Berkeley CS185/285 Deep Reinforcement Learning, Decision Making, and Control Spring 2026

Section 2 (Part 2): Behavior Cloning Regret Proof

1 Setup: Behavior Cloning and Distributional Shift

The Problem

In behavior cloning, we train a policy mg(a¢|s;) by imitating an expert policy 7*(s;) using supervised
learning on demonstration data.

Training objective:
max By, pya(s) [l0g To(ar = 77 (5¢)]51)]

The Issue: We train on states from pgata(s:) (expert’s state distribution), but at test time the
learned policy induces its own distribution pr, (s¢).

Distributional shift:
pdata(st) 7é Pry (st)

Question: How bad can this distributional shift be? Can we quantify the error?

2 Defining the Cost Function

To analyze the problem, we define a simple cost function that measures “mistakes”:
Cost function:
1 otherwise

T
C(St,at):{o t a, = (e,

The expected cost at a single time step, given state s;:

By ormg(arlsn) [€(5tar)l =D molaulsy) - c(se, ar) = mo(ar # 7 (s1)|s1)
at
This is simply the probability of making a mistake at state s;.

3 The Key Assumption

We assume that our learned policy makes mistakes with probability at most € on states from the
training distribution:

Assumption:
ESthtrain(St) [ﬂ-a(at # W*(Stﬂst)] S €

Berkeley CS185/285 Deep Reinforcement Learning, Decision Making, and Control Spring 2026

Interpretation: If we sample a state from where the expert went, we are unlikely (probability < ¢)
to make a mistake.

Goal: Bound the total expected number of mistakes over a trajectory of length H:

H
ZEatNﬂe(at|8z)7St~p7r9(St) [C(St7at)]
t=1
Note: The states s; are sampled from py,(s¢) — the distribution induced by running our policy, not

from training data!

4 Step 1: State Distribution Decomposition

Key insight: We can decompose the state distribution under my into two cases:

1. We made no mistakes so far — we’re still on the training distribution
2. We made at least one mistake — we’re on some other distribution

State distribution decomposition:
pﬂ'g(st) = (1 - E)tptrain(st) + (1 - (1 - E)t) pmistake(st)

Where:

e (1 — €)' = probability of making no mistakes for ¢ steps
® Dirain(St) = state distribution if we always acted like the expert
® Dmistake(S¢t) = some (unknown) distribution we land in after a mistake

5 Step 2: Bounding the TV Divergence

Total Variation Divergence measures how different two distributions are:
v ()—12‘() (@) <1
Drv(p,q) = = p(z) —qx
q 5 . q

Now we compute the TV divergence between pirain and py,:

Berkeley CS185/285 Deep Reinforcement Learning, Decision Making, and Control Spring 2026

DTV(ptrain:pﬂg) = % Z ’ptrain(st) — Pry (St)|
= %Z ‘ptrain(st) - (1 - e)tptrain(st) - (1 - (1 - E)t)pmistake(st)|
= %Z ‘(1 - (1 - E)t)ptrain(st) - (1 - (1 - E)t)pmistake(st)‘

1
= (1 - (1 - E)t) : 5 SZ |ptrain(5t) _pmistake(st)|
t
<(1-(1-oh
Useful inequality: For € € [0, 1]:

(l—ef>l1—e¢ = 1-(1-¢€f<et

Proof sketch: Bernoulli’s inequality states (1 + x)" > 1+ nzx for x > —1.

Therefore:

Drv (ptrain, DPry) < et

The distributions diverge linearly with time.

6 Step 3: Bounding the Total Cost

We want to bound: "

Z EatNﬂe(atIStL st~prp(st) [C(St7 at)]
t=1

Strategy: Add and subtract pirain(s¢) to relate back to our assumption.

H

> B, (51) Bageorm [e(5t, a0)]]
t=1

H
= Z Zpﬂg (St) Eaz’\/ﬂg(at|8t) [C(sta at)]

t=1 st

Berkeley CS185/285 Deep Reinforcement Learning, Decision Making, and Control Spring 2026

Add and subtract perain(st):

H
= Z Z (ptrain(st) + DPry (St) - ptrain(st)) Eat [C(5t7 at)}
t=1

St

H

=31 Durain(80)Ea, [c(st,)]+ > (Pry(51) = Prrain (1)) Ea, [c(s1, ar)]
t=1 St St

Term A Term B

7 Step 4: Bounding Each Term

Term A: Expected cost under training distribution.

By our assumption:
Term A =K, .. s)[mo(ar # 7 (s¢)[s1)] < €

Term B: Extra cost due to distributional shift.

Term B = Z(pm,(st) - ptrain(st))Eat [C(Sta at)]

St

< Z ’p7r9 (St) - ptrain(st)| : Eat [C(3t7 at)]

<1

Since the cost is bounded by 1:

Term B < Z |p7r9 (St) - ptrain(st)‘ = 2DTV(p7rgvptrain) < 2et

8 Step 5: Final Result

Combining the bounds:

H H
Z Elc(st, at)] < Z (€ + 2et)
t=1 t=1
H
=eH+2) t
t=1
HHA+1
=eH + 2¢- (2—’_)

= eH + eH(H + 1)
=eH(1+H+1)

= O(eH?)

Berkeley CS185/285 Deep Reinforcement Learning, Decision Making, and Control Spring 2026

Main Result: The expected total number of mistakes scales as

O(eH?)

Quadratic in the horizon H.

9 Interpretation and Takeaways

Observation Implication

Error is O(eH?) Small mistakes compound over time
Quadratic in H Long horizons are much harder than short ones

Linear in € Reducing per-step error helps, but doesn’t fix the H?

Contrast with i.i.d. supervised learning:

In standard supervised learning, if per-sample error is €, total error over H samples is O(eH) (linear).
In behavior cloning, it’s O(eH?) (quadratic) because samples are not i.i.d. — current actions affect
future states.

What can we do?

e DAgger: Collect data from pr, instead of pgata to match distributions

