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Part 1.
REINFORCE: basic policy gradients




Optimizing the objective of RL

H H
0" = arg mga’XETNPG(T) [Z T(Sta at)] p9(817 ai,...,SH, aH) — p(Sl) H ﬂ-ﬂ(at|st)p(st—|—1|st7 at)

t=1 t=1
po(T)

fit a model/ J(Q) — F
estimate the return 4

generate samples
(i.e. run the policy)
; improve the policy

o

=1




Evaluating the objective
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Direct policy differentiation
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Direct policy differentiation
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Evaluating the policy gradient s
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REINFORCE algorithm:
1. sample {7(9} from mg(as|s;) (run the policy)
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Part 2.
Jnderstanding policy gradients




Evaluating the policy gradient
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Comparison to maximum likelihood
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Example: Gaussian policies
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REINFORCE algorithm:
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What did we just do?
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good stuff is made more likely
bad stuff is made less likely

simply formalizes the notion of “trial and error”!




Partial observability
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Markov property is not actually used!

Can use policy gradient in partially observed MDPs without modification



What is wrong with the policy gradient?
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Example: preset position chess

What we get:
—_—
positive multipliers on lucky starts,
negative multipliers on unlucky starts
these issues “average out”
negative multipliers on good moves with enough samples, but
when you made a mistake later = e might need a very large
number of samples to get
positive multipliers on bad moves when there
your opponent randomly made a
mistake later
) “high variance”

R = +1 for winning, -1 for losing



Part 3:
Variance reduction



What is wrong with the policy gradient?

N
Vod(0) =~ 1 Z Vo logmy(T)r(T) What we want: positive multipliers on good moves,
N i—1 negative multipliers on bad moves

Example: preset position chess
What we get:

—
positive multipliers on lucky starts,
negative multipliers on unlucky starts

these issues “average out”

negative multipliers on good moves with enough samples, but
when you made a mistake later = e might need a very large

number of samples to get
positive multipliers on bad moves when there

your opponent randomly made a
mistake later

) “high variance”

R = +1 for winning, -1 for losing



p
a convenient identity

po(T)Veglog pe(T) = Vope(T)

Baselines
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subtracting a baseline is unbiased in expectation!

average reward is not the best baseline, but it’s pretty good!



Causality
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Part 4.
Practical implementation




Policy gradient with automatic differentiation
Q"
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L pretty inefficient to compute these explicitly!

How can we compute policy gradients with automatic differentiation?

We need a graph such that its gradient is the policy gradient!

maximum likelihood:  VgJmr (0 Z Z Vologmy(a )\sff')) I (6 Z log g (a )]S
=1 t=1 =1 t=1

Just implement “pseudo-loss” as a weighted maximum likelihood:
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L cross entropy (discrete) or squared error (Gaussian)



Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Maximum likelihood:

logits = policy.predictions(states)

negative likelihoods = tf.nn.softmax _cross _entropy with logits(labels=actions, logits=logits)
loss = tf.reduce_mean(negative likelihoods)

gradients = loss.gradients(loss, variables)



Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:

# Given:

# actions - (N*T) x Da tensor of actions

# states - (N*T) x Ds tensor of states

# g _values - (N*T) x 1 tensor of estimated state-action values (with baseline subtracted)

# Build the graph:

logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative likelihoods = tf.nn.softmax _cross _entropy with logits(labels=actions, logits=logits)
weighted negative likelihoods = tf.multiply(negative_likelihoods, g values)

loss = tf.reduce_mean(weighted negative likelihoods)

gradients = loss.gradients(loss, variables)
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Policy gradient in practice

* Remember that the gradient has high variance
* This isn’t the same as supervised learning!
* Gradients will be really noisy!

* Consider using much larger batches

* Tweaking learning rates is very hard
* Adaptive step size rules like ADAM can be OK-ish
 We'll learn about policy gradient-specific learning rate adjustment methods later!
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