

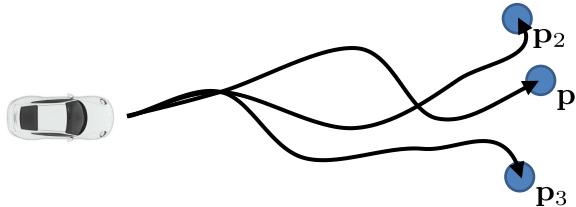
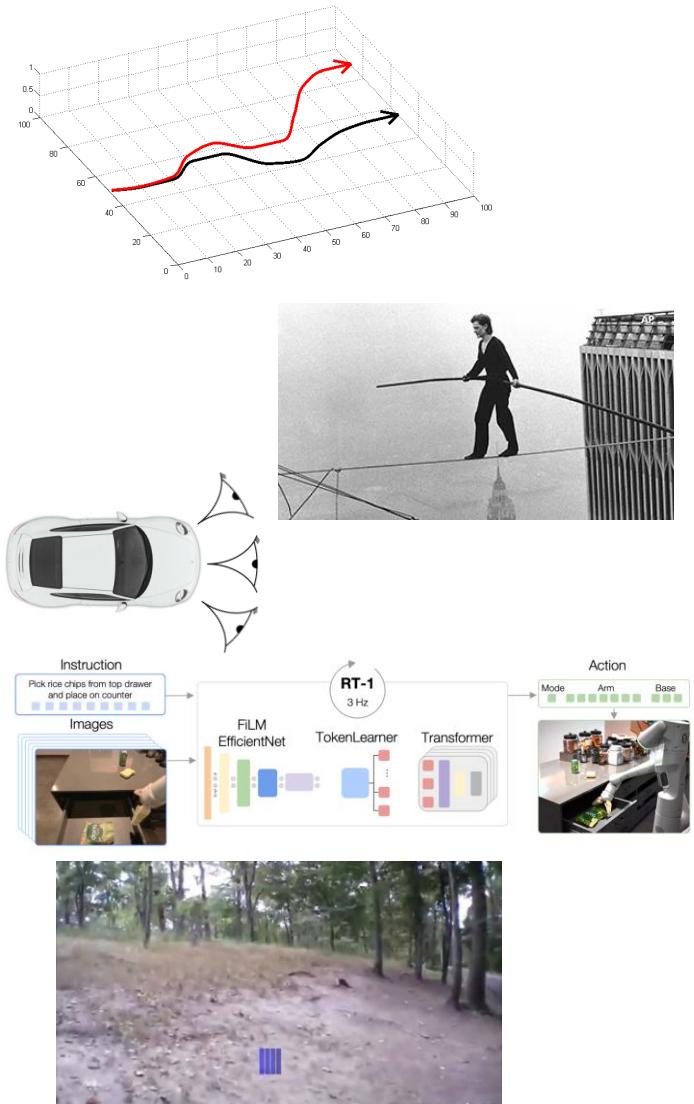
Supervised Learning of Behaviors

CS 185/285

Instructor: Sergey Levine
UC Berkeley

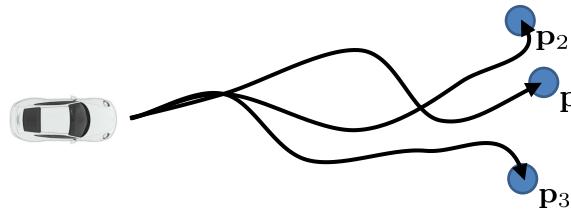
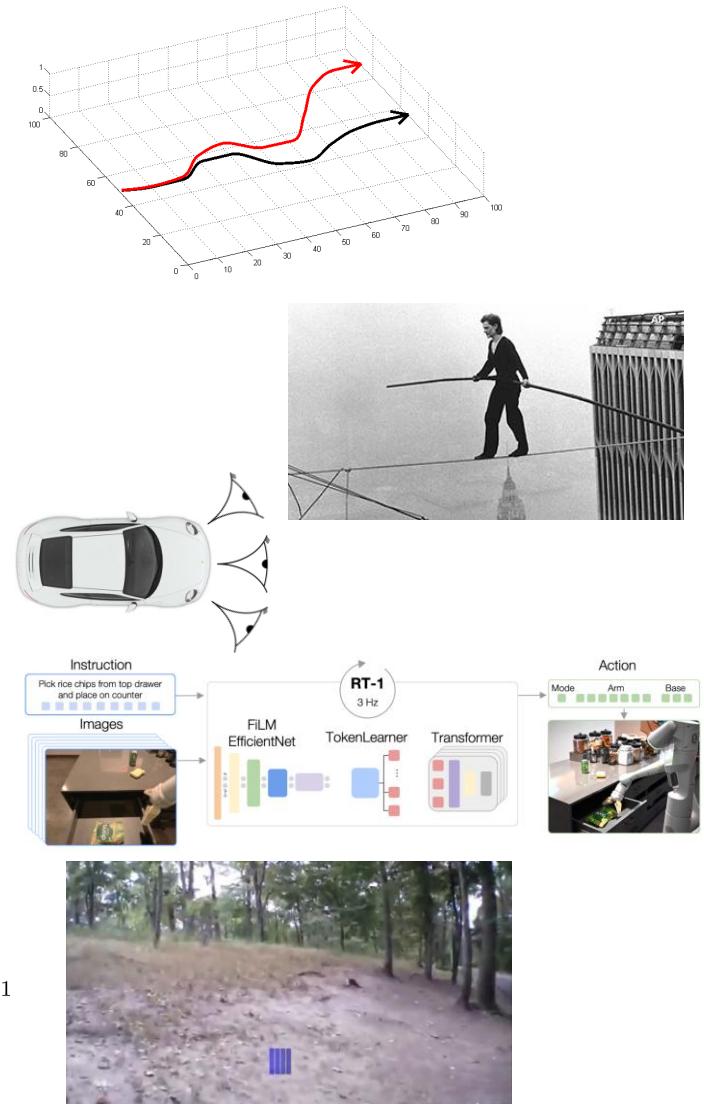
Recap

- Imitation learning via behavioral cloning is not guaranteed to work
 - This is **different** from supervised learning
 - The reason: i.i.d. assumption does not hold!
- We can formalize **why** this is and do a bit of theory
- We can address the problem in a few ways:
 - Change the algorithm (DAgger)
 - Use very powerful models that make very few mistakes
 - Be smart about how we collect (and augment) our data
 - Use multi-task learning



Recap

- Imitation learning via behavioral cloning is not guaranteed to work
 - This is **different** from supervised learning
 - The reason: i.i.d. assumption does not hold!
- We can formalize **why** this is and do a bit of theory
- We can address the problem in a few ways:
 - Change the algorithm (DAgger)
 - Use very powerful models that make very few mistakes
 - Be smart about how we collect (and augment) our data
 - Use multi-task learning



Part 1: Models for imitation learning

Why might we fail to fit the expert?

1. Non-Markovian behavior
2. Multimodal behavior

$$\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$$

behavior depends only
on current observation

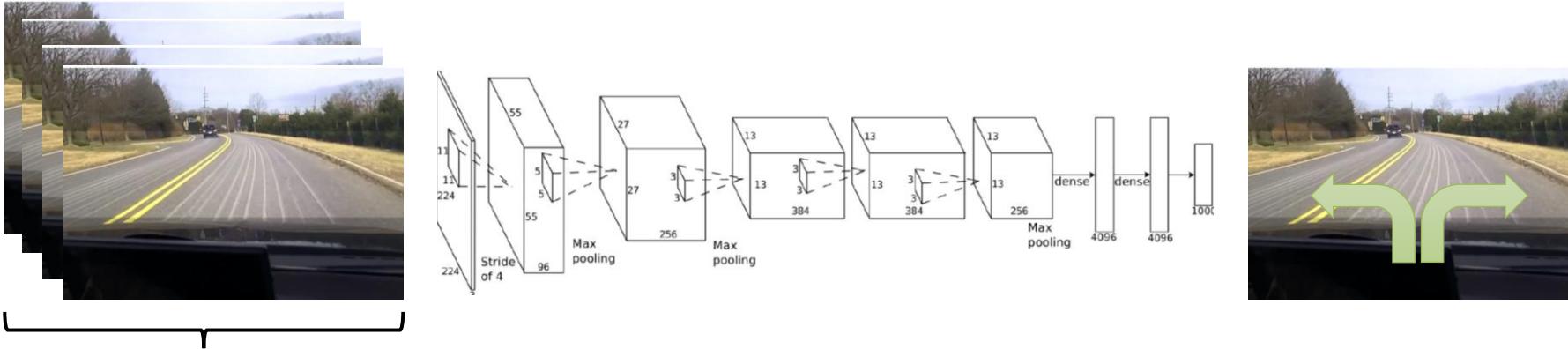
$$\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_1, \dots, \mathbf{o}_t)$$

behavior depends on
all past observations

If we see the same thing
twice, we do the same thing
twice, regardless of what
happened before

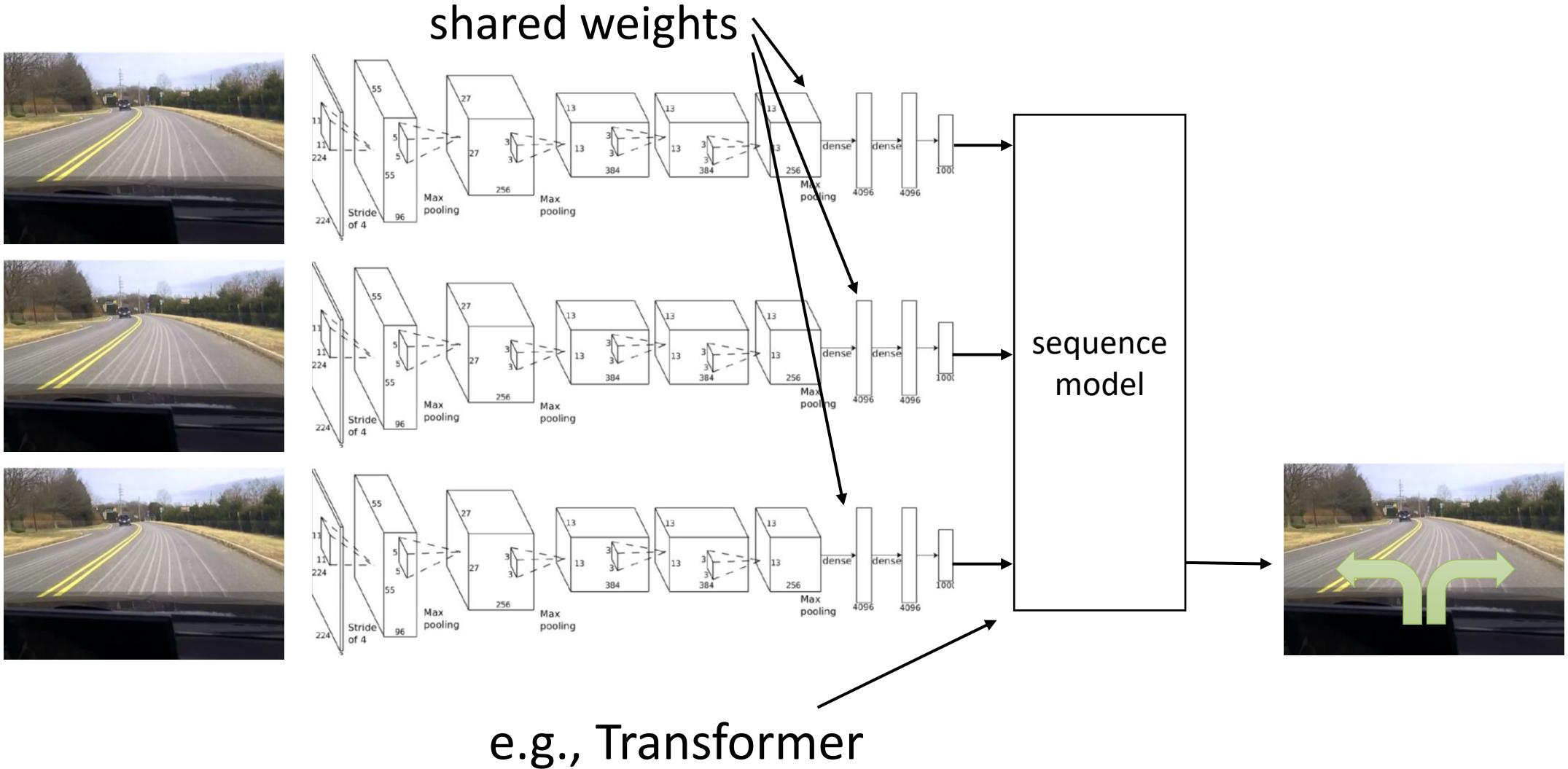
Often very unnatural for
human demonstrators

How can we use the whole history?

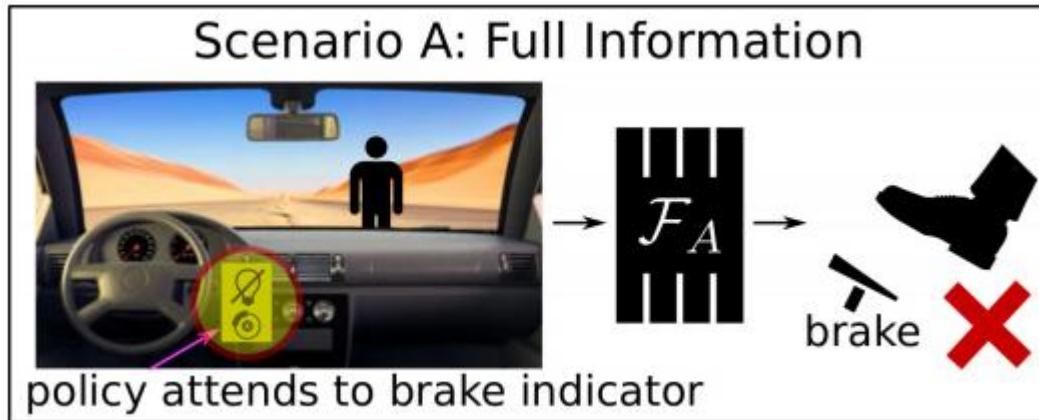
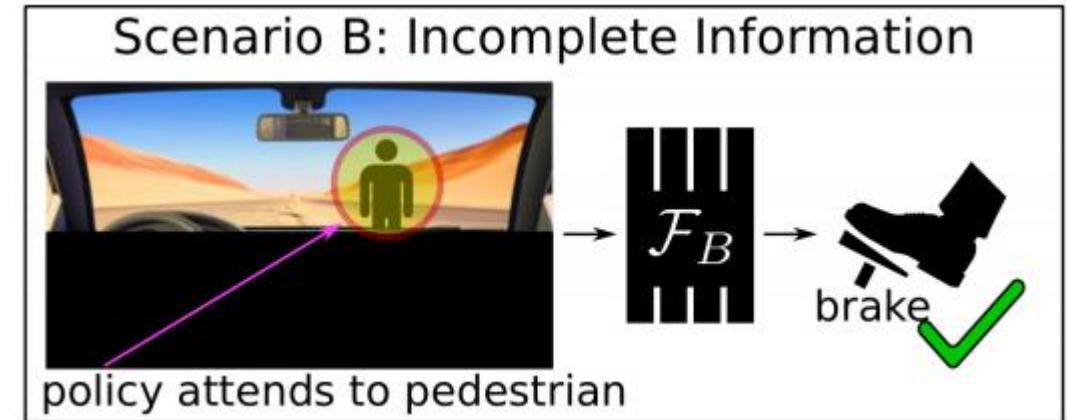


variable number of frames,
too many weights

How can we use the whole history?



Aside: why might this work poorly?



“causal confusion”

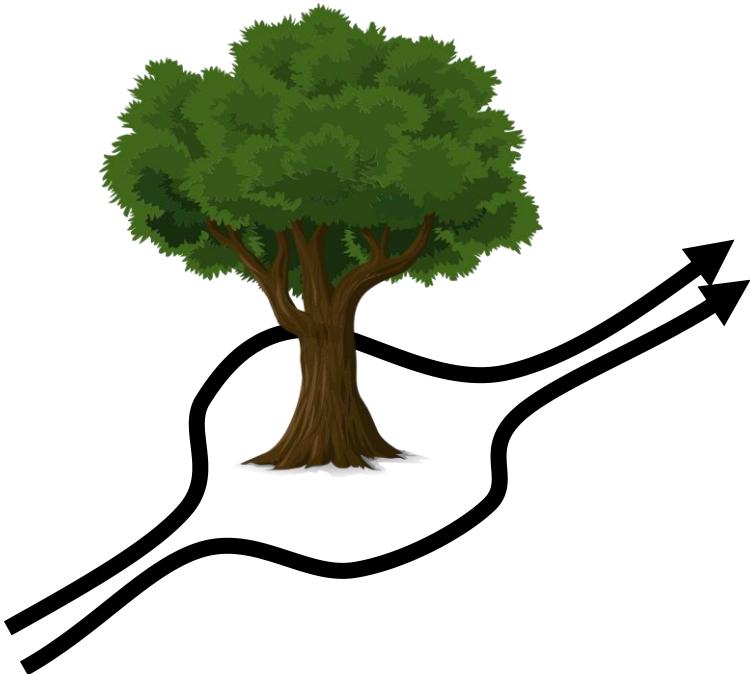
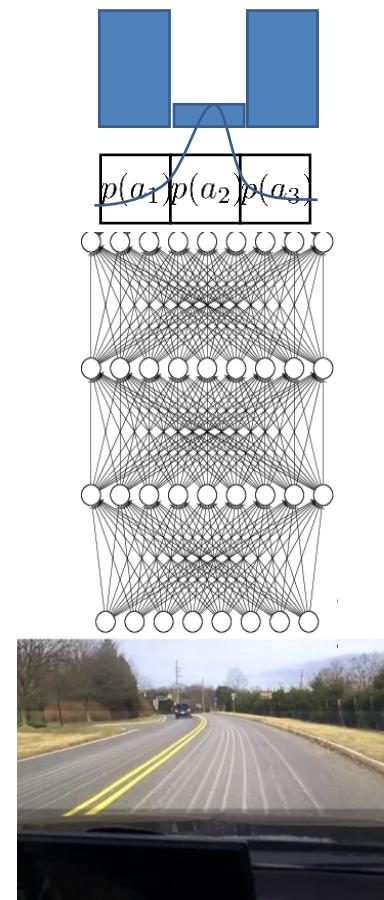
see: de Haan et al., “Causal Confusion in Imitation Learning”

Question 1: Does including history mitigate causal confusion?

Question 2: Can DAgger mitigate causal confusion?

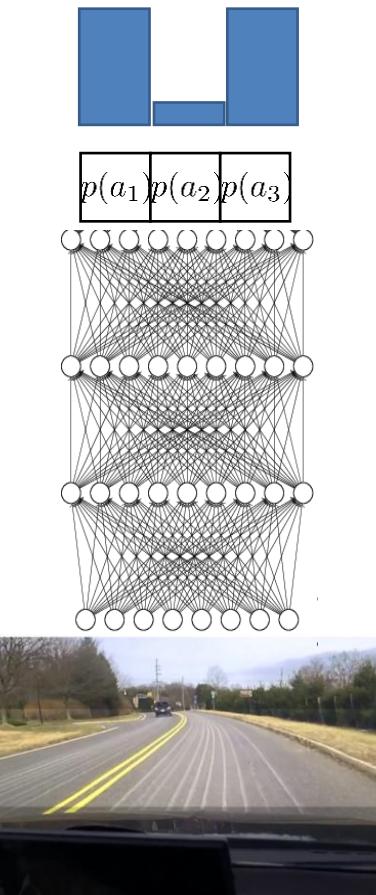
Why might we fail to fit the expert?

- 1. Non-Markovian behavior
- 2. Multimodal behavior



- 1. Discretization with high-dimensional action spaces
- 2. More expressive continuous distributions

Can we discretize continuous action spaces?

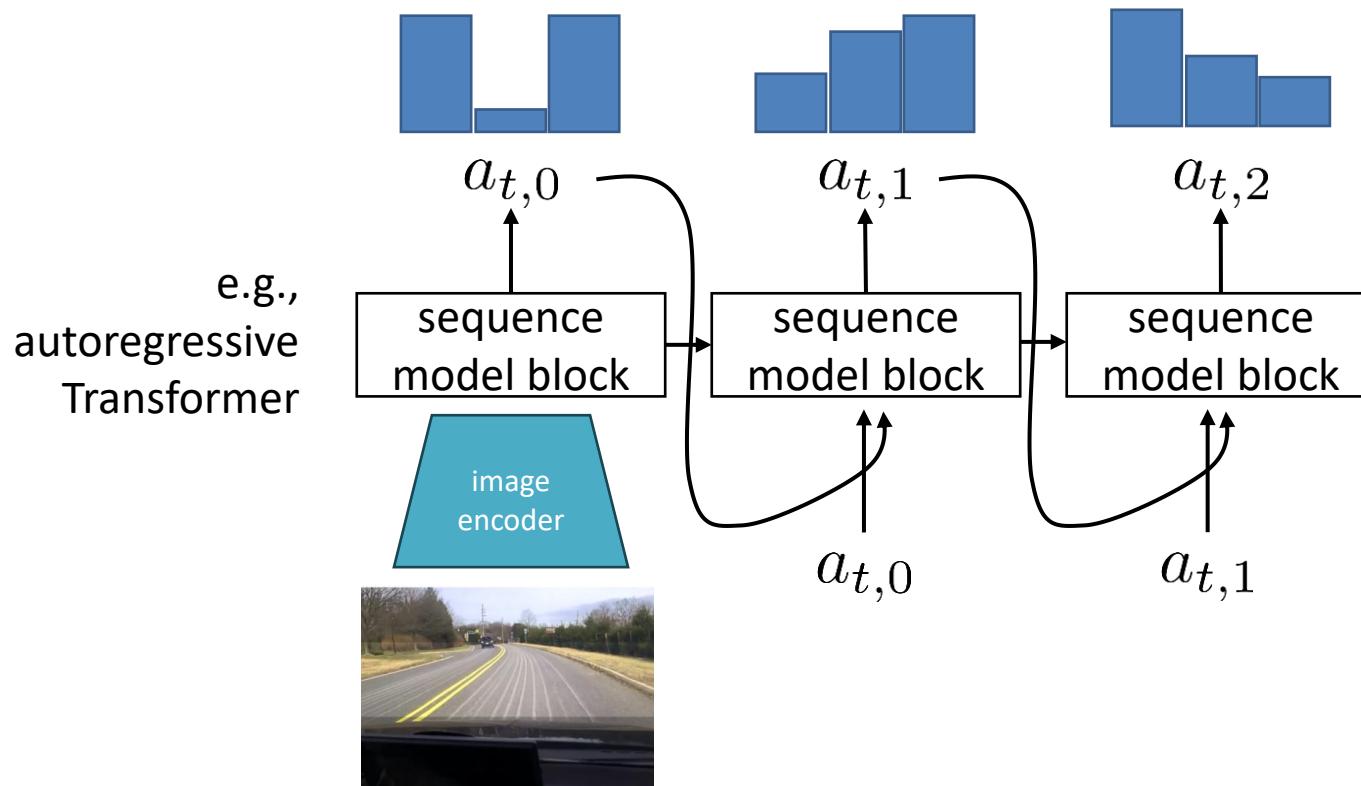


Problem: this is great for 1D actions, but in higher dimensions, discretizing the full space is impractical

Solution: discretize one dimension at a time

Autoregressive discretization

$$\mathbf{a}_t = \begin{pmatrix} 0.1 \\ 1.2 \\ -0.3 \end{pmatrix} \begin{matrix} a_{t,0} \\ a_{t,1} \\ a_{t,2} \end{matrix}$$



Why does this work?

first step: $p(a_{t,0}|\mathbf{s}_t)$

second step: $p(a_{t,1}|\mathbf{s}_t, a_{t,0})$

third step: $p(a_{t,2}|\mathbf{s}_t, a_{t,0}, a_{t,1})$

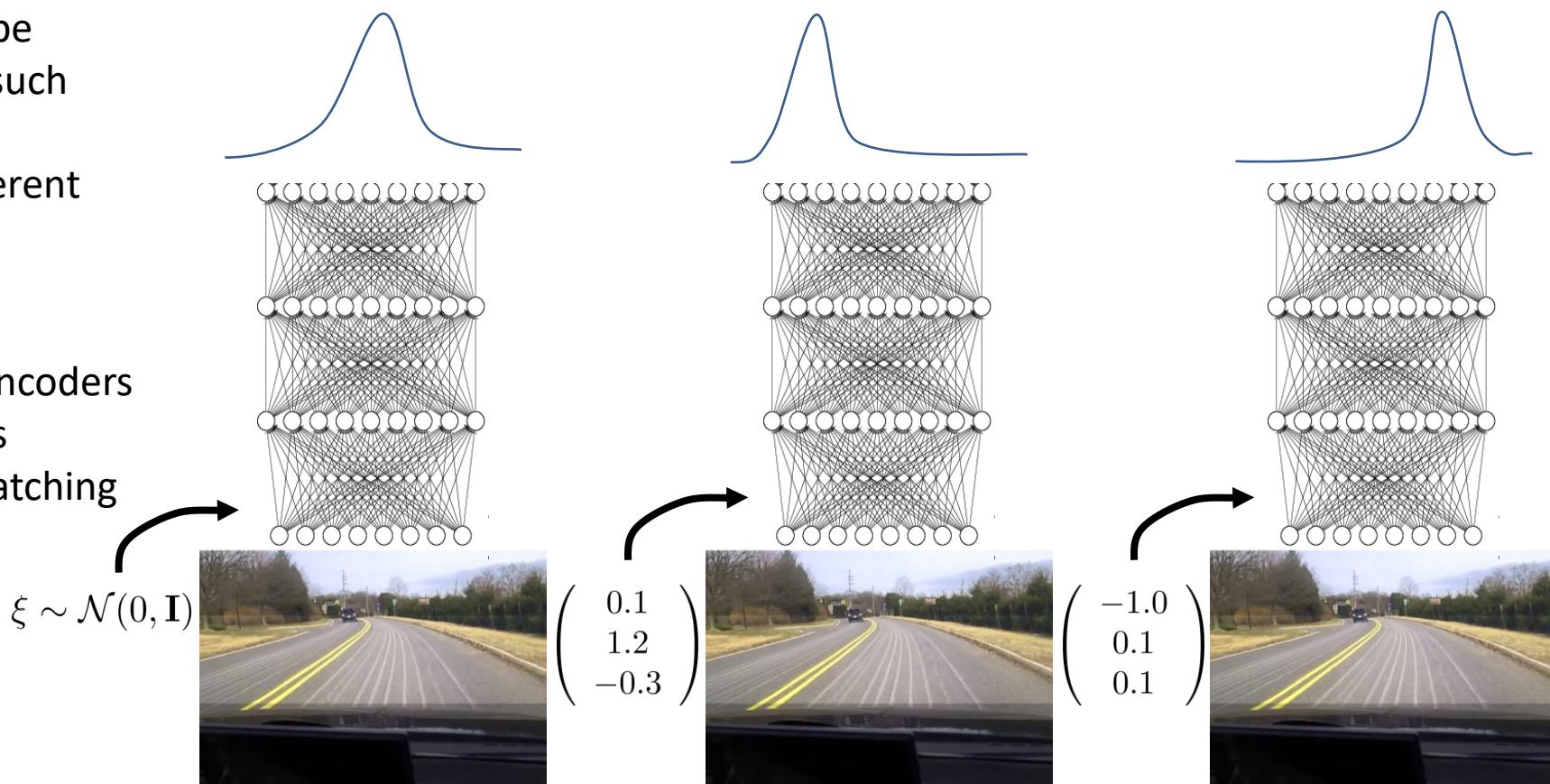
$$\begin{aligned} & p(a_{t,2}|\mathbf{s}_t, a_{t,0}, a_{t,1})p(a_{t,1}|\mathbf{s}_t, a_{t,0})p(a_{t,0}|\mathbf{s}_t) \\ &= p(a_{t,0}, a_{t,1}, a_{t,2}|\mathbf{s}_t) \\ &= p(\mathbf{a}_t|\mathbf{s}_t) \end{aligned}$$

Expressive continuous distributions

Key challenge: the random noise must actually be used by the model, such that different noise samples map to different action modes

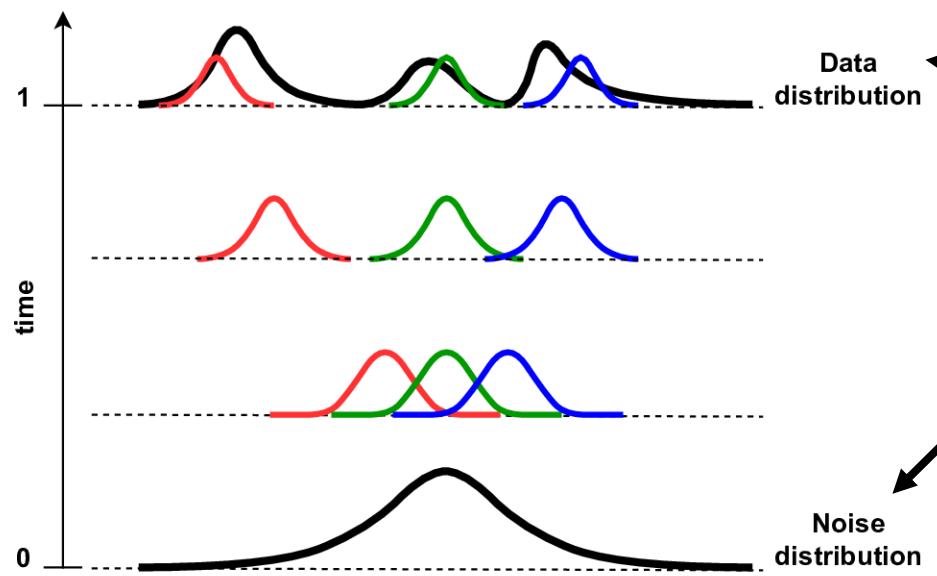
Some solutions:

- Variational autoencoders
- Normalizing flows
- Diffusion/flow matching



Flow matching & diffusion

Informal
illustration



Main idea in flow matching:

to model $p(\mathbf{x})$

learn a vector field $v(\mathbf{x}_t, t)$

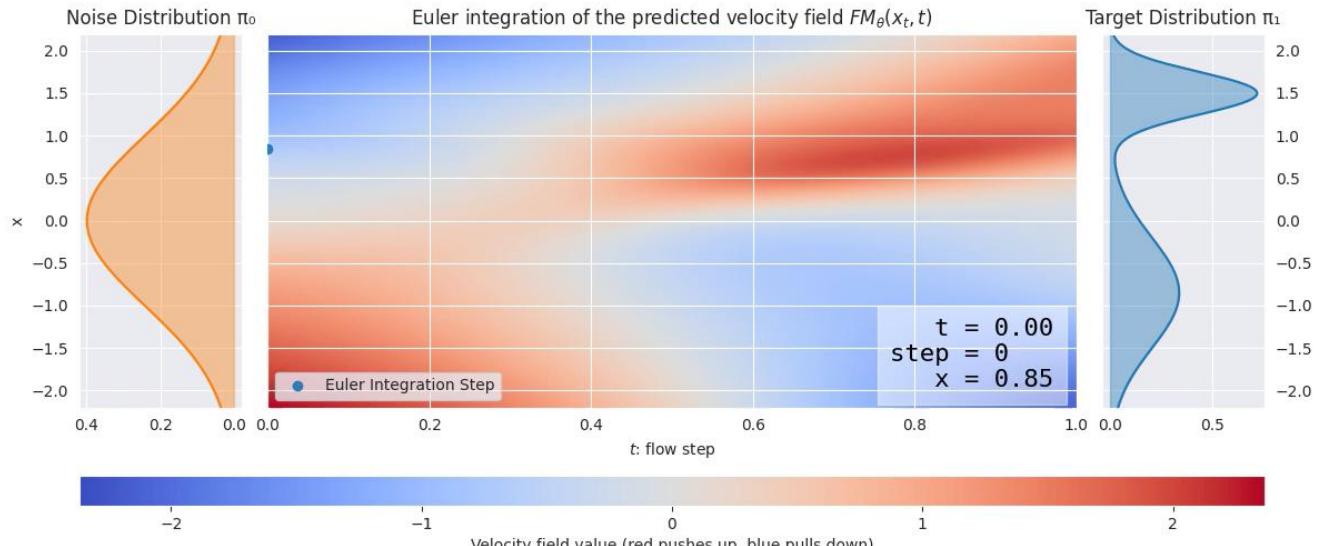
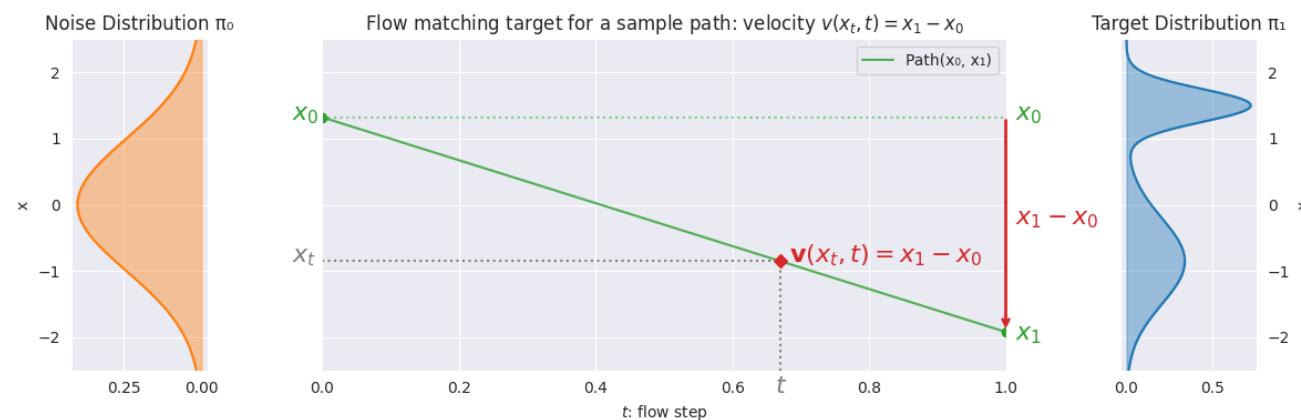
so that we can sample from $p(\mathbf{x})$

by first sampling $\mathbf{x}_0 \sim p_0(\mathbf{x}_0)$

and then integrating the vector field to get

$$\mathbf{x}_1 = \mathbf{x}_0 + \int_0^1 v(\mathbf{x}_t, t) dt$$

Flow matching overview



to sample:

1. sample $\mathbf{x}_0 \sim \mathcal{N}(0, \mathbf{I})$
2. integrate
for $t \in \{0, \Delta t, 2\Delta t, 3\Delta t, \dots, 1 - \Delta t\}$:

$$\mathbf{x}_{t+\Delta t} \leftarrow \mathbf{x}_t + v(\mathbf{x}_t, t)\Delta t$$
3. return \mathbf{x}_1

to train:

1. sample $\mathbf{x}_0 \sim \mathcal{N}(0, \mathbf{I})$
2. sample $\mathbf{x}_1 \in \mathcal{D}$ where $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$
3. sample $t \sim p(t)$ (e.g., $p(t) = \mathcal{U}(0, 1)$)
4. compute $\mathbf{x}_t = t\mathbf{x}_1 + (1 - t)\mathbf{x}_0$
5. update v with $\nabla \|\mathbf{v}(\mathbf{x}_t, t) - \underbrace{(\mathbf{x}_1 - \mathbf{x}_0)}_{\text{target velocity}}\|^2$

Flow matching policy training implementation

1. construct minibatch

for each element in the batch j :

sample $(\mathbf{o}_t^{(j)}, \mathbf{a}_t^{(j)})$ from dataset

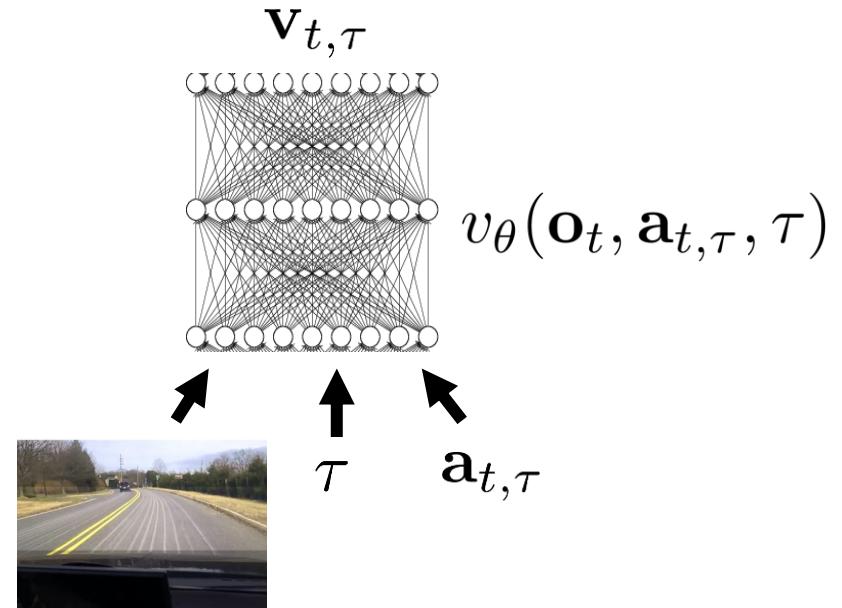
sample $\mathbf{a}_{t,0}^{(j)} \sim \mathcal{N}(0, \mathbf{I})$

sample $\tau^{(j)} \sim p(\tau)$ (e.g., $p(\tau) = \mathcal{U}(0, 1)$)

compute $\mathbf{a}_{t,\tau}^{(j)} = \tau^{(j)} \mathbf{a}_t^{(j)} + (1 - \tau^{(j)}) \mathbf{a}_{t,0}^{(j)}$

2. update $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}$

where $\mathcal{L} = \sum_{j=1}^B \|v_{\theta}(\mathbf{o}_t^{(j)}, \mathbf{a}_{t,\tau}^{(j)}, \tau^{(j)}) - (\mathbf{a}_t^{(j)} - \mathbf{a}_{t,0}^{(j)})\|^2$



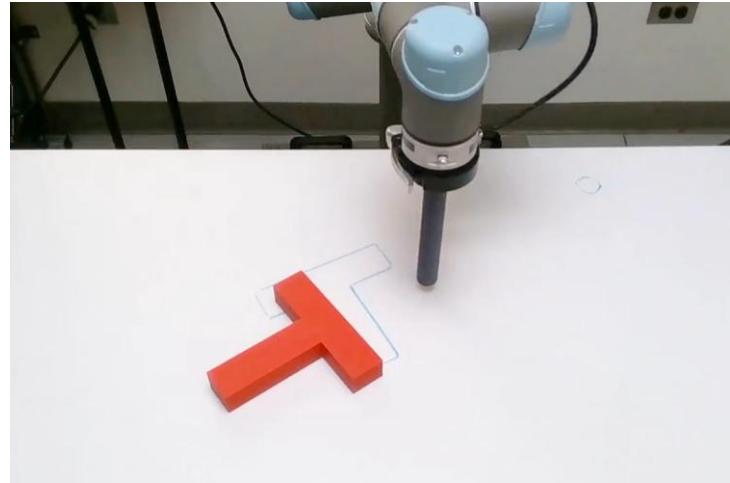
Action chunking

A small detail that helps quite a lot
standard policy:

sample $\mathbf{a}_t \sim \pi_\theta(\mathbf{a}_t | \mathbf{o}_t)$
execute \mathbf{a}_t in the environment
observe \mathbf{o}_{t+1} , repeat

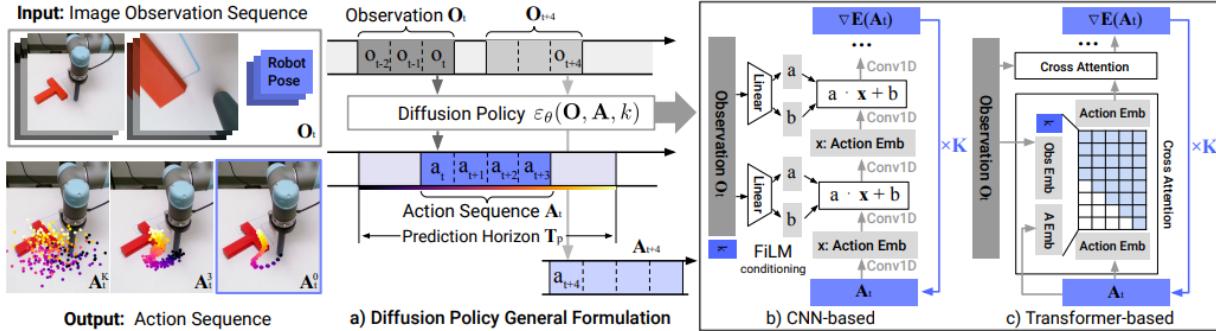
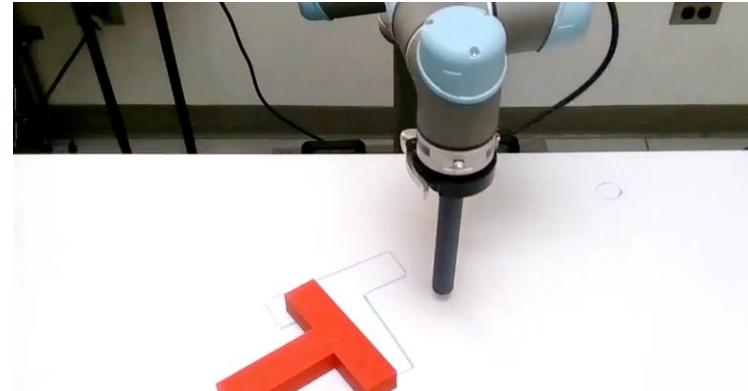
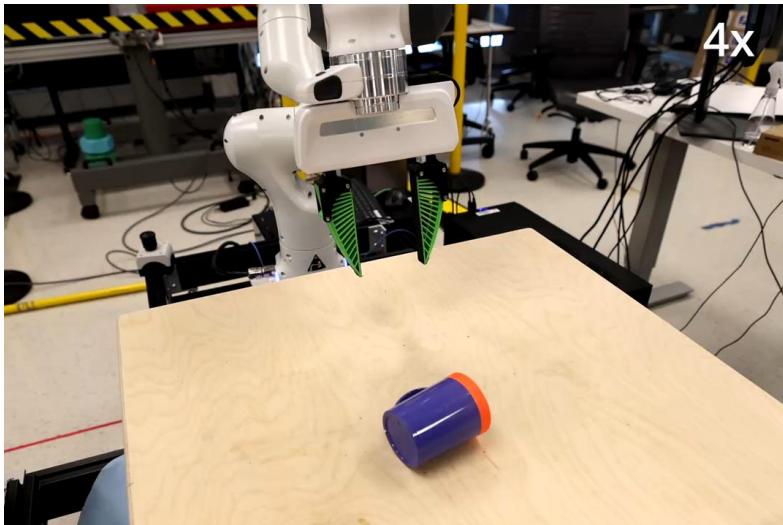
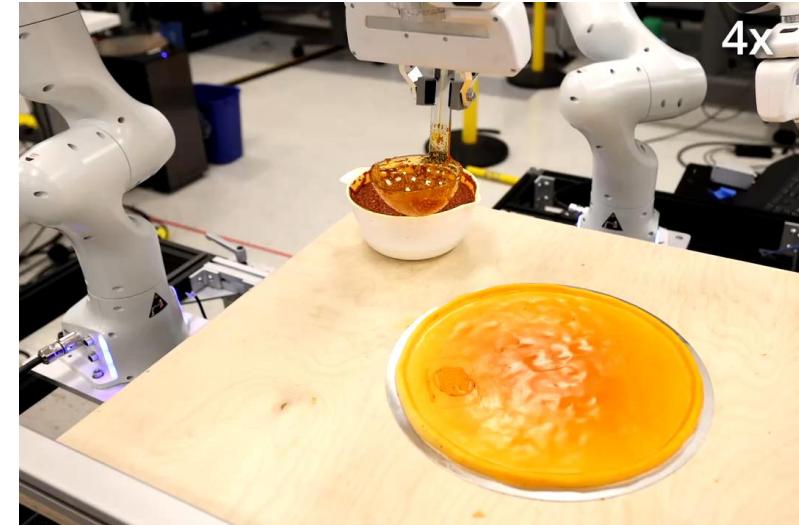
action chunked policy:

sample $\mathbf{a}_{t:t+K} \sim \pi_\theta(\mathbf{a}_{t:t+K} | \mathbf{o}_t)$
execute $\mathbf{a}_t, \mathbf{a}_{t+1}, \dots, \mathbf{a}_{t+K}$ in the environment
observe \mathbf{o}_{t+K+1} , repeat



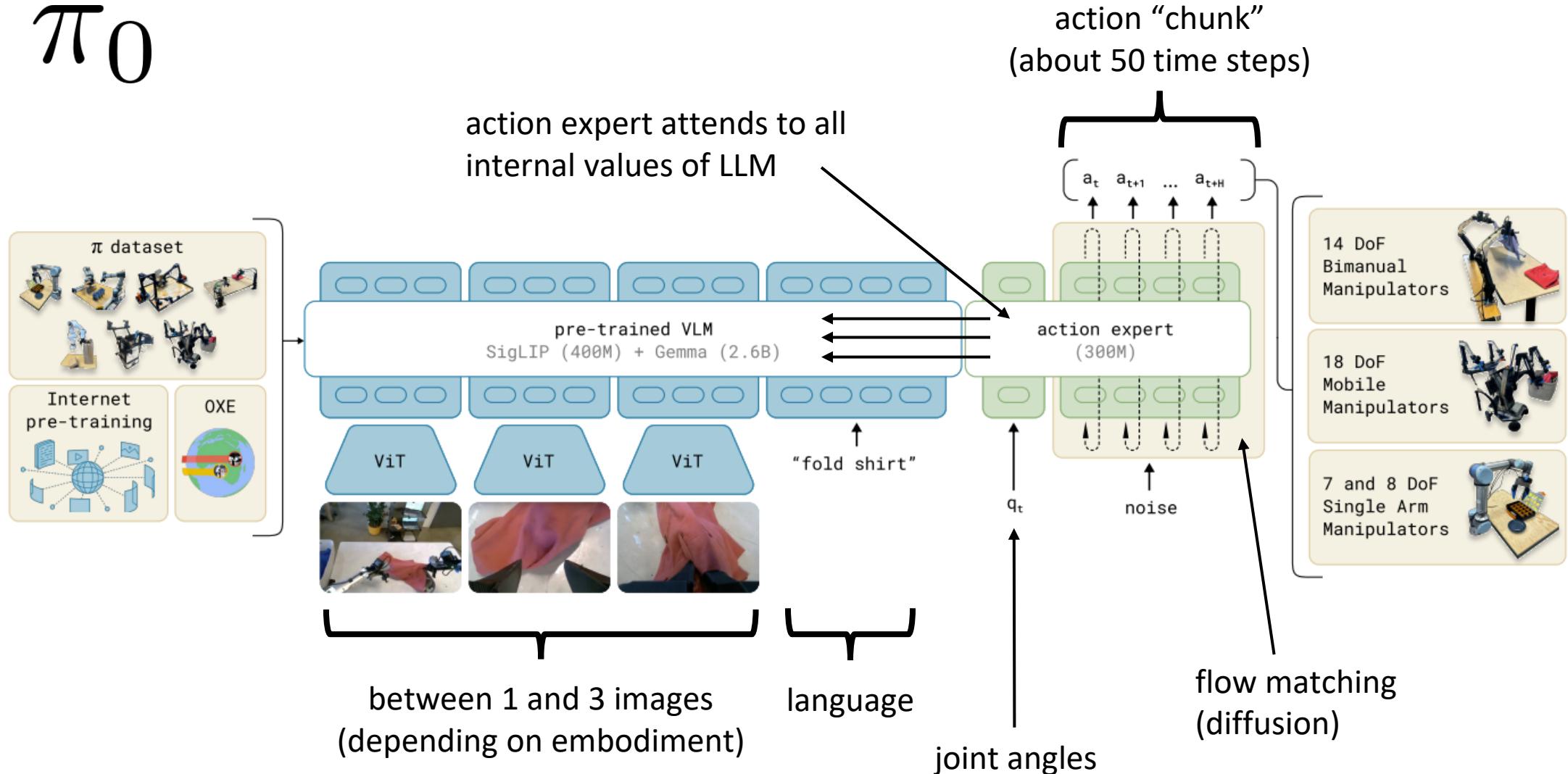
Chi et al. Diffusion policy, 2024

Case study: imitation with diffusion models



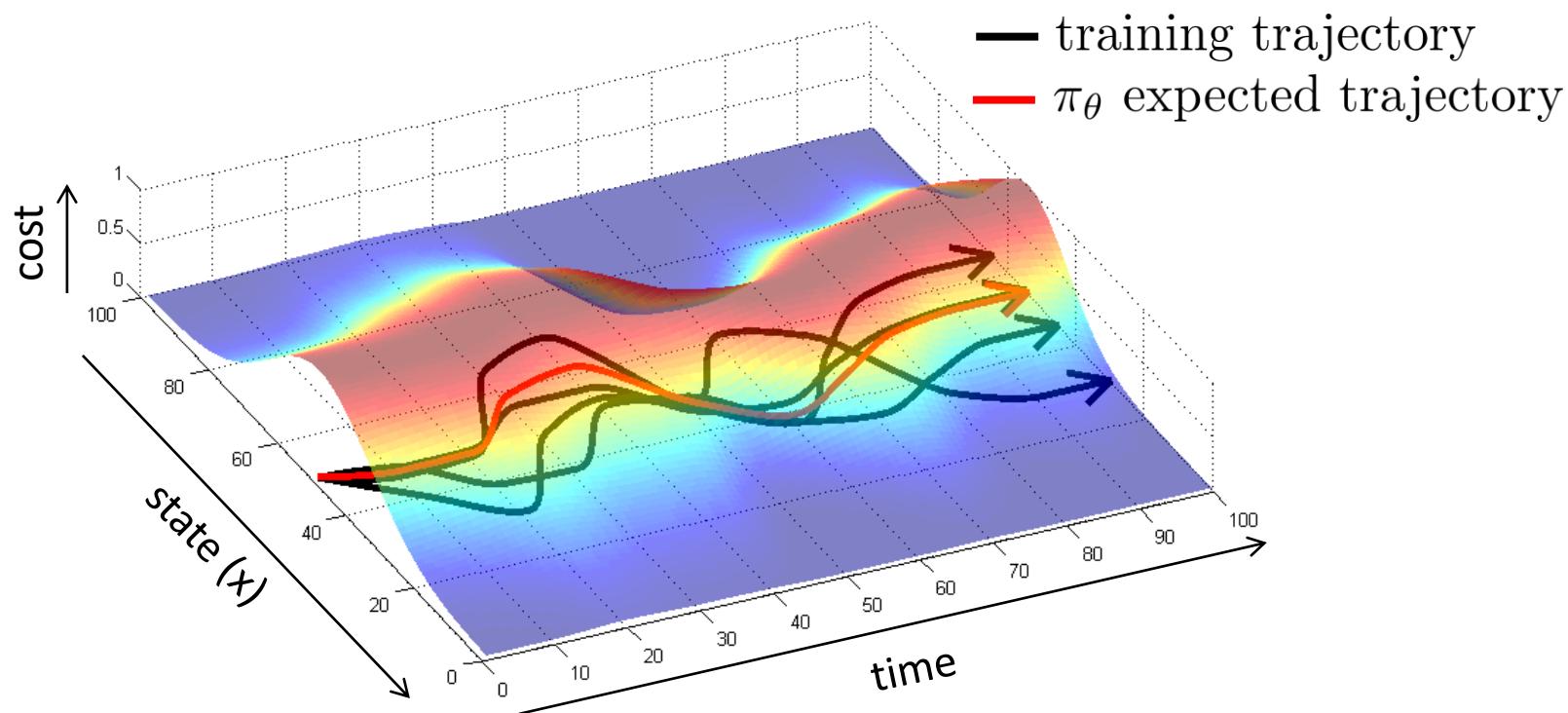
Case study: diffusion + chunking + pre-training

π_0



Part 2: Narrow vs broad data

Some common tricks



- Intentionally add **mistakes and corrections**
 - The mistakes hurt, but the corrections help, often more than the mistakes hurt
- Use **data augmentation**
 - Add some “fake” data that illustrates corrections (e.g., side-facing cameras)

Imitation learning with pre-training

Problem: we want the model to see lots of (bad) situations, so that it knows how to handle them but we don't want to teach it to enter those (bad) situations!

“bad” data

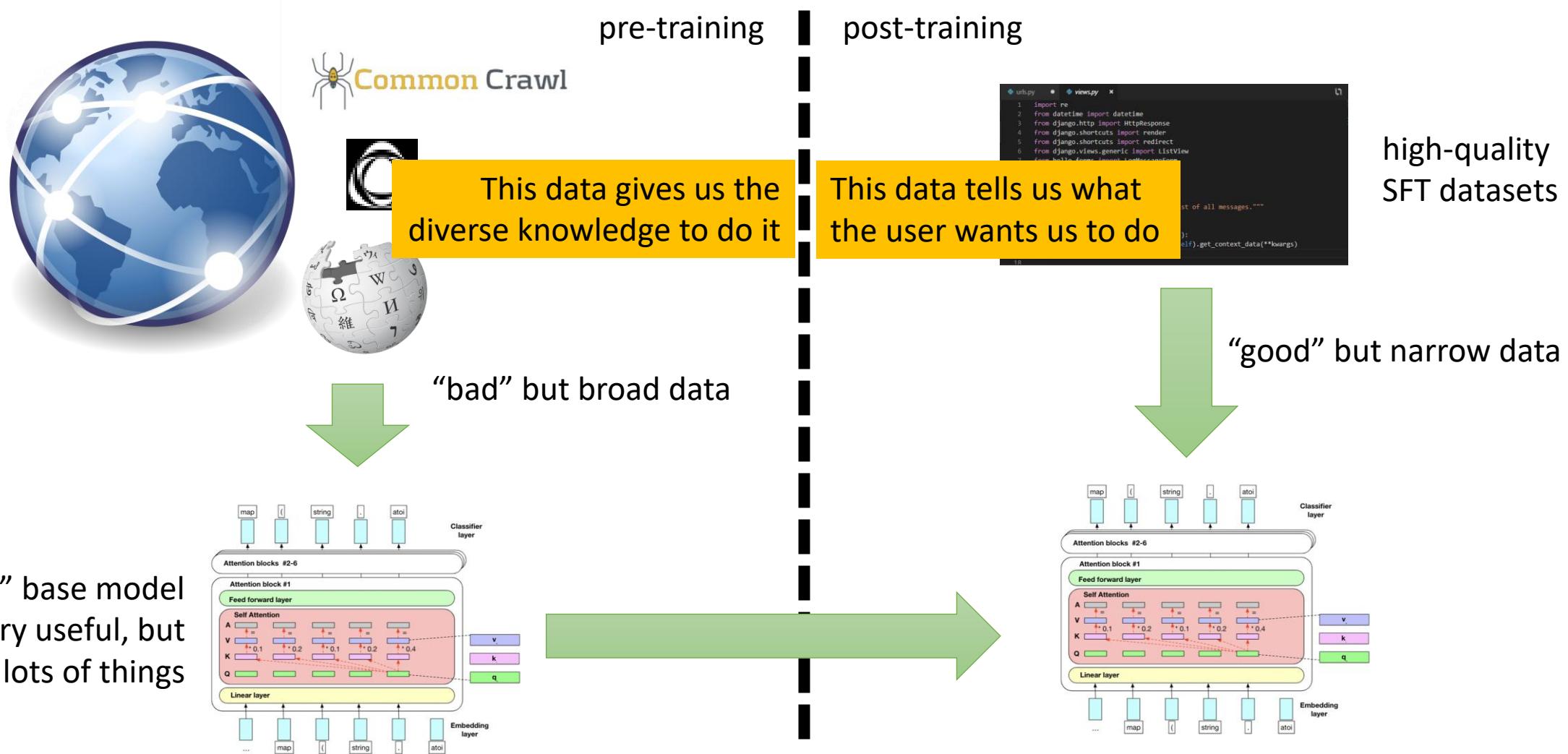
- + sees lots of situations (“broad”)
- has suboptimal actions

“good” data

- + has great actions
- doesn't see many situations (“narrow”)

Can we get the best of both worlds?

Imitation learning with pre-training

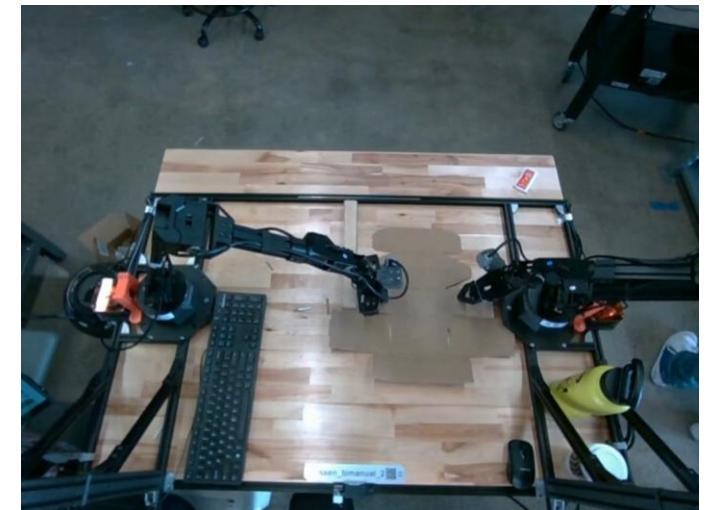
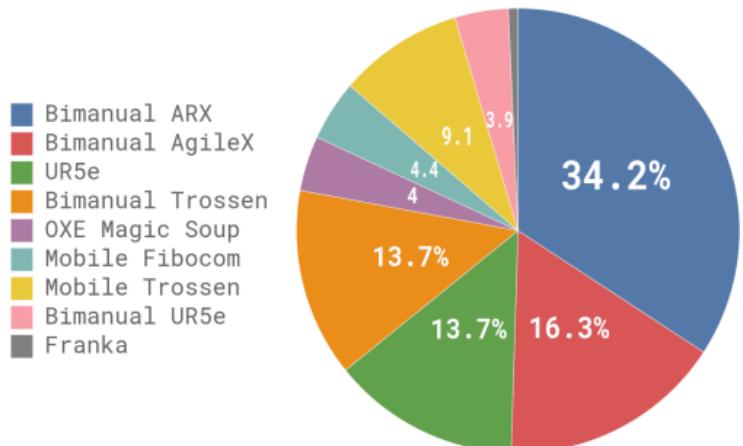


π_0 pre-training and post-training data

pre-training data

post-training data
(laundry folding)

post-training data
(build box)



about 10,000 hours of data

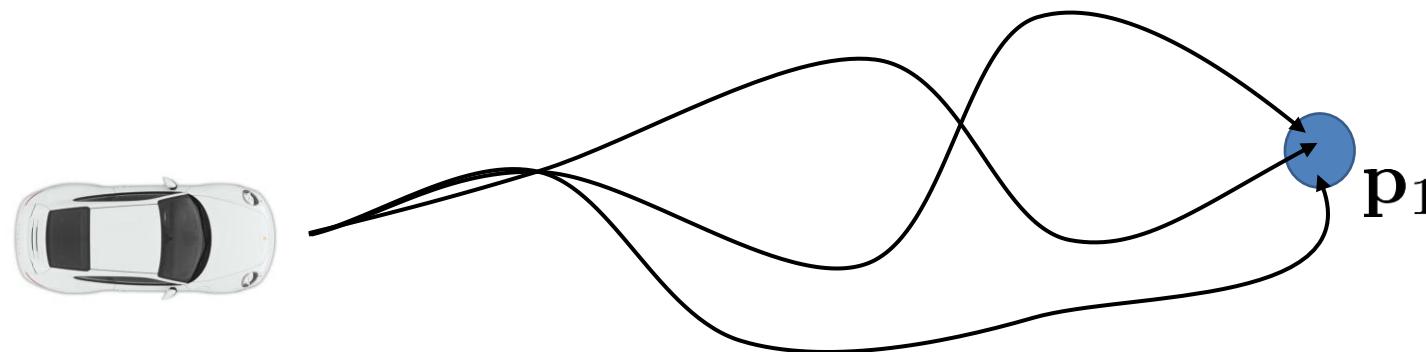
about 20 hours of data

- High-quality but **narrow** data
- Illustrates consistent strategies to perform a task **well**
- By itself doesn't work – robot gets confused if it makes a mistake
- Works great when combined with **pre-training**

about 20 hours of data

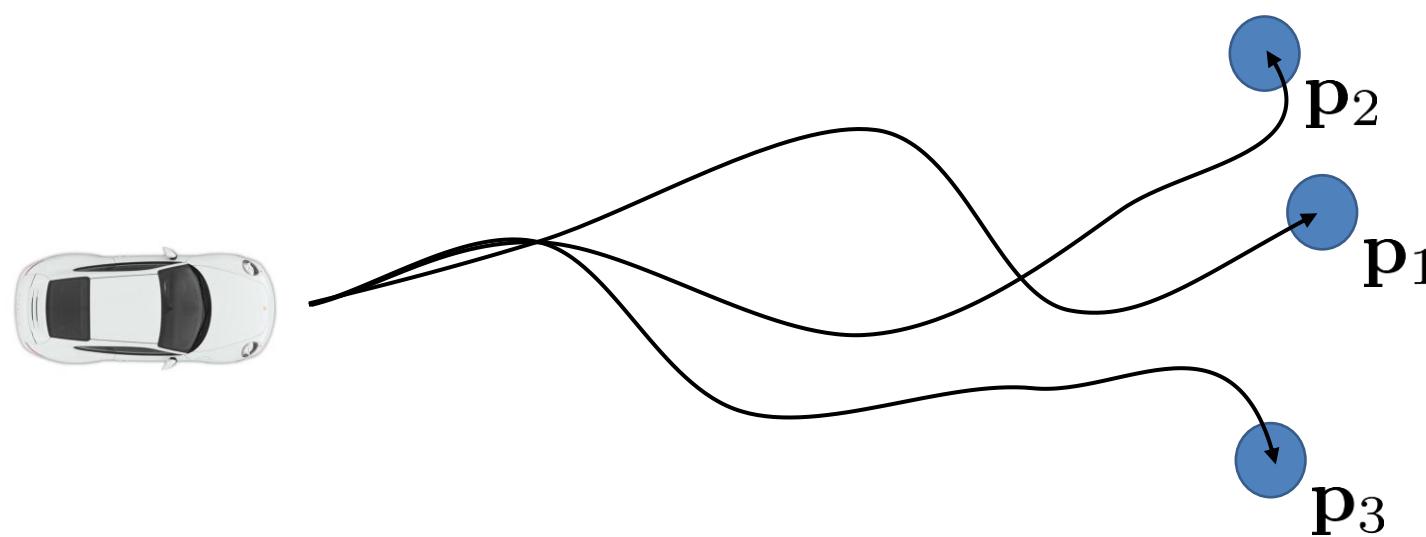
Part 3: Multi-task learning to the rescue

Does learning many tasks become easier?



$$\pi_{\theta}(\mathbf{a}|\mathbf{s})$$

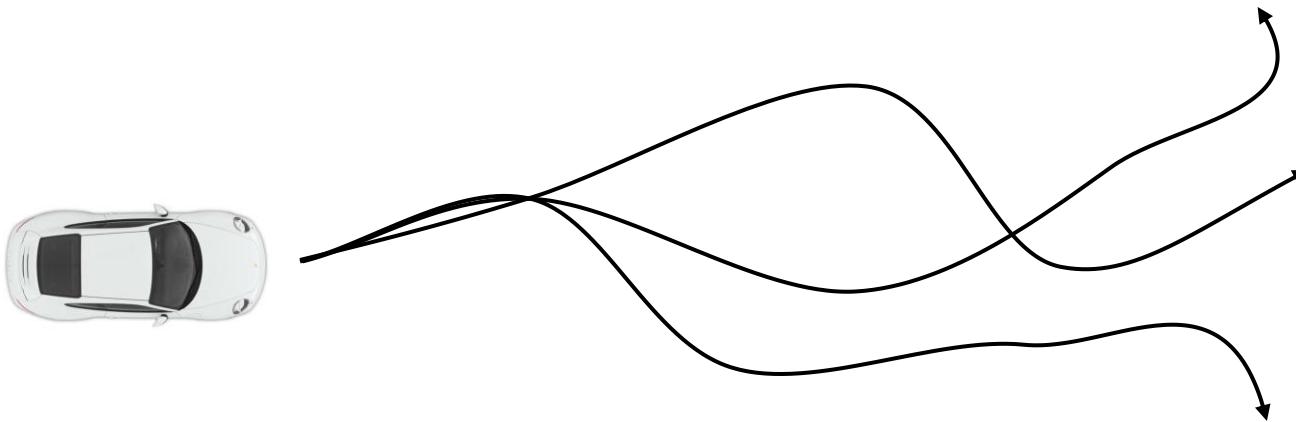
policy for reaching \mathbf{p}_1



$$\pi_{\theta}(\mathbf{a}|\mathbf{s}, \mathbf{p})$$

policy for reaching *any* \mathbf{p}

Goal-conditioned behavioral cloning



training time:

demo 1: $\{s_1, a_t, \dots, s_{T-1}, a_{T-1}, s_T\}$ ← successful demo for reaching s_T

demo 2: $\{s_1, a_t, \dots, s_{T-1}, a_{T-1}, s_T\}$ ← learn $\pi_\theta(a|s, g)$

demo 3: $\{s_1, a_t, \dots, s_{T-1}, a_{T-1}, s_T\}$

We see distributional shift in **two** places here!

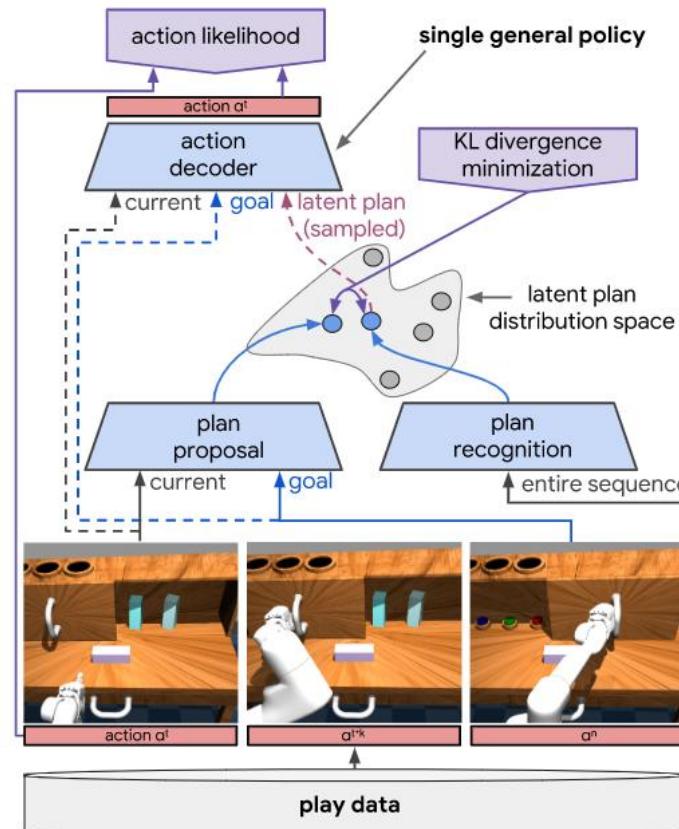
for each demo $\{s_1^i, a_1^i, \dots, s_{T-1}^i, a_{T-1}^i, s_T^i\}$

Can you figure out what the second place is?

maximize $\log \pi_\theta(a_t^i | s_t^i, g = s_T^i)$

Learning Latent Plans from Play

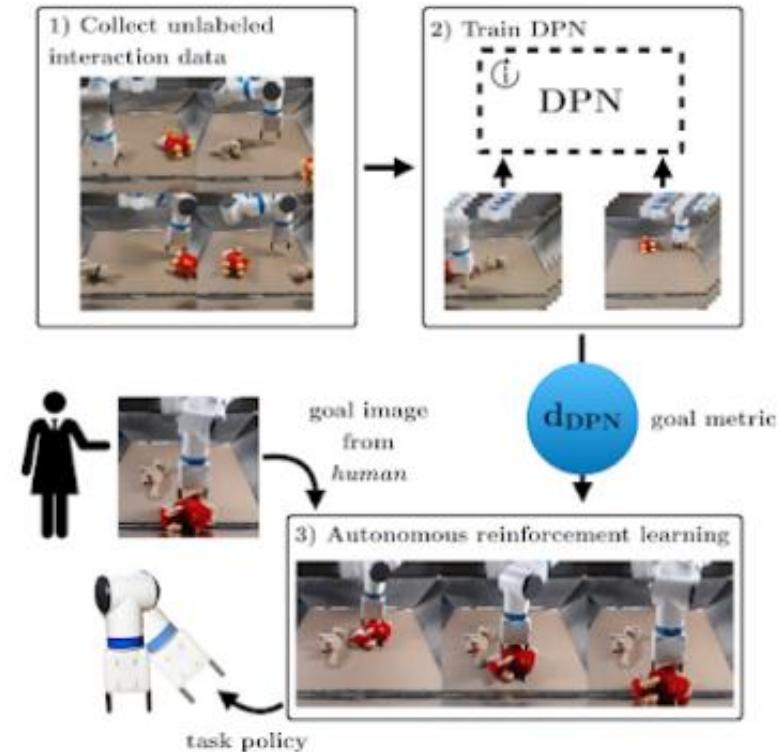
COREY LYNCH MOHI KHANSARI TED XIAO VIKASH KUMAR JONATHAN TOMPSON SERGEY LEVINE PIERRE SERMANET
Google Brain Google X Google Brain Google Brain Google Brain Google Brain Google Brain



Unsupervised Visuomotor Control through Distributional Planning Networks

Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, Chelsea Finn

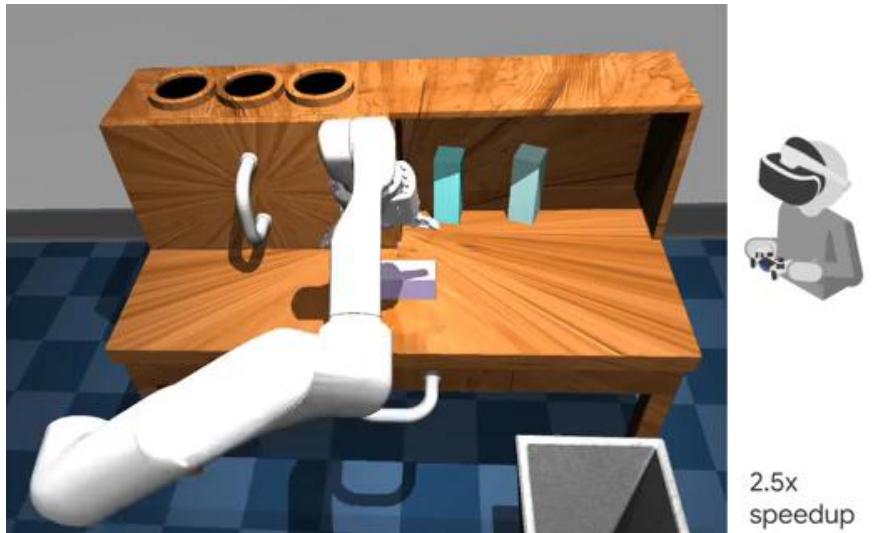
Stanford University



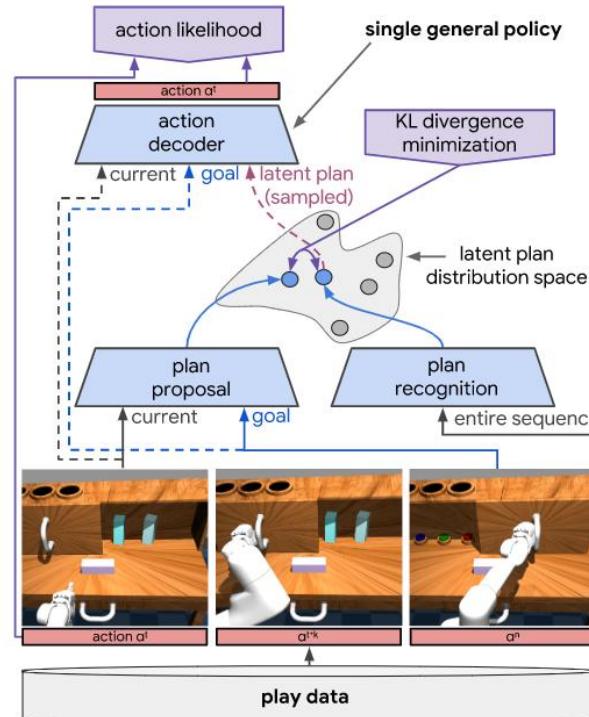
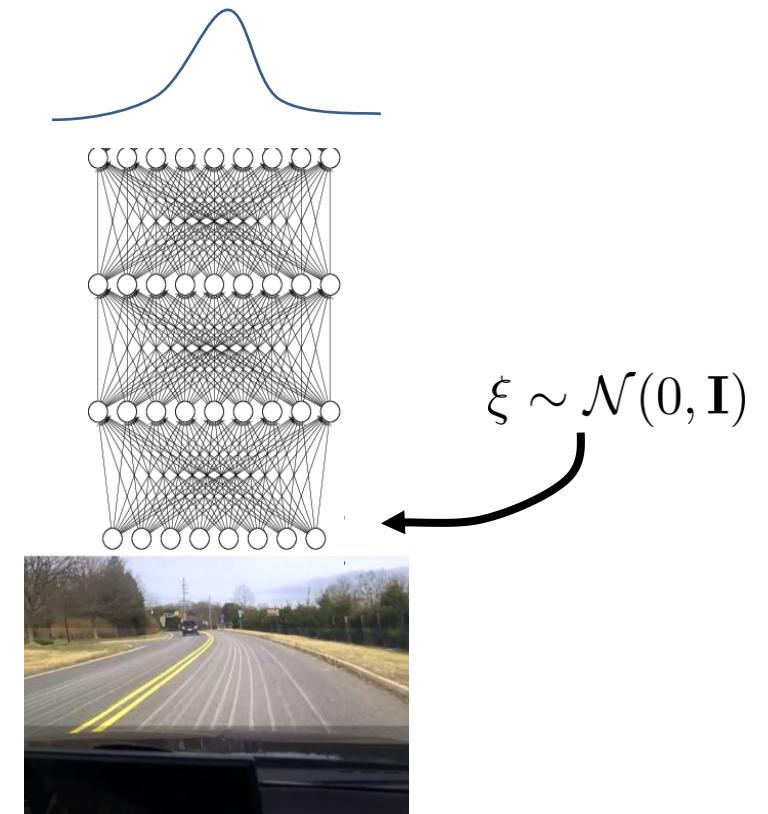
Learning Latent Plans from Play

COREY LYNCH MOHI KHANSARI TED XIAO VIKASH KUMAR JONATHAN TOMPSON SERGEY LEVINE PIERRE SERMANET
Google Brain Google X Google Brain Google Brain Google Brain Google Brain Google Brain

1. Collect data



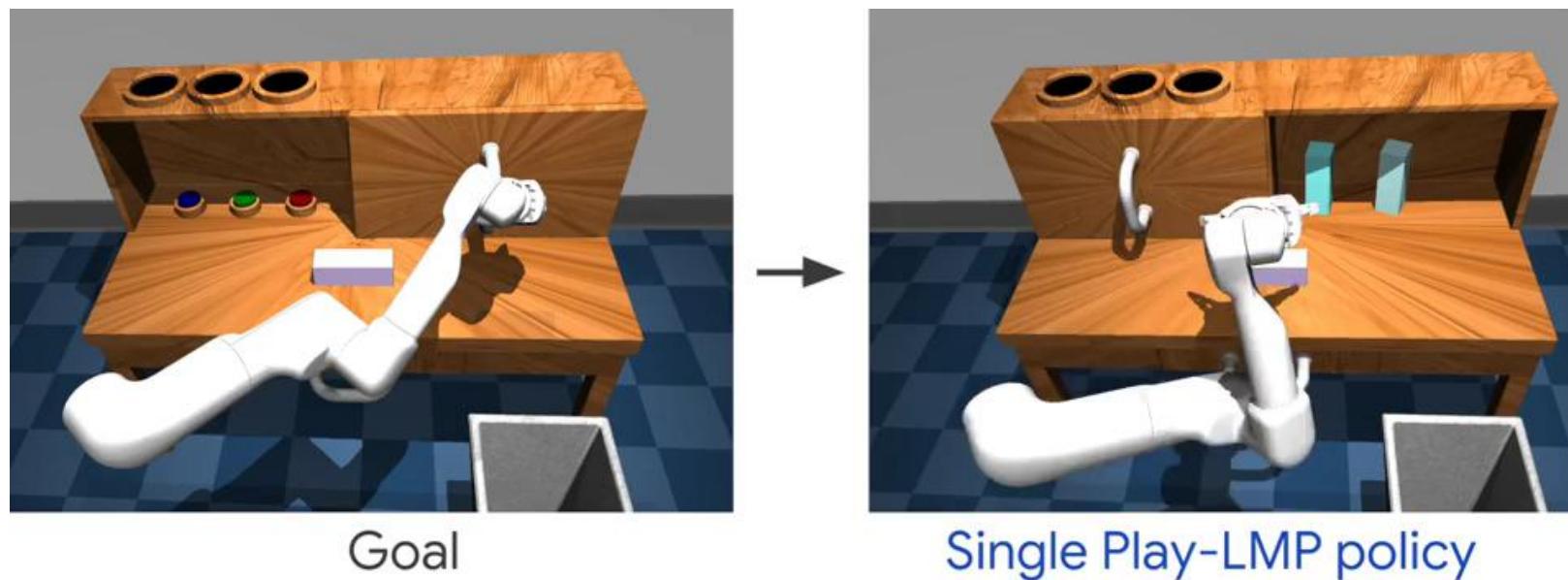
2. Train goal conditioned policy



Learning Latent Plans from Play

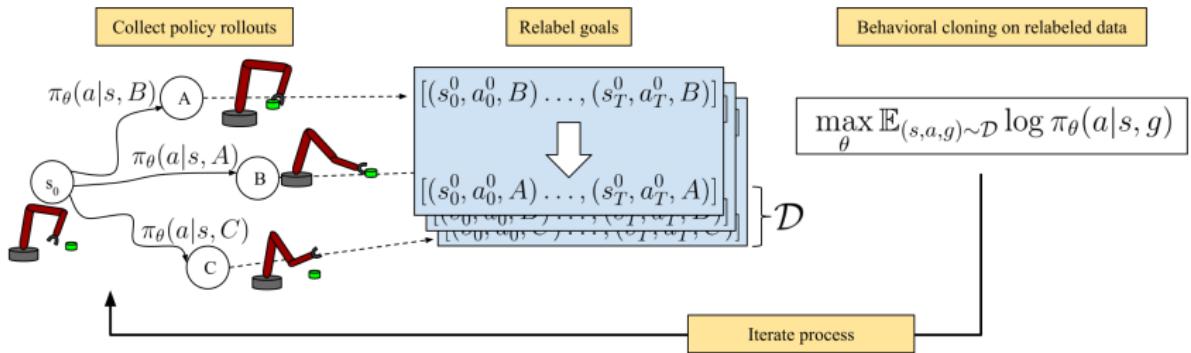
COREY LYNCH MOHI KHANSARI TED XIAO VIKASH KUMAR JONATHAN TOMPSON SERGEY LEVINE PIERRE SERMANET
Google Brain Google X Google Brain Google Brain Google Brain Google Brain Google Brain

3. Reach goals



Going beyond just imitation?

Learning to Reach Goals via Iterated Supervised Learning



- Start with a **random** policy
- Collect data with **random** goals
- Treat this data as “demonstrations” for the goals that were reached
- Use this to improve the policy
- Repeat

Goal-conditioned BC at a huge scale

Dataset	Platform	Speed	Amt.	Environment
1 GoStanford [26]	TurtleBot2	0.5m/s	14h	office
2 RECON [32]	Jackal	1m/s	25h	off-road
3 CoryHall [35]	RC Car	1.2m/s	2h	hallways
4 Berkeley [33]	Jackal	2m/s	4h	suburban
5 SCAND-S [36]	Spot	1.5m/s	8h	sidewalks
6 SCAND-J [36]	Jackal	2m/s	1h	sidewalks
7 Seattle [37]	Warthog	5m/s	1h	off-road
8 TartanDrive [38]	ATV	10m/s	5h	off-road
Ours		60h		

RC-Car
(Kahn et al. 2018)

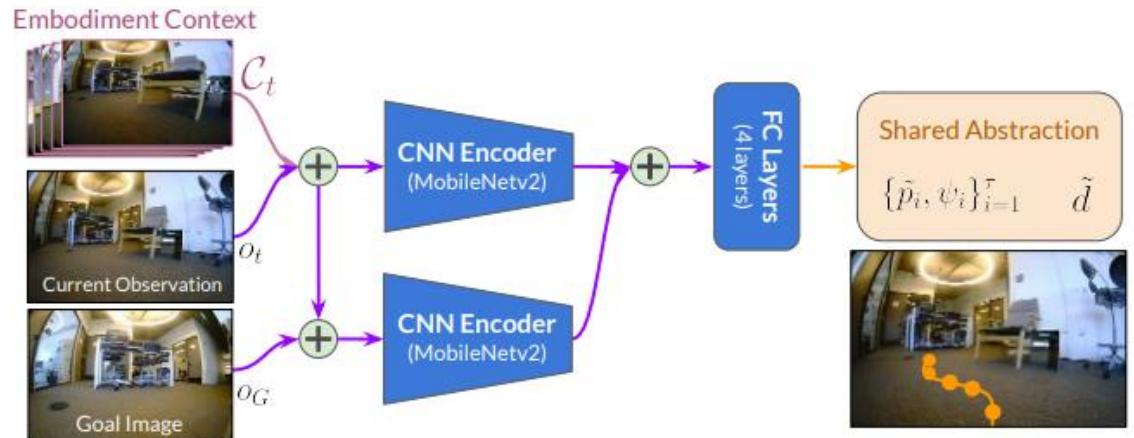
TurtleBot
(Hirose et al. 2019)

Jackal
(Shah et al. 2021, 2022)

Spot
(Karnan et al. 2022)

Warthog
(Shaban et al. 2021)

ATV
(Triest et al. 2022)



Also related (for later...)

Hindsight Experience Replay

Marcin Andrychowicz*, **Filip Wolski**, **Alex Ray**, **Jonas Schneider**, **Rachel Fong**,
Peter Welinder, **Bob McGrew**, **Josh Tobin**, **Pieter Abbeel[†]**, **Wojciech Zaremba[†]**
OpenAI

- Similar principle but with reinforcement learning
- This will make more sense later once we cover off-policy value-based RL algorithms
- Worth mentioning because this idea has been used widely outside of imitation