time this happens, we will need to find and move to the closest possible cloud which
A does consider before making the same non-linear production that the exact algorithm did.
After doing this, the resulting child paths will deviate from those of the optimal, so we will
need to bound the total deviation that can occur throughout the construction of our tree in
terms of α(p, q) and β(p, q). The following lemma will be used crucially in this regard for the
proof of our construction in Theorem 8. The lemma maps a node [Ap,q, Br,s, c] ∈ TOPT , to a
node [Ap′,q′ , Br′,s′ , c′] ∈ T, given that there is some overlap between the substrings x(p : q) and
x(p′ : q′), such that the size of c′ is bounded.

Lemma 1. Let [Ap,q, Br,s, c] be any non-leaf node in TOPT , where Ap,q, Br,s ∈ T OPT , and let A ∈
F be an approximation algorithm with precision functions α(p, q), β(p, q) and production-edit tree
TA = T such that [Ap′,q′ , Br′,s′ , c′] ∈ T. If p′, q′ satisfy p ≤ q′ and p′ ≤ q, then there is a path from
Ap
′,q′ to Br′,s′ , where r ≤ r′ ≤ s′ ≤ s, of cost c′ ≤ c+(|p′−p|+|q′−q|)−(|r′−r|+|s′−s|)+2α(r, s)

such that A computes non-linear production edges for cloud (r′, s′). Furthermore, for any leaf node
[Ap,q, t, c] ∈ TOPT , we can construct a path from Ap

′,q′ of cost at most c′ ≤ c+ (|p′− p|+ |q′− q|)
to the sink.

Proof. Let e1 . . . e` be the sequences of edges taken by the path corresponding to [Ap,q, Br,s, c] ∈
TOPT . We construct a corresponding sequence of edges e′1 . . . e′` from Ap

′,q′ , where e′j will
correspond to the same production as ej , but with potentially higher cost. In other words, if
ej corresponds to the production A→ γB, then e′j will be an edge corresponding to the same

production, however it may be a deletion edge A ε(γ)−−→
1

B while ej is not. We will change a
non-deletion edge ej to a deletion edge if and only if the corresponding production produces a
terminal xν such that ν /∈ {p′, p′ + 1, . . . , q′}, meaning it is not in the substring that we need to
derive from Ap

′,q′ . We need to consider several cases based on the overlap between x(p : q) and
x(p′ : q′)

(1) If p ≤ p′ and q ≥ q′, then x(p′ : q′) is a substring of x(p : q). For all 1 ≤ j ≤ `,
if ej produces a terminal xν with p ≤ ν < p′ or q′ < ν ≤ q, set e′j to be the deletion edge
corresponding to the same production. Otherwise set e′j to be the edge corresponding to the
same production as ej (albeit e′j may be in a different cloud than ej). There can be at most
|p′ − p|+ |q′ − q| such extra deletion edges, thus e′1 . . . e′` pay at most c+ |p′ − p|+ |q′ − q|. In
general, there may be fewer extra deletion edges, as the substring corresponding to the ending
vertex Br,s of OPT may not be a substring of x(p′ : q′).

Notice that at any point j, after taking the edges e′1, . . . , e′j from Ap
′,q′ , we will be at a vertex

labeled with the same nonterminal as after taking e1, . . . , ej starting from Ap,q. Thus, we arrive
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at a vertex Br∗,s∗ after e′1, . . . , e′l . Furthermore, at every point the substring considered by the
cloud originating from e′j will be a subset of the string considered by the cloud originating from
ej . Thus after taking e′1 . . . e′`, when we arrive at Br∗,s∗ , we must have (s∗ − r∗) ≤ (s− r). Now
every time we change an edge ej that was not a deletion edge to a deletion edge e′j , the path
of OPT becomes one cloud closer to the path that we are in. Thus, if we change d (note that
d ≤ |p′− p|+ |q′− q|) of the edges into deletion edges, we have that the cloud (r∗, s∗) is distance
d closer to the cloud (r, s) than (p′, q′) was to (p, q). Therefore, the extra deletion cost paid is at
most (|p′ − p|+ |q′ − q|)− (|r∗ − r|+ |s∗ − s|). Thus the total cost we pay to reach Br∗,s∗ is at
most c+ (|p′ − p|+ |q′ − q|)− (|r∗ − r|+ |s∗ − s|).

Now (s∗ − r∗) ≤ (s− r), hence, there exists a cloud (r′, s′) for which non-linear production
edges have been computed, such that d((r∗, s∗), (r′, s′)) ≤ α(r, s). Thus from Br∗,s∗ we can take
insertion edges Br∗,s∗ −→ . . . −→ Br′,s′ arriving at the desired vertex at additional cost at most
α(r, s). Thus for non-leaf nodes the total cost is at most c+ (|p′− p|+ |q′− q|)− (|r∗− r|+ |s∗−
s|) + α(r, s). Since d((r∗, s∗), (r′, s′)) = |r∗ − r′|+ |s∗ − s′| ≤ α(r, s), by the triangle inequality
we have (|r∗ − r|+ |s∗ − s|) ≥ (|r′ − r|+ |s′ − s| − α(r, s)).

Note that if the node in question is a leaf [Ap,q, t, c], then we need not pay this extra
cost since after following e′1 . . . e′` we will already be at the sink. Thus the total cost is at
most c+ (|p′ − p|+ |q′ − q|)− (|r′ − r|+ |s′ − s|) + 2α(r, s) for non-leaf nodes as desired, and
c+ (|p′ − p|+ |q′ − q|) for leaf nodes.

Illustrated in the figure on the left is an example of the path [Ap,q, Br,s, c] and the corre-
sponding constructed path [Ap′,q′ , Br′,s′ , c′] when x(r, s) is a substring of x(p′, q′). [Ap,q, Br,s, c]
is given by the filled in path, and [Ap′,q′ , Br′,s′ , c′] is the dotted path. Each circle is a cloud, and
by construction whenever the paths meet at a cloud they will necessarily be at the same vertex
within the cloud.

(2) If p > p′ and q ≥ q′, in this case we need to first follow some insertion edges before
we can apply the argument from case (1). We set l = p− p′ and create an edge e′′j to be the
insertion edge that inserts xp′+j−1 for 1 ≤ j ≤ l. Following the edges, e′′1, . . . e′′l we pay a cost of
at most p− p′ and arrive at a vertex Ap,q′ . Note that for every insertion edge we travel across,
the cloud our path is in becomes one cloud closer to the starting cloud of OPT . Now starting
from Ap,q

′ , we are back in case (1) where now the distance between the beginning clouds (p, q′)
and (p, q) is |q − q′|. Thus by the argument from the first case we can reach a vertex Br′,s′ from
Ap,q

′ with cost at most c+ |q′ − q| − (|r′ − r|+ |s′ − s|) + 2α(r, s) for non-leaf nodes, and cost at
most c+ |q′ − q| for leaf nodes. Since we paid at most p− p′ to get to Ap,q′ from Ap

′,q′ , the total
cost is at most c + (|p′ − p| + |q′ − q|) − (|r′ − r| + |s′ − s|) + 2α(r, s) for non-leaf nodes, and
c+ (|p′ − p|+ |q′ − q|) for leaf nodes as desired.

The case where p ≤ p′ and q < q′ is symmetric, as we simply start by taking edges that
insert xq+1, . . . , xq′ instead of xp′ , . . . , xp−1. Finally, if both p > p′ and q < q′, we take edges
inserting both xq+1, . . . , xq′ and xp′ , . . . , xp−1, paying a cost of (|p′ − p|+ |q′ − q|) along the way,
and then we can return to case (1) starting at Ap,q, from which we pay a further cost of at most
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c−(|r′−r|+|s′−s|)+2α(r, s) to reach Br′,s′ for non-leaf nodes, and cost at most c to reach the sink
for leaf nodes. Thus in all cases the cost is at most c+(|p′−p|+|q′−q|)−(|r′−r|+|s′−s|)+2α(r, s)
and c+ (|r′ − r|+ |s′ − s|) for non-leaf and leaf nodes respectively. Note that in all cases, every
time OPT took an edge that derived a terminal in x(p′ : q′), our path also took an edge which
derived the same terminal. Thus the ending clouds produced in all cases satisfy r ≤ r′ ≤ s′ ≤ s.

Recall that to construct the explicit tree T ∈ DA, we will need to consider each node v of
TOPT and then construct a corresponding node u in T, such that the path stored in u imitates
the path in v as closely as possible. To precisely define the notion of a node in T corresponding
to a node in TOPT , we define a mapping from TOPT → T which will send a node v to its
corresponding node u. For the purposes of our argument, such a mapping must satisfy several
specific properties. We introduce these now.

Definition. Let T1,T2 be any two production-edit trees, and V (T1), V (T2) be the corresponding
node sets. Then a function ψ : V (T1) → V (T2) is a Production-Edit Tree Mapping if it is
surjective and if

1. ψ maps the root of T1 to the root of T2.

2. Every non-leaf node of T2 is mapped to by at most one node in T1.

3. If v1 → v2 is an edge in T1, then either ψ(v1)→ ψ(v2) is an edge in T2, or ψ(v1) = ψ(v2).

4. If ψ(v1) = ψ(v2) for any v1, v2 ∈ T1, then either v2 is a descendant of v1, or vice versa.
Furthermore, if u is a descendant of either v1 or v2, then ψ(v1) = ψ(u) = ψ(v2).

Figure 4: Production-Edit Tree Map-
ping: (left) TOPT → T (right)

Note then that if v1 6= v2 then ψ(v1) = ψ(v2) can
only occur if ψ(v1) = ψ(v2) is a leaf node in T. For
any path P in T1, such an mapping is injective on the
vertices of P up until a certain vertex v, possibly the
last, whereafter all vertices in the subtree rooted at v
are mapped to a single vertex of T2 which is a leaf node.
The reason for this property is that there will be a case
in our argument where it will be necessary to send the
entire subtree rooted at node v ∈ TOPT to a single leaf
u ∈ T, corresponding to nullifying a nonterminal. This
can be visualized as a trimming of the production-edit tree T1.

We are now ready to explicitly construct a tree T ∈ DA, and the mapping which maps TOPT
into it. Explicitly, for a mapping ψ, we would like the starting and ending clouds of the path
given by any node v ∈ TOPT to be as close as possible to those of ψ(v). If we can place bounds
on this distance for all pairs v, ψ(v), then we show how to place bounds on the total cost of
all vertices in T. The following theorem, Theorem 8, does exactly this. For the purpose of the
theorem, we will need to introduce some important notation.

• Notation for mapping & nodes: Let ψ be a mapping from TOPT to T. Let
[Xi−1, Yi−1, ci−1] → [Xi, Yi, ci] be any non-leaf node and its child in TOPT that are
not both mapped to the same node of T by ψ.

• Notation for starting & ending clouds: Let (pi, qi), (ri, si) ∈ T be the starting and ending
clouds of [Xi, Yi, ci], and let (pi−1, qi−1), (ri−1, si−1) ∈ T be the starting and ending
clouds of [Xi−1, Yi−1, ci−1]. Similarly, let (p′i, q′i), (r′i, s′i) and (p′i−1, q

′
i−1), (r′i−1, s

′
i−1) be the

starting and ending clouds of ψ([Xi, Yi, ci]) and ψ([Xi−1, Yi−1, ci−1]) respectively. Define
(pL, qL), (pR, qR) to be the starting clouds of the left and right children of [Xi−1, Yi−1, ci−1],
respectively, and (p′L, q′L), (p′R, q′R) to be the starting clouds of the left and right children of
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ψ([Xi−1, Yi−1, ci−1]) respectively. Similarly, we denote their corresponding ending clouds
by (rL, sL), (rR, sR) and (r′L, s′L), (r′R, s′R).

• Notation for costs: Let c′i be the cost of ψ([Xi, Yi, ci]) ∈ T. Write cL, cR for the costs of the
left and right children of [Xi−1, Yi−1, ci−1], and similarly write c′L, c′R for the costs of the
children of ψ([Xi−1, Yi−1, ci−1]). For any cost c corresponding to a node v, let c denote the
cost of all nodes in the subtree rooted at v if v ∈ TOPT , or the cost of all nodes mapped
to v if v ∈ T.

Given a node [Xi−1, Yi−1, ci−1], the proof of the Theorem will have several cases when
constructing the children of ψ([Xi−1, Yi−1, ci−1]). In each case, different bounds will hold, and
these bounds will be vital to the proof of Theorem 9.

Theorem 8. For any approximation algorithm A ∈ F with precision functions α, β, there exists
a tree T ∈ DA and a Production-Edit Tree Mapping ψ : V (TOPT )→ V (T) such that:

Depending on whether ψ([Xi, Yi, ci]) is a leaf or Non-leaf, one of the following two holds:

c′i ≤ ci +
(
|p′i − pi|+ |q′i − qi|

)
−
(
|r′i − ri|+ |s′i − si|

)
+ 2α(ri, si) (Non-leaf)

c′i ≤ ci + |p′i − pi|+ |q′i − qi|+ β(ri−1, si−1) (Leaf)

Furthermore, depending on how the children of ψ([Xi−1, Yi−1, ci−1]) are constructed, either:

(|p′L−pL|+ |q′L−qL|)+(|p′R−pR|+ |q′R−qR|) ≤ |r′i−1−ri−1|+ |s′i−1−si−1|+2β(ri−1, si−1) (*)

Or one of the following inequalities holds as an upper bound for c′L + c′R

≤ cL + cR + |r′i−1 − ri−1|+ |s′i−1 − si−1|+ 2β(ri−1, si−1) (**)

≤ cL + cR + |r′i−1 − ri−1|+ |s′i−1 − si−1|+ 2β(ri−1, si−1) (**)

≤ cL+cR+|r′i−1−ri−1|+|s′i−1−si−1|+2β(ri−1, si−1)−
(
|r′R−rR|+|s′R−sR|

)
+2α(rR, sR) (***)

≤ cL+cR+|r′i−1−ri−1|+|s′i−1−si−1|+2β(ri−1, si−1)−
(
|r′L−rL|+|s′L−sL|

)
+2α(rL, sL) (***)

Before we prove Theorem 8, we show how our main theorem follows from it. Let T′OPT ⊂ TOPT
be the subgraph of nodes v in the tree for which either v is the only node mapped to ψ(v), or v
is the node closest to the root that is mapped to ψ(v). For the following proof of Theorem 9, it
will be helpful to notice that the tree T′OPT is the result of “trimming” off all the extra nodes in
TOPT , and is in fact isomorphic to T as a graph.

Theorem 9. For any A ∈ F with precision functions α, β, let T ∈ DA and ψ be as constructed
in Theorem 8, and label the nodes of T′OPT by v1 . . . vK . For 1 ≤ i ≤ K, let (pi, qi), (ri, si) be the
starting and ending clouds of the path vi in T , and let (p′i, q′i), (r′i, s′i) be the starting and ending
clouds of ψ(vi). Then

‖T‖ ≤ ‖TOPT ‖+
∑

vj∈T′OP T

(
2α(rj , sj) + 3β(rj , sj)

)

Proof. The above bound will be the result of summing the various bounds (Non-leaf), (Leaf),
(∗∗), and (∗ ∗ ∗) from Theorem 8 over all the vj ’s (for each node, the bound we use depends on
which of the cases the node falls into). For any node u ∈ T, the cases are:

• If u is a non-leaf node that was constructed in Case 1 of Theorem 8, then there a unique
node v ∈ TOPT for which ψ(v) = u. In this case the bound (Non-leaf) from Theorem 8 is
used.
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• If u is a leaf node that was constructed in Case 1 of Theorem 8, then again there is a
unique node v ∈ TOPT for which ψ(v) = u, and we can apply the bound (Leaf).

• If u is a leaf node constructed in Case 2 of Theorem 8, let w ∈ T be the other child of the
parent of u. Then if w is a leaf node, the bound (**) is applied to the costs of the nodes u
and w. If w is not a leaf then the bound (***) is applied to the costs of u and w.

Note that this covers all cases, since every time a pair of children is constructed in Case 2
at least one of the children must be a leaf. Now if u is a leaf node constructed in Case 2, then
there can be multiple nodes in TOPT that are mapped to it. This can only occur when there is
some unique vertex v which maps to u, such that all the descendants of v also map to u, and no
other vertices in TOPT can map to u. If this occurs then the corresponding bound, either (∗∗)
or (∗ ∗ ∗), includes the sum of the costs of all nodes in the subtree rooted at v ∈ TOPT . Then
such a v is in T′OPT , so the bounds given above considered for all nodes in T′OPT includes the
cost of all nodes in TOPT which are not in T′OPT , thus we can consider only the bounds given
by the nodes in T′OPT .

We now define subsets U1
NL, U

2
NL, UL of T′OPT .

• Let U1
NL be the set of non-leaf nodes v ∈ T′OPT where both children of ψ(v) ∈ T are

constructed in Case 1 of Theorem 8. Note that the node in U1
NL may be created either in

Case 1 or Case 2.

• Let U2
NL be the set of non-leaf nodes in v ∈ T′OPT where the children of ψ(v) are constructed

in Case 2 of Theorem 8.

• Let UL be the set of leaves v ∈ T′OPT such that ψ(v) was constructed in Case 1 of Theorem
8.

• The set of leaves v such that ψ(v) was constructed in Case 2 will not be considered because
the bounds for these nodes will be included in the bounds given by the parents in U2

NL.

Note that for any vj ∈ T′OPT , vj is a leaf iff ψ(vj) is a leaf. Then for any vj ∈ U1
NL ∪ U2

NL, let
Rj , Lj be the indices of its right and left children vRj , vLj . For any non-root node vj ∈ T′OPT ,
let Pj be the index of its parent vPj . Since ψ is bijective when restricted to T′OPT , by summing
the bounds (Non-leaf), (Leaf), (∗∗), and (∗ ∗ ∗) over all nodes in T′OPT , we are summing the
bounds for all nodes in T as well. Summing over the costs given by these bounds in 8 for all
nodes in T, we have

‖T‖ ≤ ‖TOPT ‖+W1
NL +W2

NL +WL

The rest of the proof will be spent analyzing these new terms. Firstly, W1
NL =∑

vj∈U1
NL

(
|p′Rj
− pRj |+ |q′Rj

− qRj |+ |p′Lj
− pLj |+ |q′Lj

− qLj | −
(
|r′j − rj |+ |s′j − sj |

)
+ 2α(rj , sj))

)

W2
NL =

∑
vj∈U2

NL

((
|r′j − rj |+ |s′j − sj |

)
+ 2β(rj , sj)−

(
|r′j − rj |+ |s′j − sj |

)
+ 2α(rj , sj))

)

WL =
∑
vj∈UL

(
β(rPj , sPj )

)
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First sum: We first consider W1
NL. For each node vj ∈ U1

NL, if vj was not created in Case
2 of Theorem 8 then the bound (Non-leaf) applies, and the bound (∗) applies to the children
of vj since they were also not created in Case 2. If vj was created in Case 2, then one of the
bounds (∗ ∗ ∗) will hold for the cost of vj . Note in the second case that the sibling node of vj
must be a leaf. In either case we have put the portion

(
−
(
|r′j − rj | + |s′j − sj |

)
+ 2α(rj , sj

)
of the bound for vj next to the positive portions of the bounds which come from its children
(either (Non-leaf) or (Leaf)) |p′Rj

− pRj | + |q′Rj
− qRj | + |p′Lj

− pLj | + |q′Lj
− qLj | in the same

summand. The goal of doing this is to easily apply Property (∗) of Theorem 8, which gives
|p′Rj

− pRj |+ |q′Rj
− qRj |+ |p′Lj

− pLj |+ |q′Lj
− qLj | −

(
|r′j − rj |+ |s′j − sj |

)
≤ 2β(rj , sj). Thus

the bound on the cost of any node vj is split between the summands corresponding to vj and
the summands corresponding to its parent in TOPT . If this bound was (Non-leaf), then the rest
of the bound for vj will be put in the sum W1

NL for the parent of vj . If the bound was one of
the (∗ ∗ ∗) bounds, then the rest of the bound will be put in the sum W2

NL for the parent of vj .
Note in the special case of the root we have |p′1− p1|+ |q′1− q1| = 0, and so this does not appear
in the sum W1

NL. Then using Property (∗), gives

W1
NL ≤

∑
vj∈UNL

(
2α(rj , sj) + 2β(rj , sj)

)

Second sum: We now consider W2
NL. For each node vj ∈ U2

NL, the bound (Non-leaf) applies,
and the bound (∗∗) applies to the children of vj since they were created in Case 2. Again, we
have put the portion

(
−
(
|r′j − rj |+ |s′j − sj |

)
+ 2α(rj , sj

)
of the bound (Non-leaf) for vj next to

the portion
(
|r′j − rj |+ |s′j − sj |

)
+ 2β(rj , sj) of the bounds either (∗∗) or (∗ ∗ ∗) for the costs of

the children of vj . Canceling terms in the definition of W2
NL above gives:

W2
NL =

∑
vj∈U2

NL

(
2β(rj , sj) + 2α(rj , sj))

)

Third sum: WL simply accounts for the fact that for every leaf in the tree T that was not
created in Case 2 of Theorem 8, the portion of the sum (Leaf) that is included in the sum for
its parent, either in W1

NL or W2
NL, does not include the β(rPj , sPj ) term. If v ∈ T′OPT maps to

a node ψ(v) that was created in Case 2 of Theorem 8, then the bound on the cost of ψ(v) was
already included in the sum W2

NL, which is why we have not included these nodes in UL. Then

WL =
∑
vj∈UL

(
β(rPj , sPj )

)
≤

∑
vj∈T′OP T

β(rj , sj)

So all together W1
NL +W2

NL +WL ≤∑
vj∈U1

NL

(
2α(rj , sj) + 2β(rj , sj)

)
+

∑
vj∈U2

NL

(
2α(rj , sj) + 2β(rj , sj))

)
+

∑
vj∈T′OP T

β(rj , sj)

≤
∑

vj∈T′OP T

(
2α(rj , sj) + 3β(rj , sj)

)
This completes the proof.

For any A, we write |A| to denote the edit distance returned by A, and |OPT | for the edit
distance returned by an exact algorithm.

Theorem 10. For any A ∈ F with precision functions α, β, let TOPT be the production-edit
tree of any optimal algorithm. Label the nodes of T′OPT ⊂ TOPT by v1 . . . vK . For 1 ≤ i ≤ K, let
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(pi, qi), (ri, si) be the starting and ending clouds of the path vi in T , and let (p′i, q′i), (r′i, s′i) be the
starting and ending clouds of ψ(vi). Then

|OPT | ≤ |A| ≤ |OPT |+
∑

vj∈T′OP T

(
2α(rj , sj) + 3β(rj , sj)

)
Proof. The result follows immediately from Theorems 7 and 9.

Approximation of Ultralinear Language Edit Distance: Theorem 10 allows us to place
bounds on the additive approximation in terms of the structure of the optimum derivation tree.
For each non-linear production made in such a derivation, another term is accumulated in the
bound given in 10, thus in general the approximation performs better for derivations which
have a high ratio of linear to non-linear productions. In particular, when the grammar G is
k-ultralinear, we are able to provide more explicit bounds for algorithms in F . Note that, as
a result of the structure of ultralinear grammars, a production-edit tree for any k-ultralinear
grammar can have depth at most k, as each time a non-linear production is made the resulting
non-terminals are in a lower partition of Q, and there are k total partitions in Q.

We now give two specific approximation algorithms for k-ultralinear languages.

Theorem (1). If A is a γ-uniform grid approximation, then A produces a value |A| = |TA|
such that

|OPT | ≤ |A| ≤ |OPT |+O(2kγ)
in O(|P |(n2 + (nγ )3)) time.

Proof. In this case, we have the upper bound α(p, q) = β(p, q) = 2γ for all 1 ≤ i ≤ k and
1 ≤ p ≤ q ≤ n. Since there can be at most 2k vertices in a production-edit tree for any
k-ultralinear grammar, it follows from Theorem 10 that:

|OPT | ≤ |A| ≤ |OPT |+ 2k(10γ)

Runtime. We only compute non-linear production edges for (n/γ)2 clouds. For each non-
linear production, we compute corresponding to a substring of size m, at most m/γ ≤ n/γ
break-points. Thus the total runtime is O(|P |(nγ )3) to compute non-linear edges, and O(|P |n2)
to run a single source shortest path algorithm from the sink to all vertices of T A, for a total
runtime of O(|P |(n2 + (nγ )3))

Theorem (2). Let A be any γ-non-uniform grid approximation, then A produces a value
|A| = |TA| such that

|OPT | ≤ |A| ≤ |OPT |+O(kγ)

in O
(
|P |
(
n2 + n3

γ2
))

time.

Proof. Let Vi = {v1, . . . vl} be the set of all vertices at depth i in TOPT , and let wj be the
substring corresponding to the ending cloud (rj , sj) of vj for 1 ≤ j ≤ l. Then w1, w2, . . . wl are
the substrings which our algorithm derives from nonterminals at depth lower than i in TOPT . If
n

2t+1 ≤ |wj | ≤ n
2t , we have (rj , sj) ∈ Nt and can therefore set the upper bound on the precision

functions α(rj , sj) = β(rj , sj) = γ
2t . Since the substrings must be disjoint, clearly

∑l
j=1 |wj | ≤ n.

Set |vj | = 2α(rj , sj)+3β(rj , sj). Then if (rj , sj) ∈ Nt, we have |vj | ≤ 5 γ
2t . Then |vj | ≤ (2|wj |)5 γn .

We have

∑
vj∈Vi

|vj | ≤
l∑

j=1
10|wj |

γ

n
≤ 10(n)γ

n
= 10γ = O(γ)
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Note that this bound is independent of the depth i. Since any production-edit tree for a
k-ultralinear grammar can have depth at most k, Theorem 10 states that the additive error is
at most

∑k
i=1

∑
v∈Vi
|v|. As just shown, each inner sum is at most 10γ, thus the total additive

error is 10kγ = O(kγ) as desired.

Runtime. Let N ′′i ⊂ N ′i ⊂ Ni be the set of clouds which we actually construct non-linear
edges for. There are at most n

2i+1 Lj ’s in Ni, and each has at at most n clouds in it. Then if
2i ≤ γ we have:

|N ′′i | ≤ n
n

2i+1 (2i

γ
)2 = n22i−1

γ2

Now if 2i > γ, then we consider all clouds in Ni. In other words, if j ≤ n
γ , then we consider

all clouds in Lj . Now |Lj | ≤ n for all j, so we consider at most
∑n/γ
j=1 |Lj | ≤ n2

γ in this second
section. Thus in T A we create nonlinear edges for a total of

log(γ)∑
i=1
|N ′′i |+

n2

γ
≤

log(γ)∑
i=1

n22i−1

γ2 + n2

γ
≤ 2n

2

γ

clouds. Now since for every substring of length ` ≤ n
2i , we consider at most `2i

γ ≤
n
γ breakpoints

the total number of breakpoints considered over all nodes in the first section (where 2i ≤ γ) is
at most n

γ

∑log(γ)
i=1 |N ′′i | = n3

γ2 . For the second section with strings of length ≤ n
γ , the number of

breakpoints is at most

|L1|(1) + |L2|(2) + . . . |Ln/γ |
n

γ
= n(1) + (n− 1)2 + · · ·+ (n− n

γ
)n
γ
≤ n

n/γ∑
i=1

i = O(n
3

γ2 )

Thus a total of O(n3

γ2 ) breakpoints are considered for each production in |P | while constructing
T A. There are O(|P |n2) edges in T A, thus running single source shortest path takes a total of
|P |n2 time, so the total runtime is O

(
|P |
(
n2 + n3

γ2
))
.

5 Hardness Results

Linear Grammar Edit Distance Hardness A recent result of Backurs and Indyk [7] has
demonstrated that finding a truly subquadratic algorithm for computing the exact edit distance
between two binary strings would imply the falsity of the Strong Exponential Time Hypothesis
(SETH). This result has been shown to hold even in the case where the input strings are binary
[13]. We extend this SETH-hardness result by demonstrating that a truly subquadratic algorithm
for linear language edit distance to a grammar of constant size would imply a truly subquadratic
algorithm for binary string edit distance.

We first define the linear grammar G = (Q,Σ, P, S) with nonterminals Q = {S, Sz}, alphabet
Σ = {0, 1} ∪ {z}, and productions:

S → 0S0 | 1S1| | Sz

Sz → zSzz | z

Given two binary strings, A ∈ {0, 1}n B ∈ {0, 1}m, let BR be the reverse of B. Then define:

wA,B = Azn+mB
R

Where zn+m = ⊕m+n
i=1 z, and ⊕ is concatenation. Note that our grammar has constant size. The

language it recognizes is precisely L(G) = {CztCR | C ∈ {0, 1}k, k, t ≥ 0}, which is the set of
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all binary palindromes separated by any number of z’s in between. The purpose of the dummy
variable z will be to avoid *cheating* in the editing procedure by blurring the line between
which string is A and which is BR in a valid editing procedure.

Theorem 11. The language edit distance between wA,B and G is equal to the string edit distance
between A and B.

Proof. Let d(wA,B, G) be the language edit distance, and let d(A,B) be the string edit distance
between A and B. We first show d(wA,B, G) ≤ d(A,B). Let ẽA be an ordered sequence of
insertions, deletions, and substitutions which edit A into B with minimum cost. Then applying
the editing procedure to the substring wA,B(1 : n) transforms wA,B into the string Bzn+mB

R

with equal cost. Since Bzn+mB
R ∈ L(G), we have d(wA,B, G) ≤ d(A,B).

Now let ẽG be an ordered sequence of edits of minimum cost which modify wA,B into a valid
word of L(G). We first argue that the substring zn+m is not modified. Since L(G) admits a
string CztCR for any t, deleting any of the z’s in wA,B would not decrease the Levenshtein
distance between the input string and the language, unless potentially in the case that all n+m
of the z’s were deleted. But clearly DA,B ≤ n+m, thus we need not consider this case. Similarly,
inserting z’s can never be helpful. Replacing one of the z’s with a 0 or 1, or inserting a 0/1 within
the substring zn+m, say at position j, would then force that all z’s in position either < j or > j
be deleted or replaced. We have established that deleting z’s is never helpful, and the effect
of replacing a string of z’s from j to the ending of A or the start of BR could be equivalently
accomplished by inserting the same terminals between zn+m and A or BR respectively. Thus we
can assume that the substring zn+m is never modified by ẽG.

Then ẽG can be partitioned into the set of edits made to the substring A, and the edits made to
BR. This gives a valid procedure to edit A into C and B into C for some C ∈ {0, 1}k and k. Since
edit distance is a metric on the space of strings, we have d(A,B) = mink,C∈{0,1}k d(A,C)+d(C,B).
But we have just shown that the left hand side is at most d(wA,B, G), which completes the proof.

Theorem 12 (Hardness of Linear Language Edit Distance). There exists no algorithm to
compute the minimum edit distance between a string x, |x| = n and a linear language L(G) in
o(n2−ε) time for any constant ε > 0, unless SETH is false.

Proof. The theorem follows immediately from 11 and from the results of [13].

Ultralinear Language Parsing Hardness A recent result of Abboud, Backurs and Williams
[4] has shown that any algorithm which can solve the recognition problem for an input string of
length n to a context free grammar G in time O(nF ) can be modified to an algorithm which
can solve the 3k-clique problem on a graph of order n in time O(nFk). A well known conjecture
of graph algorithms states that the smallest such value of F for which 3k-clique can be solved
is 3 for combinatorial algorithms, and ω for any algorithm, where ω is the exponent of fast
matrix multiplication. A refutation of this conjecture would additionally result in faster exact
algorithms for Max-Cut [54, 52], among other consequences.

The proof of hardness in [4] proceeds by enumerating all k-cliques in an input graph, and
then judiciously constructing an input string w over an alphabet Σ which encodes all of these
k-cliques. A grammar G of constant size is then introduced such that G accepts w if and only if
the input graph contains a 3k-clique.

In this section we adapt this approach so that the grammar in question is ultralinear. We
do this by constructing an ultralinear grammar G`U , parameterized by a constant `, such that
L(G`U ) ⊂ L(G) and such that if w is a string constructed from a graph G as specified by [4], then
G has a 3k-clique if and only if w ∈ L(G`U ). Our grammar is essentially G, but with modifications
made in order to bound the total number of non-linear productions which can be made during
any derivation. Our grammar will have size O(`) = O(n3), but since |w| ∈ O(k2nk+1) and
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the blowup in grammar size is independent of k, this is not problematic. It follows that if the
currently known clique algorithms are optimal, the recognition problem for ultralinear grammars
cannot be solved in o(Poly(|G|)nF ) time, where F is as in the conjecture above. We present our
adaptation G`U below.

Theorem 13 (Hardness of Ultralinear Grammar Parsing). There is a ultralinear grammar
G`U = GU such that if we can solve the membership problem for string of length n in time
O(|GU |αnc), where α > 0 is some fixed constant, then we can solve the k-clique problem on a
graph with n nodes in time O(nc(k+3)+3α).

Encoding of the Graph Let G be a graph on n vertices. For every vertex v ∈ V (G), let v
be a unqiue binary encoding of v of size exactly 2 log(n). Let N(v) be the neighborhood of v.
We define a set of gadgets, which are exactly those introduced in [4], over the same alphabet
Σ = {0, 1, $,#, astart, amid, aend, bstart, bmid, bend, cstart, cmid, cend}. Firstly are the so-called node
and list gadgets:

NG(v) = #v# LG(v) = #
⊕

u∈N(v)
($uR$)#

where uR is the reverse of u. We then enumerate all k-cliques in G, and use Ck to denote the set
of all k-cliques in G. Let t = {v1, . . . , vk} ∈ Ck be any k-clique. Then the so-called "clique-node"
and "clique-list" gadgets are given by

CNG(t) =
⊕
v∈t

(NG(v))k

CLG(t) =
(⊕
v∈t

LG(v)
)k

Along with the additional three gadgets

CGα(t) = astartCNG(t)amidCNG(t)aend

CGβ(t) = bstartCLG(t)bmidCNG(t)bend
CGγ(t) = cstartCLG(t)cmidCLG(t)cend

Finally, the encoding of the G into a string w is given by

w = (
⊕
t∈Ck

CGα(t)))(
⊕
t∈Ck

CGβ(t))(
⊕
t∈Ck

CGγ(t)))

Note that |w| ∈ O(k2nk+1), and the cost of constructing the string w is linear in its length.

The Ultralinear Grammar Our grammar G`U = (Q,Σ, P, S) is given by

Q =
( ⋃̀
i=1
{Vi

αγ ,Vi
αβ,Vi

βγ ,Siαγ ,Siαβ, Siβγ ,Ni
αγ ,Ni

αβ,Ni
βγ}

)⋃
{S,S∗αγ ,S∗αβ,S∗βγW,W′, }

where i ranges from i = 1, 2, . . . , `, for some ` which we will later fix. The main productions
are:

S→WastartS1
αγcendW S∗αγ → amidS1

αβbmidS1
βγcmid

S∗αβ → aendWbstart S∗βγ → bendWcstart
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Then for xy ∈ {αβ, αγ, βγ}, and for i = 1, 2, . . . , `− 1, we have the "xy-listing rules":

Sixy → S∗xy Sixy → #Ni+1
xy $Vi+1

xy #
Ni
xy → #Si+1

xy #Vi+1
xy $ Ni

xy → σNi
xyσ

Where σ ∈ {0, 1}. Finally, again for i = 1, 2, . . . , `− 1, we have the "assisting rules":

W→ ε | λW W′ → ε | σW′ Vi
xy → ε | $W′$Vi+1

xy

For all λ ∈ Σ and σ ∈ {0, 1}. Then for i = 1, . . . , `− 1, the partition

Q2` = {S}, Q2`−i = {Siαγ ,Ni
αγ ,Vi

αγ}, Q` = {S∗αγ}

Q`−i = {Siαβ,Siβγ ,Ni
αβ,Ni

βγ ,Vi
αβ,Vi

βγ}, Q1 = {S∗αβ,S∗βγ}, Q0 = {W,W’}

satisfies the ultra-linear property. Our grammar is the same as that in [4], except we replace
the set of nonterminals {V,Sαγ ,Sαβ, Sβγ ,Nαγ ,Nαβ,Nβγ} by ` identical copies, each with a
index in {1, . . . , `}, such that every time one copy of a nonterminal in this set is produced from
another via a non-linear production, the resulting copy has a strictly greater index. Note that
we replace the V of [4] with 3 further copies {Vi

αγ ,Vi
αβ,Vi

βγ} for each i = 1, . . . , `, such that
Vi
xy can only be produced by Ni−1

xy ,Si−1
xy , and Vi−1

xy (the nonterminals with the same subscript),
as opposed the V in [4] which could be produced by {Nxy,Sxy, V } for any xy ∈ {αβ, αγ, βγ}.

Finally, for every copy of such a nonterminal with index `, we prevent this nonterminal from
making any further non-linear productions. Doing this places a strict limit on the maximum
number of times a given non-linear productions may be used, in order to preserve the ultralinear
property. Since we have not added any new productions, but instead modified each non-linear
production of [4] such that it cannot be used more than ` times, we have that L(G`U ) ⊂ L(G).
Thus, the language recognized by our grammar is strictly a subset of the language recognized by
the context free grammar G, which consists of strings which can be produced with arbitrarily
many non-linear productions. Specifically, as ` → ∞, the language L(G`U ) becomes precisely
L(G). Note that the number of nonterminals and the number of productions in G`U is linear in
the size of G`U , thus we have |G`U | = O(`)

We will show that taking ` = O(n3) will be sufficient in order to recognize any encoding w
of a graph G which contains a 3k-clique, which will prove 13. Our proof is essentially the same
as that of [4], except we count the number of times that non-linear productions must be used to
derive a string w which encodes a 3k-clique.

Theorem 14. Let w be an encoding of a graph G as given above. Then G`U → w if and only if
G contains a 3k-clique.

Proof. We first recall the listing rules, for xy ∈ {αβ, αγ, βγ} and i = 1, 2, . . . , `− 1, they are:

(1) Sixy → S∗xy (2xy) Sixy → #Ni+1
xy $Vi+1

xy #
(3xy) Ni

xy → #Si+1
xy #Vi+1

xy $ (4) Ni
xy → σNi

xyσ

where σ ∈ {0, 1}, and the last assisting rule

(5)Vi
xy → ε | $W′$Vi+1

xy

The proof in [4] proceeds by following the productions of the G, and demonstrating that any
resulting string must satisfy certain properties. Furthermore, if w is an encoding the a graph G
as specified above, w will have these properties if and only if G has a 3k-clique

We prove our extension of their theorem by showing that any string corresponding to the
encoding of a graph that is accepted by the original grammar G, can be produced using the
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listing productions (2xy) and (3xy), and the assisting production (5), at most ` times for some `
that we will later fix. Since these are the only non-linear productions which can be used more
than once in any derivation, this will demonstrate for such an ` that the CFG G`U will accept an
encoding w of a graph G if and only if G has a 3k-clique.

Our proof follows that of [4], where we consider the sequence of productions which must
be taken in order to derive w. We can only begin by the production S → w1astartSαγcendw2,
where astart appears in CG(tα) for some tα ∈ (Ck) and cstart appears in CG(tγ) for some tγ ∈ Ck.
From here, we must derive Sαγ → CNG(tα)SαγCLG(tγ) before exiting Sαγ via the production
Sαγ → S∗αγ , after which we can no longer return to Sαγ . The only way to produce the string
CNG(tα)SαγCLG(tγ) is via the so-called listing productions (2), (3), (4), thus we can confine
our attention to them.

Note that CNG(tα) consists of k2 ≤ n2 binary encodings of vertices in G, whereas CLG(tγ)
consists of k2n ≤ n3 such encodings. The only way to derive elements on the left of Siαγ is by
using the second listing production (2) and then deriving them via Ni

αγ using (4). Repeated
use of (4) allows for the derivation of exactly one of the binary encodings in CNG(tα), and
its corresponding reverse in CLG(tγ), say the sequence v. Then each time we use the second
production we are able to derive exactly one out of all k2 sequences in CNG. By repeatedly
applying (5), the nonterminal Vi

αγ produced along with Ni
αγ can derive all the binary sequences

on the right side of vR ∈ LG(u) ∈ CLG(tγ), for some u ∈ G, and the Vi+1
αγ derived from (3),

after Ni
αγ completes the derivation of v, can construct all such binary sequences on the left side.

There are at most n such sequences in LG(u), thus we need use the production (5) at most n
times to derive the rest of the terminals in LG(u).

Thus each time we derive one of the LG(u)’s in CLG(tγ), during which we simultaneously
derive one of the NG(v)’s in CNG(tα), we use at most n non-linear productions, thus increasing
the index of any nonterminal by at most n. Note in actuality, since (5) only involves Vi

αγ , we
only increase the index of Vi

αγ by this much; the index of Ni
αγ and Sαγ increase by at most two,

since both of (2) and (3) are used at most once in this process, but for simplicity we will use n
as the upper bound. Since this process must be repeated at most k2 times, the total increase in
the indices of the nonterminals is at most nk2 ≤ n3 in the derivation of CNG(tα)SαγCLG(tγ)

Now once we have produced the sentential form CNG(tα)SiαγCLG(tγ), the only possibility
is to "exit" via the production Siαγ → S∗αγ for some i. From here, we must apply the production
S∗αγ → amidS1

αβbmidS1
βγ , and then seek to derive

S1
αβ → CNG(tα)S∗αβCLG(tβ) S1

βγ → CNG(tβ)S∗αβCLG(tγ)

Again, as just argued, both of these derivations can be completed using at most n3 non-linear
productions, and thus never producing a nonterminal of index greater than n3. Once this has
occurred, the rest of the string w can be derived via the exiting productions S∗αβ → aendWbstart
and S∗βγ → bendWcstart, as W can produce any string in Σ∗. Since no nonterminal with index
greater than n3 is ever produced, by setting ` = 2n3 it follows that our grammar GU will accept
the string w via the previous productions.

Now it is proven explicitly in [4], that if the derivation Sxy → CNG(t)S∗xyCLG(t′) can
occur using the only the xy-listing rules, for any t, t′ ∈ Ck and xy ∈ {αβ, αγ, βγ}, then the
k-cliques t, t′ must form a 2k-clique t∪ t′. Since the set of all sentential forms, disregarding index,
derivable from our grammar G`U is strictly a subset of its context free counterpart G, this result
immediately holds for G`U as well. Finally, since our derivation involved occurrences of all three of
Sαγ → CNG(tα)SαγCLG(tγ), S1

αβ → CNG(tα)S∗αβCLG(tβ) and S1
βγ → CNG(tβ)S∗αβCLG(tγ),

it follows that tα ∪ tβ ∪ tγ is a 3k-clique.
The validity of the other direction can be demonstrated by following the derivations described

above for any particular triple tα, tβ, tγ ∈ Ck which together form a 3k-clique, which completes
the proof.
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Theorem 13. We have shown that for ` = 2n3, our grammar G`U accepts the string w iff G contains
a 3k-clique. The size of our grammar is then |G`U | = O(`) = O(n3). Since the size of the string w
encoding the graph G was O(k2nk+1), which can be constructed in O(k2nk+1) < O(nk+3) time,
it follows that if the membership of w ∈ L(G`U ) can be determined in time O(|G`U |αnc), then the
3k-clique problem can be solved in time O(nc(k+3)+3α), which proves the theorem.

6 Metalinear and Superlinear Grammar Edit Distance
In this section we demonstrate a quadratic time algorithm for metalinear and superlinear
grammars.

Definition (k-metalinear). G is said to be k-metalinear if every production is of the form:

S → A1 . . . At

Ai → αAjβ

Where Ai ∈ Q \ {S}, α, β ∈ Σ∗, and t ≤ k.

Thus, a k-metalinear language can have at most k linear nonterminals on the right hand
side of a production. The metalinear languages (also referred as LIN(k)) strictly contain the
linear languages. Furthermore, it has been shown that Lin(k) is a strict subset if Lin(k + 1) for
every k ≥ 1, giving rise to a infinite hierarchy within the metalinear languages [32].

Definition (superlinear). G is said to be superlinear if there is a subset QL ⊂ Q such that
every nonterminal A ∈ QL has only linear productions A→ αB or A→ Bα where B ∈ QL and
α ∈ Σ. If X ∈ Q \ QL, then X can have non-linear productions of the form X → AB where
A ∈ QL and B ∈ Q, or linear productions of the form X → αA | Aα | α for A ∈ QL, α ∈ Σ∗.
Superlinear grammars strictly contain the metalinear grammars.

Note that if we also allow both the nonterminals of the RHS to come from Q, then we
get the entire class of context free grammars. A grammar G is superlinear iff every word
w ∈ L(G) can be expressed as the concatenation of words generated by linear grammars. This
is a generalization of the metalinear languages, and can be thought of as the family Lin(∞).
Superlinear grammars strictly contain the metalinear grammars, and are the regular closure of
the linear languages. Several other nice properties of them have been well studied [32].

We now show how any metalinear grammar can be explicitly transformed into an equivalant
superlinear grammar.
Conversion of Metalinear to Superlinear grammar. Let GM be any k-linear grammar,
we construct an equivalant superlinear grammar GS . For every production of the form

S → A1 . . . At, t ≤ k

Add t− 1 new nonterminals A′1, . . . A′t−1, and the following productions

S → A′t−1At

A′i → A′i−1Ai for i = 2, 3, . . . , t− 1

A′1 → A1

The result is a superlinear grammar GS , with at most p|P | new nonterminals, where p is the
maximum number of nonterminals on the left hand side of any production. Under the assumption
that p = O(|P |), the O(|P |n2) time algorithm we present in this section for superlinear grammars
gives an O(|P |2n2) algorithm for metalinear language edit distance.
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Algorithm. We now present a quadratic time-complexity algorithm for computing the minimum
edit distance to a superlinear grammar G. Let x = x1 . . . xn be our input string. The algorithm
has two phases.
First Phase. In the first phase, we construct a graph T R, which is precisely the linear grammar
edit distance graph T (QL, x) for the nonterminals in QL, but with the direction of every edge
reversed and the weights kept the same. This, in effect, switches the roles of the source and sink
vertices of T . Computing the single source shortest path starting from t, by the symmetry of
T and T R we obtain the weight of the shortest path from Ai,j to t in T for every nonterminal
A ∈ QL and 1 ≤ i ≤ j ≤ n. By the proof of the correctness of the linear language edit distance
algorithm (Theorem 5), the weight of such a path is equal to the minimum edit distance of
xi . . . xj to a string s which can be legally produced starting from the state A. Thus computing
single source shortest path from t in T R allows us to construct a matrix Ti,j(A) = c such that c
is the minimum cost of deriving xi . . . xj from A. This, as before, can be done in O(n2|P |) time.
Second Phase. Once we have Ti,j(A) computed for all i, j and A ∈ QL, we begin the second phase
where we construct a new graph TNL with a new sink vertex tNL, NL for non-linear, consisting
of n clouds, each of which has a vertex for each of the non-linear nonterminals Q \QL. We will
denote the ith cloud by (i), and for any non-linear nonterminal Ak ∈ Q\QL, we denote the vertex
corresponding to Ak in (i) by Aik. Cloud (i) will then correspond to the substring xixi+1 . . . xn,
and for any nonterminal Ak ∈ Q\QL, the weight of the shortest path from Aik to tNL will be equal
to the minimum edit distance between xixi+1 . . . xn to the set of strings legally derivable from Ak.
Thus the vertex set of the graph is given by: V (TNL) = {Aik | Ak ∈ Q \QL, 1 ≤ i ≤ n} ∪ {tNL}.
Let null(A) denote the length of the shortest string legally derivable from A. We show how this
can be computed for any CFG in O(|Q||P | log(|Q|)) time in Theorem 3. We now describe the
construction of the edges of TNL.
Construction of the edges.

1. For every non-linear production Ak → BC, and each 1 ≤ i ≤ j < n, create the edge
Aik

BC−−−−→
Ti,j(B)

Cj+1. B derives the substring xixi+1...xj with a cost of Ti,j(B)

2. For every non-linear production Ak → BC and each 1 ≤ i ≤ n, create the edge Aik
BC−−−−−→

null(B)

Ci. B derives ε with a cost of null(B). Also create the edge Aik
BC−−−−−−−−−−→

Ti,n(B)+null(C)
tNL. B

derives the substring xixi+1...xn with a cost of Ti,n(B), and C derives ε with a cost of
null(C)

3. For each production Ak → B, and each 1 ≤ i ≤ n, create the edge Aik
B−−−−→

Ti,n(B)
tNL. B

derives the substring xixi+1...xn with a cost of Ti,n(B)

Theorem 15. The weight W of the shortest path from S1 to tNL in TNL is equal to the minimum
language edit distance between x and G, and can be computed in O(|P |n2) time.

Proof. The idea behind the proof is similar to that of the linear language edit distance algorithm.
Every legal word w ∈ L(G) can be derived starting from a string of nonterminals A1A2 . . . Ak
(by suitable relabeling of the nonterminals) where Ai ∈ QL for 1 ≤ i ≤ k and S → A1B1 →
A1A2B2 → · · · → A1A2 . . . Ak with Bi ∈ Q \QL.

Let w =
⊕k
i=1wi be a partition of the word such that wi is the substring derived by Ai. Then

if ew is any sequence of editing procedures (deletions of a terminal in w, insertions of a terminal
into w, or replacement of a terminal in w) which edits w into x given a specified set of legal
production pw which produce w, then we show how ew can be partitioned into ew1 , ew2 , . . . , ewk

,
where ewi are the edits of ew restricted to the substring wi. This partition works as follows. Let
ε be any single edit. If it is a deletion of a terminal in wi, or the replacement of a terminal
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in wi with another terminal, then we put ε in ewi . If ε is an insertion of a terminal between
two terminals a and b which are both either in wi, the result of replacement of a terminal in
wi, or the result of an insertion edit ε′ in ewi , then we put ε in ewi . If the insertion is made on
the boundary, say where either a ∈ wi, a was the result of a replacement of a terminal and wi,
or a was an insertion made in ewi , and either b ∈ wi+1, b was the result of a replacement of a
terminal and wi+1, or b was an insertion made in ewi+1 , then we assign ε to ewi (we could just
as easily assign to ewi+1 , as long as the rule is consistent). In other words, we assign ε to the
substring wi of the lowest index of the two substrings corresponding to the terminals on either
side of the insertion ε.

Now fix any such string w and set of edits ew with corresponding partition ew1 , ew2 , . . . , ewk

such that ew edits w into x. Let |ewi | be the total cost of the edits ewi , and let xi be the
result of applying ewi to wi, then x =

⊕k
i=1 xi. Now since the process of editing wi into xi is

independent from the process of editing wj into xj for all j 6= i, the minimum edit distance
from xi to the set of strings that are legally derivable from Ai is less than or equal to the
cost of ewi for all editing procedures ewi . By the proof of the linear grammar edit distance
algorithm, for any 1 ≤ a ≤ b ≤ n and nonterminal Ai, the value Ta,b(Ai) is equal to the
minimum edit distance between xa . . . xb and the set of strings legally derivable from Ai. Setting
li =

∑i−1
k=1 |xk|, then we have in particular Tli+1,li+1(Ai) ≤ |ewi |. Furthermore, for any sequence

1 = `1 ≤ `2 ≤ · · · ≤ `k+1 = n, the path:

S1 A1B1−−−−−−→
T`1,`2 (A1)

B1
A2B2−−−−−−−−→

T`2+1,`3 (A2)
B2 −→ . . . −→ tNL

exists in TNL with cost
∑k
i=1 T`i,`i+1(Ai). Setting `i = li, it follows that

∑k
i=1 T`i,`i+1(Ai) ≤

|ew| for any editing procedure which transforms a string w derivable from A1 . . . Ak into x. In
particular, this holds for the editing procedure with minimum cost, from which we conclude that
W is at most the minimum language edit distance from x to G.

The fact that W can be no less than the minimum edit distance is easily seen, as every
path corresponds to a derivation S → A1B1 → A1A2B2 → · · · → A1A2 . . . Ak, and a partition
x1, x2, . . . , xk such that x =

⊕k
i=1 xi and the cost of the path is the sum of the minimum costs

of editing xi into a string legally derivable from Ai over all 1 ≤ i ≤ k. If W were less then the
optimal, then the shortest path on TNL would give a string of nonterminals A1 . . . Ak derivable
from S such that x can be edited into a string legally derivable from A1 . . . Ak with cost less
than the language edit distance, a contradiction, which completes the proof.
Running Time. The first phase of the algorithm takes time O(|P |n2), as it entails running
single source shortest path on the linear grammar edit distance graph T . The graph TNL
constructed in the second phase has O(|Q|n) vertices, and O(|PA|n) edges connecting to any
vertex Ai ∈ TNL, where PA ⊂ P is the subset of productions with A on the left hand side. Thus
the total number of edges is O(|P |n2), so running single source shortest path on a graph takes
O(|P |n2) time, therefore the entire algorithm runs in O(|P |n2) time.

Theorem 16. The language edit distance to any metalinear grammar can be computed in
O(|P |2n2) time.

Proof. Follows directly from the above theorem and the conversion of any metalinear grammar
to superlinear grammar.

7 Appendix

7.1 Proof of Theorem 4

Proof. Let ρ be a sequence of legal productions which derives a string s from Ak, interspersed
by d edits that edit s into xi . . . xj , where d is the optimal edit distance over the set of all such
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strings s derivable from Ak. We first show that the shortest path has weight d.
Base Case d = 0. If d = 0, then starting from the vertex Ai,jk , we can follow edges for legal
productions and completing legal productions according to ρ of weight 0 to reach t. (For example,
if the first production in ρ is Ak → xiAk1 , then the first edge taken will be Ai,jk

xi−→
0
Ai+1,j
k1

.)
Base Case d = 1. Let us now consider d = 1. The single error has caused by either substitution,
or insertion, or deletion.

single substitution error. First, consider when a single substitution error has happened at
position l. That is, if we had replaced xl by some a ∈ Σ, the substring s = xixi+1...xl−1axl+1...xj
can be derived from Ak with cost d = 0. Consider the series of legal productions made from Ak,
up until the point where a is produced. At this point, there is some string x` . . . a, or a . . . x`′
which is left to be derived by some non-terminal At ∈ Q. WLOG, the string x` . . . a remains
to be derived. For all the productions so far, we follow the edges created for legal productions,
giving us a path from Ai,jk to A`,lt of cost 0. At this point, we can take the replacement edge
A`,lt

xl−→
1
A`,l−1
q , where At → Aqa is a production, or if ` = l then A→ a is a production, so we

take A`,`t
xl−→
1
t. In the second case we are done. In the first we have the string x` . . . xl−1 left to

derive from Aq, which can be done with cost 0 by again following the legal production edges,
corresponding to the productions of ρ, to the sink. The concatenation of the paths from Ai,jk to
A`,lt , of cost 0, then the edge of cost 1 to A`,l−1

q , and then the path of cost 0 from A`,l−1
q to the

sink, gives a full path from Ai,jk to t with a total cost of 1.
single deletion error. Now consider a single deletion error at position l. Hence, s =

xixi+1...xl−1axlxl+1...xj can be derived from Ak with d = 0. Then follow the series of legal
productions of ρ until a is produced. At this point, we must either derive x` . . . xl−1a or axl . . . x`′
from a non-terminal At. WLOG x` . . . xl−1a remains. Again, follow the legal edges from Ai,jk

to A`,xl−1
t with cost 0. Then take the edge A`,l−1

t
ε(a)−−→

1
A`,l−1
q , where At → Aqa is a production.

Starting from A`,l−1
q , we again follow the remaining legal edges, corresponding to the remaining

productions in ρ which produce the rest of the string, to the sink. The whole path all together,
then, takes us from Ai,jk to the sink with cost 1 as desired. One final case occurs if a is the last
terminal derived in the sequence. Then either xl−1 or xl was the last terminal derived when
we are stopped, WLOG it is xl with the production Ar → Asxl. Then the last production of ρ
must be a production As → a. Then we have null(As) = 1. Then we can take legal edges from
Ai,jk to Al,lr with cost 0. We then take the edge Al,lr

xl−−−−−→
null(As)

t, giving a full path to the sink with

cost 1 as desired.
single insertion error. Now consider a single insertion error at position l. Hence, s =

xixi+1...xl−1xl+1...xj can be derived from Ak with d = 0. Again, consider the sequence of legal
productions made until either xl−1 or xl+1 is derived, whichever happens first. WLOG xl−1 is
derived first by a non-terminal At → xl−1Aq, with xl+1 . . . x` left to be derived from Aq. Then
follow the corresponding legal production edges from Ai,jk to Al,`q , and then take the insertion
edge Al,`q

xl−→
1
Al+1,`
q . From here, follow the edges given by the remaining legal productions of ρ,

which takes us from Al+1,`
q to the sink with cost 0. Then the whole path has cost 1, as desired.

Induction. Assuming the result is true for errors up to d− 1, the induction step for d edits is
easy. Let s be the legally derivable string. Consider the sequence of legal productions in the
production sequence of s up until either the production of a terminal which will be deleted, or a
terminal which will be substituted, or to the point where a terminal will need to be inserted. let
xixi+1 . . . xr−1 and xs+1 . . . xj be the substrings that were derived by these legal productions so
far at the point when we are stopped. Taking the corresponding legal production edges gives a
path of cost 0 from Ap,qk to Ar,st for some At ∈ Q. Now, in if the case is substitution, we apply
the argument from the base case and arrive at a vertex Ar+1,s

q or Ar,s−1
q with cost 1, WLOG

we are at Ar+1,s
q . Now there are d− 1 remaining edits in between the string left to be legally
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derived by Aq and the string xr+1 . . . xs. Thus the induction hypothesis applies, and we obtain
a path of weight d− 1 from Ar+1,s

q to the sink. Concatenating the paths gives the desired path
of length d.

In the case of deletion or substitution, we similarly follow the argument in the base case for
d = 1, and then apply the induction hypothesis on the remaining substring left to be derived.
The only distinct case to note is in the deletion case, if we are stopped at a point where we have
derived all terminals in x except xl, and there remains to be derived the substring xla1a2 . . . am
of s – meaning that all of a1 . . . am must be deleted. In this case, we make the same argument
at the beginning of the deletion base case, taking a path of cost 0 from Ai,jk to Al,lr . Suppose the
next step in the derivation is Ar → xlAs. Then we take the null edge Al,lr

xl−−−−−→
null(As)

t with cost at

most m since a1 . . . am can be derived from As. Note that the cost must be exactly m, since the
edit distance d is assumed to be optimal.

This completes all cases, thus the shortest path has weight at most d. Let d∗ be the weight
of the shortest path. Then reversing the process of reasoning taken above, any such path from
Ai,jk to t of weight d∗ gives rise to a production of s from Ak which can then be edited into
xi . . . xj using exactly d∗ edits. Since d is the optimal edit distance, we have that d∗ = d is the
weight of the shortest path as desired. Furthermore, considering the other direction, this means
that if d∗ is the weight of the shortest path, then the minimum edit distance must also be d∗,
which completes the proof.

7.2 Proof of Theorem 3

Proof. The problem of finding null(A) is solved by the algorithm given in [30]. Specifically, the
problem of finding the shortest string derivable from A is application (B) of [30]. The algorithm
takes as input a context free gramamr G and nonterminal A ∈ Q, and returns the value null(A)
in time |P | log(|Q|) + |P | = O(|P | log(|Q|)). Repeating the process for all nonterminals in |Q|
yields the desired runtime.

7.3 Proof of Theorem 6

Proof. Note in this proof we work with the graphs Li instead of LRi for simplicity. Since each
path in one is just a reversal of the other, this is a trivial modification.

First, for any string x ∈ Σ∗, we write x(p : q) to denote the substring xpxp+1 . . . xq. The
proof is by induction on i. For A`,`∈L1 , consider the optimal editing procedure O from x` to the
set of strings derivable from A. If this optimal edititing procedure does not involve a non-linear
production, then the result follows from Theorem 4. If O does use a non-linear production, then
it must be a production which nullifies a resulting non-terminal (Step. 1). This then corresponds
to using a null edge created by our algorithm. Then necessarily O makes a series of non-linear
productions, each time nullifying exactly one of the two resulting nonterminals, until we reach a
nonterminal A∗ from which we take a linear edge (possibly an error edge). The minimum cost of
doing this is given by the null function, and thus following the corresponding null edges created
in step 1 gives a path from A`,` to A`,`∗ . This cost of this path is precisely the optimal cost of
nullifying all specified nonterminals. From A∗ only linear productions are made, thus the cost
of the shortest path from A`,`∗ to t is precisely the cost of the remaining productions in O by
Theorem 4.

Now assume the result for 1, . . . , i − 1, and fix any Ap,q ∈ Li, noting that necessarily
q − p + 1 = i, and consider an optimal series of legal and illegal (error) productions which
produce x(p : q) from A (note that every error production is a linear production). There are
three cases, and consider the first production in this series. There are three cases:
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If the first production is to derive xp either via an insertion, replacement, or valid production,
then this corresponds to a unique edge Ap,q → Bp+1,q with cost γ ∈ {0, 1}, where γ depends on
whether or not this production was an error. Suppose this edge takes us to Bp+1,q ∈ Li−1. In
step 2, we create an edge from t to Ap,q of cost γ + Tp+1,q(B). By induction, Tp+1,q(B) is the
minimum edit distance between x(p+ 1 : q) and the set of strings which can be legally produced
from B. Thus the cost of this edge is indeed the minimum edit distance between x(p : q) and
the set of strings which can be legally produced from A. The same argument holds when the
terminal in question is xq.

If the first production is a non-linear production A→ BC, and B and C each produce at
least one terminal of x, then it must be the case that there is some optimal splitting point
p ≤ ` < q such that B derives x(p : `) with cost c1 and C derives x(` + 1, q) with cost c2.
Since each of these substrings is strictly smaller than i, they each correspond to a cloud in
{L1, . . . , Li−1}, and since step 3 of the algorithm creates an edge with cost c which is at most
Tp,`(B) + T`+1,q (since c is computed as minimum over all splitting points), by induction we
know c ≤ Tp,`(B) + T`+1,q ≤ c1 + c2. Since both c1 and c2 must necessarily be optimal costs
of deriving x(p, `) from B and x(`+ 1, q) from C respectively, the cost of the edge created in
step 3 is precisely c1 + c2. Thus taking this edge gives a shortest path which is indeed equal to
the minimum edit distance between the substring xp . . . xq and the set of strings which can be
legally produced from A.

Finally, we consider the case that first production is a non-linear production A→ BC, and
one of B or C creates no terminals in x (is nullified). WLOG, B is the nullified nonterminal.
The corresponding edges are constructed in step 4, and takes us to Cp,q with cost null(A). By
theorem 3, we can correctly compute null(B) prior to commencement of the algorithm.

Now any edge taken from Ap,q correspond to a derivation of x(p : q) from A using both legal
and error productions. Since the cost of these edges corresponds to the cost of the derivation, it
must be the case that Ti,j(A) is no less than the minimum edit distance between x(p : q) and
the set of strings which can be legally produced from A, which completes the proof.

7.4 Proof of Theorem 7

Proof. If A returns c, then c is the length of the shortest path from S1,n ∈ Ln to t in the graph
T A. Suppose there exists a T ∈ DA with ‖T‖ < c. Recall that ‖T‖ is the sum of the costs of
all the nodes in T. Thus, it suffices to show that the cost of the root of T, plus the costs of all
nodes rooted in the left and right subtrees of the root of T, must be at least c. Our proof then
proceeds inductively, working up from the leaves of T. Let [X1, t, ω1], [X2, t, ω1], . . . , [Xk, t, ωk]
be the leaves of T. Since each of the [Xi, t, ωi]’s are leaves, each of these paths must use only
the linear edges from the original linear grammar edit distance graph T – so these edges must
also exist in T A. Thus for 1 ≤ i ≤ k, the shortest path from Xi to t in T A is at most ωi.

Now let [Ap,q? , Br,s
? , ω?] be any non-leaf node in T , with left and right children [Ar,`L , ·, ωL]

and [A`+1,s
R , ·, ωR] respectively. Let ωL and ωR be the sum of the costs of all nodes in the subtree

rooted at [Ar,`L , ·, ωL] and [A`+1,s
R , ·, ωR], respectively. Note that because any node is included in

the subtree rooted at itself, we include ωL in the value ωL and ωR is in the value ωR.
Now suppose that the weight of the shortest path from A`+1,s

R to t and from Ar,`L to t in T A
is at most ωR and ωL respectively. We would like to show that the shortest path from Ap,q? to t
in T A is at most ω? + ωR + ωL.

Now since [Ap,q? , Br,s
? , ω?] ends in cloud (r, s), by property 1 of production-edit trees in DA, it

must be the case that A computes non-linear edges for the cloud (r, s). From Br,s
? , a non-linear

edge e, corresponding to the production B? → ALAR, is taken with splitting point `. By property
2 of trees in DA, the splitting point ` must have been considered by A when computing the cost
of this edge. Thus, the cost of the edge e in T A is at most the cost of the shortest path from
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AL to t plus the cost of the shortest path from AR to t. By the inductive hypothesis, the cost
of e is then at most ωR + ωL. Since ω? is the cost of a path of consisting only of linear edges
from Ap,q? to Br,s

? , this path must also exists in T A. Thus following this path from Ap,q? to Br,s
?

and then taking e results in a path that exists in T A, going from Ap,q? to t, with cost at most
ω? + ωR + ωL, which is the desired result.

Finally, note that since A creates all null edges of the graph created by the exact algorithm
T OPT , the above result holds in the case where one of the left or right children of [Ap,q? , Br,s

? , ω?]
is a nullified node, since then the cost of the null edge is just the cost of nullifying the specified
nonterminal, and the inductive hypothesis holds for the other, non-nullified, child. This completes
all cases. Using this argument inductively, it follows that c must be no greater than the cost of
the root of T plus the costs of all nodes rooted in the left and right subtrees of the root of T, a
contradiction, which completes the proof.

7.5 Proof of Theorem 8

Here we state a slightly more detailed statement for Theorem 8 and prove it.

Theorem (8). For any approximation algorithm A ∈ F with precision functions α, β, there
exists a tree T ∈ DA and a Production-Edit Tree Mapping ψ : V (TOPT )→ V (T) such that the
following holds:

If ψ([Xi, Yi, ci]) is not a leaf, we have

c′i ≤ ci +
(
|p′i − pi|+ |q′i − qi|

)
−
(
|r′i − ri|+ |s′i − si|

)
+ 2α(ri, si) (Non-leaf)

If ψ([Xi, Yi, ci]) is a leaf, then

c′i ≤ ci + |p′i − pi|+ |q′i − qi|+ β(ri−1, si−1) (Leaf)

Furthermore, if the children of ψ([Xi−1, Yi−1, ci−1]) were constructed in Case 1, then we
have:

(|p′L−pL|+ |q′L−qL|)+(|p′R−pR|+ |q′R−qR|) ≤ |r′i−1−ri−1|+ |s′i−1−si−1|+2β(ri−1, si−1) (*)

Otherwise, the children of ψ([Xi−1, Yi−1, ci−1]) were created in Case 2. Then if both children
are leaves of T, then one of the following two inequalities is an upper bound for c′L + c′R:

≤ cL + cR + |r′i−1 − ri−1|+ |s′i−1 − si−1|+ 2β(ri−1, si−1) (**)

≤ cL + cR + |r′i−1 − ri−1|+ |s′i−1 − si−1|+ 2β(ri−1, si−1) (**)
Otherwise one of the next two inequalities is an upper bound for c′L + c′R:

≤ cL+cR+|r′i−1−ri−1|+|s′i−1−si−1|+2β(ri−1, si−1)−
(
|r′R−rR|+|s′R−sR|

)
+2α(rR, sR) (***)

≤ cL+cR+|r′i−1−ri−1|+|s′i−1−si−1|+2β(ri−1, si−1)−
(
|r′L−rL|+|s′L−sL|

)
+2α(rL, sL) (***)

Proof. We define ψ by explicitly constructing the nodes of the tree T. We do this by constructing
nodes to map to from the left and right children of any node at depth i in TOPT , and then inducting
on i. For each non-leaf node v ∈ TOPT for which we have already constructed a corresponding
node ψ(v) ∈ TOPT , we simultaneously construct the nodes ψ(vR), ψ(vL) corresponding to the
right and left children vR, vL of v respectively. This occurs since the construction of ψ(vR) will
depend on the splitting point used for the construction of ψ(vL), and vice-versa. Our mapping
will be well-behaved, in the sense that the resulting tree T will be a valid production-edit tree in
DA. We proceed in cases. For each, we will bound the distance between the starting clouds with
the goal of demonstrating (∗), and then apply Lemma 1 to obtain paths with costs that satisfy
either the (Leaf) or (Non-leaf) property. Note that Lemma 1 guarantees that each time we use
it to construct a path [·, Br′i,s

′
i , c′i] from [·, Bri,si , ci], we will always have that ri ≤ r′i ≤ s′i ≤ si.
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Building the root: Suppose the root of TOPT is [S1,n, Br1,s1 , c1] for some B ∈ Q. We begin
by mapping the root [S1,n, Br1,s1 , c1] of TOPT to the root of T. This is a special case, since the
root is neither a left nor a right child, so we only need to satisfy the (Non-leaf) property (if
the root is a leaf, only linear productions are made and our approximation will be optimal).
By Lemma 1, we can construct a path S1,n to Br′1,s

′
1 , of weight at most c1 + 2α(r1, s1) such

that A constructs nonlinear edges in (r′1, s′1). We thus create the root node [S1,n, Br′1,s
′
1 , c′1] in

T corresponding to this path with c′1 ≤ c1 + 2α(r1, s1), and map only the root of TOPT to it.
Then the root satisfies (Non-leaf). Now from Br′1,s

′
1 we can take the edge corresponding to the

same non-linear production as the edge taken by OPT from Br1,s1 , allowing us to map a child of
[S1,n, Br1,s1 , c1] to a child of [S1,n, Br′1,s

′
1 , c′1] such that the paths corresponding to both children

begin at the same nonterminal.

Building the rest of the tree: Now suppose that we have defined ψ on all nodes up to
depth i − 1 in TOPT by constructing the nodes they map to in T which satisfy the desired
properties, and such that ψ does not violate any of the conditions of a production-edit tree
mapping. For N,M ∈ Q, let [Npi−1,qi−1 ,M ri−1,si−1 , ci−1] be any node at depth i − 1, and let
ψ
(
[Npi−1,qi−1 ,M ri−1,si−1 , ci−1]

)
= [Np′i−1,q

′
i−1 ,M r′i−1,s

′
i−1 , c′i−1] ∈ T be the node that it is mapped

to. We show how to construct both right and left children of [Np′i−1,q
′
i−1 ,M r′i−1,s

′
i−1 , c′i−1] that we

can map the right and left children of [Npi−1,qi−1 ,M ri−1,si−1 , ci−1] ∈ TOPT to. We first consider
the case of the left child. So let [Ari−1,`, Bri,si , ci] be the left child of [Npi−1,qi−1 ,M ri−1,si−1 , ci−1],
coming from a production M → AC, where A,B ∈ Q, and ` is some splitting point satisfying
ri−1 ≤ ` ≤ si−1. We need to consider several cases.

Case 1L (left child): r′i−1 ≤ ` < s′i−1.
Whenever this is the case we can apply Lemma 1 to a starting cloud (r′i−1, `

′) in order to
construct a path starting at (r′i−1, `

′) that satisfies the desired properties. Since ri ≤ r′i ≤ s′i ≤ si,
there exists a splitting point `′ that is computed by A such that |`− `′| ≤ β(ri−1, si−1). Then
we have the identity (L):

|r′i−1 − ri−1|+ |`− `′| ≤ |r′i−1 − ri−1|+ β(ri−1, si−1) (L)

We now apply Lemma 1 on inputs [Ari−1,`, Bri,si , ci] and (r′i−1, `
′), giving us a path

[Ar
′
i−1,`

′
, Br′i,s

′
i , c′i], such that c′i ≤ ci+(|r′i−1−ri−1|+|`′−`|)−(|r′i−ri|+|s′i−si|)+2α(ri, si). Then

this node satisfies the (Non-leaf) property, and we set ψ([Ari−1,`, Bri,si , ci]) = [Ar
′
i−1,`

′
, Br′i,s

′
i , c′i],

completing the construction of the left child. The figure below illustrates the relationship between
all four nodes in question (both parent-child pairs). Here one can see the identity (L) visually:
the difference δ = |r′i−1 − ri−1|+ |`− `′| between the starting clouds of the two left children is at
most |r′i−1 − ri−1|+ β(ri−1, si−1).

Case 1R (right child): r′i−1 ≤ ` < s′i−1.
We now construct the right child of the same node [Np′i−1,q

′
i−1 ,M r′i−1,s

′
i−1 , c′i−1] ∈ T as before,

using the same splitting point `′ as was used in Case 1L. Note that the same splitting point must
be used in both the construction of the right and left children of [Np′i−1,q

′
i−1 ,M r′i−1,s

′
i−1 , c′i−1],

otherwise the resulting tree T would not be a valid production-edit tree. Let [C`+1,si−1 , Dri,si , ci]
be the right child of [Npi−1,qi−1 ,M ri−1,si−1 , ci−1]. Note that while we are using the same notation
ri, si to denote the ending cloud of the right child that we used before for the left, the ending
clouds of the right and left children will necessarily be distinct, and we use the same notation only
to avoid introducing unnecessary variables. Then again, since |(`′ + 1)− (`+ 1)| ≤ β(ri−1, si−1),
we have our second identity (R):

|(`′ + 1)− (`+ 1)|+ |s′i−1 − si−1| ≤ |s′i−1 − si−1|+ β(ri−1, si−1) (R)
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We now apply Lemma 1 on inputs [C`+1,si−1 , Dri,si , ci] and starting cloud (`′+1, s′i−1), giving
us a new path [C`

′+1,s′i−1 , Dr′i,s
′
i , c′i] which satisfies the (Non-leaf) property for the right child.

We then set ψ([C`+1,si−1 , Dri,si , ci]) = [C`
′+1,s′i−1 , Dr′i,s

′
i , c′i], completing the construction of the

right child.
Now (L) is a bound on the distance between the starting clouds of the left child of TOPT and

the node it is mapped to by ψ, and (R) is the corresponding bound on the distance between the
starting clouds of the right child and the node that it is mapped to by ψ. Adding the bounds
(L) + (R) produces the desired property (∗). Note that because equations (L) and (R) depend
only on the starting cloud of the children, (L) + (R) holds regardless of whether or not either
child is a leaf node, since that is dictated by the ending cloud of a node. Thus we have satisfied
the desired property (∗) in the case that r′i−1 ≤ ` < s′i−1.

Case 1 Leaf: Now if the left child of [Npi−1,qi−1 ,M ri−1,si−1 , ci−1] is a leaf [Ari−1,`, t, ci], then
we similarly use Lemma 1 to map it to the leaf [Ar

′
i−1,`

′
, t, c′i] where the bound c′i ≤ ci + (|r′i−1 −

ri−1|+ |`′ − `|) holds, which satisfies the (Leaf) property. The same argument applies for when
the right child is a leaf. Thus the above procedure stated in cases (1L) and (1R) to construct
right and left children that satisfy the (Non-leaf) property also works to construct leaf children
that satisfy the (Leaf) property. Thus we have satisfied the (Leaf) and (Non-leaf) properties in
the case that r′i−1 ≤ ` < s′i−1.

Case 2a: ` < r′i−1.
The difficulty in this case is that the substring (ri−1, `) which OPT derives in its left

child is disjoint from the substring (r′i−1, s
′
i−1) which must be derived by the children of

[Np′i−1,q
′
i−1 ,M r′i−1,s

′
i−1 , c′i−1] ∈ T, thus we cannot utilize Lemma 1 to construct the left child of

[Np′i−1,q
′
i−1 ,M r′i−1,s

′
i−1 , c′i−1].

Case 2a – constructing the left child: First, fix `′ such that |`′− r′i−1| ≤ β(ri−1, si−1) and
such that the splitting point `′ is considered by A. Note that we can always find such a `′ by the
property of A and by definition of β. We will set the left child to be [Ar

′
i−1,`

′
, ·, c′i], which will be

a leaf in T. We leave the second argument blank, since we only need to bound the cost c′i of
deriving the string x(r′i−1 : `′) from A and then nullifying the remaining nonterminals, whether
with linear or non-linear productions. Since we will need to closely consider the distance between
several pairs of values, the relationships between the parameters in question are shown visually
below:

Now since we can derive x(r′i−1 : `′) with at most β(ri−1, si−1) insertions, we just need to
bound the cost null(A). Recall that null(A) is the length of the shortest word derivable from
A. We know that the right child [Ari−1,`, ·, ci] in TOPT derives a string of length (` − ri−1)
starting from A with cost at most ci, where ci is the sum of the costs of all nodes in the subtree
rooted at [Ari−1,`, ·, ci]. In the worst case this cost comes entirely from deletion edges, and thus
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null(A) ≤ ci + (`− ri−1). Along with the β(ri−1, si−1) insertions, we conclude that the cost of
the left child satisfies c′i ≤ ci + (` − ri−1) + β(ri−1, si−1) ≤ ci + |r′i−1 − ri−1| + β(ri−1, si−1) ≤
ci + |r′i−1 − ri−1|+ |`′ − `|+ β(ri−1, si−1), which satisfies (Leaf) (since (ri−1, `

′) is the starting
cloud in question) . We set ψ([Ari−1,`, ·, ci]) = [Ar

′
i−1,`

′
, ·, c′i], and map all children in the subtree

rooted at [Ari−1,`, ·, ci] to [Ar
′
i−1,`

′
, ·, c′i]. Note that this is the only case where we map multiple

nodes to the same place.

Case 2a – constructing the right child: We now show how to construct the right child.
Let [C`+1,si−1 , Dri,si , ci] be the right child of [Npi−1,qi−1 ,M ri−1,si−1 , ci−1] in TOPT . We fix the
same `′ as before, since the splitting points of the right and left children must agree. We now
have `+ 1 ≤ `′ + 1 ≤ s′i−1 ≤ si−1, thus we can apply Lemma 1 to [C`+1,si−1 , Dri,si , ci] and the
cloud (`′+1, s′i−1) to map to a node [C`

′+1,s′i−1 , Dr′i,s
′
i , c′i], such that satisfies (Non-leaf) (or (Leaf)

if the right child of [Npi−1,qi−1 ,M ri−1,si−1 , ci−1] is a leaf). Thus this is the desired right child.
Now note that using Lemma 1, recalling as well the non-degenerate property of A, we have two
cases: if the right child is a leaf, we have the bound:

c′R = c′i ≤ ci + (si−1 − s′i−1) + (`′ + 1− (`+ 1))

≤ ci + (si−1 − s′i−1) + (r′i−1 − `) + β(ri−1, si−1)

Recalling from earlier that the left child had cost c′L such that c′L ≤ cL+(`−ri−1)+β(ri−1, si−1),
summing this bound with the bound for c′R given above, we see that the that the sum of the
costs of both children satisfies one of the first of the desired inequalities (∗∗).

Now if the right child is not a leaf, we have:

c′i ≤ ci + (si−1 − s′i−1) + (`′ + 1− (`+ 1))− (|r′i − ri|+ |s′i − si|) + 2α(ri, si)

≤ ci + (si−1 − s′i−1) + (r′i−1 − `) + β(ri−1, si−1)− (|r′i − ri|+ |s′i − si|) + 2α(ri, si)

Summing the above inequality with the same bound on c′L as for the leaf case gives the first of
the desired inequalities (∗ ∗ ∗).

Case 2b : ` ≥ s′i−1.
This case is entirely symmetric to case 2a. In this case the substring (`+ 1, si−1) which OPT

derives in its right child is again disjoint from the substring (r′i−1, s
′
i−1) which must be derived

by the children of [Np′i−1,q
′
i−1 ,M r′i−1,s

′
i−1 , c′i−1] ∈ T. Thus the same procedure as in case 2 works,

except we instead nullify the starting non-terminal C of the right child in T, and then apply
Lemma 1 to construct the left child, such that both satisfies all desired properties. Here, the
children will satisfy the second inequality of either (∗∗) or (∗ ∗ ∗), instead of the first as in Case
2a. This completes all cases.

Remark 2. Note that in the case where ` < r′i−1, or ` ≥ s′i−1, and we cannot apply Lemma 1
to construct the left child, and we instead construct a node [Ar

′
i−1,`

′
, ·, c′i], we are bounding c′i as

the total cost of inserting the entire substring x(r′i−1 : `′) from A and then nullifying A. Now
the cost of nullifying A may involve making non-linear productions and nullifying the resulting
nonterminals, so in actuality [Ar

′
i−1,`

′
, ·, c′i] may not be a leaf of a valid production-edit tree, it

may have nullified children nodes. However, the bound we place on c′i is an upper bound on the
cost of deriving x(r′i−1 : `′) from A in the approximation graph T A, and thus is a bound on the
total cost of all the nodes that could be in the subtree rooted at [Ar

′
i−1,`

′
, ·, c′i]. Therefore, the

bound on c′i does indeed satisfy the (Leaf) property, and so we can consider [Ar
′
i−1,`

′
, ·, c′i] to be a

leaf of T
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Lemma 2. Any k-ultralinear grammar can be converted into a k∗-ultralinear language in the
above normal form, where k∗ ≤ k log(p), and p is the maximum number of nonterminals on the
right hand side of any production.

Proof. Consider any production A→ A1A2 . . . Am, where A ∈ Qt and Aj ’s are in partitions of
lower index for 1 ≤ j ≤ m. We add log(p) new partitions between Qt and Qt−1. We then make
new nonterminals A1

1, A
1
2, . . . A

1
dm/2e, and set the only production of each to be A1

i → A2i−1A2i

for i = 1, 2, ..., dm/2e. If m is odd than A1
dm/2e → Am will be the only production of the last

nonterminal. We then repeat the process, creating nonterminals A2
1, . . . A

2
dm/4e and setting

A2
i → A1

2i−1A
1
2i. Finally, we create the production A → A

dlog(m)e
1 A

dlog(m)e
2 . We place the

terminals Aij in the partition that is depth dlog(m)e − 1 + i lower than Qt. Furthermore, for
any production A→ B where A ∈ Qt and B ∈ Ql with l < t, we can add a new non-termianl
B′ ∈ Ql such that its only production is B′ → ε. We then change the production to A→ BB′.
This does not increase the number of partitions. Doing the first process for all productions, the
resulting grammar has at most k log(p) partitions, and after both processes at most p|P | new
nonterminals, since every production has at most p nonterminals on the right hand side.
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