

Policy Gradients

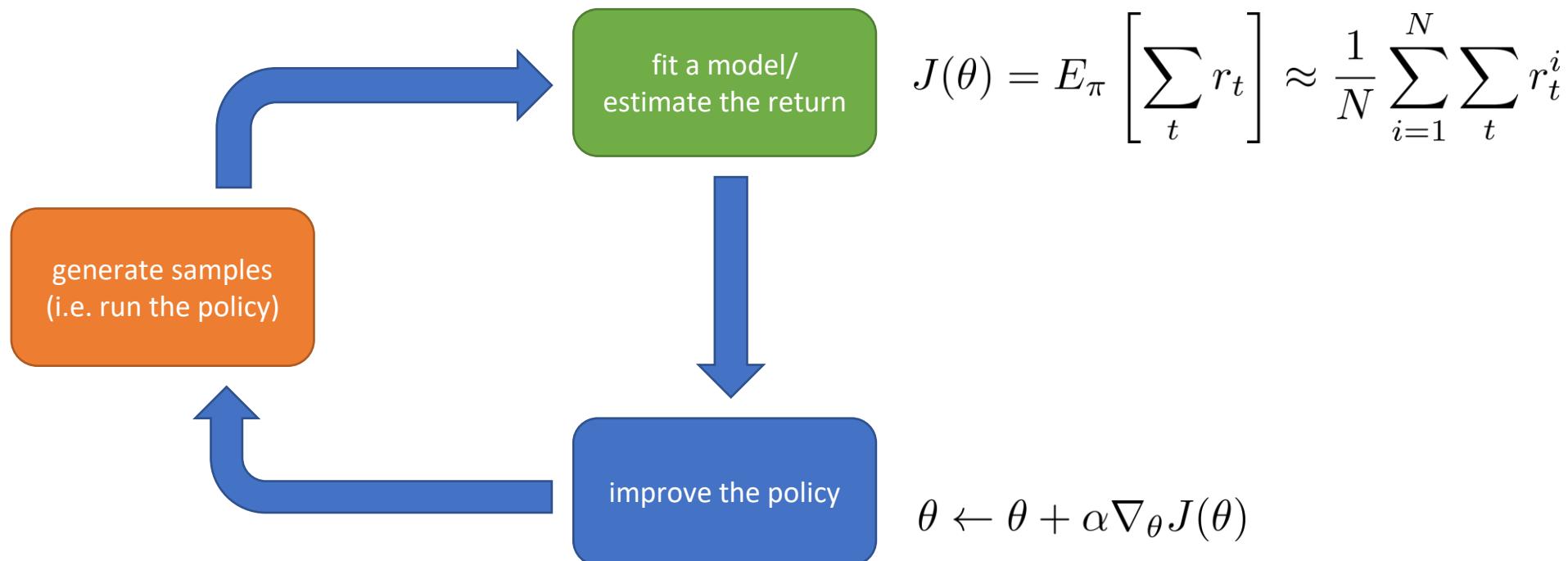
CS 185/285

Instructor: Sergey Levine
UC Berkeley

Part 1: REINFORCE: basic policy gradients

Optimizing the objective of RL

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^H r(\mathbf{s}_t, \mathbf{a}_t) \right]$$
$$p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_H, \mathbf{a}_H) = \underbrace{p(\mathbf{s}_1)}_{p_{\theta}(\tau)} \prod_{t=1}^H \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$



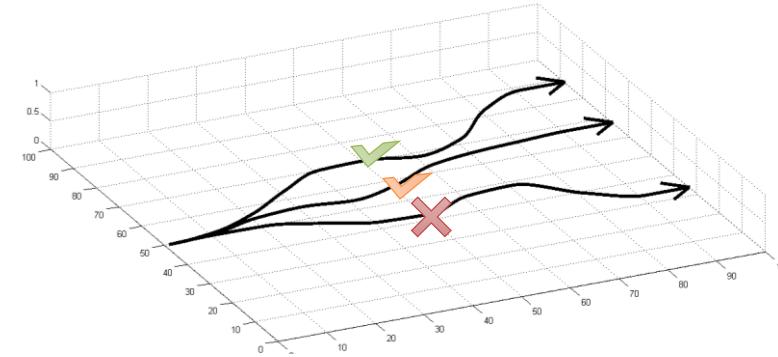
Evaluating the objective

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^H r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

$J(\theta)$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^H r(\mathbf{s}_t, \mathbf{a}_t) \right] \approx \frac{1}{N} \sum_i \sum_t r(\mathbf{s}_t^{(i)}, \mathbf{a}_t^{(i)})$$

sum over samples from π_{θ}



Direct policy differentiation

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \underbrace{\left[\sum_{t=1}^H r(\mathbf{s}_t, \mathbf{a}_t) \right]}_{J(\theta)}$$

a convenient identity

$$\underbrace{p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)}_{\text{yellow}} = p_{\theta}(\tau) \frac{\nabla_{\theta} p_{\theta}(\tau)}{p_{\theta}(\tau)} = \underbrace{\nabla_{\theta} p_{\theta}(\tau)}_{\text{blue}}$$

$$J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [r(\tau)] = \int p_{\theta}(\tau) r(\tau) d\tau$$
$$\sum_{t=1}^H r(\mathbf{s}_t, \mathbf{a}_t)$$

$$\nabla_{\theta} J(\theta) = \int \underbrace{\nabla_{\theta} p_{\theta}(\tau)}_{\text{blue}} r(\tau) d\tau = \int \underbrace{p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)}_{\text{yellow}} r(\tau) d\tau = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$$

Direct policy differentiation

$$\theta^* = \arg \max_{\theta} J(\theta)$$

$$J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [r(\tau)]$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$$

$$\nabla_{\theta} \left[\cancel{\log p(\mathbf{s}_1)} + \sum_{t=1}^H \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) + \cancel{\log p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)} \right]$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^H \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) \right) \left(\sum_{t=1}^H r(\mathbf{s}_t, \mathbf{a}_t) \right) \right]$$

log of both sides

$$p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^H \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\log p_{\theta}(\tau) = \log p(\mathbf{s}_1) + \sum_{t=1}^H \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) + \log p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

Evaluating the policy gradient

recall: $J(\theta) = \mathbb{E}_{\tau \sim p_\theta(\tau)} \left[\sum_{t=1}^H r(\mathbf{s}_t, \mathbf{a}_t) \right] \approx \frac{1}{N} \sum_i \sum_t r(\mathbf{s}_t^{(i)}, \mathbf{a}_t^{(i)})$

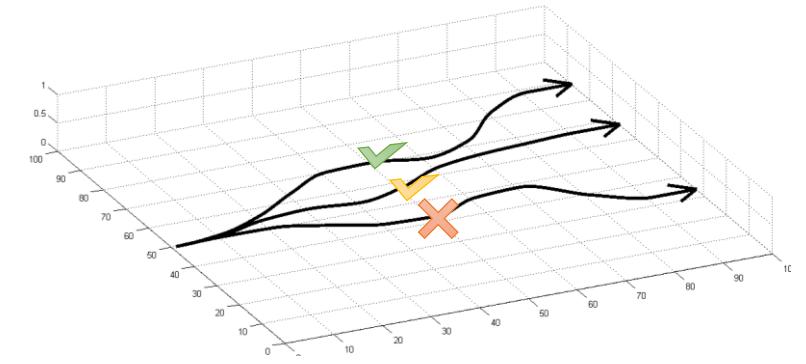
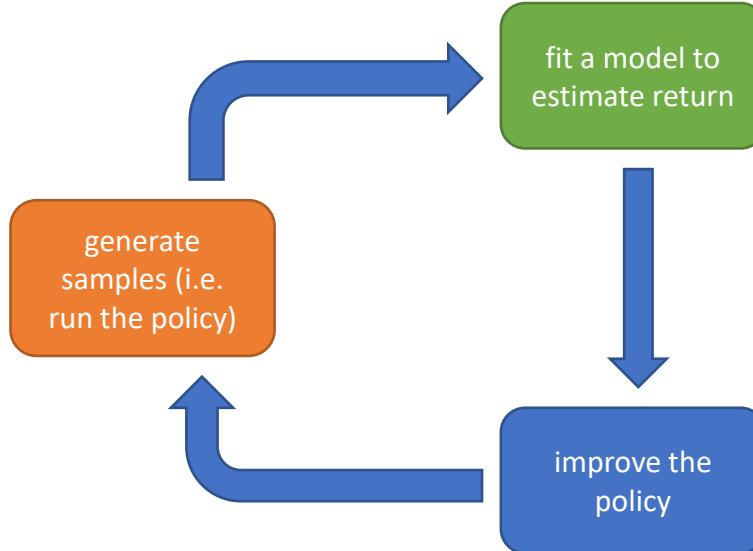
$$\nabla_\theta J(\theta) = \mathbb{E}_{\tau \sim p_\theta(\tau)} \left[\left(\sum_{t=1}^H \nabla_\theta \log \pi_\theta(\mathbf{a}_t | \mathbf{s}_t) \right) \left(\sum_{t=1}^H r(\mathbf{s}_t, \mathbf{a}_t) \right) \right]$$

$$\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \left(\sum_{t=1}^H \nabla_\theta \log \pi_\theta(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}) \right) \left(\sum_{t=1}^H r(\mathbf{s}_t^{(i)}, \mathbf{a}_t^{(i)}) \right)$$

$$\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta)$$

REINFORCE algorithm:

1. sample $\{\tau^{(i)}\}$ from $\pi_\theta(\mathbf{a}_t | \mathbf{s}_t)$ (run the policy)
2. $\nabla_\theta J(\theta) \approx \sum_i \left(\sum_t \nabla_\theta \log \pi_\theta(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}) \right) \left(\sum_t r(\mathbf{s}_t^{(i)}, \mathbf{a}_t^{(i)}) \right)$
3. $\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta)$



Part 2: Understanding policy gradients

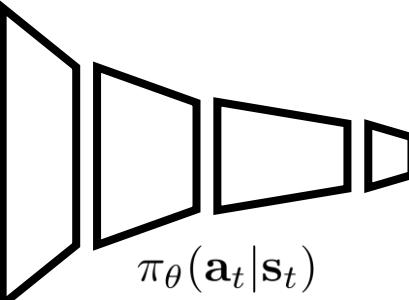
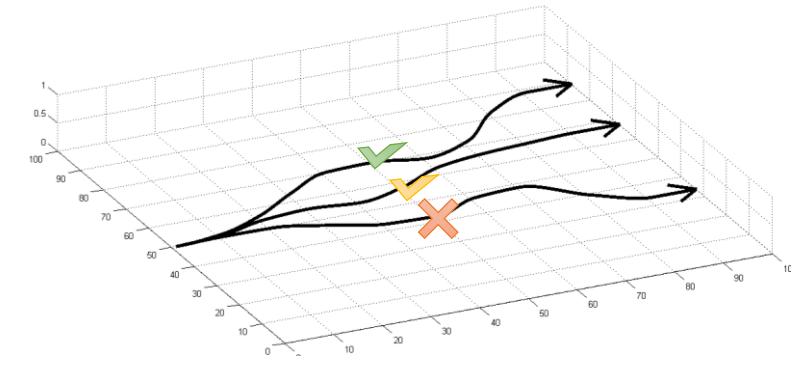
Evaluating the policy gradient

recall: $J(\theta) = \mathbb{E}_{\tau \sim p_\theta(\tau)} \left[\sum_{t=1}^H r(\mathbf{s}_t, \mathbf{a}_t) \right] \approx \frac{1}{N} \sum_i \sum_t r(\mathbf{s}_t^{(i)}, \mathbf{a}_t^{(i)})$

$$\nabla_\theta J(\theta) = \mathbb{E}_{\tau \sim p_\theta(\tau)} \left[\left(\sum_{t=1}^H \nabla_\theta \log \pi_\theta(\mathbf{a}_t | \mathbf{s}_t) \right) \left(\sum_{t=1}^H r(\mathbf{s}_t, \mathbf{a}_t) \right) \right]$$

$$\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \left(\sum_{t=1}^H \nabla_\theta \log \pi_\theta(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}) \right) \left(\sum_{t=1}^H r(\mathbf{s}_t^{(i)}, \mathbf{a}_t^{(i)}) \right)$$

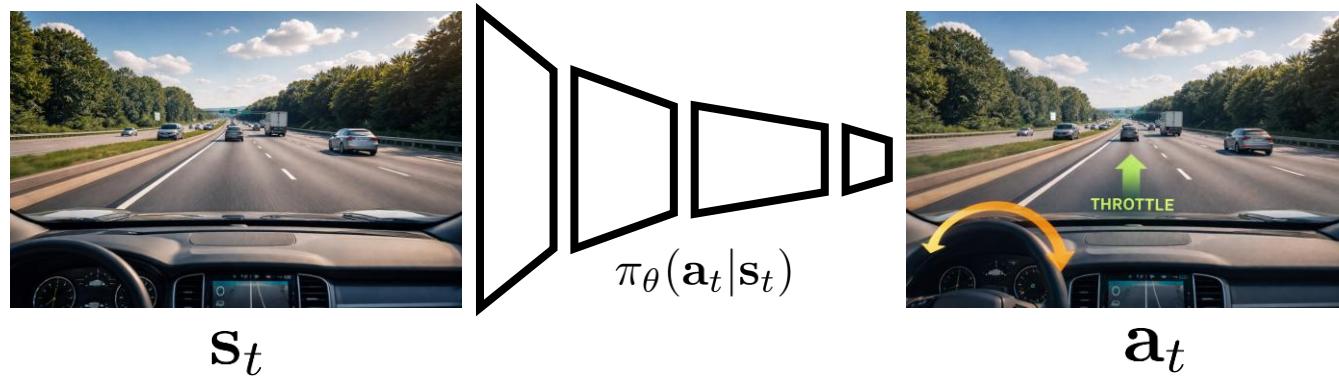
what is this?



Comparison to maximum likelihood

policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \left(\sum_{t=1}^H \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}) \right) \left(\sum_{t=1}^H r(\mathbf{s}_t^{(i)}, \mathbf{a}_t^{(i)}) \right)$$

maximum likelihood:
$$\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^N \left(\sum_{t=1}^H \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}) \right)$$



Example: Gaussian policies

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \left(\sum_{t=1}^H \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}) \right) \left(\sum_{t=1}^H r(\mathbf{s}_t^{(i)}, \mathbf{a}_t^{(i)}) \right)$$

example: $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) = \mathcal{N}(f_{\text{neural network}}(\mathbf{s}_t); \Sigma)$

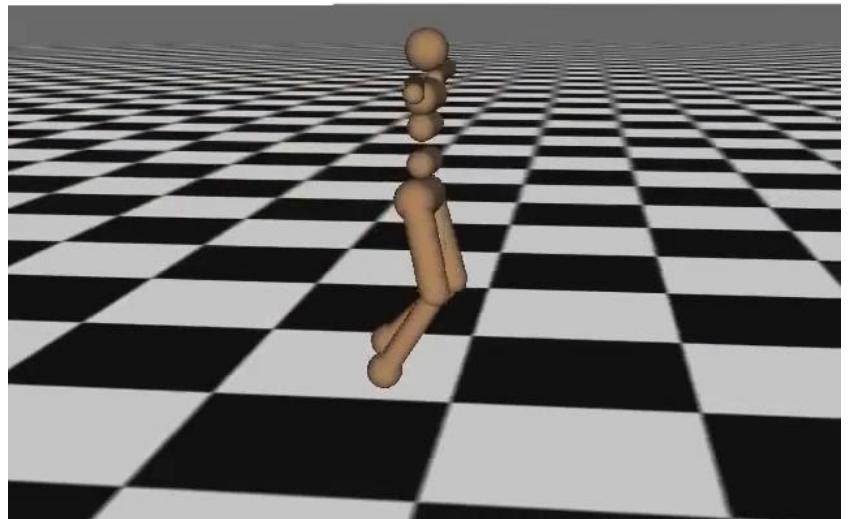
$$\log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) = -\frac{1}{2} \|f(\mathbf{s}_t) - \mathbf{a}_t\|_{\Sigma}^2 + \text{const}$$

$$\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) = -\frac{1}{2} \Sigma^{-1} (f(\mathbf{s}_t) - \mathbf{a}_t) \frac{df}{d\theta}$$

REINFORCE algorithm:

- 1. sample $\{\tau^{(i)}\}$ from $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ (run the policy)
- 2. $\nabla_{\theta} J(\theta) \approx \sum_i \left(\sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}) \right) \left(\sum_t r(\mathbf{s}_t^{(i)}, \mathbf{a}_t^{(i)}) \right)$
- 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Iteration 2000



What did we just do?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \left(\sum_{t=1}^H \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}) \right) \left(\sum_{t=1}^H r(\mathbf{s}_t^{(i)}, \mathbf{a}_t^{(i)}) \right)$$

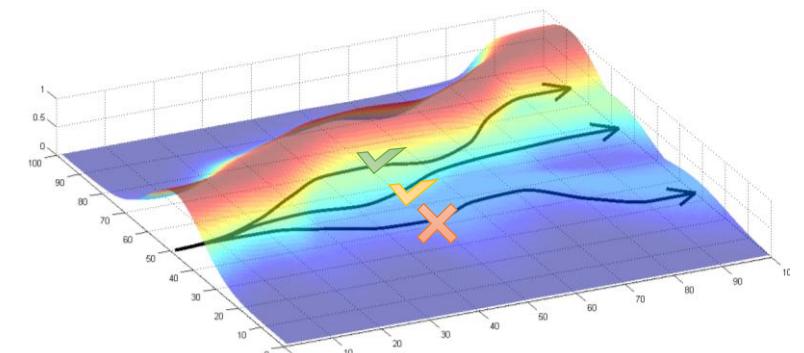
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \underbrace{\nabla_{\theta} \log \pi_{\theta}(\tau^{(i)}) r(\tau^{(i)})}_{\sum_{t=1}^H \nabla_{\theta} \log_{\theta} \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)})}$$

maximum likelihood: $\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^N \nabla_{\theta} \log \pi_{\theta}(\tau^{(i)})$

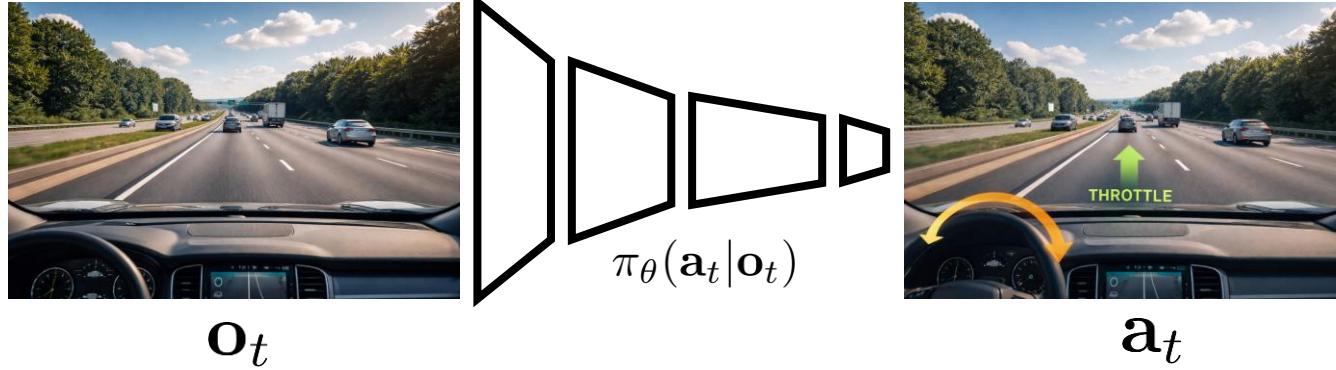
good stuff is made more likely

bad stuff is made less likely

simply formalizes the notion of “trial and error”!



Partial observability



$$\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \left(\sum_{t=1}^H \nabla_\theta \log \pi_\theta(\mathbf{a}_t^{(i)} | \mathbf{o}_t^{(i)}) \right) \left(\sum_{t=1}^H r(\mathbf{s}_t^{(i)}, \mathbf{a}_t^{(i)}) \right)$$

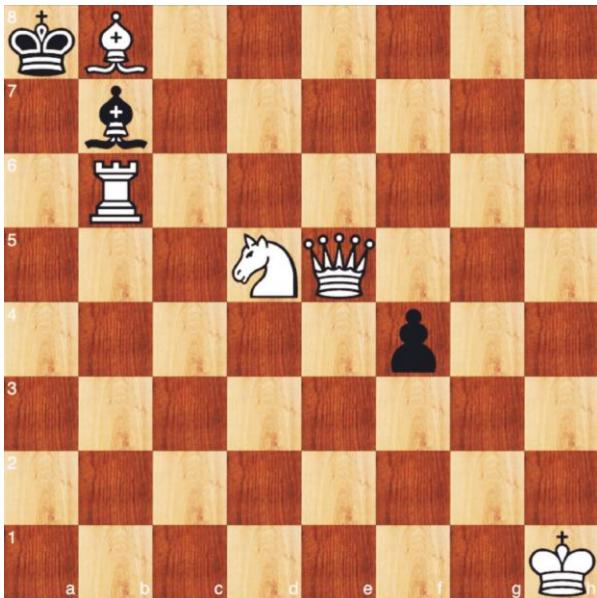
Markov property is not actually used!

Can use policy gradient in partially observed MDPs without modification

What is wrong with the policy gradient?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)$$

Example: preset position chess



$R = +1$ for winning, -1 for losing

What we want: positive multipliers on *good* moves, negative multipliers on *bad* moves

What we get:

positive multipliers on *lucky* starts,
negative multipliers on *unlucky* starts

negative multipliers on good moves
when you made a mistake later

positive multipliers on bad moves when
your opponent randomly made a
mistake later

these issues “average out”
with enough samples, but
we might need a very large
number of samples to get
there

“high variance”

Part 3: Variance reduction

What is wrong with the policy gradient?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)$$

Example: preset position chess



$R = +1$ for winning, -1 for losing

What we want: positive multipliers on *good* moves,
negative multipliers on *bad* moves

What we get:

positive multipliers on *lucky* starts,
negative multipliers on *unlucky* starts

negative multipliers on good moves
when you made a mistake later

positive multipliers on bad moves when
your opponent randomly made a
mistake later

these issues “average out”
with enough samples, but
we might need a very large
number of samples to get
there

“high variance”

Baselines

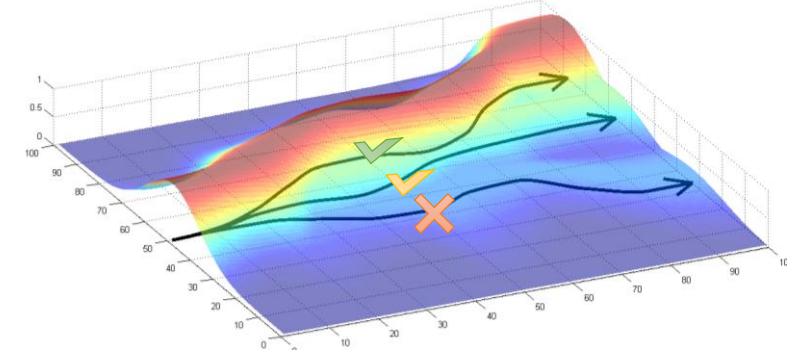
a convenient identity

$$p_\theta(\tau) \nabla_\theta \log p_\theta(\tau) = \nabla_\theta p_\theta(\tau)$$

$$\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \nabla_\theta \log p_\theta(\tau) [\pi(\tau) - b]$$

$$b = \frac{1}{N} \sum_{i=1}^N r(\tau)$$

but... are we *allowed* to do that??



$$\mathbb{E}[\nabla_\theta \log p_\theta(\tau) b] = \int p_\theta(\tau) \nabla_\theta \log p_\theta(\tau) b d\tau = \int \nabla_\theta p_\theta(\tau) b d\tau = b \nabla_\theta \int p_\theta(\tau) d\tau = b \nabla_\theta 1 = 0$$

subtracting a baseline is *unbiased* in expectation!

average reward is *not* the best baseline, but it's pretty good!

Causality

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \left(\sum_{t=1}^H \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}) \right) \left(\sum_{t=1}^H r(\mathbf{s}_t^{(i)}, \mathbf{a}_t^{(i)}) - b_t \right)$$

Causality: policy at time t' cannot affect reward at time t when $t < t'$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^H \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}) \left(\sum_{t'=t}^H r(\mathbf{s}_{t''}^{(i)}, \mathbf{a}_{t''}^{(i)}) - b_{t''} \right)$$

“reward to go” $\hat{Q}_t^{(i)}$

Part 4: Practical implementation

Policy gradient with automatic differentiation

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^H \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}) \left(\sum_{t'=t}^H r(\mathbf{s}_{t'}^{(i)}, \mathbf{a}_{t'}^{(i)}) \right)$$


pretty inefficient to compute these explicitly!

How can we compute policy gradients with automatic differentiation?

We need a graph such that its gradient is the policy gradient!

maximum likelihood: $\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^H \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)})$ $J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^H \log \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)})$

Just implement “pseudo-loss” as a weighted maximum likelihood:

$$\tilde{J}(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^H \log \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}) \hat{Q}_t^{(i)}$$

cross entropy (discrete) or squared error (Gaussian)

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Maximum likelihood:

```
# Given:  
# actions - (N*T) x Da tensor of actions  
# states - (N*T) x Ds tensor of states  
# Build the graph:  
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits  
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)  
loss = tf.reduce_mean(negative_likelihoods)  
gradients = loss.gradients(loss, variables)
```

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:

```
# Given:  
# actions - (N*T) x Da tensor of actions  
# states - (N*T) x Ds tensor of states  
# q_values - (N*T) x 1 tensor of estimated state-action values (with baseline subtracted)  
# Build the graph:  
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits  
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)  
weighted_negative_likelihoods = tf.multiply(negative_likelihoods, q_values)  
loss = tf.reduce_mean(weighted_negative_likelihoods)  
gradients = loss.gradients(loss, variables)
```

$$\tilde{J}(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^H \log \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}) \hat{Q}_t^{(i)}$$

q_values

Policy gradient in practice

- Remember that the gradient has high variance
 - This isn't the same as supervised learning!
 - Gradients will be really noisy!
- Consider using much larger batches
- Tweaking learning rates is very hard
 - Adaptive step size rules like ADAM can be OK-ish
 - We'll learn about policy gradient-specific learning rate adjustment methods later!