Reinforcement Learning Basics

CS 185/285

Instructor: Sergey Levine
UC Berkeley

Part 1.
The Markov decision process

(we’ll come back to partially observed settings later)

N H

Imitation learning: arg mgXZ:l ;bg o (a§2)|5§z))

what if we don’t have good demonstration data?

4

. . . ‘?
which action is better or worse S¢, ag, 7(s¢,a;), and p(syi1]ss, ay) define

r(se, a;): reward function Markov decision process

tells us which states and actions are better

low reward

Basic definition: Markov chain

The most basic probabilistic model of a dynamical system

No actions yet, only states
Andrey Markov

@ (55) (55 Markov property
M = {3’7‘} p(5t+1|St) A p(St+1|St) Si+1 L si—1]sy
S — state space states s € § (discrete or continuous)
— t 1t] t St4+1|S
T — transition operator p(Ssr1|st) - pESt _ ;g
“ » state Mt = P(St =
why “operator”? p(sir1) = Zp(St+1’St)p(St) marginal
St41

let T;j =p(Sit1 =ilse =7) g1 =T
This bit of linear algebra will be important later!

Basic definition: Markov decision process

M — {S; -/47 T? T}
states s € §
. S1
actions a € A Q p(St_|_1|St; at)

transition operator T

reward functionr : S x A — R

Richard Bellman

Can we turn a Markov decision process into a Markov chain?

v
v

© &
®)
® ®

N—

p((St+1, at+1) \ (St, at)) p(St+1 |St, at)WG (at+1 |St+1)

Partially observed Markov decision process

M={S5A0,T,Er} @ @ @ @ @

states s € §

actions a € A S1 So @

observations o € (O

transition operator T

emission operator £ Can you write this as a Markov chain?

reward functionr : S x A — R

For now we’ll stick to the fully observed case

A few useful concepts

@

(s'|s, a)

\
N\

this is just shorthand so we don’t need to write t + 1

where did this come from??

A few useful concepts

H
pe(si,ai,...,sg,ag) = p(s1) H mo(ag|s)p(sie1|se, az) “trajectory distribution”
l Y / t=1
po(T)
t—1
state marginal: pp(st) = z p(s1) H mo(ay [S¢)p(se+1[se, ar)
a1:H,S1:t—1,St+1:H t'=1 Question: what if we

just want samples from
the state marginal?

t—1
= Z p(s1) H mo(ay sy)p(syt1[sv, av)

Al:t—1,81:¢—1 t'=1

we’ll learn about some other ways to estimate marginals later

Part 2.
Defining the objective

The objective of RL

r(s¢,a;): reward function tells us which states and actions are better

high reward low reward

by the time you’re about to hit someone, it’s too late! need to optimize for long-term reward

6* = arg max B mpo(r) Z r(s¢, ag)
t

at|5t (St+1|St, at)

]
fn)
w
p
UJ
T
Q
m
H:m

The Markov chain view

E’rmpg(’r) [Z Stjat] ZEsl athg(St,at) [(St? at)]

t

\ is there a simpler way to write this?
state-action marginal

p(s¢,ar) = mo(ag|sy) Z p(s1) H mo(ag |sy)p(Sy 1S, as)
a1:t—1,81:¢—1 t'=1
p(s1 =1,a; =1) | 1° tuple
p(s1 =1,a; =2) | ond tuple —

per1 = Topu =

v
v

© &
@J
GXO)

—

p(St+1 |St) at)We (at+1 |St—|—1)

To,ij = p(s’ = sils = Sj,a = aj)ﬂa(al = a;s’ = s;)

\ / p((St+1,at+1)|(st,ar))

§' state-action tuple

The Markov chain view

H

H

ZEsl,atwpg(st,at) [T(Staat)] - Z Z pg(st,at)r(st,at)
B
2

Mt = 7;_1111

What if the horizon is infinite?

H
w 13" T
f}gnoo H Es, a,~po(ss,a0) [r(st,at)] = Es, a;~p(si,ar) 7(se,a4)] = MTT

t=1
_ T . _ - We usually don’t solve for the stationary
stationary distribution p distribution directly in RL algorithms
does p(st, a;) converge to a stationary distribution? But understanding how we can
manipulate the RL objective with linear
o= Toi (7;) — I)lj =0 algebra is very useful for understanding
\ / L . _ RL algorithms theoretically
[i is eigenvector of Ty with eigenvalue 1!

stationary = the
same before and (always exists under some regularity conditions)
after transition

Expectations and stochastic systems

T
0* = arg max Es.a)~py(s,a)l7(s,a)] 6* = arg max Z Es, a,)~po(ss,a,) T (3¢, at)]
t=1
infinite horizon case finite horizon case

In RL, we almost always care about expectations

r(x) — not smooth
mo(a = fall) = 6
E.,[r(x)] — smooth in 6!

Intermission

Part 3:
Anatomy of an RL algorithm

The anatomy of a reinforcement learning algorithm

fit a model/
estimate the return

generate samples
(i.e. run the policy)
; improve the policy

|

A simple example

fit a model/
estimate the return

generate samples
(i.e. run the policy)

improve the policy 7R ESAVFNIC)

Another example: RL by backprop

fit a model/

estimate the return learn fo such that i1 ~ fo(st, ar)

St+1
generate samples

(i.e. run the policy)

backprop through f4 and r to

Which parts are expensive?

(real robot/car/power\

grid/whatever:

1x real time, until we

\invent time travel

J

fast simulator:

up to 10000x real time

generate samples

(i.e. run the policy)

J(0) = E,

1 X i

trivial, fast
fit a model/

estimate the return
learn s;11 & fy(st, at)

expensive

0 0+ aVeJ(0)

improve the polic
' POREY backprop through f4 and r to

train mg(s;) = ay

Part 4
Value functions and Q-functions

How do we deal with all these expectations?

1

what if we knew this part?

Q(Sla 8_1) — 7’.(Sla al) + ESQNP(SQ|Sl,a]_) |:E32N7I'(32|Sg) [T(S27 3—2) + -..|SQ] |Slaal}

H
Ermpg(r) [ZT(Sbat) — ESle(Sl) [E31NW(31|51) [Q(Sl’a1)|sl]:|

AN

easy to modify my(ay|s1) if Q(s1,a1) is known!

example: w(aj|s;) = 1 if a; = argmax,, Q(s1,a1)

Definition: Q-function

Q7 (s¢,a) = Zg:t Er, [r(sy,ay)|st, at]: total reward from taking a; in s,

Definition: value function

VT™(st) = Zgzt Er, [r(sy,ap)|st]: total reward from s,

Ve (St) - Eat’\’ﬂ'(aﬂst)[@ﬂ (St’ at)]

Eg, ~p(s)[V™(s1)] is the RL objective!

Using Q-functions and value functions

Idea 1: if we have policy 7, and we know Q™ (s, a), then we can improve m:
set '(als) = 1 if a = argmax, Q™ (s, a)
this policy is at least as good as w (and probably better)!

and it doesn’t matter what 7 is

Idea 2: compute gradient to increase probability of good actions a:
if Q™ (s,a) > V7 (s), then a is better than average (recall that V7 (s) = F[Q™(s,a)] under 7w (als))

modify 7(als) to increase probability of a if Q™ (s,a) > V7 (s)

These ideas are very important in RL; we’ll revisit them again and again!

The anatomy of a reinforcement learning algorithm

this often uses Q-

fit a model/ <+«—— functions or value
estimate the return functions

generate samples
(i.e. run the policy)
; improve the policy

Part 5:
Types of RL algorithms

Types of RL algorithms

0* = arg max B po(r) [Zt: r(s¢, at)]

* Policy gradients: directly differentiate the above objective

* Value-based: estimate value function or Q-function of the optimal policy
(no explicit policy)

e Actor-critic: estimate value function or Q-function of the current policy,
use it to improve policy

* Model-based RL: estimate the transition model, and then...
» Use it for planning (no explicit policy)
e Use it to improve a policy
 Something else

Model-based RL algorithms

fit a model/

: learn p(s;y1]st, a
estimate the return p(st+1lst, ar)

generate samples
(i.e. run the policy)

Tl JE RN Lol [N o few options

Model-based RL algorithms

improve the policy [ERGKea e

1. Just use the model to plan (no policy)

* Trajectory optimization/optimal control (primarily in continuous spaces) —
essentially backpropagation to optimize over actions

* Discrete planning in discrete action spaces — e.g., Monte Carlo tree search

2. Backpropagate gradients into the policy
* Requires some tricks to make it work

3. Use the model to learn a value function
* Dynamic programming
* Generate simulated experience for model-free learner

Value function based algorithms

fit a model/
ﬁ estimate the return fit V(s) or Q(s,a)
generate samples
(i.e. run the policy)

IS set 7(s) = arg max, (s, a)

Direct policy gradients

fit a model/ evaluate returns
estimate the return [FITEs Zt ’I“(St, at)

generate samples

(i.e. run the policy)

improve the policy KZRlZEAVEYHD PR J(-IE-¥3]

Actor-critic: value functions + policy gradients

fit a model/ f
ﬁ estimate the return t V) Q(S a)
generate samples
(i.e. run the policy)

Why so many RL algorithms?

e Different tradeoffs

e Sample efficiency
* Stability & ease of use

* Different assumptions ‘

fit a model/
estimate return

i inictic? generate
e Stochastic or deterministic: (e
e Continuous or discrete? run the policy)

 Episodic or infinite horizon? ‘ improve the

* Different things are easy or hard in o
different settings
* Easier to represent the policy?
e Easier to represent the model?

Comparison: sample efficiency

e Sample efficiency = how many samples
do we need to get a good policy?

* Most important question: is the generate l

fit a model/
estimate return

samples (i.e.

algorithm off policy? run the policy)

* Off policy: able to improve the policy
without generating new samples from that

improve the
policy

policy
0+ 0+ aVyFE S¢, a
* On policy: each time the policy is changed, aVoE[2 . r(s a)
even a little bit, we need to generate new
samples

just one gradient step

Comparison: sample efficiency

off-policy < » on-policy
More efficient Less efficient
(fewer samples) (more samples)
—
model-based off-policy actor-critic on-policy policy evolutionary or
deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Why would we use a less efficient algorithm?

Wall clock time is not the same as efficiency!

Comparison: stability and ease of use

* Does it converge?
* And if it converges, to what?
* And does it converge every time?

Why is any of this even a question???

e Supervised learning: almost always gradient descent

* Reinforcement learning: often not gradient descent
* Q-learning: fixed point iteration
 Model-based RL: model is not optimized for expected reward
* Policy gradient: is gradient descent, but also often the least efficient!

Comparison: stability and ease of use

* Value function fitting
* At best, minimizes error of fit (“Bellman error”)
* Not the same as expected reward

e At worst, doesn’t optimize anything

 Many popular deep RL value fitting algorithms are not guaranteed to converge to
anything in the nonlinear case

* Model-based RL

* Model minimizes error of fit
* This will converge

* No guarantee that better model = better policy

* Policy gradient

* The only one that actually performs gradient descent (ascent) on the true
objective

Examples of specific algorithms

* Value function methods
* Q-learning, DQN
* Temporal difference learning
 Fitted value iteration

* Policy gradient methods

« REINFORCE We'll learn about
* Natural policy gradient many of these in the
. PPO

I
* Actor-critic algorithms next few weeks!

* Asynchronous advantage actor-critic (A3C)
» Soft actor-critic (SAC)

* Model-based RL algorithms
* Dyna (+ “Dyna-like” methods such as MBPO)
* muZero

Example 1: Atari games with Q-functions

* Playing Atari with deep
reinforcement learning,

Mnih et al. ‘13 hReafhe®

. _ DR DR D

* Q-learning with EEEE
convolutional neural 2 22929
networks T aten

A A

Example 2: walking with policy gradients

lteration O

* High-dimensional
continuous control with
generalized advantage
estimation, Schulman et
al. ‘16

* Trust region policy
optimization with value
function approximation

	Slide 1: Reinforcement Learning Basics CS 185/285 Instructor: Sergey Levine UC Berkeley
	Slide 2: Part 1: The Markov decision process
	Slide 3
	Slide 4
	Slide 5: Basic definition: Markov chain
	Slide 6: Basic definition: Markov decision process
	Slide 7: Partially observed Markov decision process
	Slide 8: A few useful concepts
	Slide 9: A few useful concepts
	Slide 10: Part 2: Defining the objective
	Slide 11: The objective of RL
	Slide 12: The Markov chain view
	Slide 13: The Markov chain view
	Slide 14: What if the horizon is infinite?
	Slide 15: Expectations and stochastic systems
	Slide 16: Intermission
	Slide 17: Part 3: Anatomy of an RL algorithm
	Slide 18: The anatomy of a reinforcement learning algorithm
	Slide 19: A simple example
	Slide 20: Another example: RL by backprop
	Slide 21: Which parts are expensive?
	Slide 22: Part 4: Value functions and Q-functions
	Slide 23
	Slide 24: Definition: Q-function
	Slide 25: Using Q-functions and value functions
	Slide 26: The anatomy of a reinforcement learning algorithm
	Slide 27: Part 5: Types of RL algorithms
	Slide 28: Types of RL algorithms
	Slide 29: Model-based RL algorithms
	Slide 30: Model-based RL algorithms
	Slide 31: Value function based algorithms
	Slide 32: Direct policy gradients
	Slide 33: Actor-critic: value functions + policy gradients
	Slide 34: Why so many RL algorithms?
	Slide 35: Comparison: sample efficiency
	Slide 36: Comparison: sample efficiency
	Slide 37: Comparison: stability and ease of use
	Slide 38: Comparison: stability and ease of use
	Slide 39: Examples of specific algorithms
	Slide 40: Example 1: Atari games with Q-functions
	Slide 41: Example 2: walking with policy gradients

