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Part 1:
The Markov decision process



(we’ll come back to partially observed settings later)

Imitation learning:

what if we don’t have good demonstration data?





Basic definition: Markov chain
The most basic probabilistic model of a dynamical system

No actions yet, only states

current 
state 
marginal

This bit of linear algebra will be important later!

Andrey Markov



Basic definition: Markov decision process

Richard Bellman
Can we turn a Markov decision process into a Markov chain?



Partially observed Markov decision process

Can you write this as a Markov chain?

For now we’ll stick to the fully observed case



A few useful concepts

where did this come from??



A few useful concepts

“trajectory distribution”

we’ll learn about some other ways to estimate marginals later

Question: what if we 
just want samples from 
the state marginal?



Part 2:
Defining the objective



The objective of RL

by the time you’re about to hit someone, it’s too late! need to optimize for long-term reward



The Markov chain view

state-action marginal
is there a simpler way to write this?



The Markov chain view



What if the horizon is infinite? 

stationary = the 
same before and 
after transition

We usually don’t solve for the stationary 
distribution directly in RL algorithms

But understanding how we can 
manipulate the RL objective with linear 
algebra is very useful for understanding 
RL algorithms theoretically



Expectations and stochastic systems

infinite horizon case finite horizon case

In RL, we almost always care about expectations

+1 -1



Intermission



Part 3:
Anatomy of an RL algorithm



The anatomy of a reinforcement learning algorithm

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



A simple example

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Another example: RL by backprop

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Which parts are expensive?

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy

real robot/car/power 
grid/whatever:
1x real time, until we 
invent time travel

fast simulator:
up to 10000x real time

trivial, fast

expensive



Part 4:
Value functions and Q-functions



How do we deal with all these expectations?

what if we knew this part?



Definition: Q-function

Definition: value function



Using Q-functions and value functions



The anatomy of a reinforcement learning algorithm

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy

this often uses Q-
functions or value 
functions



Part 5:
Types of RL algorithms



Types of RL algorithms

• Policy gradients: directly differentiate the above objective

• Value-based: estimate value function or Q-function of the optimal policy 
(no explicit policy)

• Actor-critic: estimate value function or Q-function of the current policy, 
use it to improve policy

• Model-based RL: estimate the transition model, and then…
• Use it for planning (no explicit policy)

• Use it to improve a policy

• Something else



Model-based RL algorithms

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Model-based RL algorithms

improve the policy

1. Just use the model to plan (no policy)
• Trajectory optimization/optimal control (primarily in continuous spaces) – 

essentially backpropagation to optimize over actions
• Discrete planning in discrete action spaces – e.g., Monte Carlo tree search

2. Backpropagate gradients into the policy
• Requires some tricks to make it work

3. Use the model to learn a value function
• Dynamic programming
• Generate simulated experience for model-free learner



Value function based algorithms

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Direct policy gradients

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Actor-critic: value functions + policy gradients

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Why so many RL algorithms?

• Different tradeoffs
• Sample efficiency

• Stability & ease of use

• Different assumptions
• Stochastic or deterministic?

• Continuous or discrete?

• Episodic or infinite horizon?

• Different things are easy or hard in 
different settings
• Easier to represent the policy?

• Easier to represent the model?

generate 
samples (i.e. 

run the policy)

fit a model/ 
estimate return

improve the 
policy



Comparison: sample efficiency

• Sample efficiency = how many samples 
do we need to get a good policy?

• Most important question: is the 
algorithm off policy?
• Off policy: able to improve the policy 

without generating new samples from that 
policy

• On policy: each time the policy is changed, 
even a little bit, we need to generate new 
samples

generate 
samples (i.e. 

run the policy)

fit a model/ 
estimate return

improve the 
policy

just one gradient step



Comparison: sample efficiency

More efficient 
(fewer samples)

Less efficient 
(more samples)

on-policyoff-policy

Why would we use a less efficient algorithm?

Wall clock time is not the same as efficiency!

evolutionary or 
gradient-free 
algorithms

on-policy policy 
gradient 
algorithms

actor-critic
style 
methods

off-policy 
Q-function 
learning

model-based 
deep RL



Comparison: stability and ease of use

Why is any of this even a question???

• Does it converge?

• And if it converges, to what?

• And does it converge every time?

• Supervised learning: almost always gradient descent

• Reinforcement learning: often not gradient descent
• Q-learning: fixed point iteration

• Model-based RL: model is not optimized for expected reward

• Policy gradient: is gradient descent, but also often the least efficient!



Comparison: stability and ease of use

• Value function fitting
• At best, minimizes error of fit (“Bellman error”)

• Not the same as expected reward

• At worst, doesn’t optimize anything
• Many popular deep RL value fitting algorithms are not guaranteed to converge to 

anything in the nonlinear case

• Model-based RL
• Model minimizes error of fit

• This will converge

• No guarantee that better model = better policy

• Policy gradient
• The only one that actually performs gradient descent (ascent) on the true 

objective



Examples of specific algorithms

• Value function methods
• Q-learning, DQN
• Temporal difference learning
• Fitted value iteration

• Policy gradient methods
• REINFORCE
• Natural policy gradient
• PPO

• Actor-critic algorithms
• Asynchronous advantage actor-critic (A3C)
• Soft actor-critic (SAC)

• Model-based RL algorithms
• Dyna (+ “Dyna-like” methods such as MBPO)
• muZero

We’ll learn about 
many of these in the 

next few weeks!



Example 1: Atari games with Q-functions

• Playing Atari with deep 
reinforcement learning, 
Mnih et al. ‘13

• Q-learning with 
convolutional neural 
networks



Example 2: walking with policy gradients

• High-dimensional 
continuous control with 
generalized advantage 
estimation, Schulman et 
al. ‘16

• Trust region policy 
optimization with value 
function approximation
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