Policy Gradients

CS 185/285

Instructor: Sergey Levine
UC Berkeley

Part 1.
REINFORCE: basic policy gradients

Optimizing the objective of RL

H H
0" = arg mga’XETNPG(T) [Z T(Sta at)] p9(817 ai,...,SH, aH) — p(Sl) H ﬂ-ﬂ(at|st)p(st—|—1|st7 at)

t=1 t=1
po(T)

fit a model/ J(Q) — F
estimate the return 4

generate samples
(i.e. run the policy)
; improve the policy

o

=1

Evaluating the objective

H
0* = arg max Ermpo(r) [Z 7 (St at)]

t=1

J(0) = B opo(r) [ZT(Sta at)] ~ % Z Z (S?) aiﬂ)

L sum over samples from g

Direct policy differentiation

H
0* = arg max Erpy () [Z r(st, at)]

t=1

7(6)

J(0) = Brpy () [1(7)] =] po(7)r(r)dr
_'_I

H
Zfr(st,at)
t=1

VoJ(0) = [Vopo(r)r(r)dr :/pg(T)Vg log pg(7)r(7)dT = E 0p,(r) [V log pe(7)r(T)]

Direct policy differentiation

H
0* = arg max J(0) po(s1,ai,. .., s, ar) = p(s1) H mo(ae[se)p(Si41[st, ar)
' , ' t=1
log of both|sides
J(0) = Erropy) [r(7)] 8 < Po(7) .
log pe(7) = log p(s1) Zlogmg as[s¢) + log p(s¢+1]se, at)
VBJ(Q) — E*rwpg (1) [Ve log pg (T)T(T)] t=1

A
[|

H
1‘%) +) logmy(asls;) + IMEH)]
t=1

Vo

VoJ(0) = Erpy(r) [(Z Vg log mg(as|st)) (ZT S¢, Ay)]

t=1

Evaluating the policy gradient s

: rsnan | ~ L ZZTSt ’at \ =\

recall: J(0)

TNpg(T)

fit a model to
estimate return

generate
samples (i.e.

run the policy)

6 «— 9—|—OZVQJ(9)

; (MPro¥e the
policy

REINFORCE algorithm:
1. sample {7(9} from mg(as|s;) (run the policy)

2. Vo (0) = 3, (5, Vologma(al’[s”)) (5, r(si”. "))
3.0 0+ aV,J(0)

Part 2.
Jnderstanding policy gradients

Evaluating the policy gradient
i St,at]% ZZ st ,a,E”

recall: J(0)

— Trvpg('r)

i
VoJ(0) = Errpy(r) [(Z Vo IOgWG(at|St)) (Z T(Staat))]

| N/ H H _ .
Vo (0) = — Vo logmp(al” |st”) r(s;”,a”)
N =1

t=1

L what is this?

7 t=1

Comparison to maximum likelihood

N H H
1 i)y (i D (i
policy gradient: VQJ(Q) ~ N (Vo log my (a_l(t)|S§))) (Z T(Sg)’ ag)))

t=1

Example: Gaussian policies

vg,](g)mﬁ (Vglogmg(agb)|3£%))) (Zfr‘(sgl),agﬂ))

t=1

lteration 2000

example: 70 (at|St) — N(fneural network(st); E)

1
log mo(az|st) = —§||f(st) — at||% + const
1 d
Vo logma(arls) = 337 (/) — a0) G5

REINFORCE algorithm:

1. sample {7("} from mg(a;|s;) (run the policy)

2. VoJ(0) ~ ZZ (Zt Vi log mg (aii) |S£Z))) (Zt T(Sgi)a agi)))
3. 00+ aVyJ(0)

What did we just do?
V(0 Z (Z Vo log mp(a >|s§’”)) (iﬂsp,agﬂ))

11 t=1 t=1

1 i i 1 <
Vo (0) ~ N Z Vg log g (7)) (1) maximum likelihood: Vg Jyr,(0) = NN E Vologmg (T
—1 \ J i=1

I

H
> Vology mo(a;”|s{”)

t=1

good stuff is made more likely
bad stuff is made less likely

simply formalizes the notion of “trial and error”!

Partial observability

| N /H o H . .
VoJ(0) = ~ (Sj Vo log g (agi) |0§%))) (Z r(sgz)’ a§z)))

Markov property is not actually used!

Can use policy gradient in partially observed MDPs without modification

What is wrong with the policy gradient?

N
Vod(0) =~ 1 Z Vo logmy(T)r(T) What we want: positive multipliers on good moves,
N i—1 negative multipliers on bad moves

Example: preset position chess

What we get:
—_—
positive multipliers on lucky starts,
negative multipliers on unlucky starts
these issues “average out”
negative multipliers on good moves with enough samples, but
when you made a mistake later = e might need a very large
number of samples to get
positive multipliers on bad moves when there
your opponent randomly made a
mistake later
) “high variance”

R = +1 for winning, -1 for losing

Part 3:
Variance reduction

What is wrong with the policy gradient?

N
Vod(0) =~ 1 Z Vo logmy(T)r(T) What we want: positive multipliers on good moves,
N i—1 negative multipliers on bad moves

Example: preset position chess
What we get:

—
positive multipliers on lucky starts,
negative multipliers on unlucky starts

these issues “average out”

negative multipliers on good moves with enough samples, but
when you made a mistake later = e might need a very large

number of samples to get
positive multipliers on bad moves when there

your opponent randomly made a
mistake later

) “high variance”

R = +1 for winning, -1 for losing

p
a convenient identity

po(T)Veglog pe(T) = Vope(T)

Baselines

L

Vo J(6) z Vo log po (7)) — b

=1

N
1
- N Z”” but... are we allowed to do that??
=1

E[Vglog pg(7)b] = /pg(T)Vg logpg(T)bdr = /Vgpg(T)de = ng/pg(T)dT =bVyl =0

subtracting a baseline is unbiased in expectation!

average reward is not the best baseline, but it’s pretty good!

Causality

Mm

N / H
1
Vo J(0) ~ N (Sj Vo log mo(at |s) (T st ,at bt)
t=1

-
1=1 \t=1

Causality: policy at time ¢’ cannot affect reward at time ¢ when ¢ < t/

H
1 (4)..(3) @) _ ()
VoJ (6 N ;;VQ logmg(a;’|s;) (t; ((s,t,, » Ay) — by

\ J
|

“reward to go” ()

Part 4.
Practical implementation

Policy gradient with automatic differentiation
Q"

N H H
1 7 7 [
Vo (0) ~ N ZZV@ log'ng(a,g)\S,E)) (Z (S,(f,),ai,)))

1=1 t=1 t'=t

L pretty inefficient to compute these explicitly!

How can we compute policy gradients with automatic differentiation?

We need a graph such that its gradient is the policy gradient!

maximum likelihood: VgJmr (0 Z Z Vologmy(a)\sff')) I (6 Z log g (a)]S
=1 t=1 =1 t=1

Just implement “pseudo-loss” as a weighted maximum likelihood:

| N H o
~ < Z Z log mp(a'”[s!") Q!

=1 t=1

L cross entropy (discrete) or squared error (Gaussian)

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Maximum likelihood:

logits = policy.predictions(states)

negative likelihoods = tf.nn.softmax _cross _entropy with logits(labels=actions, logits=logits)
loss = tf.reduce_mean(negative likelihoods)

gradients = loss.gradients(loss, variables)

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:

Given:

actions - (N*T) x Da tensor of actions

states - (N*T) x Ds tensor of states

g _values - (N*T) x 1 tensor of estimated state-action values (with baseline subtracted)

Build the graph:

logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative likelihoods = tf.nn.softmax _cross _entropy with logits(labels=actions, logits=logits)
weighted negative likelihoods = tf.multiply(negative_likelihoods, g values)

loss = tf.reduce_mean(weighted negative likelihoods)

gradients = loss.gradients(loss, variables)

N H
J0)~ 5 Y logmo(al” s @)

i1 t—1 gq_values

Policy gradient in practice

* Remember that the gradient has high variance
* This isn’t the same as supervised learning!
* Gradients will be really noisy!

* Consider using much larger batches

* Tweaking learning rates is very hard
* Adaptive step size rules like ADAM can be OK-ish
 We'll learn about policy gradient-specific learning rate adjustment methods later!

	Slide 1: Policy Gradients CS 185/285 Instructor: Sergey Levine UC Berkeley
	Slide 2: Part 1: REINFORCE: basic policy gradients
	Slide 3: Optimizing the objective of RL
	Slide 4: Evaluating the objective
	Slide 5: Direct policy differentiation
	Slide 6: Direct policy differentiation
	Slide 7: Evaluating the policy gradient
	Slide 8: Part 2: Understanding policy gradients
	Slide 9: Evaluating the policy gradient
	Slide 10: Comparison to maximum likelihood
	Slide 11: Example: Gaussian policies
	Slide 12: What did we just do?
	Slide 13: Partial observability
	Slide 14: What is wrong with the policy gradient?
	Slide 15: Part 3: Variance reduction
	Slide 16: What is wrong with the policy gradient?
	Slide 17: Baselines
	Slide 18: Causality
	Slide 19: Part 4: Practical implementation
	Slide 20: Policy gradient with automatic differentiation
	Slide 21: Policy gradient with automatic differentiation
	Slide 22: Policy gradient with automatic differentiation
	Slide 23: Policy gradient in practice

