Supervised Learning of Behaviors

CS 185/285

Instructor: Sergey Levine
UC Berkeley

Recap

* Imitation learning via behavioral cloning is not
guaranteed to work

* This is different from supervised learning
* The reason: i.i.d. assumption does not hold!

* We can formalize why this is and do a bit of theory

* We can address the problem in a few ways:
e Change the algorithm (DAgger)
* Use very powerful models that make very few mistakes
* Be smart about how we collect (and augment) our data
* Use multi-task learning P>
() o

Ps3

Recap

* We can address the problem in a few ways:

* Use very powerful models that make very few mistakes
* Be smart about how we collect (and augment) our data
* Use multi-task learning P>

Y
‘. .
—

Part 1.
Models for imitation learning

Why might we fail to fit the expert?

1. Non-Markovian behavior
2. Multimodal behavior

mo(at|og) mg(at|o1, ..., O¢)
behavior depends only behavior depends on
on current observation all past observations

If we see the same thing
twice, we do the same thing Often very unnatural for

twice, regardless of what human demonstrators
happened before

How can we use the whole history?

variable number of frames,
too many weights

How can we use the whole history?
shared weights \

sequence
model

e.g., Transformer

Aside: why might this work poorly?

Scenario A: Full Information Scenario B: Incomplete Information

policy attends to brake indicator policy attends to pedestrian

“causal confusion” see: de Haan et al., “Causal Confusion in Imitation Learning”

Question 1: Does including history mitigate causal confusion?

Question 2: Can DAgger mitigate causal confusion?

Why might we fail to fit the expert?

1. Non-Markovian behavior
1. Discretization with high-

2. Multimodal behavior lﬂl dimensional action spaces

plocpplos plas} 2. More expressive continuous
" distributions

"

Can we discretize continuous action spaces?

. Problem: this is great for 1D actions,
but in higher dimensions, discretizing
the full space is impractical

Solution: discretize one dimension at
a time

Autoregressive discretization

At
0.1 0 Why does this work?
A = 1.2 a1
—0.3 at 2

l first step: p(a¢o|st)
lJ -- _ second step: p(at,1|staat,0)
at,0 at,1 t,2 third step:
’ ’ ’ p- p(at,Q‘Staat,Oaat,l)
os. N P I

. sequence | sequence | sequence
autoregressive > > p(at,z |Sta Qat 0, at,l)p(at,l |St7 at,o)P(at,O |St)
Transformer model block model block model block

= N O U
image
encoder — p(at ‘St)

at.0 at, 1

Expressive continuous distributions

Key challenge: the random
noise must actually be
used by the model, such
that different noise
samples map to different
action modes

Some solutions:

* Variational autoencoders
* Normalizing flows

» Diffusion/flow matching

Flow matching & diffusion

Informal .
illustration Po(Xo) g (o=l
Clean X X X X Pure
sample i 1 2=l T oise

Main idea in flow matching:

Data ¥~ t0 model p(x)

_distribution

learn a vector field v(xy, 1)

so that we can sample from p(x)

time

by first sampling xq ~ po(Xg)
and then integrating the vector field to get

1
Noise X1 = Xp -+ f U(Xta t)dt
0

_ distribution

Flow matching overview

Noise Distribution 1o Euler integration of the predicted velocity field FMg(x;, t) Target Distribution m

|
2.0 / 2.0
15 15
1.0 1.0
»
05

< t = 0.00
N N — step el "
2.0 \ @ Euler Integration Step x = 0.85 -
0.4 02 0.0 0.0 0.4 0.6 0.8 10 0.0 0.5
t: flow step
-2 23 0 1 2

Velocity field value (red pushes up, blue pulls down)

Noise Distribution mo

Flow matching target for a sample path: velocity v(x;, t) = x; — xp

Target Distribution m
—— Pathixao, x1)

2 2
Xo Xo
1 1
0 0
X1 = Xo)
Xt
-1 -1
-2 X1 -2
0.25 0.00 0.0 0.2 0.4 06 [0.8 1.0 0.0 0.5
t: flow step

Illustrations: Peter Roelants https://peterroelants.github.io/posts/flow_matching_intro/

to sample:
1. sample xg ~ N (0,1)
2. Integrate
for t € {0, At, 2At, 3A¢, ...,
Xi4 At — Xe + (X, t) At

1 — At}
3. return x;

to train:

1. sample xg ~ N (0,1)

2. sample x; € D where D = {x(V}V |
3. sample t ~ p(t) (e.g., p(t) =U(0,1))
4. compute x; = tx1 + (1 — t)xq
5

. update v with V||v(x¢,1) I&

— (x1 —%0)
\ J

1
target velocity

Flow matching policy training implementation

1. construct minibatch
for each element in the batch j:

sample (07, a)

sample a(J) ~ N(0,1)

from dataset

sample 7 ~ p(7) (e.g., p(7) =U(0,1))
Compute al(ﬁ,jv)' - T(j)agj) 4+ (1 ,7_(3)) (J)

2. update 0 < 0 + aVyL
where £ =37, [|vg(0)”, a;), 7)) — (a;”) — afly)||? Ot

Action chunking

A small detail that helps quite a lot

standard policy:

sample a; ~ mg(a;|o)

execute a; in the environment
observe 0,41, repeat A

action chunked policy: Chi et al. Diffusion policy, 2024

sample ay.i4x ~ Tg(as+K|0¢)
execute a;,a;41, ..., a;1+x 1N the environment

observe 0;4+ k11, repeat

Case study: imitation with diffusion models

Input: Image Observation Sequence Observation O: O
—

E 7 gl | [G
A b.ﬂ | D\'ffuvsionPolicy 5H{O~A.~k)»

B N N
: ; — I
Action Sequence A:
" . _. g <«——Prediction Horizon Ty —— Avs
LR T - T
< AF Al Al Begt 1

Output: Action Sequence a) Diffusion Policy General Formulation

Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. 2023

Case study: diffusion + chunking + pre-training

7"' action “chunk”
O (about 50 time steps)
action expert attends to all ‘—‘—\

internal values of LLM a o o
_ ET 1 1 1 Sars .
T dataset i 14 DoF ?

g&j@ =2 ([DDD“DDD“D@D”DD@D \ - ?
action expert

L pre-trained VLM ; :
'i SigLIP (486M) + Gemma (2.6B) < (308M) 18 DoF y |
: : : : | Mobile
4 P!

Internet Manipulators
pre- tralnlng

. I‘T |r * B8, —

] ﬂlJ i T 7 and 8 DoF
I_T b o noise Single Arm
— A Manipulators

flow matching
(diffusion)

between 1 and 3 images language
(depending on embodiment)

joint angles

Part 2:
Narrow vs broad data

Some common tricks

- = tralning trajectory
| — T expected trajectory

* Intentionally add
mistakes and
corrections

* The mistakes hurt, but
the corrections help,

often more than the
mistakes hurt

e Use data augmentation

* Add some “fake” data
that illustrates
corrections (e.g., side-
facing cameras)

Imitation learning with pre-training

Problem: we want the model to see lots of (bad) situations, so that it knows how to handle them

but we don’t want to teach it to enter those (bad) situations!

“bad” data “good” data
+ sees lots of situations (“broad”) + has great actions
- has suboptimal actions - doesn’t see many situations (“narrow”)

Can we get the best of both worlds?

Imitation learning with pre-training

pre-training || post-training

% Crawl I

E This data gives us the : This data tells us what
diverse knowledge to do it ¥ the user wants us to do &

high-quality
SFT datasets

“good” but narrow data

-
{i)
{
]
5

“raw” base mode| [z==-

not very useful, but [“EWE == J : IJ
. e e ol z ——
knows lots of things e — — = e | = |

710 pre-training and post-training data

pre-training data post-training data post-training data
(laundry folding) (build box)

B Bimanual ARX

B Bimanual AgileX
B UR5e

B Bimanual Trossen
B 0XE Magic Soup

Mobile Fib 13.7% | . .
Mobile Trossen AN e High-quality but narrow data

o Fronke D NURTE « Illustrates consistent strategies to perform a task well
| e By itself doesn’t work — robot gets confused if it
| makes a mistake
about 10,000 hours of data Works great when combined with pre-training

about 20 hours of data about 20 hours of data

art 3.
Multi-task learning to the rescue

Does learning many tasks become easier?

mo(als)
P1

policy for reaching p;

o (a‘S, p)
P2
policy for reaching any p

—— (4 pl
(n
— o

P3

Goal-conditioned behavioral cloning

—— 9%
E——— 24

training time:

demo 1: {si,a;,...,8S7_1,a7_1,ST} < successful demo for reaching st
demo 2: {sy,a¢,...,S7_1,ar_1,87} learn myp(als,g) «—— goal state
demo 3: {817 Aty ..., ST_1,A7T—-1, ST}

We see distributional shift in two places here!

for each demo {s},a},...,s_{,a%_{,s%} . .
Can you figure out what the second place is?

maximize log 7y (at|s!, g = si)

Learning Latent Plans
from Play

CC“E‘r’ LYNCH MOHI KHAMSARI TED XIAD VIKASH KUMAR JOMATHAM TOMPSON SERGEY LEVIME PIERRE SERMANET

Google Brain Google X Google Brain - Google Brain Google Brain Google Brain Google Brain

single general policy

action KL divergence

decoder minimization
Acurrent A goal A latent plan

- - . (sampled)

<«— latent plan
distribution space

plan plan
proposal recognition

current 4 goal entire sequence

—]

Unsupervised Visuomotor Control through
Distributional Planning Networks

Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, Chelsea Finn

Stanford University
1) Collect unlabelod 2) Train DPN

interaction data .' g oeaefSs
' DPN
' 1
PSR ——

— ‘

N £

goal image

gonl metric
from

human

3) Autonomons reinforcement learning

o B

task policy

Learning Latent Plans
from Play

LEVINE PIERRE SERMAMET

action likelihood

action
decoder

Acurrent A goal Alatent plan
1 1 \
-- ' \(samp!ed)

________ s /O
S N\
k/O |<«— latent plan
© distribution space

plan plan
proposal recognition

entire sequence

§~N(0,1)

2.5%
speedup

play data

Learning Latent Plans
from Play

COREYLYNCH MOHI KHANSARI TED XIAQ /IKASH KUMAR ~ JONATHAN TOMPSON ~ SERGEY LEVINE ~ PIERRE SERMANET

3. Reach goals

— '_/(jiWAJJm%

Single Play-LMP policy

Going beyond just imitation?

Learning to Reach Goals via Iterated Supervised > Start with a random policy

Learnin :
ca & » Collect data with random goals
> Treat this data as “demonstrations” for
Colleet policy rollouts | ‘ Behavioral cloning on relabeled data the goals that were reaChed

[(s0, ag, B) ..., (s}, a}, B)]

max E, . g)~p log mo(als, g) » Use this to improve the policy

(U0 7 YT =7
O % " Ll T TS

i), ad, A) .7, (55, a3, A)]
iis2

» Repeat

| Iterate process

Goal-conditioned BC at a huge scale

Embodiment Context

Dataset Platform Speed Amt. Environment i |
1 GoStanford [26] TurtleBot2 0.5m/s 14h office " i
2 RECON [32] Jackal Im/s 25h off-road CNN Encoder = Shaced Absteaction
3 CoryHall [35] RC Car 1.2m/s 2h hallways (MobileNetv2) é
4 Berkeley [33] Jackal 2m/s 4h suburban i
5 SCAND-S [36] Spot 1.5m/s 8h sidewalks
6 SCAND-J [36] Jackal 2m/s 1h sidewalks
7 Seattle [37] Warthog Sm/s 1h off-road e CNN Encoder
8 TartanDrive [38] ATV 10m/s 5h off-road = kA (Mobiichiened
Ours 60h

RC-Car TurtleBot Jackal
(Hirose et al. 2019) (Shah et al. 2021, 2022)

st
Warthog ATV
(Karnan et al. 2022) (Shaban et al. 2021) (Triest et al. 2022)

Shah*, Sridhar*, Bhorkar, Hirose, Levine. GNM: A General Navigation Model to Drive Any Robot. 2022.

Also related (for later...)

» Similar principle but with reinforcement
learning

Hindsight Experience Replay

» This will make more sense later once we
cover off-policy value-based RL algorithms

Marcin Andrychowicz®, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel’, Wojciech Zaremba' > Worth mentionin g because this idea has

OpenAl . . L
pen been used widely outside of imitation

	Slide 1: Supervised Learning of Behaviors CS 185/285 Instructor: Sergey Levine UC Berkeley
	Slide 2: Recap
	Slide 3: Recap
	Slide 4: Part 1: Models for imitation learning
	Slide 5: Why might we fail to fit the expert?
	Slide 6: How can we use the whole history?
	Slide 7: How can we use the whole history?
	Slide 8: Aside: why might this work poorly?
	Slide 9: Why might we fail to fit the expert?
	Slide 10: Can we discretize continuous action spaces?
	Slide 11: Autoregressive discretization
	Slide 12: Expressive continuous distributions
	Slide 13: Flow matching & diffusion
	Slide 14: Flow matching overview
	Slide 15: Flow matching policy training implementation
	Slide 16: Action chunking
	Slide 17: Case study: imitation with diffusion models
	Slide 18: Case study: diffusion + chunking + pre-training
	Slide 19: Part 2: Narrow vs broad data
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Part 3: Multi-task learning to the rescue
	Slide 25: Does learning many tasks become easier?
	Slide 26: Goal-conditioned behavioral cloning
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Going beyond just imitation?
	Slide 31: Goal-conditioned BC at a huge scale
	Slide 32: Also related (for later…)

