
Berkeley CS185/285 Deep Reinforcement Learning, Decision Making, and Control Spring 2026

Section 2 (Part 2): Behavior Cloning Regret Proof

1 Setup: Behavior Cloning and Distributional Shift

The Problem

In behavior cloning, we train a policy πθ(at|st) by imitating an expert policy π∗(st) using supervised
learning on demonstration data.

Training objective:
max

θ
Est∼pdata(st) [log πθ(at = π∗(st)|st)]

The Issue: We train on states from pdata(st) (expert’s state distribution), but at test time the
learned policy induces its own distribution pπθ

(st).

Distributional shift:
pdata(st) ̸= pπθ

(st)

Question: How bad can this distributional shift be? Can we quantify the error?

2 Defining the Cost Function

To analyze the problem, we define a simple cost function that measures “mistakes”:

Cost function:

c(st, at) =

{
0 if at = π∗(st)

1 otherwise

The expected cost at a single time step, given state st:

Eat∼πθ(at|st)[c(st, at)] =
∑
at

πθ(at|st) · c(st, at) = πθ(at ̸= π∗(st)|st)

This is simply the probability of making a mistake at state st.

3 The Key Assumption

We assume that our learned policy makes mistakes with probability at most ϵ on states from the
training distribution:

Assumption:
Est∼ptrain(st) [πθ(at ̸= π∗(st)|st)] ≤ ϵ
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Interpretation: If we sample a state from where the expert went, we are unlikely (probability ≤ ϵ)
to make a mistake.

Goal: Bound the total expected number of mistakes over a trajectory of length H:

H∑
t=1

Eat∼πθ(at|st), st∼pπθ (st)
[c(st, at)]

Note: The states st are sampled from pπθ
(st) — the distribution induced by running our policy, not

from training data!

4 Step 1: State Distribution Decomposition

Key insight: We can decompose the state distribution under πθ into two cases:

1. We made no mistakes so far → we’re still on the training distribution
2. We made at least one mistake → we’re on some other distribution

State distribution decomposition:

pπθ
(st) = (1− ϵ)t ptrain(st) +

(
1− (1− ϵ)t

)
pmistake(st)

Where:

• (1− ϵ)t = probability of making no mistakes for t steps
• ptrain(st) = state distribution if we always acted like the expert
• pmistake(st) = some (unknown) distribution we land in after a mistake

5 Step 2: Bounding the TV Divergence

Total Variation Divergence measures how different two distributions are:

DTV (p, q) =
1

2

∑
x

|p(x)− q(x)| ≤ 1

Now we compute the TV divergence between ptrain and pπθ
:
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DTV (ptrain, pπθ
) =

1

2

∑
st

|ptrain(st)− pπθ
(st)|

=
1

2

∑
st

∣∣ptrain(st)− (1− ϵ)tptrain(st)− (1− (1− ϵ)t)pmistake(st)
∣∣

=
1

2

∑
st

∣∣(1− (1− ϵ)t)ptrain(st)− (1− (1− ϵ)t)pmistake(st)
∣∣

= (1− (1− ϵ)t) · 1
2

∑
st

|ptrain(st)− pmistake(st)|

≤ (1− (1− ϵ)t)

Useful inequality: For ϵ ∈ [0, 1]:

(1− ϵ)t ≥ 1− ϵt =⇒ 1− (1− ϵ)t ≤ ϵt

Proof sketch: Bernoulli’s inequality states (1 + x)n ≥ 1 + nx for x ≥ −1.

Therefore:

DTV (ptrain, pπθ
) ≤ ϵt

The distributions diverge linearly with time.

6 Step 3: Bounding the Total Cost

We want to bound:
H∑
t=1

Eat∼πθ(at|st), st∼pπθ (st)
[c(st, at)]

Strategy: Add and subtract ptrain(st) to relate back to our assumption.

H∑
t=1

Est∼pπθ (st)
[Eat∼πθ

[c(st, at)]]

=
H∑
t=1

∑
st

pπθ
(st)Eat∼πθ(at|st)[c(st, at)]
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Add and subtract ptrain(st):

=

H∑
t=1

∑
st

(ptrain(st) + pπθ
(st)− ptrain(st))Eat [c(st, at)]

=

H∑
t=1


∑
st

ptrain(st)Eat [c(st, at)]︸ ︷︷ ︸
Term A

+
∑
st

(pπθ
(st)− ptrain(st))Eat [c(st, at)]︸ ︷︷ ︸

Term B


7 Step 4: Bounding Each Term

Term A: Expected cost under training distribution.

By our assumption:
Term A = Est∼ptrain(st)[πθ(at ̸= π∗(st)|st)] ≤ ϵ

Term B: Extra cost due to distributional shift.

Term B =
∑
st

(pπθ
(st)− ptrain(st))Eat [c(st, at)]

≤
∑
st

|pπθ
(st)− ptrain(st)| · Eat [c(st, at)]︸ ︷︷ ︸

≤1

Since the cost is bounded by 1:

Term B ≤
∑
st

|pπθ
(st)− ptrain(st)| = 2DTV (pπθ

, ptrain) ≤ 2ϵt

8 Step 5: Final Result

Combining the bounds:

H∑
t=1

E[c(st, at)] ≤
H∑
t=1

(ϵ+ 2ϵt)

= ϵH + 2ϵ

H∑
t=1

t

= ϵH + 2ϵ · H(H + 1)

2

= ϵH + ϵH(H + 1)

= ϵH(1 +H + 1)

= O(ϵH2)
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Main Result: The expected total number of mistakes scales as

O(ϵH2)

Quadratic in the horizon H.

9 Interpretation and Takeaways

Observation Implication

Error is O(ϵH2) Small mistakes compound over time

Quadratic in H Long horizons are much harder than short ones

Linear in ϵ Reducing per-step error helps, but doesn’t fix the H2

Contrast with i.i.d. supervised learning:

In standard supervised learning, if per-sample error is ϵ, total error over H samples is O(ϵH) (linear).
In behavior cloning, it’s O(ϵH2) (quadratic) because samples are not i.i.d. — current actions affect
future states.

What can we do?

• DAgger: Collect data from pπθ
instead of pdata to match distributions
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