Supervised Learning of Behaviors

CS 185/285

Instructor: Sergey Levine
UC Berkeley




Part 1.
-rom supervised learning to imitation learning
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maximum likelihood estimation

a.k.a. supervised learning
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Partially observed case
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“demonstration trajectory” 1=1 =1

“behavioral cloning”



Part 2:
The behavioral cloning algorithm



In 2 Neural Network

ALVINN: Autonomous Land Vehicle

1989




1. Collect data by asking a person to {(O(Z) (Z) (4) (z))

make demonstrations 2O ,ag )i=1

4 N N
2. Rgn supe.rws-,ed Iearnl.ng (a..k.a. | . maXT S, log (a(i) |0(i))
maximum likelihood estimation) on this & 0 L2 08T 3 |0y
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encoder
Ot (e.g., ViT, ResNet)
. . fi(o¢)
Discrete actions Fo(00) (as = 1]oy) = exp(fi(o))
(e.g., tokens for LLM, 0 plat = 110¢) = ZA exp(f:(07))
key presses for Atari games) fa(oy) i=1 i

output = logits
P g We’'ll learn about other more advanced ways to

represent complex action distributions later!

(e.g., driving a car)

Continuous actions - (o) p(at|0t) — N(at\u(ot), E(Ot))
0 [ Y(0y) ]

log p(alog) = [la; — pu(oy)||”

output = distribution parameters . )
in special case X(o0;) =1



art 3:
Does behavioral cloning work?




Does it work? No
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Why did that work?
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The moral of the story, and a list of ideas

* Imitation learning via behavioral cloning is not
guaranteed to work
 This is different from supervised learning
* The reason: i.i.d. assumption does not hold!

* We can formalize why this is and do a bit of theory

* We can address the problem in a few ways:
e Change the algorithm (DAgger)
* Use very powerful models that make very few mistakes
* Be smart about how we collect (and augment) our data

* Use multi-task learning P>
.’. E P1

— o




Back to this...

- = training trajectory
: _ o eXpeCted trajectory




Distributional shift

Definition: we train py(y|x) on X ~ pirain(X)

we test pg(y|X) Ol X ~~ Dtest (X)

Ptest (X) 7& Ptrain (X)

How bad could it be?

Imagine you prepare for a math exam, and
get an exam on ancient Greek literature




Distributional shift with BC
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How bad could it be?




Intermission



Part 4.
Just how bad could it be, really?



Some things we might like to know

Is it worse than supervised learning?
Do the problems vanish with more data?

Does it get worse for some control problems?

Theory can help us answer these questions

What theory gives us: What theory doesn’t give us:

Ill

intuition for tradeoffs (data, horizon, etc.) a practical “proof” that it works (or doesn’t)

“how bad can it be” (worst case) a way to understand typical behavior



Quantifying how bad it could be

Assume the data is produced by a good policy 7*(s;) (fully observed case for simplicity)

0 if ad; — W*(St)

. incur a cost of 1 if you make a “mistake”
1 otherwise

c(st,as) = {

B, ~ro(ay s C(St; ar)| = ng(at|st)c(st,at) = mo(ar 7 ™ (st)|st)

T a1 “probability of a mistake”

expected value w.r.t. actions sampled from 7y



Quantifying how bad it could be

H ( ) o 0 if A — W*(St)
ZEatNﬂg(atlst),SthwQ(St)[c(st7 at)] CB6:8t) =\ 1 otherwise

t=1 f

note that this depends
on past actions

—nglstrlbutmn

This sum corresponds to the
expected total number of mistakes

Question: how does the total number of
mistakes scale with the length of the trajectory
(the “horizon”)




A worst-case situation

assume: mg(a #£ 7*(s)ls) <€

for all s € Dirain
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A more general analysis

assume: Fg, o, s,y [To(ar 7# m7(s¢)|s¢)] < €

“if we sample a state from the training distribution, we are unlikely to make a mistake”

A useful property:
Py (St) — (1 — e)tptrain(st) + (1 — (1 — e)t))pmistake(st)

o S \ J

1
probability we made no mistakes some other distribution




A more general analysis

1

Total variation divergence Dy (p,q) = = Z p(z) —q(x)] <1
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useful identity:
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A more general analysis
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A more general analysis

H
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This is bad because error increases quadratically with horizon

For more analysis, see Ross et al. “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”



Why is this rather pessimistic?

. But that doesn’t mean
In reality, we can often

hat imitation learni
L L L Ll L | recoverfrom mistakes that imitation learning

will allow us to learn
how to do that!

- = training trajectory
© - =— my expected trajectory

A paradox: imitation learning can _
. work better if the data hasmore  “ .
. mistakes (and recoveries)!




Part 5:
Can we do better than behavioral cloning?



What can we do about it?

= training trajectory
— mg expected trajectory
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Fixing distributional shift

can we make Paata(0t) = pr,(0¢)7

idea: instead of being clever about p;,(0¢), be clever about pgata(0t)!

DAgger: Dataset Aggregation

goal: collect training data from p;,,(0;) instead of pyata(0¢)
how? just run mg(a;|o;)

but need labels a;!

1. train my(as|os) from human data D = {o1,a1,...,0n,an}
2. run mg(a;|oy) to get dataset D, = {01,...,05}

3. Ask human to label D, with actions a;

4. Aggregate: D < DU D,

Ross et al. ‘11



DAgger Example

Ross et al. ‘11



What’s the problem?

1. train my(as|os) from human data D = {o1,a1,...,0n,aN}
2. run mg(a;|oy) to get dataset D = {01,...,0}

[3. Ask human to label D, with actions a; ]

4. Aggregate: D < D UD,

Ross et al. ‘11



A common variant of DAgger

train my(a;|o;) from human data D = {01, a1,

..,0N,aN}
run 7y (az|os)

ask human to take over at some time step ¢

W

Is this still guaranteed to

store all (04, u;) examples from human intervention fix distributional shift?

Expert

~ Intervention




Recap

* We can address the problem in a few ways:

* Use very powerful models that make very few mistakes
* Be smart about how we collect (and augment) our data
* Use multi-task learning p:

P
‘. .
.
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