
Reinforcement Learning Basics

CS 185/285

Instructor: Sergey Levine
UC Berkeley

Part 1:
The Markov decision process

(we’ll come back to partially observed settings later)

Imitation learning:

what if we don’t have good demonstration data?

Basic definition: Markov chain
The most basic probabilistic model of a dynamical system

No actions yet, only states

current
state
marginal

This bit of linear algebra will be important later!

Andrey Markov

Basic definition: Markov decision process

Richard Bellman
Can we turn a Markov decision process into a Markov chain?

Partially observed Markov decision process

Can you write this as a Markov chain?

For now we’ll stick to the fully observed case

A few useful concepts

where did this come from??

A few useful concepts

“trajectory distribution”

we’ll learn about some other ways to estimate marginals later

Question: what if we
just want samples from
the state marginal?

Part 2:
Defining the objective

The objective of RL

by the time you’re about to hit someone, it’s too late! need to optimize for long-term reward

The Markov chain view

state-action marginal
is there a simpler way to write this?

The Markov chain view

What if the horizon is infinite?

stationary = the
same before and
after transition

We usually don’t solve for the stationary
distribution directly in RL algorithms

But understanding how we can
manipulate the RL objective with linear
algebra is very useful for understanding
RL algorithms theoretically

Expectations and stochastic systems

infinite horizon case finite horizon case

In RL, we almost always care about expectations

+1 -1

Intermission

Part 3:
Anatomy of an RL algorithm

The anatomy of a reinforcement learning algorithm

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

A simple example

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

Another example: RL by backprop

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

Which parts are expensive?

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

real robot/car/power
grid/whatever:
1x real time, until we
invent time travel

fast simulator:
up to 10000x real time

trivial, fast

expensive

Part 4:
Value functions and Q-functions

How do we deal with all these expectations?

what if we knew this part?

Definition: Q-function

Definition: value function

Using Q-functions and value functions

The anatomy of a reinforcement learning algorithm

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

this often uses Q-
functions or value
functions

Part 5:
Types of RL algorithms

Types of RL algorithms

• Policy gradients: directly differentiate the above objective

• Value-based: estimate value function or Q-function of the optimal policy
(no explicit policy)

• Actor-critic: estimate value function or Q-function of the current policy,
use it to improve policy

• Model-based RL: estimate the transition model, and then…
• Use it for planning (no explicit policy)

• Use it to improve a policy

• Something else

Model-based RL algorithms

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

Model-based RL algorithms

improve the policy

1. Just use the model to plan (no policy)
• Trajectory optimization/optimal control (primarily in continuous spaces) –

essentially backpropagation to optimize over actions
• Discrete planning in discrete action spaces – e.g., Monte Carlo tree search

2. Backpropagate gradients into the policy
• Requires some tricks to make it work

3. Use the model to learn a value function
• Dynamic programming
• Generate simulated experience for model-free learner

Value function based algorithms

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

Direct policy gradients

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

Actor-critic: value functions + policy gradients

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

Why so many RL algorithms?

• Different tradeoffs
• Sample efficiency

• Stability & ease of use

• Different assumptions
• Stochastic or deterministic?

• Continuous or discrete?

• Episodic or infinite horizon?

• Different things are easy or hard in
different settings
• Easier to represent the policy?

• Easier to represent the model?

generate
samples (i.e.

run the policy)

fit a model/
estimate return

improve the
policy

Comparison: sample efficiency

• Sample efficiency = how many samples
do we need to get a good policy?

• Most important question: is the
algorithm off policy?
• Off policy: able to improve the policy

without generating new samples from that
policy

• On policy: each time the policy is changed,
even a little bit, we need to generate new
samples

generate
samples (i.e.

run the policy)

fit a model/
estimate return

improve the
policy

just one gradient step

Comparison: sample efficiency

More efficient
(fewer samples)

Less efficient
(more samples)

on-policyoff-policy

Why would we use a less efficient algorithm?

Wall clock time is not the same as efficiency!

evolutionary or
gradient-free
algorithms

on-policy policy
gradient
algorithms

actor-critic
style
methods

off-policy
Q-function
learning

model-based
deep RL

Comparison: stability and ease of use

Why is any of this even a question???

• Does it converge?

• And if it converges, to what?

• And does it converge every time?

• Supervised learning: almost always gradient descent

• Reinforcement learning: often not gradient descent
• Q-learning: fixed point iteration

• Model-based RL: model is not optimized for expected reward

• Policy gradient: is gradient descent, but also often the least efficient!

Comparison: stability and ease of use

• Value function fitting
• At best, minimizes error of fit (“Bellman error”)

• Not the same as expected reward

• At worst, doesn’t optimize anything
• Many popular deep RL value fitting algorithms are not guaranteed to converge to

anything in the nonlinear case

• Model-based RL
• Model minimizes error of fit

• This will converge

• No guarantee that better model = better policy

• Policy gradient
• The only one that actually performs gradient descent (ascent) on the true

objective

Examples of specific algorithms

• Value function methods
• Q-learning, DQN
• Temporal difference learning
• Fitted value iteration

• Policy gradient methods
• REINFORCE
• Natural policy gradient
• PPO

• Actor-critic algorithms
• Asynchronous advantage actor-critic (A3C)
• Soft actor-critic (SAC)

• Model-based RL algorithms
• Dyna (+ “Dyna-like” methods such as MBPO)
• muZero

We’ll learn about
many of these in the

next few weeks!

Example 1: Atari games with Q-functions

• Playing Atari with deep
reinforcement learning,
Mnih et al. ‘13

• Q-learning with
convolutional neural
networks

Example 2: walking with policy gradients

• High-dimensional
continuous control with
generalized advantage
estimation, Schulman et
al. ‘16

• Trust region policy
optimization with value
function approximation

	Slide 1: Reinforcement Learning Basics CS 185/285 Instructor: Sergey Levine UC Berkeley
	Slide 2: Part 1: The Markov decision process
	Slide 3
	Slide 4
	Slide 5: Basic definition: Markov chain
	Slide 6: Basic definition: Markov decision process
	Slide 7: Partially observed Markov decision process
	Slide 8: A few useful concepts
	Slide 9: A few useful concepts
	Slide 10: Part 2: Defining the objective
	Slide 11: The objective of RL
	Slide 12: The Markov chain view
	Slide 13: The Markov chain view
	Slide 14: What if the horizon is infinite?
	Slide 15: Expectations and stochastic systems
	Slide 16: Intermission
	Slide 17: Part 3: Anatomy of an RL algorithm
	Slide 18: The anatomy of a reinforcement learning algorithm
	Slide 19: A simple example
	Slide 20: Another example: RL by backprop
	Slide 21: Which parts are expensive?
	Slide 22: Part 4: Value functions and Q-functions
	Slide 23
	Slide 24: Definition: Q-function
	Slide 25: Using Q-functions and value functions
	Slide 26: The anatomy of a reinforcement learning algorithm
	Slide 27: Part 5: Types of RL algorithms
	Slide 28: Types of RL algorithms
	Slide 29: Model-based RL algorithms
	Slide 30: Model-based RL algorithms
	Slide 31: Value function based algorithms
	Slide 32: Direct policy gradients
	Slide 33: Actor-critic: value functions + policy gradients
	Slide 34: Why so many RL algorithms?
	Slide 35: Comparison: sample efficiency
	Slide 36: Comparison: sample efficiency
	Slide 37: Comparison: stability and ease of use
	Slide 38: Comparison: stability and ease of use
	Slide 39: Examples of specific algorithms
	Slide 40: Example 1: Atari games with Q-functions
	Slide 41: Example 2: walking with policy gradients

